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Lp-dual Brunn–Minkowski inequality for intersection bodies

Weidong Wang

Abstract. In 2003, associated with the radial Minkowski additions of star bodies, Zhao and
Leng established the dual Brunn–Minkowski inequality for intersection bodies. In this paper,
associated with the Lp-radial Minkowski combinations of star bodies, we firstly prove the
Lp-dual Brunn–Minkowski inequality for intersection bodies. Further, associated with the Lp-
Minkowski combinations of convex bodies, we give the Lp-Brunn–Minkowski inequality for
star dualities of intersection bodies.

1. Introduction and main results

The setting for this paper is the n-dimensional Euclidean space Rn. Let Kn denote
the set of convex bodies (compact, convex subsets with nonempty interiors) in Rn,
for the set of convex bodies containing the origin in their interiors in Rn, we write
Kn
o . Let �no denote the set of star bodies (with respect to origin) in Rn. Let B denote

the n-dimensional Euclidean unit ball centered at the origin, and the surface of B is
written Sn�1. We use V.K/ to denote the n-dimensional volume of a body K.

The famous Brunn–Minkowski inequality for the volume is an important inequal-
ity in the theory of convex bodies. One form of it states the following: if K;L 2Kn,
then

V.K C L/
1
n � V.K/

1
n C V.L/

1
n ; (1.1)

with equality if and only if K and L are homothetic. Here, K C L denotes the
Minkowski addition of K and L.

In 1962, Firey (see [5]) introduced the Lp-Minkowski combinations of convex
bodies (also called the Firey p-combinations) and established the following Lp-
Brunn–Minkowski inequality. If K; L 2 Kn

o and 1 � p � C1 (for p D 1, it can
be assumed that K;L 2Kn), then

V.K Cp L/
p
n � V.K/

p
n C V.L/

p
n : (1.2)
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Equality holds in (1.2) for p D 1 if and only if K and L are homothetic, for 1 < p <
C1 if and only ifK and L are dilates, for p D C1 if and only ifK � L or L � K.
Here, K Cp L denotes the Lp-Minkowski addition of K and L.

The dual form of the Lp-Brunn–Minkowski inequality is the following Lp-dual
Brunn–Minkowski inequality (see [6]). If K; L 2 �no and real p ¤ 0, then for
0 < p < n,

V.K zCp L/
p
n � V.K/

p
n C V.L/

p
n I (1.3)

for �1 � p < 0 or n < p � C1, then

V.K zCp L/
p
n � V.K/

p
n C V.L/

p
n : (1.4)

For p ¤ ˙1, equality hold in (1.3) and (1.4) if and only if K and L are dilates;
for p D ˙1, equality holds in (1.4) if and only if K � L or L � K. Here, K zCp L
denotes the Lp-radial Minkowski addition of K and L.

In particular, the case p D 1 of inequality (1.3) shows the dual Brunn–Minkowski
inequality as follows: If K;L 2 �no , then

V.K zC L/
1
n � V.K/

1
n C V.L/

1
n ;

with equality if and only if K and L are dilates. Here, K zCL D K zC1 L denotes the
radial Minkowski addition of K and L.

The researches of the Brunn–Minkowski inequality and its dual versions in vari-
ous forms have made a lot of achievements. For extensive and beautiful surveys on it
we refer, e.g., to [1–4, 6–9, 12, 13, 15–17, 19–22, 25].

Associated with the radial Minkowski additions of star bodies, Zhao and Leng
(see [23]) established the dual Brunn–Minkowski inequality for intersection bodies as
follows.

Theorem 1.A. If K;L 2 �no , then

V.I.K zC L//
1

n.n�1/ � V.IK/
1

n.n�1/ C V.IL/
1

n.n�1/ ; (1.5)

with equality if and only if K and L are dilates. Here IM denotes the intersection
body of M 2 �no .

In this paper, associated with the Lp-radial Minkowski combinations of star bod-
ies, we firstly give the Lp-dual Brunn–Minkowski inequality for intersection bodies
as follows.

