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Classification of trusses whose retracts are cyclic groups

Ryszard R. Andruszkiewicz and Karol Pryszczepko

Abstract. This article is devoted to study some relationships of trusses with rings. We classify
all trusses whose retracts are finite cyclic groups.

1. Introduction

In the 1920s, H. Prüfer and R. Baer defined a heap as an algebraic system consisting
of a set with a ternary operation which fulfils conditions that allow one to associate
an isomorphic group to every element. Moreover, with every group one can connect a
heap by taking special operation (see [3, 8]). In 2007, W. Rump introduced braces as
algebraic systems corresponding to solutions of set-theoretic Yang–Baxter equations
[9]. A brace is a triple .G;C; �/ where .G;C/ is an abelian group, .G; �/ is a group and
the following distributive law holds, for all a; b; c 2G, a � .bC c/D a � b � aC a � c;
see [6]. Through their connection with set-theoretic Yang–Baxter equations, braces
have become an intensive field of studies. In particular, it has been shown that a brace
allows one to construct a non-degenerate involutive set-theoretic solution of the Yang–
Baxter equation.

A truss [1, 4] is an algebraic system consisting of a set with a ternary operation
making it into an abelian heap [3,8] and an associative binary operation that distributes
over the ternary one.

Later, it turned out that there are interesting relations of trusses with various alge-
braic structures: groups, rings, brace-like systems, etc. (cf. [9]). These relationships
allow these structures to be studied using new tools. Research in this area is very
promising and currently being intensively developed; a whole series of articles by
T. Brzeziński and his associates are devoted to these topics: [1, 4, 5]. We will now
quickly recall main truss concepts that we will be using, and we refer the reader to the
cited literature for detailed information and discussion.

It is worth mentioning that trying to describe various algebraic structures on fixed
classes of groups (abelian) is a common practice. The aim of our article is to present
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a complete classification of trusses whose retracts are cyclic groups. This fits into
the current trend of research on the previously mentioned structures. For example,
in paper [5] (see Theorem 3.51) Brzeziński described all trusses whose retracts are
isomorphic to the infinite cyclic group. The results presented in this work are a natural
continuation of his research. Namely, we classify all trusses whose retracts are finite
cyclic groups. Additionally, it is worth noting that Prof. Rump conducted research in
a similar vein. Namely, in article [10] he classified cyclic braces with primary additive
group.

2. Trusses

We will now quickly recall main truss concepts that we will be using, and we refer
the reader to the cited literature for detailed information and discussion. The symbols
N, Z, P stand for the set of natural numbers, the set of integers and the set of all
prime numbers, respectively. The prime field of characteristic p is denoted by Zp .
The additive group of a ring R is denoted by RC.

An abelian heap is a set H with a ternary operation Œ�;�;�� such that, for all
h1; h2; h3; h4; h5 2 H ,

Œh1; h2; Œh3; h4; h5�� D ŒŒh1; h2; h3�; h4; h5�; (2.1a)

Œh1; h1; h2� D h2 and Œh1; h2; h2� D h1; (2.1b)

Œh1; h2; h3� D Œh3; h2; h1�: (2.1c)

For any e 2 H we define the binary operationCe on the set H by

aCe b D Œa; e; b� for all a; b 2 H: (2.2)

Then .H;Ce; e/ is an abelian group, known as a retract of H and �eh WD Œe; h; e�
for any h 2H . Moreover, for all e; f 2H the groups .H;Ce; e/ and .H;Cf ; f / are
isomorphic. Conversely, if .A;C/ is an abelian group and Œa; b; c� D a � b C c for
any a; b; c 2 A, then .A; Œ�;�;��/ is an abelian heap.

A truss is a set T together with a ternary operation Œ�;�;�� and an associative
binary operation � called multiplication, such that .T; Œ�;�;��/ is an abelian heap
and, for all a; b; c; d 2 T ,

a � Œb; c; d � D Œa � b; a � c; a � d� and Œa; b; c� � d D Œa � d; b � d; c � d�:

We say that a truss .T; Œ�;�;��; �/ is commutative, if a � b D b � a for all a; b 2 T .
Moreover, by a retract of a truss .T; Œ�;�;��; �/ we call any retract of an abelian
heap .T; Œ�;�;��/. An element e 2 T is called an idempotent, if e � e D e. If u � a D
a � u D a for any a 2 T , then we say that u is an identity of a truss T .
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Let .T1; Œ�;�;��1; �1/ and .T2; Œ�;�;��2; �2/ be trusses. A mapping f WT1! T2

is called a homomorphism of trusses, if for all a; b; c 2 T1,

f .Œa; b; c�1/ D Œf .a/; f .b/; f .c/�2 and f .a �1 b/ D f .a/ �2 f .b/:

If, additionally, f is a bijection, then we say that f is an isomorphism of trusses.
It is easy to check that if .Ti ; Œ�;�;��i ; �i / is a truss for every i 2 I (I ¤ ;), then

T D
Q
i2I Ti with operations Œ�;�;�� and � defined by the formulas

Œ.ai /i2I ; .bi /i2I ; .ci /i2I � WD .Œai ; bi ; ci �i /i2I and .ai /i2I � .bi /i2I WD .ai �i bi /i2I

is also a truss. This truss is called a direct product of trusses .Ti ; Œ�;�;��i ; �i / for i 2 I
and denoted by

Q
i2I Ti . Note that, if .T 0i ; Œ�;�;��

0
i ; �
0
i / is a truss and fi WTi ! T 0i is a

truss isomorphism for every i 2 I , then a function f given by a formula f ..xi /i2I / WD
.fi .xi //i2I is an isomorphism of a truss

Q
i2I Ti onto a truss

Q
i2I T

0
i .

