L_p -dual Brunn–Minkowski inequality for intersection bodies

Weidong Wang

Abstract. In 2003, associated with the radial Minkowski additions of star bodies, Zhao and Leng established the dual Brunn–Minkowski inequality for intersection bodies. In this paper, associated with the L_p -radial Minkowski combinations of star bodies, we firstly prove the L_p -dual Brunn–Minkowski inequality for intersection bodies. Further, associated with the L_p -Minkowski combinations of convex bodies, we give the L_p -Brunn–Minkowski inequality for star dualities of intersection bodies.

1. Introduction and main results

The setting for this paper is the n-dimensional Euclidean space \mathbb{R}^n . Let \mathcal{K}^n denote the set of convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^n , for the set of convex bodies containing the origin in their interiors in \mathbb{R}^n , we write \mathcal{K}^n_o . Let \mathcal{S}^n_o denote the set of star bodies (with respect to origin) in \mathbb{R}^n . Let B denote the n-dimensional Euclidean unit ball centered at the origin, and the surface of B is written S^{n-1} . We use V(K) to denote the n-dimensional volume of a body K.

The famous Brunn–Minkowski inequality for the volume is an important inequality in the theory of convex bodies. One form of it states the following: if $K, L \in \mathcal{K}^n$, then

$$V(K+L)^{\frac{1}{n}} > V(K)^{\frac{1}{n}} + V(L)^{\frac{1}{n}},$$
 (1.1)

with equality if and only if K and L are homothetic. Here, K + L denotes the Minkowski addition of K and L.

In 1962, Firey (see [5]) introduced the L_p -Minkowski combinations of convex bodies (also called the Firey p-combinations) and established the following L_p -Brunn–Minkowski inequality. If $K, L \in \mathcal{K}_o^n$ and $1 \le p \le +\infty$ (for p = 1, it can be assumed that $K, L \in \mathcal{K}^n$), then

$$V(K +_{p} L)^{\frac{p}{n}} \ge V(K)^{\frac{p}{n}} + V(L)^{\frac{p}{n}}.$$
 (1.2)

Mathematics Subject Classification 2020: 52A20 (primary); 52A40 (secondary).

Keywords: intersection body, L_p -radial Minkowski combination, L_p -dual Brunn–Minkowski inequality, L_p -Brunn–Minkowski inequality, star duality.

Equality holds in (1.2) for p = 1 if and only if K and L are homothetic, for 1 if and only if <math>K and L are dilates, for $p = +\infty$ if and only if $K \subseteq L$ or $L \subseteq K$. Here, $K +_p L$ denotes the L_p -Minkowski addition of K and L.

The dual form of the L_p -Brunn–Minkowski inequality is the following L_p -dual Brunn–Minkowski inequality (see [6]). If $K, L \in \mathcal{S}_o^n$ and real $p \neq 0$, then for 0 ,

$$V(K +_{p} L)^{\frac{p}{n}} \le V(K)^{\frac{p}{n}} + V(L)^{\frac{p}{n}}; \tag{1.3}$$

 $for -\infty \le p < 0 \ or \ n < p \le +\infty$, then

$$V(K + \frac{1}{p}L)^{\frac{p}{n}} \ge V(K)^{\frac{p}{n}} + V(L)^{\frac{p}{n}}. \tag{1.4}$$

For $p \neq \pm \infty$, equality hold in (1.3) and (1.4) if and only if K and L are dilates; for $p = \pm \infty$, equality holds in (1.4) if and only if $K \subseteq L$ or $L \subseteq K$. Here, $K +_p L$ denotes the L_p -radial Minkowski addition of K and L.

In particular, the case p=1 of inequality (1.3) shows the dual Brunn–Minkowski inequality as follows: If $K, L \in \mathcal{S}_{o}^{n}$, then

$$V(K + L)^{\frac{1}{n}} \le V(K)^{\frac{1}{n}} + V(L)^{\frac{1}{n}},$$

with equality if and only if K and L are dilates. Here, K + L = K + L denotes the radial Minkowski addition of K and L.

The researches of the Brunn–Minkowski inequality and its dual versions in various forms have made a lot of achievements. For extensive and beautiful surveys on it we refer, e.g., to [1–4,6–9,12,13,15–17,19–22,25].

Associated with the radial Minkowski additions of star bodies, Zhao and Leng (see [23]) established the dual Brunn–Minkowski inequality for intersection bodies as follows.

Theorem 1.A. If $K, L \in \mathcal{S}_o^n$, then

$$V(I(K + L))^{\frac{1}{n(n-1)}} \le V(IK)^{\frac{1}{n(n-1)}} + V(IL)^{\frac{1}{n(n-1)}}, \tag{1.5}$$

with equality if and only if K and L are dilates. Here IM denotes the intersection body of $M \in \mathcal{S}_o^n$.

In this paper, associated with the L_p -radial Minkowski combinations of star bodies, we firstly give the L_p -dual Brunn–Minkowski inequality for intersection bodies as follows.

Theorem 1.1. If $K, L \in \mathcal{S}_o^n$, $\lambda \in [0, 1]$ and p is any real, then for 0 ,

$$V(I(\lambda \odot K \widetilde{+}_p (1-\lambda) \odot L))^{\frac{p}{n(n-1)}} \le \lambda V(IK)^{\frac{p}{n(n-1)}} + (1-\lambda)V(IL)^{\frac{p}{n(n-1)}};$$
(1.6)

 $for -\infty \le p < 0 \ or \ n(n-1) < p \le +\infty,$

$$V(I(\lambda \odot K \widetilde{+}_{p} (1 - \lambda) \odot L))^{\frac{p}{n(n-1)}} \ge \lambda V(IK)^{\frac{p}{n(n-1)}} + (1 - \lambda)V(IL)^{\frac{p}{n(n-1)}};$$
(1.7)

for p = 0,

$$V(I(\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L)) \le V(IK)^{\lambda} V(IL)^{1 - \lambda}. \tag{1.8}$$

When $\lambda \in (0, 1)$, equality holds in every above inequality for $p \neq \pm \infty$ if and only if K and L are dilates, for $p = \pm \infty$ if and only if $K \subseteq L$ or $L \subseteq K$. When $\lambda = 0$ or $\lambda = 1$, above inequalities all become equalities.

