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The Redner–ben-Avraham–Kahng cluster system without
growth condition on the kinetic coefficients

Philippe Laurençot

Abstract. Existence of global mild solutions to the infinite dimensional Redner–ben-Avraham–
Kahng cluster system is shown without growth or structure condition on the kinetic coefficients,
thereby extending previous results in the literature. The key idea is to exploit the dissipative
features of the system to derive a control on the tails of the infinite sums involved in the reaction
terms. Classical solutions are also constructed for a suitable class of kinetic coefficients and
initial conditions.

1. Introduction

The aim of this note is to investigate the existence of global mild solutions to a one
species annihilation cluster system introduced in [4, 6] and referred to as the ‘cluster
eating’ system. This model describes the evolution of a set of clusters, each cluster
being characterized by a single parameter i 2 N n ¹0º accounting for the number of
active sites it bears. Denoting clusters bearing i active sites by Pi , i � 1, the dynamics
is governed by pairwise encounters between incoming clusters Pi and Pj resulting in
the annihilation reaction Pi C Pj ! Pji�j j with no product formed when i D j . The
number density fi D fi .t/ � 0 of clusters with i active sites, i � 1, at time t � 0,
then evolves according to

dfi
dt
D

1X
jD1

aiCj;jfiCjfj �

1X
jD1

ai;jfifj ; i � 1; (1.1a)

fi .0/ D f
in
i ; i � 1; (1.1b)

where ai;j denotes the reaction rate between incoming clusters with respective sizes
i � 1 and j � 1 and satisfies

ai;j D aj;i � 0; i; j � 1: (1.2)
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The cluster system (1.1) predicting the dynamics of f D .fi /i�1 is a countably infin-
ite system of quadratic differential equations which are strongly coupled due to the
infinite series involved in the reaction terms. This structure actually prevents the use
of the classical theory of ordinary differential equations to study the well-posedness
of (1.1). Nevertheless, the infinite system (1.1) is, at least formally, the limit as n!1
of the finite dimensional cluster system [6]

df ni
dt
D

n�iX
jD1

aiCj;jf
n
iCjf

n
j �

nX
jD1

ai;jf
n
i f

n
j ; 1 � i � n; (1.3a)

f ni .0/ D f
in
i ; 1 � i � n; (1.3b)

where n � 3. One may then expect to obtain solutions to (1.1) as limits of solutions
f n D .f ni /1�i�n to (1.3) as n!1 and this approach has proved successful when
the rate coefficients grow at most quadratically; that is,

sup
i;j�1

²
ai;j

ij

³
<1; i; j � 1: (1.4)

In that case, the existence of classical solutions to (1.1) is shown in [4] for f in D

.f in
i /i�1 2 X1;C, where the Banach space Xm is defined for m 2 R by

Xm WD

²
z D .zi /i�1 W kzkm WD

1X
iD1

imjzi j <1

³
;

and Xm;C denotes its positive cone. Well-posedness in X1;C is also established in [4]
under the stronger growth condition supi;j�1¹ai;j =

p
ij º < 1. The same approach

is used in [9] to construct mild solutions to (1.1) when the rate coefficients have the
following structure: there are a sequence .ri /i�1 of positive real numbers, a family
.˛i;j /i;j�1 of non-negative numbers, and R > 0 such that

ai;j D rirj C ˛i;j ; ri � Ri; i; j � 1; sup
i;j�1

²
˛i;j

rirj

³
<1: (1.5)

Note that no growth condition on the sequence .ri /i�1 is required in (1.5), in contrast
to (1.4).

We shall actually prove that, given f in 2 X1;C, there is a global mild solution
to (1.1) under the sole non-negativity and symmetry assumption (1.2) on the rate coef-
ficients .ai;j /i;j�1. Before stating the existence result, let us first recall the definition
of a mild solution to (1.1) in X1;C.

