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Classification of connection graphs of global attractors for
S l-equivariant parabolic equations

Carlos Rocha

Abstract. We consider the characterization of global attractors A, for semiflows generated
by scalar one-dimensional semilinear parabolic equations of the form u; = u  + f(u, uy),
defined on the circle x € S, for a class of reversible nonlinearities. Given two reversible
nonlinearities, fo and f1, with the same lap signature, we prove the existence of a reversible
homotopy f7,0 <t < 1, which preserves all heteroclinic connections. Consequently, we obtain
a classification of the connection graphs of global attractors in the class of reversible nonlinear-
ities. We also describe bifurcation diagrams which reduce a global attractor A to the trivial
global attractor Ag = {0}.

1. Introduction

Consider the scalar semilinear parabolic equation
Uy = Uxy + f(U,Uy), xeS! =R/2n7Z, (L.1)

where the nonlinearity f : R? — R is C? and dissipative. Sufficient dissipative con-

ditions are boundedness, | f(-,-)| < Cy, and a sign condition u f (u, 0) < 0 for all large

|u| > K. For less restrictive conditions see [1,32]. Then, (1.1) generates a semiflow in

the Sobolev space X = H*(S1), s > %, which possesses a nonempty compact global

attractor A C X. For details see [15] and also [4, 31, 32] for initial references. As

general references, see [22,33] for semiflows, and [5, 20, 21] for global attractors.
Stationary solutions of (1.1) satisfy the equation

0= vxx + f(v,0y), xeSh, (1.2)

and are either homogeneous equilibria v(t, x) = e, where f(e,0) = 0, or nonhomo-
geneous stationary waves, i.e., 2m-periodic solutions of (1.2). In general, (1.1) also
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features time periodic solutions. These are rotating waves u(t, x) = v(x — ct), rotat-
ing around the circle S! with constant speed ¢ # 0. Moreover, the nonconstant wave
shapes v correspond to the 27 -periodic solutions of the ODE

0 =wvxx + f(v,Vx) + CUy. (1.3)

Our first assumption is
(H) all equilibria and periodic orbits of (1.1) are hyperbolic.

Hyperbolicity here concerns the sets of homogeneous equilibria and nonhomoge-
neous time periodic solutions (rotating waves) of the semilinear parabolic PDE (1.1).
These are, respectively, the sets € and P which are finite due to hyperbolicity (H) and
the compactness of A, [14, 15],

E={ej: f(e;,0)=0,1=<j=nj
P ={vj(x) :vj(0) = v;j(27), p;(0) = p;(27), x € [0,27], 1 < j <q},

where p = vy, v; denotes the rotating wave profiles, i.e., solutions of (1.3), and
q denotes the number of nonhomogeneous periodic solutions properly x-shifted so
that v;(0) = min, g1 vj(x). For simplicity we include in P also the nonhomoge-
neous stationary waves. We point out that the critical solutions may have very large
Morse indices i (e;) = dim W"(e;) and i (v;) =dim W"(v;) — 1, see [15]. Here, W"(:)
denotes the unstable manifold of an equilibrium or periodic orbit, [21,22,24]. In con-
trast, the equilibria of the related ODE (1.2), e; = (e;,0) and v; = (v;, p;), has only
alternating saddles and centers, all in one-to-one correspondence with the equilibria
of (1.1). For example, the first saddle corresponds to the first stable equilibrium e;
and the last saddle corresponds to the last stable equilibrium e,,.

Notice that a nonhomogeneous stationary solution v = v(-) is not isolated, since
all its shifted copies v(- + #), # € S, are also 27-periodic solutions of (1.2). Hence,
a nonhomogeneous stationary solution is not hyperbolic in stricto sensu. To overcome
this inconvenience, hyperbolicity here is understood as normal hyperbolicity, [16,35],
much like in the case of a periodic orbit.

The global attractor A is called a Sturm attractor (see [16]) due to the decay
property (2.3) of the zero number, [31]. If all critical elements in € U P are strictly
hyperbolic, i.e., P does not contain nonhomogeneous stationary solutions, the Sturm
attractor has the Morse—Smale property, [10,25]. In this case, all the heteroclinic orbit
connections between equilibria and periodic orbits of A, which all together compose
the global attractor, are determined by a Sturm permutation, [17,35]. See also [18]
for the initial results on Sturm permutations. Unfortunately, for the reversible class
of nonlinearities f(u,v) = f(u,—v) included in the present S!-equivariant case, we
are missing a proper Morse—Smale Theorem. Therefore, our results must be restricted
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to connection equivalence of global attractors postponing orbit equivalence to fur-
ther research studies. This observation also applies to the statement of [35, Theorem
3] which should address connection equivalence of global attractors instead of orbit
equivalence.

The phase portrait of (1.2) for a reversible nonlinearity f(u,v) = f(u,—v) (even
in v) has all rotating waves frozen, i.e., they are nonhomogeneous equilibria. In addi-
tion, (1.2) is integrable in the phase plane region corresponding to the cyclicity set C,
i.e., the region of all spatially periodic orbits, see [16]. Hence, for the reversible non-
linearity f(u, u,) we obtain a period map T : D C R — R where the domain D
corresponds to (the u-values) of the cyclicity set C.

The period map T = T'(uyp), also called time map, is essential for the charac-
terization of all 2mr-periodic solutions of autonomous planar Hamiltonian equations,
see [16,34]. In our setting, the period map is used for the characterization of all the
equilibria of (1.1), in particular, the frozen rotating waves.

Our objective is the classification of the connection graphs of all Sturm global
attractors of flows generated by (1.1). This is achieved using the lap signature class
introduced in [16,35]. The lap signature of a period map 7" = T (u¢) consists of the set
of period lap numbers of the 27 -periodic solutions of (1.2) endowed with a total order
derived from the nesting of the periodic orbits in the phase space (v, vy), and their
regular parenthesis structure (called regular bracket structure in [28,35]). We notice
that the period lap number £(v) of v € P is half of the zero number: z(v) = 2£(v),
see [16]. The lap signature class of a period map T = T (ug) is the set of period maps
with the same lap signature of T = T (uy).

Let R denote the space of reversible nonlinearities. Our main result asserts the
following.

Theorem 1. Let f = f(u,uy) € Rand g = g(u,uy) € R denote two reversible non-
linearities with period maps in the same lap signature class. Then the corresponding
global attractors are connection equivalent,

A ~ Ag. (1.4)

Here, (1.4) means connection equivalence between global attractors, [13, 14,35].
This result is not immediate because all the critical elements in P fail the hyper-
bolicity condition (H) which would entail the automatic transversality of stable and
unstable manifolds and the strong Morse—Smale property. Instead, we will address
the automatic transversality of center stable and center unstable manifolds in the next
Section 2. Then, Theorem 1 will follow from the next theorem.

