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Houghton-like groups from “shift-similar” groups

Brendan Mallery and Matthew C. B. Zaremsky

Abstract. We introduce and study shift-similar groupsG � Sym.N/, which play an analogous
role in the world of Houghton groups that self-similar groups play in the world of Thompson
groups. We also introduce Houghton-like groups Hn.G/ arising from shift-similar groups G,
which are an analog of Röver–Nekrashevych groups from the world of Thompson groups. We
prove a variety of results about shift-similar groups and these Houghton-like groups, includ-
ing results about finite generation and amenability. One prominent result is that every finitely
generated group embeds as a subgroup of a finitely generated shift-similar group, in contrast
to self-similar groups, where this is not the case. This establishes in particular that there exist
uncountably many isomorphism classes of finitely generated shift-similar groups, again in con-
trast to the self-similar situation.

Introduction

In this paper, we introduce and study a new family of groups that we call shift-similar
groups. These are an analog of the well-known family of self-similar groups, but
instead of arising from actions on trees they arise from actions on the set of natural
numbers N. Where self-similar groups G interact nicely with Higman–Thompson
groups Vd to produce Röver–Nekrashevych groups Vd .G/, our shift-similar groupsG
interact nicely with Houghton groups Hn to produce another new family of groups
Hn.G/. Thus, our construction provides an analogy in the world of Houghton groups
for a number of important concepts from the world of Thompson groups.

A self-similar group G is a group of automorphisms of a locally finite, regular,
rooted tree, satisfying a certain rule that ensures that any element of G still looks like
an element of G when restricted to certain canonical copies of the tree inside of itself.
See Definition 1.2 for more precision, and [20] for a wealth of background. Under our
new definition, a shift-similar group G is a group of permutations of N, satisfying a
certain rule that ensures that any element of G still looks like an element of G when
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restricted to certain canonical copies of N inside of itself (see Definition 3.1 for more
precision). The point is that both regular rooted trees and N contain canonical copies
of themselves, and these groups are in some sense closed under restricting to these
copies.

Self-similar groups G naturally lead to so called Röver–Nekrashevych groups
Vd .G/. If G is a self-similar group of automorphisms of the rooted d -ary tree, then
Vd .G/ is the group of self-homeomorphisms of the boundary of the tree (which is
a Cantor set) that arise as “mash-ups” of G with the Higman–Thompson group Vd .
For G the Grigorchuk group, V2.G/ was introduced by Röver in [22] and is now
called the Röver group. The groups Vd .G/ in general were introduced by Nekra-
shevych in [19]. The self-similarity of G is what ensures that Vd .G/ is a group.

The Houghton groupsHn were introduced by Houghton in [15], and much like the
Thompson groups have served as interesting examples and counterexamples in group
theory. Given a shift-similar groupG � Sym.N/, the Houghton-like groupHn.G/we
introduce here is the group of self-bijections of ¹1; : : : ; nº � N that arise as “mash-
ups” of G with the Houghton group Hn. The shift-similarity of G is what ensures
that Hn.G/ is a group. A new model we use here for describing elements of Hn
and Hn.G/ via so called representative triples (see Sections 1.4 and 2.1) has notable
similarities to a standard model used to describe elements of Thompson groups and
their relatives. While Thompson groups and Houghton groups are quite different in
many ways, and these analogous models have key differences, we believe this high-
lights some connections between the world of Thompson and Houghton groups.

The first main result we prove about shift-similar groups is the following.

Theorem 3.12. If G � Sym.N/ is any infinite shift-similar group, then

Symfin.N/ � G:

Here Symfin.N/ denotes the normal subgroup of Sym.N/ consisting of all ele-
ments with finite support, that is, those g such that g.i/ D i for all but finitely
many i 2 N.

This result indicates that, from a group theoretic standpoint, shift-similarity is
actually quite different from self-similarity. For example, all self-similar groups are
residually finite, but Theorem 3.12 shows that infinite shift-similar groups never are.
(It turns out that the only finite shift-similar groups are the finite symmetric groups –
see Observation 5.2 – so our focus is on infinite shift-similar groups.)

Our second main result is the following.

Theorem 3.28. For any finitely generated group � , there exists a finitely generated
shift-similar group G � Sym.N/ such that � embeds as a subgroup of G.
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In fact, we prove that the shift-similar group G in Theorem 3.28 can always be
taken to be strongly shift-similar, which means that a certain injective endomorphism
of G=Symfin.N/ is an automorphism (see Definition 3.17).

This result implies that there exist uncountably many isomorphism classes of
finitely generated strongly shift-similar groups (Corollary 3.29), so strongly shift-
similar groups form an especially robust class of groups. In Example 3.31, we spell
out an intriguing family of examples of finitely generated shift-similar groups that
warrant further investigation in the future. Theorem 3.28 also implies that there exist
finitely generated strongly shift-similar groups with undecidable word problem (Cor-
ollary 3.30). Note that Theorem 3.28 contrasts with the self-similar case since no non-
residually finite group can embed in any self-similar group; moreover, there only exist
countably many isomorphism classes of finitely generated self-similar groups [20,
Section 1.5.3]. Despite these group theoretic differences, shift-similar groups and self-
similar groups are closely related in many ways, and their definitions are remarkably
analogous.

Serving as a “Houghton world” analog of self-similar groups indicates to us that
shift-similar groups are important, because self-similar groups are undoubtedly imp-
ortant. Most famously, Grigorchuk’s self-similar group served as the first known ex-
ample of a group with intermediate growth, and of an amenable group that is not
elementary amenable [12, 13]. As another important example, self-similar groups
were used in [14] to disprove a strong version of the Atiyah conjecture. Röver–
Nekrashevych groups of self-similar groups have also proven to have important appli-
cations, for instance they were shown in [23] to provide the first known family of
simple groups with arbitrary finiteness length.

The Houghton groupsHn and generalizations have also received a lot of attention
recently. Just to highlight a few examples, work has been done on their conjugacy
problem [1], twisted conjugacy problem [8], metric properties and automorphisms [6],
centralizers and Bredon cohomological properties [25], and Bieri–Neumann–Strebel–
Renz invariants [28, 30]. Braided versions of the Hn, introduced in [9], have also
received recent attention, e.g., in [11] and [7], as have higher-dimensional analogs
due to Bieri and Sach [4].

One of the key properties of the Houghton groups is that they are elementary
amenable. Another main result we prove here is that the amenability ofHn.G/ is tied
to that of G.

Theorem 5.9. LetG � Sym.N/ be shift-similar. ThenHn.G/ is amenable if and only
if G is amenable.

We actually prove that the same result holds with “amenable” replaced by either
“elementary amenable” or “contains no non-abelian free subgroups.” Some other
results we prove include that theHn.G/ themselves are shift-similar (Proposition 5.5),
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that Hn.G/ is finitely generated as soon as G is (Corollary 5.11, Observation 5.12),
and that if G is strongly shift-similar then H1.G/ D G (Proposition 5.3).

This paper is a starting point, and there are many questions and avenues for further
inquiry into shift-similar and Houghton-like groups. Some concrete questions we pose
here include Question 3.18 on whether there exists an infinite shift-similar group that
is not strongly shift-similar, and Questions 5.13 and 5.14 regarding the higher finite-
ness properties of the Hn.G/. One potential connection is with the “locally defined”
groups described by Farley and Hughes in [10], which encompass both Houghton
groups and Röver–Nekrashevych groups. We think there is a chance that this frame-
work applies to theHn.G/, and could potentially be useful for inspecting their higher
finiteness properties. It also seems like shift-similar and Houghton-like groups could
fit into a “Houghton world” analog of cloning systems, as in [26, 27, 29].

This paper is organized as follows. In Section 1 we recall the background on
Higman–Thompson groups Vd , self-similar groups, and Röver–Nekrashevych groups
Vd .G/. In Section 2 we recall the background on Houghton groups Hn, and establish
our Thompson-esque model for representing elements of Hn. In Section 3 we intro-
duce shift-similar groups, inspect their properties, and provide examples. In Section 4
we introduce the Houghton-like groups Hn.G/, including the model for representing
their elements, and prove that, thanks to G being shift-similar, the Hn.G/ really are
groups. Finally, in Section 5 we inspect a number of properties of the Hn.G/.

1. Preamble on Higman–Thompson groups, self-similar groups, and
Röver–Nekrashevych groups

In this section we recall some background on Higman–Thompson groups, self-similar
groups, and Röver–Nekrashevych groups. We will do so in a way conducive to spell-
ing out the analogy to Houghton groups, shift-similar groups, and our new Houghton-
like groups in the coming sections.

1.1. Higman–Thompson groups

Let Cd D ¹1; : : : ; dºN be the d -ary Cantor set, that is, the space of all infinite
sequences � of elements of ¹1; : : : ;dºwith the usual product topology. Let ¹1; : : : ;dº�

be the set of all finite strings w of elements of ¹1; : : : ; dº. Given w 2 ¹1; : : : ; dº�,
denote by Cd .w/ the cone on w, defined via

Cd .w/ WD ¹w� j � 2 Cd º:
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For any cone Cd .w/, there is a canonical homeomorphism hw WCd ! Cd .w/ given
by

hw W � 7! w�:

Definition 1.1 (Higman–Thompson group Vd ). The Higman–Thompson group Vd is
the group of all homeomorphisms f WCd ! Cd defined by the following procedure:

(1) Take a partition of Cd into finitely many cones Cd .wC1 /; : : : ; Cd .w
C
n /.

(2) Take another partition of Cd into the same number of cones Cd .w�1 /; : : : ;
Cd .w

�
n /.

(3) Map Cd to itself bijectively by sending each Cd .wCi / to some Cd .w�j / via
hw�

j
ı h�1

w
C

i

.

It turns out Vd really is a group, i.e., a composition of homeomorphisms of this
form is also of this form.

1.2. Self-similar groups

Now let us recall the definition of self-similar groups. See [20] for a wealth of back-
ground. We will define them in a slightly non-standard way that will demonstrate the
connection to shift-similar groups later. Let Td be the infinite rooted d -ary tree, so
the vertex set of Td is ¹1; : : : ; dº�, the empty word ¿ is the root, and two vertices are
adjacent if they are of the form w, wi for some i 2 ¹1; : : : ; dº. For each 1 � i � d ,
let Td .i/ be the induced subgraph of Td spanned by all vertices of the form iw for
w 2 ¹1; : : : ; dº�. Note that Td .i/ is naturally isomorphic to Td , via the graph isomor-
phism

ıi W Td ! Td .i/

sending the vertex w to iw.
Let Aut.Td / be the group of automorphisms of Td . Since the root is the only vertex

of degree d (the others have degree d C 1), every automorphism fixes the root. Thus,
every automorphism stabilizes the “level-1 set” of vertices ¹1; : : : ; dº. In particular,
we get an epimorphism �WAut.Td /! Sd . Note that the kernel of � is the subgroup
of automorphisms fixing every level-1 vertex, which is isomorphic to Aut.Td /d , and
the map � clearly splits, so we have

Aut.Td / Š Sd Ë Aut.Td /d ;

or, more concisely, Aut.Td / Š Sd o Aut.Td /. (It turns out to be convenient to write
semidirect and wreath products with the acting group on the left.)