Let p = 1 and $\lambda = \frac{1}{2}$ in Theorem 1.1, then inequality (1.6) yields inequality (1.5). Next, respective to the L_p -Minkowski combinations of convex bodies, we prove the following L_p -Brunn–Minkowski inequality for star dualities of intersection bodies.

Theorem 1.2. If $K, L \in \mathcal{K}_o^n$, $1 \le p \le +\infty$ (for p = 1, it can be assumed that $K, L \in \mathcal{K}^n$) and $\lambda \in [0, 1]$, then

$$V(I^{\circ}(\lambda \cdot K +_{p} (1 - \lambda) \cdot L))^{-\frac{p}{n(n-1)}}$$

$$\geq \lambda V(I^{\circ}K)^{-\frac{p}{n(n-1)}} + (1 - \lambda)V(I^{\circ}L)^{-\frac{p}{n(n-1)}}.$$
(1.9)

When $\lambda \in (0, 1)$, equality holds in (1.9) for p = 1 if and only if K and L are homothetic, for 1 if and only if <math>K and L are dilates, for $p = +\infty$ if and only if $K \subseteq L$ or $L \subseteq K$. When $\lambda = 0$ or $\lambda = 1$, (1.9) becomes an equality. Here, $I \circ M = (IM) \circ$ denotes the star duality of the intersection body IM.

Obviously, the case p=1 and $\lambda=\frac{1}{2}$ of inequality (1.9) implies a dual form of inequality (1.5) as follows: If $K, L \in \mathcal{K}^n$, then

$$V(I^{\circ}(K+L))^{-\frac{1}{n(n-1)}} \ge V(I^{\circ}K)^{-\frac{1}{n(n-1)}} + V(I^{\circ}L)^{-\frac{1}{n(n-1)}},$$

with equality if and only if K and L are homothetic.

2. Background material

2.1. Support functions and L_p -Minkowski combinations

If $K \in \mathcal{K}^n$, then its support function, $h_K = h(K, \cdot) : \mathbb{R}^n \to (-\infty, +\infty)$, is defined by (see [7, 16])

$$h(K, x) = \max\{x \cdot y : y \in K\}, \quad x \in \mathbb{R}^n,$$

where $x \cdot y$ denotes the standard inner product of x and y.

For $1 \leq p \leq +\infty$, the L_p -Minkowski combinations (or called the Firey L_p -combinations) of convex bodies were introduced by Firey (see [5,12]). For $K,L\in\mathcal{K}_o^n$, $1\leq p<+\infty$ (for p=1, it can be assumed that $K,L\in\mathcal{K}^n$) and $\lambda,\mu\geq 0$ (not both zero), the L_p -Minkowski combination, $\lambda\cdot K+_p\mu\cdot L\in\mathcal{K}_o^n$, of K and L is defined by

$$h(\lambda \cdot K +_{p} \mu \cdot L, \cdot) = [\lambda h(K, \cdot)^{p} + \mu h(L, \cdot)^{p}]^{\frac{1}{p}}, \tag{2.1}$$

where $\lambda \cdot K = \lambda^{\frac{1}{p}} K$. If $\lambda = \mu = 1$, then $K +_p L$ is called the L_p -Minkowski addition of K and L. Obviously, if p = 1, then $\lambda \cdot K +_1 \mu \cdot L = \lambda K + \mu L$ is the Minkowski combination of K and L. For $p = +\infty$, according to the fact for $a, b \geq 0$,

$$\lim_{p \to +\infty} [\lambda a^p + \mu b^p]^{\frac{1}{p}} = \max\{a, b\},\tag{2.2}$$

we define for $K, L \in \mathcal{K}_o^n$ (see [16]),

$$\lambda \cdot K +_{+\infty} \mu \cdot L = \operatorname{conv}(K \cup L). \tag{2.3}$$

From (2.1) and the Jensen's inequality, we easily know that if $K, L \in \mathcal{K}_o^n$, $1 and <math>\lambda + \mu = 1$ ($\lambda, \mu \ge 0$), then

$$\lambda K + \mu L \subseteq \lambda \cdot K +_{p} \mu \cdot L. \tag{2.4}$$

Equality holds in (2.4) if and only if K = L.

Here, we deal with the equality condition of (2.4). Indeed, if $\lambda K + \mu L = \lambda \cdot K +_{p} \mu \cdot L$, i.e., for any $u \in S^{n-1}$,

$$[\lambda h(K, u) + \mu h(L, u)]^p = \lambda h(K, u)^p + \mu h(L, u)^p.$$

This implies h(K, u) = h(L, u) for any $u \in S^{n-1}$, i.e., K = L. Obviously, if K = L, then equality holds in (2.4).

2.2. Radial functions and L_p -radial Minkowski combinations

If K is a compact star-shaped set (about the origin) in \mathbb{R}^n , its radial function, $\rho_K = \rho(K,\cdot) : \mathbb{R}^n \setminus \{0\} \to [0,+\infty)$, is defined by (see [7])

$$\rho(K, x) = \max\{\lambda \ge 0 : \lambda x \in K\}, \quad x \in \mathbb{R}^n \setminus \{0\}.$$

If ρ_K is positive and continuous, K will be called a star body (about the origin).