Theorem 2. If f = f(u,uy) € R and g = g(u, uy) € R belong to the same lap
signature class (see [16,35]), then there exists a global collective homotopy in R
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between [ and g which preserves hyperbolicity (H) of all the homogeneous equilibria
and (normally hyperbolic) frozen rotating waves.

The construction of this global collective homotopy is very delicate and needs
some clarification in what concerns the proof in [35], which is restricted to nonlinear-
ities of simple type. In Section 3, we change and refine some aspects of the proof of
[35, Theorem 3] making it simpler and amenable to a generalization to nonlinearities
of non-simple type.

In the final Section 4, we discuss these results and conclude with the presenta-
tion of bifurcation diagrams and connection graphs of global attractors for dynamical
systems generated by (1.1). We also describe bifurcation diagrams which reduce a
global attractor A to the trivial global attractor Ay = {0} by a bifurcation homotopy
fS(u,ux) = f(s,u,uy) € R with bifurcation parameter 1 > s > 0.

2. Transversality between center stable and center unstable manifolds

As already mentioned, the result of Theorem 1 is not immediate since all the criti-
cal elements in P fail the hyperbolicity condition (H). Hence, we replace stable and
unstable manifolds by center stable and center unstable manifolds, and prove their
automatic transversality following closely the previous transversality results estab-
lished for the general problem (1.1), see [10, 15]. See also [3, 7, 23] for the original
transversality results in the case of separated boundary conditions.

We recall that every 2m-periodic solution in P is a nonhomogeneous stationary
wave frozen in time. So, let F denote the set of nonhomogeneous stationary waves,
and HH the set of heteroclinic orbits between equilibria, either homogeneous or non-
homogeneous. Then, for the restrictive set of reversible nonlinearities f € R, the
global attractor Ay of (1.1) decomposes as

Ar =EUTFUXK.

By reversibility, each nonhomogeneous stationary solution v(-) € F generates a
continuum of shifted copies v(- + @), ¥ € S, all normally hyperbolic. This implies
that each v(-) € J has a unique center manifold composed by its frozen shifted copies.
In view of the gradient flow variational character of (1.1) for f € R, (see [12]),
non-stationary orbits u(¢, -) converge either to equilibria or stationary waves as ¢t —
Fo00. Hence, these orbit connections are essentially heteroclinic connections between
equilibria. Moreover, the proof of this transversality was already sketched in [15,
Propositions 3.1 and 3.2]. In the following, for each v(:) € F, we let

weo) = | wrec+9), weeo) = | Wt +9).

Bes! Pes!
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Finally, we recall that the existence of heteroclinic orbits between two critical ele-
ments in & U J is determined by a convenient notion of adjacency between these
elements, see [15, Theorems 1.3 and 1.4].

Proof of Theorem 1. In the following, we consider only the case of orbit connections
between nonhomogeneous stationary waves since the remaining cases are simpler.
We say that two (different) stationary waves v+ (-) € & are connected by a hetero-
clinic orbit u(z, -) if this connecting orbit converges to suitably phase shifted stationary
waves v := v+ (- + ¥+) as t — oo for some fixed ¥+ € R.
We introduce here the following definition:

(D) We say that W*'(v_) and W*(v) are transverse,
W (uo) WS (us), @1

if their intersection is empty, or if the strongly unstable manifold W"(v>°)
and the strongly stable manifold W*(vS°) are codimension one transverse,
i.e., at intersection points their tangential spaces span a codimension one sub-
space X1 C X.

Let ug = u(0, -) denote the initial condition of the connecting orbit. Then, if $(¢) :
X — X denotes the semiflow generated by (1.1), we have that u(z, x) = S(¢)uo(x).
Moreover, if D8(t) is the Fréchet derivative of 8(¢), then for any wy € X the curve
w(t, ) = (DS(t)uo(-))we(-) in X defines the classical solution w(¢, x) of the lin-
earized equation

Wr = Wyx + fp(, U)Wy + fuu,ux)w, xeS' >0, w0, x)=wy(x).
2.2)
In abstract form, this is a linear evolution equation w = A(¢f)w which generates a
solution operator w = T (¢, T)w,, t > 7. Note that T(z, 7) is injective (see, for example,
[10D.
We recall that, for the solution w(t, -) of (2.2), we have the well-known monotone
nonincreasing property of the zero number

t — z(w(t,-)), is monotone nonincreasing, 2.3)

(see [30, Lemma 2.6]). Moreover, the zero number strictly decreases at multiple zeros
of w(z,-), (see [2]).

Foru = v$°, equation (2.2) denotes the linearization around the equilibria vy® € F
and is autonomous. The corresponding autonomous linear evolution equations with
linear operators A* generate semigroups T*(¢), t > 0, which are analytic. We next
collect some information regarding the spectral properties of A%.



C. Rocha 302

The spectrum of A% is the set of eigenvalues of the second order differential
eigenvalue problem with periodic boundary conditions

Wxx + o, u)wy + fulu,ux)w = dw, x €S, 2.4

with u = v® € J. Let spec(A¥) = {/\j.E }7‘;0 denote the set of eigenvalues of (2.4)
numbered according to A > Re Af > ReAf > - .. By standard spectral theory for
(2.4), see, for example, [9], the eigenvalue sequences are partially ordered by

Re)&fj > Re)&fjﬂ, j=0,12,...

As a simple remark we point out that, if Re )L;Ej_l > Re /\;Lj for any j > 1, then the
eigenvalues {kécj_l , )Lécj} are real.

Let E(;—L denote the eigenspaces of constant functions corresponding to A, and let
E ]i denote the generalized eigenspaces corresponding to the spectral sets {Azij_l, Azij}
for j > 1. Then, each w € Ef \ {0} has only simple zeros on S! and z(w) = 2j,
[4,32].

Letug € W' (v°) N W*(v$°). Then u(z,-) — v ast — oo and the lineariza-
tion (2.2) around the equilibria v3° € J correspond to the asymptotic behaviors of
(2.2) around u(t, -).

Let Ty, W*(vy) and T, W' (vY) denote the tangent manifolds at u¢ of the stable
and unstable manifolds of vE°. By the § I_equivariance of (1.1) these linear manifolds
are subspaces of a codimension one subspace X; C X. In fact, for # € S! let Ry
denote the S!-action induced by the x-shift (Rgu)(x) = u(x + ). Hence, we have

d d
g (Rouo)X)lp=o = —5uo(x + =0 = (1o)x(x). 25)

Let Xy C X denote the one-dimensional linear subspace generated by (2.5), Xo =
span{(ug)x}. Since (ug)x & (TuoW* (L) U Ty, W*(vY)), this implies

X() n TuOWs(U:oto) = X() n Tu() WU(UZOEO) = {0}

Moreover, T, W*(v$’) and T,,, W*(v$°) span a codimension one subspace X . Since
dim X¢ = 1, we obtain

This also holds for each equilibrium v € F with Xy = span{vy}, and in particular
for the equilibria v°.