Now for each 1 � i � d let

�i WAut.Td /! Aut.Td /
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be the function (not homomorphism)

�i .g/ WD ı
�1
�.g/.i/ ı gjTd .i/ ı ıi :

Note that the image of gjTd .i/ ı ıi is Td .�.g/.i//, so the composition

ı�1�.g/.i/ ı gjTd .i/ ı ıi

makes sense and is again an element of Aut.Td /. To tie this to the above, the isomor-
phism Aut.Td / Š Sd Ë Aut.Td /d can now be written as

g 7!
�
�.g/; .�1.g/; : : : ; �d .g//

�
:

Definition 1.2 (Self-similar). LetG �Aut.Td /. We callG self-similar if for all g 2G
and all 1 � i � d we have �i .g/ 2 G.

Example 1.3 (Grigorchuk group). Perhaps the most prominent example of a self-
similar group is the Grigorchuk group, introduced by Grigorchuk in [12]. This is the
subgroup of Aut.T2/ generated by elements a, b, c, and d , described as follows.
Identifying Aut.T2/ with S2 Ë Aut.T2/2 via the above isomorphism, the elements
a, b, c, and d are defined recursively by a D .1 2/.id; id/, b D .a; c/, c D .a; d/,
and d D .id; b/. It turns out the Grigorchuk group has intermediate growth, and is
amenable but not elementary amenable, serving as the first known example of such a
group [13].

It turns out that there exist only countably many (isomorphism classes of) finitely
generated self-similar groups, see, e.g., [20, Section 1.5.3]. This will contrast with the
shift-similar situation later (see Corollary 3.29).

1.3. Röver–Nekrashevych groups

In this subsection we recall the definition of the Röver–Nekrashevych group Vd .G/ of
a self-similar groupG. The first example, now called the Röver group, was introduced
by Röver in [22] using the Grigorchuk group asG. The groups were introduced in full
generality by Nekrashevych in [19].

Definition 1.4 (Röver–Nekrashevych group). Let G � Aut.Td / be self-similar. The
Röver–Nekrashevych group Vd .G/ is the group of all homeomorphisms f WCd ! Cd
defined by the following procedure:

(1) Take a partition of Cd into finitely many cones Cd .wC1 /; : : : ; Cd .w
C
n /.

(2) Take another partition of Cd into the same number of cones Cd .w�1 /; : : : ;
Cd .w

�
n /.
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(3) Map Cd to itself bijectively by sending each Cd .wCi / to some Cd .w�j / via
hw�

j
ı gi ı h

�1

w
C

i

for some g1; : : : ; gn 2 G.

Note that the only difference between this and the definition of the Higman–
Thompson group Vd is the presence of the elements gi in the last step. Intuitively,
in Vd we map one cone to another cone by identifying them both with Cd via canoni-
cal homeomorphisms and then mappingCd to itself via the identity, whereas in Vd .G/
we do the same thing but map Cd to itself via an element of G. Note that Cd D @Td ,
so Aut.Td / acts naturally on Cd , and this is the sense in which we are viewing ele-
ments of G as homeomorphisms of Cd .

It turns out Vd .G/ really is a group, thanks to G being self-similar. This is basi-
cally because, given two elements, up to refining partitions we can assume that the
range partition of the first element is the same as the domain partition of the second
element, and then composing the two elements is straightforward. Self-similarity ofG
ensures that, when we refine the domain and range partitions of a given element, the
resulting gi are still in G. This will also be made more precise in the next subsection.

1.4. Representative triples

In this subsection we discuss a convenient way of representing an element of Vd
or Vd .G/, via so called representative triples. This is the viewpoint taken for example
in [24]. First note that if C.w1/; : : : ; C.wn/ is a partition of Cd into cones, then
w1; : : : ; wn are the leaves of a finite subtree of Td . Thus, the step, “take a partition
of Cd into n cones,” is equivalent to, “take a finite subtree of Td with n leaves.” Here
by a subtree of Td we always mean one containing the root, and such that for any
vertex v in the subtree, if vi is in the subtree for some 1 � i � d , then so is vj for
all 1 � j � d . Let us just say finite d -ary tree for such a subtree from now on.

Now an element of Vd .G/ can be represented by a triple .T�; �.g1; : : : ; gn/; TC/,
where TC and T� are finite d -ary trees with n leaves, � is an element of Sn, and
the gi are elements of G. The element this triple represents is the one obtained by the
procedure from Definition 1.4, with wC1 ; : : : ; w

C
n the leaves of TC, w�1 ; : : : ; w

�
n the

leaves of T�, and � the permutation sending i to j whenever C.wCi / is being mapped
to C.w�j /.

Call any .T�; �.g1; : : : ; gn/; TC/ as above a representative triple. An element
of Vd .G/ can be represented by more than one representative triple, dictated by a cer-
tain equivalence relation. The key is the notion of an “expansion” of a representative
triple.
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Definition 1.5 (Expansion). Let .T�; �.g1; : : : ; gn/; TC/ be a representative triple for
an element of Vd .G/. Let 1 � k � n. The kth expansion of this triple is the triple�

T 0�; �
0.g1; : : : ; gk�1; �1.gk/; : : : ; �d .gk/; gkC1; : : : ; gn/; T

0
C

�
defined as follows. The tree T 0C is obtained from TC by adding a d -ary caret to the
kth leaf, i.e., replacing the leaf w with the leaves w1; : : : ;wd . The tree T 0� is obtained
from T� by adding a d -ary caret to the �.k/th leaf. The permutation � 0 is given by,
roughly, replacing k in the domain of � with a d -element set, replacing �.k/ in the
range of � with another copy of this d -element set, taking the former to the latter
via �.gk/, and acting on ¹1; : : : ; k � 1; k C 1; : : : ; nº like � . See [24, Figure 1] for
more precision about � 0.

If one triple is an expansion of the other, call the second a reduction of the
first. Two triples are equivalent if they can be obtained from each other by a finite
sequence of expansions and reductions. It turns out two triples represent the same
element of Vd .G/ if and only if they are equivalent, so we can view Vd .G/ as the
set of equivalence classes, denoted ŒT�; �.g1; : : : ; gn/; TC�, of representative triples
.T�; �.g1; : : : ; gn/; TC/.

The group operation on Vd .G/ is easy to realize using equivalence classes of
representative triples. Given two elements of Vd .G/, say ŒT�; �.g1; : : : ; gn/; TC� and
ŒU�; �.h1; : : : ; hm/; UC�, we can perform expansions until without loss of generality
TC D U� (so m D n). Then the group operation is given by�

T�; �.g1; : : : ; gn/; TC
��
TC; �.h1; : : : ; hn/; UC

�
D
�
T�; �.g1; : : : ; gn/�.h1; : : : ; hn/; UC

�
:

Note that �.g1; : : : ; gn/�.h1; : : : ; hn/ is a product of elements of Sn Ë Gn, and can
be rewritten in the standard form we use in representative triples if desired, namely as
.� ı �/.g�.1/h1; : : : ; g�.n/hn/.

This concludes our preamble on the relevant aspects of the world of Thompson
groups, setting the stage for our work establishing parallels to the world of Houghton
groups. In the coming sections, we will discuss the Houghton groups in a way that
makes clear the analogy to Higman–Thompson groups, then introduce shift-similar
groups as a “Houghton world” analog of self-similar groups, and finally introduce our
Houghton-like groups as an analog of Röver–Nekrashevych groups.

2. Houghton groups

Let n 2N and let Œn� WD ¹1; : : : ;nº. The Houghton groupHn, introduced in [15], is the
group of self-bijections of Œn� �N that are eventual translations, that is, translations
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outside a finite subset. More precisely, a bijection �W Œn� � N ! Œn� � N is in Hn if
there existm1; : : : ;mn 2 Z and there exists a finite subsetM � Œn� �N such that for
all .k; i/ 2 .Œn� �N/ nM we have �.k; i/ D .k; i Cmk/.

Let us set up an equivalent description ofHn, which is reminiscent of the descrip-
tion in Section 1 of the Higman–Thompson groups Vd . First, for 1 � k � n, andM a
finite subset of Œn� �N, define the quasi-ray Q.k;M/ to be

Q.k;M/ WD
�
¹kº �N

�
nM:

The name comes from viewing each ¹kº � N as a “ray,” so a quasi-ray is the result
of removing finitely many points from a ray. Each ray admits a canonical bijec-
tion with N, given by enumerating Q.k; M/ as Q.k; M/ D ¹.k; i1/; .k; i2/; : : : º,
with i1 < i2 < � � � . Let us denote the canonical bijection corresponding to k and M
by ˇk;M WN ! Q.k;M/, defined via

ˇk;M .j / WD .k; ij /;

with ij as above. Note that since M is finite, for sufficiently large j we have that if
ˇk;M .j / D .k; i/, then ˇk;M .j C 1/ D .k; i C 1/.

Definition 2.1 (Houghton groups). The Houghton groupHn is the group of bijections
from Œn� �N to itself given as follows:

(1) Take a partition of Œn� � N into a finite subset MC and the corresponding
quasi-rays Q.1;MC/; : : : ;Q.n;MC/.

(2) Take another partition of Œn� �N into a finite subset M� with jM�j D jMCj
and the corresponding quasi-rays Q.1;M�/; : : : ;Q.n;M�/.

(3) Map Œn��N to itself by sendingMC toM� via some bijection � and for each
1 � k � n sending Q.k;MC/ to Q.k;M�/ via ˇk;M� ı ˇ

�1
k;MC

.

To see why this description recovers the previous one, first note that for any finite
subset M of Œn� �N and any quasi-ray Q.k;M/, there exists mk 2 Z such that for
i 2 N sufficiently large we have ˇk;M .i/ D .k; i Cmk/. Thus, each ˇk;M� ı ˇ

�1
k;MC

as above is an eventual translation.

2.1. Representative triples

As with the Higman–Thompson groups, as we now show, elements of the Houghton
groups can be represented by certain triples. First note that any partition of Œn� � N

into a finite subset and n quasi-rays is completely determined by the finite subset.
Moreover, any bijection constructed as in Definition 2.1 is determined by the finite
subsets MC and M�, and the bijection � WMC ! M�. Hence, any element of Hn is
completely determined by the representative triple .M�; �;MC/.
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We should caution that there is a fundamental difference between this model for
elements of Houghton groups and the one for Higman–Thompson groups. In both
cases, a finite “chunk” is singled out in both the domain and the range, but in this
Houghton model, � serves to map things in the finite chunk of the domain to things
in the finite chunk of the range, whereas in the Higman–Thompson model � serves to
map things outside the finite chunk of the domain to things outside the finite chunk
of the range. This discrepancy will be further commented on in Remark 2.6. Thus,
all the analogies we are discussing here between the Thompson and Houghton world
should not be taken as a literal comparison of the groups themselves so much as a
comparison between techniques used to analyze the groups.

An element of Hn can be represented by more than one representative triple. For
example, the identity is represented by any .M; idM ; M/. The following notion of
expansion will turn out to completely encode which triples represent the same element
of Hn.

Definition 2.2 (Expansion/reduction/equivalent). Let .M�; �;MC/ be a representa-
tive triple. The kth expansion of the triple .M�; �;MC/ is the triple

.M� [ ¹ˇk;M�.1/º; �
0;MC [ ¹ˇk;MC.1/º/;

where � 0 is the bijection from MC [ ¹ˇk;MC.1/º to M� [ ¹ˇk;M�.1/º that sends
ˇk;MC.1/ to ˇk;M�.1/, and otherwise acting like � . If one triple is an expansion
of another, call the second a reduction of the first. Call two representative triples
equivalent if one can be obtained from the other by a finite sequence of expansions
and reductions. Write ŒM�; �;MC� for the equivalence class of .M�; �;MC/.

