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On the descendent Gromov–Witten theory of a K3 surface

Georg Oberdieck

Abstract. We study the reduced descendent Gromov–Witten theory of K3 surfaces in prim-
itive curve classes. We present a conjectural closed formula for the stationary theory, which
generalizes the Bryan–Leung formula. We also prove a new recursion that allows to remove
descendent insertions of 1 in many instances. Together this yields an efficient way to compute a
large class of invariants (modulo the conjecture on the stationary part). As a corollary we con-
jecture a surprising polynomial structure which underlies the Gromov–Witten invariants of the
K3 surface.

1. Introduction

1.1. State of the art

Let S be a K3 surface and let ˇ 2H2.S;Z/ be an effective curve class. The (reduced)
descendent Gromov–Witten invariants of S are defined by integrating over the moduli
space of n-marked genus g degree ˇ stable maps,

h�k1.
1/ � � � �kn.
n/i
S
g;ˇ D

Z
ŒM
ı

g;n.S;ˇ/�
red

Y
i

ev�i .
i / 
ki
i ; (1)

where k1; : : : ; kn � 0 and 
1; : : : ; 
n 2 H�.S/. We refer to Section 2.2 for more
details on the definition. We say that the descendent invariant (1) is

• stationary if deg.
i / > 0 for all i ,

• primitive if the curve class ˇ 2 H2.S;Z/ is primitive.

For dimension reasons the invariant (1) vanishes unless we have

g D

nX
iD1

.ki C degC.
i / � 1/:

Here degC.
/ is the complex cohomological degree of 
 , that is, 
 2 H 2 degC.
/.S/.
Hence we fix g by this constraint and often drop it from notation.
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The most important conjecture about the Gromov–Witten theory of the K3 sur-
face says that the descendent invariants are completely determined by the primitive
invariants. We recall the conjecture. Let p 2 H 4.S;Z/ denote the class of a point.

Conjecture 1.1 (Multiple cover conjecture [11, Conj. C2]). For every positive divisor
kjˇ let Sk be a K3 surface and let 'k W H 2.S;R/! H 2.Sk;R/ be a real isometry
such that 'k.ˇ=k/ is a primitive effective curve class. Extend 'k to an isomorphism
'k W H

�.S;R/! H�.Sk;R/ by setting 'k.1/ D 1 and 'k.p/ D p. Then we have

h�k1.
1/ � � � �kn.
n/i
S
g;ˇ

D

X
kjˇ

k2g�3C
Pn
iD1 degC.
i /h�k1.'k.
1// � � � �kn.'k.
n//i

Sk
g;'k.ˇ=k/

:

The conjecture was proven by Bae and Buelles [1] when ˇ has divisibility 2, but
remains wide open for higher divisibility.

Although the imprimitive invariants are difficult to understand, the situation for
the primitive invariants is much better. Indeed, Maulik, Pandharipande and Thomas
provided in [8] an algorithm which can determine all primitive invariants using a
combination of tautological relations coming from the moduli space of curves and
degenerations techniques. As a corollary they showed that the natural generating
series of primitive invariants are quasi-modular forms. Further, in [12] it was shown
using this algorithm that these quasi-modular forms satisfy a holomorphic anomaly
equation. We review these results in Section 2.

One could say that the story is finished here and the primitive invariants are com-
pletely determined. However, there are two problems: First, the algorithm of [8] is
extremely complicated and increasingly slow when the genus grows. We refer to work
of Sendra [19] where this algorithm was implemented. Computations in his imple-
mentation are feasible only up to genus g D 3. Second, very few explicit formulas
for the primitive invariants are known. This is in strong contrast to the case of ellip-
tic curves, where the Bloch–Okounkov formula explicitly evaluates all invariants in
closed form [14, 15, 18]. Therefore, when it comes to actual computations, the struc-
ture of the primitive invariants of the K3 surface is still very mysterious. At this point,
the only general formula for the descendent invariants is the following beautiful result
of Bryan and Leung:1

1We restrict ourselves here to the pure descendent invariants. There are more formulas
known if one allows more general insertions, such as the Hodge classes �i . Most notable here
is the Katz–Klemm–Vafa formula proven in [17]. Arbitrary linear Hodge integrals with descen-
dents are better considered as part of the Pandharipande–Thomas theory of S �C. Their explicit
form is taken up in [13]. For Gromov–Witten invariants of the K3 surface involving the double
ramification cycle, see also [20].
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For all k � 2 even, define the weight k Eisenstein series

Gk.q/ D �
Bk

2 � k
C

X
n�1

X
d jn

dk�1qn

(with Bk the Bernoulli numbers) and the modular discriminant

�.q/ D q
Y
n�1

.1 � qn/24:

Theorem 1.2 (Bryan–Leung, [2]). For primitive ˇ we have

h�0.p/niSˇ D Coeff
qˇ
2=2

�
1

�.q/

�
q
d

dq
G2.q/

�n�
:

Here Coeffqm.f / stands for the qm-coefficient of a Laurent series f .

1.2. A conjectural formula for the stationary theory

The first result of this paper is a conjectural formula for the stationary primitive invari-
ants of the K3 surface, which will generalize the Bryan–Leung evaluation.

To state the formula we use the Laurent expansion of the Weierstraß elliptic func-
tion }.z/ around the origin, which reads

}.z/ D
1

z2
C 2

X
k�4

Gk.q/
zk�2

.k � 2/Š
;

and where we have set Gk D 0 for k odd. For all k � 0 define the series

Ak.q/ D
.�1/k

.2k C 1/ŠŠ
ReszD0

�
.}.z/ � 4G2/

kC 12
�
; (2)

Bk.q/ D
.�1/k

.2k C 3/ŠŠ
ReszD0

�
.}.z/ � 4G2/

kC 32 .} C 2G2/
�

(3)

and for k; ` � 0 the series

Ck`.q/ D
.�1/kC`�1

.2k C 1/ŠŠ.2`C 1/ŠŠ

� Resz1D0Resz2D0
�
.}.z1/ � 4G2/

kC 12 .}.z2/ � 4G2/
`C 12

� .}.z1 � z2/C 2G2/
�
: (4)

The Weierstraß elliptic function }.z/ is taken above as a formal power series in z
with coefficients quasi-modular forms (see Section 2.1), so that

}.z/ � 4G2 D
1

z2
� 4G2 CG4z

2
CO.z4/:
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Its square root is then computed formally, as in

.} � 4G2/
1
2 D

1

z
� 2G2z C

�
�2G22 C

1

2
G4

�
z3 CO.z4/:

We obtain the well-defined z-series with quasi-modular coefficients

.} � 4G2/
kC 12 WD .}.z/ � 4G2/

k.} � 4G2/
1
2 :

Taking the residue at z D 0 means simply taking the z�1 coefficient. The double
factorial stands for the product of odd factors,

.2k C 1/ŠŠ D
.2k C 1/Š

2k � kŠ
D .2k C 1/.2k � 1/ � � � 3 � 1:

For example,

A0 D 1; A1 D 2G2; A2 D 2G
2
2 C

1

6
G4; : : :

B0 D �2G
2
2 C

5

6
G4; B1 D �

8

3
G32 C

4

3
G2G4 �

7

360
G6; : : :

C0;0 D 0; C1;0 D B0; C1;1 D �
16

3
G32 C

10

3
G2G4 �

7

72
G6; : : : :

Given cohomology classes 
0; 
1; 
2; : : : 2 H�.S/ define the partition function

Zˇ .
0; 
1; : : :/ WD

�
exp

�X
k�0

�k.
k/

��S
g;ˇ

D

X
m0;m1;m2;:::�0

1

m0Šm1Šm2Š � � �
h�0.
0/

m0�1.
1/
m1�2.
2/

m2 � � � i
S
ˇ :

The partition function encodes all Gromov–Witten invariants of S in class ˇ.2

Let .
1; 
2/D
R
S

1 [ 
2 denote the intersection pairing onH�.S/. The following

determines all primitive stationary invariants.