Definition 1.1. Consider f inD.f in
i /i�1 2X1;C. A mild solution f D.fi /i�1 to (1.1)

is a sequence of non-negative functions satisfying
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(a1) f 2 L1..0;1/; X1;C/ with fi 2 C.Œ0;1// for all i � 1;

(a2) for each i � 1 and t > 0,
1X
jD1

aiCj;jfiCjfj 2 L
1..0; t//;

1X
jD1

ai;jfifj 2 L
1..0; t//I

(a3) for each i � 1 and t > 0,

fi .t/ D f
in
i C

Z t

0

1X
jD1

aiCj;jfiCj .s/fj .s/ ds �
Z t

0

1X
jD1

ai;jfi .s/fj .s/ ds:

Theorem 1.2. Assume that the kinetic coefficients .ai;j /i;j�1 satisfy (1.2) and con-
sider f in 2 X1;C. Then there is at least one mild solution f to (1.1) in the sense of
Theorem 1.1 which satisfies additionally

1X
jD1

1X
kD1

min¹j; kºaj;kfjfk 2 L1..0;1// (1.6)

and

kf .t/k1 C

Z t

0

1X
jD1

1X
kD1

min¹j; kºaj;kfj .s/fk.s/ ds D kf in
k1; t > 0: (1.7)

In addition, if there is a non-decreasing sequence .Ai /i�1 of positive real numbers
with A1 � 1 such that the kinetic coefficients .ai;j /i;j�1 and the initial condition f in

satisfy
0 � ai;j D aj;i � AiAj ; i; j � 1; (1.8)

and

MA.f
in/ WD

1X
iD1

Aif
in
i <1; (1.9)

then the mild solution f constructed above satisfies

1X
iDm

Aifi .t/ �

1X
iDm

Aif
in
i ; t � 0; m � 1: (1.10)

Theorem 1.2 shows that no growth condition or structure assumption is needed to
ensure the existence of a global mild solution to (1.1). In addition, it provides the sta-
bility of the space of sequences satisfying (1.9) under the additional assumption (1.8)
on the kinetic coefficients. Let us also emphasize that no growth condition is required
on .Ai /i�1 in (1.8).

We next turn to classical solutions and identify kinetic coefficients and initial con-
ditions guaranteeing their existence.
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Theorem 1.3. Assume that there is a non-decreasing sequence .Ai /i�1 of positive
real numbers with A1 � 1 such that the kinetic coefficients .ai;j /i;j�1 satisfy (1.8)
and consider f in 2 X1;C satisfying (1.9). Then there is at least one classical solution
f D .fi /i�1 to (1.1); that is, fi 2 C 1.Œ0;1//,

1X
jD1

aiCj;jfiCjfj 2 C.Œ0;1//;

1X
jD1

ai;jfifj 2 C.Œ0;1//; (1.11)

and (1.1) is satisfied pointwisely for all i � 1. In addition, f satisfies (1.7), as well as

MA.f .t// WD

1X
iD1

Aifi .t/ �MA.f
in/; t � 0: (1.12)

Theorem 1.3 extends [4, Theorem 3.1], which corresponds to the choice Ai D
1 C i

p
K, i � 1, for some K > 0. It is worth mentioning at this point that, given

any kinetic coefficients .ai;j /i;j�1 satisfying (1.2), the assumption (1.8) is actually
satisfied by the sequence Aa D .Aai /i�1 defined by

Aai WD 1C max
1�j;k�i

aj;k; i � 1:

Therefore, the restrictive assumption in Theorem 1.3 is the tail behaviour (1.9) of f in.
We supplement Theorem 1.3 with a uniqueness result, valid under a stronger

assumption on the decay at infinity of the initial condition.

