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Weighted N
2

-biharmonic equations with exponential growth
nonlinearity without the Ambrosetti–Rabinowitz condition

Imed Abid, Sami Baraket, and Rached Jaidane

Abstract. In this paper, we establish the existence of nontrivial solutions for a logarithmic
weighted N

2
-biharmonic problem within the unit ball B of RN , without imposing the Ambro-

setti–Rabinowitz condition. The nonlinearity exhibits critical or subcritical growth in view of
weighted Adams inequalities. Our proof relies on minimax techniques and the pass mountain
theorem applied to Cerami sequences. In the critical case, the associated energy does not adhere
to the compactness constraint. We introduce a novel growth condition and emphasise the import-
ance of avoiding the compactness level.

1. Introduction and main results

This paper investigates innovative solutions for a weighted problem, without consid-
ering the Ambrosetti–Rabinowitz condition. Specifically, we focus on addressing the
following problem:8̂<̂

:
�
�
�ˇ .x/j�uj

N
2 �2�u

�
D f .x; u/ in B;

u D
@u

@n
D 0 on @B;

(1.1)

where B is the unit ball of RN and the function f .jxj; t / has a maximal growth in t
with respect to the weighted Laplacian norm. The weight �ˇ is given by

�ˇ .x/ D
�

log
e

jxj

�ˇ.N2 �1/
; ˇ 2 .0; 1/: (1.2)

Inspired by the pioneering work of Lazer and McKenna [19] on wave movement
in suspension bridges, researchers have since delved into investigating the existence
of multiple solutions for nonlinear biharmonic equations and p-biharmonic equations
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using methods from nonlinear functional analysis. Bhakta [7] specifically investigated
the presence, variety, and characteristics of complete solutions of the p-biharmonic
equations with Hardy term. Bueno et al. [9] discovered multiple solutions for p-
biharmonic problems involving concave-convex nonlinearities. Wang and Zhao [23]
explored the existence of multiple solutions for equations of p-biharmonic type with
critical growth. For additional insights into this subject, one can refer to [6, 21] and
related literature.

Now, we will look at the historical origins of Adams inequalities. The notion
of critical exponential growth was then extended to higher order Sobolev spaces by
Adams [1]. More precisely, Adams proved the following result: for m 2 N and � an
open bounded set of RN such thatm < N , there exists a positive constant Cm;N such
that

sup
u2W

m;Nm
0

.�/;jrmujN
m
�1

Z
�

exp.ˇ0juj
N

N�m / dx � Cm;N j�j; (1.3)

where W
m;Nm
0 .�/ denotes the mth-order Sobolev space, rmu denotes the mth-order

gradient of u, namely

r
mu WD

´
�
m
2 u; if m is even;

r�
m�1
2 u; if m odd;

and

ˇ0 D ˇ0.m;N / WD
N

!N�1

8̂̂<̂
:̂
h
�
N
2 2m�.m2 /

�.N�m2 /

i N
N�m

; if m is even;h
�
N
2 2m�.mC12 /

�.N�mC12 /

i N
N�m

; if m odd:

In the particular case where N D 4 and m D 2, inequality (1.3) takes the form

sup
u2W

2;2
0

.�/;j�uj2�1

Z
�

exp.32�2juj2/ dx � C j�j:

Recently, an extension of Adams inequalities to Sobolev spaces involving loga-
rithmic weights has been achieved. Wang and Zhao [23] have recently established the
following result.

Theorem 1.1 ([23]). Let ˇ 2 .0; 1/ and let !ˇ D .log. e
jxj
//ˇ , then

sup
u2W

2;2
0;rad.B;!ˇ/;kuk�1

Z
B

exp.˛juj
2
1�ˇ / dx <1 , ˛ � ˛ˇ D 4Œ8�

2.1� ˇ/�
1
1�ˇ ;
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where W 2;2
0;rad.B; !ˇ / denotes the weighted Sobolev space of radial functions given by

W
2;2
0;rad.B; !ˇ / D closure

²
u 2 C10;rad.B/ j

Z
B

!ˇ .x/j�uj
2 dx <1

³
;

endowed with the norm kuk
W
2;2
0;rad.B;!ˇ/

D .
R
B
!ˇ .x/j�uj

2 dx/
1
2 , B is the unit open

ball in R4.

As an application of Theorem 1.1, Dridi and Jaidane [16] considered the following
problem: 8<:�.!ˇ .x/�u/ ��uC V.x/u D f .x; u/ in B;

u D
@u

@n
D 0 on @B;

where B is the unit open ball in R4, f .x; t/ is continuous in B � R and behaves
like exp.˛t

2
1�ˇ / as t ! C1 for some ˛ > 0, and the potential V is positive and

continuous on B and bounded away from zero in B . The authors proved that there is
a nontrivial weak solution to the above problem by using the mountain pass theorem
combined with the Trudinger–Moser inequality. Additionally, Jaidane [18] employed
the same techniques to study a Kirchhoff-type biharmonic problem involving non-
linearities with exponential growth in the sense of the Theorem 1.1.

Recent research has focused on works that employ operators characterized by
logarithmic weights and exponential growth nonlinearities. These studies utilize
Trudinger–Moser inequalities with logarithmic weights, as highlighted in recent in-
vestigations (refer to [5, 10, 12, 14, 17]).

Let � � RN be a bounded domain and �ˇ 2 L1.�/ be a non-negative function.
The weighted Sobolev space is defined as

W
2;N2
0 .�; �ˇ / D closure

²
u 2 C10 .�/ j

Z
B

j�uj
N
2 �ˇ .x/ dx <1

³
:

To obtain meaningful results, it is necessary to restrict attention to radial functions.
Therefore, we consider the subspace of radial functions and focus on the following
class of functions:

E D W
2;N2
0;rad .B; �ˇ / D closure

²
u 2 C10;rad.B/ j

Z
B

j�uj
N
2 �ˇ .x/ dx <1

³
which is endowed with the norm

kuk D

�Z
B

j�uj
N
2 �ˇ .x/ dx

� 2
N

:

The choice of the weight in (1.2) and the space W
2;N2
0;rad .B; �ˇ / is motivated by the

particular significance of logarithmic weights and their consideration as limiting situ-
ations in the embedding of the spaces W 2;N2

0 .�; �ˇ /. Additionally, this choice is
influenced by the following exponential inequalities.
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Theorem 1.2 ([25]). Let ˇ 2 .0; 1/ and let �ˇ given by (1.2), then

sup

u2W
2;N
2

0;rad .B;�ˇ/;R
B �ˇ.x/j�uj

N
2 dx�1

Z
B

exp.˛juj
N

.N�2/.1�ˇ/ / dx < C1 , ˛ � ˛ˇ ; (1.4)

where ˛ˇ D NŒ.N � 2/NVN �
2

.N�2/.1�ˇ/ .1 � ˇ/
1

.1�ˇ/ and VN is the volume of the
unit ball B in RN .