Remark 2.1. The problem of classification of trusses whose retract is isomorphic to
a given abelian group .A;C; 0/ comes down to the classification of trusses of the
form .A; Œ�;�;��; �/ such that Œa; b; c� D a � b C c for any a; b; c 2 A. Indeed, if
.T; Œ�;�;��0;ı/ is a truss, e 2 T and f W .T;Ce; e/! A is an isomorphism of groups
and a � b D f .f �1.a/ ı f �1.b// for a; b 2 A, then .A; Œ�;�;��; �/ is a truss and
f is an isomorphism of a truss .T; Œ�;�;��0; ı/ onto a truss .A; Œ�;�;��; �/. In this
way, we free ourselves from the too general form of ternary action and reduce it to an
action given by a formula Œa; b; c� D a � b C c for a; b; c 2 A.

This simple observation also allows us to choose different forms of groupsA, e.g.,
instead A D ZCn one can consider a finite product of simple groups of the form ZC

pk
,

where p 2 P and k 2 N.

Example 2.2. Let .A;C; 0/ be an abelian group and let Œa; b; c� D a � b C c for
a; b; c 2 A. Moreover, let for any a; b 2 A

a �l b WD a; a �r b WD b; (2.3a)

a �0 b WD 0; a ı0 b WD aC b: (2.3b)

A standard check shows that .A; Œ�;�;��; �l/, .A; Œ�;�;��; �r/, .A; Œ�;�;��; �0/,
.A; Œ�;�;��; ı0/ are trusses where the last two of them are commutative and the
first two are not commutative, whenever A¤ ¹0º. Note that 0 is the identity of a truss
.A; Œ�;�;��;ı0/, and a truss .A; Œ�;�;��; �0/ does not have identity, if only A¤ ¹0º.
Moreover, trusses .A; Œ�;�;��; �/ and .A; Œ�;�;��; �l/ are isomorphic if and only if
they are equal and .A; Œ�;�;��; �/ and .A; Œ�;�;��; �r/ are isomorphic if and only if
they are equal. If A ¤ ¹0º, then no two of these four trusses are isomorphic.



R. R. Andruszkiewicz and K. Pryszczepko 328

A pair .�; �/ of additive mutually commuting endomorphisms of the additive
group of a ring R is called double homothetism on an associative ring .R;C; �; 0/,
if for any a; b 2 R the conditions

a � �.b/ D .a/� � b; �.a � b/ D �.a/ � b; .a � b/� D a � .b/�

hold. Examples of double homotheties on any associative ring .R;C; �; 0/ are pairs
.k � idR; k � idR/ for k 2Z and .la; ra/, where for fixed a 2R and any x 2R: la.x/ WD
a � x and .x/ra WD x � a.

Remark 2.3. Let e 2 T , where .T; Œ�;�;��; �/ is a truss. Let, for any a; b 2 T ,

a �e b WD a � b �e a � e �e e � b Ce e � e: (2.4)

In article [1], the authors proved that .T;Ce; �e; e/ is a ring and a pair .�; �/, where

�.x/ D e � x �e e � e and .x/� D x � e �e e � e and x 2 T (2.5)

is a double homothetism on that ring, �.˛/D .˛/� for ˛ D e � e, and for every x 2 T ,

�.�.x// D �.x/Ce ˛ �e x and ..x/�/� D .x/�Ce x �e ˛: (2.6)

Moreover, for any a; b 2 T we have

a � b D a �e b Ce .a/�Ce �.b/Ce ˛: (2.7)

In [1] it is also proved that for any elements e; f 2 T the rings .T;Ce; �e; e/ and
.T;Cf ; �f ; f / are isomorphic. Therefore, we say that a truss .T; Œ�;�;��; �/ determ-
inates the ring .T;Ce; �e; e/.

Remark 2.4. Let ' be a homomorphism of a truss .T; Œ�; �; ��; �/ into a truss
.T1; Œ�; �; ��1; �1/ and let f D '.e/. Then, by formula (2.2) we get that ' is a
homomorphism of an abelian group .T;Ce; e/ into a group .T1;Cf ; f /. Hence,
and by (2.4) we get that '.a �e b/ D '.a/ �f '.b/ for all a; b 2 T . Therefore, ' is
a ring homomorphism. Moreover, for every element x 2 T by (2.5) we have that
'.�.x//D �1.'.x// and '..x/�/D .'.x//�1, where �1.y/D f �1 y �f f �1 f and
.y/�1 D y �1 f �f f �1 f for y 2 T1. In particular, isomorphic trusses determine
isomorphic rings.

A standard computation based on formula (2.4) shows that any truss from Ex-
ample 2.2 determines (for e D 0) the same ring with a zero multiplication with an
additive group .A;C; 0/. Thus, non-isomorphic trusses can determinate isomorphic
rings. Notice that the truss .T; Œ�;�;��; �/ determines a double homothetism .�; �/

and an element ˛ 2 T such that �.˛/D .˛/� and formulas (2.6) and (2.7) are fulfilled.
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Therefore, some of the information about this truss is hidden not only in the ring
determinated by it, but also in the double homothetism .�; �/ and an element ˛.