The intuition behind expansion is, we enlarge the finite set MC by adding in the
“first” element of the domain quasi-ray Q.k;MC/, and similarly add in the first ele-
ment of the range quasi-ray Q.k;M�/, and extend � to � 0 appropriately. Thus we
change the partitions, but not the overall self-bijection of Œn� �N.

There is a certain kind of move within an equivalence class of representative
triples that will be useful to use later, and so is convenient to give a name to. We
call it a general expansion, and it amounts to doing the same move as an expansion
but using ˇk;MC.j / and ˇk;M�.j / for an arbitrary j instead of just j D 1.

Definition 2.3 (General expansion/reduction). Let .M�; �;MC/ be a representative
triple. The general expansion of this triple associated to the pair .k; j / is the triple�

M� [ ¹ˇk;M�.j /º; �
0;MC [ ¹ˇk;MC.j /º

�
;

where � 0 is the bijection from MC [ ¹ˇk;MC.j /º to M� [ ¹ˇk;M�.j /º sending
ˇk;MC.j / to ˇk;M�.j / and otherwise acting like � . The reverse operation is called a
general reduction.
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Lemma 2.4. If one representative triple is a general expansion of the other, then they
are equivalent.

Proof. Say the first triple is .M�; �;MC/ and the second is�
M� [ ¹ˇk;M�.j /º; �

0;MC [ ¹ˇk;MC.j /º
�

as above. Let us induct on j . If j D 1 then this is just an expansion, and we are done.
Now assume j > 1. By induction .M�; �;MC/ is equivalent via a general expansion
to �

M� [ ¹ˇk;M�.j � 1/º; �
00;MC [ ¹ˇk;MC.j � 1/º

�
;

for appropriate � 00. Now observe that ˇk;MC[¹ˇk;MC
.j�1/º.j � 1/ equals ˇk;MC.j /

(with a similar statement for the M� version), so again by induction our triple is
equivalent via a general expansion to�

M� [ ¹ˇk;M�.j � 1/; ˇk;M�.j /º; �
000;MC [ ¹ˇk;MC.j � 1/; ˇk;MC.j /º

�
;

for appropriate � 000. Next we note that ˇk;MC[¹ˇk;MC
.j /º.j � 1/ equals ˇk;MC.j � 1/

(with a similar statement for the M� version), so again by induction (now doing a
general reduction) our triple is equivalent to�

M� [ ¹ˇk;M�.j /º; �
0;MC [ ¹ˇk;MC.j /º

�
;

so we are done.

Note that given any two representative triples .M�; �;MC/ and .N�; �; NC/, we
can perform a sequence of general expansions to each, say to get .M 0�; �

0;M 0C/ and
.N 0�; �

0; N 0C/ respectively, such that M 0C D N
0
C D MC [ NC. We can also perform

some (other) sequence of general expansions untilM 0C D N
0
� DMC [N�, orM 0� D

N 0C DM� [NC, orM 0� D N
0
� DM� [N�. In particular, up to equivalence we can

assume that one of the finite sets in the first triple equals one of the finite sets in the
second triple, and we can pick which ones we want to be equal.

Lemma 2.5. Two representative triples are equivalent if and only if the elements
of Hn they represent are equal.

Proof. Let �; � 2 Hn have equivalent representative triples, and we want to show
� D � . Without loss of generality the triples differ by a single expansion, say there is
a representative triple of � that is an expansion of one for �. Say � has .M�; �;MC/
as a representative triple and � has .M 0�; �

0;M 0C/, where

M 0C DMC [ ¹ˇk;MC.1/º and M 0� DM� [ ¹ˇk;M�.1/º:
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Now we want to show that �.`; i/ D �.`; i/ for all .`; i/ 2 Œn� � N. First suppose
.`; i/ 2 MC. Then since � 0.`; i/ D �.`; i/, we indeed have �.`; i/ D �.`; i/. Next
suppose .`; i/ D ˇk;MC.1/ (so ` D k). Then

�.k; i/ D ˇk;M�.1/ D ˇk;M� ı ˇ
�1
k;MC

.k; i/ D �.k; i/;

as desired. Finally, suppose .`; i/ 2Q.`;M 0C/. If `¤ k, thenQ.`;M 0C/DQ.`;MC/
and Q.`;M 0�/ D Q.`;M�/, so

�.`; i/ D ˇ`;M 0� ı ˇ
�1
`;M 0
C

.`; i/ D ˇ`;M� ı ˇ
�1
`;MC

.`; i/ D �.`; i/:

Now suppose `D k, and say .k; i/Dˇk;M 0
C
.j /. Note that ˇk;M 0

C
.j /Dˇk;MC.j C 1/

and ˇk;M 0�.j / D ˇk;M�.j C 1/. Thus

�.k; i/ D ˇk;M 0� ı ˇ
�1
k;M 0
C

.k; i/

D ˇk;M 0�.j /

D ˇk;M�.j C 1/

D ˇk;M� ı ˇ
�1
k;MC

ı ˇk;M 0
C
.j /

D ˇk;M� ı ˇ
�1
k;MC

.k; i/ D �.k; i/;

and we are done.
Now let .M�; �; MC/ and .N�; �; NC/ be representative triples for the same

element �, and we claim they are equivalent. It suffices to show that they have a com-
mon general expansion. Note that both .M�; �;MC/ and .N�; �; NC/ have general
expansions of the form .M 0�; �

0;MC [NC/ and .N 0�; �
0;MC [NC/ respectively, for

some M 0�, � 0, N 0�, and � 0. Since these both represent � (by the first paragraph), we
see that M 0� and N 0� both equal �.MC [ NC/, hence are equal themselves. Also, � 0

and � 0 each equal the restriction of � toMC [NC, hence are equal. We conclude that

.M 0�; �
0;MC [NC/ D .N

0
�; �
0;MC [NC/

is a common general expansion of the original triples, as desired.

We can now discuss the group structure ofHn using equivalence classes of repre-
sentative triples. Given ŒM�; �;MC� and ŒN�; �; NC�, the product

ŒM�; �;MC�ŒN�; �; NC�

is given by first performing general expansions until without loss of generalityMC D
N�, and then declaring that

ŒM�; �;MC�ŒMC; �; NC� WD ŒM�; � ı �;NC�:

This clearly models the usual multiplication operation inHn, so now we can viewHn

as the group of equivalence classes of representative triples.
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Remark 2.6 (Quasi-automorphisms). As we have emphasized, this model for ele-
ments of Hn differs from the one for Vd in that, here we keep track of a bijection
shuffling the finite “chunks” that have been singled out, whereas in Vd we keep track
of a way of shuffling the pieces outside the finite chunks (trees) that have been singled
out. There is a Thompson-like group where we additionally keep track of a shuffling
of the finite chunks, i.e., the vertices of the finite trees. This is the groupQVd of quasi-
automorphisms of Td . See [18, 21] for more background, and see [2, Proposition 3.2]
for a discussion of what we could call representative quadruples for elements of these
groups (at least for d D 2). It seems like one could also merge QVd with self-similar
groups G to get groups we could call quasi-Röver–Nekrashevych groups QVd .G/,
which would also have elements describable using a similar model to the ones we are
using here. We will leave any further analysis ofQVd orQVd .G/ (the latter of which
has not been formally defined anyway) for future work.

3. Shift-similar groups

In this section we introduce shift-similar groups, as a “Houghton world” analog of
the self-similar groups from Section 1.2. As before, Sym.N/ denotes the group of
self-bijections of N.

3.1. The definition and some first examples

Definition 3.1 (Shift-similar, shifting maps). For each j 2 N, let

sj WN ! N n ¹j º

be the bijection sending i to i for all 1 � i < j and i to i C 1 for all i � j . For each
j 2 N, let

 j WSym.N/! Sym.N/

be the function (not homomorphism)

 j .g/ WD s
�1
g.j / ı gjNn¹j º ı sj :

Note that the image of gjNn¹j º ı sj is N n ¹g.j /º, so the composition

s�1g.j / ı gjNn¹j º ı sj

makes sense and is again an element of Sym.N/. Let G be a subgroup of Sym.N/.
Call G shift-similar if for all g 2 G and all j 2 N we have  j .g/ 2 G. Call  j the
j th shifting map.
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Intuitively, if we view g 2G via a picture of the domain copy of N, the range copy
of N, and an arrow from i in the domain to g.i/ in the range, for each i , then  j .g/
is obtained by deleting j from the domain, deleting g.j / from the range, erasing the
arrow from j to g.j /, and renumbering the resulting sets N n ¹j º and N n ¹g.j /º to
again be N. See Figure 1 for an example.

1 2 3 4 5 6

1 2 3 4 5 6

� � � �!

1 2 3 4 5

1 2 3 4 5

� � �

Figure 1. An example of an element g 2 Sym.N/ and its image under  1. Here g restricted to
¹1; : : : ; 6º is the permutation .1 3/.2 5 6 4/, and  1.g/ restricted to ¹1; : : : ; 5º turns out to be the
permutation .1 4 5 3 2/ (the restriction of g to ¹7; 8; : : : º is left up to the reader’s imagination).
The dashed line indicates the arrow that gets deleted when computing  1, namely the one
originating at the domain copy of 1.

It is also useful to have the following in mind, which is a “casewise” definition
for  j .g/:

 j .g/.i/ D

8̂̂̂̂
<̂
ˆ̂̂:
g.i/ if i < j and g.i/ < g.j /;

g.i/ � 1 if i < j and g.i/ > g.j /;

g.i C 1/ if i � j and g.i C 1/ < g.j /;

g.i C 1/ � 1 if i � j and g.i C 1/ � g.j /:

Also note that, iterating shifting maps, shift-similarity asks that upon removing any
finite subset of N and applying g to the result, the induced element of Sym.N/ (after
identifying the complement of the finite subsets of the domain and range with N via
canonical bijections) again lies in G.

Remark 3.2. Given a group G, we will often refer to G as shift-similar if it admits
an embedding into Sym.N/ such that the image (which is isomorphic to G) is shift-
similar. We may call this a shift-similar representation of the group. Thus we can ask,
“is this group shift-similar?” even if it is not handed to us as a subgroup of Sym.N/.
Note that a shift-similar group may admit an embedding into Sym.N/ that is not
shift-similar, but we still call it shift-similar if it admits at least one embedding whose
image is. (All of these sorts of terminological caveats also hold for self-similar groups
of automorphisms of trees.)

Let us discuss some initial properties of shifting maps. This first result actually
shows that the  j exhibit some sort of “Thompson-like” behavior. (We will not inves-
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tigate this Thompson-like behavior further here; in particular, the fact that the  j are
not injective makes it unclear what the actual connection to Thompson’s groups might
be.)

Lemma 3.3. For any j � j 0, we have  j 0 ı  j D  j ı  j 0C1.

Proof. Rather than wade through a long list of cases, we will appeal to the intuitive
picture. For a given g 2 G, if we delete j from the domain, delete g.j / from the
range, delete the arrow from j to g.j /, and renumber appropriately, then what used
to be the arrow from j 0 C 1 to g.j 0 C 1/ becomes an arrow from j 0 to some range
point (either g.j 0C 1/� 1 or g.j 0C 1/ depending on where g.j 0C 1/was in relation
to g.j /). Hence, deleting the arrow originating at j 0 after having already deleted the
arrow originating at j is equivalent to first deleting the arrow originating at j 0 C 1
and then deleting the arrow originating at j .