2Concretely, choose a basis .ea/23aD0 of H�.S/, let ta;k be formal variables and consider
the classes 
k D

P23
aD0 ta;kea. Then we can extract Gromov–Witten series from the partition

function Zˇ by the rule

h�k1.ea1/ � � � �kn.ean/i
S
ˇ D

�
d

dta1;k1
� � �

d

dtan;kn
Zˇ.
1.t/; 
2.t/; : : :/

�ˇ̌̌̌
tD0

:
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Conjecture 1.3. Let ˇ 2H2.S;Z/ be primitive and assume that deg.
i / > 0 for all i .
Then,

Zˇ .
0; 
1; : : :/ D Coeffˇ2=2

�
1

�.q/
exp

�X
k�0

.
k; ˇ/Ak.q/C
X
k�0

.
k; 1/Bk.q/

C
1

2

X
k;`�0

.
k � 
`/Ck`.q/

��
:

For example, we obtain the full evaluation of the descendents of point classes,� nY
iD1

�ki .p/
�S
ˇ

D Coeff
qˇ
2=2

�
Bk1.q/ � � �Bkn.q/

�.q/

�
:

This generalizes the Bryan–Leung formula by the simple observation

B0 D q
d

dq
G2:

If F 2 H 2.S/ is a class satisfying F 2 D 0 and ˇ � F D 1 we obtain� nY
iD1

�ki .F /

�S
ˇ

D Coeff
qˇ
2=2

�
Ak1.q/ � � �Akn.q/

�.q/

�
:

For ˛; ˛0 2 H 2.S/ with ˛ � ˇ D ˛0 � ˇ D 0 we get

h�k.˛/�`.˛
0/iSˇ D Coeffˇ2=2.˛; ˛

0/Ck`.q/�.q/
�1:

The structure of the conjecture is inspired by the structure of multiplicative genera
of the Hilbert schemes of points of a surface, as given in [5].

1.3. Descendents of 1

For elliptic curves there are explicit rules (called Virasoro constraints) which recur-
sively remove the descendents insertions �k.1/ from the Gromov–Witten bracket [15].
This means that for elliptic curves, the stationary theory determines all Gromov–
Witten invariants, see [18] for explicit formulas. Virasoro constraints have been con-
jectured to hold for any smooth projective variety [16]. However, for K3 surfaces
we use reduced Gromov–Witten theory which is non-standard. One can check that
the usual Virasoro constraints do not hold in this case. A modified formulation of
Virasoro constraints for reduced invariants is not known currently, not even on a con-
jectural level. Hence currently it is not clear what the dependence on �k.1/ factors
should be for K3 surfaces.
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In this paper, we will explain a simple trick that still allows us to gain informa-
tion about descendents of 1 for a large class of invariants. The trick is based on the
holomorphic anomaly equation and yields a recursion. We start with a basic example.

Theorem 1.4. Let ˇ be primitive. For k � 2 we have

h�k.1/i
S
ˇ D h�k�3.p/i

S
ˇ C 2.k � 2/h�k�1.F /i

S
ˇ

where F 2 H 2.S/ is any class such that ˇ � F D 1 and F 2 D 0.

A more complicated example is the following.

Theorem 1.5. Let ˇ be primitive. For k � 2 and ` � 0 we have

h�k.1/�`.p/i D h�k�3.p/�`.p/i C h�k�2.p/�`�1.p/i

C .2k C 2`/h�k�1.F /�`.p/i � h�k�1.˛1/�`C1.˛2/i

where the class F 2 H 2.S;Q/ is as before and ˛1; ˛2 2 H 2.S;Q/ are any classes
orthogonal to ˇ and F satisfying ˛2i D 0 and ˛1 � ˛2 D 1.

Remark 1.6. The formulas in Theorem 1.4 and 1.5 also hold for k 2 ¹0; 1º if we use
the convention �k.
/ D ıkC2;0

R
S

 for all k < 0.

An even more general example can be found in Theorem 3.4 below. Our recursion
applies to a very large class of descendent invariants, but does not seem to give nice
formulas in general. Hence for now we just formulate the existence of the recursion
and its scope and refer to Section 3 for details.

Theorem 1.7. For 
1; : : : ; 
n 2 H�.S/ let r D j¹i W degC.
i / D 1ºj. Assume that
there are

˛
.i/
1 ; ˛

.i/
2 2 H

2.S;C/; i D 1; : : : ; 2r

such that

• each ˛.i/
`

is orthogonal to ˇ and all 
i that lie in H 2.S/,

• ˛
.i/
1 � ˛

.i/
1 D ˛

.i/
2 � ˛

.i/
2 D 0 and ˛.i/1 � ˛

.i/
2 D 1,

• ˛
.i/

`
� ˛
.j /
m D 0 for all `;m and i; j .

Then the recursion described in Section 3 determines the primitive descendent invari-
ant h�k1.
1/ � � � �kn.
n/i

S
g;ˇ

in terms of the stationary invariants.

For example, if 
i 2 ¹1; ˇ; pº, then the assumption of Theorem 1.7 is satisfied
for r � 5.

Together with Conjecture 1.3 this allows to (conjecturally) compute a large class
of primitive invariants. An implementation of this algorithm has been made by the
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author and can be found on his webpage. To give a concrete example, a short computer
computation and assuming Conjecture 1.3 gives the genus 29 invariant

h�8.1/�5.1/�10.1/�4.p/�3.p/iSgD29;ˇ2=2D3

D �
13094491

333598540006510406597452234752000000
:

1.4. Polynomial behaviour

There is a striking polynomial behaviour that can be numerically observed in the
descendent invariants of the K3 surface. Let ˇ 2 H2.S;Z/ be a primitive effective
curve class with ˇ2 ¤ 0, let ı1; : : : ; ıt 2 H 2.S/ with ıi � ˇ D 0, and consider the
descendent invariant� rY

iD1

�ki .1/

sY
iD1

�`i .ˇ/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�S
ˇ

: (5)

Assuming ki ; mi � 1, we can normalize the invariant by a certain combinatorial
factor, defining�� rY

iD1

�ki .1/

sY
iD1

�`i .ˇ/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
��S
ˇ

WD

rY
iD1

.�4/ki�1.2ki � 1/ŠŠ

sY
iD1

.�4/`i .2`i C 1/ŠŠ

�

tY
iD1

.�4/mi�1.2mi � 1/ŠŠ

tY
iD1

.�4/ni .2ni C 1/ŠŠ

�

� rY
iD1

�ki .1/

sY
iD1

�`i .ˇ/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�S
ˇ

:

We then make the following conjecture.

Conjecture 1.8. There exists a polynomial p.x1; : : : ; xrCsCtCu/ of degree ˇ2 C 2�
2u � t C r such that for all

ki � ˇ
2=2C 3 �

�
uC

1

2
t

�
; `i ; mi ; ni � ˇ

2=2C 1 � .uC t=2/; (6)

we have �� rY
iD1

�ki .1/

sY
iD1

�`i .ˇ/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
��S
ˇ

D p.k1; : : : ; kr ; `1; : : : ; `s; m1; : : : ; mt ; n1; : : : ; nu/:
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In the above conjecture, we define the degree of a multivariable polynomial

p.x1; : : : ; xn/ D
X
i1;:::;in

ai1;:::;inx
i1
1 � � � x

in
n

to be the maximum of i1 C � � � C in for which ai1;:::;in ¤ 0.
The bound ˇ2=2C 1� .uC t=2/ is precisely the dimension of the locus of curves

in the linear system jO.ˇ/j incident to u points as well as to generic smooth cycles
representing the classes ıi . This points to a geometric reason for the polynomiality.