Let 
 D 
.N; ˇ/ WD N
.N�2/.1�ˇ/

. In view of inequality (1.4), the function f is
said to have subcritical growth atC1 if

8˛ > 0 lim
jsj!C1

jf .x; s/j

exp.˛s
 /
D 0

and f has a critical growth atC1 if there exists some ˛0 > 0, such that

lim
jsj!C1

jf .x; s/j

exp.˛s
 /
D 0; 8˛ > ˛0;

lim
jsj!C1

jf .x; s/j

exp.˛s
 /
D C1; 8˛ < ˛0 uniformly in x 2 B:

(1.5)

In the context of this paper, we consider problem (1.1) with subcritical or critical
growth nonlinearities f .x; t/. Additionally, it becomes imperative to impose specific
assumptions on the behaviour of f . Precisely, we shall consider the following condi-
tions:

(A1) The function f WB �R!R is continuous, positive, radial in x, and f .x; t/
D 0 for t � 0.

(A2) We have

lim
t!C1

F.x; t/

t
N
2

D C1 uniformly in x 2 B;

where

F.x; t/ D

Z t

0

f .x; s/ ds:

(A3) There are xC � 0 and � � 1 such that

H.x; t/ � �H.x; s/C xC ; for all 0 < t < s; 8x 2 B;

where
H.x; t/ D tf .x; t/ �

N

2
F.x; t/:
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(A4) We have

lim sup
t!0

NF.x; t/

2t
N
2

< �1 uniformly in x 2 B:

The first eigenvalue of problem (1.1) is defined as

�1 D inf
u2W

2;N
2

0;rad .B;�ˇ/;

u¤0

R
B
j�uj

N
2 �ˇ .x/ dxR

B
juj

N
2 dx

:

This eigenvalue exists, and the corresponding eigenfunction is positive and
belongs to L1.B/, as shown in [15].

(A5) In the critical case,

lim
t!1

f .x; t/t

exp.˛0t
 /
� 
0 uniformly in x 2 B;

with


0 >
.
˛ˇ
˛0
/
N
2


VN exp.N.1 � log.2e///
:

(A6) For any ¹unº 2E, if un*0weakly inE and f .x;un/! 0 inL1.B/, then,

F.x; un/! 0 in L1.B/:

We recall the Ambrosetti–Rabinowitz condition (AR): there exist constants � > N

and t0 > 0 such that for all x 2 B and jt j > t0,

0 < �F.x; t/ � f .x; t/t: (AR)

The significance of the (AR) condition lies in its influence on the mountain pass
geometry associated with the Euler–Lagrange functional linked to problem (1.1).
Additionally, it guarantees the boundedness of the Palais–Smale sequence for this
functional. Despite its pivotal role, the (AR) condition imposes considerable restric-
tions, leading to the exclusion of various intriguing and crucial nonlinearities. Not-
ably, the (AR) condition implies the existence of positive constants � , a1, and a2 such
that

F.x; t/ � a1jt j
�
� a2; 8.x; t/ 2 B �R;

where � > N . As a consequence, functions such as

f .x; t/ D jt j
N
2 �2t log.1C jt j/

do not satisfy (AR) for any � > N . However, these functions do satisfy conditions
(A2), (A3) and (A4).
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Motivated by the works cited above, we aim to establish the existence of a non-
trivial solution for problem (1.1) without relying on the (AR) condition. In the context
of subcritical exponential growth, we present the following result.

Theorem 1.3. Let f .x; t/ be a function with subcritical growth atC1 and satisfying
(A1), (A2), (A3), and (A4). Then problem (1.1) has a nontrivial radial solution.

In the critical exponential growth, the following result holds.

Theorem 1.4. Assume that f .x; t/ has a critical growth at C1 for some ˛0 and
satisfies the conditions (A1), (A2), (A3) with � D 1 and xC D 0, and additionally
satisfies (A4), (A5), and (A6), then problem (1.1) admits a nontrivial solution.

Our methodology relies on a suitable version of the mountain pass theorem intro-
duced by G. Cerami [11]. Problem (1.1) exhibits variational structure, and finding
weak solutions in the Banach space E D W 2;N2

0;rad .B; �ˇ / is equivalent to identifying
critical points of the C1 Euler–Lagrange functional J W E ! R defined as follows:

J.u/ D
2

N

Z
B

�ˇ .x/j�uj
N
2 dx �

Z
B

F.x; u/ dx: (1.6)

The geometric prerequisites of the mountain pass theorem arise from assump-
tions about the nonlinear reaction term f , with the challenge lying in validating
the compactness condition. We establish that when f exhibits subcritical growth,
the functional J satisfies the necessary compactness requirement as outlined in the
Ambrosetti–Rabinowitz theorem [4]. However, in the case of critical growth, this
compactness dissipates. To overcome this, we verify the compactness of the Euler–
Lagrange functional at a suitable level by choosing testing functions that are extremal
to the weighted Adams inequality.

In summary, the study of fourth-order partial differential equations remains a cap-
tivating area with wide-ranging applications.

This paper is structured as follows: Section 2 provides relevant knowledge and
helpful lemmas. In Section 3, we establish that the energy J fulfils the two geomet-
ric properties, and we estimate the minimax level of the Euler–Lagrange functional
associated with problem (1.1). Section 4 focuses on the compactness analysis and the
proof of the main results.

Throughout this work, the constantC exhibits variability across different contexts,
and to emphasise this variability and its evolution, we sometimes employ indexing for
these constants.
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2. Preliminaries

In the subsequent discussion, we introduce key definitions, notations, and funda-
mental results that will play a pivotal role in this paper.

Let kukLp.B/ denote the standard norm in the Lebesgue spaceLp.B/ for 1� p <
1. It is defined as

kukLp.B/ D

�Z
B

jujpdx

� 1
p

:

Furthermore, we use kuk the norm defined in the weighted Sobolev space E D
W 2;N2
0;rad .B; �ˇ /,

kuk D

�Z
B

j�uj
N
2 �ˇ .x/ dx

� 2
N

:

This space is shown to be a Banach and reflexive space. The classical Sobolev embed-
ding theorem asserts the continuous embedding W 2;N2

0;rad .B; �ˇ / ,! Lq for all q � 1.
Moreover, the Rellich–Kondrachov theorem affirms the compactness of the embed-
ding

W
2;N2
0;rad .B; �ˇ / ,!,! Lq for all q >

N

2
:

For more detailed information on the compactness of embeddings in weighted
Sobolev spaces, particularly in the radial case, see [2]. This compact embedding will
be crucial in the proof of our multiplicity result.

Now, we introduce a crucial definition.

Definition 2.1. Let u 2 E be a solution of problem (1.1) if f .x; u/ 2 L1.B/, and for
all ' 2 E, it satisfiesZ

B

�ˇ .x/j�uj
N
2 �2�u:�' dx D

Z
B

f .x; u/' dx:

Considering that the nonlinearity f exhibits critical or subcritical growth, we
establish the existence of positive constants c1 and c2 such that

jf .x; t/j � c1 exp.c2jt j
 /; 8x 2 B; 8t 2 R: (2.1)

Using (A1) and inequality (2.1), we ensure the well-defined nature of the functional
J given by (1.6) and that it is of class C1.

Now, we proceed to another definition.