Theorem 1.4. Assume that there is a non-decreasing sequence .Ai /i�1 of positive
real numbers with A1 � 1 such that the kinetic coefficients .ai;j /i;j�1 satisfy (1.8)
and consider f in 2 X1;C satisfying

MA2.f in/ WD

1X
iD1

A2i f
in
i <1: (1.13)

Then there is a unique classical solution f D .fi /i�1 to (1.1) satisfying

MA2.f .t// WD

1X
iD1

A2i fi .t/ �MA2.f in/; t � 0: (1.14)

The evolution system (1.1) bears some similarity with the celebrated Smoluchow-
ski coagulation equation, which corresponds to the elementary reaction Pi C Pj !
PiCj and reads [7]

dfi
dt
D
1

2

i�1X
jD1

ai�j;jfi�jfj �

1X
jD1

ai;jfifj ; i � 1; (1.15a)

fi .0/ D f
in
i ; i � 1: (1.15b)
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Indeed, though describing different physical processes, their mathematical structure is
similar. Both are countably infinite systems of quadratic differential equations, which
are strongly coupled due to the infinite series involved in the reaction terms. Thus,
not surprisingly, the techniques developed to study the well-posedness of (1.15) in
the seminal paper [1] adapt well to (1.1). In particular, the same functional framework
and similar assumptions on the rate coefficients are used in [4,9] to establish existence
results for (1.1). Still, the dynamics of (1.1) differs from that of (1.15). Indeed, conser-
vation or decrease of matter is expected for the latter, along with a monotone increase
of superlinear moments (whenever finite), while mass and all superlinear moments
are dissipated for the former throughout time evolution. In addition, Smoluchowski’s
coagulation equation (1.15) has no non-zero solution for rapidly increasing kinetic
coefficients such as ai;j D i˛ C j ˛ with ˛ > 1 [3,8]. The outcome of Theorem 1.2 and
Theorem 1.3 shows that no such phenomenon occurs for the system (1.1), a feature
that can be explained by its dissipativity properties and we shall exploit thoroughly
the latter in the analysis to be presented below.

Specifically, Section 2 is devoted to the proof of Theorem 1.2, which relies on
a compactness method and the approximation of (1.1) by finite systems of ordin-
ary differential equations as in [1, 4, 9]. The cornerstone of the proof and the main
contribution of this paper is Theorem 2.3, which shows that the dissipation of the
tails

P1
iDm ifi of the first moment controls the tails of the series on the right-hand

side of (1.1). Besides guaranteeing the compactness of the approximate sequences,
these estimates are instrumental in the derivation of the time evolution (1.7) of the
first moment. We next turn to the existence of classical solutions in Section 3 which
combines Theorem 1.2 and moment estimates. The uniqueness proof is provided
in Section 4 and both the assumptions on the initial condition in Theorem 1.4 and
its proof are directly inspired from similar results for the coagulation-fragmentation
equations, see [2, Section 8.2.5] and the references therein.

2. Existence: Mild solutions

We first recall the well-posedness of (1.3) established in [4, Proposition 2.3], along
with a useful identity satisfied by solutions to (1.3).

Proposition 2.1. Let n�3 and f in2X1;C. There is a unique solution f nD.f ni /1�i�n
2 C 1.Œ0;1/; Œ0;1/n/ to (1.3). In addition, if .#i /i�1 is a sequence of real numbers,
then

d
dt

nX
jD1

#jf
n
j C

nX
jD2

j�1X
kD1

.#j � #j�k/aj;kf
n
j f

n
k C

nX
jD1

nX
kDj

#jaj;kf
n
j f

n
k D 0: (2.1)
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From now on, f in 2 X1;C is given and, for each n � 3, f n D .f ni /1�i�n denotes
the corresponding solution to (1.3) provided by Theorem 2.1.

2.1. Compactness

We first draw several consequences of (2.1) and begin with the following observation
when the sequence .#i /i�1 is assumed to be non-negative and non-decreasing.

Corollary 2.2. Let .#i /i�1 be a non-negative and non-decreasing sequence. Then,
for n � 3 and t > 0,

0 �

nX
jD1

#jf
n
j .t/ �

nX
jD1

#jf
in
j ; (2.2a)

0 �

Z t

0

nX
jD2

j�1X
kD1

.#j � #j�k/aj;kf
n
j .s/f

n
k .s/ ds �

nX
jD1

#jf
in
j ; (2.2b)

0 �

Z t

0

nX
jD1

nX
kDj

#jaj;kf
n
j .s/f

n
k .s/ ds �

nX
jD1

#jf
in
j : (2.2c)

Proof. Since the sequence .#i /i�1 is non-negative and non-decreasing, the three
terms involved in the left-hand side of (2.1) are non-negative and Theorem 2.2 readily
follows from (2.1) after integration with respect to time.