Example 1.9. Let ˇ2 D �2, so that ˇ is the class of a smooth rational curve. Then
all reduced invariants have been computed by Maulik [7]. The bracket (5) vanishes if
t > 0 or u > 0 (since the rational curve cannot move). For the remaining terms the
formula is �� rY

iD1

�ki .1/

sY
iD1

�`i .ˇ/

��S
ˇ

D .ˇ � ˇ/s
rY

pD1

.2g C p C s � 3/;

where ki � 2 and `i � 0. Since g D
P
i ki C

P
i `i � r , we find that this matches

Conjecture 1.8.

Remark 1.10. If some of the ki ; `i ; mi ; ni lie outside the polynomial range (i.e., do
not satisfy (6)), then we still expect the invariant to be polynomial in those parameters
which lie in the polynomial range. A precise conjecture is given in Section 4.3. For
example, for k; ` � 1 we expect in the polynomial range the following:

hh�k.p/�`.p/ii
S
ˇ2=2D2 D 8k

2
C 8l2 � 12k � 12l C 20:

Let P.k; `/ denote the polynomial on the right. Then for ` D 0 (which is outside the
polynomial range) one has

hh�k.p/�0.p/ii
S
ˇ2=2D2 D 8k

2
� 12k C 28 ¤ P.k; 0/:

The polynomial behaviour of the descendent invariants is a strong constraint on
them. In basic cases it can be used to determine the Gromov–Witten invariants. We
explain this in the case of point insertions.

Theorem 1.11. The following statements are equivalent:

(i) For every primitive ˇ, the series h�k.p/iSˇ equals a polynomial of degree ˇ2

for k � ˇ2=2.

(ii) For every primitive ˇ, we have the generalized Bryan–Leung formula� nY
iD1

�ki .p/
�S
ˇ

D Coeff
qˇ
2=2

�
Bk1.q/ � � �Bkn.q/

�.q/

�
:
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The proof relies on a characterization of the functionBk.q/ in terms of its (partial)
polynomial behaviour. Similar characterizations exists for Ak and Ck;`, see Section 4.
The partial polynomiality explains the shape of the formulas for A;B;C .

The characterization for the functionAk is the simplest. It is given in the following
theorem.

Theorem 1.12. The series of functions Ak.q/, k � 0 (defined in (2)) is the unique
series of power series satisfying the following conditions:

(a) Ak.q/ is a quasi-modular form of weight 2k satisfying d
dG2

Ak D 2Ak�1 (with
A�1 D 0),

(b) for every n � 0 there exists a polynomial pn.k/ of degree 2n such that for
every k � n we have

ŒAk.q/�qn D
1

.�4/k.2k C 1/ŠŠ
pn.k/;

(c) A0 D 1CO.q/.

1.5. Plan of the paper

In Section 2, we review what is known about the Gromov–Witten theory of a K3
surface. In Section 3, we give the recursion removing descendents of 1. In Section 4,
we give and prove the characterization of the functions Ak , Bk , Ck`. The appendices
give further examples of the polynomiality, and a conjectural Virasoro-type constraint
in a special case.

2. Background

We state some background formulas on the Gromov–Witten invariants of the K3 sur-
face.

2.1. Quasi-modular forms

The algebra of quasi-modular forms is the free polynomial algebra

QMod D CŒG2; G4; G6�:

We have Gk 2 QMod for all k, and QMod is graded by weight of the generators. The
differential operators Dq WD q ddq and d

dG2
act on QMod and satisfy�

d

dG2
;Dq

�
D �2wt (7)
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where the weight operator wt2End.QMod/ acts on the space QModk of quasi-modular
forms of weight k by multiplication by k.

2.2. Gromov–Witten theory of K3 surfaces

Let S be an algebraic K3 surface. Let ˇ 2 H2.S;Z/ be an effective curve class, i.e.,
there exists a non-empty algebraic curve C � S with ŒC �D ˇ. LetM

ı

g;n.S;ˇ/ be the
moduli space of n-marked genus g degree ˇ stable maps .f W C ! S , p1; : : : ; pn/
where the domain C is allowed to be disconnected but with the following assumption:
For every connected component C 0 � C we have that (1) the restriction f jC 0 is non-
constant, or (2) the component C 0 together with the markings incident to C 0 is stable.

The usual virtual fundamental class of the moduli space M
ı

g;n.S; ˇ/ vanishes
because of the existence of a holomorphic 2-form on S . Instead, Gromov–Witten
theory is defined by a reduced virtual fundamental class [6]

ŒM
ı

g;n.S; ˇ/�
red
2 CHgCn.M

ı

g;n.S; ˇ//;

where CHk denotes the Chow groups. The descendent invariants are defined by

h�k1.
1/ � � � �kn.
n/i
S
g;ˇ D

Z
ŒM
ı

g;n.S;ˇ/�
red

Y
i

ev�i .
i / 
ki
i ; (8)

where i 2H 2.M
ı

g;n.S; ˇ// are the cotangent line classes, and evi WM
ı

g;n.S; ˇ/! S

are the evaluation maps at the markings.
The integrals (8) are invariant under deformations of .S; ˇ/ which preserve the

Hodge type of the class ˇ. This shows the following result.

Theorem 2.1. The invariant h�k1.
1/ � � ��kn.
n/i
S
g;ˇ

depends upon .S;ˇ;
1; : : : ; 
n/,
where 
i are homogeneous, only through following data:

(i) the divisibility ˇ and the square ˇ � ˇ,

(ii) the cohomological degrees of 
i ,

(iii) for all 
i 2 H 0.S/ the degree
R
S
p
i , and for all 
i 2 H 4.S/ the degreeR

S

i ,

(iv) for all i; j with degC.
i / D 1 the pairings ˇ � 
i and 
i � 
j .

In other words, if .S 0; ˇ0; 
 01; : : : ; 

0
n/ has the same data as .S; ˇ; 
1; : : : ; 
n/, then

h�k1.
1/ � � � �kn.
n/i
S
g;ˇ D h�k1.


0
1/ � � � �kn.


0
n/i

S 0

g;ˇ 0 :

Proof. This was proven first by Buelles [4], see also [10, Sec. 2.2]. We sketch the ar-
gument: By the moduli theory of K3 surfaces there exists a deformation from .S 0; ˇ0/

to .S; ˇ/ that keeps ˇ0 of Hodge type. Hence by deformation invariance, we can
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assume that S 0 D S and ˇ0 D ˇ. Moreover, any isometrym WH�.S;Z/!H�.S;Z/

which preserves ˇ and the Kähler cone, can be realized by a deformation of the K3
surface which preserves the Hodge type of ˇ. Thus again by deformation invariance
we have

h�k1.m.
1// � � � �kn.m.
n//i
S
g;ˇ D h�k1.
1/ � � � �kn.
n/i

S
g;ˇ :

The group of such isometries m is Zariski dense in the group O.H 2.S;C//ˇ , by
which we denote the stabilizer of ˇ in the complex orthogonal group O.H 2.S;C//.
It follows

ev�

� nY
iD1

 
ki
i \ ŒM

ı

g;n.S; ˇ/�
red
�
2 H�.Sn/O.H

2.S;C//ˇ : (9)

The invariants of the orthogonal group are well understand. Concretely, one has that
the ring H�.Sn/O.H

2.S;C//ˇ is generated by the pullbacks of the classes ˇ and p
from factors, and the big diagonals�ij . It follows that if .
1; : : : ; 
n/ and .
 01; : : : ; 


0
n/

have the same pairing data, their intersection with (9) is the same. This finishes the
proof.

