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The combinatorial structure of symmetric strongly
shifted ideals

Alessandra Costantini and Alexandra Seceleanu

Abstract. Symmetric strongly shifted ideals constitute a class of monomial ideals which are
equipped with an action of the symmetric group and are analogous to the well-studied class
of strongly stable monomial ideals. In this paper, we focus on algebraic and combinatorial
properties of symmetric strongly shifted ideals. On the algebraic side, we elucidate properties
that pertain to behavior under ideal operations, primary decomposition, and the structure of
their Rees algebra. On the combinatorial side, we develop a notion of partition Borel generators
which leads to connections to discrete polymatroids, convex polytopes, and permutohedral toric
varieties.
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1. Introduction

Let R D KŒx1; : : : ; xn� be a polynomial ring over a field K and consider the set of
partitions

Pn D ¹� D .�1; : : : ; �n/ 2 Zn W 0 � �1 � �2 � � � � � �nº:
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Orbits of monomials under the natural action of the symmetric group Sn can be
identified with elements of Pn. This induces a bijection between Sn-fixed monomial
ideals I � R and sets of partitions P.I / � Pn given by

P.I / D ¹� 2 Pn W x� D x
�1
1 � � � x

�n
n 2 I º:

The central objects of study in this note are the following classes of Sn-fixed
monomial ideals, which were introduced in [2].

Definition 1.1. Let I � R be an Sn-fixed monomial ideal. We say that I is a sym-
metric shifted ideal, or ssi, if, for every � D .�1; : : : ; �n/ 2 P.I / and 1 � i < n with
�i < �n, one has x�.xi=xn/ 2 I . We say that I is a symmetric strongly shifted ideal,
or sssi, if, for every � D .�1; : : : ; �n/ 2 P.I / and 1 � i < j � n with �i < �j , one
has x�.xi=xj / 2 I . Monomials x�.xi=xn/ and x�.xi=xj / satisfying the conditions
above are referred to as being obtained from x� by a Borel move.

The definitions of symmetric shifted and strongly shifted ideals are inspired by
the definition of stable and strongly stable ideals (which we recall in Definition 3.1).
These are the most important classes of monomial ideals in computational algebra
since, e.g., in characteristic zero generic initial initials are strongly stable. Moreover,
stable and strongly stable ideals have well-understood minimal graded free resolu-
tions. These were constructed by Eliahou and Kervaire, who also gave a formula for
their graded Betti numbers in terms of the data of their minimal systems of monomial
generators [17]. Analogous results for symmetric shifted ideals were obtained in [2].

In this article, we initiate a comprehensive study of the algebraic properties and
combinatorial structure of symmetric strongly shifted ideals. While the only Sn-fixed
ideals which are also strongly stable are the powers of the homogeneous maximal
ideal, we discover that the class of symmetric strongly shifted ideals exhibits several
similarities to the class of strongly stable ideals. A key tool we develop to unveil these
analogies is the notion of partition Borel generators of a symmetric strongly shifted
ideal (see Definition 3.3), which is inspired by the notion of Borel generators of a
strongly stable ideal. (We refer the reader to Section 3 for any unexplained terminol-
ogy.) In particular, we obtain the following results.

(1) Like strongly stable ideals (see [24]), symmetric strongly shifted ideals are
closed under taking sums, intersections, products, and powers (Proposition 2.1
and Proposition 2.2). Moreover, under these ideal operations, one can keep
track of partition Borel generators (see Proposition 3.8 and Proposition 3.9)
similarly as one does for the Borel generators of a strongly stable ideal (see
[20]).

(2) Like strongly stable ideals are sums of principal Borel ideals (i.e., strongly
stable ideals with exactly one Borel generator), symmetric strongly shifted
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ideals are sums of principal Borel sssi’s (i.e., sssi’s with exactly one partition
Borel generator).

(3) A principal Borel ideal can be written as a product of prime ideals and as
an intersection of powers of prime ideals (see [20]). Similarly, a principal
Borel sssi can be factored as a product of square-free Veronese ideals (Theo-
rem 3.12) and decomposed as an intersection of symbolic powers of square-
free Veronese ideals (Theorem 5.6).

Recall that a square-free Veronese ideal I of degree d is the ideal generated by all
square-free monomials of a degree d and can be equivalently written as

I D
\
�2Sn

�.x1; : : : ; xd /;

i.e., as the symmetrization of a monomial prime ideal in d variables. Ideals of this
kind are the only square-free symmetric strongly shifted ideals (see Remark 2.6). Our
first main result says that every sssi is the symmetrization of a strongly stable ideal.