From the radial function, we have the following volume formula of a body K:

$$V(K) = \frac{1}{n} \int_{S^{n-1}} \rho(K, u)^n du.$$
 (2.5)

For the radial function, we see that if $K \in \mathcal{S}_o^n$ and ζ is a subspace of \mathbb{R}^n , then for any $u \in \mathcal{S}^{n-1} \cap \zeta$ (see [7]),

$$\rho(K \cap \zeta, u) = \rho(K, u). \tag{2.6}$$

For $-\infty \le p \le +\infty$, the L_p -radial Minkowski combinations of star bodies are defined as follows: For $K, L \in \mathcal{S}_o^n$, $\lambda, \mu \ge 0$ (not both zero), $-\infty and <math>p \ne 0$, the L_p -radial Minkowski combination, $\lambda \odot K + \mu \odot L \in \mathcal{S}_o^n$, of K and L is defined by (see [16])

$$\rho(\lambda \odot K \widetilde{+}_p \mu \odot L, \cdot) = [\lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p]^{\frac{1}{p}}. \tag{2.7}$$

If $\lambda = \mu = 1$, then K + 1 L is called the L_p -radial Minkowski addition of K and L. In particular, K + 1 L = K + 1 L is the radial Minkowski addition of K and K + 1 L. For K + 1 P and K + 1 S and K + 1 P and K + 1

$$\lim_{p \to -\infty} [\lambda \rho(K, \cdot)^p + \mu \rho(L, \cdot)^p]^{\frac{1}{p}} = \min\{\rho_K, \rho_L\}, \tag{2.8}$$

we define for $K, L \in \mathcal{S}_o^n$,

$$\lambda \odot K \widetilde{+}_{+\infty} \mu \odot L = K \cup L, \tag{2.9}$$

$$\lambda \odot K \widetilde{+}_{-\infty} \mu \odot L = K \cap L. \tag{2.10}$$

For $p=0, \lambda \in [0,1]$, define $\lambda \odot K +_0 (1-\lambda) \odot L$ which is called the log-radial Minkowski combination of K and L by (see [18])

$$\rho(\lambda \odot K \widetilde{+}_{0} (1 - \lambda) \odot L, \cdot) = \lim_{p \to 0} \rho(\lambda \odot K \widetilde{+}_{p} (1 - \lambda) \odot L, \cdot)$$

$$= \lim_{p \to 0} [\lambda \rho(K, \cdot)^{p} + (1 - \lambda) \rho(L, \cdot)^{p}]^{\frac{1}{p}}$$

$$= \rho(K, \cdot)^{\lambda} \rho(L, \cdot)^{1 - \lambda}. \tag{2.11}$$

For the log-radial Minkowski combination, Wang and Liu (see [18]) established the following dual log-Brunn–Minkowski inequality: If $K, L \in \mathcal{S}_o^n$ and $\lambda \in [0, 1]$, then

$$V(\lambda \odot K + 0 (1 - \lambda) \odot L) \le V(K)^{\lambda} V(L)^{1 - \lambda}, \tag{2.12}$$

with equality for $\lambda \in (0, 1)$ if and only if K and L are dilates. For $\lambda = 0$ or $\lambda = 1$, (2.12) becomes an equality.

2.3. Star dualities

In 1999, Moszyńska (see [14]) introduced the notion of star duality. For $K \in \mathcal{S}_o^n$, the star duality, K° , of K is given by

$$\rho(K^{\circ}, u) = \frac{1}{\rho(K, u)},\tag{2.13}$$

for all $u \in S^{n-1}$. From (2.13), we easily see that for $\lambda > 0$,

$$(\lambda K)^{\circ} = \frac{1}{\lambda} K^{\circ}. \tag{2.14}$$

2.4. Intersection bodies

Intersection bodies were first explicitly defined and named by Lutwak (see [11]). For each $K \in \mathcal{S}_o^n$, the intersection body, IK, of K is an origin-symmetric star body whose radial function in the direction $u \in S^{n-1}$ is equal to the (n-1)-dimensional volume of the section of K by the (n-1)-dimensional subspace u^{\perp} orthogonal to u. That is, for any $u \in S^{n-1}$,

$$\rho(IK, u) = V_{n-1}(K \cap u^{\perp}), \tag{2.15}$$

where V_{n-1} denotes (n-1)-dimensional volume.

From (2.15), we know that the intersection body has the following property: If $K \in \mathcal{S}_o^n$, then for $\lambda > 0$,

$$I(\lambda K) = \lambda^{n-1} I K. \tag{2.16}$$

The intersection body is a very important object of study in the Brunn–Minkowski theory. A number of important results regarding intersection bodies come together in books [7, 16].

From (2.13) and (2.15), for the star duality $I^{\circ}K$ of intersection body IK, we have that for any $u \in S^{n-1}$,

$$\rho(I^{\circ}K, u)^{-1} = \rho(IK, u) = V_{n-1}(K \cap u^{\perp}). \tag{2.17}$$

Hence, (2.14), (2.16) and (2.17) show that for $\lambda > 0$,

$$I^{\circ}(\lambda K) = \frac{1}{\lambda^{n-1}} I^{\circ} K. \tag{2.18}$$

For the works of the star dualities of intersection bodies, also see [10, 24].

3. L_p -dual Brunn–Minkowski inequality for intersection bodies

Theorem 1.1 shows the L_p -dual Brunn–Minkowski inequality for intersection bodies. Here, we will prove Theorem 1.1.

Lemma 3.1. If $K, L \in \mathcal{S}_o^n$, p is any real and $\lambda \in [0, 1]$, then for any $u \in S^{n-1}$,

$$(\lambda \odot K \widetilde{+}_p (1 - \lambda) \odot L) \cap u^{\perp} = \lambda \odot (K \cap u^{\perp}) \widetilde{+}_p (1 - \lambda) \odot (L \cap u^{\perp}). \quad (3.1)$$

Here u^{\perp} denotes the (n-1)-dimensional subspace orthogonal to u.

Proof. For $p \neq 0$, according to (2.6) and (2.7), we have for any $v \in S^{n-1} \cap u^{\perp}$,

$$\rho((\lambda \odot K \stackrel{\sim}{+}_p (1 - \lambda) \odot L) \cap u^{\perp}, v)^p = \rho(\lambda \odot K \stackrel{\sim}{+}_p (1 - \lambda) \odot L, v)^p$$

$$= \lambda \rho(K, v)^p + (1 - \lambda) \rho(L, v)^p$$

$$= \lambda \rho(K \cap u^{\perp}, v)^p + (1 - \lambda) \rho(L \cap u^{\perp}, v)^p$$

$$= \rho(\lambda \odot (K \cap u^{\perp}) \stackrel{\sim}{+}_p (1 - \lambda) \odot (L \cap u^{\perp}), v)^p.$$

This gives the case $p \neq 0$ of (3.1).