Definition 2.2. Consider a sequence .un/ in a Banach space E and let J 2 C1.E;R/

with c 2 R. We define .un/ as a Palais–Smale sequence at level c (or (PS)c sequence)
for the functional J if

J.un/! c and J0.un/! 0 in E 0:
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Moreover, the functional J satisfies the Palais–Smale condition (PS)c at the level c if
every (PS)c sequence .un/ is relatively compact in E.

Additionally, a functional J satisfies (C)c , the Cerami condition, at a level c 2 R

if any sequence .un/ � E such that

J.un/! c and .1C kunk/J
0.un/! 0;

has a convergent subsequence.

Within critical point theory, there are situations where a Palais–Smale sequence
may not result in a critical point, whereas a Cerami sequence can yield one. This
is grounded in the concept of linking (refer to [22] for more details and examples).
Importantly, the Cerami condition is relatively weaker than the Palais–Smale condi-
tion, as the former encompasses the latter.

In the sequel, we need the following radial lemma introduced and proved in [25]
which is of crucial importance.

Lemma 1 ([25]). Let B be the unit ball in RN , and u 2 W
2;N2
0;rad .B;w/. If w.x/ D

.log. e
jxj
//ˇ.

N
2 �1/ and 0 < ˇ < 1, then we have

ju.x/j �

�
N

˛ˇ

�ˇ̌̌
log

e

jxj

ˇ̌̌
� 1

�� 1



kuk:

Remark 2.1. Following from Lemma 1 and by density, we obtain
R
B

exp.juj
 / dx <
C1, 8u 2 E.

Next, we present a useful lemma.

Lemma 2 ([13]). Let � � RN be a bounded domain and f W � � R a continuous
function. Let ¹unºn be a sequence in L1.�/ converging to u in L1.�/. Assume that
f .x; un/ and f .x; u/ are also in L1.�/. IfZ

�

jf .x; un/unj dx � C;

where C is a positive constant, then

f .x; un/! f .x; u/ in L1.�/:

3. The geometrical properties and the minimax level

3.1. The mountain pass structure

We establish the mountain pass geometry of the functional J. Specifically, we prove
the following result.
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Proposition 3.1. Suppose that (A1)–(A4) hold. Then there exist a > 0 and � > 0 such
that J.u/ � a for all u 2 E with kuk D �.

Proof. By hypothesis (A4), there exist a small constant "0 2 .0; 1/ and ı > 0 such
that for all jt j � ı,

F.x; t/ �
2

N
�1.1 � "0/jt j

N
2 : (3.1)

From (A4), we have

lim sup
t!0

NF.x; t/

2t
N
2

< �1 uniformly in x 2 B;

which implies

inf
ı>0

sup
²
NF.x; t/

2t
N
2

; 0 < t < ı

³
< �1:

The strict inequality allows us to find "0 > 0 such that

inf
ı>0

sup
²
NF.x; t/

2t
N
2

; 0 < t < ı

³
< �1 � "0:

Thus, there exists ı > 0, such that

sup
²
NF.x; t/

2t
N
2

; 0 < t < ı

³
< �1 � "0;

leading to

8jt j < ı; F.x; t/ �
2

N
�1.1 � "0/t

N
2 :

By inequality (2.1) and choosing q > N
2

, there exists a constant c3 such that

F.x; t/ � c3jt j
q exp.c2jt j
 /; for jt j � ı: (3.2)

Therefore, from (3.1) and (3.2), we conclude that

F.x; t/ �
2

N
�1.1 � "0/jt j

N
2 C c3jt j

q exp.c2jt j
 /; for t 2 R:

Using this inequality, we obtain

J.u/ �
2

N
kuk

N
2 �

2

N
�1.1 � "0/

Z
B

juj
N
2 dx � c3

Z
B

jujq exp.c2u
 / dx

�
2"0

N
kuk

N
2 � c3

Z
B

jujq exp.c2u
 / dx:

By applying the Hölder inequality, we get

J.u/ �
2"0

N
kuk

N
2 � c3

�Z
B

exp
�N
2
c2juj



�
dx

� 2
N
�Z

B

juj
Nq
N�2 dx

�N�2
N

:
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From Theorem 1.2, if we choose u 2 E such that

N

2
c2kuk



� ˛ˇ ; (3.3)

we get Z
B

exp
�N
2
c2juj



�
dx D

Z
B

exp
�N
2
c2kuk



�
juj

kuk

�
�
dx < C1:

By Lemma 1, there exists a constant c4 > 0, such that

kuk
L
Nq
N�2 .B/

� c4kuk:

Thus,

J.u/ �
2"0

N
kuk

N
2 � c5kuk

q;

for all u 2 E satisfying (3.3). Since q > N
2

, we can choose � D kuk as the maximum
point of the function g.�/ D 2"0

N
�
 � c5�

q on the interval�
0;

˛
1



ˇ

.2c2/
1



�
;

and let a D J.�/. Then, Proposition 3.1 follows.

As a second geometric property of the energy J, we establish the following result.

Proposition 3.2. Suppose (A1) and (A2) hold. Then, there exists u 2 E such that
kuk > � and J.u/ < 0.

Proof. Let u0 2 E n ¹0º with u � 0. By (A2), for all " > 0, there existsD DD" such
that for all .x; t/ 2 B �RC,

F.x; t/ � "t
N
2 �D:

Now, consider J.tu0/ for t � 1:

J.tu0/ D
2t

N
2

N
ku0k

N
2 �

Z
B

F.x; tu0/ dx:

�
2jt j

N
2

N
ku0k

N
� "jt j

N
2 ku0k

N
2
N
2

C
1

N
wN�1D

D jt j
N
2

�
ku0k

N
2

N
2

� "ku0k
N
2
N
2

�
C
1

N
wN�1D:

Choosing " > 2ku0k
N
2

Nku0k
N
2
N
2

, we obtain

J.tu0/! �1; as t !C1:

Then, Proposition 3.2 follows.



Weighted N
2

-biharmonic equations 237

3.2. Estimation of the minimax level CM

According to Propositions 3.1 and 3.2, we define

CM WD inf

2ƒ

max
t2Œ0;1�

J.
.t// > 0

and
ƒ WD

®

 2 C.Œ0; 1�; E/ such that 
.0/ D 0 and J.
.1// < 0

¯
:

Our objective is to estimate the minimax value CM of the functional J. The idea is to
construct a sequence of functions .vn/ 2 E, and estimate max¹J.tvn/ j t � 0º. For
this goal, consider the following Adam’s function defined for all n � 3 as

wn.x/ D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
log.e N

p
n/

˛ˇ

� 1



�
N jxj2.1�ˇ/

2.˛ˇ/
1

 . 1n /

2.1�ˇ/
N .log.e N

p
n//


�1



C
N

2.˛ˇ/
1

 .log.e N

p
n//


�1



if 0 � jxj � 1
N
p
n
;

N .1�ˇ/

˛
1



ˇ
.log e N

p
n/
2.1�ˇ/
N

�
log
�
e
jxj

��1�ˇ if 1
N
p
n
� jxj � 1

2
;

�n if 1
2
� jxj � 1;

where �n 2 C10;rad.B/ is such that

�n

�1
2

�
D

N .1�ˇ/

˛
1



ˇ
.log e N

p
n/

2.1�ˇ/
N

.log 2e/1�ˇ ;