By normal hyperbolicity of the nonhomogeneous stationary wave v € &, we define
its Morse index i(v) as the number m of eigenvalues with strictly positive real part
ReAj > 0. Then, for i (v) = m, A1 = 0 corresponds to the eigenfunction vy, 41 =
vy (x), and we obtain

dim W) =i(v) +1, codimW*(v) =i(v).
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Asin [10] (for periodic orbits), two cases need to be considered. If the Morse index
isodd, i(v) = 2N — 1, then the eigenspace Eny = Eljf, corresponds to the spectral set
{A;EN_I =0, AE'EN}. If on the other hand the Morse index is even, i (v) = 2N, then the
eigenspace En corresponds to the spectral set {kétN_l,)LécN = 0}. In each case, let
Py denote the projection onto the eigenspace corresponding to the zero eigenvalue,
i.e., PoX = span{vy} C Ey. Then, for each w € PyX \ {0} we have z(w) = 2N
and, by the monotone nonincreasing property of the zero number (2.3), we obtain

N L B
z(v or v V),
Y= 12N =i() if i(v) = 2N, 0
. . . (2.7)
Z(vo) > {ZN =i(v)+1 ifi(v) =2N —1, for vo € W*(v).
IN+2=i()+2  ifi(v) = 2N,

Now assume the existence of an intersection point u#y between the unstable mani-
fold of v>° and the stable manifold of v<°,

up € W) N W) C W) N W(4).

Since the connecting orbit u(z, ) with u(0, ) = ug lies in W"(v2°) N W*(v$), the
invariance of these manifolds implies that

ui(t,-) € Tyg W' () N T, WE(Y).

Moreover, since 1, (0, -) is nonzero, the monotone nonincreasing property (2.3) of the
zero number implies
2i(vY) < z(us(0,7)) < 2i(v). (2.8)

Then, combining the inequalities (2.7), we obtain the following result.

Lemma 1. Ifug € (W"(v) N (W*(P))) \ {(v=°, v} and ANE = z(vY°), then

N->N*" and i(v®)>i(@P)+ 1. (2.9)
Moreover, if i(vY) = 2NT, then N~ > N* + 1.

Notice that (2.9) prevents the existence of homoclinic orbits to the set of frozen
shifted copies of equilibria in &F.

For the proof of transversality we adapt the proof in [10] and use [7] (in particular,
its Theorem 3.1 and the results of Appendix B).

For any { € X we define

Voo (¥) := limsup Re log||T(n, 0)v/ || i
n—oo

The number v () denotes the Lyapunov characteristic number for the equation
(2.2) with u = u(t,-).
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For any integer j > 0 we define the spaces
=Y e X v (Y) <15,

where, to respect the spectral set pairs {1} ;rj} in o(A"), we let ro = A and

rj = Re AT

2j—1°

2j-10J = 1. Then, we have

o0
X=FoF>F >, (F"={0.

Assuming that veo(Y) € {r;, rj4+1} with odd j, then ¥ € FJr \ F +1 and we con-
sider the asymptotic behavior of v(n, ¢¥) = T(n,0)y, n € N obtalnmg for some
subsequence k, € N
vk y)
n=o0 |[v(kn, ¥)|l

with ¢ in the norm one sphere in X . This shows that

v(kn, ¥) )
v (kns Yl

Next, we use the asymptotic behavior of v(ky, V) to characterize the zero number

= ¢,

2(0) 2 2@(kn. ¥)) = 2( = 2(9).

z(¥) of the initial condition 1. We first address the zero number characterization of
solutions on the stable manifold of the target equilibrium v5°.

Again we need to consider the alternatives for the even/odd parity of the index j
of the eigenvalues A;, j > 1.If j is even, i.e., the eigenspace E * corresponds to the
spectral set {4 i1 /\+} then y € F; \ F; + . and there exists an asymptotlc pekE] +
such that z (y) > Z(¢) = j.If,on the other hand, j is odd, i.e., the eigenspace E,Jrl
corresponds to the spectral set {)L;“, )L]++1} theny € F7. pis] \ FT FEE and there exists
an asymptotic ¢ € EJJrl such that z(y) > z(¢) = j +1. .

Note that 7,,, W* (vj'f) = {¥ € X : veo(y) < 0}. To continue, let i (v}°) = 2N+
be even. Then ry+ = A;LN 4 = 0 and for a sufficiently large m € N we have

Tu(m,uo)Ws(v-i—) = N+’

which is isomorphic to
cy(Ef, @ Ej,, @)
In this case, we conclude that z(¥) > 2Nt + 2 for v € Tyymuq)W* () \ {0} and
codim Ty (mugy WS (v¥) = 2N + 1.
Before considering the alternative of odd i (v°) = 2N T — 1 we define

+ =AY e X P (y) <0}
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Hence, if i (vY®) = 2Nt —1is odd, then ry+ < A;NJ_I = 0 and for a sufficiently
large m € N we have Ty (n,u) W*(0Y) = Ff e which is isomorphic to
2N
ch(span{w;rN++1} SEY, & E;,LH @) (2.10)

We conclude that z(y) > 2N T forv € TumuoyW*(v$) \ {0} and
codim Ty, (m,ugy W3 (0) = 2N T.

Since T, W*(vY) is the preimage of Ty (m,uq) W*(v) under the injective semiflow
T(m, 0) we obtain the following result.

Lemma 2. Assume € T, W*(v°) \ {0}. Then we have the following alternative:

{Z(W) >2Nt 4+2 and codim TuoW* () = ONT 1 if i(v°) = INT,

z(y) = 2N* and codim T,,, W*(v) = 2N ifi(wP)=2N" —1.
(2.11)

Finally, we address the zero number characterization of solutions on the unstable
manifold of the source equilibrium v®°. We invoke the backward unique continuation
of the semiflow T (m,0), m € N, and use the semiflow T(—m, 0), which is well defined
on the unstable manifold W*"(v>°). Let i (v) = 2N * be even. Then, by Lemma 1
we have N~ > N1 + 1 and, for sufficiently large m € N, there is a subspace W_,, C
Tu(—mug)W"(v>°) such that z(v) < 2N for v € W_,,. This implies that, for W, :=
T(m, —m)W_,,, we have z(v) < 2N for v € W, \ {0}. In view of Lemma 2, this
shows that W, N W*(v$°) = {0} which implies Wy, € Tyy(mug) W" (v5°). Therefore,
for m € N sufficiently large, W, is isomorphic to

E(;r DD E;+_1 ) span{w;NJr_l},

+

is an eigenfunction associated to the (real) eigenfunction )LZ N+—1°

+
where w4
This shows that

dimW_,, = dimW,, =2N*, and z(v) <2NT,ve W_,\{0}.

