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Non-dense orbit sets carry full metric mean dimension for
maps with gluing orbit property

Wescley Bonomo and Heides Lima de Santana

Abstract. In this paper, we analyze the non-dense orbit sets for maps with gluing orbit property.
More precisely, let f WX!X be a continuous map with the gluing orbit property on a compact
metric space X , in the setting, we show that for any non-transitive point z0 2 X , the set E.z0/

is empty or carries full metric mean dimension.

1. Introduction

Topological entropy and metric mean dimensions are two measurements of the dy-
namical complexity, which are particularly important for continuous dynamical sys-
tems. While the first is a topological invariant, it is typically infinite for a C 0-Baire
generic subset of homeomorphisms on compact topological manifolds with or without
boundary and the dimension of M is greater than one [22].

On the other hand, the second one, inspired by Gromov [12] and proposed by Lin-
denstrauss and Weiss, is a sort of dynamical analogue of the topological dimension,
depends on the metric and it is bounded above by the dimension of the ambient space
[16]. In this way, the metric mean dimension may be used to distinguish the topolog-
ical complexity of homeomorphisms on compact manifolds with infinite topological
entropy.

Given a continuous map f W X ! X on a compact metric space .X; d/, for any
x 2 X the orbit of x is Of .x/ WD ¹x; f .x/; : : : ; f n.x/; : : : º. Also, for any z 2 X
consider

E.z/ D ¹x 2 X I z 62 Of .x/º:

Note that any point of E.z/ has a non-dense forward orbit in X . Yang, Chen and
Zhou, in [21], show that E.z/ is empty or carries full Bowen upper and lower metric
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mean dimension for maps with specification property. In this sense, we show here
that this also applies to maps with gluing orbit property, i.e., the set E.z/ is empty or
carries full metric mean dimension.

Our work was inspired by [21], but we used some techniques from the work of
[11] and [14] to demonstrate our result, mainly in the proof of the main theorem.

The gluing orbit property, recently introduced by Bomfim–Varandas in [6], is a
topological invariant and is weaker than specification. With a solid understanding of
the basic concepts, we prove that under the gluing orbit property, the set of non-dense
orbits E.z0/ for any non-transitive point z0 2 X is empty or carries full Bowen upper
and lower metric mean dimension. More precisely, our main theorem is the following.

Theorem A. Let X a compact metric space and f W X ! X a continuous map sat-
isfying the gluing orbit property on X . For any non-transitive point z0 2 X either
E.z0/ D ;, or carries full metric mean dimension. It is,

mdimB.E.z0/; f; d/ D mdim.X; f; d/;

and

mdimB.E.z0/; f; d/ D mdim.X; f; d/:

The proof of this Theorem A will be exposed in Section 3. Before, some prelimi-
nary notions and concepts related to the content of Theorem A and its demonstration
will be presented in Section 2 and finally, two examples in which Theorem A is appli-
cable will appear in Section 4.

2. Preliminaries

2.1. Specification and gluing orbit properties

The concept of reconstruction of orbits in topological dynamics gained substantial
importance for its wide range of applications in ergodic theory. Among these proper-
ties it is worth mentioning the shadowing, specification and the gluing orbit properties.
Throughout this subsection f W X ! X denotes a continuous map on a compact met-
ric space X .

Definition 2.1. A continuous map f W X ! X satisfies the specification property if
for any " > 0 there exists an integermDm."/� 1 such that for any points x1; x2; : : : ;
xk 2 X and any positive integers a1 � b1 < a2 � b2 < � � � < ak � bk with ai � bi�1
� m for all 2 � i � k, there is a point y 2 X so that d.f j .y/; f j .x1// � " for
every ai � j � bi and 1 � i � k. If, in addition, y 2 X can be chosen to be periodic
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with period q for some q � m C bk � a1 then we say that f satisfies the periodic
specification property.

Now, we present the definition of the gluing orbit property, introduced in [6].