We also have that, while each shifting map  j is not a homomorphism, the family
of all shifting maps does satisfy the following nice property reminiscent of homomor-
phisms (or really cocycles).

Observation 3.4. For any j 2 N and any g; h 2 Sym.N/, we have

 j .g ı h/ D  h.j /.g/ ı  j .h/:

Proof. By definition we have

 j .g ı h/ D s
�1
g.h.j // ı .g ı h/jNn¹j º ı sj

D s�1g.h.j // ı gjNn¹h.j /º ı sh.j / ı s
�1
h.j / ı hjNn¹j º ı sj

D  h.j /.g/ ı  j .h/:

This also lets us pin down how shifting maps interact with inverses.

Corollary 3.5. For any j 2 N and any g 2 Sym.N/, we have

 j .g/
�1
D  g.j /.g

�1/:

Proof. Clearly  j .id/ D id for all j . By Observation 3.4, we get

id D  j .g�1 ı g/ D  g.j /.g�1/ ı  j .g/;

so indeed  j .g/�1 D  g.j /.g�1/.

Now we discuss some immediate examples of shift-similar groups. The trivial
group is the most obvious example, and more generally Sm D Sym.¹1; : : : ; mº/ for
any m 2 N, but we will be more interested in infinite shift-similar groups. In fact,
the Sm are the only finite shift-similar groups, as we now show.
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Lemma 3.6. Let G � Sym.N/ be a finite shift-similar group. Then G D Sm for
some m.

Proof. Letm be the maximum element of the orbitG:1, which exists sinceG is finite.
First we claim that G � Sm. If G is not contained in Sm, then there exist i; j 2N and
g 2 G such that m � i < j and g.i/ D j . Since 1 � i and g.1/ � j , we have

 1.g/.i � 1/ D j � 1;

and doing this i � m times we see that without loss of generality i D m. But this
means G:1 contains j , contradicting the maximality of m. We conclude G � Sm.

Now we need to show that G is all of Sm. We induct on m; the base case m D 1
holds trivially, so let m > 1. Choose g 2 G such that g.1/ D m. This implies that

 m.g/.1/ D m � 1;

since 1 < m and g.1/ > g.m/. Set H WD G \ Sm�1, so H is shift-similar. We have
 m.g/ 2 H , so m � 1 is the maximum element of H:1. By induction, H D Sm�1.
Now for any g0 2 Sm n Sm�1, say with g0.m/ D i < m, we have

g ı .1 i/ ı g0 2 Sm�1 � G:

Since g; .1 i/ 2 G, so we conclude g0 2 G, and so Sm � G, as desired.

Having completely classified finite shift-similar groups, we turn our attention to
infinite shift-similar groups. We will discuss more complicated examples later, but for
now let us point out a few obvious (but important) ones.

Example 3.7 (Finitely supported permutations). The most obvious example of an
infinite shift-similar group is Symfin.N/. Indeed, Symfin.N/ is the directed union of
the Sm, and it is clear that a directed union of shift-similar groups is shift-similar.

Example 3.8 (Eventually periodic permutations). For n 2 N, let En � Sym.N/ be
the group of all eventually n-periodic permutations, that is all g satisfying g.i C n/D
g.i/C n for all sufficiently large i . (Note that E1 is exactly Symfin.N/.) It is an easy
exercise to check that En is shift-similar.

In fact, En is closely related to the Houghton group Hn, as the following shows.

Lemma 3.9. The group En is isomorphic to Sn ËHn.

Proof. Consider the bijection �W Œn� �N ! N sending .k; i/ to k C .i � 1/n. Conju-
gation by � gives an isomorphism

!WSym.N/! Sym
�
Œn� �N

�
;
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via !.g/D ��1 ı g ı �. We claim that the image of En under ! is the natural copy of
Sn ËHn in Sym.Œn� �N/, where Sn acts on Œn� and Hn is the usual copy of Hn.

Given g 2 En, we have

!.g/.k; i/ D ��1
�
g.k C .i � 1/n/

�
:

For sufficiently large i , we have

!.g/.k; i C 1/ D ��1.g.k C in//

D ��1
�
g.k C .i � 1/n/C n

�
:

This shows that for sufficiently large i , if !.g/.k; i/ D .`; j /, then

!.g/.k; i C 1/ D .`; j C 1/:

Hence, !.g/ acts on Œn� � N by permutations in the first entry and eventual trans-
lations in the second entry, so !.g/ 2 Sn Ë Hn. This shows that ! sends En into
Sn ËHn, and it is easy to see that the image of En is all of Sn ËHn, so we conclude
that ! restricts to an isomorphism En ! Sn ËHn.

It is also worth mentioning that Sn ËHn is isomorphic to the automorphism group
Aut.Hn/ (see [6]).

We can now show that the Houghton groups themselves admit shift-similar repre-
sentations.

Corollary 3.10. The Houghton group Hn is shift-similar.

Proof. Under the isomorphism !WSym.N/! Sym.Œn� �N/ from the proof of Lem-
ma 3.9 (or really its inverse), we see thatHn is isomorphic to the subgroup of Sym.N/
consisting of all permutations that are eventually n-periodic and that eventually pre-
serve residue classes modulo n, that is, all g such that for sufficiently large i , we
have

g.i C n/ D g.i/C n and g.i/ �n i:

These properties are clearly preserved under shifting maps.

Example 3.11 (Shift-similar closure). One last immediate example is, given any
G � Sym.N/, let xG � Sym.N/ be the smallest group containing G and satisfying
 j .g/ 2 xG for all j 2 N and g 2 xG. Let us call this the shift-similar closure of G. In
practice it seems quite difficult to analyze shift-similar closures, and for now we do
not have much to say about them, but they seem like they could be potentially useful
for constructing pathological examples.
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3.2. Group of germs at infinity

The following is an important general result about shift-similar groups, which will
lead us to the notion of the group of germs at infinity of an infinite shift-similar group.

Theorem 3.12. If G � Sym.N/ is any infinite shift-similar group, then

Symfin.N/ � G:

Proof. We need to show that G contains Sm D Sym.¹1; : : : ; mº/ for every m 2 N.
We induct on m. The base case m D 1 holds trivially, so let m > 1 and assume G
contains Sm�1. It now suffices to show that G contains the transposition .m � 1 m/.

We first claim that there exist i; j 2 N and g 2 G such that

m � 1 � i < j and m � 1 � g.j / < g.i/:

First suppose every element of G stabilizes ¹1; : : : ; m � 1º, and hence stabilizes
¹m;mC 1; : : : º. SinceG is infinite, some g 2G must act non-trivially on ¹m;mC 1;
: : : º, and thus we can choose our i and j from ¹m;mC 1; : : : º. Now suppose some
element ofG does not stabilize ¹1; : : : ;m� 1º. By the pigeonhole principle, some ele-
ment g of G must simultaneously send some j 2 ¹m;mC 1; : : : º into ¹1; : : : ;m� 1º
and also send some i 2 ¹1; : : : ;m� 1º into ¹m;mC 1; : : : º. Since G contains Sm�1,
without loss of generality

i D m � 1 and g.j / D m � 1:

Now these i , j , and g satisfy all of the desired properties.
At this point we have i; j 2 N and g 2 G such that m � 1 � i < j and m � 1 �

g.j / < g.i/, and we are trying to prove that .m � 1 m/ 2 G. Choose k 2 N such
that each of k and g.k/ is larger than all of i , j , g.i/, and g.j /. Then  j .g/ sends i
to g.i/ � 1 and  k.g/ sends i to g.i/, and also note that  j .g/ and  k.g/ agree on
every input larger than max¹k; g.k/º. In particular,

h WD  j .g/ ı  k.g/
�1
2 G

is a non-trivial element of Symfin.N/. Moreover, since j , g.j /, k, and g.k/ are all
at least m � 1, we have that h fixes all of ¹1; : : : ; m � 2º. Now hitting h with a finite
sequence of appropriate shifting maps, we can produce .m� 1m/, and so we conclude
.m � 1 m/ 2 G, as desired.

This result imposes some restrictions on shift-similar groups, which we now point
out. Recall that a group virtually has a property if it has a finite index subgroup with
the property.
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Corollary 3.13. Infinite shift-similar groups cannot have any of the following prop-
erties, even virtually: torsion-free, solvable, hyperbolic, residually finite, or being a
p-group.

Proof. All these properties other than hyperbolicity are inherited by subgroups, and
Symfin.N/ does not have any of these properties, hence by Theorem 3.12 neither does
any infinite shift-similar group. For (virtual) hyperbolicity, any torsion subgroup of a
hyperbolic group is finite (see, e.g., [16, Theorem 1(c)]), so no virtually hyperbolic
group can contain Symfin.N/.

We are now in a position to define the group of germs at infinity. We should reit-
erate that Symfin.N/ is normal in Sym.N/, since conjugating a permutation translates
its support and hence preserves finiteness of support, and so Symfin.N/ is normal in
every infinite shift-similar group.

Definition 3.14 (Group of germs at infinity). For G � Sym.N/ an infinite shift-
similar group, define the group of germs at infinity for G to be the quotient group

G .G/ WD G=Symfin.N/:

One should think of an element of G .G/ as encoding “eventual behavior” of an
element of G. In particular, two elements of G represent the same germ at infinity if
and only if they agree on the complement of some finite subset.

Lemma 3.15. Let G � Sym.N/ be an infinite shift-similar group. For any j 2 N,
the function  j WG ! G induces an injective homomorphism

 1WG .G/! G .G/;

which is independent of j , defined via

 1.g Symfin.N// WD  j .g/Symfin.N/:

Proof. First note that for any i; j 2 N and any g 2 G and f 2 Symfin.N/, we have
that  i .g/ and  j .g ı f / agree on all sufficiently large inputs. This shows that  1 is
well defined and independent of j . Now we claim that it is a homomorphism. Indeed,
for all g; h 2 G, using Observation 3.4 we have

 1..g ı h/Symfin.N// D  1.g ı h/Symfin.N/

D . h.1/.g/ ı  1.h//Symfin.N/

D . h.1/.g/Symfin.N//. 1.h/Symfin.N//

D  1.g Symfin.N// 1.hSymfin.N//:
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Finally, we need to show  1 is injective. Suppose g 2 G with  1.g/ 2 Symfin.N/,
so  1.g/ fixes all sufficiently large i 2 N. For sufficiently large i , we have

 1.g/.i/C 1 D g.i C 1/;

so in fact g must also fix all sufficiently large inputs, i.e., g 2 Symfin.N/.

Definition 3.16 (Germ shifting map). Call the monomorphism  1W G .G/! G .G/

the germ shifting map for an infinite shift-similar group G.

While the germ shifting map is always injective, it is not clear to us whether it is
always surjective. We see no reason why it should always be the case, but we do not
know of an example where it is not. Let us encode this into the following definition
and question:

Definition 3.17 (Strongly shift-similar). We call an infinite shift-similar group G �
Sym.N/ strongly shift-similar if  1 is surjective.

Question 3.18. Does there exist an infinite shift-similar group that is not strongly
shift-similar?

Informally, shift-similarity asks that when we “delete an arrow” from an element
of G (in the sense of Figure 1) then we get an element of G. Strong shift-similarity
asks that, additionally, when we “add a new arrow” to an element of G then, up to
elements of finite support, we get an element of G.

This definition involving surjectivity of  1 and the groups of germs at infinity
will be useful in what follows, since it is often convenient to be able to work modulo
Symfin.N/, but it is worth pointing out that it is equivalent to something easier to think
about, namely surjectivity of the  j .