For p = 0, by (2.6) and (2.11) we have that for any $v \in S^{n-1} \cap u^{\perp}$,

$$\rho((\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L) \cap u^{\perp}, v) = \rho(\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L, v)$$

$$= \rho(K, v)^{\lambda} \rho(L, v)^{1 - \lambda} = \rho(K \cap u^{\perp}, v)^{\lambda} \rho(L \cap u^{\perp}, v)^{1 - \lambda}$$

$$= \rho(\lambda \odot (K \cap u^{\perp}) \widetilde{+}_0 (1 - \lambda) \odot (L \cap u^{\perp}), v).$$

This provides the case p = 0 of (3.1).

Proof of Theorem 1.1. (1) For 0 , applying inequality (1.3) to the <math>(n - 1)-dimensional case and combining with (3.1), we have that for $\lambda \in [0, 1]$ and any $u \in S^{n-1}$,

$$V_{n-1}((\lambda \odot K \widetilde{+}_{p} (1 - \lambda) \odot L) \cap u^{\perp})^{\frac{p}{n-1}}$$

$$= V_{n-1}(\lambda \odot (K \cap u^{\perp}) \widetilde{+}_{p} (1 - \lambda) \odot (L \cap u^{\perp}))^{\frac{p}{n-1}}$$

$$\leq \lambda V_{n-1}(K \cap u^{\perp})^{\frac{p}{n-1}} + (1 - \lambda) V_{n-1}(L \cap u^{\perp})^{\frac{p}{n-1}}.$$
(3.2)

According to the equality condition of inequality (1.3), we see that equality holds in (3.2) for $\lambda \in (0, 1)$ if and only if $K \cap u^{\perp}$ and $L \cap u^{\perp}$ are dilates for any $u \in S^{n-1}$, i.e., K and L are dilates (see [7, Theorem 7.1.1]).

Notice that $0 implies <math>\frac{n(n-1)}{p} > 1$. From this, by (2.5), (2.15), (3.2) and the Minkowski integral inequality we infer that

$$V(I(\lambda \odot K \widetilde{+}_{p} (1 - \lambda) \odot L))^{\frac{p}{n(n-1)}}$$

$$= \left[\frac{1}{n} \int_{S^{n-1}} \rho(I(\lambda \odot K \widetilde{+}_{p} (1 - \lambda) \odot L), u)^{n} du\right]^{\frac{p}{n(n-1)}}$$

$$\begin{aligned}
&= \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1} ((\lambda \odot K + p (1 - \lambda) \odot L) \cap u^{\perp})^{n} du \right]^{\frac{p}{n(n-1)}} \\
&= \left[\frac{1}{n} \int_{S^{n-1}} [V_{n-1} ((\lambda \odot K + p (1 - \lambda) \odot L) \cap u^{\perp})^{\frac{p}{n-1}}]^{\frac{n(n-1)}{p}} du \right]^{\frac{p}{n(n-1)}} \\
&\leq \left[\frac{1}{n} \int_{S^{n-1}} [\lambda V_{n-1} (K \cap u^{\perp})^{\frac{p}{n-1}}] + (1 - \lambda) V_{n-1} (L \cap u^{\perp})^{\frac{p}{n-1}}]^{\frac{n(n-1)}{p}} du \right]^{\frac{p}{n(n-1)}} \\
&\leq \lambda \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1} (K \cap u^{\perp})^{n} du \right]^{\frac{p}{n(n-1)}} \\
&+ (1 - \lambda) \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1} (L \cap u^{\perp})^{n} du \right]^{\frac{p}{n(n-1)}} \\
&= \lambda \left[\frac{1}{n} \int_{S^{n-1}} \rho (IK, u)^{n} du \right]^{\frac{p}{n(n-1)}} \\
&= \lambda V(IK)^{\frac{p}{n(n-1)}} + (1 - \lambda) V(IL)^{\frac{p}{n(n-1)}}.
\end{aligned} \tag{3.3}$$

From the equality conditions of inequality (3.2) and the Minkowski integral inequality, we know that equality holds in inequality (3.3) if and only if K and L are dilates. This gives inequality (1.6) and its equality condition.

- (2) For $-\infty or <math>n(n-1) , similar to the proof of inequality (1.6), applying inequality (1.4) to the <math>(n-1)$ -dimensional case, we may obtain the reverse form of inequality (3.2). This together with the Minkowski integral inequality and notice $\frac{n(n-1)}{p} < 0$ or $0 < \frac{n(n-1)}{p} < 1$, we get inequality (1.7) and its equality condition.
 - (3) For $p = +\infty$, inequality (1.7) takes the following form:

$$\lim_{p \to +\infty} V(I(\lambda \odot K \widetilde{+}_p (1 - \lambda) \odot L))^{\frac{1}{n(n-1)}}$$

$$\geq \lim_{p \to +\infty} [\lambda V(IK)^{\frac{p}{n(n-1)}} + (1 - \lambda)V(IL)^{\frac{p}{n(n-1)}}]^{\frac{1}{p}}.$$

This, together with (2.2) and (2.9), becomes that

$$V(I(K \cup L))^{\frac{1}{n(n-1)}} \ge \max\{V(IK)^{\frac{1}{n(n-1)}}, V(IL)^{\frac{1}{n(n-1)}}\},$$

i.e.,

$$V(I(K \cup L)) \ge \max\{V(IK), V(IL)\}. \tag{3.4}$$

Because $K \cup L \supseteq K, L$, thus for $u \in S^{n-1}$,

$$\rho(I(K \cup L), u) = V_{n-1}((K \cup L) \cap u^{\perp})$$

$$\geq \max\{V_{n-1}(K \cap u^{\perp}), V_{n-1}(L \cap u^{\perp})\}$$

$$= \max\{\rho(IK, u), \rho(IL, u)\}.$$

This means that (3.4) is true. Hence the case $p = +\infty$ of inequality (1.7) holds.