We next use a specific choice of .#i /i�1 in Theorem 2.2 to obtain the following
estimates, which could also be derived directly from [4, Proposition 2.3] with the
same choice.

Lemma 2.3. For n � 3, m � 1, and t > 0,

nX
jDm

jf nj .t/ �

nX
jDm

jf in
j ; (2.3a)

Z t

0

nX
jDm

nX
kD1

min¹j; kºaj;kf nj .s/f
n
k .s/ ds � 2

nX
jDm

jf in
j : (2.3b)

Proof. Theorem 2.3 readily follows from Theorem 2.2 with the choice

#i D 0; 1 � i � m � 1; #i D i; i � m:
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Indeed, this choice of the sequence .#i /i�1 gives

nX
jD2

j�1X
kD1

.#j � #j�k/aj;kf
n
j f

n
k D

nX
jDm

j�1X
kDj�mC1

jaj;kf
n
j f

n
k C

nX
jDm

j�mX
kD1

kaj;kf
n
j f

n
k

�

nX
jDm

j�1X
kD1

min¹j; kºaj;kf nj f
n
k (2.4)

and
nX

jD1

nX
kDj

#jaj;kf
n
j f

n
k D

nX
jDm

nX
kDj

jaj;kf
n
j f

n
k D

nX
jDm

nX
kDj

min¹j; kºaj;kf nj f
n
k ; (2.5)

and we infer (2.3b) from (2.2b), (2.2c), (2.4), and (2.5).

Applying Theorem 2.3 with m D 1 provides the following estimates.

Corollary 2.4. For n � 3 and t > 0,

nX
jD1

jf nj .t/ �

nX
jD1

jf in
j � kf

in
k1; (2.6a)

Z t

0

nX
jD1

nX
kD1

min¹j; kºaj;kf nj .s/f
n
k .s/ ds � 2

nX
jD1

jf in
j � 2kf

in
k1; (2.6b)

Z t

0

nX
jD1

ˇ̌̌̌df nj
dt

.s/

ˇ̌̌̌
ds � 4kf in

k1: (2.6c)

Proof. The bounds (2.6a) and (2.6b) are immediate consequences of (2.3a) and (2.3b)
with m D 1, respectively. We next infer from (1.3), (2.6b), and the lower bound
min¹j; kº � 1 for j � 1 and k � 1 that

nX
jD1

ˇ̌̌̌df nj
dt

ˇ̌̌̌
�

nX
jD1

� n�jX
kD1

ajCk;kf
n
jCkf

n
k C

nX
kD1

aj;kf
n
j f

n
k

�

D

nX
kD1

n�kX
jD1

ajCk;kf
n
jCkf

n
k C

nX
jD1

nX
kD1

aj;kf
n
j f

n
k

�

nX
kD1

nX
jDkC1

aj;kf
n
j f

n
k C 2kf

in
k1 � 4kf

in
k1;

and the proof of Theorem 2.4 is complete.
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After this preparation, we are in a position to state the main estimate of this sec-
tion, which provides a control on the tails of the two infinite sums on the right-hand
side of (1.1a).