Lemma 3.19. If G � Sym.N/ is a strongly shift-similar group, then the function
 j WG ! G is surjective for all j 2 N. In particular, for any j 2 N, the restriction

 j jStabG.j /WStabG.j /! G

is an isomorphism.

Proof. We are assuming that  1WG .G/! G .G/ is surjective. Let g 2 G. By surjec-
tivity of  1, we can choose g0 2 G and f 2 Symfin.N/ such that g D f ı  j .g0/.
Let f 0 2 Symfin.N/ be such that f D  g0.j /.f 0/ and f 0.g0.j // D j ; informally, we
add a new arrow to f , from a new domain point at g0.j / to a new range point at j ,
and it is clear f 0 still has finite support. Now by Observation 3.4, we have

 j .f
0
ı g0/ D  g0.j /.f

0/ ı  j .g
0/ D f ı  j .g

0/ D g;
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and so  j is surjective. In fact, since f 0 ı g0 fixes j , this shows that the restriction
of  j to StabG.j / already surjects onto G. Finally, to see that this restriction is an
isomorphism, note that it is a homomorphism by Observation 3.4, and if  j .g/ D 1
for g 2 StabG.j / then g D 1.

Note that this shows StabG.j /Š G for any j 2N, which is interesting in its own
right.

The concrete examples of infinite shift-similar groups we have seen so far are
Symfin.N/, En, and Hn, and it is easy to see these are all strongly shift-similar. For
example, G .Hn/ Š Zn�1, which one should think of as the copy of Zn�1 sitting
inside Zn as the subgroup of all .m1; : : : ; mn/ with m1 C � � � C mn D 0, and one
can work out that  1 is described by the automorphism cyclically permuting the
coordinates, since for example shifting N by 1 takes the kth residue class modulo n
to the .k C 1/st residue class modulo n. Things are less clear for the last example we
have seen so far, namely the shift-similar closure xG of a subgroup G � Symfin.N/

(see Example 3.11). We do not see a reason why these should always be strongly
shift-similar, especially, for example, if G is cyclic, but it seems difficult in general
to analyze groups of the form xG, and we do not know of an example where xG is not
strongly shift-similar.

3.3. Sufficient conditions for shift-similarity

Before continuing to populate the list of examples of shift-similar groups, let us dis-
cuss some tools for proving shift-similarity. In practice, when proving that a group
is shift-similar it can be convenient to only have to check  j .g/ 2 G for certain j
and/or g. In this subsection we establish some sufficient conditions for shift-similarity
in this vein.

First we have a sufficient condition that is useful if we have some nice generating
set.

Lemma 3.20. Let G � Sym.N/ and let A � G be a generating set. If  j .a/ 2 G for
all j 2 N and all a 2 A, then G is shift-similar.

Proof. By Corollary 3.5 we can assume without loss of generality that a�1 2 A for
all a 2 A. Now the result follows from Observation 3.4 since any element of G is a
product of elements of A.

Next we have a sufficient condition that is useful if G is already known to be
transitive on N.

Lemma 3.21. Let G � Sym.N/ be transitive on N. If there exists j0 2 N such that
 j0

.g/ 2 G for all g 2 G, then G is shift-similar.



B. Mallery and M. C. B. Zaremsky 190

Proof. Let j 2 N and g 2 G. By transitivity we can choose h1; h2 2 G such that
h1.g.j // D j0 and h2.j0/ D j . We know that  j0

.h1 ı g ı h2/ 2 G by hypothesis.
By Observation 3.4, this equals

 j0
.h1 ı g ı h2/ D  gıh2.j0/.h1/ ı  h2.j0/.g/ ı  j0

.h2/:

Since  j0
.h2/ 2 G and h2.j0/D j , this shows that  g.j /.h1/ ı j .g/ 2 G. Also, by

Corollary 3.5 we have

 g.j /.h1/
�1
D  h1.g.j //.h

�1
1 / D  j0

.h�11 / 2 G;

so we conclude that  j .g/ 2 G, as desired.

Finally, we have a sufficient condition that is useful if we already know that
Symfin.N/ � G.

Lemma 3.22. Let Symfin.N/�G � Sym.N/. If 1.h/ 2G for all h 2 StabG.1/ then
G is shift-similar.

Proof. By Lemma 3.21, which applies since Symfin.N/ is transitive on N, it suffices
to show that  1.g/ 2 G for all g 2 G. Let j D g.1/ and consider the cycle c D
.1 2 � � � j / 2 Symfin.N/. Note that c ı g 2 StabG.1/, so  1.c ı g/ 2 G by hypothesis.
By Observation 3.4, we have

 1.c ı g/ D  j .c/ ı  1.g/:

But  j .c/ is the identity, so  1.g/ 2 G, as desired.

3.4. A class of examples

In this subsection, we discuss a class of examples of shift-similar groups arising from
groups containing E2. Here E2 is the group of eventually 2-periodic permutations
from Example 3.8, which is isomorphic to S2 ËH2. These examples will show that
shift-similar groups are quite abundant (see Theorem 3.28 and Corollary 3.29).

Definition 3.23 (Slide and flip). We will denote by ˛ the element of E2 given by

˛ WD .� � � 6 4 2 1 3 5 7 � � � /;

and call ˛ the slide. Thus ˛ sends each odd number to the next odd number, each even
number besides 2 to the previous even number, and 2 to 1. The image of ˛ under the
isomorphism !WE2! S2 ËH2 is the element ofH2 sending each .1; i/ to .1; i C 1/,
each .2; i/ to .2; i � 1/ for i � 2, and .2; 1/ to .1; 1/.
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Also denote by � the element of E2 given by

� WD .1 2/.3 4/.5 6/ � � � ;

and call � the flip. The image of � under the isomorphism !WE2 ! S2 ËH2 is the
element ..1 2/; id/.

See Figure 2 for a helpful visualization of ˛ and �.
Enumerating Z as ¹0;�1; 1;�2; 2;�3; 3; : : : º and identifying this with N, we can

view ˛ and � as very straightforward elements of Sym.Z/, namely n 7! nC 1 and
n 7! �n � 1 respectively. This is a nice way to picture these elements, but using Z

makes it harder to deal with issues of shift-similarity, so we will stick to working
in Sym.N/.

1 3 5

2 4 6 � � �

� � �

˛

1 3 5

2 4 6 � � �

� � �

�

Figure 2. A good way to picture ˛ and �. We lay out N from left to right, but in a zigzag, so
that the arrows describing ˛ are more visibly encoding a “slide” move.

Observation 3.24. The group E2 is generated by ˛, �, and .1 2/. In particular, E2 is
finitely generated.

Proof. Hitting everything with the isomorphism!WE2!S2 ËH2, it is clear that!.�/
generates the S2 factor and it is well known that !.˛/ and !.1 2/ generate the H2
factor, see, e.g., [17, Figure 2.2].

Definition 3.25 (Half-finite support). A permutation g 2 Sym.N/ has half-finite sup-
port if g.i/ D i either for all sufficiently large even i , or for all sufficiently large
odd i .

Note that a permutation satisfies both of these rules if and only if it has finite
support, but it is easy to construct permutations with infinite, half-finite support, e.g.,
.1 3/.5 7/.9 11/ � � � .
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Lemma 3.26. Let g 2 Sym.N/ have half-finite support. Then for any j 2N, we have
that  j .g/ equals either g˛ı� ı f or g� ı f for some f 2 Symfin.N/.

Here the notation xy for x and y group elements denotes conjugation,

xy D y�1xy:

Proof. The claim is that the element  j .g/ either does the same thing as g˛ı� to all
sufficiently large i 2 N, or does the same thing as g� to all sufficiently large i . Note
that for all sufficiently large i , we know that  j .g/ sends i to g.i C 1/ � 1.

First suppose g.i/ D i for all sufficiently large even i . This means that for all
sufficiently large odd i , g.i/ is also odd. We claim that

g˛ı� D .˛ ı �/�1 ı g ı .˛ ı �/

sends sufficiently large i to g.i C 1/� 1, which will finish this case. First consider suf-
ficiently large even i . Then we have that .˛ ı�/�1ıgı.˛ ı�/ sends i to g.i C 1/ � 1,
as desired. For sufficiently large odd i , this element sends i to g.i � 1/C 1, and
since g fixes all sufficiently large even inputs (such as i C 1 and i � 1), this is the
same as g.i C 1/ � 1, as desired.

Now suppose g.i/ D i for all sufficiently large odd i , so for sufficiently large
even i , g.i/ is also even. We claim that g� D ��1 ı g ı � sends sufficiently large i to
g.i C 1/ � 1, which will finish this case. First consider sufficiently large odd i . Then
we have that ��1 ı g ı � sends i to g.i C 1/ � 1, as desired. For sufficiently large
even i , this element sends i to g.i � 1/C 1, and since g fixes all sufficiently large
odd inputs (such as i C 1 and i � 1), this is the same as g.i C 1/ � 1, as desired.

A composition of permutations with half-finite support need not have half-finite
support, so the permutations with half-finite support do not form a group. However,
one can consider groups generated by permutations with half-finite support, and these
turn out to yield shift-similar groups in the following sense:

Proposition 3.27. Let � � Sym.N/ be any group generated by permutations with
half-finite support. Let G D h�;E2i. Then G is strongly shift-similar.

Proof. First we prove shift-similarity. We already know that j .e/ 2E2 for all e 2E2
by Example 3.8, so by Lemma 3.20 we just need to check that for any j 2 N and any
generator 
 of � , we have  j .
/ 2G. Since 
 has half-finite support, by Lemma 3.26
we have that  j .
/ is a conjugate of 
 by ˛ ı � or �, multiplied by an element of
Symfin.N/. Since E2 contains ˛, �, and Symfin.N/, we conclude that  j .
/ 2 G.

Now we prove strong shift-similarity. Since E2 is strongly shift-similar, it suf-
fices to prove that for any generator 
 of � , the image of the germ shifting map
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 1WG .G/! G .G/ contains 
 Symfin.N/. By Lemma 3.26, we can choose g 2 G to
be one of 
�

�1ı˛�1
or 
�

�1
, and get  1.g/ D 
 ı f for some f 2 Symfin.N/. Thus,

 .g Symfin.N// D 
 Symfin.N/;

and so indeed the image of  contains 
 Symfin.N/.

Since E2 is finitely generated (Observation 3.24), it is now very easy to con-
struct examples of finitely generated strongly shift-similar groups: Let 
1; : : : ; 
k be
any elements of Sym.N/ with half-finite support. Then G D h
1; : : : ; 
k; E2i is a
finitely generated strongly shift-similar group. Indeed, this shows that finitely gener-
ated strongly shift-similar groups abound, in the following sense.

Theorem 3.28. For any finitely generated group � , there exists a finitely generated
strongly shift-similar group G � Sym.N/ such that � embeds as a subgroup of G.

Proof. First we note that every finitely generated group embeds as a subgroup of
Sym.N/, and hence as a subgroup of Sym.2N/ (since Sym.N/ Š Sym.2N/). View-
ing Sym.2N/ as a subgroup of Sym.N/, every permutation in Sym.2N/ has half-
finite support, so we conclude that every finitely generated group � embeds as a
subgroup of Sym.N/ in such a way that every generator (indeed every element) has
half-finite support. Now the group G generated by this image together with E2 is a
finitely generated strongly shift-similar group, into which � embeds.

Corollary 3.29. There exist uncountably many isomorphism classes of finitely gener-
ated strongly shift-similar groups.