@�n

@r

�1
2

�
D
�2.1 � ˇ/N .1�ˇ/

˛
1



ˇ
.log e N

p
n/

2.1�ˇ/
N

.log.2e//�ˇ ;

�n.1/ D
@�n

@r
.1/ D 0;

and �n, r�n, ��n are all O. 1

Œlog.e N
p
n/�

2.1�ˇ/
N

/. Here, @�n
@r

denotes the first derivative

of �n in the radial variable r D jxj.
Let vn.x/D wn

kwnk
. It follows that vn 2 E and kvnk

N
2 D 1. By direct computation,

we find

�wn.x/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
N.1�ˇ/.4�2ˇ/jxj�2ˇ

˛
1



ˇ
. 1n /

2.1�ˇ/
N .log.e N

p
n//


�1



if 0 � jxj � 1
N
p
n
;

.1�ˇ/N .1�ˇ/

˛
1



ˇ
.log e N

p
n/
2.1�ˇ/
N

�
log
�
e
jxj

���ˇ
�
1
jxj2

�
�ˇ

log e
jxj

� .N � 2/
�

if 1
N
p
n
� jxj � 1

2
;

��n if 1
2
� jxj � 1:
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We compute the weighted Sobolev norm of wn and obtainZ
B

j�wnj
N
2 �ˇ .x/ dx D NVN

Z 1
Npn

0

rN�1j�wn.x/j
N
2

�
log

e

r

�ˇ.N2 �1/
dr„ ƒ‚ …

I1

CNVN

Z 1
2

1
Npn

rN�1j�wn.x/j
N
2

�
log

e

r

�ˇ.N2 �1/
dr„ ƒ‚ …

I2

CNVN

Z 1

1
2

rN�1j�wn.x/j
N
2

�
log

e

r

�ˇ.N2 �1/
dr„ ƒ‚ …

I3

:

By using integration by parts, we obtain

I1 D NVN

Z 1
Npn

0

N
N
2 .1 � ˇ/

N
2 .4 � 2ˇ/

N
2 rN.1�ˇ/�1

.˛ˇ /
N
2
 . 1

n
/1�ˇ .log.e N

p
n//

N.
�1/
2


�
log

e

r

�ˇ.N2 �1/
dr

D NVN
N

N
2 .1 � ˇ/

N
2 .4 � 2ˇ/

N
2

.˛ˇ /
N
2
 . 1

n
/1�ˇ .log.e N

p
n//

N.
�1/
2


�
rN.1�ˇ/

N.1 � ˇ/

�
log

e

r

�ˇ.N2 �1/� 1
Npn

0

CNVN
N

N
2 ˇ.N

2
� 1/.1 � ˇ/

N
2 .4 � 2ˇ/

N
2

2.˛ˇ /
N
2
 . 1

n
/1�ˇ .log.e N

p
n//

N.
�1/
2


�

Z 1
Npn

0

rN.1�ˇ/�1
�

log
e

r

�ˇ.N2 �1/�1
dr

D O
� 1

log e N
p
n

�
:

Also,

I2 D NVN
.1 � ˇ/

N
2 N

N.1�ˇ/
2

.˛ˇ /
N
2
 .log.e N

p
n//.1�ˇ/

Z 1
2

1
Npn

1

r

� 1

log e
r

��ˇ� �ˇ
log e

r

� .N � 2/
�N
2

dr

D �NVN
.1 � ˇ/

N
2 N

N.1�ˇ/
2

.˛ˇ /
N
2
 .log.e N

p
n//.1�ˇ/

Z 1
2

1
Npn

�ˇ̌̌ ˇ

log e
r

C .N � 2/
ˇ̌̌�N

2
�

log
e

r

��ˇ dr
r

D �NVN
.1 � ˇ/

N
2 N

N.1�ˇ/
2

.˛ˇ /
N
2
 .log.e N

p
n//.1�ˇ/

�

Z 1
2

1
Npn

�
log

e

r

��ˇ
.N � 2/

N
2

�
1CO

� 1

log e
r

�� dr
r
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D NVN
.1 � ˇ/

N
2 N

N.1�ˇ/
2 .N � 2/

N
2

.˛ˇ /
N
2
 .log.e N

p
n//.1�ˇ/

�
1

1 � ˇ

�
log

e

r

�1�ˇ� 1
Npn

1
2

�NVN
.1 � ˇ/

N
2 N

N.1�˛/
2 .N � 2/

N
2

.˛ˇ /
N
2
 .log.e N

p
n//.1�ˇ/

Z 1
2

1
Npn

� 1

log e
r

��ˇ
O
� 1

log e
r

� dr
r

D 1CO
� 1

.log e N
p
n/1�ˇ

�
and I3 D O. 1

.log e N
p
n/
2



/. Hence, we conclude thatZ
B

j�wnj
N
2 wˇ .x/ dx D 1CO

� 1

.log e N
p
n/.1�ˇ/

�
as n!C1:

3.3. Key lemmas

Finally, we give the desired estimate.

Lemma 3. Assume that (A5) holds and that ˛0 is the real given by the definition of
critical growth, then

CM <
2

N

�˛ˇ
˛0

� N
2


:

Proof. Let vn � 0 and kvnk D 1. From Proposition 3.2 J.tvn/! �1 as t !C1.
As a consequence,

CM � max
t�0

J.tvn/:

By contradiction, suppose that for all n � 1,

max
t�0

J.tvn/ �
2

N

�˛ˇ
˛0

� N
2


:

Therefore, for any n � 1, there exists tn > 0 such that

max
t�0

J.tvn/ D J.tnvn/ �
2

N

�˛ˇ
˛0

� N
2


and so,
2

N
t
N
2
n �

Z
B

F.x; tnvn/ dx �
2

N

�˛ˇ
˛0

� N
2


:

By using (A1), we have

t
N
2
n �

�˛ˇ
˛0

� N
2


: (3.4)

On the other hand,

d

dt
J.tvn/

ˇ̌
tDtn
D t

N
2 �1
n �

Z
B

f .x; tnvn/vn dx D 0;
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then,

t
N
2
n D

Z
B

f .x; tnvn/tnvn dx: (3.5)

Now, we claim that the sequence .tn/ is bounded in .0;C1/. Indeed, it follows
from (A5) that for all " > 0, there exists t" > 0 such that

f .x; t/t � .
0 � "/e
˛0jt j




8jt j � t"; uniformly in x 2 B: (3.6)

Using (3.5), we get

t
N
2
n D

Z
B

f .x; tnvn/tnvn dx �

Z
0�jxj� 1

Npn

f .x; tnvn/tnvn dx:

We have for all 0 � jxj � 1
N
p
n

, w
n � .
log.e N

p
n/

˛ˇ
/. From (3.4) and the result of Lem-

ma 2,

tnvn �
tn

kwnk

� log.e N
p
n/

˛ˇ

� 1



!1 as n!C1:

Hence, it follows from (3.6) that for all " > 0, there exists n0 such that for all n � n0

t
N
2
n � .
0 � "/

Z
0�jxj� 1

Npn

exp.˛0t
n jvj


n/ dx

and

t
N
2
n � NVN .
0 � "/

Z 1
Npn

0

rN�1 exp
�
˛0t



n

� log.e N
p
n/

kwnk
˛ˇ

��
dr: (3.7)