Proposition 2.5. For i � 1, t > 0, and n � mC i � 2.i C 1/,Z t

0

nX
jDm

ai;jf
n
i .s/f

n
j .s/ ds � 2

1X
jDm

jf in
j ; (2.7)

Z t

0

n�iX
jDm

aiCj;jf
n
iCj .s/f

n
j .s/ ds � 2

1X
jDm

jf in
j : (2.8)

Proof. We first note that, for j 2 ¹1; : : : ; nº,

1 � i � j �m ” j � mC i and j C 1�m � i � n ” j � mC i � 1:

Thanks to this observation and the choice n � mC i ,

nX
jDmC1

j�mX
kD1

kaj;kf
n
j f

n
k �

nX
jDmCi

j�mX
kD1

aj;kf
n
j f

n
k �

nX
jDmCi

aj;if
n
j f

n
i

and

nX
jDm

nX
kDj�mC1

min¹j; kºaj;kf nj f
n
k �

mCi�1X
jDm

nX
kDj�mC1

aj;kf
n
j f

n
k �

mCi�1X
jDm

aj;if
n
j f

n
i ;

and we infer from (2.3b) and the above two inequalities thatZ t

0

nX
jDm

ai;jf
n
i .s/f

n
j .s/ ds �

Z t

0

nX
jDm

nX
kD1

min¹j; kºai;jf ni .s/f
n
j .s/ ds

� 2

nX
jDm

jf in
j � 2

1X
jDm

jf in
j ;

hence (2.7). Similarly, since n � mC i ,

nX
jDm

nX
kDj�mC1

min¹j;kºaj;kf nj f
n
k �

n�iX
jDm

nX
kDj�mC1

aj;kf
n
j f

n
k �

n�iX
jDm

jaj;iCjf
n
j f

n
iCj ;

from which (2.8) readily follows due to (2.3b).
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2.2. Convergence

Proof of Theorem 1.2. Owing to Theorem 2.4 (and in particular (2.6a) and (2.6c)), we
are in a position to apply Helly’s selection principle [5, Theorem 2.35], along with a
diagonal process, to find a sequence .nl/l�1, nl !1, and a sequence of functions
.fj /j�1 such that

lim
l!1

f
nl

i .t/ D fi .t/ for all t � 0 and i � 1: (2.9)

Let us now fix i � 1. For t > 0, m � i , and nl � mC i , it follows from (2.6b),
(2.9), and the Lebesgue dominated convergence theorem thatZ t

0

mX
jD1

aiCj;jfiCj .s/fj .s/ ds �
Z t

0

mX
jD1

mCiX
kD1

ak;jfk.s/fj .s/ ds

D lim
l!1

Z t

0

mX
jD1

mCiX
kD1

ak;jf
nl

k
.s/f

nl

j .s/ ds

� 2kf in
k1

and Z t

0

mX
jD1

ai;jfi .s/fj .s/ ds �
Z t

0

mX
kD1

mX
jD1

ak;jfk.s/fj .s/ ds

D lim
l!1

Z t

0

mX
jD1

mX
kD1

ak;jf
nl

k
.s/f

nl

j .s/ ds

� 2kf in
k1:

Letting m!1 in the above two inequalities and using Fatou’s lemma, lead us to

1X
jD1

aiCj;jfiCjfj 2 L
1..0; t//;

1X
jD1

ai;jfifj 2 L
1..0; t//: (2.10)

Similarly, we infer from (2.3b) that, for nl � r > m,Z t

0

rX
jDm

rX
kD1

min¹j; kºaj;kf
nl

j .s/f
nl

k
.s/ ds � 2

1X
jDm

jf in
j :

Taking the limit l !1 and using (2.9) yieldZ t

0

rX
jDm

rX
kD1

min¹j; kºaj;kfj .s/fk.s/ ds � 2
1X
jDm

jf in
j :
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We then let r !1 and deduce from Fatou’s lemma thatZ t

0

1X
jDm

1X
kD1

min¹j; kºaj;kfj .s/fk.s/ ds � 2
1X
jDm

jf in
j : (2.11)

We have thus shown that f satisfies Theorem 1.1 (a2) and (1.6).
Next, for t > 0 and nl � mC i � 2.i C 1/, we infer from (2.8) thatZ t