Proof. Suppose there are only countably many isomorphism classes of finitely gener-
ated strongly shift-similar groups. Since any given finitely generated group contains
only countably many (isomorphism classes of) finitely generated subgroups, Theo-
rem 3.28 implies that there exist countably many isomorphism classes of finitely
generated groups. But it is well known that there exist uncountably many isomor-
phism classes of finitely generated groups, so this is a contradiction.

As we have already pointed out, this contrasts with the self-similar situation,
where there exist only countably many isomorphism classes of finitely generated self-
similar groups [20, Section 1.5.3].

Another consequence is the following.

Corollary 3.30. There exist finitely generated strongly shift-similar groups with unde-
cidable word problem.
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Proof. By Theorem 3.28, any finitely generated group with undecidable word prob-
lem embeds in some finitely generated strongly shift-similar group, which therefore
must also have undecidable word problem.

Proposition 3.27 is concrete enough to allow us to produce tons of concrete exam-
ples of finitely generated shift-similar groups. Indeed, we can simply take any finite
set of permutations 
1; : : : ; 
k of 2N, and take the (finitely generated) group of per-
mutations of N generated by them together with ˛, �, and .1 2/. Let us record a more
precise way of constructing examples of interesting finitely generated shift-similar
groups, which could warrant further future investigation.

Example 3.31. Let � be any finitely generated infinite group, and fix a bijection
�W� ! N. Identify the disjoint union �

`
� with N by sending the first copy of �

to 2N via 
 7! 2�.
/ and sending the second copy of � to 2N � 1 via 
 7! 2�.
/� 1.
Now let G be the group of permutations of N generated by the copy of � acting
on 2N by left multiplication (via the above identification of � with 2N) and trivially
on 2N � 1, and the elements ˛, �, and .1 2/. By Proposition 3.27, the group G is
finitely generated and shift-similar.

More intuitively, if we use � to identify �
`
� with �N

`
N, where the first

copy of � is identified with �N and the other with N, then G is the group of permu-
tations of �

`
� where we can do any finitely supported permutation, we can swap

the two copies of � in the canonical way (this is the element �), we can have � act
on either copy of itself by translation while fixing the other copy pointwise, and we
can “shift” left and right viewing �

`
� as �N

`
N (this is the element ˛). We

emphasize that � can be any bijection whatsoever. It would be especially interesting
to investigate whether G could possibly be finitely presented, for some � of interest
and some cleverly chosen �.

4. Houghton-like groups from shift-similar groups

In this section, we introduce our groups Hn.G/, for G a shift-similar group. These
are a sort of “Houghton-world” analog of Röver–Nekrashevych groups. We will once
again use the notions of quasi-ray and canonical bijection from Section 2.

Definition 4.1 (The groupHn.G/). Let G � Sym.N/ be shift-similar. For n 2N, let
Hn.G/ be the group of bijections from Œn� �N to itself given as follows:

(1) Take a partition of Œn� � N into a finite subset MC and the corresponding
quasi-rays Q.1;MC/; : : : ;Q.n;MC/.

(2) Take another partition of Œn� �N into a finite subset M� with jM�j D jMCj
and the corresponding quasi-rays Q.1;M�/; : : : ;Q.n;M�/.
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(3) Map Œn� � N to itself by sending MC to M� via some bijection � , and for
each 1 � k � n sendingQ.k;MC/ toQ.k;M�/ via ˇk;M� ı gk ı ˇ

�1
k;MC

for
some gk 2 G.

Note that the only difference between this and the definition of Hn is the pres-
ence of the elements gk 2 G at the end. Intuitively, in Hn we map one quasi-ray to
another quasi-ray by identifying them both with N via canonical bijections and then
mapping N to itself via the identity, whereas in Hn.G/ we do the same thing but
map N to itself via an element ofG. In particular,Hn DHn.¹1º/. We will prove later
that Hn.G/ really is a group. First it is convenient to establish representative triples.

We can define representative triples for elements of Hn.G/ by essentially merg-
ing the ideas behind representative triples for Vd .G/ and for Hn. By a representa-
tive triple now we mean a triple .M�; �.g1; : : : ; gn/;MC/, where MC and M� are
finite subsets of Œn� � N of the same size, � is a bijection from MC to M�, and
g1; : : : ; gn 2 G. At the moment, the notation �.g1; : : : ; gn/ should just be thought of
as an ordered pair .�; .g1; : : : ; gn//; we use this notation to continue the analogy with
Röver–Nekrashevych groups, and later when we discuss multiplication in Hn.G/ we
will explain how to manipulate the notation. The element of Hn.G/ represented by
.M�; �.g1; : : : ; gn/; MC/ is the one obtained via the procedure in Definition 4.1
using MC, M�, � , and g1; : : : ; gn.

As in the previous situations, we can define a notion of expansion:

Definition 4.2 (Expansion/reduction/equivalence). LetG � Sym.N/ be shift-similar.
Let .M�; �.g1; : : : ; gn/; MC/ be a representative triple for an element of Hn.G/.
Let 1 � k � n. The kth expansion of this triple is the triple�
M�[¹ˇk;M�.gk.1//º; �

0.g1; : : : ; gk�1; 1.gk/; gkC1; : : : ; gn/;MC[¹ˇk;MC.1/º
�
;

where � 0 is the bijection from MC [ ¹ˇk;MC.1/º to M� [ ¹ˇk;M�.gk.1//º sending
ˇk;MC.1/ to ˇk;M�.gk.1// and otherwise acting like � . If one triple is an expansion
of another, call the second a reduction of the first. Call two representative triples
equivalent if one can be obtained from the other by a finite sequence of expan-
sions and reductions. Write ŒM�; �.g1; : : : ; gn/; MC� for the equivalence class of
.M�; �.g1; : : : ; gn/;MC/.

We also have an Hn.G/ analog of general expansions:

Definition 4.3 (General expansion/reduction). Let .M�; �.g1; : : : ; gn/; MC/ be a
representative triple. The general expansion of this triple associated to the pair .k; j /
is the triple�

M� [ ¹ˇk;M�.gk.j //º;

� 0.g1; : : : ; gk�1;  j .gk/; gkC1; : : : ; gn/;MC [ ¹ˇk;MC.j /º
�
;
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where � 0 is the bijection from MC [ ¹ˇk;MC.j /º to M� [ ¹ˇk;M�.j /º sending
ˇk;MC.j / to ˇk;M�.j / and otherwise acting like � . The reverse operation is called a
general reduction.

We should emphasize that defining expansions and general expansions is the key
step in all this setup where G needs to be shift-similar, so that  j .gk/ is still an
element of G.

The following is the Hn.G/ version of Lemma 2.4, and the structure of the proof
is the same.

Lemma 4.4. If one representative triple is a general expansion of the other, then they
are equivalent.

Proof. Say the first triple is .M�; �.g1; : : : ; gn/;MC/ and the second is�
M�[¹ˇk;M�.gk.j //º; �

0.g1; : : : ; gk�1;  j .gk/; gkC1; : : : ; gn/;MC[¹ˇk;MC.j /º
�

as above. Let us induct on j . If j D 1 then this is just an expansion, and we are done.
Now assume j > 1. By induction .M�; �.g1; : : : ;gn/;MC/ is equivalent via a general
expansion to�

M� [ ¹ˇk;M�.gk.j � 1//º;

� 00.g1; : : : ; gk�1;  j�1.gk/; gkC1; : : : ; gn/;MC [ ¹ˇk;MC.j � 1/º
�
;

for appropriate � 00. Now observe that ˇk;MC[¹ˇk;MC
.j�1/º.j � 1/ equals ˇk;MC.j /

(with a similar statement for the M� version), so again by induction our triple is
equivalent via a general expansion to�

M� [ ¹ˇk;M�.gk.j � 1//; ˇk;M�.gk.j //º;

� 000.g1; : : : ; gk�1;  j�1 ı  j�1.gk/; gkC1; : : : ; gn/;

MC [ ¹ˇk;MC.j � 1/; ˇk;MC.j /º
�
;

for appropriate � 000. Next we note that ˇk;MC[¹ˇk;MC
.j /º.j � 1/ equals ˇk;MC.j � 1/

(with a similar statement for the M� version), and  j�1 ı  j�1 D  j�1 ı  j by
Lemma 3.3, so again by induction (now doing a general reduction) our triple is equiv-
alent to �

M� [ ¹ˇk;M�.gk.j //º;

� 0000.g1; : : : ; gk�1;  j .gk/; gkC1; : : : ; gn/;MC [ ¹ˇk;MC.j /º
�

for appropriate � 0000. It is clear that � 0000 D � 0, since they both agree with � onMC and
their domain has only one other point, so we are done.
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We remark that, just like in the Hn case (where G D ¹1º), given any two rep-
resentative triples .M�; �.g1; : : : ; gn/; MC/ and .N�; �.h1; : : : ; hn/; NC/, up to
equivalence we can assume that one of the finite sets M� or MC in the first triple
equals one of the finite sets N� or NC in the second triple, and we can pick which
ones we want to be equal.

Now we can establish the analog of Lemma 2.5 for Hn.G/, which lets us view
Hn.G/ as the group of equivalence classes of representative triples.

Lemma 4.5. Two representative triples are equivalent if and only if the elements of
Hn.G/ they represent are equal.

Proof. Let �; � 2 Hn.G/ have equivalent representative triples, and we want to show
� D � . Without loss of generality the triples differ by a single expansion, say there is
a representative triple of � that is an expansion of one for �. Say � has�

M�; �.g1; : : : ; gn/;MC
�

as a representative triple and � has�
M 0�; �

0.g1; : : : ; gk�1;  1.gk/; gkC1; : : : ; gn/;M
0
C

�
;

whereM 0C DMC [ ¹ˇk;MC.1/º andM 0� DM� [ ¹ˇk;M�.gk.1//º. Now we want to
show that �.`; i/ D �.`; i/ for all .`; i/ 2 Œn� �N. First suppose .`; i/ 2 MC. Then
since � 0.`; i/ D �.`; i/, we indeed have

�.`; i/ D �.`; i/:

Next suppose .`; i/ D ˇk;MC.1/ (so ` D k). Then

�.k; i/ D ˇk;M�.gk.1// D ˇk;M� ı gk ı ˇ
�1
k;MC

.k; i/ D �.k; i/;

as desired. Finally, suppose .`; i/ 2Q.`;M 0C/. If `¤ k thenQ.`;M 0C/DQ.`;MC/
and Q.`;M 0�/ D Q.`;M�/, so

�.`; i/ D ˇ`;M 0� ı g` ı ˇ
�1
`;M 0
C

.`; i/

D ˇ`;M� ı g` ı ˇ
�1
`;MC

.`; i/ D �.`; i/:

Now suppose `D k, and say .k; i/Dˇk;M 0
C
.j /. Note that ˇk;M 0

C
.j /Dˇk;MC.j C 1/

and ˇk;M 0�. 1.gk/.j // D ˇk;M�.sgk.1/ ı  1.gk/.j //. Now we have

�.k; i/ D ˇk;M 0� ı  1.gk/ ı ˇ
�1
k;M 0
C

.k; i/

D ˇk;M 0�. 1.gk/.j //

D ˇk;M�.sgk.1/ ı  1.gk/.j //
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D ˇk;M�.gk.s1.j ///

D ˇk;M�.gk.j C 1//

D ˇk;M� ı gk ı ˇ
�1
k;MC

ı ˇk;M 0
C
.j /

D ˇk;M� ı gk ı ˇ
�1
k;MC

.k; i/ D �.k; i/;

and we are done.
Now let .M�; �.g1; : : : ; gn/;MC/ and .N�; �.h1; : : : ; hn/;NC/ be representative

triples for the same element �, and we claim they are equivalent. It suffices to show
that they have a common general expansion. The triples have general expansions
of the form .M 0�; �

0.g01; : : : ; g
0
n/; MC [ NC/ and .N 0�; �

0.h01; : : : ; h
0
n/; MC [ NC/

respectively, for someM 0�, � 0, g0i ,N
0
�, � 0, and h0i . Since these both represent � (by the

first paragraph), we see that M 0� and N 0� both equal �.MC [ NC/, hence are equal
themselves. Also, � 0 and � 0 each equal the restriction of � to MC [ NC, hence are
equal. Finally, for each 1 � k � n we have that g0

k
and h0

k
each equal the restric-

tion of � to Q.k;MC [ NC/ composed on either side by the appropriate canonical
bijections (which are the same in either case), so g0

k
D h0

k
. We conclude that�

M 0�; �
0.g01; : : : ; g

0
n/;MC [NC

�
D
�
N 0�; �

0.h01; : : : ; h
0
n/;MC [NC

�
is a common general expansion of the original triples, as desired.