Alternatively, let i (vy®) = 2N T — 1 be odd. By (2.9) we have N~ > N and, as
in the previous case, for sufficiently large m € N there is a subspace W_,, C
Tu(—mug)W"(v>°) such that z(v) < 2N — 2 for v € W_,,. This shows that z(v) <
2Nt —2forv € Wy, \ {0}, where W, := T(m, —m)W_,, is isomorphic to
E(‘)*’ DD E;+_1.
This implies that
dimW_,, =dimW,, =2Nt —1, and z(v) <2N*T -2, ve W_,\ {0}

In summary, we obtained the following result.
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Lemma 3. There is a subspace Wy = T(0, —m)W_,,, C Ty,, W"(v°) with dim Wy =
i (vY) such that, if ¥ € Wy \ {0}, then the following alternative holds:

{z(w) <2N*t ifi(vy) = 2N, (2.12)

z(Y) <2NT =2 ifi(vP)=2NT -1

The automatic transversality of center stable and center unstable manifolds,
claimed in the next Theorem 3, is now obtained from the combination of Lemmas 2
and 3. Note that this transversality implies the preservation of heteroclinic orbit con-
nections in the S!-equivariant case and entails the connection equivalence (1.4) as-
serted by Theorem 1. ]

Theorem 3. Let vy € F denote normally hyperbolic fixed points of the semigroup
8(t) generated by (1.1). Then the center unstable manifold of v—, W (v_), and the
center stable manifold of vy, W (vy.), intersect transversely,

WS (vy) M W (v_). (2.13)

Proof of Theorem 3. Recall that if W(v—) N W(v4y) = @ then W (v_) and
W< (v4) are transverse by definition (D). So, we assume the existence of an inter-
section point u( between the center unstable manifold of v_ and the center stable
manifold of v.

Then, by (2.12) for w € Wy \ {0} C T, , W*(v>) \ {0} and (2.11) for w €
TuoW*(v) \ {0} we obtain

Wo N Ty, W3 (vY) = {0}.
Moreover, the combination of (2.11) and (2.12) implies
dim Wy = codim T, W*(vY°) — 1.
This shows that ~
Wo ® Ty, W*(vY) = X1,

where X; C X has codim X; = 1. Since Wy C Ty W (v2°), this implies W"(v>°) M
W*(v$) and, by our definition (D), this shows the transversality result (2.13) and
completes the proof of Theorem 3.

To finish, let X o denote the one-dimensional complement of X 1, 1.e., X o+ X 1=
X, obtained by using again the backward linear flow generated by (2.2) with u =
u(t,-). Then, we have

TugW ' (v°) + Ty W) + Xo = X,

concluding this discussion of transversality. |
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Notice that forty years ago Dan Henry [23] used the expression “amazing” to refer
to this type of result, and advised the reader to “look at it again”!

3. Homotopy construction

We first consider the obstructions to the homotopy construction between a reversible
nonlinearity fo = fo(u,uy) and an f; = fi(u) in the class of Hamiltonian systems.

Let T = T(up) : D — R4 denote the period map of a reversible nonlinearity
f = f(u,uy). By continuity, we extend D to uy = e corresponding to the center
(e, 0) which is encircled by periodic orbits. For simplicity, by a translation u — u — e
we lete = 0.

A necessary and sufficient condition for T = T (u¢) to be realizable by a Hamil-
tonian nonlinearity g = g(u) is

(C) d(uoT(uo))/duo > 0, Ug € D.

For references see [36, Theorem 4.2.5 and Proposition 4.2.6], [37, Theorem 5],
[18, Theorem 4.2], and [34, Section 4].

We first show the existence of reversible nonlinearities f = f(u, u,) for which
this condition is not satisfied. For this purpose, consider the nonlinearity

fu,uy) = %u(kuz + k2u* + 4u)2€). 3.1)

Each level curve of the first integral 1(u,v) = %(ku2 + Vk2u* + 4v2) of (1.2) is an
ellipse v2 + kIou? = I} where Iy := I(ug,0) = ku}. Therefore, the period map for
this nonlinearity is given by

%o du 2
o) =4 -
0 kyjug—uiu? 4o

Hence, since d(uoT (1g))/duo = 0 for uy # 0, condition (C) is not satisfied.
If the period map T (uy) satisfies condition (C) we are able to find a Hamiltonian
pendulum nonlinearity g = g(u) with the same period map, [34]. See also [36,37]

Mo?éo

for the preliminary results. In this case, the convex combination
S uy) = (1 —1) f(u,ux) + 7g(u) (3.2)

provides the desired pendulum realization homotopy in the Hamiltonian class of non-
linearities.

On the other hand, the failing of condition (C) prevents the homotopy in the
Hamiltonian class since the period map is not realizable in this class. Therefore, the
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homotopy has to be constructed directly in R using the phase portrait of (1.2). We
define the Hamiltonian realization homotopy as a continuous transformation of the
cyclicity set C of f(u, uy), which preserves the hyperbolicity of all homogeneous
equilibria and frozen rotating waves, and shrinks the period map along the u-axis
until it satisfies condition (C).

Let K = (n — 1)/2 + r denote the number of connected regions of the cyclicity
set C. Here n denotes the odd number of equilibria and » the number of annular
regions. Annular regions are the multiply connected regions bounded by two saddles
and their homoclinic ODE separatrices (see, for example, the region €; in Figure 6).
Notice that each equilibrium of (1.1) corresponds to a center or a saddle point of the
phase portrait of (1.2). The centers and saddles alternate for increasing values of uo,
starting and ending with saddles. Then (n — 1)/2 is the number of punctured disks
encircling the centers. Moreover, r is the number of annular regions which surround
more than one single center. This implies that 0 < r < (n — 3)/2. See [16].

Finally, a reversible nonlinearity f = f(u,uy) is of simple type if r = 0, i.e., if
there are no annular regions. This is a slightly more restrictive definition then the one
used in [35]. If » = O then each 27 -periodic orbit of (1.2) encircles exactly one center
in the phase plane (v, vy).

Then, let g = g(u) denote a Hamiltonian nonlinearity with period map 7 =
T(ugp), and let G denote the potential function of (1.2), i.e., G’ = g. Under the
hyperbolicity assumption (H) for (1.1) with f = f1(u, uy), all the zeros of g are non-
degenerate (i.e., g(uo) = 0 implies g’ (uo) # 0). Moreover, the period map T = T (ug)
satisfies the nondegeneracy condition: T (ug) = ZT” implies T’ (1) # 0 for all positive
integers k € N. See [34] for details.