Definition 2.2. A continuous map f WX!X satisfies the gluing orbit property if for
any " > 0 there exists an integermDm."/ � 1 so that for any points x1; x2; : : : ; xk 2
X and any positive integers n1; : : : ; nk there are 0� p1; : : : ; pk�1 �m."/ and a point
y 2 X so that d.f j .y/; f j .x1// � " for every 0 � j � n1 and

d.f jCn1
Cp

1
C���Cn

i�1
Cp

i�1.y/; f j .xi // � "

for every 2� i � k and 0� j � ni . If, in addition, y 2X can be chosen to be periodic
with period

Pk
iD1.ni C pi / for some 0 � p

k
� m."/ then we say that f satisfies the

periodic gluing orbit property.

It is clear that the specification property implies the gluing orbit property, which
implies transitivity. It is not hard to check that irrational rotations satisfy the gluing
orbit property [4], but fail to satisfy the shadowing or specification properties. Par-
tially hyperbolic examples exhibiting the same kind of behavior have been constructed
in [5]. In this sense, our Theorem A is a version of the result obtained in [21].

The gluing orbit property was recently applied in some works, related to the study
of the form and stability of rotation sets of typical homeomorphisms in Td homotopic
to identity [7, 14], triviality of centralizer in the context of C r -generic diffeomor-
phisms restrict to hyperbolic basic sets [19], the understanding of some topological
aspects of incompressible flows [2], among many others.

2.2. Metric mean dimension

In this subsection, we recall two important measurements of topological complexity,
namely the concepts of topological entropy and metric mean dimension, and intro-
duce a relative notion of the latter. Our focus on the latter concept arises from the
observation that all maps in a generic set of homeomorphisms (and continuous maps)
on a compact Riemannian manifold possesses infinite topological entropy [22]. Con-
versely, metric mean dimension remains constrained by the dimensionality of the
compact manifold and can be interpreted as a smoothed gauge of topological com-
plexity, as elucidated in the following discussion.

Classical metric mean dimension. Let .X; d/ be a compact metric space. Given
" > 0 and n 2N, a setE �X is an .n; "/-spanning set if for every x 2X , there exists
y 2 E with dn.x; y/ � ". A set E � X is an .n; "/-separated set if dn.x; y/ > " for
every x ¤ y 2 E, where dn.x; y/D max¹d.f j .x/; f j .y//I j D 0; : : : ; n� 1º is the
Bowen’s distance. Moreover, Bn.x; "/ D ¹y 2 X I dn.x; y/ < "º denote the Bowen
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dynamic balls. If s.n; "/ denotes the maximal cardinality of an .n; "/-separated subset
of X , then the topological entropy is defined by

htop.f / D lim
"!0

lim sup
n!1

1

n
log s.n; "/:

The previous notion of entropy does not depend on the metric d and is a topologi-
cal invariant. Moreover, the topological entropy of C 0-generic homeomorphisms on a
closed manifold of dimension at least two is infinite [22] (the same holds for the topo-
logical pressure as a consequence of the variational principle), in which case neither
the topological entropy nor the topological pressure can distinguish such dynamics.
Thus, Gromov [12] proposed an invariant for dynamical systems called mean dimen-
sion, that was further studied by Lindenstrauss and Weiss [16]. The upper and lower
metric mean dimension, which may depend on the metric d , are defined in [15,16] by

mdim.X; f; d/ D lim sup
"!0

lim supn!1
1
n

log s.n; "/
jlog "j

;

and mdim.X; f; d/ D lim inf
"!0

lim infn!1 1
n

log s.n; "/
jlog "j

;

(2.1)

respectively. Of course, mdim.X; f; d/D0Dmdim.X; f; d/ whenever htop.f /<1

and, moreover, when X is a compact smooth boundaryless manifold with dimension
strictly greater than one and d is a metric compatible with the smooth structure of X ,
there exists aC 0-Baire residual subset R�Homeo.X;d/ such that mdim.X; f; d/ D
dimX for all f 2 R (according to [9]). A variational principle connecting rate dis-
tortion function to metric mean dimension appeared in [15] and more recently, other
variational principles for metric mean dimension without any strong assumption were
obtained in [3, 8], connecting rate distortion function to metric mean dimension.