For convenience we state the divisor, string and dilaton equation.

Lemma 2.2. For any effective ˇ 2 H2.S;Z/ and class D 2 H 2.S/ we have

h�k1.
1/ � � � �kn.
n/�0.D/i
S
g;ˇ

D .ˇ �D/h�k1.
1/ � � � �kn.
n/i
S
g;ˇ

C

nX
iD1

h�k1.
1/ � � � �ki�1.
iD/ � � � �kn.
n/i
S
g;ˇ

C

X
1�i<j�n;
kiDkjD0

�Z
S


i
jD

�˝
�k1.
1/ � � �

2�ki .
i / � � �2�kj .
j / � � � �kn.
n/
˛S
g;ˇ

and

h�k1.
1/ � � � �kn.
n/�0.1/i
S
g;ˇ D

nX
iD1

h�k1.
1/ � � � �ki�1.
i / � � � �kn.
n/i
S
g;ˇ

C

X
1�i<j�n;
kiDkjD0

�Z
S


i
j

�˝
�k1.
1/ � � �

2�ki .
i / � � �2�kj .
j / � � � �kn.
n/
˛S
g;ˇ

and

h�k1.
1/ � � � �kn.
n/�1.1/i
S
g;ˇ D .2g � 1C n/h�k1.
1/ � � � �kn.
n/i

S
g;ˇ :
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Proof. This follows by the usual arguments. The non-standard formulation arises
because we use the moduli space of stable maps with disconnected domain, and the
marking that we consider can lie on a component which becomes unstable if we would
forget the marking. This components yield the extra contributions. Then we use the
evaluation of the (usual) virtual class of the moduli space of connected stable maps
M g;n.S; ˇ/ in degree zero,

ŒM g;n.S; 0/�
vir
D

8̂̂<̂
:̂
ŒM 0;n � S� if g D 0;

pr�2c2.S/ \ ŒM 1;n � S� if g D 1;

0 if g � 2:

(10)

Remark 2.3 (On the relationship between connected and disconnected invariants;
this remark may be skipped). We can also define connected Gromov–Witten invari-
ants

h�k1.
1/ � � � �kn.
n/i
S;connected
g;ˇ

WD

Z
ŒMg;n.S;ˇ/�red

Y
i

ev�i .
i / 
ki
i ;

by integrating over the moduli space of stable maps f W C ! S with connected
domain curve C . The relationship to the disconnected invariants is as follows.

Lemma 2.4. If ki � 2 � degC.
i / for all i (that is, the divisor, string and dilaton
equation cannot be applied), then the connected and disconnected invariants co-
incide,

h�k1.
1/ � � � �kn.
n/i
S
g;ˇ D h�k1.
1/ � � � �kn.
n/i

S;connected
g;ˇ

:

Proof. The reduced virtual class of M
ı

g;n.S; ˇ/ vanishes on all components which
parametrize maps f W C ! S where f is non-constant on more than one connected
component, because then the standard obstruction theory has two trivial summands,
but only one is removed by the reduction procedure. Hence the only contributing
components to the left side are

M g0;n0.S; ˇ/ �
Y
i

M gi ;ni .S; 0/

for some g0; n0; gi ; ni . The reduced virtual class of this component is

ŒM g0;n0.S; ˇ/�
red
�

Ỳ
iD1

ŒM gi ;ni .S; 0/�
vir:

By (10) one sees that this component contributes zero if ` � 1.
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2.3. Elliptic K3 surfaces and generating series

As discussed in the last section, in order to evaluate primitive invariants we can spe-
cialize to any K3 surface that we like, as long as it has primitive curve classes of
arbitrary square. The most useful K3 surface to choose is an elliptically fibered one.

Hence, let S ! P1 be an elliptic K3 surface with section B and fiber class F .
Let alsoW D B C F . This choice is made so thatW;F span the standard hyperbolic
lattice

W 2
D 0; W � F D 1; F 2 D 0:

We define the multilinear bracket

h�k1.
1/ � � � �kn.
n/i
GW
WD

1X
hD0

qh�1h�k1.
1/ � � � �kn.
n/i
S
g;BChF

where on the right the genus is specified by the dimension constraint.
If 
 2 H�.S/ is an eigenvectors of the operator,

ŒB � .�/; ����� W H
�.S/! H�.S/

then we let wt.
/ be its eigenvalue. Concretely,

wt.
/ D

8̂̂<̂
:̂
1 if 
 2 ¹p;W º;

�1 if 
 2 ¹1; F º;

0 if 
 ? ¹p; 1;W; F º:

We assume below that all 
i are homogeneous with respect to this grading.
Recall the following two basic results.

Theorem 2.5 (Quasi-modularity, [8] together with [3, Sec. 4.6]). We have that

h�k1.
1/ � � � �kn.
n/i
GW
2

1

�.q/
QMod2gCnCPi wt.
i /:

Remark 2.6. Alternatively, by the dimension constraint the weight is given by

2g C nC
X
i

wt.
i / D
X
i

.2ki C 2 degC.
i /C wt.
i / � 1/:

Theorem 2.7 (Holomorphic anomaly equation [12]). We have that

d

dG2
h�k1.
1/ � � � �kn.
n/i

GW

D 2h�k1.
1/ � � � �kn.
n/�0.1/�0.F /i
GW

� 2

nX
iD1

h�k1.
1/ � � � �kiC1.�
���
i / � � � �kn.
n/i

GW
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C 20

nX
iD1

.
i ; F /h�k1.
1/ � � � �ki .F / � � � �kn.
n/i
GW

� 2
X
i<j

h�k1.
1/ � � � �ki .�1.
i ; 
j // � � � �kj .�2.
i ; 
j // � � � �kn.
n/i
GW

where � W H�.S2/! H�.S2/ is defined by

�.
 � 
 0/ D 0 whenever 
 or 
 0 lie in H 0.S/˚QF ˚H 4.S/;

and by

�.W �W / D �V ; �.W � ˛/ D �˛ � F;

�.˛ �W / D �F � ˛; �.˛; ˛0/ D .˛; ˛0/F � F

for all ˛; ˛0 2 V WD ¹W;F º? � H 2.S/.

We also recall a basic splitting statement. Define the normalized correlators

h�k1.
1/ � � � �kn.
n/i
GW;0
D
h�k1.
1/ � � � �kn.
n/i

GW

h1iGW

D �.q/h�k1.
1/ � � � �kn.
n/i
GW:

The standard degeneration argument given in [8] yields the next lemma.

Lemma 2.8. Assume that 
i 2 ¹F; pº for all i , and j̨ 2 ¹B;F º
? � H 2.S/. Then� nY

iD1

�ki .
i /

n0Y
jD1

�
j̀
. j̨ /

�GW;0
D

nY
iD1

h�ki .
i /i
GW;0
�

� n0Y
jD1

�
j̀
. j̨ /

�GW;0
:

2.4. Two more remarks

We end this section with two more remarks, which will not be used later on.

Remark 2.9. We can restate Conjecture 1.3 in the language of elliptic K3 surfaces as
follows. Define

Z.
0; 
1; : : :/ WD

�
exp

�X
k�0

�k.
k/

��GW
:

Then Conjecture 1.3 is equivalent the statement: for all 
i with degC.
i / > 0 we have

Z.
0; 
1; : : :/ D
1

�.q/
exp

�X
k�0

.
k; W CDqF /Ak.q/C
X
k�0

.
k; 1/Bk.q/

C
1

2

X
k;`�0

.
k � 
`/Ck`.q/

�
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where theDq’s in the formula above stand for commuting the operators to the left and
applying them to the full series.