Hence,

1 � NVN .
0 � "/ exp
�
˛0t



n

� log.e N
p
n/

kwnk
˛ˇ

�
� logNn �

N

2
log tn

�
:

Therefore .tn/ is bounded. Also, we have from formula (3.5),

lim
n!C1

t
N
2
n �

�˛ˇ
˛0

� N
2


:

Now, suppose that

lim
n!C1

t
N
2
n >

�˛ˇ
˛0

� N
2


;

then for n large enough, there exists some ı > 0 such that t
n �
˛ˇ
˛0
C ı. Consequently,

the right hand side of (3.7) tends to infinity and this contradicts the boundedness
of .tn/. Since .tn/ is bounded, we get

lim
n!C1

t
N
2
n D

�˛ˇ
˛0

� N
2


:
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Let us consider the sets

An D ¹x 2 B j tnvn � t"º and Cn D B nAn:

We have,

t
N
2
n D

Z
B

f .x; tnvn/tnvn dx D

Z
An

f .x; tnvn/tnvn dx C

Z
Cn

f .x; tnvn/tnvn dx

� .
0 � "/

Z
An

exp.˛0t
n v


n / dx C

Z
Cn

f .x; tnvn/tnvn dx

D .
0 � "/

Z
B

exp.˛0t
n v


n / dx � .
0 � "/

Z
Cn

exp.˛0t
n v


n / dx

C

Z
Cn

f .x; tnvn/tnvn dx:

Since vn! 0 a.e. inB , �Cn! 1 a.e. inB , therefore, using the dominated convergence
theorem, we getZ

Cn

f .x; tnvn/tnvn dx ! 0 and
Z

Cn

exp.˛0t
n v


n / dx ! NVN :

Then,

lim
n!C1

t
N
2
n D

�˛ˇ
˛0

� N
2


� .
0 � "/ lim
n!C1

Z
B

exp.˛0t
n v


n / dx � .
0 � "/NVN :

On the other hand,Z
B

exp.˛0t
n v


n / dx �

Z
1
Npn
�jxj� 12

exp.˛0t
n v


n / dx C

Z
Cn

exp.˛0t
n v


n / dx:

Then, using (3.4),

lim
n!C1

t
N
2
n � lim

n!C1
.
0 � "/

Z
B

exp.˛0t
n v


n / dx

� lim
n!C1

.
0 � "/NVN

Z 1
2

1
Npn

rN�1 exp
�
C 
 .N; ˇ/

.log e
r
/
N
N�2

.log.e N
p
n//

2
N�2 kwnk


�
dr:

Therefore, making the change of variable

s D
C.N; ˇ/
 .log e

r
/

.log.e N
p
n//

2
N�2 kwnk


D P
.log e

r
/

kwnk

; with P D

C.N; ˇ/


.log.e N
p
n//

2
N�2

;
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we get

lim
n!C1

t
N
2
n � lim

n!C1
.
0 � "/

Z
B

exp.˛0t
n v


n / dx

� lim
n!C1

NVN .
0 � "/
kwnk




P

Z P log.e N
p
n/

kwnk


P log.2e/
kwnk


exp
�
N
�
1 �

skwnk



P

�
C
kwnk

2

N�2

P
N
N�2

s
N
N�2

�
ds

� lim
n!C1

NVN .
0 � "/
kwnk




P
eN

Z P log.e N
p
n/

kwnk


P log.2e/
kwnk


exp
�
�
N

P
kwnk


s
�
ds

D lim
n!C1

.
0 � "/NVN
exp.N /
N

.� exp.�N log.e N
p
n//

C exp.�N log.2e///

D .
0 � "/VN exp.N.1 � log.2e///:

It follows that �˛ˇ
˛0

� N
2


� .
0 � "/VN exp.N.1 � log.2e///;

for all " > 0. So,


0 �
.
˛ˇ
˛0
/
N
2


VN exp.N.1 � log.2e///
;

which is in contradiction with condition (A5). The lemma is proved.

4. The Cerami sequences and proof of the main results

4.1. Lions-type concentration lemma

To prove a compactness condition for the energy J, we require a Lions-type result
[20] on an improved Adams inequality.

Lemma 4. Let .uk/k be a sequence in E. Suppose that, kukk D 1, uk * u weakly
in E, uk.x/! u.x/ a.e. x 2 B , �uk.x/! �u.x/ a.e. x 2 B and u 6� 0. Then

sup
k

Z
B

exp.p˛ˇ jukj
 / dx < C1;

where ˛ˇ D NŒ.N � 2/NVN �
2

.N�2/.1�ˇ/ .1 � ˇ/
1

.1�ˇ/ , for all 1 < p < U.u/ where
U.u/ is given by

U.u/ WD

8<:
1

.1�kuk
N
2 /

2

N

if kuk < 1;

C1 if kuk D 1:
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Proof. For a;b 2R, q > 1. If q0 is its conjugate, i.e., 1
q
C

1
q0
D 1, we utilize the Young

inequality, that

eaCb �
1

q
eqa C

1

q0
eq
0b:

Additionally, we have

.1C a/q � .1C "/aq C
�
1 �

1

.1C "/
1
q�1

�1�q
; 8a � 0; 8" > 0; 8q > 1:

Thus, we obtain

jukj


D juk � uC uj




� .juk � uj C juj/



� .1C "/juk � uj


C

�
1 �

1

.1C "/
1

�1

�1�

juj
 ;

which impliesZ
B

exp.p˛ˇ jukj
 / dx �
1

q

Z
B

exp.pq˛ˇ .1C "/juk � uj
 / dx

C
1

q0

Z
B

exp
�
pq0˛ˇ

�
1 �

1

.1C "/
1

�1

�1�

juj


�
dx;

for any p > 1.
From Lemma 1 the last integral is finite. To conclude the proof, we need to verify

that for any p such that 1 < p < U.u/, the following inequality holds:

sup
k

Z
B

exp.pq˛ˇ .1C "/juk � uj
 / dx < C1; (4.1)

for some " > 0 and q > 1.
Assuming juj < 1 (the case for juj D 1 is similar), when

p <
1

.1 � kuk
N
2 /

2

N

;

there exists � > 0 such that

p.1 � kuk
N
2 /

2

N .1C �/ < 1:

By Brezis–Lieb’s lemma [8] we have

kuk � uk
N
2 D kukk

N
2 � kuk

N
2 C o.1/ where o.1/! 0 as k !C1:
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Then,

kuk � uk
N
2 D 1 � kuk

N
2 C o.1/;

and so
lim

k!C1
kuk � uk



D .1 � kuk

N
2 /

2

N :

Therefore, for every " > 0, there exists k" � 1 such that

kuk � uk


� .1C "/.1 � kuk

N
2 /

2

N ; 8k � k":

If we take q D 1C " with " D 3
p
1C � � 1, then 8k � k", we have

pq.1C "/kuk � uk


� 1:

Therefore, Z
B

exp.pq˛ˇ .1C "/juk � uj
 / dx

�

Z
B

exp
�
.1C "/pq˛ˇ

�
juk � uj

kuk � uk

�

kuk � uk



�
dx

�

Z
B

exp
�
˛ˇ

�
juk � uj

kuk � uk

�
�
dx

� sup
kuk�1

Z
B

exp.˛ˇ juj
 / dx < C1:

Now, (4.1) follows from (1.4). This completes the proof of Lemma 4.