Relative metric mean dimension. Since we aim to describe the topological com-
plexity of (not necessarily compact) f -invariant subsets we now introduce a concept
of relative metric mean dimension using a Carathéodory structure. Let Z � X be an
f -invariant Borel set. Given s 2 R, define

m.Z; �;N; "/ WD inf
�

²X
i2I

exp.��ni /
³
;

where the infimum is taken over all countable collections of dynamic balls � D
¹Bni

.xi ; "/ºi that cover Z and so that ni � N . Since the function m.Z; �; N; "/ is
non-decreasing in N the limit m.Z; �; "/ D limN!1m.Z; �;N; "/ does exist. Then
let

hZ.f; "/ D inf¹� 2 RIm.Z; �; "/ D 0º D sup¹� 2 RIm.Z; �; "/ D1º:
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The existence of hZ.f; "/ follows by the Carathéodory structure as described in [18].
Moreover, the Bowen’s topological entropy of f on Z is defined by

hZ.f / D lim
"!0

hZ.f; "/

and finally, the upper and lower relative metric mean dimension of Z are

mdimB.Z; f; d/ D lim sup
"!0

hZ.f; "/

jlog "j
;

and mdimB.Z; f; d/ D lim inf
"!0

hZ.f; "/

jlog "j
;

(2.2)

respectively.

Definition 2.3. Given a continuous map f W X ! X and an f -invariant subset Z �
X , we say that Z has full metric mean dimension if

mdimB.Z; f; "/ D mdim.X; f; d/

and
mdimB.Z; f; "/ D mdim.X; f; d/:

Note that the metric mean dimension vanishes if the topological entropy is finite.
The following proposition is immediate. The works [14] and [11] explore the rela-
tionship between metric mean dimension and dynamical systems with the gluing orbit
property. More specifically, they demonstrate that for continuous maps (or continuous
flows) possessing the gluing orbit property, the irregular sets are either empty or form
a Baire residual subset.

Proposition 2.4. If Z1; Z2 are subsets of X such that Z1 � Z2, then

mdimB.Z1; f; d/ � mdimB.Z2; f; d/

and
mdimB.Z1; f; d/ � mdimB.Z2; f; d/:

The following Proposition 2.5 establishes equality between the classical upper
(and lower) metric mean dimension (2.1) and the Bowen’s upper (and lower) relative
metric mean dimension (2.2) of an f -invariant borelian set Z � X , and its complete
proof is shown in [17].

Proposition 2.5. If f W X ! X is a continuous map andZ is any nonempty compact
f -invariant subset of X , then

mdimB.Z; f; d/ D mdim.Z; f; d/

and
mdimB.Z; f; d/ D mdim.Z; f; d/:
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3. Proof of Theorem A.

3.1. Proof for the case of the upper metric mean dimension

Assuming E.z0/ ¤ ; and as E.z0/ � X , by Propositions 2.4 and 2.5 it follows that
mdimB.E.z0/; f; d/ � mdim.X; f; d/. To conclude the other inequality it is suffi-
cient to prove that

mdimB.E.z0/; f; d/ � C

for any arbitrary fixed constant C < mdim.X; f; d/. For this purpose, consider a non-
transitive point z0 2 X and choose u 2 X and "0 > 0 such that

d.u;Of .z0// � 3"0: (3.1)

Fixing 
 > 0, we choose an " < "0 and a sequence ¹nkºk�1 �N such that there exists
a maximal .nk; 7"/-separated set Sk of X which is always an .nk; 7"/-spanning set
such that

#Sk � exp¹.nk.C � 
//jlog 7"jº; (3.2a)
hE.z0/.f; "/

jlog "j
� mdimB.E.z0/; f; d/C 
; and (3.2b)

.mdimB.E.z0/; f; d/C 
/ �
jlog "j
jlog 7"j

� mdimB.E.z0/; f; d/C 2
: (3.2c)

Moreover, ¹nkºk�1 can be chosen so that nk � 2m, where m is as in Definition 2.2.