Theorem 1.1. If K;L 2 �no , � 2 Œ0; 1� and p is any real, then for 0 < p < n � 1,

V.I.�ˇK zCp .1 � �/ˇ L//
p

n.n�1/ � �V.IK/
p

n.n�1/ C .1 � �/V.IL/
p

n.n�1/ I

(1.6)
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for �1 � p < 0 or n.n � 1/ < p � C1,

V.I.�ˇK zCp .1 � �/ˇ L//
p

n.n�1/ � �V.IK/
p

n.n�1/ C .1 � �/V.IL/
p

n.n�1/ I

(1.7)

for p D 0,

V.I.�ˇK zC0 .1 � �/ˇ L// � V.IK/
�V.IL/1��: (1.8)

When � 2 .0; 1/, equality holds in every above inequality for p ¤ ˙1 if and only if
K and L are dilates, for p D ˙1 if and only if K � L or L � K. When � D 0 or
� D 1, above inequalities all become equalities.

Let p D 1 and � D 1
2

in Theorem 1.1, then inequality (1.6) yields inequality (1.5).
Next, respective to the Lp-Minkowski combinations of convex bodies, we prove

the following Lp-Brunn–Minkowski inequality for star dualities of intersection bod-
ies.

Theorem 1.2. IfK;L 2Kn
o , 1� p �C1 (for p D 1, it can be assumed thatK;L 2

Kn) and � 2 Œ0; 1�, then

V.I ı.� �K Cp .1 � �/ � L//
�

p
n.n�1/

� �V.I ıK/�
p

n.n�1/ C .1 � �/V.I ıL/�
p

n.n�1/ : (1.9)

When � 2 .0; 1/, equality holds in (1.9) for p D 1 if and only if K and L are homo-
thetic, for 1 < p < C1 if and only if K and L are dilates, for p D C1 if and
only if K � L or L � K. When � D 0 or � D 1, (1.9) becomes an equality. Here,
I ıM D .IM/ı denotes the star duality of the intersection body IM .

Obviously, the case p D 1 and � D 1
2

of inequality (1.9) implies a dual form of
inequality (1.5) as follows: If K;L 2Kn, then

V.I ı.K C L//�
1

n.n�1/ � V.I ıK/�
1

n.n�1/ C V.I ıL/�
1

n.n�1/ ;

with equality if and only if K and L are homothetic.

2. Background material

2.1. Support functions and Lp-Minkowski combinations

If K 2 Kn, then its support function, hK D h.K; �/ W Rn ! .�1;C1/, is defined
by (see [7, 16])

h.K; x/ D max¹x � y W y 2 Kº; x 2 Rn;

where x � y denotes the standard inner product of x and y.
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For 1 � p � C1, the Lp-Minkowski combinations (or called the Firey Lp-
combinations) of convex bodies were introduced by Firey (see [5, 12]). For K; L 2
Kn
o , 1 � p < C1 (for p D 1, it can be assumed that K;L 2Kn) and �;� � 0 (not

both zero), the Lp-Minkowski combination, � � K Cp � � L 2 Kn
o , of K and L is

defined by

h.� �K Cp � � L; �/ D Œ�h.K; �/
p
C �h.L; �/p�

1
p ; (2.1)

where � �K D �
1
pK. If �D�D 1, thenKCp L is called theLp-Minkowski addition

of K and L. Obviously, if p D 1, then � �K C1 � �L D �K C �L is the Minkowski
combination of K and L. For p D C1, according to the fact for a; b � 0,

lim
p!C1

Œ�ap C �bp�
1
p D max¹a; bº; (2.2)

we define for K;L 2Kn
o (see [16]),

� �K CC1 � � L D conv.K [ L/: (2.3)

From (2.1) and the Jensen’s inequality, we easily know that if K; L 2 Kn
o ,

1 < p < C1 and �C � D 1 (�;� � 0), then

�K C �L � � �K Cp � � L: (2.4)

Equality holds in (2.4) if and only if K D L.
Here, we deal with the equality condition of (2.4). Indeed, if �K C �L D

� �K Cp � � L, i.e., for any u 2 Sn�1,

Œ�h.K; u/C �h.L; u/�p D �h.K; u/p C �h.L; u/p:

This implies h.K;u/D h.L;u/ for any u 2 Sn�1, i.e.,K D L. Obviously, ifK D L,
then equality holds in (2.4).