For simplicity, we make here the generic assumption

(M) the potential function G is a Morse function.

Hence, in addition to the nondegeneracy of the zeros of g, we also assume that
all the critical values of G are distinct (g(uo) = g(u1) = 0 implies G (up) # G(uy)).
Since we can always add a small perturbation to f1, this generic assumption does not
affect our result.

Initially, we consider that the lap signature class of f(u, uy) is of simple type.
This implies that r = 0 and we deal with a cyclicity set composed only of isolated
punctured disks around the centers in the phase portrait.

Proof of Theorem 2. The proof essentially consists on the construction of a Hamil-
tonian realization homotopy in R between fo(u, uy) and a nonlinearity f7(u, uy)
satisfying condition (C) of a Hamiltonian nonlinearity g = g(u). This homotopy pre-
serves: (a) hyperbolicity of all critical elements of the flow generated by (1.1) with
f = fo(u,uy); and hence, (b) the lap signature of the period map 7" = T¥.
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We consider first the case of a single connected cyclicity set Cp surrounding a
unique center, Case (I), and then we consider the case of multiple isolated punctured
disks, Case (1I). Later on we will treat the case of nonlinearities with lap signature
class of non-simple type.

Case (I): n = 3 and r = 0. For the reversible nonlinearity f = fo(u,uy) let e; <
e; = 0 < e3 denote the three zeros of fy(-, 0) corresponding to two saddle points,
e1, e3, and a center at the origin e; = (0, 0). The boundary dCq of the cyclicity set
is given by a saddle point and an orbit homoclinic to this saddle. Without loss of
generality we assume that the saddle point is e;. Therefore, the cyclicity set Cq is
positioned to the right of e;, see Figure 1.

For simplicity we define the interval (a~,a™) corresponding to the u-values of the
cyclicity set Cy. Here a~ := e; and a™, 0 < a™ < e3, corresponds to the maximum
u-value of the homoclinic orbit. Then, the period map for fo(u, u,) satisfies T :
(@=,0) U (0,a™) — R and we extend the domain of T'(u¢) to ug = 0 by continuity.
By the hyperbolicity assumption (H) and the smoothness of fo(u, u,) we obtain

2n 2w

& m) for some k € N, and 77 (0) = 0,

T(0) € (
see, for example, [36].
Assume the set of periodic solutions P to be nonempty, i.e., ¢ > 1. We recall that
the frozen rotating waves of fo(u, u,) are the 2r-periodic solutions of (1.2), v; € P
for 1 < j <gq.Leta; = min,c[p 5] V;(x) denote the minimal initial values of the
u-coordinates of these 2 -periodic solutions. Then, we have a™ <a; <---<ay <0
and foreach 1 < j < g we have T'(a;) = i—i’ for some k; € N.

Figure 1. Cyclicity set Cg in the case of n = 3,r = 0 and with ¢ = 2 2x-periodic orbits.
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The proof of Case (I) then proceeds by the construction of a homotopy between f
and a reversible f; which preserves hyperbolicity (H) and for which the period map
T = Ti(a) satisfies condition (C). This involves the use of a local diffeomorphism of
the plane (u, ux) which preserves the period map values. Based on [15, Lemma 5.1],
this diffeomorphism is described in [35, Section 5], and is recalled here for the benefit
of the reader.

Let (v, p(v)) = (v(-,a), p(v(-,a)) denote the periodic orbits of (1.2) on the phase
plane (u, uy) where v = v(-, a) denotes the solution with v(0,a) = a, v,(0,a) > 0.
On the cyclicity set Cp we define the scaling map

®(v, p) = Q2(v, p)(v, p)
where Q2 : €9 — R is constant along the periodic orbits of (1.2), i.e.,
Q(v(-,a), p(v(-,a))) = QL(a,0).

Then, let w : (0,a™) — R denote the scale function w(a) = Q(a, 0) which is assumed
monotone nondecreasing in order to have ® as a diffeomorphism on the cyclicity
set Cg. We extend the domain of e to the interval (¢, a™) using the minimal values
of the periodic orbits in the cyclicity set and defining w(0) := w(0") = w(0™). Finally,
we extend the diffeomorphism @ to the whole phase space (u, u,) € R? by defining
® as the identity in R? \ C,.

To define the scale function a)|(0,a+), let ¢y, ¢y € (ay,a™) denote two constants
satisfying a; < ¢; < ¢ < a™, where again o denotes the maximal value of the
outermost 27 -periodic solution vy (-, @1). Recall that lim,_, ,+ T'(a) = 400, hence
T(a) > 2r for a € (ay,a™), see Figure 2. Changing the phase portrait of (1.2) in
a small neighborhood of the homoclinic orbit to e; does not affect the global attrac-

A
T
2 /
21/ — 1)
27/ k \ /
0 (;lq ()léq_l-“O{] a.+ a;

Figure 2. Graph of the period map T = T(a) on the half interval (0,a™). Here, a; =
maxye[o.27]V; (x,a;), j = 1,...,q, denote the maximal values of the 27r-periodic solutions.
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tor Ar. Therefore, we can assume that the period map satisfies lim,,_, ,+ T (a) = +o00
monotonically. Hence, we have T”(a) > 0 in a neighborhood of a* and we always
choose ¢y in this neighborhood. Then, for a parameter § € (0, 1), we define

] fora € (0, cy),
w(a) = { C?-smooth monotone increasing fora € [c1, ca], 3.3)
1 fora € (c3,a™).

Therefore, with this scale function w, the diffeomorphism ® shrinks all the 27 -
periodic orbits to a neighborhood of the origin as § decreases, see Figure 3. Since the
scaling of the period map preserves the nondegeneracy of the points corresponding to
the maximal values of the 2 -periodic solutions, their hyperbolicity is preserved by
the scaling. Moreover, the period map T3 (a) satisfies

Ti(a) = T(w(a)a). (3.4)
Hence, we obtain
dd—a(aTl (@) = T(w(a)a) + (w(a) + aw'(a))aT (w(a)a). (3.5)

Notice that w’(a) = 0 for all @ > 0 except a € (c1, ¢2) where w’(a) > 0 and, by our
choice of ¢; in a neighborhood of a™, the period map satisfies 7’ (w(a)a) > 0 there.
This implies that, for § sufficiently small, T (a) satisfies condition (C). We conclude
that f1(u, uy) is realizable in the Hamiltonian class of nonlinearities completing the
proof of Case (I).