Conversely, if .R;C; �; 0/ is a ring and .�; �/ is a double homothetism on that ring
and for ˛ 2 R we have �.˛/ D .˛/� and for any x 2 R, �.�.x// D �.x/C ˛ � x and
..x/�/�D .x/�C x � ˛, then .R; Œ�;�;��;ı/ is a truss, if for any a; b; c 2R we have
Œa; b; c� D a � b C c and

a ı b D a � b C .a/�C �.b/C ˛: (2.8)

Moreover, we have that .R;C0; ı0; 0/ D .R;C; �; 0/ and for non-isomorphic
rings correspond non-isomorphic trusses. A truss .R; Œ�;�;��; ı/ will be denoted
by T .R; ˛; �; �/.

We will now present the construction of a quotient structure on a truss of the form
T .R; ˛; �; �/.

Remark 2.5. Let .�; �/ be double homothetism on a ring .R;C; �; 0/ and let ˛ 2 R
be such that T D T .R; ˛; �; �/ is a truss. Let I be an ideal of the ring R, such that
�.I / � I and .I /� � I . Set R D R=I and ˛ D ˛ C I . Moreover, let �.x C I / D
�.x/C I and .x C I /� D .x/� C I for x 2 R. A standard computation shows that
.�;�/ is a double homothetism on the quotient ringR. Moreover, �.˛/D �.˛/C I D
.˛/�C I D .˛/� and for every x D xC I 2 R=I we have �

2
.x/D �.x/C ˛ � x and

.x/�2 D .x/�C x � ˛. Therefore, by virtue of Remark 2.4 we have a truss R; ˛; �; �
with the multiplication ı given by the formula

a ı b D a � b C .a/�C �.b/C ˛;

for any a; b 2 R.
Since a mapping a 7! aC I is a ring homomorphism ofR onto a ringR, the truss

T D T .R; ˛; �; �/ is a homomorphic image of a truss T .

The next theorem can be considered as an equivalent of the well-known First
Isomorphism Theorem, for trusses.

Theorem 2.6. Let T D T .R; ˛; �; �/ be a truss determined by the ring .R;C; �; 0/.
Then the truss S is a homomorphic image of the truss T if and only if there exists an
ideal I of the ring R such that �.I / � I , .I /� � I and S Š T .R; ˛; �; �/.

Proof. The implication of( follows immediately from Remark 2.5.
). Let  be a homomorphism of a truss T onto a truss S . By Remark 2.4 we

have that  is a homomorphism of a ring .R;C; �; 0/ onto a ring .S;Cs; �s; s/ where
s D .0/. Let I DKer . Then, from the general ring theory, a function  WR=I ! S

given by  .x C I / D  .x/ for x 2 R is an isomorphism of the ring R D R=I onto
the ring S . It remains to prove that the truss S is of the form T .R; ˛; �; �/.



R. R. Andruszkiewicz and K. Pryszczepko 330

Let i 2 I . Then

 .�.i// D  .0 � i � 0 � 0/ D  .Œ0 � i; 0; 0 � 0�/ D Œ .0 � i/;  .0/;  .0 � 0/�S

D s �  .i/ �s s �s s D s � s �s s �s s D s;

which shows that �.i/ 2 I and in a consequence �.I /� I . Similarly, it can be shown
that .I /� � I .

Denote ˛ D  .˛/ and let for y 2 R=I : �.y/ D  .�.x// and .y/� D  ..x/�/,
where x 2 R and  .x/ D y. By assumptions we have that � and � are well-defined
functions of a ring R=I in R=I . Standard check shows that .�; �/ is a double homo-
thetism on a ring R=I and �.˛/ D .˛/� D  .�.˛// and for every y 2 R=I we have
�
2
.y/ D �.y/C ˛ � y and .y/�2 D .y/�C y � ˛. Therefore, by virtue of Remark 2.4

we have a truss T .R; ˛; �; �/ built on a ring R with a multiplication given by the
formula

 .a/ ı  .b/ D  .a/ �  .b/C  ..a/�/C  .�.b//C ˛;

for all a; b 2 R. In particular, it follows that  is an isomorphism of a truss T onto a
truss T .R; ˛; �; �/.

The next theorems proved in [1] provide necessary and sufficient conditions for
trusses of the form T .R; ˛; �; �/ to be isomorphic.

Theorem 2.7 ([1, Lemma 3.7 & Lemma 3.8]). Let T D T .R; ˛; �; �/ be a truss that
determines the ring R D .R;C; �; 0/ and let ˆ be an automorphism of R and let
ˇ 2 R. Moreover, let

˛1 D ˆ.˛ C ˇ C ˇ � ˇ � .ˇ/� � �.ˇ//; (2.9)

�1 D ˆ.� � rˇ /ˆ
�1; (2.10)

�1 D ˆ.� � lˇ /ˆ
�1: (2.11)

Then T1 D T .R; ˛1; �1; �1/ is a truss that determines the ring R and T1 Š T .