3.1.1. Part 1: Construction of a Moran-like fractal R. Let " > 0 be arbitrary and
fixed, m D m."/ be given by the gluing orbit property (Definition 2.2), and Sk be
a maximal .nk; 7"/-separated subset X . Now, index the elements of Sk by xj

k
, for

1 � j � #Sk and choose also a strictly increasing sequence of integers ¹Nkºk�1. The
gluing orbit property ensures that for every xk WD .xk1 ; : : : ; x

k
N

k
/ 2 S

Nk

k
there exists

a point y D y.xk/ 2 X and transition time functions

pki;j W S
Nk

k
� ¹yº ! N; where i D 1; 2; : : : ; Nk � 1 and j D 1; 2

bounded above by m so that

dn
k
.f j̨ .y/; xkj / < "; for every j D 1; 2; : : : ; Nk � 1 (3.3)

and

d.f ǰ .y/; u/ < "; for every j D 1; 2; : : : ; Nk � 1; (3.4)
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where

j̨ D

8̂̂<̂
:̂
0 if j D 1;

.j � 1/nk C

j�1X
rD1

pkr;1 C

j�1X
rD1

pkr;2 if j D 2; : : : ; Nk;

and

ǰ D

8̂̂<̂
:̂
nk C p

k
1;1 if j D 1;

jnk C

jX
rD1

pkr;1 C

j�1X
rD1

pkr;2 if j D 2; : : : ; Nk :

Remark 3.1. Note that the functions pki;1 above describe the time lag that the orbit of
y D y.xk/ takes to jump from an "-neighborhood of f nk .xkj / to an "-neighborhood
of u and pki;2 an "-neighborhood of u to an "-neighborhood of xkjC1 (see Figure 1).

Figure 1. Shadowing of the orbit in SNk

k

We proceed to make a recursive construction of a family ¹Lkºk�1 of sets (guar-
anteed by the gluing orbit property) contained in a neighborhood of x11 :

(1) L1 D ¹z D z.x1/ 2 X I x1 2 S
N1;

1 º, where

(a) t1 WD N1n1 C
PN1�1
rD1 p1r;1 C

PN1�1
rD1 p1r;2,

(b) l1 WD t1 and z D z.x1/ satisfies dl
1
.z; y.x1// < ";

(2) L2 D ¹z D z.w; y.x2// 2 X Iw 2 L1 and x2 2 S
N2

2 º, where

(a) t2 WD N2n2 C
PN2�1
rD1 p2r;1 C

PN2�1
rD1 p2r;2,

(b) l2 WD l1 C p
1
0 C t2,
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(c) z D z.w; y.x2// satisfies dl
1
.z; w/ < " and dt

2
.f l1Cp

1
0 .z/; y.x2// < ",

with

(d) 0 � p10 � m."/ is given by the gluing orbit property (p10 is the time lag
that the orbit of z takes to jump from an "-neighborhood of f n1.x1N1

/ to
an "-neighborhood of x21);

and more generally, for all k � 2 let

(3) Lk D ¹z D z.w; y.xk// 2 X Iw 2 Lk�1 and xk 2 S
Nk

k
º, where

(a) t
k
D Nknk C

PNk�1
rD1 pkr;1 C

PNk�1
rD1 pkr;2,

(b) l
k
D l

k�1
C pk�10 C t

k
,

(c) z D z.w; y.xk// satisfies dlk�1
.z; w/ < " and

dtk .f
l
k�1
Cpk�1

0 .z/; y.xk// < ";

(d) 0 � pk�10 � m."/ is given by the gluing orbit property (pk�10 is the
time lag that the orbit of z takes to jump from an "-neighborhood of
f nk�1.xk�1Nk�1

/ to an "-neighborhood of xk1 ).

The previous points y D y.xk/, k � 1, are defined as in (3.3) and (3.4). By construc-
tion,

lk D

kX
rD1

Nrnr C

k�1X
rD1

pr0 C

kX
sD1

Ns�1X
rD1

psr;1 C

kX
sD1

Ns�1X
rD1

psr;2

for every k � 1. Also, for every k � 0 and " > 0 let

Rk D
[
z2Lk

zBl
k
.z; "/ and R D

\
k�1

Rk;

where zBlk .z; ı/ is the set of points x 2X so that d.f ˛.z/; f ˛.x// < ı for all iterates
0 � ˛ � l

k�1
� 1 and d.f ˇ .z/; f ˇ .x// � ı for every l

k�1
� ˇ � l

k
� 1.