Theorem A (cf. Theorem 3.6). An ideal I is symmetric strongly shifted if and only if
I is the symmetrization of a strongly stable ideal J in the following sense:

I D
\
�2Sn

�.J /:

Moreover, under this symmetrization process, the partition Borel generators of I cor-
respond to the Borel generators of J .

The symmetrization process described by Theorem A sometimes allows to trans-
fer desirable algebraic properties from the class of strongly stable ideals to the class of
symmetric strongly shifted ideals. For instance, in Proposition 4.3, we identify classes
of normal strongly shifted ideals which are the symmetrization of normal strongly sta-
ble ideals, while in Theorem 5.6 we find a primary decomposition of a principal Borel
sssi by symmetrization of a primary decomposition of a principal Borel ideal. More-
over, by refining such primary decomposition to an irredundant one (Theorem 5.8),
we determine the associated primes of ordinary powers of principal Borel sssi’s (The-
orem 5.9), similarly as in [29] for principal Borel ideals.

The analogies between principal Borel ideals and principal Borel sssi’s extend
beyond their algebraic structure into their combinatorial nature. A key observation in
this sense is that both principal Borel ideals and square-free Veronese ideals are poly-
matroidal ideals; namely, the exponent vectors of their monomial generators form
discrete polymatroids. The latter were introduced by Herzog and Hibi in [26] as a
generalization of the notion of matroid (see Definition 3.13 for more details). Sur-
prisingly, the class of principal Borel sssi’s coincides with the class of symmetric
polymatroidal ideals.
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Theorem B (cf. Theorem 3.14). A monomial ideal is symmetric and polymatroidal
if and only if it is a symmetric strongly shifted ideal with exactly one partition Borel
generator.

The proof of Theorem B relies on the factorization property of a principal Borel
sssi given by Theorem 3.12, which also allows for a beautiful description of their toric
ideal (see Section 6). In more detail, our main result is the following.

Theorem C (cf. Theorem 6.5 and Corollary 6.13). The toric ideal of a sssi with
exactly one partition Borel generator is generated by quadratic polynomials, namely,
the symmetric exchange relations. Moreover, the toric ring is a Cohen–Macaulay nor-
mal domain which has rational singularities in characteristic zero and is strongly
F -regular in positive characteristic.

In particular, our result provides supporting evidence for a longstanding conjec-
ture of White, Herzog, and Hibi [26, 51], which states that, for an arbitrary polyma-
troidal ideal I , the toric ideal of I is generated by the symmetric exchange relations.
Theorem C shows that the conjecture holds for all symmetric polymatroidal ideals.

From a geometric perspective, a principal Borel sssi defines a normal toric per-
mutohedral variety, i.e., an algebraic variety associated with a well-studied convex
polytope dubbed the permutohedron (see Proposition 4.6 and Corollary 6.14).

While the combinatorial structure of symmetric strongly shifted ideals with an
arbitrary number of Borel generators remains more mysterious, the knowledge of
their syzygies from [2] offers a valuable complementary source of information. In
particular, it allows us to determine the depths of powers of an equigenerated sssi
I (Proposition 5.1) and a structure theorem for its Rees algebra R.I / Š

L
k�1 I

k .
More specifically, in Theorem 6.2, we prove that R.I / is the quotient of a polyno-
mial ring modulo relations which are either linear or arise from the toric ideal of I .
The latter statement is analogous to a well-known result on the Rees algebra of an
equigenerated strongly stable ideal [28, Theorem 5.1].

Structure of the paper. In Section 2, we analyze the behavior of symmetric (strongly)
shifted ideals under various algebraic operations. Remarkably, in Proposition 2.10, we
show that symbolic powers of symmetric strongly shifted ideals are strongly shifted,
generalizing what was known for square-free sssi’s by [2, Theorem 4.3]. In Section 3,
we introduce partition Borel generators and prove Theorem A. We study principal
Borel sssi’s in Section 3.1. In Section 3.2, we give combinatorial formulas for several
numerical invariants of symmetric monomial ideals.

In Section 4, we discuss the normality property of symmetric strongly shifted ide-
als; applications to convex polytopes and permutohedra are included in Section 4.1.
Next, we exploit the combinatorial structure of sssi’s to study their ordinary and sym-
bolic powers. In Section 5, we study the associated primes of powers of symmetric
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strongly shifted ideals. Finally, we study the Rees algebra of symmetric strongly
shifted ideals in Section 6, where we prove the structure theorems 6.2 and 6.5 and
discuss the geometry of toric varieties associated with a principal Borel sssi.

Notational conventions. We say that a sequence � D .�1; : : : ; �n/ of nonnegative
integers is a partition of d of length n, if �1 � � � � � �n and j�j D �1C � � � C �n D d .
We opt for the less standard convention of ordering the parts nondecreasingly for
our conventions to match those in [2], where symmetric shifted ideals were origi-
nally introduced. If � has distinct parts p1; : : : ; ps which occur with multiplicities
n1; : : : ; ns , respectively, we sometimes use the alternate notation �D .pn11 ; : : : ; p

ns
s /.