Equality holds in (3.4) if and only if $K \subseteq L$ or $L \subseteq K$. Indeed, if $K \subseteq L$ or $L \subseteq K$, then equality holds in (3.4). Conversely, for instance, assuming $\max\{V(IK), V(IL)\}$ = V(IK), if $V(I(K \cup L)) = V(IK)$, and notice that $K \cup L \supseteq K$, then $K \cup L = K$. This implies $L \subseteq K$.

For $p = -\infty$, inequality (1.7) becomes as follows:

$$\begin{split} &\lim_{p \to -\infty} V(I(\lambda \odot K \ \widetilde{+}_p \ (1-\lambda) \odot L))^{\frac{1}{n(n-1)}} \\ &\leq \lim_{p \to -\infty} [\lambda V(IK)^{\frac{p}{n(n-1)}} + (1-\lambda)V(IL)^{\frac{p}{n(n-1)}}]^{\frac{1}{p}}. \end{split}$$

This, together with (2.8) and (2.10), gives that

$$V(I(K \cap L))^{\frac{1}{n(n-1)}} < \min\{V(IK)^{\frac{1}{n(n-1)}}, V(IL)^{\frac{1}{n(n-1)}}\},$$

i.e.,

$$V(I(K \cap L)) \le \min\{V(IK), V(IL)\}. \tag{3.5}$$

Similar to the proof of (3.4), we can obtain inequality (3.5) and its equality condition, i.e., the case $p = -\infty$ of inequality (1.7) and its equality condition are true.

(4) For p = 0, applying inequality (2.12) to the (n - 1)-dimensional case and combining with (3.1), we know that for $\lambda \in [0, 1]$ and any $u \in S^{n-1}$,

$$V_{n-1}((\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L) \cap u^{\perp})$$

$$= V_{n-1}(\lambda \odot (K \cap u^{\perp}) \widetilde{+}_0 (1 - \lambda) \odot (L \cap u^{\perp}))$$

$$\leq V_{n-1}(K \cap u^{\perp})^{\lambda} V_{n-1}(L \cap u^{\perp})^{1-\lambda}. \tag{3.6}$$

According to the equality condition of inequality (1.7), we see that equality holds in (3.6) for $\lambda \in (0, 1)$ if and only if $K \cap u^{\perp}$ and $L \cap u^{\perp}$ are dilates for any $u \in S^{n-1}$, i.e., K and L are dilates.

From (2.5), (2.15), (3.6) and the Hölder integral inequality, we deduce that for $\lambda \in (0, 1)$,

$$V(I(\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L))$$

$$= \frac{1}{n} \int_{S^{n-1}} \rho(I(\lambda \odot K \widetilde{+}_0 (1 - \lambda) \odot L), u)^n du$$

$$\begin{split} &= \frac{1}{n} \int_{S^{n-1}} V_{n-1} ((\lambda \odot K \widetilde{+}_{0} (1 - \lambda) \odot L) \cap u^{\perp})^{n} du \\ &\leq \frac{1}{n} \int_{S^{n-1}} [V_{n-1} (K \cap u^{\perp})^{\lambda} V_{n-1} (L \cap u^{\perp})^{1-\lambda}]^{n} du \\ &= \frac{1}{n} \int_{S^{n-1}} \rho (IK, u)^{n\lambda} \rho (IL, u)^{n(1-\lambda)} du \\ &\leq \left[\frac{1}{n} \int_{S^{n-1}} (\rho (IK, u)^{n\lambda})^{\frac{1}{\lambda}} du \right]^{\lambda} \left[\frac{1}{n} \int_{S^{n-1}} (\rho (IL, u)^{n(1-\lambda)})^{\frac{1}{1-\lambda}} du \right]^{1-\lambda} \\ &= \left[\frac{1}{n} \int_{S^{n-1}} \rho (IK, u)^{n} du \right]^{\lambda} \left[\frac{1}{n} \int_{S^{n-1}} \rho (IL, u)^{n} du \right]^{1-\lambda} \\ &= V(IK)^{\lambda} V(IL)^{1-\lambda}. \end{split}$$

This yields inequality (1.8). And the equality conditions of (3.6) and the Hölder integral inequality give that equality holds in (1.8) for $\lambda \in (0, 1)$ if and only if K and L are dilates.

To sum up, we complete the proof of Theorem 1.1.

4. L_p -Brunn–Minkowski inequality for star dualities of intersection bodies

Theorem 1.2 deals with the L_p -Brunn–Minkowski inequality for star dualities of intersection bodies. Now, we give its proof.

Lemma 4.1. If
$$K, L \in \mathcal{K}^n$$
 and $\lambda \in [0, 1]$, then for any $u \in S^{n-1}$,
$$\lambda(K \cap u^{\perp}) + (1 - \lambda)(L \cap u^{\perp}) \subseteq (\lambda K + (1 - \lambda)L) \cap u^{\perp}. \tag{4.1}$$

When $\lambda \in (0, 1)$, equality holds in (4.1) if K and L are homothetic.