The following lemma, similar to [21, Proposition 3.1], ensures that R is a subset
of E.z0/.

Lemma 3.2. If x 2 R, then x 2 E.z0/. This is, R � E.z0/.

Proof. Let x 2 R, first we will prove thatOf .x/\ zB D ;, where zB WD zBl2Cm.z0; "/.
In fact, if Of .x/ \ zB ¤ ; it is possible to choose j 2 N such that f j .x/ 2 zB and,
by the construction of R, for any k with tk � j there exists some z 2 Lk such that
x 2Blk .z; "/. Hence, we can choose q < l2Cm such that d.f jCq.z/;f jCq.x//� ",
d.f jCq.z/; u/ < " and d.f jCq.x/; f q.z0// < ". Therefore,

d.u; f q.z0// � d.u; f
jCq.z//C d.f jCq.z/; f jCq.x//C d.f jCq.x/; f q.z0//

� "C "C " < 3"0;

which contradicts with (3.1).
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Finally, once concluded that Of .x/ \ zB D ;, it follows that Of .x/ � X n zB
and consequently, Of .x/ � X n zB , implying that z0 62 Of .x/ or, in others words,
x 2 E.z0/.

3.1.2. Part 2: Construction of a special sequence of measurements �k. For each
xk WD .x

k
1 ; : : : ; x

k
N

k
/ 2 S

Nk

k
choose z.xk/ 2 Lk . Observe that

#Lk D
kY
iD1

.#Si /Ni :

Moreover, the following Lemma 3.3 shows that set Lk is .lk; 5"/-separated.

Lemma 3.3. For every x 2 Lk and distinct xk; yk 2 S
Nk

k
, it holds that

dlkC1
.z.x; xk/; z.x; yk// > 2":

That is, z.x; xk/ and z.x; yk/ are .tk; 5"/-separated points.

Proof. Let xk; yk 2 S
Nk

k
, distinct and called z1 WD z.x;xk/ and z2 WD z.x;yk/. Since

xk; yk 2 S
Nk

k
, there exists q 2 ¹1; 2; : : : ; Nk�1º such that xkq ¤ y

k
q and xi D yi for

each i < q. By definition of R, there exists 0 � s � nk � 1 such that

d
�
f li�k

Cpk�1
0
C.q�1/nkC

Pq�1
rD1

pk
r;1
C
Pq�1

rD1
pi

r;2
Cs.z1/;

f .q�1/nkC
Pq�1

rD1
pk

r;1
C
Pq�1

rD1
pk

r;2
Cs.xkq /

�
< "

and

d
�
f lk�1

Cpk�1
0
C.q�1/nkC

Pq�1
rD1

pk
r;1
C
Pq�1

rD1
pk

r;2
Cs.z2/;

f .q�1/nkC
Pq�1

rD1
pk

r;1
C
Pq�1

rD1
pk

r;2
Cs.ykq /

�
< ":

Note that as xkq ; y
k
q 2 Sk , they are .nk; 7"/-separated points and so

dlk .z1; z2/ � dtk .z1; z2/

� d
�
f lk�1

Cpk�1
0
C.q�1/nkC

Pq�1
rD1

.pk
r;1
Cpk

r;2
/Cs.z1/;

f lk�1
Cpk�1

0
C.q�1/nkC

Pq�1
rD1

.pk
r;1
Cpk

r;2
/Cs.z2/

�
� d

�
f .q�1/nkC

Pq�1
rD1

.pk
r;1
Cpk

r;2
/Cs.xkq /;

f .q�1/nkC
Pq�1

rD1
pk

r;1
C
Pq�1

rD1
pk

r;2
Cs.ykq /

�
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� d
�
f lk�1

pk�1
0
C.q�1/niC

Pq�1
rD1

.pk
r;1
Cpk

r;2
/Cs.z1/;

f .q�1/niC
Pq�1

rD1
.pk

r;1
Cpk

r;2
/Cs.xkq /

�
� d

�
f lk�1

Cpk�1
0
C.q�1/nkC

Pq�1
rD1

.pk
r;1
Cpk

r;2
/Cs.z2/;

f .q�1/nkC
Pq�1

rD1
.pk

r;1
Cpk

r;2
/Cs.ykq /

�
� 7" � " � " D 5":

Now, consider for any k the probability measure supported on R, defined by

�k D
1

#Lk

X
z2LK

ız :

The proof of the following lemma is a simple modification of the arguments of [20,
Lemma 3.7] (where it is considered the case where f satisfies the specification prop-
erty).