Remark 2.10. By the degeneration argument of [8] we obtain relatively nice expres-
sions for the two most basic invariants

h�k.F /i
GW; h�k.p/iGW:

This was already used in [8, App. B]. Explicit formulas can be found in [9, App.]. Let
us recall the expression in the first case:

Consider for g � 0 (with obvious notation) the following generating series of
Gromov–Witten invariants of an elliptic curve E:

Lg;k D

8<:
D
E_.1/

ev�
1
.p/

1� 1
ev�2.1/ 

k
2

EE
g

g � 1;

.�1/k g D 0;

where we used the inverse Hodge class

E_.1/ D 1 � �1 C �2 C � � � C .�1/
g�g :

Then one has

h�k.F /i
GW
D

1

�.q/

kX
gD0

Lg;k
.�G2/

k�g

.k � g/Š
:

The right hand side can be effectively computed using the methods of [14]. However,
it is unclear to the author how to deduce the corresponding case of Conjecture 1.3
from this.

3. Descendents of 1

We present here the new recursion that allows one to compute a large class of descen-
dent invariants effectively in terms of the stationary theory.

3.1. Removing insertions with W

Let S ! P1 be an elliptic K3 surface as in Section 2.3 and set

V D ¹x 2 H 2.S;C/ j x �W D x � F D 0º:

For ıi 2 V arbitrary classes and d � 1 consider a general descendent invariant� rY
iD1

�ki .1/

sY
iD1

�`i .F /

s0Y
iD1

�`0
i
.W /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�S
ˇDWCdF

:
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Our first observation is that whenever there are not too many ıi , one can get rid of
the factors �`.W /.

Proposition 3.1. Assume that there are ˛1; ˛2 2 V such that

˛21 D ˛
2
2 D 0; ˛1 � ˛2 D 1; 8i W ˛1 � ıi D ˛2 � ıi D 0:

Then we have� rY
iD1

�ki .1/

sY
iD1

�`i .F /

s0Y
iD1

�`0
i
.W /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�S
WCdF

D

� rY
iD1

�ki .1/

sY
iD1

�`i .F C ˛2/

s0Y
iD1

�`0
i
.dF C ˛1/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�S
WCdF

:

Proof. The two tuples of classes

.W C dF;W; F; ıi /; .W C dF; dF C ˛1; F C ˛; ıi /

have the same intersection pairings. Hence the claim follows from Proposition 2.1.
(What is curious is that there is no isometry that can send W C dF; W; F to W C
dF; dF C ˛1; F C ˛2, since the second set of vectors is linearly independent, while
the first one is not. Nevertheless, we still have an equality of Gromov–Witten invari-
ants.)

3.2. The main recursion step

Since we have Proposition 3.1, let us consider an invariant where there are no W -
factors,

I D

� rY
iD1

�ki .1/

sY
iD1

�`i .F /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW
;

where ıi 2 V . By the string and dilaton equation we can assume that ki � 2 for all i .
Assume that there are classes ˛1; ˛2 2 H 2.S;C/ such that

˛21 D ˛
2
2 D 0; ˛1 � ˛2 D 1; 8i W ˛1 � ıi D ˛2 � ıi D 0:

We give a formula for I that involves only .r � 1/ many factors of �k.1/. Consider
the modified invariant

IW D

�
�k1.W /

rY
iD2

�ki .1/

sY
iD1

�`i .F /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW
:
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Lemma 3.2. We have
d

dG2
IW D �2I C .: : :/ (11)

where .: : :/ stands for terms involving invariants with � .r � 1/ factors of �k.1/.

Proof. This follows immediately from applying the holomorphic anomaly equation
(Theorem 2.7) to IW . Here the first term on the right side of the holomorphic anomaly
equation can be reduced by the string equation (Lemma 2.2) to involve only r � 1
factors of �k.1/. The second term for i D 1 yields the term �2I since ����.W /D 1.
The other terms do not create any new �k.1/ factors.

On the other hand, we can also first apply Proposition 3.1 to IW before applying
the holomorphic anomaly equation. First, by Proposition 3.1 we have

IW D Dq

��
�k1.F /

rY
iD2

�ki .1/

sY
iD1

�`i .F /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW�

C

�
�k1.˛1/

rY
iD2

�ki .1/

sY
iD1

�`i .F C ˛2/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW

(where we do not have any ˛2 in the first line by applying Theorem 2.1). Next, we
apply d

dG2
. Using the commutation relation (7) we obtain three terms

d

dG2
IW D �2wt

��
�k1.F /

rY
iD2

�ki .1/

sY
iD1

�`i .F /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW�

CDq
d

dG2

�
�k1.F /

rY
iD2

�ki .1/

sY
iD1

�`i .F /

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW

C
d

dG2

�
�k1.˛1/

rY
iD2

�ki .1/

sY
iD1

�`i .F C ˛2/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/
�GW
:

(12)

The d
dG2

-derivative can be evaluated by the holomorphic anomaly equation plus the
string equation. The outcome is that all terms only involve at most .r � 1/ descendents
of 1. (Since the only way new descendents of 1 appear is via the ����.
i / term, hence
from cohomology insertions 
i D W .)

We now simply equate (12) with (11) and solve for I . This gives the following
proposition.

Proposition 3.3. Assume that there are classes ˛1; ˛2 2 H 2.S;C/ such that

˛21 D ˛
2
2 D 0; ˛1 � ˛2 D 1; 8i W ˛1 � ıi D ˛2 � ıi D 0:



G. Oberdieck 374

Let .: : :/ stand for the same term as in Lemma 3.2. Then

�2I D .Right hand side of (12)/C .: : :/:

In particular, I can be expressed as a sum of invariants involving � .r � 1/ fac-
tors �k.1/.

We get our general recursion by first applying Proposition 3.1, then applying
Proposition 3.3, then repeating the process. In each step, we have one less factor
of �k.1/. After finitely many steps we are left with evaluating a stationary invariant.
This proves Theorem 1.7 (to go from the general K3 surface to the elliptic one, one
uses Theorem 2.1).

3.3. An example of the recursion

The above recursion can be made explicit in a very basic, but still somewhat general
case. We omit the somewhat tedious computation and just state the result.

Let S ! P1 be the elliptic K3 and consider an orthogonal decomposition

H 2.S;Z/ D U1 ˚ U2 ˚ L

where U1 D Span.W; F / and U2 D Span.˛1; ˛2/ with

˛21 D ˛
2
2 D 0; ˛1 � ˛2 D 1:

Theorem 3.4. For any 
1; : : : ; 
n 2 ¹F; p; Lº and k � 2 we have

h�k.1/�k1.
1/ � � � �kn.
n/i
GW

D

�
2k � 4 � nC j¹i W 
i D pºj C 2

nX
iD1

.ki C degC.
i //

�
� h�k�1.F /�k1.
1/ � � � �kn.
n/i

GW

C

�
�k�2.p/�0.1/

nY
iD1

�ki .
i /

�GW
�

X
i W
iDp

�
�k�1.˛1/�kiC1.˛2/

Y
j¤i

�kj .
j /

�GW
C

X
i W
i2L

�
�ki .F /�k�1.
i /

Y
j¤i

�kj .
j /

�GW
�

X
i¤j W
i ;
j2L

.
i ; 
j /

�
�k�1.˛1/�ki .˛2/�kj .F /

Y
`¤i;j

�k`.
`/

�GW
:
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4. Polynomial behaviour

The main goal of this section is to characterize the functions Ak; Bk; Ck` defined
in (2), (3), (4) in terms of some basic qualitative properties. This will provide the
connection between Conjecture 1.3 (which evaluates explicitly the stationary theory)
and Conjecture 1.8 (which describes the polynomial structure).