eo (DGO
M ! N !
A0
1
_\ ) F
1 1 1 1 1 11 1 >
a~ ai - aqg O ag - ap cie2 at g

Figure 3. Upper left: Cyclicity set Co for f = fo(u, uy). Upper right: Cyclicity set ®Cq for
f = f1(u,uy). Bottom: Graph of the scale function w.
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Case (II): n > 5 and r = 0. Now we deal with a cyclicity set

e:Uek

1<k=<(n—1)/2

composed of several punctured disks surrounding the (n — 1)/2 centers of (1.2), see
Figure 4. Since each Cj is isolated (by condition (M) and the simple type r = 0),
the proof in this case follows by repeating the previous procedure in each region Cy,
k=1,...,(n—1)/2. Therefore, we obtain (n — 1)/2 disjoint graphs of Hamilton-
ian realizations, one for each region C;. Then, a Hamiltonian g(u) which realizes
f1(u, uy) is obtained by extending the domain to R joining these g graphs. For
this extension, we fill the (n — 3)/2 closed interval gaps with C2-smooth functions
without introducing further zeros of g. Similarly, in the two remaining unbounded
intervals, our extension choice is such that no further zeros are introduced. Finally,
we choose a globally bounded extension g : R — R.

%m\ #

Figure 4. Cyclicity set C = C; U G, for f = fo(u,ux) withn = 5andr = 0.

Clearly, fo(u,uy) and g(u) belong to the same lap signature class. Then, the
desired Hamiltonian realization homotopy has the form (see [35]),

fr(,p) = Qe(v, p)(foo @7 (v, p)), 0<7T<1, (3.6)
where
(v, p) = Q:(v,p) (v.p), R:(a.0) =w:(a), o;=(1-71)+710. (3.7)

followed by the pendulum realization homotopy (3.2) between f1(u, uy) and g(u).
This completes the proof of Case (II).

Remark: Consider again the Hamiltonian realization of f = fo(u, uyx) by g(u) in
Case (I). The cyclicity set Cq is right oriented if its boundary dCy contains the saddle
point ey, i.e., a~ = ej. Similarly, Cq is left oriented if dCy contains the saddle point
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es, i.e, a’t = es. Then, if Gy is right oriented, the nonlinearity g satisfies g(a™) =
g(er) = 0 and is negative for u € (a~, 0) and positive for u € (0, a™). Therefore,
the extension of g to the interval gap (a™, e3) is also positive. On the other hand,
if Cg is left oriented, we have g(es) = g(at) = 0 and the extension of g to the
interval gap (e1,a™) is negative. This holds in the multiple Case (II) for all the isolated
components Cy of the cyclicity set.

Due to the integrability and the simple type of fy the phase portrait of (1.2) for
f = fo(u,uy) has the following characteristic. There is a saddle pointe,,, 1 <m <n
and odd, such that all G to the left of e, are right oriented, and all Cj to the right of
e, are left oriented. See Figure 5.

Ux

1
/\/\/ !
Figure 5. Cyclicity set C = C; U G, for f = fo(u,ux) withn =5, r = 0 and m = 3. The
previous Figure 4 illustrates the case m = n = 5.

0
v

The phase portrait of (1.2) for f = g(u) depends essentially on the singular values
of the potential function

G(a) :/ g(s)ds (3.8)

2
at the saddle points, i.e., the local maxima of G, and not on the Morse type of G.

Indeed, the Morse type of G is easily modified by changing the values of the extended
g inits (n — 1)/2 closed interval gaps.

Since all € are right oriented at the left of e,, and left oriented at the right, all the
extensions of g are positive to the left of e, and negative to the right. Then, by (3.8),
e, is the saddle point with the maximum value G(e,) = max{G(expx—1) : 1 <k <
(n + 1)/2} and the sequence of singular values G(epx—1) satisfies the inequalities

G(er) <---<Glew), Glem)>---> G(en). (3.9

This ensures that the phase portraits of (1.2) for f = fo(u,uy) and f = g(u) are
qualitatively the same.

We now prove the generalization of our main result to the case of nonlinearities
with lap signature of non-simple type. We prove this following the same approach
used in the previous Cases (I) and (II). We first consider the case of € with a sin-
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gle outermost annular region €; surrounding two cyclicity sets C, U C3 = C\ €y,
Case (11), and then we consider the case of multiple outermost annular regions of C
and punctured disks, Case (IV).

In view of the proof of previous cases, we only need to consider nonlineari-
ties fo(u, ux) of non-simple type, r > 1. This implies n > 5. As before we con-
struct a Hamiltonian realization homotopy in R between fo(u, 1) and a nonlinearity
f1(u, uy) satisfying condition (C).

Case (I1I): n = 5 and r = 1. In this case, the phase portrait of (1.2) for f = fo(u,uy)
has three cyclicity regions. In addition to two punctured disks C5, €3 surrounding the
centers e, €4, there is an annular region C; surrounding both punctured disks. This
implies that the saddle point e; has two homoclinic orbits composing the boundary
d(C U €3). The cyclicity regions C, and €3 have opposite left/right orientations and
the homoclinic orbits form an co shaped curve. See Figure 6.

Ux

)
)

Figure 6. Cyclicity set C = C; U C> U C3 for f = fo(u,uy) withn =5,r =1 and ¢ = 4.
Two of these 2mr-periodic orbits are in the annular region C; .

By a translation in u, we assume here that e3 = 0. Therefore, the n = 5 equilibria
of (1.1) for f = fo(u, uy) satisfy e1 < ex < e3 =0 < e4 < e5. We use the same
notation that was used in the previous cases. Specifically, we let (a—, 0) = (e, 0)
denote the first saddle point, and (a+, 0) the maximum value of the orbit homo-
clinic to (e, 0). Moreover, we denote by ai, ..., aq, the Neumann initial values
of the 27 -periodic orbits v; € P in the annular region Cy, i.e., a; = minye[o,2x] Vj,
1 < j < qi. Similarly, we denote by a1, ..., g, the corresponding maximum values
®j = MaxXye[o,27] Vj» 1| < j =< gi1. Notice that in annular regions C; the numbers g
are always even, see [16].

The proof follows the same argument employed in Case (I). We use again a
shrinking scale function @ which grants the Hamiltonian realization of (3.3) for f =
fi1(u, uy). The essential difference here is the shrinking of all equilibria and 27-
periodic orbits in € to a neighborhood of the middle saddle point e instead of a
neighborhood of the center e;.
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Then, let again c1, ¢, denote the two constants satisfying 1 < c¢; <c; <a™ (cy in
the appropriate neighborhood of a™) and, for § € (0, 1), define the scale function
o by (3.3). Once more, using this scale function w, we define the diffeomorphism
® : @ — € which we extend to cl € by continuity, and to the phase plane R? by the
identity, @[ g2\¢ ) = id.