Lemma 3.4. The sequence of measures ¹�kºk2N converges to a measure in M.X/

with respect to the weak�-topology �. Moreover, �.R/ D 1.

Let B D Bn.q; "/ be an arbitrary ball which intersects R, where k is the unique
number which satisfies lk � n < lkC1 and j 2 ¹0; 1; : : : ; NkC1 � 1º be the unique
number such that

lk C p
kC1
0 C jnkC1 C

jX
rD1

.pkC1r;1 C p
kC1
r;2 /

� n < lk C p
kC1
0 C .j C 1/nkC1 C

jC1X
rD1

.pkC1r;1 C p
kC1
r;2 /:

Lemma 3.5. Suppose that �kCp.B/ > 0 for any p � 1. In this context,

�kCp.B/ �
1

#Lk � .#SkC1/j
:

Proof. First, consider p D 1. Suppose �kC1.B/ > 0, then LkC1 \ B ¤ ;. Let z D
z.w; y.xkC1// 2 LkC1 \B where w 2 Lk and xkC1 2 .SkC1/NkC1 . Define

AkC1;j WD
®
z.w; y.zxkC1// 2 LkC1I zx

kC1
1 D xkC11 ; zxkC12 D xkC12 ; : : : ;

zxkC1j D xkC1j

¯
;

for some 1 � j � NkC1, zw 2 Lk and zxkC1 2 .SkC1/NkC1 . If zz D z. zw; zzkC1/ 2

LkC1 \B, since dn.z;zz/ < 2", by Lemma 3.3, we havewD zw and for l 2 ¹1; : : : ; j º.
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Thus,

�kC1.B/ D
1

#LkC1

X
z2LKC1

ız.B/ �
X

z2AkC1;j

1

#LkC1
ız

�
#SNkC1�j

kC1

#LkC1
D

1

#Lk � .#SkC1/j
:

In the case p > 1,

�kCp.B/ �
#SNkC1�j

kC1
� #SNkC2

kC2
� � � #SNkCp

kCp

#LkCp
D

1

#Lk � .#SkC1/j
:

The following and last lemma will be used in part 3 (Section 3.1.3) of the demon-
stration of Theorem A. To do this, we will use the previous Lemma 3.5 to prove it.

Lemma 3.6. There exists N 2 N such that for any n � N ,

�.B/ � exp¹�n.C � 3
/jlog 7"jº:

Proof. It follows from the relations in (3.2) that

#Lk � .#SkC1/j

D #SN1

1 � � � #S
Nk

k
� #Sj

kC1

�

kY
iD1

exp.Nini .C � 
//jlog 7"j � exp¹.j � nkC1.C � 
//jlog 7"jº

D exp
²
.C � 
/jlog 7"j

� kX
iD1

Nini C jnkC1

�³
� exp

²
.C � 2
/jlog 7"j

� kX
iD1

.Nini C p
i
0/C

kX
sD1

Ns�1X
rD1

.psr;1 C p
s
r;2/

C jnkC1 C

jC1X
rD1

.pkC1r;1 C p
kC1
r;2 /

�³
D exp

²
.C � 2
/jlog 7"j

�
lk C p

k
0 C jnkC1 C

jC1X
rD1

.pkC1r;1 C p
kC1
r;2 /

�³
� exp¹n.C � 3
/jlog 7"jº:

In the fourth line, we are able to add in the extra terms with an arbitrarily small change
to the constant because nk is much larger than transition time functions.