4.1. Characterization of the A series

Recall the definition of the A-series,

Ak.q/ D
.�1/k

.2k C 1/ŠŠ
ReszD0

�
.}.z/ � 4G2/

kC 12
�
: (13)

We want to prove here the following characterization.

Theorem 4.1. The series of functions Ak.q/, k � 0 (defined in (2)) is the unique
series of power series satisfying the following conditions:

(a) Ak.q/ is a quasi-modular form of weight 2k satisfying d
dG2

Ak D 2Ak�1 (with
A�1 D 0),

(b) for every n � 0 there exists a polynomial pn.k/ of degree 2n such that for
every k � n we have

ŒAk.q/�qn D
1

.�4/k.2k C 1/ŠŠ
pn.k/;

(c) A0 D 1CO.q/.

We will first prove the uniqueness part of Theorem 4.1.

Lemma 4.2. There is at most one series Ak.q/ for k � 0 satisfying conditions (a)–(c)
of Theorem 4.1.

To prove the lemma we will use the following well-known fact.

Lemma 4.3. Let f 2 Modk . If Œf .q/�q` D 0 for all ` � bk=12c, then f .q/ D 0.

Proof of Lemma 4.2. We argue by induction on k that A0; : : : ; Ak�1 uniquely deter-
mineAk . By (a) and (c) we haveA0D 1. Hence assume thatAi is known for i � k � 1.
By condition (a) and Lemma 4.3 it is enough to know the first bk=12c Fourier-
coefficients of Ak . Hence let n � k=12 and let us find ŒAk.q/�qn . By (b) and since
k � n we have

ŒAk.q/�qn D
1

.�4/k.2k C 1/ŠŠ
pn.k/:
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The polynomial pn.k/ is of degree 2n � k=6. By induction we know the value of pn
for all k0 where n � k0 < k, in particular, for all k=12 � k0 < k. Hence pn is uniquely
determined already by these values, and hence so is pn.k/.

Next we prove that Ak.q/ defined by (13) satisfies the conditions (a)–(c). For (a)
and (c) this is easy by considering the z-expansion of }.z/, and left to the reader. We
need to prove (b). We do this in two parts. The first part is also not difficult:

Let pD ez and consider the Fourier expansion of the Weierstrass elliptic function3

}.p; q/ D
1

12
C

p

.1 � p/2
C

X
d�1

X
kjd

k.pk � 2C p�k/qd :

We obtain that

}.p; q/ � 4G2.q/ D
1

4

.p C 1/2

.p � 1/2
C .p � 6C p�1/q C � � � :

Consider now the square root, taken formally as a power series in q with coefficients
Laurent series (this is possible since the q0-coefficient is a square),p

}.p; q/ � 4G2.q/

D
1

2

.p C 1/

.p � 1/
C
.p � 1/.p � 6C p�1/

.p C 1/
q C a2.p/q

2
C a3.p/q

3
C � � � (14)

where an.p/ D p�nbn.p/=.p C 1/2n�1 for some polynomial bn.p/ 2 QŒp�.

Proposition 4.4. There exists polynomials pn.k/ of degree 2n such that for all khp
}.p; q/ � 4G2.q/

2kC1
i
p0
D

1

22kC1

X
n�0

pn.k/q
n:

Proof. The series

F.p; q/ D 4.}.p;w/ � 4G2.q// and H.p; q/ D 2
p
}.p; q/ � 4G2.q/

are both of the form

.1C a01p C a02p
2
C � � � /C .a1;�1p

�1
C a10 C � � � /q

C .a2;�2p
�2
C a2;�1p

�1
C a20 C � � � /q

2
C � � �

for some aij 2Q. Hence F.p;qp/ andH.p;qp/ lie in CŒŒp;q�� and the result follows
from Lemma 4.5 (b) below.

3To distinguish between the Fourier expansion }.p;q/ and the z-series }.z/we will always
include the q-dependence of the former in the notation.
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Lemma 4.5. (a) Let f 2 1C RŒŒq�� be a power series with constant term one
and coefficients in a ring R. Then the qn-coefficient of f k is polynomial of
degree � n in k with coefficients in R.

(b) Let f D
P
i;j�0 aijp

iqj and h D
P
i;j�0 hijp

iqj be power series in p; q
with a00 D 1. Then the coefficient Œf kh�pmqn is a polynomial in k of degree
� mC n. If h00 D 0, then it is of degree � mC n � 1.

Proof. For (a) by the binomial theorem we can write

f k D
X
i�0

�
k

i

�
qi .1C a2q

1
C a3q

2
C � � � /i :

Taking the qn-coefficient the claim follows since only terms with i � n contribute.
Part (b) in case h D 1 reduces to part (a) by factoring out f0 D 1C

P
i�1 ai0p

i and
applying (a) twice. The case of general h reduces to the case h D 1 by multiplying
out.

The second, upcoming step is to compare the Œ��p0 and Œ��z�1 coefficient. To-
gether with Proposition 4.4 it immediately implies property (b) of Theorem 4.1.

Proposition 4.6. For any k � 0 we have

ReszD0.} � 4G2/kC
1
2 D 2

hp
}.p; q/ � 4G2.q/

2kC1
i
p0
CO.qkC1/:

Proof. We let z D 2�ix and define

f .x/ D }.2�ix/ � 4G2; g.x/ WD
p
}.2�ix/ � 4G2:

(In our convention }.z/ is double-periodic under z 7! zCmC n � 2�i� form;n 2Z.
The scaled function }.2�ix/ is then double-periodic under x 7! x CmC n� and is
the usual convention for the Weierstraß elliptic function found in the literature.) The
function g.x/ is a priori multivalued. However, in a neighbourhood of x D 0 we
can choose the unique branch such that the Laurent expansion of g.x/ starts with
1=.2�ix/. Recall that the Weierstrass function }.2�ix/ and hence also f .x/ has
two zeros x1; x2 in each fundamental domain, counted with multiplicities. (Since
f .�x/D f .x/ is even, we have x2D�x1 up to translation by an element of the lattice
Z� C Z.) When extending g.x/ to the whole plane Cx we hence run into the sign
ambiguity when extending beyond the zeros. The possible solution is to extend the
function away from an appropriate branch cut of these two zeros (and its translates).

In the limit jqj � 1 the situation is as follows: Observe that

f .x/jqD0 D
1

4

�
e2�ix C 1

e2�ix � 1

�2
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1C �

x1




Re.x/

R�

x2
1

Figure 1. We integrate over the orange path 
 . We assume jqj � 1, so that the roots x1; x2 of
f .x/ are close to x D 1=2. The function g.x/ D

p
f .x/ is defined away from the branch cut

(the red line).

has a double zero at x D 1=2 and its Z-translates, so for small q the two zeros of
f .x/ are close to x D 1=2 (modulo Z-translates) and so we can choose the branch
cut between these two adjacent zeros. We now integrate over the boundary 
 of a
fundamental domain with left corner at a0, for some jqj � 1, as in Figure 1.

Consider the winding number4 w.a/ 2 Z of f .x/ along the straight path from
a 2 R to a C � . We claim that w.a/ D �1 for 0 < a � 1, and w.a/ D 1 for some
a < 1 sufficiently close to 1. (To see this, note that w.a/ is locally constant in a and
only jumps when the vertical line crosses either a zero or a pole of f , where it jumps
by 1 when we cross a zero from left to right, and by �1 when we cross a pole. Since
f is 1-periodic, w.a/ is 1-periodic in a, and since f is even, one has that w.�a/ D
�w.a/. Hence for " sufficiently small we obtain w.1 � "/ D w.�"/ D w."/C 2 and
w.1 � "/ D �w." � 1/ D �w."/, and hence w."/ C 2 D �w."/, so w."/ D �1.)
Further, let w0.b/ be the winding number of f when moving from b� to b� C 1 along
a straight horizontal line. For q D 0 one easily sees that w0.b/ D 0 for b� 0. Hence,
for jqj � 1, we have that w0.b/ D 0 for b close to 1=2.