0

ˇ̌̌̌ nl�iX
jD1

aiCj;jf
nl

iCj .s/f
nl

j .s/ �

1X
jD1

aiCj;jfiCj .s/fj .s/

ˇ̌̌̌
ds

�

Z t

0

m�1X
jD1

aiCj;j jf
nl

iCj .s/f
nl

j .s/ � fiCj .s/fj .s/j ds

C

Z t

0

n�iX
jDm

aiCj;jf
nl

iCj .s/f
nl

j .s/ ds C
Z t

0

1X
jDm

aiCj;jfiCj .s/fj .s/ ds

�

Z t

0

m�1X
jD1

aiCj;j jf
nl

iCj .s/f
nl

j .s/ � fiCj .s/fj .s/j ds C 2
1X
jDm

jf in
j

C

Z t

0

1X
jDm

aiCj;jfiCj .s/fj .s/ ds:

Thanks to (2.6a), (2.9), and the Lebesgue dominated convergence theorem, we may
take the limit l !1 in the above inequality and find

lim sup
l!1

Z t

0

ˇ̌̌̌ nl�iX
jD1

aiCj;jf
nl

iCj .s/f
nl

j .s/ �

1X
jD1

aiCj;jfiCj .s/fj .s/

ˇ̌̌̌
ds

� 2

1X
jDm

jf in
j C

Z t

0

1X
jDm

aiCj;jfiCj .s/fj .s/ ds:

Due to f in 2 X1;C and (2.10), we letm!1 in the above inequality to conclude that

lim
l!1

Z t

0

nl�iX
jD1

aiCj;jf
nl

iCj .s/f
nl

j .s/ ds D
Z t

0

1X
jD1

aiCj;jfiCj .s/fj .s/ ds: (2.12)

A similar argument, based on (2.7) instead of (2.8), gives

lim
l!1

Z t

0

nlX
jD1

ai;jf
nl

i .s/f
nl

j .s/ ds D
Z t

0

1X
jD1

ai;jfi .s/fj .s/ ds: (2.13)
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Since f nl

i is a classical solution to (1.3) on Œ0;1/, it satisfies

f
nl

i .t/ D f in
i C

Z t

0

nl�iX
jD1

aiCj;jf
nl

iCj .s/f
nl

j .s/ ds �
Z t

0

nlX
jD1

ai;jf
nl

i .s/f
nl

j .s/ ds

and (2.9), (2.12), and (2.13) allow us to take the limit l!1 in the above identity and
conclude that f satisfies Theorem 1.1 (a3). In particular, the latter and (2.10) entail
that fi 2 C.Œ0;1//.

Now, the boundedness of f in X1;C is an immediate consequence of (2.6a) and
(2.9). Collecting the outcome of the above analysis, we have established that f is a
mild solution to (1.1) in the sense of Theorem 1.1 and satisfies (1.6).

We are left with proving (1.7). To this end, we infer from (2.1) with #j D j , j � 1,
that, for l � 1,

nlX
jD1

jf
nl

j .t/C

Z t

0

nlX
jD1

nlX
kD1

min¹j; kºaj;kf
nl

j .s/f
nl

k
.s/ ds D

nlX
jD1

jf in
j : (2.14)

On the one hand, we readily infer from (2.3a) that, for nl > m,ˇ̌̌̌ nlX
jD1

jf
nl

j .t/ �

1X
jD1

jfj .t/

ˇ̌̌̌
�

mX
jD1

j jf
nl

j .t/ � fj .t/j C

nlX
jDm

jf
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j .t/C
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jDm

jfj .t/

�
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j jf
nl

j .t/ � fj .t/j C

1X
jDm

jf in
j C

1X
jDm

jfj .t/:

Owing to (2.9), we may pass to the limit l !1 in the above inequality and obtain

lim sup
l!1

ˇ̌̌̌ nlX
jD1

jf
nl

j .t/ �
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jfj .t/
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�
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j C
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Since both f .t/ and f in belong to X1;C, we let m!1 to conclude that

lim
l!1
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jf
nl

j .t/ D

1X
jD1

jfj .t/: (2.15)

On the other hand, it follows from (2.3b) and (2.11) that, for nl > m � 3,Z t
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k
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Thanks to (2.6a), (2.9), and Lebesgue’s dominated convergence theorem, we may pass
to the limit l !1 in the above inequality and find

lim sup
l!1

Z t
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We then let m!1 and deduce that, since f in 2 X1;C,

lim
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Gathering (2.15) and (2.16) allows us to take the limit l !1 in (2.14) and thereby
derive (1.7), thus completing the proof of Theorem 1.2.