Throughout the paper, the notation ei stands for the i -th standard basis vector in Zn.
For a monomial u D xa11 � � �x

an
n , we write part.u/ 2 Pn for the partition obtained

from .a1; : : : ; an/ by ordering its entries nonincreasingly. If a monomial ideal I � R
is Sn-fixed, then a monomial u is in I if and only if xpart.u/ is in I . The set P.I /
contains a partition � ¤ .0n/ if and only if I ¤ R. Throughout the paper, we assume
that I ¤ R.

2. Symmetric shifted ideals under ideal operations

In [9, Proposition 1], Cimpoeaş observes that the class of ideals of Borel type (which
generalizes strongly stable ideals) is closed under sum, intersection, product, and
colon operations. The class of strongly stable ideals is also closed under the same
operations as demonstrated in [24, Proposition 1.2] and also under taking symbolic
powers [24, Theorem 3.8]. (In the latter work, symbolic powers are taken by retaining
the primary components associated to minimal primes of I .)

In this section, we show that a majority of these statements are also true for
symmetric strongly shifted ideals and fewer also hold for symmetric shifted ideals.
Towards this end, it will be convenient to simplify Definition 1.1 slightly. Denoting
byG.I / the set of minimal monomial generators of I allows to single out the partition
generators of I , namely,

ƒ.I / D ¹� 2 Pn W x
�
2 G.I /º:

In view of [2, Lemmas 2.2 and 2.3], it suffices to check the conditions of Definition 1.1
for the partition generators � 2 ƒ.I / rather than for arbitrary elements � in P.I /.

We begin by proving that the class of symmetric shifted ideals is closed under
sums and intersections.

Proposition 2.1. Let I , J be symmetric (strongly) shifted ideals. Then, I C J and
I \ J are symmetric (strongly) shifted ideals.
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Proof. We prove the statement assuming that I and J are symmetric strongly shifted.
The proof for symmetric shifted ideals is analogous, hence left to the diligent reader.

First, notice that I C J and I \ J are Sn-fixed, as I and J are. Now, let �2Pn be
such that �i <�j . If x� 2 I C J , then x� 2 I or x� 2 J . In the first case, x�xi=xj 2 I
by the strongly shifted property of I , while in the second case, x�xi=xj 2 J because
J is strongly shifted. In either case, x�xi=xj 2 I C J ; thus, I C J is a sssi. Similarly,
if x� 2 I \ J , then x�xi=xj 2 I \ J by the strongly shifted property of I and J .
Hence, I \ J is a sssi.

We next show that the class of symmetric strongly shifted ideals is closed under
products.

Proposition 2.2. Products, and hence powers, of symmetric strongly shifted ideals
are symmetric strongly shifted.

Proof. It suffices to prove the statement for the product of two symmetric strongly
shifted ideals I; J . It is clear that the ideal

IJ D
�
¹�.x�/�.x�/ W �; � 2 Sn; � 2 P.I /; � 2 P.J /º

�
is fixed by Sn. It remains to show that IJ is strongly shifted. Towards this end, let
p 2 Pn be such that xp D �.x�/�.x�/ 2 IJ and denote the relevant monomials by
�.x�/ D x�.�/ 2 I and �.x�/ D x�.�/ 2 J , respectively. Now, assume that

pi D .�.�/C �.�//i < .�.�/C �.�//j D pj :

Then, �.�/i < �.�/j or �.�/i < �.�/j . Equivalently, ���1.i/ < ���1.j / or ���1.i/ <
���1.j /.

Suppose the former case holds. Since I is symmetric and �.x�/ 2 I , we have that
x� 2 I . Since I is additionally strongly shifted and ���1.i/ < ���1.j /, one deduces
that x�x��1.i/=x��1.j / 2 I . Finally, applying � yields

�.x�x��1.i/=x��1.j // D �.x
�/xi=xj 2 I;

and thus, xpxi=xj D �.x�/�.x�/2 IJ . The latter case is identical, hence omitted.

On the other hand, the class of symmetric shifted ideals is not closed under taking
products.