2.2. Radial functions and Lp-radial Minkowski combinations

If K is a compact star-shaped set (about the origin) in Rn, its radial function, �K D
�.K; �/ W Rnn¹0º ! Œ0;C1/, is defined by (see [7])

�.K; x/ D max¹� � 0 W �x 2 Kº; x 2 Rnn¹0º:

If �K is positive and continuous, K will be called a star body (about the origin).
From the radial function, we have the following volume formula of a body K:

V.K/ D
1

n

Z
Sn�1

�.K; u/ndu: (2.5)
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For the radial function, we see that if K 2 �no and � is a subspace of Rn, then for
any u 2 Sn�1 \ � (see [7]),

�.K \ �; u/ D �.K; u/: (2.6)

For �1 � p � C1, the Lp-radial Minkowski combinations of star bodies are
defined as follows: For K; L 2 �no , �; � � 0 (not both zero), �1 < p < C1 and
p ¤ 0, the Lp-radial Minkowski combination, �ˇK zCp �ˇ L 2 �no , of K and L
is defined by (see [16])

�.�ˇK zCp �ˇ L; �/ D Œ��.K; �/
p
C ��.L; �/p�

1
p : (2.7)

If � D � D 1, then K zCp L is called the Lp-radial Minkowski addition of K and L.
In particular, K zC1 L D K zC L is the radial Minkowski addition of K and L. For
p D ˙1, from (2.2) and

lim
p!�1

Œ��.K; �/p C ��.L; �/p�
1
p D min¹�K ; �Lº; (2.8)

we define for K;L 2 �no ,

�ˇK zCC1 �ˇ L D K [ L; (2.9)

�ˇK zC�1 �ˇ L D K \ L: (2.10)

For p D 0, � 2 Œ0; 1�, define �ˇ K zC0 .1 � �/ˇ L which is called the log-radial
Minkowski combination of K and L by (see [18])

�.�ˇK zC0 .1 � �/ˇ L; �/ D lim
p!0

�.�ˇK zCp .1 � �/ˇ L; �/

D lim
p!0

Œ��.K; �/p C .1 � �/�.L; �/p�
1
p

D �.K; �/��.L; �/1��: (2.11)

For the log-radial Minkowski combination, Wang and Liu (see [18]) established the
following dual log-Brunn–Minkowski inequality: If K;L 2 �no and � 2 Œ0; 1�, then

V.�ˇK zC0 .1 � �/ˇ L/ � V.K/
�V.L/1��; (2.12)

with equality for � 2 .0; 1/ if and only if K and L are dilates. For � D 0 or � D 1,
(2.12) becomes an equality.
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2.3. Star dualities

In 1999, Moszyńska (see [14]) introduced the notion of star duality. For K 2 �no , the
star duality, Kı, of K is given by

�.Kı; u/ D
1

�.K; u/
; (2.13)

for all u 2 �n�1. From (2.13), we easily see that for � > 0,

.�K/ı D
1

�
Kı: (2.14)

2.4. Intersection bodies

Intersection bodies were first explicitly defined and named by Lutwak (see [11]). For
eachK 2 �no , the intersection body, IK, ofK is an origin-symmetric star body whose
radial function in the direction u 2 Sn�1 is equal to the .n � 1/-dimensional volume
of the section of K by the .n � 1/-dimensional subspace u? orthogonal to u. That is,
for any u 2 Sn�1,

�.IK; u/ D Vn�1.K \ u
?/; (2.15)

where Vn�1 denotes .n � 1/-dimensional volume.
From (2.15), we know that the intersection body has the following property: If

K 2 �no , then for � > 0,

I.�K/ D �n�1IK: (2.16)

The intersection body is a very important object of study in the Brunn–Minkowski
theory. A number of important results regarding intersection bodies come together in
books [7, 16].

From (2.13) and (2.15), for the star duality I ıK of intersection body IK, we have
that for any u 2 Sn�1,

�.I ıK;u/�1 D �.IK; u/ D Vn�1.K \ u
?/: (2.17)

Hence, (2.14), (2.16) and (2.17) show that for � > 0,

I ı.�K/ D
1

�n�1
I ıK: (2.18)

For the works of the star dualities of intersection bodies, also see [10, 24].
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3. Lp-dual Brunn–Minkowski inequality for intersection bodies

Theorem 1.1 shows theLp-dual Brunn–Minkowski inequality for intersection bodies.
Here, we will prove Theorem 1.1.

Lemma 3.1. If K;L 2 �no , p is any real and � 2 Œ0; 1�, then for any u 2 Sn�1,

.�ˇK zCp .1 � �/ˇ L/ \ u
?
D �ˇ .K \ u?/ zCp .1 � �/ˇ .L \ u

?/: (3.1)

Here u? denotes the .n � 1/-dimensional subspace orthogonal to u.