Theorem 2.8. Let T D T .R; ˛; �; �/ and T1 D T .R; ˛1; �1; �1/ be the trusses de-
termined by the ringRD .R;C; 0; �/. These trusses are isomorphic if and only if there
exists ˇ0 2 R and there exists an automorphism ˆ of the ring R such that relations
(2.9)–(2.11) hold.

The next result is a generalization of the results presented above, better suited to
our purposes.

Theorem 2.9. Let TiDT .Ri ;˛i ;�i ;�i / be a truss determined by a ring .Ri ;Ci ; �i ;0i /
for i D 1; 2. A function 'WR1 ! R2 is a truss homomorphism of T1 into a truss T2 if
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and only if there exist a ring homomorphism  of a ring R1 into a ring R2 and there
exists ˇ 2 R2 such that

 .˛1/C2 ˇ D ˇ �2 ˇ C2 .ˇ/�2 C2 �2.ˇ/C2 ˛2

and '.x/ D  .x/C2 ˇ for every x 2 R1 and for any a; b 2 R1,

 .�1.b// D ˇ �2  .b/C2 �2. .b// and  ..a/�1/ D  .a/ �2 ˇ C2 . .a//�2:

In particular, �1.x/ 2 Ker and .x/�1 2 Ker for every x 2 Ker and '.T1/Š T1,
whereR1 D R1=Ker .

Proof. ). Let ˇ WD '.01/ and .x/ WD '.x/�2 '.01/ for x 2R1. Then for a;b 2R1
we have

 .aC1 b/ D '.aC1 b/ �2 '.0/ D '.Œa; 01; b�1/ �2 '.01/

D Œ'.a/; '.01/; '.b/�2 �2 '.01/ D '.a/ �2 '.01/C2 '.b/ �2 '.01/

D  .a/C2  .b/:

Hence is a group homomorphism of a group .R1;C1; 01/ into a group .R2;C2; 02/.
Next, by formula (2.8), ˛1 D 01 ı1 01, so

'.˛1/ D '.01/ ı2 '.01/ D ˇ �2 ˇ C2 .ˇ/�2 C2 �2.ˇ/C2 ˛2:

Thus
 .˛1/C2 ˇ D ˇ �2 ˇ C2 .ˇ/�2 C2 �2.ˇ/C2 ˛2:

Similarly, for any a; b 2 R1 we have '.a ı1 b/ D '.a/ ı2 '.b/, so

 .a �1 b C1 .a/�1 C1 �1.b/C1 ˛1/C2 ˇ

D . .a/C2 ˇ/ �2 . .b/C2 ˇ/C2 . .a/C2 ˇ/�2 C2 �2. .b/C2 ˇ/C2 ˛2:

Therefore,

 .a �1 b/C2  ..a/�1/C2  .�1.b//

D  .a/ �2  .b/C2  .a/ �2 ˇ C2 ˇ �2  .b/C2 . .a//�2 C2 �2. .b//:

Substituting a D 0 and b D 0 we get that  .�1.b// D ˇ �2  .b/C2 �2. .b// and
 ..a/�1/ D  .a/ �2 ˇ C2 . .a//�2, therefore consequently  .a �1 b/ D  .a/ �2

 .b/. Hence  is a ring homomorphism of R1 into a ring R2.
(. For any a; b 2 R1 we have

'.Œa; b; c�1/ D '.a �1 b C1 c/ D  .a �1 b C1 c/C2 ˇ

D  .a/ �2  .b/C2  .c/C2 ˇ
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D . .a/C2 ˇ/ �2 . .b/C2 ˇ/C2 . .c/C2 ˇ/

D Œ'.a/; '.b/; '.c/�2

and

'.a ı1 b/ D  .a �1 b C1 .a/�1 C1 �1.b/C1 ˛1/C2 ˇ

D  .a/ �2  .b/C2  ..a/�1/C2  .�1.b//C2  .˛1/C2 ˇ:

Moreover,

'.a/ ı2 '.b/

D . .a/C2 ˇ/ �2 . .b/C2 ˇ/C2 . .a/C2 ˇ/�2 C2 �2. .b/C2 ˇ/C2 ˛2

D  .a/ �2  .b/C2  .a/ �2 ˇ C2 ˇ �2  .b/C2 ˇ �2 ˇ C2 . .a//�2

C2 .ˇ/�2 C2 �2. .b//C2 �2.ˇ/C2 ˛2;

so after taking into account the assumptions '.a ı1 b/ D '.a/ ı2 '.b/. Hence ' is a
truss homomorphism of T1 into a truss T2.

A standard check shows that the function y 7! y C2 ˇ for y 2  .R/ is an iso-
morphism of a truss  .T1/ to a truss '.T1/. Hence, and by Theorem 2.6, we have that
'.T1/ Š T1, where R1 D R1=Ker .

Remark 2.10. Remarks 2.1 and 2.3 and Theorems 2.7 and 2.8 justify the correctness
of the following determination procedure, up to an isomorphism, of all trusses with
retracts isomorphic to a fixed abelian group .A;C; 0/:

(1) It is enough to consider the trusses of the form .A; Œ�;�;��; �/, where Œa; b; c�
D a � b C c for all a; b; c 2 A.

(2) It is necessary to determine all, up to an isomorphism, rings of the form Rs D

.A;C; �s; 0/ for s 2 S with an additive group .A;C; 0/.

(3) For every s 2 S determine, up to an isomorphism, all trusses Ti for i 2 Is of
the form Ti D T .Rs; ˛; �; �/.