Example 2.3. In kŒx1; x2; x3; x4�, consider the symmetric shifted ideal I with

ƒ.I / D ¹.1; 1; 2; 2/; .0; 2; 2; 2/; .0; 1; 2; 3/º:

Notice that I is not a sssi, since .0; 1; 2; 3/ 2 P.I / but .1; 1; 1; 3/ … P.I /; see
[2, Example 2.5]. Moreover, the maximal ideal m D .x1; x2; x3; x4/ is symmetric
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strongly shifted, with ƒ.m/ D ¹.0; 0; 0; 1/º. Then, the monomial ideal Im is Sn-
invariant with

ƒ.Im/ D ¹.1; 2; 2; 2/; .1; 1; 2; 3/; .0; 2; 2; 3/; .0; 1; 2; 4/; .0; 1; 3; 3/º

but is not symmetric shifted, since .0; 1; 2; 4/ 2 P.Im/ but .1; 1; 1; 4/ … P.Im/.

We do not know of an example that would show that powers of symmetric shifted
ideals may not be symmetric shifted. Thus, we are left with the following.

Question 2.4. Is the class of symmetric shifted ideals closed under taking powers?

We are also interested in understanding symbolic powers of symmetric (strongly)
shifted ideals. In the literature, two notions of symbolic powers make an appearance.
Some authors define the symbolic powers of an ideal I in terms of the minimal primes
of I as

I .m/Min D

\
P2Min.I /

.ImRP \R/;

while others define them in terms of the associated primes of I as

I .m/Ass D

\
P2Ass.I /

.ImRP \R/:

The two definitions agree for ideals without embedded primes, in which case we will
denote symbolic powers simply as I .m/. The second definition has the advantage that
it satisfies I .1/Ass D I for all ideals I , while the first definition is more easily handled
and more relevant in geometric contexts. Both notions of symbolic powers can be
described as saturations:

I .m/Min D

\
P2Min.I /

.ImRP \R/ D I
m
W J1 for J D

\
P2Ass�.I /nMin.I /

P;

I .m/Ass D

\
P2Ass.I /

.ImRP \R/ D I
m
W J1 for J D

\
P2Ass�.I /nAss.I /�

P:

In the above formulas, Ass�.I / denotes the union of the associated prime ideals of I n

for all n � 0, while Ass.I /� D ¹P W P � P 0 for some P 0 2 Ass.I /º: Moreover, the
intersections appearing in (2.1) and in (2.1) are finite, as Ass�.I / is a finite set [6].

The symbolic powers of a symmetric shifted ideal may not be symmetric shifted.

Example 2.5. Let I be the symmetric shifted ideal with ƒ.I / D ¹.1; 2; 2/; .0; 2; 3/º,
and let mD .x1; x2; x3/. Note that m is symmetric strongly shifted, but I is not, since
.0; 2; 3/ 2 P.I / but .1; 1; 3/ … P.I /. Then, the ideal I .1/Min D I W m D I W m1 D

.x21x
2
2 ; x

2
1x
2
3 ; x

2
2x
2
3/ is not symmetric shifted and nor is the second symbolic power

I .2/Min D .x21x
2
2x
2
3 ; x

4
1x
4
2 ; x

4
1x
4
3 ; x

4
2x
4
3/ in the sense of (2).



A. Costantini and A. Seceleanu 216

We do not currently know of any ssi I admitting a symbolic power I .m/Ass which
is not symmetric shifted. In Proposition 2.10 below, we will prove that the class of
symmetric strongly shifted ideals is closed under taking symbolic powers according
to both definitions. This generalizes what was proved in [2, Theorem 4.3] for square-
free symmetric strongly shifted ideals.

Remark 2.6. Any square-free symmetric ideal is the ideal generated by all the square-
free monomials of a fixed degree d 2 N. Such an ideal is referred to in the literature
as the square-free Veronese ideal of degree d . It can also be described as the defining
ideal of a monomial star configuration [21], as

In;c D
\

1�i1<���<ic�n

.xi1 ; : : : ; xic /;

where c D n � d C 1 is the height of the ideal. As the ideals In;c are symmet-
ric strongly shifted, it follows that all square-free symmetric ideals are symmetric
strongly shifted. In particular, the radical of any symmetric ideal I is symmetric
strongly shifted and can be expressed as

p
I D

\
1�i1<���<ic�n

.xi1 ; : : : ; xic / D In;c ; where c D ht.I /:

A key observation which we will use in the proof of Proposition 2.10 is the fact
that, unlike arbitrary symmetric shifted ideals, sssi’s can be characterized combinato-
rially in terms of the so-called dominance order.

Definition 2.7. Partitions �;� 2 Pn are compared in the dominance order C by set-
ting

� E � iff †k.�/ � †k.�/ for all 1 � k � n:

Remark 2.8. An Sn-fixed monomial ideal I is strongly shifted if and only if, for
every �;� 2 Pn with j�j D j�j, � 2 P.I / and �E � imply � 2 P.I /. This is because,
for �;� satisfying j�j D j�j, the inequality �E � is equivalent to x� being obtained
from x� by a sequence of Borel moves; see [14, Lemma 1.3] for a proof.