Proof. For p ¤ 0, according to (2.6) and (2.7), we have for any v 2 Sn�1 \ u?,

�..�ˇK zCp .1 � �/ˇ L/ \ u
?; v/p D �.�ˇK zCp .1 � �/ˇ L; v/

p

D ��.K; v/p C .1 � �/�.L; v/p

D ��.K \ u?; v/p C .1 � �/�.L \ u?; v/p

D �.�ˇ .K \ u?/ zCp .1 � �/ˇ .L \ u
?/; v/p:

This gives the case p ¤ 0 of (3.1).
For p D 0, by (2.6) and (2.11) we have that for any v 2 Sn�1 \ u?,

�..�ˇK zC0 .1 � �/ˇ L/ \ u
?; v/ D �.�ˇK zC0 .1 � �/ˇ L; v/

D �.K; v/��.L; v/1�� D �.K \ u?; v/��.L \ u?; v/1��

D �.�ˇ .K \ u?/ zC0 .1 � �/ˇ .L \ u
?/; v/:

This provides the case p D 0 of (3.1).

Proof of Theorem 1.1. (1) For 0 < p < n� 1, applying inequality (1.3) to the .n� 1/-
dimensional case and combining with (3.1), we have that for � 2 Œ0; 1� and any u 2
Sn�1,

Vn�1..�ˇK zCp .1 � �/ˇ L/ \ u
?/

p
n�1

D Vn�1.�ˇ .K \ u
?/ zCp .1 � �/ˇ .L \ u

?//
p
n�1

� �Vn�1.K \ u
?/

p
n�1 C .1 � �/Vn�1.L \ u

?/
p
n�1 : (3.2)

According to the equality condition of inequality (1.3), we see that equality holds
in (3.2) for � 2 .0; 1/ if and only ifK \ u? and L\ u? are dilates for any u 2 Sn�1,
i.e., K and L are dilates (see [7, Theorem 7.1.1]).

Notice that 0 < p < n � 1 implies n.n�1/
p

> 1. From this, by (2.5), (2.15), (3.2)
and the Minkowski integral inequality we infer that

V.I.�ˇK zCp .1 � �/ˇ L//
p

n.n�1/

D

�
1

n

Z
Sn�1

�.I.�ˇK zCp .1 � �/ˇ L/; u/
ndu

� p
n.n�1/
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D

�
1

n

Z
Sn�1

Vn�1..�ˇK zCp .1 � �/ˇ L/ \ u
?/ndu

� p
n.n�1/

D

�
1

n

Z
Sn�1

ŒVn�1..�ˇK zCp .1 � �/ˇ L/ \ u
?/

p
n�1 �

n.n�1/
p du

� p
n.n�1/

�

�
1

n

Z
Sn�1

Œ�Vn�1.K \ u
?/

p
n�1

C .1 � �/Vn�1.L \ u
?/

p
n�1 �

n.n�1/
p du

� p
n.n�1/

� �

�
1

n

Z
Sn�1

Vn�1.K \ u
?/ndu

� p
n.n�1/

C .1 � �/

�
1

n

Z
Sn�1

Vn�1.L \ u
?/ndu

� p
n.n�1/

D �

�
1

n

Z
Sn�1

�.IK; u/ndu

� p
n.n�1/

C .1 � �/

�
1

n

Z
Sn�1

�.IL; u/ndu

� p
n.n�1/

D �V.IK/
p

n.n�1/ C .1 � �/V.IL/
p

n.n�1/ : (3.3)

From the equality conditions of inequality (3.2) and the Minkowski integral inequal-
ity, we know that equality holds in inequality (3.3) if and only if K and L are dilates.
This gives inequality (1.6) and its equality condition.