4.2. Proof of Theorem 1.3

We recall the following version of the mountain pass theorem.

Lemma 5 ([4]). Let E be a real Banach space and J 2 C 1.E;R/. Assume that J

satisfies the (C)c condition for any c 2 R and the following geometric assumptions.

(1) J.0/ D 0 and there exist positive constants R and ˛ such that

J.u/ � ˛; for all u 2 E with kuk D R:

(2) There exists u0 2 E such that ku0k > R and J.u0/ � 0.

Then there exists u 2 E such that J.u/ D c and J0.u/ D 0. Furthermore, the critical
value c is characterized by

c WD inf
g2�

max
u2g.Œ0;1�/

J.u/;

where
� WD

°
g 2 C.Œ0; 1�; E/ j g.0/ D 0; g.1/ D u0

±
:
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Now, we prove that the functional J satisfies the Cerami condition at all levels
c 2 R in the subcritical case.

Lemma 6. Suppose that (A1), (A2), (A3), and (A4) hold. Assume that the function
f .x; t/ has subcritical growth at C1 . Then the functional J satisfies the (C)c con-
dition for any c 2 R.

Proof. Let .un/ be a (C)c sequence in E for some c 2 R, then

J.un/ D
2

N
kunk

N
2 �

Z
B

F.x; un/ dx ! c; n!C1 (4.2)

and for all " > 0, there exists n0 such that for all n � n0,

.1C kunk/jJ
0.un/vj

D .1C kunk/

ˇ̌̌̌Z
B

�ˇ .x/j�unj
N
2 �2�un:�v dx �

Z
B

f .x; un/v dx

ˇ̌̌̌
� "kvk; (4.3)

for all v 2 E and hence for "n ! 0, up to a subsequence,

.1C kunk/jJ
0.un/vj

D .1C kunk/

ˇ̌̌̌Z
B

�ˇ .x/j�unj
N
2 �2�un:�v dx �

Z
B

f .x; un/v dx

ˇ̌̌̌
� "nkvk; (4.4)

for all v 2 E. We will show that ¹unº is bounded.
Assume, by contradiction, that kunk ! C1. Define

vn D
un

kunk
;

then kvnk D 1. Without loss of generality, suppose that vn * v in E (up to a sub-
sequence). We want to prove that vn * 0 in E. By the Sobolev embedding we have
vn.x/! v.x/ a.e. in B and vn ! v a.e. in Lp.B/ for all p � 1. Let B� D ¹x 2 B j
v.x/ ¤ 0º and assume �.B�/ > 0, where � is the Lebesgue measure. Then in B�,
we have

lim
n!C1

jun.x/j D lim
n!C1

jvn.x/jkunk D C1 a.e. in B�:

Since J.un/! c, then J.un/
kunk

! 0 as n!C1 and it follows that

o.1/ D
2

N
�

Z
B�

F.x; un/

kunk
N
2

�

Z
BnB�

F.x; un/

kunk
N
2

: (4.5)
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Using condition (A2), we obtain

lim
n!C1

F.x; un.x//

kun.x/k
N
2

D lim
n!C1

F.x; un.x//

jun.x/j
N
2

jun.x/j
N
2

kun.x/k
N
2

D lim
n!C1

F.x; un.x//

jun.x/j
N
2

jvn.x/j
N
2 D C1 a.e. in B�:

This implies that Z
B�

F.x; un/

kunk
N
2

dx !C1 as n!C1: (4.6)

On the one hand, from (A2), there exists a positive constant K > 0 such that

F.x; t/ � �K; 8.x; t/ 2 B �R: (4.7)

Then, using (4.7), we deduceZ
BnB�

F.x; un/

kunk
N
2

� �
K

kun.x/k
N
2

jB n B�j:

Consequently, from (4.6) and (4.7), we obtain a contradiction with (4.5). Now let
tn 2 Œ0; 1� such that

J.tnun/ D max
t2Œ0;1�

J.tun/:

Given f is subcritical at C1, for any given R > 0 there exists C D C.R/ > 0 such
that

F.x; s/ � C jsj
N
2 C jsj exp

� N

N � 2

˛ˇ

R

jsj


�
; 8.x; s/ 2 B � .0;C1/:

Since kunk ! C1, we have

J.tnun/ � J
�Run
kunk

�
D J.Rvn/:

Applying (4.8) and using the Hölder inequality, we have

N

2
J.Rvn/ � R

N
2 �

N

2
CR

N
2

Z
B

jvn.x/j
N
2 dx �

N

2

�Z
B

jvnj
N
2 dx

� 2
N

�

�Z
B

exp
� ˛ˇ
R

jvnj



�
dx

�N�2
N

: (4.8)

The last integral on the right side is finite in view of Theorem 1.2. Moreover, vn * 0

in E, then we have
R
B
jvn.x/j

N
2 dx ! 0 as n!C1. Letting n!C1 in (4.8) and

R!C1, we obtain
J.tnun/!C1: (4.9)
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As J.0/ D 0 and J.un/! c, we can assume that tn 2 .0; 1/. On the one hand, we
have that J0.tnun/tnun D 0, then

t
N
2
n kunk

N
2 D

Z
B

f .x; tnun/tnun dx:

By (4.2) and (A3), we get

N

2
J.tnun/ D t

N
2
n kunk

N
2 �

N

2

Z
B

F.x; tnun/ dx

D

Z
B

�
f .x; tnun/ �

N

2
F.x; tnun/

�
dx

� �

Z
B

�
f .x; un/ �

N

2
F.x; un/

�
dx C xC :

Applying (4.3), Z
B

�
f .x; un/ �

N

2
F.x; un/

�
dx D

N

2
c C on.1/:

This contradicts (4.9), and hence, un is bounded in E. Up to a subsequence, and
without loss of generality, we may assume that8̂̂̂̂

<̂
ˆ̂̂:
kunk � K in E;

un * u weakly in E;

un ! u strongly in Lq.B/8q � 1;

un.x/! u.x/ almost everywhere in B:

Since f is subcritical atC1, there exists a constant CK > 0 such that

f .x; s/ � CKe
˛ˇ
2K


s
 ; 8.x; s/ 2 B � .0;C1/�

Then, by the Hölder inequalityˇ̌̌̌Z
B

f .x; un/.un � u/ dx

ˇ̌̌̌
�

Z
B

jf .x; un/.un � u/j dx

�

�Z
B

jf .x; un/j
2 dx

� 1
2
�Z

B

jun � uj
2 dx

� 1
2

� C

�Z
B

exp
� ˛ˇ
K

junj



�
dx

� 1
2

kun � ukL2.B/

� C

�Z
B

exp
�
˛ˇ
junj




kunk


�
dx

� 1
2

kun � ukL2.B/

� Ckun � ukL2.B/ ! 0 as n!C1:
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Also, using the fact that
R
B
f .x; u/.un � u/ dx ! 0 (un * u in E), we getZ