(4) Up to isomorphism, all trusses with retract isomorphic to .A;C; 0/ are trusses
Ti for i 2 Is and s 2 T .

Example 2.11. Let .R;C; �; 0/, where R ¤ ¹0º, be a ring with zero multiplication
(i.e., a � b D 0 for any a; b 2 R) and let the group .R;C; 0/ be indecomposable.
Formula (2.6) shows that if .�; �/ is a double homothetism on this ring, then �2 D
� and �2 D �. Hence RC D Ker � ˚ Im � and RC D Ker � ˚ Im �, so from the
indecomposability of the group RC it follows that �; � 2 ¹0R; idRº.

If � D � D 0R, then by (2.8) we have that a ı b D ˛ for any a; b 2 R. Hence
the function 'W R ! R given by '.x/ D x � ˛ is an isomorphism of the truss
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T .R; ˛; 0R; 0R/ onto the truss .R; Œ�;�;��; �/ such that Œa; b; c� D a � b C c and
a � b D 0 for any a; b; c 2 R.

If � D � D idR, then by (2.8) we have that a ı b D aC b C ˛ for any a; b 2 R.
Hence the function 'WR! R given by '.x/ D x C ˛ is an isomorphism of the truss
T .R; ˛; idR; idR/ onto the truss .R; Œ�;�;��;�/ such that Œa; b; c� D a � b C c and
a � b D aC b for any a; b; c 2 R.

If � D 0R and � D idR, then from the condition �.˛/ D .˛/� it follows ˛ D 0
and by (2.8) we have that a ı b D a for any a; b 2 R. So in this case we have a truss
.R; Œ�;�;��; �l/.

If � D 0R and � D idR, then from the condition �.˛/ D .˛/� it follows ˛ D 0
and by (2.8) we have that a ı b D b for any a; b 2 R. So in this case we have a truss
.R; Œ�;�;��; �r/.

The four obtained trusses are pairwise non-isomorphic by Example 2.2.

Remark 2.12. Formulas (2.4) and (2.5) show that if a truss .T; Œ�;�;��; �/ is com-
mutative, then the ring determined by this truss is also commutative and �.x/ D .x/�
for each x 2 T . Conversely, from formula (2.8) we get that if the ring .R;C; �; 0/
is commutative and �.x/ D .x/� for each x 2 R, then the truss T .R; ˛; �; �/ is
commutative. In [2, Theorem 4.7], it was proved that if the ring .R;C; �; 0/ is commut-
ative, R2 ¤ ¹0º and the group RC is indecomposable, then every truss of the form
T .R; ˛; �; �/ is commutative, so in particular, we have that �.x/ D .x/� for every
x 2 R.

Example 2.13. Let .R;C; �; 0/ be any ring. Then .0R; 0R/ and .idR; idR/ are double
homotheties on this ring, so by Remark 2.3 we have two trusses: T .R; 0; 0R; 0R/
and T .R; 0; idR; idR/ with multiplications given by the formulas a � b D a � b and
a ı b D a � b C a C b for a; b 2 R . We will call the first of these trusses ring-type,
and the second one circle-type. Note that 0 is the identity of the circle-type truss.
Hence it follows that if these trusses are isomorphic, then the ring R has an identity.
Conversely, let 1 be the identity of the ring R. It is easy to check that the function '
given by '.x/ D x C 1 is an isomorphism of a circle-type truss into a ring-type truss.
We have thus shown that a circle-type truss is isomorphic to a ring-type truss if and
only if the ring has identity.

Let us also note that if 1 is an identity of the ring R, then every double homo-
thetism on this ring is of the form .lc ; rc/ for some c 2 R. Hence, for the truss
T .R; ˛; lc ; rc/ we have that ˛ D c2 � c and the truss multiplication is given by

a � b D a � b C a � c C c � b C c2 � c D .aC c/ � .b C c/ � c

for a; b 2 R. A simple check shows that the function f given by the formula f .x/ D
x C c is an isomorphism of the truss T .R; ˛; lc ; rc/ onto the ring-type truss
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T .R;0;0R; 0R/. Therefore, the ring-type truss is the only truss, up to an isomorphism,
determined by the ring R with identity.

3. Trusses that have an idempotent

We will start with a simple conclusion from Remark 2.3.

Corollary 3.1. Let e be an idempotent of a truss T D .T; Œ�;�;��; �/. It is easy to
check that for all a; b 2 T ,

a �e e D a � e �e a � e �e e � e Ce e � e D e

and
e �e b D e � b �e e � e �e e � b Ce e � e D e;

so e is the zero of the ring .T;Ce; �e; e/ and

�.x/ D e � x �e e � e D e � x and .x/� D x � e �e e � e D x � e for x 2 T;

�.e/ D .e/� and for every x 2 T ,

�.�.x// D �.x/ and ..x/�/� D .x/�:

Moreover, for any a; b 2 T we have

a � b D a �e b Ce .a/�Ce �.b/ D a �e b Ce a � e Ce e � b:

Substituting in Theorem 2.7 ˆ D idR and ˇ D �e, we immediately obtain the
following theorem.