(2) For �1 < p < 0 or n.n � 1/ < p < C1, similar to the proof of inequality
(1.6), applying inequality (1.4) to the .n � 1/-dimensional case, we may obtain the
reverse form of inequality (3.2). This together with the Minkowski integral inequality
and notice n.n�1/

p
< 0 or 0 < n.n�1/

p
< 1, we get inequality (1.7) and its equality

condition.
(3) For p D C1, inequality (1.7) takes the following form:

lim
p!C1

V.I.�ˇK zCp .1 � �/ˇ L//
1

n.n�1/

� lim
p!C1

Œ�V .IK/
p

n.n�1/ C .1 � �/V.IL/
p

n.n�1/ �
1
p :

This, together with (2.2) and (2.9), becomes that

V.I.K [ L//
1

n.n�1/ � max¹V.IK/
1

n.n�1/ ; V .IL/
1

n.n�1/ º;

i.e.,

V.I.K [ L// � max¹V.IK/; V .IL/º: (3.4)
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Because K [ L � K;L, thus for u 2 Sn�1,

�.I.K [ L/; u/ D Vn�1..K [ L/ \ u
?/

� max¹Vn�1.K \ u?/; Vn�1.L \ u?/º

D max¹�.IK; u/; �.IL; u/º:

This means that (3.4) is true. Hence the case p D C1 of inequality (1.7) holds.
Equality holds in (3.4) if and only ifK �L orL�K. Indeed, ifK �L orL�K,

then equality holds in (3.4). Conversely, for instance, assuming max¹V.IK/; V .IL/º
D V.IK/, if V.I.K [L//D V.IK/, and notice thatK [L � K, thenK [LD K.
This implies L � K.

For p D �1, inequality (1.7) becomes as follows:

lim
p!�1

V.I.�ˇK zCp .1 � �/ˇ L//
1

n.n�1/

� lim
p!�1

Œ�V .IK/
p

n.n�1/ C .1 � �/V.IL/
p

n.n�1/ �
1
p :

This, together with (2.8) and (2.10), gives that

V.I.K \ L//
1

n.n�1/ � min¹V.IK/
1

n.n�1/ ; V .IL/
1

n.n�1/ º;

i.e.,

V.I.K \ L// � min¹V.IK/; V .IL/º: (3.5)

Similar to the proof of (3.4), we can obtain inequality (3.5) and its equality condi-
tion, i.e., the case p D �1 of inequality (1.7) and its equality condition are true.

(4) For p D 0, applying inequality (2.12) to the .n � 1/-dimensional case and
combining with (3.1), we know that for � 2 Œ0; 1� and any u 2 Sn�1,

Vn�1..�ˇK zC0 .1 � �/ˇ L/ \ u
?/

D Vn�1.�ˇ .K \ u
?/ zC0 .1 � �/ˇ .L \ u

?//

� Vn�1.K \ u
?/�Vn�1.L \ u

?/1��: (3.6)

According to the equality condition of inequality (1.7), we see that equality holds in
(3.6) for � 2 .0; 1/ if and only if K \ u? and L \ u? are dilates for any u 2 Sn�1,
i.e., K and L are dilates.

From (2.5), (2.15), (3.6) and the Hölder integral inequality, we deduce that for
� 2 .0; 1/,

V.I.�ˇK zC0 .1 � �/ˇ L//

D
1

n

Z
Sn�1

�.I.�ˇK zC0 .1 � �/ˇ L/; u/
ndu
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D
1

n

Z
Sn�1

Vn�1..�ˇK zC0 .1 � �/ˇ L/ \ u
?/ndu

�
1

n

Z
Sn�1

ŒVn�1.K \ u
?/�Vn�1.L \ u

?/1���ndu

D
1

n

Z
Sn�1

�.IK; u/n��.IL; u/n.1��/du

�

�
1

n

Z
Sn�1

.�.IK; u/n�/
1
�du

���
1

n

Z
Sn�1

.�.IL; u/n.1��//
1
1��du

�1��
D

�
1

n

Z
Sn�1

�.IK; u/ndu

���
1

n

Z
Sn�1

�.IL; u/ndu

�1��
D V.IK/�V.IL/1��:

This yields inequality (1.8). And the equality conditions of (3.6) and the Hölder integ-
ral inequality give that equality holds in (1.8) for � 2 .0; 1/ if and only ifK and L are
dilates.

To sum up, we complete the proof of Theorem 1.1.

4. Lp-Brunn–Minkowski inequality for star dualities of intersection
bodies

Theorem 1.2 deals with the Lp-Brunn–Minkowski inequality for star dualities of
intersection bodies. Now, we give its proof.

Lemma 4.1. If K;L 2Kn and � 2 Œ0; 1�, then for any u 2 Sn�1,

�.K \ u?/C .1 � �/.L \ u?/ � .�K C .1 � �/L/ \ u?: (4.1)

When � 2 .0; 1/, equality holds in (4.1) if K and L are homothetic.