4The winding number along a closed path of f along 
 is defined by
R
f ı


dz
z
DR



f 0.x/
f.x/

dx. It is the number of times that f .
.t// goes in counterclockwise direction around
the origin.
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We conclude that for jqj � 1, the function g.x/ (as defined away from its branch
cut) satisfies g.x C 1/ D g.x/ but g.x C �/ D �g.x/. Hence we find the evaluationZ




g.x/2kC1dx D 2

Z a0C1

a0

g.x/2kC1dx D 2
hp
}.p; q/ � 4G2.q/

2kC1
i
p0
: (15)

On the other hand, we may apply the Cauchy integral formula to the integralR


g.x/2kC1dx. The contribution from the pole at x D 0 is the residue

1

2�i
ResxD0g.x/2kC1 D ReszD0.} � 4G2/kC

1
2 :

The contribution from the branch cut is given by

I D ˙2

Z x2

x1

g.x/2kC1dx

where we choose one of the two branches of g.x/ in a neighbourhood of the line
between the zeros x1; x2. We will show that for jqj � 1 we have I D O.qkC1/.

Consider the asymptotic expansion of f .x/ near x D 1=2 in q,

f .x/ D
1

4

.p C 1/2

.p � 1/2
C .p � 6C p�1/q C � � �

where p D e2�ix . We find the asymptotic expansion of the zeros x1; x2 to be

xi D
1

2
˙
4i
p
2

�
q1=2 C � � �

where the higher order terms are multiples of q3=2; q5=2 etc. (Note that since f .�x/D
f .x/ and f .x C 1/D f .x/, we have f .1=2� x/D f .1=2C x/.) The function g.x/
has the asymptotic expansion (14). Hence if we set x D 1=2C 2�iT so that pD�eT

we obtain the expansion

g

�
1

2
C T

�
D T h0.T /C

h1.T /

T
q C

h2.T /

T 3
q2 C � � �

where h.T / are power series in T . Hence

g

�
1

2
C T

�2kC1
D T 2kC1zh0.T /C T

2k�1zh1.T /q C T
2k�3zh2.T /q

2
C � � �

for some power series zhi .T /. We obtain that

˙ 2

Z x2

x1

g.x/2kC1dx

D

Z 4i
p
2

�

p
q

�
4i
p
2

�

p
q

.T 2kC1zh0.T /C T
2k�1zh1.T /q C T

2k�3zh2.T /q
2
C � � � /dT C � � �

D O.qkC1/;
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where � � � stands for terms of higher order in q. Combining (15) with the Cauchy
integral formula givesZ




g.x/2kC1dx D ReszD0.} � 4G2/kC
1
2 ˙ 2

Z x2

x1

g.x/2kC1dx

and hence completes the claim.

4.2. Characterization of the B and C series

The characterization of Bk.q/ is similar.

Proposition 4.7. The series Bk.q/, k � 0 defined by (3) is the unique series of power
series which satisfies the following conditions:

(a) Bk.q/ is a quasi-modular form of weight 2k C 4 satisfying d
dG2

Bk D

2Bk�1 � 2AkC1.

(b) For every n � 0 there exists a polynomial qn.k/ of degree 2n � 2 such that
for every k � n � 1 we have

ŒBk.q/�qn D
kŠ

.2k C 1/Š.�2/k
qn.k/:

(c) B0 D q CO.q
2/.

Proof. The proof follows along the lines of the proof of Theorem 4.1. The uniqueness
is completely parallel. To check that Bk satisfies (a) and (c) is again straightforward.
To show (b) one uses the same residue argument to show that

ReszD0..} � 4G2/kC
3
2 .} C 2G2//

D 2
hp
}.p; q/ � 4G2.q/

2kC3
.}.p; q/C 2G2.q//

i
p0
CO.qkC2/

whereO.qkC2/ appears instead ofO.qkC1/ here because we integrate } � 4G2 with
exponent k C 3=2 instead of k C 1=2. It remains to show the desired polynomiality
of the first term on the right. Since }.p; q/ C 2G2.q/ has constant term zero, the
application of Lemma 4.5 (b) shows that there exists polynomials pn.k/ of degree
2n � 1 such that for all k�

.}.p; q/ � 4G2.q//
kC 32 .}.p; q/C 2G2.q//

�
p0
D

1

22k

X
n�0

pn.k/q
n:

Moreover, since we have Œ}.p; q/C 2G2�p0 D 0, this expression vanishes whenever
k D �3=2, so the polynomial pn.k/ is divisible by 2k C 3. The claim follows.
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Proof of Theorem 1.11. By Lemma 2.8 we know that� nY
iD1

�ki .p/
�GW
D

zBk1.q/ � � �
zBkn.q/

�.q/
;

for some power series zBk.q/. If we know (i) then it follows that zBk.q/ satisfies
property (b) of Proposition 4.7. Property (a) follows immediately from Theorem 2.7.
Property (c) is clear. Hence one gets zBk D Bk . The converse direction is also by
Proposition 4.7.

We also record the properties of Ck`. Since by definition we have Ck0 D C0k D
Bk�1 we will assume k; ` � 1.

Proposition 4.8. The series Ck`.q/, k; ` � 1 defined by (4) satisfies the following
conditions:

(a) Ck` is a quasi-modular form of weight 2k C 2`C 2 satisfying

d

dG2
Ck` D 2Ck�1;` C 2Ck;`�1 � 2AkA`:

(b) For every n � 0 there exists a polynomial Pn.k; `/ of degree 2n� 2 such that
for all k; ` � n � 1

ŒCk;`�qn D
1

.�4/k.2k � 1/ŠŠ.�4/`.2` � 1/ŠŠ
Pn.k; `/:

(c) For every ` � 1 and every n � 0 there exists a polynomial pn.k/ of degree
2n � 2 such that for all k � n � 1

ŒCk;`�qn D
1

.�4/k.2k � 1/ŠŠ
pn.k/:

(d) Ck` D O.q/.

(e) Ck` D C`k for all k; `.

The Ck` are uniquely determined by properties (a), (c), (e).

Proof. The uniqueness is straightforward (determine first Ck1 for all k, then Ck2 for
all k, and so on). Conversely, (a), (e) are clear and (d) follows from (b) using n D 0.
To show (b) one argues as in the proof of Proposition 4.7 (in particular, using that for
fixed z2, the p0-coefficient of }.z1 � z2/C 2G2 vanishes). For part (c) one argues
similarly using Lemma 4.9 below, which is an analogue of Lemma 4.5 and whose
proof is left to the reader.

Lemma 4.9. (a) Let f; g 2 1C qRŒŒq�� be power series with constant term one
and coefficients in a ring R. Then Œf kgl �qn is a polynomial in k; l of de-
gree � n.
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(b) Let f .p1; q/ 2 CŒŒp1; q�� and g.p2; q/ 2 CŒŒp2; q�� be power series, both
with constant term one, and let h.p1; p2; q/ 2 C ŒŒp1; p2; q�� be any power
series. Then the coefficient Œf kglh�

p
m1
1
p
m2
2
qn

is a polynomial in k;` of degree
� m1 Cm2 C n, and of degree � m1 Cm2 C n � 1 if h has a zero constant
term.