Proof. For $\lambda \in (0,1)$ and any $u \in S^{n-1}$,

$$\forall x = x_1 + x_2 \in \lambda(K \cap u^{\perp}) + (1 - \lambda)(L \cap u^{\perp})$$

$$\Leftrightarrow x_1 \in \lambda(K \cap u^{\perp}) \text{ and } x_2 \in (1 - \lambda)(L \cap u^{\perp})$$

$$\Leftrightarrow \lambda^{-1}x_1 \in K \cap u^{\perp} \text{ and } (1 - \lambda)^{-1}x_2 \in L \cap u^{\perp}$$

$$\Leftrightarrow \lambda^{-1}x_1 \in K \text{ and } \lambda^{-1}x_1 \in u^{\perp}, (1 - \lambda)^{-1}x_2 \in L \text{ and } (1 - \lambda)^{-1}x_2 \in u^{\perp}$$

$$\Leftrightarrow x_1 \in \lambda K \text{ and } x_1 \in \lambda u^{\perp}, x_2 \in (1 - \lambda)L \text{ and } x_2 \in (1 - \lambda)u^{\perp}$$

$$\Leftrightarrow x_1 \in \lambda K \text{ and } x_1 \in u^{\perp}, x_2 \in (1 - \lambda)L \text{ and } x_2 \in u^{\perp}$$

$$\Rightarrow x = x_1 + x_2 \in \lambda K + (1 - \lambda)L \text{ and } x = x_1 + x_2 \in u^{\perp}$$

$$\Leftrightarrow x \in [\lambda K + (1 - \lambda)L] \cap u^{\perp}.$$

This gives (4.1). We easily verify that equality holds in (4.1) for $\lambda \in (0, 1)$ if K and L are homothetic.

Proof of Theorem 1.2. (1) If p = 1, from (4.1) and the (n - 1)-dimensional case of inequality (1.1), we obtain that for $K, L \in \mathcal{K}^n$ and any $u \in S^{n-1}$,

$$V_{n-1}([\lambda K + (1-\lambda)L] \cap u^{\perp})^{\frac{1}{n-1}}$$

$$\geq V_{n-1}(\lambda (K \cap u^{\perp}) + (1-\lambda)(L \cap u^{\perp}))^{\frac{1}{n-1}}$$

$$\geq \lambda V_{n-1}(K \cap u^{\perp})^{\frac{1}{n-1}} + (1-\lambda)V_{n-1}(L \cap u^{\perp})^{\frac{1}{n-1}}.$$
(4.2)

Now we give the equality condition of (4.2). If equality holds in (4.2), i.e.,

$$V_{n-1}([\lambda K + (1-\lambda)L] \cap u^{\perp})^{\frac{1}{n-1}}$$

= $\lambda V_{n-1}(K \cap u^{\perp})^{\frac{1}{n-1}} + (1-\lambda)V_{n-1}(L \cap u^{\perp})^{\frac{1}{n-1}}$,

this, and (4.2) imply that

$$V_{n-1}(\lambda(K \cap u^{\perp}) + (1 - \lambda)(L \cap u^{\perp}))^{\frac{1}{n-1}}$$

= $\lambda V_{n-1}(K \cap u^{\perp})^{\frac{1}{n-1}} + (1 - \lambda)V_{n-1}(L \cap u^{\perp})^{\frac{1}{n-1}}.$

This, together with the equality condition of inequality (1.1), means that when $\lambda \in (0, 1)$, $K \cap u^{\perp}$ and $L \cap u^{\perp}$ are homothetic for any $u \in S^{n-1}$, i.e., K and L are homothetic. Conversely, if K and L are homothetic, then equality holds in (4.2). Thus, equality holds in (4.2) for $\lambda \in (0, 1)$ if and only if K and L are homothetic.

Hence, by (2.5), (4.2), (2.17) and the Minkowski integral inequality, we deduce that

$$V(I^{\circ}(\lambda K + (1 - \lambda)L))^{-\frac{1}{n(n-1)}}$$

$$= \left[\frac{1}{n} \int_{S^{n-1}} \rho(I^{\circ}(\lambda K + (1 - \lambda)L), u)^{n} du\right]^{-\frac{1}{n(n-1)}}$$

$$= \left[\frac{1}{n} \int_{S^{n-1}} [\rho(I^{\circ}(\lambda K + (1 - \lambda)L), u)^{-1}]^{-n} du\right]^{-\frac{1}{n(n-1)}}$$

$$= \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1}((\lambda K + (1 - \lambda)L) \cap u^{\perp})^{-n} du\right]^{-\frac{1}{n(n-1)}}$$

$$= \left[\frac{1}{n} \int_{S^{n-1}} [V_{n-1}((\lambda K + (1 - \lambda)L) \cap u^{\perp})^{\frac{1}{n-1}}]^{-n(n-1)} du\right]^{-\frac{1}{n(n-1)}}$$

$$\geq \left[\frac{1}{n} \int_{S^{n-1}} [\lambda V_{n-1}(K \cap u^{\perp})^{\frac{1}{n-1}}]^{-n(n-1)} du\right]^{-\frac{1}{n(n-1)}}$$

$$+ (1 - \lambda)V_{n-1}(L \cap u^{\perp})^{\frac{1}{n-1}}]^{-n(n-1)} du$$

$$\geq \lambda \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1} (K \cap u^{\perp})^{-n} du \right]^{-\frac{1}{n(n-1)}}$$

$$+ (1 - \lambda) \left[\frac{1}{n} \int_{S^{n-1}} V_{n-1} (L \cap u^{\perp})^{-n} du \right]^{-\frac{1}{n(n-1)}}$$

$$= \lambda \left[\frac{1}{n} \int_{S^{n-1}} \rho (I^{\circ} K, u)^{n} du \right]^{-\frac{1}{n(n-1)}}$$

$$+ (1 - \lambda) \left[\frac{1}{n} \int_{S^{n-1}} \rho (I^{\circ} L, u)^{n} du \right]^{-\frac{1}{n(n-1)}}$$

$$= \lambda V (I^{\circ} K)^{-\frac{1}{n(n-1)}} + (1 - \lambda) V (I^{\circ} L)^{-\frac{1}{n(n-1)}}.$$

$$(4.3)$$

According to the equality conditions of inequality (4.2) and the Minkowski integral inequality, we know that equality holds in (4.3) for $\lambda \in (0, 1)$ if and only if K and L are homothetic. From this, we obtain the case p = 1 of inequality (1.9) and its equality condition.