Proof. For � 2 .0; 1/ and any u 2 Sn�1,

8x D x1 C x2 2 �.K \ u
?/C .1 � �/.L \ u?/

, x1 2 �.K \ u
?/ and x2 2 .1 � �/.L \ u?/

, ��1x1 2 K \ u
? and .1 � �/�1x2 2 L \ u?

, ��1x1 2 K and ��1x1 2 u?; .1 � �/�1x2 2 L and .1 � �/�1x2 2 u?

, x1 2 �K and x1 2 �u?; x2 2 .1 � �/L and x2 2 .1 � �/u?

, x1 2 �K and x1 2 u?; x2 2 .1 � �/L and x2 2 u?

) x D x1 C x2 2 �K C .1 � �/L and x D x1 C x2 2 u?

, x 2 Œ�K C .1 � �/L� \ u?:
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This gives (4.1). We easily verify that equality holds in (4.1) for � 2 .0; 1/ if K and
L are homothetic.

Proof of Theorem 1.2. (1) If p D 1, from (4.1) and the .n � 1/-dimensional case of
inequality (1.1), we obtain that for K;L 2Kn and any u 2 Sn�1,

Vn�1.Œ�K C .1 � �/L� \ u
?/

1
n�1

� Vn�1.�.K \ u
?/C .1 � �/.L \ u?//

1
n�1

� �Vn�1.K \ u
?/

1
n�1 C .1 � �/Vn�1.L \ u

?/
1
n�1 : (4.2)

Now we give the equality condition of (4.2). If equality holds in (4.2), i.e.,

Vn�1.Œ�K C .1 � �/L� \ u
?/

1
n�1

D �Vn�1.K \ u
?/

1
n�1 C .1 � �/Vn�1.L \ u

?/
1
n�1 ;

this, and (4.2) imply that

Vn�1.�.K \ u
?/C .1 � �/.L \ u?//

1
n�1

D �Vn�1.K \ u
?/

1
n�1 C .1 � �/Vn�1.L \ u

?/
1
n�1 :

This, together with the equality condition of inequality (1.1), means that when � 2
.0; 1/, K \ u? and L \ u? are homothetic for any u 2 Sn�1, i.e., K and L are
homothetic. Conversely, ifK andL are homothetic, then equality holds in (4.2). Thus,
equality holds in (4.2) for � 2 .0; 1/ if and only if K and L are homothetic.

Hence, by (2.5), (4.2), (2.17) and the Minkowski integral inequality, we deduce
that

V.I ı.�K C .1 � �/L//�
1

n.n�1/

D

�
1

n

Z
Sn�1

�.I ı.�K C .1 � �/L/; u/ndu

�� 1
n.n�1/

D

�
1

n

Z
Sn�1

Œ�.I ı.�K C .1 � �/L/; u/�1��ndu

�� 1
n.n�1/

D

�
1

n

Z
Sn�1

Vn�1..�K C .1 � �/L/ \ u
?/�ndu

�� 1
n.n�1/

D

�
1

n

Z
Sn�1

ŒVn�1..�K C .1 � �/L/ \ u
?/

1
n�1 ��n.n�1/du

�� 1
n.n�1/

�

�
1

n

Z
Sn�1

Œ�Vn�1.K \ u
?/

1
n�1

C .1 � �/Vn�1.L \ u
?/

1
n�1 ��n.n�1/du

�� 1
n.n�1/
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� �

�
1

n

Z
Sn�1

Vn�1.K \ u
?/�ndu

�� 1
n.n�1/

C .1 � �/

�
1

n

Z
Sn�1

Vn�1.L \ u
?/�ndu

�� 1
n.n�1/

D �

�
1

n

Z
Sn�1

�.I ıK;u/ndu

�� 1
n.n�1/

C .1 � �/

�
1

n

Z
Sn�1

�.I ıL; u/ndu

�� 1
n.n�1/

D �V.I ıK/�
1

n.n�1/ C .1 � �/V.I ıL/�
1

n.n�1/ : (4.3)

According to the equality conditions of inequality (4.2) and the Minkowski integral
inequality, we know that equality holds in (4.3) for � 2 .0; 1/ if and only if K and
L are homothetic. From this, we obtain the case p D 1 of inequality (1.9) and its
equality condition.