Remark 4.10. Using the above characterizations of the functions A; B; C , one can
show that Conjecture 1.3 implies Conjecture 1.8 in the stationary case.

4.3. An upgrade of Conjecture 1.8

We record here the following conjectural strengthening of the polynomiality property.

Conjecture 4.11 (Upgrade of Conjecture 1.8). For any subsets Ix � ¹1; : : : ; xº for
x 2 .r; s; t; u/, and for ki ; `i ; mi ; ni fixed whenever i does not lie in Ir ; Is; It ; Iu
respectively (and satisfying ki ; mi � 1), there exists a polynomial p of degree
ˇ2 C 2� 2u� t C r such that for all ki ; `i ;mi ; ni satisfying (6) for i in Ir ; Is; It ; Iu
we have **

rY
iD1

�ki .1/

sY
iD1

�`i .ˇ/

tY
iD1

�mi .ıi /

uY
iD1

�ni .p/

++S
ˇ

D p..ki /i2Ir ; .`i /i2Is ; .mi /i2It ; .ni /i2Iu/:

Example 4.12. For k; ` � ˇ2=2C 3 we have

hh�k.1/�`.1/ii
S
ˇ2=2D�1 D 2.k C ` � 3/.2k C 2` � 5/;

hh�k.1/�`.1/ii
S
ˇ2=2D0 D 16.k C ` � 3/.4k

3
C 4k2`C 4k`2 C 4`3

� 16k2 � 12k` � 16`2 C 29k C 29` � 29/;

hh�k.1/�`.1/ii
S
ˇ2=2D1 D 8.k C ` � 3/.32k

5
C 32k4`C 128k3`2 C 128k2`3

C 32k`4 C 32`5 � 336k4 � 448k3` � 704k2`2 � 448k`3

� 336`4 C 1392k3 C 1328k2`C 1328k`2 C 1392`3

� 2236k2 � 1624k` � 2236`2 C 1780k C 1780` � 1049/:

On the other hand, for ` < 3 we have polynomiality only in k for k � ˇ2=2C 3. For
example,

hh�k.1/�1.1/ii
S
ˇ2=2D0 D 32.k

2
� 2k C 3/.2k � 3/.k � 1/

D P.k; 1/C 32k3 � 112k2 C 192k � 96;

hh�k.1/�2.1/ii
S
ˇ2=2D0 D 16.2k

3
� 5k2 C 12k � 6/.2k � 1/

D P.k; 2/C 48;
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hh�k.1/�3.1/ii
S
ˇ2=2D0 D 16.4k

3
� 4k2 C 29k C 22/k D P.k; 3/

where

P.k; `/ D 16.k C ` � 3/.4k3 C 4k2`C 4k`2 C 4`3 � 16k2 � 12k`

� 16`2 C 29k C 29` � 29/

is the polynomial answer for k; ` � 3. By definition we have excluded here the case
` D 0.

A. Further examples

We list some more computations for Gromov–Witten invariants in the polynomial
range. This assumes Conjecture 1.3 (in order that we can apply our algorithm of
Theorem 1.7), and Conjecture 1.8 to get a bound on the degree of the polynomial.
However, the computations are also always a check on the polynomiality since we
computed more terms than was required to fix the degree of the polynomial.

Example A.1. For k; ` � ˇ2=2 � 1 we have

hh�k.p/�`.p/ii
S
ˇ2=2D1 D 1;

hh�k.p/�`.p/ii
S
ˇ2=2D2 D 8k

2
C 8`2 � 12k � 12`C 20;

hh�k.p/�`.p/ii
S
ˇ2=2D3 D

64

3
k4 C 64k2`2 C

64

3
`4 �

512

3
k3 � 96k2` � 96k`2

�
512

3
`3 C

1712

3
k2 C 144k`C

1712

3
`2 �

1024

3
k

�
1024

3
` � 64:

Example A.2. Let ˛1; ˛2 ? ˇ with ˛21 D ˛22 D 0 and ˛1 � ˛2 D 1. For k; ` �
max.ˇ2=2; 1/ we have

hh�k.˛1/�`.˛2/ii
S
ˇ2=2D0 D �1=4;

hh�k.˛1/�`.˛2/ii
S
ˇ2=2D1 D �2k

2
� 2k` � 2`2 C 7k C 7` �

29

2
;

hh�k.˛1/�`.˛2/ii
S
ˇ2=2D2 D �

16

3
k4 �

32

3
k3` �

64

3
k2`2 �

32

3
k`3 �

16

3
`4 C 64k3

C
368

3
k2`C

368

3
k`2 C 64`3 �

1016

3
k2 � 432k`

�
1016

3
`2 C 678k C 678` � 606:
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Example A.3. For k; ` � ˇ2=2 we have

hh�k.p/�`.F /ii
S
ˇ2=2D0 D 1;

hh�k.p/�`.F /ii
S
ˇ2=2D1 D 8k

2
C 16`2 � 12k � 24`C 6;

hh�k.p/�`.F /ii
S
ˇ2=2D2 D

64

3
k4 C 128k2`2 C 64`4 �

512

3
k3 � 192k2`

� 192k`2 � 512`3 C
1376

3
k2 C 288k`C 1344`2

�
520

3
k � 472` � 512:

Example A.4. For k1; k2; k3 � ˇ2=2C 3 we have

hh�k1.1/�k2.1/�k3.1/ii
S
ˇ2=2D�1 D 4.k1 C k2 C k3 � 4/.2k1 C 2k2 C 2k3 � 7/

� .k1 C k2 C k3 � 3/;

hh�k1.1/�k2.1/�k3.1/ii
S
ˇ2=2D0 D 32.k1 C k2 C k3 � 4/.2k1 C 2k2 C 2k3 � 7/

� .2k31 C 2k
2
1k2 C 2k1k

2
2 C 2k

3
2 C 2k

2
1k3

C 2k22k3 C 2k1k
2
3 C 2k2k

2
3 C 2k

3
3 � 9k

2
1

� 6k1k2 � 9k
2
2 � 6k1k3 � 6k2k3 � 9k

2
3

C 17k1 C 17k2 C 17k3 � 21/;

hh�k1.1/�k2.1/�k3.1/ii
S
ˇ2=2D1 D 16.k1 C k2 C k3 � 4/.2k1 C 2k2 C 2k3 � 7/

� .16k51 C 16k
4
1k2 C 64k

3
1k
2
2 C 64k

2
1k
3
2 C 16k1k

4
2

C 16k52 C 16k
4
1k3 C 64k

2
1k
2
2k3 C 16k

4
2k3

C 64k31k
2
3 C 64k

2
1k2k

2
3 C 64k1k

2
2k
2
3 C 64k

3
2k
2
3

C 64k21k
3
3 C 64k

2
2k
3
3 C 16k1k

4
3 C 16k2k

4
3 C 16k

5
3

� 176k41 � 224k
3
1k2 � 384k

2
1k
2
2 � 224k1k

3
2

� 176k42 � 224k
3
1k3 � 192k

2
1k2k3 � 192k1k

2
2k3

� 224k32k3 � 384k
2
1k
2
3 � 192k1k2k

2
3 � 384k

2
2k
2
3

� 224k1k
3
3 � 224k2k

3
3 � 176k

4
3 C 792k

3
1

C 744k21k2 C 744k1k
2
2 C 792k

3
2 C 744k

2
1k3

C 432k1k2k3 C 744k
2
2k3 C 744k1k

2
3 C 744k2k

2
3

C 792k33 � 1402k
2
1 � 980k1k2 � 1402k

2
2

� 980k1k3 � 980k2k3 � 1402k
2
3 C 1221k1

C 1221k2 C 1221k3 � 873/:
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