The notion of dominance order allows us to describe the saturation of a symmetric
strongly shifted ideal with respect to any symmetric monomial ideal.

Proposition 2.9. Let I be a sssi, and let c be a natural number so that 1 � c � n. For
� 2 Pn, define the truncated partition �<c D .�1; : : : ; �c�1/ 2 Pc�1. Then, we have

(1) I W I1n;c D .�.x
�/ j � 2 Sn; �<c D �<c for some � 2 P.I //.

(2) I W I1n;c is symmetric strongly shifted.

(3) Let J be a symmetric monomial ideal with ht.J / D c. Then, the ideal I W J1

is symmetric strongly shifted and is described as I W J1 D I W I1n;c .
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Proof. Denote L D .�.x�/ j � 2 Sn; �<c D �<c for some � 2 P.I //.
(1) Since In;c is a symmetric monomial ideal, the ideal I W I1n;c D

S
i�0 I W I

i
n;c

is also symmetric and monomial. Thus, it suffices to show that

P.I W I1n;c/ D P.L/ D ¹� 2 Pn j �<c D �<c for some � 2 P.I /º:

If x� 2 I W I1n;c , since xcxcC1 � � � xn 2 In;c , we have x�.xcxcC1 � � � xn/N D x� for
some � 2 P.I / and N � 0. This implies that �<c D �<c and establishes the con-
tainment I W I1n;c � L.

Conversely, take � 2 P.L/ and � 2 P.I / so that �<c D �<c and let N � �n.
Then, we have x� j x�.xcxcC1 � � �xn/N and therefore x�.xcxcC1 � � �xn/N 2 I ; thus,
we conclude�C .0c�1;N n�cC1/2P.I /. Now, consider an arbitrary monomial x˛ 2
INn;c . We aim to show that x�x˛ 2 I . Since I is symmetric strongly shifted, it suffices
to prove that part.x�C˛/ E �C .0c�1; N n�cC1/. Set p D part.x�C˛/ and observe
that x˛ 2 INn;c implies ˛i � N for each 1 � i � n so that p satisfies inequalities
pi � �i CN for each 1 � i � n. Thus, we have

nX
iDk

p �

nX
iDk

.�i CN/ D

nX
iDk

�
�C .0c�1; N n�cC1/

�
i

for k � c:

As for the case k < c, note that j˛j D N.n � c C 1/, which implies that

nX
iDk

pi D

nX
iDk

part.x�C˛/i �

 
nX
iDk

�i

!
C j˛j

D

nX
iDk

�
�C .0c�1; N n�cC1/

�
i

for k < c:

As discussed above, this yields p 2 P.I /, concluding the proof of the containment
L � I W I1n;c .

For (2), we will prove the equivalent assertion that L is a sssi. Towards this goal,
we identify the minimal generators of L: these are given by the partitions

ƒ.L/ D ¹� 2 Pn j �<c D �<c for some � 2 ƒ.I /; �i D �c�1 for i � c º:

Let � 2 ƒ.L/ and consider 1 � i < j � n so that �i < �j . By the description of
ƒ.L/, it follows that 1 � i < c � 1 and there exists � 2 P.I / with �<c D �<c . Set
�0 D �C ei � ej and �0 D �C ei � ej . Since �<c D �<c and 1 � i < c � 1, we
deduce that �i D �i < �j � �j as either j < c and �j D �j or j � c and thus

�j D �c�1 D �c�1 � �j :

Since I is symmetric strongly shifted, we have �0 2 P.I / and �0<c D �0<c , so we
obtain �0 2 P.L/, as desired.
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Finally, let J be a symmetric monomial ideal as in (3). Notice that

I W J1 D I W
p
J
1
;

since every ideal contains a power of its radical. Moreover,
p
J D In;c by (2.6). There-

fore, I W J1 D I W I1n;c is symmetric strongly shifted by part (2).

Thanks to Proposition 2.9, we can now understand the symbolic powers of a
sssi. More precisely, as symbolic powers can be calculated via saturations as in (2.1)
and (2.1), we have the following result.

Proposition 2.10. The symbolic powers I .m/Min and I .m/Ass of a symmetric strongly
shifted ideal I are symmetric strongly shifted.

Proof. Let I be a sssi. Observe that both ideals termed J in (2.1) and (2.1) are square-
free. We claim that they are symmetric. Indeed, consider the sets S DAss.I /, Min.I /,
Ass.Im/, Ass�.I /. Each of these sets is closed under the action of the symmetric
group, that is, P 2 S if and only if �.P / 2 S for all � 2Sn. Thus, the set differences
Ass�.I / nMin.I / and Ass�.I / n Ass.I /� are also closed under the action of Sn,
which implies that in both cases J is symmetric.