Theorem 3.2. Let .R;C; �; 0/ be a ring with a double homothetism .�; �/ and an
element ˛ 2 R such that the truss T D T .R; ˛; �; �/ has an idempotent element e.
Let �1 D � C re and �1 D �1 C le . Then .�1; �1/ is a double homothetism on the
ring R and T1 D T .R; 0; �1; �1/ is a truss such that .T; e/Š .T1; 0/ and the function
' given by '.x/ D x � e is an isomorphism of the truss T onto the truss T1 and
'.e/ D 0.

We will now investigate when the truss T .R; ˛; �; �/ has an idempotent element.
We start with the following theorem.

Theorem 3.3. Let .R;C; �; 0/ be a ring and let T D T .R; ˛; �; �/ be a truss. Then
there exists a truss T 0 D T .R; 4˛3 � 3˛2; �0; �0/ isomorphic to the truss T . In partic-
ular, if the element ˛ is nilpotent, then there exists a truss T1 D T .R; 0; �1; �1/ that
is isomorphic to the truss T , with �21 D �1 and �21 D �1 and then the truss T has an
idempotent element.
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Proof. The assumptions of the theorem imply that .˛/� D �.˛/, �2 D � C l˛ and
�2 D �C r˛ . Moreover, ˛ � �.˛/D .˛/� � ˛ D �.˛/ � ˛. Thus, for ˇ D 2�.˛/� ˛ we
have ˇ2 D 4Œ�.˛/�2 � 4�.˛/ � ˛ C ˛2 and

.ˇ/� D .2.˛/� � ˛/� D 2.˛/�2 � .˛/� D 2..˛/�C ˛2/ � .˛/�

D .˛/�C 2˛2 D �.˛/C 2˛2:

Similarly, �.ˇ/ D 2�2.˛/ � �.˛/ D 2�.˛/C 2˛2 � �.˛/ D �.˛/C 2˛2. Addition-
ally,

Œ�.˛/�2 D �.˛/ � �.˛/ D �.˛ � �.˛// D �.�.˛/ � ˛// D �2.˛2/

D �.˛2/C ˛ � ˛2 D �.˛/ � ˛ C ˛3;

so

˛0 D ˛ C ˇ C ˇ2 � .ˇ/� � �.ˇ/

D ˛ C 2�.˛/ � ˛ C 4Œ�.˛/ � ˛ C ˛3� � 4�.˛/ � ˛ C ˛2 � 2Œ�.˛/C 2˛2�

D 4˛3 � 3˛2:

Hence, the existence of a truss T 0 follows from Theorem 2.7.
If, additionally, the element ˛ ¤ 0 is nilpotent of nilpotency index n > 1, then

n D 2k or n D 2k C 1 for some k 2 N, so for the element ˛1 D 4˛3 � 3˛2 we have
˛k1 D 0 in the first case. In the second, ˛kC11 D 0, which shows that the element ˛1
has less nilpotency index than the element ˛. Therefore, repeating our procedure at
most n times, we will obtain the element ˛n D 0 and by Theorem 2.7 the proof is
complete.

The situation becomes much simpler in the case of finite trusses.

Theorem 3.4. Every finite truss has an idempotent.

Proof. If .T; Œ�;�;��; �/ is a finite truss, then .T; �/ is a finite semigroup and the
assertion follows from [7, Theorem 1.9].

4. Endomorphisms of certain direct sums of abelian groups

The following theorem is well known and its proof is standard, so we will omit it.

Theorem 4.1. Let I be a nonempty set and let .Ai ;Ci ; 0i / for i 2 I be abelian groups
such that Hom.Ai ; Aj / D 0 for all distinct i; j 2 I . Then f is an endomorphism of
the group A D

L
i2I Ai if and only if for each i 2 I there is an endomorphism fi of

the group Ai , with f .x/D .fi .xi //i2I for each x D .xi /i2I 2 A. Moreover, .A;C; �/
is an associative ring if and only if for each i 2 I there exists an associative ring
.Ai ;Ci ; �i /, with a � b D .ai �i bi /i2I for any a D .ai /i2I , b D .bi /i2I 2 A.
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We will now describe trusses of the form .A; Œ�;�;��;�/, where A D
L
i2I Ai ,

I is a finite set and Hom.Ai ;Aj /D 0 for all distinct i; j 2 I , with Œa;b; c�D a� bC c
for any a; b; c 2 A. By Remark 2.3 there is an associative ring .A;C; �/ and there is an
element ˛ D .˛i /i2I 2 A and there is a double homothetism .�; �/ on this ring such
that �.˛/D .˛/�, �2 D �C l˛ and �2 D �C r˛ and a � b D a � bC .a/�C �.b/C ˛
for any a; b 2 A.

Therefore, by Remark 2.3 for each i 2 I there exist �i ; �i 2 End.Ai / and there
exist associative rings .Ai ;Ci ; �i / such that if a D .ai /i2I and b D .bi /i2I , then
a � b D .ai �i bi /i2I , �.a/D .�i .ai //i2i and .b/� D ..bi /�i /i2I and �i .˛i /D .˛i /�i
for every i 2 I . Moreover, the standard check shows that for every i 2 I , .�i ; �i / is
a double homothetism on the ring .Ai ;Ci ; �i /, �2i D �i Ci l˛i and �2i D �i Ci r˛i .
Therefore, by Remark 2.3, .Ai ; Œ�;�;��i ; �i /, is a truss, if for u; v; w 2 Ai we set
Œu; v; w�i D u �i v Ci w and u �i v D u �i v Ci .u/�i Ci �i .v/Ci ˛i .