As expected, ® shrinks all equilibria and 2m-periodic orbits in € to a neigh-
borhood of the origin (e3,0) = (0, 0) as & decreases, preserving hyperbolicity, see
Figure 7. In addition, under ® the period map 7; obtained from the period map T
of (1.2) for f = fo(u,uy) satisfies (3.4). Then, from (3.5) we again conclude that
T1(a) satisfies condition (C). Hence, fi(u,uy) is realizable by a Hamiltonian non-
linearity g(u) and the desired homotopy from fj (u, uy) to g(u) has the form (3.6),
(3.7), which is followed by the pendulum realization homotopy (3.2). This completes
the proof in Case (1I1).

Case (IV): n > 7 and r > 1. We proceed sequentially, following the total order
imposed by the regular parenthesis structure of the cyclicity regions. For example,
the regular parenthesis structure of the cyclicity region shown in Figure 6 is

(00)- (3.10)

The use of the regular parenthesis structure of the cyclicity regions instead of the 2 -
periodic orbits is necessary to overcome the case of r > 1 without 2 -periodic orbits
in some annular region Cy, i.e., gx = 0.

(¢
(N~ VAL =
SR K E&eXS '
lkw
1
L ° 3 ° J
| 1 1 i ; 1 | 11 | >
a~ ay--+ag b=+ 0 -+ b a,---a; cica al a

Figure 7. Upper left: Cyclicity set C for f = fo(u, u,). Upper right: Cyclicity set ®C for
f = f1(u,uy). Bottom: Graph of the scale function w. Here b~ and b denote respectively
the minimum and maximum u-values of the orbits homoclinic to the origin. The white balls
correspond to these homoclinic orbits, and bE ¢ D since the homoclinic orbits are not in C.
Also note that 0 & D.
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We initially consider the first region € which may contain the first and outer-
most 2m-periodic orbit corresponding to the solution with minimal value a; =
minyefo,27] V1(x, ay). If € is an isolated punctured disk we apply the scale shrink-
ing procedure described in Case (II). So, next we assume that € is an annular region.

We let C denote the union of € with all the cyclicity regions that it encloses.
Then, we apply the same argument used in Case (III) shrinking all equilibria and
2 -periodic orbits contained in € to a neighborhood of the unique saddle point in
the inner boundary of €. For example, in Figure 6 the saddle point is e3. Therefore,
using the same notation as in Case (1II), we obtain a diffeomorphism ® : ¢ — € which
preserves hyperbolicity and leads to a period map 71|, ,+) satisfying condition (C).

Let k denote the number of annular regions and punctured disks with an outermost
homoclinic orbit in their boundaries. Let ék denote these either punctured disks or
outermost annular regions of the cyclicity set C. If ék is a punctured disk we define
Cr := ék. If E’k is an annular region we define C; = ék U @k where Ek denotes the
union of all the cyclicity sets encircled by ék. In this way we obtain a sequence

C1,..., G, were we can apply repeatedly the above procedure. Therefore, we obtain
e= J &
1<k=k

with diffeomorphism ® : ¢ — € which preserves hyperbolicity. Moreover, the period
maps T7(a) restricted to the intervals defined by the maximal homoclinic u-values
satisfy condition (C) for § sufficiently small.

Hence, we again extend @ to cl € by continuity and to the complete phase space
(u,uy) € R? by the identity ®@[(g2\¢ e) = id. Notice that each C is isolated and, due
to this isolation and the integrability of (1.1) for f = f1(u, uy), each G accepts the
left/right orientation described in the previous remark after Case (I1).

We obtain a Hamiltonian and pendulum realization of (1.2) for f = f1(u, uy) by
a nonlinearity g(u) defined on the isolated intervals determined by the regions C.
Then, after the C? smooth and globally bounded extension of g(u) to R, filling the
unbounded intervals and the interval gaps, we define the potential G by (3.8). There-
fore, due to the partial order (3.9) restricted to the saddle points on the boundaries of
Ck, the phase portraits of (1.2) for f = fo(u,uy) and f = g(u) are qualitatively the
same. Then, preservation of hyperbolicity ensures that f = fo(u,ux) and f = g(u)
belong to the same lap signature class. This completes the proof of Case (IV).

Finally, as a result of [35, Theorem 2] (see also [16,34]), there exists a homotopy
between the pendulum realization g(u) of fo(u,uy) and a pendulum realization g (u)
of f1(u, uy) since, by assumption, both belong to the same lap signature class. In
fact, all global attractors of pendulum realizations with the same lap signature are
connection equivalent.
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In summary, the global collective homotopy is the composition of:

(i) aHamiltonian realization homotopy (3.6), (3.7), and a pendulum realization
homotopy (3.2) from fo(u, uy) to g(u);

(i)  ahomotopy between g(u) and g(u);

(iii) a reverse pendulum realization homotopy and a reverse Hamiltonian real-
ization homotopy from g(u) to f1(u, uy).

This concludes the proof of Theorem 2. ]

4. Discussion and concluding remarks

Theorem 1 is a contribution to the geometric and qualitative theory of dynamical
systems generated by parabolic partial differential equations. This result, applied to
one-dimensional scalar semilinear PDEs, extends to the case of reversible nonlinear-
ities the classification of these dynamical systems, already initiated in [15-17, 34].
Similar results are also available in the more complex case of monotone feedback
delay differential equations. For results and references see [26,27,29].

Clearly, due to Theorem 1, a classification of the global attractors for dynamical
systems generated by (1.1) in the reversible class of nonlinearities is provided by the
lap signature class. As mentioned in Section 1, the lap signature class is given by
the set of period lap numbers of the 27 -periodic orbits endowed with the total order
derived from the regular parenthesis structure of their nesting in phase space (u, uy).
This has the form (see [16])

({05 A G ) (e e ).

where K again denotes the number of cyclicity regions, k; denotes the number of
2w -periodic orbits in the jth annular or punctured disk region (this may be empty, in
which case k; = 0), and K{ denotes the period lap number of the i th 27 -periodic orbit
in the jth cyclicity region. The regular parenthesis structure represents the nesting of
the periodic orbits. To illustrate this representation, we exhibit the lap signature class
for the example of Figure 6 (withn = 5,r = 1, k; = 2 and k, = k3 = 1) completing
the parenthesis order structure shown in (3.10),

({1 BAHLY).