B

.f .x; un/ � f .x; u//.un � u/ dx ! 0:

From (4.4) with v D un � u, we getZ
B

�ˇ .x/j�unj
N�2�un:.�un ��u/ dx �

Z
B

f .x; un/.un � u/ dx D on.1/:

(4.10)
On the other hand, since un * u weakly in E,Z

B

�ˇ .x/j�uj
N
2 �2�u:.�un ��u/dx D on.1/: (4.11)

Combining (4.10) and (4.11), we obtainZ
B

�ˇ .x/.j�unj
N�2�un � j�uj

N�2�u/:.�un ��u/ dx

D

Z
B

f .x; un/.un � u/ dx C on.1/:

Using the well-known inequality

.jxjN�2x � jyjN�2y/:.x � y/ � 22�N jx � yjN ; 8x; y 2 RN and N � 2;

we obtain

0 � 22�N
Z
B

�ˇ .x/j�un ��uj
N
2 dx �

Z
B

f .x; un/.un � u/ dx C on.1/:

Using the above results we get,

22�N
Z
B

�ˇ .x/j�un ��uj
N
2 dx �

Z
B

f .x; un/.un � u/dx C on.1/! 0:

Thus,
kun � uk ! 0 as n!1:

Consequently, J satisfies the (C)c condition for all c 2 R, and the proof of Lemma 6
is completed.

Lemma 6 confirms that the functional J satisfies condition (C)c at each level c.
Therefore, using Proposition 3.1 and Proposition 3.2, we conclude that the functional
J has a non-zero critical point u in the space E. This concludes the proof of The-
orem 1.3.
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4.3. Proof of Theorem 1.4

We begin by recalling the following result.

Lemma 7 ([11]). LetE be a real Banach space, J 2C 1.E;R/ and J.0/D 0. Assume
that J satisfies the following geometric assumptions.

(i) There exist positive constants R and ˛ such that

J.u/ � ˛; for all u 2 E with kuk D R:

(ii) There exists u0 2 E such that ku0k > R and J.u0/ � 0.

Let CM be characterized by

CM WD inf
g2�

max
u2g.Œ0;1�/

J.u/;

where
� WD

®
g 2 C.Œ0; 1�; E/ j g.0/ D 0; g.1/ D u0

¯
:

Then J possesses a (C)CM sequence.

Now, in the critical case, we will prove that the functional J satisfies the (C)CM
condition.

Lemma 8. Suppose that (A1), (A2), (A3), (A4) and (A6) hold. Assume that the func-
tion f .x; t/ has critical growth at C1. Then the functional J satisfies the (C)CM
condition.

Proof. According to Propositions 3.1 and 3.2, there exists a (C)CM sequence ¹unº in
E such that

J.un/ D
2

N
kunk

N
2 �

Z
B

F.x; un/ dx ! CM ; n!C1 (4.12)

and for "n ! 0, up to a subsequence

.1C kunk/jJ
0.un/vj

D .1C kunk/

ˇ̌̌̌Z
B

�ˇ .x/j�unj
N�2�un:�v dx �

Z
B

f .x; un/v dx
ˇ̌

� "nkvk; (4.13)

for all v 2 E.
We will show that ¹unº is bounded. We argue by contradiction and suppose that

kunk ! C1:
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Let vn D un
kunk

then kvnk D 1. We may suppose that vn * v in E (up to a sub-
sequence). As in the subcritical case, we can similarly show that vn* 0 in E. Again,
let tn 2 Œ0; 1� such that

J.tnun/ D max
t2Œ0;1�

J.tun/:

Let R 2 .0; .˛ˇ
˛0
/
1

 / and choose " D N

N�2

˛ˇ
R

� ˛0 > 0. By the criticality growth con-

dition and (A4), for all " > 0, there exist two positive constants C and C 0 such that

F.x; s/ � C jsj
N
2 C C 0jsj exp..˛0 C "/jsj
 /; 8.x; s/ 2 B � .0;C1/:

Since, kunk ! C1, we have

J.tnun/ � J
�Run
kunk

�
D J.Rvn/: (4.14)

From (4.14) and using the Hölder inequality, we get

N

2
J.Rvn/ � R

N
2 �

N

2
CR

N
2

Z
B

jvn.x/j
N
2 dx �R

N

2
C 0
�Z

B

jvn.x/j
N
2

� 2
N

�

�Z
B

exp
� N

N � 2
.˛0 C "/R



jvnj



�
dx

�N�2
N

:

The last integral on the right side is finite in view of Theorem 1.2. Moreover, vn * 0

in E, then we have
R
B
jvn.x/j

N
2 dx ! 0 as n! C1. Letting n! C1 in (4.14)

and R! .
˛ˇ
˛0
/
1

 , we get

lim inf
n!C1

J.tnun/ �
2

N

�˛ˇ
˛0

� N
2


> CM : (4.15)

We have J.0/ D 0 and J.un/! CM . We can suppose that tn 2 .0; 1/.
On the one hand, we have that J0.tnun/tnun D 0, then

t
N
2
n kunk

N
2 D

Z
B

f .x; tnun/tnun dx:

On the other hand, by hypothesis (A3) with � D 1 and xC D 0, we get

NJ.tnun/ D t
N
n kunk

N
�N

Z
B

F.x; tnun/ dx

D

Z
B

.f .x; tnun/tnun �NF.x; tnun// dx

�

Z
B

.f .x; un/un �NF.x; un// dx:
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Since Z
B

.f .x; tnun/tnun �NF.x; tnun// dx D NCM C on.1/;

we reach a contradiction with (4.15). Therefore, ¹unº is bounded in E. Up to a sub-
sequence, and without loss of generality, we may assume that8̂̂̂̂

<̂
ˆ̂̂:
kunk �M in E;

un * u weakly in E;

un ! u strongly in Lq.B/8q � 1;

un.x/! u.x/ almost everywhere in B:

We follow the schema of [3] to show the convergence almost everywhere of the
Laplacian �un.x/! �u.x/ a.e. x 2 B .

From (4.13), we obtain

0 <

Z
B

f .x; un/un dx � C:

Also, from (4.12), we have

0 <

Z
B

F.x; un/ dx � C:

Consequently,

.j�unj
N
2 �2�un/ is bounded in .L

N
N�2 .B; �ˇ //

N ;

j�unj
N�2�un * j�uj

N
2 �2�u in .L

N
N�2 .B; �ˇ //

N as n!C1:

By [13, Lemma 2.1], we have

f .x; un/! f .x; u/ in L1.B/ as n!C1:

According to hypothesis (A6), we have

F.x; un/! F.x; u/ in L1.B/ as n!C1: (4.16)

By (4.12), we obtain

lim
n!C1

kunk
N
2 D

N

2

�
CM C

Z
B

F.x; u/ dx

�
:

Therefore, passing to the limit in (4.13) and using the same argument as in the sub-
critical case, we getZ

B

�ˇ .x/j�uj
N
2 �2�u:�' dx D

Z
B

f .x; u/' dx; 8' 2 E: (4.17)

Hence, u is a weak solution of problem (1.1).
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Next, we are going to make some assertions.