Now let T 0i D .Ai ; Œ�;�;��i ; ıi / for i 2 I be a truss. Then T D .A; Œ�;�;��;ı/,
where for a D .ai /i2I ; b D .bi /i2I 2 A: a ı b D .ai ıi bi /i2I , is a truss. Suppose
that the trusses T 0 and T D .A; Œ�;�;��; �/ are isomorphic. Let F be an isomorph-
ism of the truss T onto the truss T 0. Then F is a bijection of the set A onto the set
A, hence the function f WA! A given by f .x/ D F.x/ � F.0/ is also a bijection.
Moreover, for x; y 2 A we have that F.x C y/ D F.x � 0C y/ D F.Œx; 0; y�/ D
ŒF .x/;F.0/;F.y/�DF.x/�F.0/CF.y/, hence f .xC y/D f .x/C f .y/. There-
fore, f 2 End.A/ and by Remark 2.3 for each i 2 I there exists fi 2 End.Ai / such
that for each xD .xi /i2I 2Awe have f .x/D .fi .xi //i2I . Moreover, F.0/D .ai /i2I
where ai 2 Ai for i 2 I , so if gi .u/ D fi .u/Ci ai for u 2 Ai and for i 2 I , then
F.x/ D .gi .xi //i2I . The standard check shows that gi is an isomorphism of the
truss .Ai ; Œ�;�;��i ; �i / onto the truss .Ai ; Œ�;�;��i ; ıi / for every i 2 I . Hence,
by Remark 2.3 we have that gi is an isomorphism of the ring .Ai ;Ci ; �0i / determ-
ined by the truss .Ai ; Œ�;�;��i ;�i / into the ring .Ai ;Ci ;ı0i / determined by the truss
.Ai ; Œ�;�;��i ; ıi /.

Thus we have proved the following theorem.

Theorem 4.2. Let I be a nonempty finite set and let .Ai ;Ci ; 0i / for i 2 I be abelian
groups such that Hom.Ai ; Aj / D 0 for all distinct i; j 2 I . Then every truss with a
retract A D

L
i2I Ai is isomorphic to the truss T of the form T D

Q
i2J Ti , where

Ti D .Ai ; Œ�;�;��i ; �i /. Moreover, the truss T is determined, up to isomorphism,
by the trusses Ti for i 2 I , and these isomorphisms are isomorphisms of the rings
determined by the appropriate trusses.

Remark 4.3. An abelian group .A;C; 0/ is torsion if each of its elements has a finite
order. For every prime number p, Ap WD ¹a 2 A W pna D 0 for some n 2 Nº is a
subgroup of the group A and of course Ap is a p-group. Note that for any distinct
primes p and q we have that Hom.Ap; Aq/ D 0. Moreover, it is known that A Š
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p2P Ap . If a non-trivial abelian group .A;C; 0/ has a finite exponent, i.e., there is

a smallest natural number n > 1 such that nx D 0 for every x 2 A, then the set … of
all prime divisors of n is nonempty and finite and then AŠ

Q
p2…Ap , so in this case,

by Theorem 4.2 every truss with a retract isomorphic to A is isomorphic to the truss
T of the form T D

Q
p2… Tp , where the truss Tp D .Ap; Œ�;�;��p; �p/. Moreover,

the truss T is determined, up to an isomorphism, by the trusses Tp for p 2 ….
In particular, when A is a finite cyclic group of order n > 1, then there exist nat-

ural numbers s; ˛1; : : : ; ˛s and there exist distinct primes p1; : : : ; ps such that n D
p
˛1
1 � � � p

˛s
s and A Š ZC

p
˛1
1

� : : : � ZC
p
˛s
s

. Therefore, every truss with a retract iso-
morphic to A is isomorphic to the direct product of s trusses T1; : : : ; Ts such that the
retract of truss Ti is isomorphic to the group ZCp˛i

i
, where the truss Ti is determined

by a certain ring with the additive group ZCp˛i
i

for each i D 1; : : : ; s. Therefore, the
classification of trusses whose retracts are finite cyclic groups comes down to the
classification of trusses of the form T .R; ˛; �; �/, where R is a ring with an additive
group ZC

pk
and p 2 P and k 2N. Theorems 3.4 and 3.2 reduce the problem to the case

where ˛ D 0 and �2 D � and �2 D �. Moreover, the group ZC
pk

is indecomposable, so
by Example 2.11, if a � b D 0 for a; b 2 R, then we have exactly four non-isomorphic
trusses: T .R; 0; 0R; 0R/, T .R; 0; 0R; idR/, T .R; 0; idR; 0R/ and T .R; 0; idR; idR/.
Otherwise, by Examples 2.11 and 2.13, when the ring R has identity, we have only
one truss (namely the ring-type truss), and if the ring R does not have identity, then
we have exactly two non-isomorphic trusses: ring-type truss and circle-type truss.
Therefore, it remains to classify all, up to an isomorphism, rings with the additive
group ZC

pk
.