Finally, using Lemma 3.5, we conclude that

�.B/ � lim inf
p!1

�kCp.B/ � exp¹�n.C � 3
/jlog 7"jº:



W. Bonomo and H. L. de Santana 414

3.1.3. Part 3: Now we will finish the proof of the Theorem A and for this purpose
we will use the pressure distribution principle type argument. Let N 2 N and � D
¹Bni

.xi ; "/ºi2I be any finite cover of R by dynamic balls with ni � N for all i 2 I .
Without loss of generality, we may assume that Bni

.xi ; "/ ¤ ; for every i 2 I . An
application of Lemma 3.6 on each Bni

.xi ; "/ implies in the inequalityX
i2I

exp¹�n.C � 3
/jlog 7"jº �
X
i2I

�.Bni
.xi ; "// � �.R/ D 1:

As � is arbitrary, we have m.R; .C � 2
/jlog 7"j; N; "/ � 1 > 0. So, since m.R;
.C � 3
/jlog7"j;N;"/ does not decrease asN increases,m.R;.C � 2
/jlog7"j; "/�
1 > 0, which implies that

hR.f; "/ � .C � 3
/jlog 7"j:

So, by Lemma 3.2 and relation (3.2) it follows that

C � 3
 �
hR.f; "/

jlog 7"j
�
hE.z0/.f; "/

jlog 7"j
D
hE.z0/.f; "/

jlog "j
jlog "j
jlog 7"j

� .mdimB.E.z0/; f; d/C 
/
jlog "j
jlog 7"j

� .mdimB.E.z0/; f; d/C 2
/:

So, mdimB.E.z0/; f; d/ � C � 5
 . As 
 > 0 and C are arbitrary, we have

mdimB.E.z0/; f; d/ � mdim.X; f; d/:

3.2. The case of the lower metric mean dimension

Now, we will present the proof of our main theorem for the case of the lower metric
mean dimension. That is, we show that mdimB.E.z0/; f; d/ D mdim.X; f; d/.

Assuming E.z0/ ¤ ;, as E.z0/ � X , by Remark 2.4 and Proposition 2.5 it fol-
lows that mdimB.E.z0/; f; d/ � mdim.X; f; d/. To conclude the other inequality it
is sufficient to prove that

mdimB.E.z0/; f; d/ � C
0

for any arbitrary fixed constant C 0 < mdim.X; f; d/.
Fixing 
 > 0, as in relations (3.2), it is possible to obtain an "0 < "0 and a sequence

¹nkºk�1 � N such that there exists a maximal .nk; 7"/-separated set Sk of X so that

#Sk � exp.nk.C 0 � 
//jlog 7"0j; (3.5a)

hE.z0/.f; "
0/

jlog "0j
� mdimB.E.z0/; f; d/C 
; and (3.5b)

.mdimB.E.z0/; f; d/C 
/ �
jlog "0j
jlog 7"0j

� mdimB.E.z0/; f; d/C 2
: (3.5c)
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Moreover, the sequence nk can be chosen so that nk � 2m, where m is as in
Definition 2.2.

We can use the parallel proof in the previous case to show that there exist a Moran-
like fractal R0 and a measure �0 concentrated on R0 satisfying the following lemma.

Lemma 3.7. There exists N 0 2 N such that for any n � N 0, if Bn.z; "
0/ \ R0 ¤ ;,

then �.Bn.z; "0// � exp¹�n.C 0 � 3
/jlog 7"0jº.

LetN 0 be the number defined in Lemma 3.7 Let � D ¹Bni
.xi ; "

0/ºi2I be any finite
cover of R0 with ni � N 0 for all i 2 I . Without loss of generality, we may assume
that Bni

.xi ; "
0/ \R0 ¤ ; for every i 2 I . Applying Lemma 3.7 on each Bni

.xi ; "
0/,

we obtainX
i2I

exp¹�n.C 0 � 3
/jlog 7"0jº �
X
i2I

�.Bni
.xi ; "

0// � �.R0/ D 1:

As � is arbitrary, we have m.R0; .C 0 � 3
/jlog 7"0j; N; "0/ � 1 > 0. So, since m.R0;
.C 0 � 3
/jlog 7"0j; N; "0/ does not decrease as N increases,

m.R0; .C 0 � 2
/jlog 7"0j; "0/ � 1 > 0;

which implies that
hR0.f; "

0/ � .C 0 � 3
/jlog 7"0j:

Thus, as in Lemma 3.2 we have that R0 � E.z0/ and by relation (3.5), it follows
that

C 0 � 3
 �
hR0.f; "

0/

jlog 7"0j
�
hE.z0/.f; "

0/

jlog 7"0j
D
hE.z0/.f; "

0/

jlog "0j
jlog "0j
jlog 7"0j

� .mdimB.E.z0/; f; d/C 
/
jlog "0j
jlog 7"0j

� .mdimB.E.z0/; f; d/C 2
/:

So, mdimB.E.z0/; f; d/ � C
0 � 5
 . As 
 > 0 and C 0 are arbitrary, we have

mdimB.E.z0/; f; d/ � mdim.X; f; d/:

4. Examples

In this Section, we present two examples involving shifts with infinite symbols and
generic incompressible homeomorphisms, in which Theorem A is applicable.

Example 4.1. Shift in Œ0;1�. LetX D Œ0;1�N with the distance d..ai /i2N ; .bi /i2N/D

supi2N
jai�bi j

2i�1 . The right shift � W X ! X , given to �.a1; a2; a3; : : :/ D .a2; a3; : : :/
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is a continuous and surjective map in .X; d/ such that htop.�/ is infinite. We claim
that � satisfies the gluing orbit property described in Definition 2.2.

In fact, given " > 0 arbitrary, initially observe that if m D m."/ D min¹i 2 NI

1=2i�1 < "º, then d..ai /i2N ; .bi /i2N/ < " iff jai�bi j

2i�1 < " for all 1 � i �m. So, given
any points x1D .x1i /i2N ; : : : ;x

k D .xki /i2N 2X and any positive integers n1; : : : ;nk ,
let p1 D � � � D pk�1 D m.

Now, construct y D .yi /i2N 2 X defining it by parts, putting

yi D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

x1i if 1 � i � n1 Cm;

x2
i�.n1Cm/

if n1 CmC 1 � i � n1 C n2 C 2m;

x3
i�.n1Cn2C2m/

if n1 C n2 C 2mC 1 � i � n1 C n2 C n3 C 3m;
:::

xk
i�
Pk�1

lD1 .nlCm/
if
Pk�1
lD1 .nl Cm/C 1 � i �

Pk
lD1.nl Cm/;

0 if i �
Pk
lD1.nl Cm/C 1:

Observe that y d.�j .y/; �j .x1// � " for every 0 � j � n1 and

d.�jCn1Cp1C���Cni�1Cpi�1.y/; �j .xi // � "

for every 2 � i � k and 0 � j � ni . In other words, � satisfies the gluing orbit
property. Consequently, our Theorem A is applicable in this Example 4.1. Further,
.3=4; 3=4; 3=4; : : :/ 2 X is a non-transitive point such that Y D Œ0; 1=2�N is a (posi-
tively) � -invariant subset of X and contained in E.3=4; 3=4; 3=4; : : :/.

On the other hand, observe that the homeomorphism h W Œ0; 1=2�N! Œ0; 1�N given
by h..xi /i2N/ D .2xi /i2N is a topological conjugation between � and the restriction
�jŒ0;1=2�N (in fact, �jŒ0;1=2�N D h

�1 ı � ı h) such that djŒ0;1=2�N ..xi /i2N ; .yi /i2N/ D

1=2d.h..xi /i2N/; h..yi /i2N//. These facts imply that

mdim.X; �; d/ D mdim.Œ0; 1=2�N ; �; d/

and consequently, mdimB.E.3=4; 3=4; 3=4; : : :/; �; d/ D mdim.X; �; d/ D 1.

Example 4.2. A generic incompressible homeomorphism f in a compact manifold
M is chaotic in the sense of Devaney, i.e., transitive and its periodic points are dense
in M [10]; satisfies the gluing orbity property [1], and has full metric mean dimen-
sion [13]. So, if z0 is a periodic point of such a generic incompressible homeomor-
phism f , the set E.z0/ is nonempty because it contains all periodic points of f not in
the orbit of z0 and so, Theorem A implies that mdimB.E.z0/; f; d/ D mdim.M; f; d/
D dimM .
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