(2) If $1 , for <math>K, L \in \mathcal{K}_o^n$, let $\alpha = V(I^{\circ}K)^{-\frac{1}{n(n-1)}}$, $\beta = V(I^{\circ}L)^{-\frac{1}{n(n-1)}}$, $\overline{K} = \frac{1}{\alpha}K$, $\overline{L} = \frac{1}{\beta}L \in \mathcal{K}_o^n$. Then by (2.18) we get that

$$V(I^{\circ}\overline{K})^{-\frac{1}{n(n-1)}} = V\left(I^{\circ}\left(\frac{1}{\alpha}K\right)\right)^{-\frac{1}{n(n-1)}} = \frac{1}{\alpha}V(I^{\circ}K)^{-\frac{1}{n(n-1)}} = 1,$$

i.e., $V(I^{\circ}\overline{K}) = 1$. Similarly, $V(I^{\circ}\overline{L}) = 1$. Since for $\lambda \in [0, 1]$, $\overline{\lambda} = \frac{\lambda \alpha^{p}}{\lambda \alpha^{p} + (1 - \lambda)\beta^{p}} \in [0, 1]$, thus for any $u \in S^{n-1}$,

$$\begin{split} h(\overline{\lambda} \cdot \overline{K} +_{p} (1 - \overline{\lambda}) \cdot \overline{L}, u)^{p} \\ &= \overline{\lambda} h(\overline{K}, u)^{p} + (1 - \overline{\lambda}) h(\overline{L}, u)^{p} \\ &= \frac{\lambda \alpha^{p}}{\lambda \alpha^{p} + (1 - \lambda) \beta^{p}} h(\overline{K}, u)^{p} + \frac{(1 - \lambda) \beta^{p}}{\lambda \alpha^{p} + (1 - \lambda) \beta^{p}} h(\overline{L}, u)^{p} \\ &= \frac{\lambda h(K, u)^{p} + (1 - \lambda) h(L, u)^{p}}{\lambda \alpha^{p} + (1 - \lambda) \beta^{p}} = \frac{h(\lambda \cdot K +_{p} (1 - \lambda) \cdot L, u)^{p}}{\lambda \alpha^{p} + (1 - \lambda) \beta^{p}}. \end{split}$$

This and (2.4) yield that

$$\lambda \cdot K +_{p} (1 - \lambda) \cdot L = [\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{\frac{1}{p}} [\overline{\lambda} \cdot \overline{K} +_{p} (1 - \overline{\lambda}) \cdot \overline{L}]$$

$$\supseteq [\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{\frac{1}{p}} [\overline{\lambda} \overline{K} + (1 - \overline{\lambda}) \overline{L}]. \tag{4.4}$$

The equality condition of (2.4) implies that equality holds in (4.4) if and only if $\overline{K} = \overline{L}$, i.e., $K = \frac{\alpha}{B}L$ which means that K and L are dilates.

From this, (4.4), (2.17) and (2.18) we deduce that

$$I^{\circ}(\lambda \cdot K +_{p} (1 - \lambda) \cdot L) \subseteq I^{\circ}([\lambda \alpha^{p} + (1 - \lambda)\beta^{p}]^{\frac{1}{p}}[\overline{\lambda}\overline{K} + (1 - \overline{\lambda})\overline{L}])$$

$$= [\lambda \alpha^{p} + (1 - \lambda)\beta^{p}]^{-\frac{n-1}{p}}I^{\circ}(\overline{\lambda}\overline{K} + (1 - \overline{\lambda})\overline{L}). \quad (4.5)$$

Equality holds in (4.5) if and only if K and L are dilates.

Therefore, from (4.5), (2.18) and (4.3), and notice that $V(I^{\circ}\overline{K}) = V(I^{\circ}\overline{L}) = 1$, we infer that

$$\begin{split} V(I^{\circ}(\lambda \cdot K +_{p} (1 - \lambda) \cdot L))^{-\frac{1}{n(n-1)}} \\ & \geq V([\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{-\frac{n-1}{p}} I^{\circ}(\overline{\lambda} \overline{K} + (1 - \overline{\lambda}) \overline{L}))^{-\frac{1}{n(n-1)}} \\ & = [(\lambda \alpha^{p} + (1 - \lambda) \beta^{p})^{-\frac{n(n-1)}{p}}]^{-\frac{1}{n(n-1)}} V(I^{\circ}(\overline{\lambda} \overline{K} + (1 - \overline{\lambda}) \overline{L}))^{-\frac{1}{n(n-1)}} \\ & \geq [\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{\frac{1}{p}} [\overline{\lambda} V(I^{\circ} \overline{K})^{-\frac{1}{n(n-1)}} + (1 - \overline{\lambda}) V(I^{\circ} \overline{L})^{-\frac{1}{n(n-1)}}] \\ & = [\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{\frac{1}{p}} (\overline{\lambda} + 1 - \overline{\lambda}) = [\lambda \alpha^{p} + (1 - \lambda) \beta^{p}]^{\frac{1}{p}}. \end{split}$$

Thus,

$$V(I^{\circ}(\lambda \cdot K +_{p} (1 - \lambda) \cdot L))^{-\frac{p}{n(n-1)}} \ge \lambda \alpha^{p} + (1 - \lambda)\beta^{p}$$

$$= \lambda V(I^{\circ}K)^{-\frac{p}{n(n-1)}} + (1 - \lambda)V(I^{\circ}L)^{-\frac{p}{n(n-1)}}.$$

This is the case 1 of inequality (1.9). The equality condition of (4.5) gives that the equality holds in the case <math>1 of inequality (1.9) if and only if <math>K and L are dilates.

(2) For $p = +\infty$, by (2.2) and (2.3), inequality (1.9) becomes the following form:

$$V(I^{\circ}(\text{conv}(K \cup L)))^{-\frac{1}{n(n-1)}} \ge \max\{V(I^{\circ}K)^{-\frac{1}{n(n-1)}}, V(I^{\circ}L)^{-\frac{1}{n(n-1)}}\},$$

or equivalently,

$$V(I^{\circ}(\operatorname{conv}(K \cup L))) \le \min\{V(I^{\circ}K), V(I^{\circ}L)\}. \tag{4.6}$$

Since $K, L \subseteq \text{conv}(K \cup L)$, thus $IK, IL \subseteq I(\text{conv}(K \cup L))$. This together with (2.13) implies $I^{\circ}K, I^{\circ}L \supseteq I^{\circ}(\text{conv}(K \cup L))$. Therefore, (4.6) is true.