Now we can finally confirm that Hn.G/ really is a group.

Lemma 4.6. For G � Sym.N/ shift-similar, Hn.G/ is a group.

Proof. The composition of two elements ofHn.G/ can be computed via the following
procedure. Let ŒM�; �.g1; : : : ; gn/;MC� and ŒN�; �.h1; : : : ; hn/; NC� be elements.
Up to performing general expansions, we can assume without loss of generality that
MC D N�, so also Q.k;MC/ D Q.k;N�/ for each 1 � k � n. Now the product

ŒM�; �.g1; : : : ; gn/;MC�ŒMC; �.h1; : : : ; hn/; NC�

is the self-bijection of Œn� � N given by sending NC to N� D MC via � and then
to M� via � , which is to say sending NC to M� via � ı � , and for each 1 � k � n
sending Q.k; NC/ to Q.k; N�/ D Q.k;MC/ via ˇ�1

k;N�
ı hk ı ˇk;NC and then to

Q.k;M�/ via ˇ�1
k;M�

ı gk ı ˇk;MC , which since ˇk;N� D ˇk;MC is the same as send-
ing Q.k;NC/ to Q.k;M�/ via ˇ�1

k;M�
ı gk ı hk ı ˇk;NC . Thus, we conclude that

ŒM�; �.g1; : : : ; gn/;MC�ŒMC; �.h1; : : : ; hn/; NC�

D ŒM�; .� ı �/.g1h1; : : : ; gnhn/; NC�;
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which is again an element ofHn.G/. This shows thatHn.G/ is closed under products,
and it also shows that the inverse of ŒM�; �.g1; : : : ; gn/;MC� is

ŒMC; �
�1.g�11 ; : : : ; g�1n /;M��;

which is again in Hn.G/, so Hn.G/ is a group.

5. Properties of Houghton-like groups

In this section we study some properties of the Houghton-like groupHn.G/ of a shift-
similar group G. Our first goal is to inspect the relationship between Hn.G/ and G,
then we will turn to issues of amenability and related properties, and finally we will
discuss finite generation, and questions of higher finiteness properties (where very
little is known).

5.1. Relationship between a Houghton-like group and its shift-similar group

The first, somewhat obvious relationship is thatG embeds intoHn.G/, and in factGn

embeds into Hn.G/.

Observation 5.1. For any shift-similar group G � Sym.N/ and any n 2 N, the map
.g1; : : : ; gn/ 7! Œ;; .g1; : : : ; gn/;;� is an injective homomorphism Gn ! Hn.G/.

Proof. This map is obviously a homomorphism, so we just need to check that it is
injective. If Œ;; .g1; : : : ; gn//; ;� equals the identity, then for each 1 � k � n the
restriction of this element to the quasi-ray Q.k;;/ shows that gk D 1.

We can also dispense with any questions about the finite case easily.

Observation 5.2. For n 2 N and G � Sym.N/ a finite shift-similar group, we have
Hn.G/ D Hn.

Proof. By Lemma 3.6, G � Symfin.N/. Thus for any g 2 G, there exists a finite
composition of shifting maps sending g to the identity. Thus, for any

ŒM�; �.g1; : : : ; gn/;MC� 2 Hn.G/;

up to expansions without loss of generality g1 D � � � D gn D 1.

The infiniteG case is, of course, much more interesting. Note that for shift-similar
G � Sym.N/, the “first” Houghton-like groupH1.G/ is also a subgroup of Sym.N/,
containing G. In fact, the following shows that in the strongly shift-similar case, we
have H1.G/ D G.
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Proposition 5.3. Let G � Sym.N/ be a strongly shift-similar group. Then

H1.G/ D G:

Proof. We need to prove that H1.G/ � G. Since G is strongly shift-similar, we
already know G contains H1 D Symfin.N/ by Theorem 3.12. Let ŒM�; �g;MC� 2
H1.G/, so M�; MC � N with jM�j D jMCj < 1, � WMC ! M� is a bijection,
and g 2 G. Since ŒMC; ��1; M�� 2 H1 � G, without loss of generality we have
M� DMC, call it M , and � is the identity. Now we have ŒM; g;M�, and we need to
show that it lies in G. If M D ; we are done, so assume M ¤ ;. Pick some j 2M .
Since G is strongly shift-similar, Lemma 3.19 says that we can choose g0 2 StabG.j /
such that g D  j .g0/, and hence

ŒM n ¹j º; g0;M n ¹j º� D ŒM; g;M�:

Repeating this trick until M is depleted, we end up with Œ;; g00; ;� D ŒM; g;M� for
some g00 2 G, so ŒM; g;M� 2 G.

Remark 5.4. For G a finite shift-similar group, by Observation 5.2 we have

H1.G/ D H1 D Symfin.N/;

which is not finitely generated. However, forG � Sym.N/ any finitely generated, infi-
nite, strongly shift-similar group (for example any of the uncountably many examples
from Corollary 3.29), thanks to Proposition 5.3 we have that H1.G/ D G is finitely
generated. In particular, H1.G/ has better finiteness properties than H1 when G is
strongly shift-similar. It is hard to tell whether to view this as unexpected behavior,
in comparison to the “Thompson world” situation, since all the Vd are finitely gen-
erated and even of type F1, so in passing from Vd from Vd .G/ there is no chance
of improving the finiteness properties anyway. However, there are situations where
Vd .G/ has better finiteness properties than G (e.g., when G is the non-finitely pre-
sentable Grigorchuk group and V2.G/ is the type F1 Röver group [3]), so perhaps it is
not unexpected that H1.G/ could have better finiteness properties than its constituent
component H1.

Even if G is shift-similar but not strongly shift-similar (the possibility of which is
asked in Question 3.18), soH1.G/ andG are different, we still get thatH1.G/ is shift-
similar, and more generally any of the Hn.G/ admit shift-similar representations, as
we now explain. In fact, the Hn.G/ are all strongly shift-similar.

Proposition 5.5. LetG�Sym.N/ be shift-similar. Then for any n2N, the Houghton-
like group Hn.G/ admits a strongly shift-similar representation. Moreover, for any
m; n 2 N, we have Hm.Hn.G// Š Hmn.G/.
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Proof. Let �W Œn� �N ! N be the bijection

�.k; i/ D k C .i � 1/n;

and !WSym.N/! Sym.Œn��N/ the induced isomorphism !.g/D ��1 ı g ı � , both
from the proof of Lemma 3.9. We claim that !�1.Hn.G// � Sym.N/ is strongly
shift-similar. Since Hn.G/ contains Symfin.Œn� �N/ and ! preserves size of support,
!�1.Hn.G// contains Symfin.N/. Thus by Lemma 3.22, it suffices to prove that for
any element of !�1.Hn.G// taking 1 to 1, its image under 1 is also in !�1.Hn.G//.

We can conjugate by � to rephrase all of this with respect to Œn��N instead of N.
We will use the same notation s1 and  1 for the induced functions. Upon conjugating
by � , the bijection s1WN ! N n ¹1º defined by s1.i/ D i C 1 becomes a bijection

s1W Œn� �N !
�
Œn� �N

�
n ¹.1; 1/º

defined by

s1.k; i/ D

´
.k C 1; i/ if k < n;

.1; i C 1/ if k D n:

Our rephrased goal now is to show that for any � 2 Hn.G/ fixing .1; 1/, we have that

 1.�/ WD s
�1
1 ı �j.Œn��N/n¹.1;1/º ı s1

also lies in Hn.G/. For the sake of intuition, first consider the case when

� D Œ;; .g1; : : : ; gn/;;�

(so our assumption means g1.1/ D 1). Then it is clear that

 1.�/ D Œ;; .g2; : : : ; gn;  1.g1//;;�;

which is indeed an element of Hn.G/. More generally, we see that for � of the form
ŒM�; �.g1; : : : ; gn/; MC�, the element  1.�/ is obtained by cyclically permuting
the gk , either applying a shifting map to g1 (if .1; 1/ 62MC) or not (if .1; 1/ 2MC),
and adjusting MC and M� appropriately. In particular, we get another element of
Hn.G/, as desired. This shows thatHn.G/ is shift-similar. The above discussion also
makes it clear that it is strongly shift-similar, since for example we can cyclically
permute the gk in the other direction and add a new (fixed) point to MC and M�.

Finally, we need to explain why

Hm.Hn.G// Š Hmn.G/:

This is most easily seen using partitions into finite subsets and quasi-rays. An element
ofHm.Hn.G// is given by partitioning Œm��N into a finite subsetMC and quasi-rays
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Q.k;MC/ (1 � k � m), doing it a second time using some M�, mapping MC bijec-
tively to M� via some � , and mapping each Q.k;MC/ bijectively to Q.k;M�/ via
some element �k 2 Hn.G/ composed with appropriate canonical bijections. Here we
view Hn.G/ as a subgroup of Sym.N/ as above. Now for each k, use the canonical
bijection ˇk;MC and the bijection � to identify Q.k;MC/ with Œn� � N, and simi-
larly for Q.k;M�/. Then we can describe �k by partitioning Q.k;MC/ into a finite
subset N k

C and quasi-rays Q.`; N k
C/ (1 � ` � n), similarly partitioning Q.k;M�/

into some N k
� and its quasi-rays, mapping N k

C to N k
� via some bijection, and map-

ping Q.`; N k
C/ to Q.`; N k

�/ via some element gk
`

of G composed with appropriate
canonical bijections. All in all, this is equivalent to considering .Œm� � Œn�/ �N and
looking at all the self-bijections obtained by partitioning .Œm� � Œn�/ �N into a finite
subset PC and a “quasi-ray” Q..k; `/; PC/ for each .k; `/ 2 Œm� � Œn�, doing it a
second time with some P�, mapping PC to P� via some bijection � , and sending
Q..k; `/;PC/ toQ..k; `/;P�/ bijectively via gk

`
composed with appropriate “canon-

ical bijections”. This is clearly isomorphic to Hmn.G/, as desired.

In particular, H1.G/ is always strongly shift-similar, and can be viewed in some
sense as a “strengthening” of G, if G is shift-similar but not strongly shift-similar.
Viewing H1.G/ as a strongly shift-similar group, we can consider its group of germs
at infinity G .H1.G//. The following shows that if G does not equal H1.G/ then in
fact they differ quite a lot, by virtue of G .H1.G// being much larger than G .G/.