(2) If 1< p <C1, forK;L2Kn
o , let ˛D V.I ıK/�

1
n.n�1/ , ˇD V.I ıL/�

1
n.n�1/ ,

K D 1
˛
K, L D 1

ˇ
L 2Kn

o . Then by (2.18) we get that

V.I ıK/�
1

n.n�1/ D V

�
I ı
� 1
˛
K
��� 1

n.n�1/

D
1

˛
V.I ıK/�

1
n.n�1/ D 1;

i.e., V.I ıK/ D 1. Similarly, V.I ıL/ D 1. Since for � 2 Œ0; 1�, x� D �˛p

�˛pC.1��/ˇp
2

Œ0; 1�, thus for any u 2 Sn�1,

h.x� �K Cp .1 � x�/ � L; u/
p

D x�h.K; u/p C .1 � x�/h.L; u/p

D
�˛p

�˛p C .1 � �/ˇp
h.K; u/p C

.1 � �/ˇp

�˛p C .1 � �/ˇp
h.L; u/p

D
�h.K; u/p C .1 � �/h.L; u/p

�˛p C .1 � �/ˇp
D
h.� �K Cp .1 � �/ � L; u/

p

�˛p C .1 � �/ˇp
:

This and (2.4) yield that

� �K Cp .1 � �/ � L D Œ�˛
p
C .1 � �/ˇp�

1
p Œx� �K Cp .1 � x�/ � L�

� Œ�˛p C .1 � �/ˇp�
1
p Œx�K C .1 � x�/L�: (4.4)

The equality condition of (2.4) implies that equality holds in (4.4) if and only if
K D L, i.e., K D ˛

ˇ
L which means that K and L are dilates.
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From this, (4.4), (2.17) and (2.18) we deduce that

I ı.� �K Cp .1 � �/ � L/ � I
ı.Œ�˛p C .1 � �/ˇp�

1
p Œx�K C .1 � x�/L�/

D Œ�˛p C .1 � �/ˇp��
n�1
p I ı.x�K C .1 � x�/L/: (4.5)

Equality holds in (4.5) if and only if K and L are dilates.
Therefore, from (4.5), (2.18) and (4.3), and notice that V.I ıK/ D V.I ıL/ D 1,

we infer that

V.I ı.� �K Cp .1 � �/ � L//
� 1
n.n�1/

� V.Œ�˛p C .1 � �/ˇp��
n�1
p I ı.x�K C .1 � x�/L//�

1
n.n�1/

D Œ.�˛p C .1 � �/ˇp/�
n.n�1/
p ��

1
n.n�1/V.I ı.x�K C .1 � x�/L//�

1
n.n�1/

� Œ�˛p C .1 � �/ˇp�
1
p Œx�V.I ıK/�

1
n.n�1/ C .1 � x�/V.I ıL/�

1
n.n�1/ �

D Œ�˛p C .1 � �/ˇp�
1
p .x�C 1 � x�/ D Œ�˛p C .1 � �/ˇp�

1
p :

Thus,

V.I ı.� �K Cp .1 � �/ � L//
�

p
n.n�1/ � �˛p C .1 � �/ˇp

D �V.I ıK/�
p

n.n�1/ C .1 � �/V.I ıL/�
p

n.n�1/ :

This is the case 1 < p <C1 of inequality (1.9). The equality condition of (4.5) gives
that the equality holds in the case 1 < p < C1 of inequality (1.9) if and only if K
and L are dilates.

(2) For p DC1, by (2.2) and (2.3), inequality (1.9) becomes the following form:

V.I ı.conv.K [ L///�
1

n.n�1/ � max¹V.I ıK/�
1

n.n�1/ ; V .I ıL/�
1

n.n�1/ º;

or equivalently,

V.I ı.conv.K [ L/// � min¹V.I ıK/; V .I ıL/º: (4.6)

Since K; L � conv.K [ L/, thus IK; IL � I.conv.K [ L//. This together with
(2.13) implies I ıK; I ıL � I ı.conv.K [ L//. Therefore, (4.6) is true.

Similar to the derivation of the equality condition of (3.4), we easily see that equal-
ity holds in (4.6) if and only ifK �L orL�K. So the case of pDC1 of inequality
(1.9) is proven.

In summary, we complete the proof of Theorem 1.2.
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