Assertion 1. At this stage we affirm that u ¤ 0. Indeed, we argue by contradiction
and suppose that u � 0. Therefore,

R
B
F.x; un/ dx ! 0 and consequently we get

2

N
kunk

N
2 ! CM <

2

N

�˛ˇ
˛0

� N
2


:

First we claim that there exists q > 1 such thatZ
B

jf .x; un/j
q dx � C: (4.18)

Using (4.13), we obtainˇ̌̌̌
kunk

N
2 �

Z
B

f .x; un/un dx

ˇ̌̌̌
�

C"n

.1C kunk/
� C"n:

This yields

kunk
N
2 � C"n C

�Z
B

jf .x; un/j
q dx

� 1
q
�Z

B

junj
q0 dx

� 1
q0

;

where q0 is the conjugate of q. Since .un/ converges to 0 in Lq
0

.B/,

lim
n!C1

kunk
N
2 D 0:

By Brezis–Lieb’s Lemma [8], un ! 0 in E. Therefore, J.un/! 0 which is a con-
tradiction with CM > 0.

For the proof of the claim (4.18), given the critical growth of f for every " > 0
and q > 1 there exist t" > 0 and C > 0 such that for all jt j � t", we have

jf .x; t/jq � C exp.˛0.1C "/t
 /:

Consequently,Z
B

jf .x; un/j
q dx D

Z
¹junj�t"º

jf .x; un/j
q dx C

Z
¹junj>t"º

jf .x; un/j
q dx

� !N�1 max
B�Œ�t";t"�

jf .x; t/jq C C

Z
B

exp.˛0.1C "/junj
 / dx:

Since .N
2
CM /

2

N <.

˛ˇ
˛0
/, there exists � 2 .0; 1

2
/, such that .N

2
CM /

2

N D .1� 2�/.

˛ˇ
˛0
/.

From (4.12), kunk
 ! .N
2
c/
2

N , so there exists n� 2N such that kunk
 � .1� �/

˛ˇ
˛0

,
for all n � n� . Therefore,

˛0.1C "/
�
junj

kunk

�

kunk



� .1C "/.1 � �/˛ˇ �
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We choose " > 0 small enough to get

.1C "/.1 � �/ < 1:

Hence the second integral is uniformly bounded in view of (1.4).

Assertion 2. We affirm that J.u/ D CM . Indeed, since (un) is bounded, up to a sub-
sequence, kunk ! � > 0. By using (A3) with � D 1 and xC D 0, we obtain

J.u/ �
2

N

Z
B

h
f .x; u/u �

N

2
F.x; u/

i
dx � 0: (4.19)

Now, using the semicontinuity of the norm and (4.16), we have

J.u/ �
2

N
lim inf
n!1

kunk
N
2 �

Z
B

F.x; u/ dx D CM :

Suppose that
J.u/ < CM :

Then, it implies
kuk

N
2 < �

N
2 :

Furthermore, we have

2

N
lim

n!C1
kunk

N
2 D

�
CM C

Z
B

F.x; u/ dx

�
; (4.20)

which means that

�
N
2 D

N

2

�
CM C

Z
B

F.x; u/ dx

�
:

Set
vn D

un

kunk
and v D

u

�
�

We have kvnk D 1, vn * v in E, v 6� 0 and kvk < 1. So, by Lemma 4, we get

sup
n

Z
B

exp.p˛ˇ jvnj
 / dx <1;

for 1 < p < U.v/ D .1 � kvk
N
2 /
�2

N .

By (4.16), (4.17) and (4.20), we have the following equality:

N

2
CM �

N

2
J.u/ D �

N
2 � kuk

N
2 :

From (4.19), (4.20) and the last equality, we obtain

�
N
2 �

N

2
CM C kuk

N
2 <

�˛ˇ
˛0

� N
2


C kuk
N
2 : (4.21)
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Since

�
N
2 <

.
˛ˇ
˛0
/
N
2


1 � kvk
N
2

;

we deduce from (4.21) that

�
N
2 <

.
˛ˇ
˛0
/
N
2


1 � kvk
N
2

: (4.22)

On one hand, we have
R
B
jf .x; un/j

q dx < C . Indeed, For " > 0,Z
B

jf .x; un/j
q dx D

Z
¹junj�t"º

jf .x; un/j
q dx C

Z
¹junj>t"º

jf .x; un/j
q dx

� NVN max
B�Œ�t";t"�

jf .x; t/jq C C

Z
B

exp.˛0.1C "/junj
 / dx

� C" C C

Z
B

exp.˛0.1C "/kunk
 j�nj
 / dx � C;

provided ˛0.1C "/kunk
 � p˛ˇ , for p such that 1 < p < .1 � kvk
N
2 /�

2

N .

From (4.22), there exists ı 2 .0; 1
2
/ such that

�
 D .1 � 2ı/

˛ˇ
˛0

.1 � kvk
N
2 /

2

N

:

Since limn!C1 kunk

 D �
 , then for n large enough

˛0.1C "/kunk


� ˛0.1C "/�



� .1C "/.1 � ı/

˛ˇ

.1 � kvk
N
2 /

2

N

:

We choose " > 0 small enough such that .1C "/.1 � ı/ < 1 to have

˛0.1C "/kunk

 <

˛ˇ

.1 � kvk
N
2 /

2

N

:

So, the sequence .f .x;un// is bounded in Lq.B/, q > 1. Using the Hölder inequality
and the Sobolev embedding, we deduce thatˇ̌̌̌Z

B

f .x; un/.un � u/ dx

ˇ̌̌̌
�

�Z
B

jf .x; un/j
q dx

� 1
q
�Z

B

jun � uj
q0 dx

� 1
q0

� C

�Z
B

jun � uj
q0
� 1
q0

dx ! 0 as n!C1

where 1
q
C

1
q0
D 1. Since hJ0.un/; un � ui D on.1/, it follows thatZ

B

�ˇ .x/j�unj
N
2 �2�un.�un ��u/ dx ! 0: (4.23)



Weighted N
2

-biharmonic equations 255

On the other hand, since un * u weakly in E, thenZ
B

�ˇ .x/j�uj
N
2 �2�u.�un ��u/ dx D on.1/: (4.24)

Also, using the well-known inequality

.jxjp�2x � jyjp�2y/:.x � y/ � 22�pjx � yjp; 8x; y 2 Rm; m 2 N and p � 2;

we get that Z
B

�ˇ .x/.j�unj
N
2 �2�un � j�uj

N
2 �2�u/:.�un ��u/ dx

� 22�
N
2

Z
B

�ˇ .x/
ˇ̌
�un ��u

ˇ̌N
2 :

Passing to the limit in the last inequality and using (4.23) and (4.24), we get

lim
n!C1

kun � uk D 0:

Then, by Brezis lemma kunk ! kuk, we get

�N � kukN D 0;

therefore kuk D �. This is a contradiction with (4.3). Consequently, J.u/ D CM and
Assertion 2 is proved.

As a consequence, again by Brezis–Lieb’s Lemma un ! u in E. We also have
by (4.17), J0.u/ D 0. The proof of Theorem 1.4 is established.
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