The present result also shows that in the class of S!-equivariant nonlinearities
fS(u,ux) = f(s,u,uy), s € [0, 1] there is a continuous family of functions f*,
s € [0, 1], connecting the global Sturm attractors Ago = {0} and A1 through a finite
number of local (degenerate) bifurcations. Here s denotes the bifurcation parame-
ter. Moreover, these bifurcations consist only of pitchfork and Hopf bifurcations.
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Notice that the bifurcations shown are degenerate because the family f* e R, s €
[0, 1], is entirely constructed in the symmetry class of reversible nonlinearities f =
f(u,uy), which implies its integrability. We also illustrate this bifurcation diagram in
the example of Figure 6. We obtain a family f°, s € [0, 1], with six bifurcations
points at s = k/7, 1 < k < 6, and seven (degenerate) structurally stable regions
[0, 1]\ (U;<x<¢ik/7}). In Figure 8, we illustrate the period maps in these seven
regions. Since we are restricted to the integrable case f° € R, all the bifurcations
are degenerate. For general references see [6, 8, 19].

(a) (b) T (©) T
Aop = {0} \\J \ /
21 21 2 N
T b1 T
0 u el 0 es u el 0 esu
T
(d \ T / (e) \ / / \ \ /
21 NS TN silav; \V
T T
el 0 es U e] 0 es y

OV SO
VAR v, VARV ARV/ARY,

T T

er a e 0 ezat es u ey a e 0 e4a+ es u

Figure 8. For the global attractor A of (1.1) with lap signature ({1, 1}({1})({1})), we consider
the family f; € R, s € [0, 1] connecting Ao = {0} to A; . For this example we illustrate the seven
period maps which satisfy condition (H). The corresponding s-intervals are: (a) 0 < s < 1/7,
b)1/7<s<2/7,()2/T<s<3/T;(d)3/T<s5s<4/T,(e)d/T<s5<5/7;()5/7T<s5<6/7,
and, (g) 6/7 < s < 1. The occurring six bifurcations are discussed in Figure 9.
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In Figure 9, we then show the bifurcation diagram from Ay = {0} to .A; and the
connection graph of a nondegenerate global attractor Ay~ of (1.1) homotopic to the
(degenerate) A;. For this we extend the family f* to s > 1, connecting the reversible
(degenerate) A; to a global attractor Ay~ which is not reversible, see [16]. In this
case, Ag>1 is nondegenerate and we have the usual notions of stability of equilibria
and rotation waves, [17]. See [15, Proposition 3.1] and [17, Theorem 10].

The global attractor A~ has three stable equilibria, denoted by {e;,e; = 0, e5},
and two unstable equilibria, {e;, €4}, where

dim W'(e;) = dim W"(e3) = dim W"(e5) = 0,
dim W“(ez) = dim W“(e4) =3.

In addition, there are four rotating waves, denoted {v1, v2, V3, v4} (by order of appear-
ance). By the normal hyperbolicity of rotating waves, we obtain

dim W' (vy) = dim W"(v3) = dim W"(v4) = 1, dim W"(v,) = 2.

}

S = NN == N = O
[

Figure 9. Left: The bifurcation diagram for the reversible family f* € R, s € [0, 1], (see Fig-
ure 8). The bifurcation points are, respectively: a pitchfork of a stable saddle point (black ball);
degenerate Hopf bifurcations (white balls); and, a pitchfork of centers (white square). More-
over, the sequence of bifurcations leading to A; are: (i) a supercritical pitchfork bifurcation
of two stable saddle points at s = 1/7; (ii) a supercritical Hopf bifurcation of an unstable 27 -
periodic orbit at s = 2/7; (iii) a supercritical Hopf bifurcation of an unstable 25 -periodic orbit
ats = 3/7; (iv) a supercritical pitchfork bifurcation of two centers at s = 4/7: (v) a supercritical
Hopf bifurcation of an unstable 27 -periodic orbit at s = 5/7 in the upper branch center; and,
(vi) a supercritical Hopf bifurcation of an unstable 27 -periodic orbit at s = 6/7 in the lower
branch center. At the right margin of the bifurcation diagram we indicate the Morse indices cor-
responding to the equilibria and rotating waves of the nondegenerate Neumann section of the
global attractor Ay~ . Right: The connection graph of the nondegenerate global attractor As~1.
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Therefore, since
dimAg-y = max{dim Wh(e;), 1 +dimW"(vg), 1 <j <51<k=< 4} =3,

the global attractor As~ is three-dimensional. The heteroclinic orbit connections
follow from the connections on the Neumann section of Ag~1, [15, 17]. The rotat-
ing waves, each one rotating with its own fixed speed c;, appear on the slow sta-
ble/unstable invariant manifolds of the equilibria {e;, e3, e4}.

We conclude by observing that the connection equivalence of global attractors
presented in Theorem 1 extends to the general non-reversible case as orbit equiva-
lence, if we assume that all spatially nonhomogeneous solutions of (1.1) are rotating
waves, rotating around the circle S! with constant speeds ¢; # 0. In this case, we have
F = 0 and all periodic orbits in P are rotating waves. So, in addition to Theorem 1,
we can invoke hyperbolicity (H) and the strong Morse—Smale property.

As a final comment, we believe that Theorem | holds for orbit equivalence. To
support this statement we observe that a small perturbation 2(u, uy) = vy breaks
reversibility and the orbit equivalence statement holds for the homotopy with f + 4.

As an application we exhibit the connection graph of the global attractor of (1.1)
for the S!-equivariant but non-reversible perturbed Chafee—Infante nonlinearity,

U = Uxx + Au—u® +euy, xeS' t>0, .1)

where A > 0 satisfies A # A := k2, k € N, and ¢ # 0. The set of equilibria of (4.1),
& = {eq, e, e3}, has the equilibria e¢; = ++/X and e3 = —+/A, which are defined
and hyperbolic for all A > 0. These are saddle points of (1.2). The third equilibrium,
e, = 0, is also hyperbolic for A # A1, A5, ..., and is a center of (1.2).

For A € (A, Ag+1) the set of periodic orbits P = {vy, ..., v} has k hyperbolic
rotating waves which rotate around S with speed € and F = @. Hence, the lap signa-
ture of the global attractor A, is

(1,...,k}),

and the connection graph of A} is shown in Figure 10. As expected, the connection
graph of this “spindle attractor” with multiple periodic orbits in his “belt” is a tower,
see [11]. By the previous results using normal hyperbolicity this connection graph is
preserved for ¢ = 0, i.e., the reversible case.

As a concluding remark we point out that the nonlinearity f = f(u, uy) can
be regarded as a feedback control parameter for the reaction-diffusion equation (1.1).
This provides a very interesting model for certain applications. We mention, for exam-
ple, the possibility of stabilizing certain equilibria corresponding to reaction-diffusion
patterns in chemical reactors with a proper choice of a nonlinearity f = f(u, uy).
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Figure 10. Connection graph of the global attractor A, of (4.1) for k2 <A < (k+1)2. The
numbers close to the vertices are the corresponding Morse indices. This shows that dim A, =
2k + 1.
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