Since J is symmetric and square-free, Remark 2.6 yields that J is a square-free
Veronese ideal. To finish the proof, it then suffices to invoke Proposition 2.9 (2).

From the proof of Proposition 2.10, it follows that Proposition 2.9 (3) provides
a formula to calculate the symbolic powers of a symmetric strongly shifted ideal I ,
provided one knows the heights of the associated primes of I . We will see an instance
of this in Section 5.1.

3. Partition Borel generators and combinatorial structure

The proofs of Proposition 2.9 and Proposition 2.10, together with Example 2.5, sug-
gest that the combinatorial characterization of sssi’s in terms of the dominance order
in Remark 2.8 might explain several algebraic differences between sssi’s and sym-
metric shifted ideals which are not strongly shifted.

In this section, we will show that the dominance order not only determines the
algebraic structure of symmetric strongly shifted ideals, but also unveils deep analo-
gies between this class and that of strongly stable ideals. In this context, a key notion
is that of partition Borel generators of a sssi (see Definition 3.3). As this definition
is inspired by the notion of Borel generators of a strongly stable ideal, we begin our
investigation by recalling relevant background information on strongly stable ideals.
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Definition 3.1. A monomial ideal I � R is said to be a strongly stable ideal if, for
every ˛ 2Nn with x˛ 2 I and for every pair i < j so that j̨ ¤ 0, one has x˛xi=xj 2
I .

A monomial ideal I � R is said to be a stable ideal if, for every ˛ 2 Nn with
x˛ 2 I , setting

max.˛/ D max¹j W j̨ ¤ 0º;

for every i < max.˛/, one has x˛xi=xmax.˛/ 2 I .
The monomials x˛.xi=xj / and x˛.xi=xmax.˛// occurring above are referred to as

being obtained from x˛ via a Borel move.

The following well-known result conveniently describes the set of monomials
obtained from a monomial xˇ by performing Borel moves, which we denote by
Borel.¹xˇ º/.

Remark 3.2 ([14, Lemma 1.3]). For each ˛ D .˛1; : : : ; ˛n/ 2 Nn, define

†k.˛/ D ˛k C � � � C ˛n:

Monomials x˛ and xˇ with j˛j D jˇj satisfy x˛ 2 Borel.¹xˇ º/ if and only if†k.˛/�
†k.ˇ/ for all 1� k � n. We denote this condition by x˛ �B xˇ . Note that�B defines
a partial order on the set of n-tuples of nonnegative integers which restricts to the
dominance order on Pn (see Remark 2.8).

Given a set of monomialsM , the smallest strongly stable ideal which containsM
is called the Borel ideal generated by M and is denoted by Borel.M/. For a strongly
stable ideal I , there is a unique smallest setM of monomials such that I DBorel.M/;
the elements of M are called the Borel generators of I .

We now introduce a symmetric analogue to the notion of Borel generators.

Definition 3.3. Let B � Pn be a set of partitions and set xB D ¹x� W � 2 Bº.
The symmetric shifted ideal generated by B , denoted by Ss.B/, is defined to be

the smallest symmetric shifted ideal which contains xB . Similarly, define the sym-
metric strongly shifted ideal generated by B , denoted by Sss.B/, to be the smallest
symmetric strongly shifted ideal which contains xB .

Conversely, for a symmetric strongly shifted (resp., shifted) ideal I , we define the
set of partition Borel generators of I , denoted by B.I /, to be the smallest B � Pn so
that I D Sss.B/ (resp., I D Ss.B/).

In analogy with Remark 3.2 for strongly stable ideals, the partition Borel gen-
erators of a symmetric strongly shifted ideal coincide with the maximal elements in
each degree of ƒ.I / with respect to the dominance order. More precisely, if for a set
C � Pn, maxE¹C º denotes the set of maximal elements of C in dominance order,
we have the following characterization.
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Proposition 3.4. Let B � Pn be a set of partitions, and let Borel.xB/ denote the
strongly stable ideal generated by xB . Then, the following hold.

(1) Sss.B/D .¹�.x�/ W � 2Sn; � 2Pn; 9� 2B such that j�j D j�j and �E �º/
and Sss.B/ � Borel.xB/.

(2) P.Sss.B// D ¹� 2 Pn W x� 2 Borel.xB/º:

(3) Let I be a symmetric strongly shifted ideal. Then, B.I /D maxE¹ƒ.I /º; that
is,

B.I / D ¹� 2 ƒ.I / W � 2 ƒ.I / with j�j D j�j; � E � implies � D �º

are the partition Borel generators of I .

In particular, for any symmetric strongly shifted ideal I , one has I D Sss.B.I //.