We finally assume that the kinetic coefficients .ai;j /i;j�1 and the initial condition
f in satisfy (1.8) and (1.9), respectively. Let m � 1 and t � 0. We infer from (2.2a)
(with #i D Ai for i � m and #i D 0 for 1 � i � m � 1) that

rX
iDm

Aif
nl

i .t/ �

nlX
iDm

Aif
nl

i .t/ �

nlX
iDm

Aif
in
i �

1X
iDm

Aif
in
i

for l � 1 large enough such that nl > r > m. Thanks to (2.9), we may first let l !1
and then r !1 in the above inequality to obtain (1.10) and complete the proof.

3. Classical solutions: Existence

Proof of Theorem 1.3. We now assume that the kinetic coefficients .ai;j /i;j�1 and the
initial condition f in satisfy (1.8) and (1.9), respectively. It follows from Theorem 1.2
that (1.1) has a mild solution f which satisfies (1.10) and we shall show that this last
property implies the continuity properties (1.11) and the C 1-regularity of f . Indeed,
for .t; s/ 2 Œ0;1/2 and m > i � 1, we infer from (1.7), (1.8), and (1.10) thatˇ̌̌̌ 1X

jD1

ai;jfi .s/fj .s/ �
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j :

Owing to the continuity of fj for all j � 1,

lim sup
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and, thanks to (1.9), we may let m!1 in the above inequality to conclude that

lim
s!t

1X
jD1

ai;jfi .s/fj .s/ D
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ai;jfi .t/fj .t/: (3.1)
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Similarly, let .t; s/ 2 Œ0;1/2 and m > i � 1. By (1.8), (1.9), and (1.10),ˇ̌̌̌ 1X
jD1
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We next proceed as in the proof of (3.1) to obtain

lim
s!t

1X
jD1

aiCj;jfiCj .s/fj .s/ D

1X
jD1

aiCj;jfiCj .t/fj .t/: (3.2)

The continuity (1.11) is then an immediate consequence of (3.1) and (3.2) and we
combine Theorem 1.1 (a3) and (1.11) to conclude that fi 2C 1.Œ0;1// for each i � 1.
Finally, the bound (1.12) readily follows from (1.10) with m D 1.

4. Classical solutions: Uniqueness

Proof of Theorem 1.4. First, sinceA2i �A1Ai �Ai for i � 1, the sequence .A2i /i�1 is
a non-decreasing sequence of positive real numbers with A21 � 1 which satisfies (1.8)
and we infer from (1.13) and Theorem 1.3 that there is at least one classical solution
f to (1.1) satisfying (1.14).

As for uniqueness, we proceed along the lines of the proof of [4, Proposition 5.1],
using the sequence .Ai /i�1 as a weight instead of .i˛/i�1. Specifically, let f and g be
two classical solutions to (1.1) satisfying (1.14) and set E D f � g. Then, for i � 1,
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Ei solves

dEi
dt
D
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from which we deduce that
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Using the symmetry (1.2) of .ai;j /i;j�1 and the monotonicity of .Ai /i�1, we further
obtain

d
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We finally infer from (1.8), (1.14), and the above inequality that

d
dt

1X
iD1

Ai jEi j � 2

1X
iD1

1X
jD1

A2jAigj jEi j � 2MA2.f in/

1X
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and Gronwall’s lemma completes the proof.

Remark 4.1. LetR>0. It actually follows from Theorem 1.4 and its proof that, when
the kinetic coefficients .ai;j /i;j�1 satisfy (1.8), the system (1.1) generates a dynamical
system in the complete metric space ¹z D .zi /i�1 2 X1;C W kzk1 CMA2.z/ � Rº

endowed with the metric induced by the norm kzkA WD
P1
iD1Ai jzi j.
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