Similar to the derivation of the equality condition of (3.4), we easily see that equality holds in (4.6) if and only if $K \subseteq L$ or $L \subseteq K$. So the case of $p = +\infty$ of inequality (1.9) is proven.

In summary, we complete the proof of Theorem 1.2.

Acknowledgements. The author likes to sincerely thank the reviewer for very valuable and helpful comments and suggestions which made the paper more accurate and readable.

Funding. Research is supported in part by the Natural Science Foundation of China (Grant No.11371224).

References

- [1] C. Bianchini, A. Colesanti, D. Pagnini, and A. Roncoroni, On *p*-Brunn–Minkowski inequalities for intrinsic volumes, with $0 \le p < 1$. *Math. Ann.* **387** (2023), no. 1-2, 321–352 Zbl 07735155 MR 4631049
- [2] K. J. Böröczky, E. Lutwak, D. Yang, and G. Zhang, The log-Brunn–Minkowski inequality. Adv. Math. 231 (2012), no. 3-4, 1974–1997 Zbl 1258.52005 MR 2964630
- [3] S. Chen, Y. Huang, Q.-R. Li, and J. Liu, The L_p -Brunn–Minkowski inequality for p < 1. Adv. Math., 368 (2020), article no. 107166 Zbl 1440.52013
- [4] A. Colesanti, G. V. Livshyts, and A. Marsiglietti, On the stability of Brunn–Minkowski type inequalities. *J. Funct. Anal.* 273 (2017), no. 3, 1120–1139 Zbl 1369.52013 MR 3653949
- [5] W. J. Firey, p-means of convex bodies. Math. Scand. 10 (1962), 17–24 Zbl 0188.27303MR 0141003
- [6] R. J. Gardner, The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 3, 355–405 Zbl 1019.26008 MR 1898210
- [7] R. J. Gardner, *Geometric tomography*. Second edn., Encyclopedia Math. Appl. 58, Cambridge University Press, New York, 2006 Zbl 1102.52002 MR 2251886
- [8] R. J. Gardner and A. Zvavitch, Gaussian Brunn–Minkowski inequalities. Trans. Amer. Math. Soc. 362 (2010), no. 10, 5333–5353 Zbl 1205.52002 MR 2657682
- [9] M. A. Hernández Cifre and J. Yepes Nicolás, On Brunn–Minkowski-type inequalities for polar bodies. J. Geom. Anal. 26 (2016), no. 1, 143–155 Zbl 1339.52007 MR 3441506
- [10] F. Lu, W. Mao, and G. Leng, On star duality of mixed intersection bodies, *J. Inequal. Appl.* **37** (2007), article no. 39345 Zbl 1132.52014
- [11] E. Lutwak, Intersection bodies and dual mixed volumes. Adv. in Math. 71 (1988), no. 2, 232–261 Zbl 0657.52002 MR 0963487
- [12] E. Lutwak, The Brunn–Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem. J. Differential Geom. 38 (1993), no. 1, 131–150 Zbl 0788.52007 MR 1231704
- [13] E. Lutwak, Inequalities for mixed projection bodies. Trans. Amer. Math. Soc. 339 (1993), no. 2, 901–916 Zbl 0784.52009 MR 1124171
- [14] M. Moszyńska, Quotient star bodies, intersection bodies, and star duality. J. Math. Anal. Appl. 232 (1999), no. 1, 45–60 Zbl 0928.54007 MR 1683035
- [15] M. Ritoré and J. Yepes Nicolás, Brunn–Minkowski inequalities in product metric measure spaces. Adv. Math. 325 (2018), 824–863 Zbl 1381.52015 MR 3742604
- [16] R. Schneider, Convex bodies: the Brunn–Minkowski theory. expanded edn., Encyclopedia Math. Appl. 151, Cambridge University Press, Cambridge, 2014 Zbl 1287.52001 MR 3155183
- [17] F. E. Schuster, Volume inequalities and additive maps of convex bodies. *Mathematika* 53 (2006), no. 2, 211–234 (2007) Zbl 1129.52002 MR 2343256

- [18] W. Wang and L. Liu, The dual log-Brunn–Minkowski inequalities. *Taiwanese J. Math.* **20** (2016), no. 4, 909–919 Zbl 1357.52011 MR 3535680
- [19] W. Wang, W. Shi, and S. Ye, Dual mixed Orlicz–Brunn–Minkowski inequality and dual Orlicz mixed quermassintegrals. *Indag. Math. (N.S.)* 28 (2017), no. 4, 721–735 Zbl 1379.52008 MR 3679738
- [20] W. Wang and Y. Zhou, Some inequalities for *p*-quermassintegrals. *Funct. Anal. Appl.* **57** (2023), no. 2, 99–108 Zbl 1511.52010 MR 4686440
- [21] W. Wang and Y. Zhou, Some inequalities for the dual p-quermassintegrals. Pure Appl. Math. O. 19 (2023), no. 2, 681–696 Zbl 1511.52010 MR 4575948
- [22] D. Xi, H. Jin, and G. Leng, The Orlicz Brunn–Minkowski inequality. Adv. Math. 260 (2014), 350–374 Zbl 1357.52004 MR 3209355
- [23] C. Zhao and G. Leng, Inequalities for dual quermassintegrals of mixed intersection bodies. Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 1, 79–91 Zbl 1077.52008 MR 2120601
- [24] Y. Zhou and W. Wang, On the polar dualities and star dualities of the quasi L_p -intersection bodies. *Georgian Math. J.* **31** (2024), no. 6, 1073–1079 Zbl 07959802 MR 4831767
- [25] B. Zhu, J. Zhou, and W. Xu, Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 264 (2014), 700–725 Zbl 1307.52004 MR 3250296

Received 22 July 2024.

Weidong Wang

Department of Mathematics, Three Gorges Mathematical Research Center, China Three Gorges University, 443002 Yichang, P. R. China; wdwxh722@163.com