Proof. (1) Denote

I D .¹�.x�/ W � 2 Sn; � 2 Pn; 9� 2 B such that j�j D j�j and � E �º/:

It is clear that I is symmetric and xB � I . Moreover, notice that ƒ.I / � S , where

S D ¹� W � 2 Pn; 9� 2 B such that j�j D j�j and � E �º � I;

and S is closed under Borel moves. Thus, I is a sssi by Remark 2.8. Finally, I is
indeed the smallest symmetric strongly shifted ideal containing xB , since any sssi I 0

with I 0 � xB must contain xS by Remark 2.8; hence, it must contain I by symmetry.
To show that Sss.B/ � Borel.xB/, let �.x�/ 2 Sss.B/ for some � 2Sn, � 2 Pn.

Since � is a partition, we have

†k.�.�// D

nX
iDk

���1.i/ �

nX
iDk

�i D †k.�/;

which means that �.x�/ �B x� by Remark 3.2. Furthermore, since x� 2 Sss.B/,
Remark 2.8 together with Remark 3.2 implies that �.x�/ 2 Borel.¹x�º/� Borel.xB/
for each � 2 Sn.

(2) Part (1) yields the containment P.Sss.B// � ¹� 2 Pn W x� 2 Borel.xB/º.
For the opposite containment, let � 2 Pn with x� 2 Borel.xB/. Then, there exists

a minimal generator of Borel.xB/, x˛ so that x˛jx� and x˛ �B xˇ for some ˇ 2 B
with j˛j D jˇj. This yields �i � ˛i for all 1 � i � n and

Pn
iDk ˛i �

Pn
iDk ˇi for all

1 � k � n. Therefore,

kX
iD1

�i �

kX
iD1

˛i �

kX
iD1

ˇi for each 1 � k � n:
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If j�j D j˛j, it follows that � D ˛, which yields � E ˇ. Thus, x� 2 Sss.B/, i.e.,
� 2 P.Sss.B//.

If instead j�j> j˛j D jˇj, set qDmax¹k W
Pk
iD1�i � jˇjº and t D jˇj �

Pq
iD1�i .

By the assumption, we have q < n. Moreover, since
PqC1
iD1 �i > jˇj, we deduce that

�qC1 > t . Now, let


 D .ˇ1; : : : ; ˇq; ˇqC1 C �qC1 � t; ˇqC2 C �qC2; : : : ; ˇn C �n/:

Note that 
 is a partition since ˇ; � 2 Pn and since �qC1 � t > 0. Moreover, observe
that xˇ j x
 , which yields x
 2 Sss.B/ since xˇ 2 Sss.B/. The sum of entries of 
 is

j
 j D

nX
iD1

ˇi C

nX
iDqC1

�i � t D jˇj C

nX
iDqC1

�i � jˇj C

qX
iD1

�i D j�j:

We claim that � E 
 . To see this, compute

nX
iDk


i D

8<:
Pn
iDk ˇi C

Pn
iDk �i if k > q C 1;Pn

iDk ˇi C
Pn
iDqC1 �i � t if k � q C 1:

If k > q C 1, it is clear that
Pn
iDk 
i �

Pn
iDk �i . If k � q C 1, then inequality (3)

yields

nX
iDk


i D

nX
iDk

ˇi C

nX
iDqC1

�i � jˇj C

qX
iD1

�i D j�j �

k�1X
iD1

ˇi � j�j �

k�1X
iD1

�i D

nX
iDk

�i :

Since we have shown � E 
 and x
 2 Sss.B/, we deduce that x� 2 Sss.B/ by
Remark 2.8 and thus � 2 P.Sss.B//, as desired.

(3) Set B D maxE¹ƒ.I /º. Since B � ƒ.I /, it is clear that I � xB , whence I �
Sss.B/ as I is a sssi. Moreover, by the definition of B , for each � 2 ƒ.I /, we have
that � E � for some � 2 B.I /; hence, I � Sss.B/ by Remark 2.8, so equality holds.
That B is the smallest set of Borel generators of I follows by noting that � 2 B.I /
and B 0 � B n ¹�º yields Sss.B 0/ � I n ¹x�º. Thus, we conclude that B D B.I /.

We emphasize that the conclusion of Proposition 3.4 (1) does not hold if one
replaces Sss.B/ with Ss.B/ and Borel.xB/ with the smallest stable ideal containing
xB , denoted by St.xB/.

Example 3.5. Let B D ¹.0; 0; 1; 1/º, J D St.xB/ D .x3x4; x23 ; x2x3; x1x3/, and let
I D Ss.¹� 2 Pn W x� 2 J º/. Observe that I ª J , since x1x2 2 I n J .