5. Rings with the additive group ZC

pk

Theorem 5.1. For any prime number p and for a positive integer k we have

(i) End.ZC
pk
/ D ¹la W a 2 Zpk º, where la.x/ D a � x for all x 2 Zpk ,

(ii) every ring (not necessarily associative) with the additive group ZC
pk

is com-
mutative and associative and has the form .Zpk ;C; �c ; 0/ for some c 2 Zpk ,
where a �c b D a � c � b for a; b 2 Zpk ,

(iii) a group ZC
pk

is indecomposable,

(iv) for c; d 2 Zpk , the rings .Zpk ;C; �c ; 0/ and .Zpk ;C; �d ; 0/ are isomorphic
if and only if d D c � u for some u 2 Z�

pk
,

(v) all, up to an isomorphism, trusses with retract .Zpk ;C; 0/ that determines
a ring with zero multiplication, are trusses with multiplications given by
formulas (2.3a) and (2.3b).
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Proof. (i)–(iv). Well known.
(v). The assertion follows directly from Example 2.11.

Theorem 5.2. For every prime p and for every positive integer n up to an isomorph-
ism there exist exactly 2nC 3 trusses with retract being a cyclic group of order pn.
Each of these trusses is a heap .Zpn ; Œ�;�;��/ such that Œa; b; c� D a � b C c for
a; b; c 2 Zpn and determines a certain commutative ring with the additive group
.Zpn ;C; 0/. There are exactly nC 1 such rings. Trusses that determine the zero ring
have multiplication given by one of the formulas a ı b D 0, a ı b D aC b, a ı b D a
and a ı b D b for all a; b 2 Zpn . The only truss determining the ring Zpn is a ring-
type truss. Whereas for k D 1; : : : ; n � 1 we have two trusses determining the ring
.Zpn ;C; �pk ; 0/ and they are: ring-type truss and circle-type truss.

Proof. From Theorem 5.1 each ring with an additive group ZCpn has a multiplication �c
for some c 2P given by the formula a � cbD a � c � b. Since each nonzero element c of
the ring Zpn can be written in the form c D pk � u, where k 2 ¹0;1; : : : ; n� 1º and u 2
.Zpn/�, the rings .Zpn ;C; �c ; 0/ and .Zpn ;C; �pk ; 0/ are isomorphic by Theorem 5.1.
Note that o.pk � u/ D pn�k in the group ZCpn , so again by Theorem 5.1 the rings
.Zpn ;C; �pk ; 0/ for k D 0; 1; : : : ; n � 1 are pairwise non-isomorphic and obviously
none of them is with zero multiplication. Hence none of them is isomorphic to the ring
.Zpn ;C; �0; 0/. This means that up to an isomorphism there exist exactly nC 1 rings
with the additive groups ZCpn and they are rings .Zpn ;C; �pk ;0/ for kD 0;1; : : : ;n� 1,
and the ring .Zpn ;C; �0; 0/. As we know, the group ZCpn is indecomposable. So the
rest of our theorem follows from Remark 4.3.

From Remark 4.3 and Theorem 5.2 we immediately obtain the following theorem
classifying trusses with finite cyclic retracts.

Theorem 5.3. Let s; n1; : : : ; ns 2 N and let p1; : : : ; ps be different prime num-
bers. Then, up to isomorphism for m D pn11 � � � p

ns
s there exist exactly .2n1 C 3/ � � �

.2ns C 3/ trusses with a retract that is a cyclic group of order m. Moreover, each of
these trusses is a direct product of trusses with retracts ZC

p
ni
i

for i D 1; : : : ; s described
in Theorem 5.2.

Let us note that for m from the above theorem, the number of trusses, with a
retract that is a cyclic group of orderm can be neatly expressed by the formula �..m �
rad.m//2/, where �.x/ denotes the number of divisors of an integer x and rad.y/ the
radical of a positive integer y.

The following example shows a surprising result that not all obvious facts about
rings have equivalents for trusses.
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Example 5.4. Every ring whose additive group is a cyclic group of order n is a
homomorphic image of a certain ring whose additive group is ZC, so it is natural
to ask: Is every truss whose retract is a finite cyclic group a homomorphic image
of some truss whose retract is isomorphic with the group ZC? We will show that
this is not the case. For this purpose, let us take any distinct prime numbers p and
q and consider a truss .Zp � Zq; Œ�; �; ��; ı/ where .a1; b1/ ı .a2; b2/ D .a1; b2/
for any .a1; b1/; .a2; b2/ 2 Zp � Zq . This truss is not commutative, because, e.g.,
.1;1/D .1;0/ ı .0;1/¤ .0;1/ ı .1;0/D .0;0/. Let us assume that our truss is a homo-
morphic image of a certain truss whose retract is an infinite cyclic group. Then by [5,
Theorem 3.51] our truss is a homomorphic image of a certain non-commutative truss
built on an abelian heap .Z; Œ�; �; ��/, where Œa; b; c�D a � bC c for a; b; c 2 ZC.
Therefore, by [5, Theorem 3.51] we have a � bD a for all a;b 2Z or a � bD b for all
a; b 2 Z, where � is a truss multiplication. Therefore, there is homomorphism f of a
truss .Z; Œ�; �; ��;�/ onto a truss .Zp �Zq; Œ�; �; ��;ı/. Hence .1; 0/D f .a/ and
.0;1/D f .b/ for some a;b 2Z and .1;1/D .1;0/ ı .0;1/D f .a/ ı f .b/D f .a � b/.
But f .a � b/D f .a/D .1; 0/ or f .a � b/D f .b/D .0; 1/, so we get a contradiction.
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