Corollary 5.6. If G � Symfin.N/ is infinite and shift-similar but not strongly shift-
similar, then G .H1.G// is a properly ascending directed union of copies of G .G/.

Proof. Since H1.G/ is strongly shift-similar,

 1WG .H1.G//! G .H1.G//

is an automorphism. Since G is not strongly shift-similar, the restriction of  1 to
G .G/! G .G/ is not surjective, so G .G/ is a proper subgroup of G .H1.G//. For any
�D ŒM�; �g;MC� 2H1.G/, ifm is the maximum element ofMC, then  m1 .�/ 2 G.
Hence, every element of G .H1.G// lies in the preimage of G .G/ under some  m1.
This shows that G .H1.G// is the directed union of the . m1/

�1.G .G//, which are
each isomorphic to G .G/ since  1 is an injective homomorphism. Finally, to see
that these terms are properly ascending, i.e., that every . m1/

�1.G .G// is a proper
subgroup of G .H1.G//, note that  m1 is surjective on G .H1.G//, but

G .G/ ¤ G .H1.G//:

This is a good point to remind the reader of Question 3.18, which asks whether
there actually exist infinite shift-similar groups that are not strongly shift-similar.
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5.2. Amenability and its relatives

In this subsection we inspect amenability and related properties, with the main result
being that a strongly shift-similar G is amenable if and only if Hn.G/ is. The related
properties we consider are elementary amenability (which implies amenability) and
the property of containing no non-abelian free subgroups (which is implied by amen-
ability), and we will see that the analogous results hold for them as well. Note that
for P any one of these three properties, any directed union of finite groups has
property P , any abelian group has property P , and any extension of groups with
property P has property P . Let us also record the following useful slight generaliza-
tion of this last fact.

Observation 5.7. Let P be any of the properties of being elementary amenable, being
amenable, or containing no non-abelian free subgroups. Let G be a group generated
by a subgroup H together with a normal subgroup N . If H and N both satisfy prop-
erty P then so does G.

Proof. We have G D HN , so G=N Š H=.H \ N/. Since H has property P , and
property P is inherited by quotients, this shows that G=N has property P . Since N
has property P , and an extension of a group with property P by another group with
property P has property P , we conclude that G has property P .

The Houghton groupHn naturally surjects onto Zn�1, and it turns out this extends
to any Hn.G/, as we now show. Specializing this coming proof to G D ¹1º also
provides a new way of viewing the map fromHn onto Zn�1 in terms of representative
triples.

Lemma 5.8. LetG be an infinite shift-similar group. The groupHn.G/ admits a map
onto Zn�1, whose kernel is generated by Symfin.Œn� �N/ and H1.G/n.

HereH1.G/n means the natural copy ofH1.G/n inside ofHn.G/, given by view-
ing Œn� � N as the disjoint union of n copies of N and taking H1.G/ on each copy.
Note that when G D ¹1º we have

H1
�
¹1º
�n
D Hn

1 � Symfin

�
Œn� �N

�
;

so this result recovers the fact that the kernel of Hn ! Zn�1 is Symfin.Œn� �N/.

Proof of Lemma 5.8. For each 1 � k � n and each finite subset M � Œn� � N, let
Ck.M/ denote the cardinality of the intersection of M with ¹kº �N. Define a map

�k
�
ŒM�; �.g1; : : : ; gn/;MC�

�
WD Ck.M�/ � Ck.MC/:

This is well defined up to equivalence, and yields a surjective group homomorphism
Hn.G/! Z. Intuitively, when G D ¹1º the map �k extracts the translation length of
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the “eventual translation” of the kth ray. (For G ¤ ¹1º, there is not as clear-cut of a
way to interpret �k in terms of “eventual” behavior.) It is easy to see that �1; : : : ;�n�1
are linearly independent, and that �1 C � � � C �n D 0 since jM�j D jMCj. The kernel
of the direct sum of �1; : : : ; �n�1 consists of all ŒM�; �.g1; : : : ; gn/;MC� such that

Ck.M�/ D Ck.MC/

for all k. Given such an element, up to composing with an element of Symfin.Œn��N/

we can assume that � takes each MC \ .¹kº �N/ bijectively to M� \ .¹kº �N/, so
our element lies in the natural copy of H1.G/n inside Hn.G/.

When G D ¹1º and n � 3, the commutator subgroup of Hn is precisely

Symfin

�
Œn� �N

�
(see [15]), so the above mapHn!Zn�1 is the abelianization map. (When nD 1;2 the
commutator subgroup ofHn is the finitely supported alternating group instead.) ForG
non-abelian, the commutator subgroup is larger than Symfin.Œn��N/, since for exam-
ple it contains elements of the form Œ;; .g1; : : : ; gn/;;� for g1; : : : ; gn 2 ŒG;G�. It is
difficult for us to see any general statement about the commutator subgroup ofHn.G/,
or the abelianization map, or the rank of the abelianization, since there seems to just
be too much variety in the possibilities for G.

The map Hn.G/ ! Zn�1, while not necessarily the abelianization map, does
allow us to “promote” amenability from G to Hn.G/, along with other, related prop-
erties, as we now explain.

Theorem 5.9. LetG � Sym.N/ be shift-similar. For P any of the properties of being
elementary amenable, being amenable, or containing no non-abelian free subgroups,
we have that Hn.G/ has property P if and only if G has property P .

Proof. The “only if” direction follows since G embeds into Hn.G/, and any of these
properties is inherited by subgroups.

Now we do the “if” direction, so we assume G has property P and want to show
that Hn.G/ does too. First suppose G is strongly shift-similar, so G D H1.G/ by
Proposition 5.3 and thusH1.G/ has property P . Since property P is preserved under
finite direct products, H1.G/n has property P . Since Symfin.Œn� � N/ has prop-
erty P , Observation 5.7 and Lemma 5.8 tell us that the kernel of Hn.G/! Zn�1

has property P . Finally, since Zn�1 has property P and an extension of groups with
property P has property P , we conclude thatHn.G/ has property P . Now assumeG
is infinite but not strongly shift-similar. By Corollary 5.6, G .H1.G// is a directed
union of copies of G .G/. Since property P is preserved under quotients, directed
unions, and extensions by elementary amenable groups, we conclude that H1.G/ has
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property P . Now the same argument from the previous paragraph tells us thatHn.G/
has property P . Finally, if G is finite then by Observation 5.2 Hn.G/ D Hn, and so
Hn.G/ has property P .

5.3. Finite generation

LetG � Sym.N/ be shift-similar and let n2N. Note thatHn is a subgroup ofHn.G/,
given by all elements of the form ŒM�; �.1; : : : ; 1/;MC�. Also, by Observation 5.1
we see that Gn embeds as a subgroup of Hn.G/, consisting of all elements of the
form Œ;; .g1; : : : ; gn/;;�. We know thatHn is finitely generated for n � 2, and in this
subsection we inspect finite generation of Hn.G/.

Proposition 5.10. LetG�Sym.N/ be shift-similar and let n�2. Then the Houghton-
like group Hn.G/ is generated by the copies of Hn and Gn referenced above.

Proof. Given an arbitrary element ŒM�; �.g1; : : : ; gn/; MC�, left multiplication by
some ŒMC; �;M�� 2Hn lets us assume without loss of generality thatM� DMC and
� D id. Thus, our element is of the form ŒM; .g1; : : : ; gn/;M �. This clearly equals

ŒM; .g1; 1; : : : ; 1/;M �ŒM; .1; g2; 1; : : : ; 1/;M � � � � ŒM; .1; : : : ; 1; gn/;M �;

so up to using parallel arguments, without loss of generality our element is of the form
ŒM; .g; 1; : : : ; 1/;M �. Up to general reductions, we can also assume that

M � ¹1º �N;

and up to multiplication by elements of Hn, we can assume that

M D ¹.1; 1/; : : : ; .1;m/º

for some m 2 N. Let M 0 D ¹.2; 1/; : : : ; .2; m/º (here we are using that n � 2). Let
�WM !M 0 be the bijection .1; i/ 7! .2; i/, so ŒM 0; �;M� 2 Hn. Upon conjugating
our element ŒM; .g; 1; : : : ; 1/;M � by ŒM 0; �;M�, we get

ŒM 0; �;M�ŒM; .g; 1; : : : ; 1/;M �ŒM;��1;M 0� D ŒM 0; .g; 1; : : : ; 1/;M 0�;

and performing reductions this equals Œ;; .g; 1; : : : ; 1/;;� 2 Gn, so we are done.

Corollary 5.11. For n � 2, if G is finitely generated then so is Hn.G/.

Proof. By Proposition 5.10, Hn.G/ is generated by Hn and Gn, which are both
finitely generated.

When n D 1, we make the following observation.
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Observation 5.12. Let G � Sym.N/ be shift-similar and finitely generated. Then
H1.G/ is finitely generated if and only if G is strongly shift-similar.

Proof. If G is strongly shift-similar then H1.G/ D G by Proposition 5.3, so this
is immediate. If G is not strongly shift-similar then Corollary 5.6 says G .H1.G//

is a properly ascending directed union, and so cannot be finitely generated. Since
G .H1.G// is a quotient of H1.G/, the latter cannot be finitely generated either.

We should reiterate Question 3.18, which asks whether shift-similar but not strong-
ly shift-similar groups even exist, since a “no” answer would render Observation 5.12
uninteresting.

An obvious question regards higher finiteness properties. SinceHn is of type Fn�1
by Brown [5], one naturally conjectures that if a shift-similar groupG is of type Fn�1,
then so is Hn.G/. Moreover, since for strongly shift-similar G we have H1.G/ D G,
one might conjecture for n � 2 as well that Hn.G/ could sometimes have stronger
finiteness properties than Hn (assuming G does). However, beyond finite generation
it is surprisingly difficult to say anything about higher finiteness properties ofHn.G/.

For the experts, one can construct an analog of the contractible cube complex for
Hn from [5,17], inspired by the complexes for Röver–Nekrashevych groups from [3]
and [24]. The vertex stabilizers are copies of Gn, but for G infinite we lose many
nice local finiteness properties, for example the analog of [24, Lemma 3.6] fails, and
it is not clear that things can be set up to apply Brown’s Criterion. Additionally, the
resulting descending links are much more difficult than in the G D ¹1º case. All in
all, this makes it hard to tell how to say anything about higher finiteness properties
for Hn.G/. Finally, it turns out to even be difficult to begin with to find examples of
shift-similar groups with stronger finiteness properties than finite generation. In other
words, it is not clear whether it would actually be interesting to be able to leverage,
say, finite presentability ofG to get finite presentability ofHn.G/, given that we have
so few examples of finitely presented shift-similar groups anyway.

Let us boil this discussion down the following two questions.

Question 5.13. If a shift-similar group G is finitely presented and n � 3, then is
Hn.G/ finitely presented? If G is of type Fm and n � m C 1, then is Hn.G/ of
type Fm? If G is strongly shift-similar, then do these results hold for all n?

For example, Hn.Hk/ Š Hnk by Proposition 5.5, so this question has a positive
answer when G D Hk . It also has a positive answer for G D Ek , since it is easy to
check that Hn.Ek/ contains Hn.Hk/ with finite index.

Question 5.14. What sorts of finitely presented groups are shift-similar, beyond En
and Hn for n � 3? What about shift-similar groups of type Fm, beyond En and Hn
for n � mC 1?
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