Building upon the relationship between Sss.B/ and Borel.xB/ highlighted in
Proposition 3.4, the next theorem shows that an ideal I is a sssi if and only if it can
be obtained from a strongly stable ideal J by symmetrization, i.e., I D

T
�2Sn

�.J /.
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Theorem 3.6. (1) Let J be a strongly stable ideal. Then, the ideal

I D
\
�2Sn

�.J /

is symmetric strongly shifted, with P.I / D ¹� 2 Pn W x� 2 J º.
(2) Conversely, every symmetric strongly shifted ideal I has the form in (3.6) for

some strongly stable ideal J . In detail, let B D B.I / � Pn. Then, the ideal J D
Borel.xB/ satisfies

I D
\
�2Sn

�.J /:

Moreover, J is the smallest strongly stable ideal with this property.

Proof. (1) It is clear that I is symmetric and thatP.I /�¹�2Pn W x� 2 J º. Moreover,
since J is strongly stable, it follows from Proposition 3.4 that, for each � 2 Sn,
�.x�/ 2 Borel.¹x�º/ � J and consequently x� 2 I whenever � 2 Pn and x� 2 J .
Therefore, we have ¹� 2 Pn W x� 2 J º � P.I / and thus equality holds. Since J is
closed under Borel moves, it then follows that P.I / is also closed under Borel moves;
i.e., I is a sssi.

(2) From Proposition 3.4 (1), we know that Sss.B/ � Borel.xB/. Thus, for every
� 2 Sn, we obtain that Sss.B/ D �.Sss.B// � �.Borel.xB//. Therefore,

Sss.B/ �
\
�2Sn

�.Borel.xB//:

For the opposite containment, notice that x˛ 2
T
�2Sn

�.Borel.xB// implies that
�.x˛/ 2 Borel.xB/ for all � 2Sn and in particular that xpart.x˛/ 2 Borel.xB/. Setting
�D part.x˛/, we deduce by Proposition 3.4 (2) that � 2 P.Sss.B//. It follows by the
Sn-invariance of Sss.B/ that also x˛ 2 Sss.B/, thus finishing the proof.

In light of Theorem 3.6, it is natural to expect that algebraic properties which are
well behaved under taking intersections are preserved under symmetrization. Propo-
sition 4.3 and Theorem 5.6 will present instances when this is indeed the case.

Analogously to [19, Propositions 2.15, 2.16, and 2.17] for strongly stable ideals,
our next goal is to describe sums, intersections, and products of symmetric strongly
shifted ideals in terms of partition Borel generators. To do so, we must consider the
lattice structure of Pn.

The following lemma is inspired by a similar description in [8] for the lattice
structure on the set of partitions of fixed sum P.d/ D ¹� is a partition and j�j D dº.
We include the proof here for lack of a specific reference which treats the case of Pn.

Lemma 3.7. For every n, the set Pn forms a lattice with respect to the dominance
order.
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Proof. Notice that there is a one-to-one correspondence between partitions

� D .�1; : : : ; �n/ 2 Pn

and nondecreasing sequences y� 2Nn so that y�k C y�k�2 � 2y�k�1 for every k. Indeed,
given � D .�1; : : : ; �n/ 2 Pn, one defines y� D .

P
n �;

P
n�1 �; : : : ;

P
1 �/, where

for every 1 � k � n, we denoteX
k

� D �k C � � � C �n:

Conversely, given a vector y� 2 Nn, one defines a partition � D .�1; : : : ; �n/ 2 Pn by
setting �n D y�1 and �k D y�n�kC1 � y�n�k for 1 � k � n � 1. Under this correspon-
dence, one has that � E � if and only if y�k � y�k for each k.

Now, let �; � 2 Pn. We need to prove that � and � have a meet and a join in the
dominance order. For each 1 � k � n, let vk Dmin¹y�k; y�kº and let v D .v1; : : : ; vn/.
Observe that, for every k, vk C vk�2 � 2vk�1, so there exists a partition � 2 Pn
corresponding to v under the identification above. Moreover, v D y� ^ y� with respect
to the componentwise order; hence, � D � ^ � with respect to the dominance order.
To prove that � and � have a join, recall that for partitions �; � 2 Pn one has that
� E � if and only if �T E �T , where �T and �T denote the partitions corresponding
to the transpose of the Young diagrams of � and �, respectively. Therefore, the join of
� and � is � _ � D .�T ^ �T /T .

Proposition 3.8. Let A;B � Pn. Then,

(1) Sss.A/C Sss.B/ D Sss.A [ B/ and

(2) Sss.A/\ Sss.B/D Sss.A^B/, where A^B D ¹�^� W � 2 A;� 2 Bº and
� ^ � denotes the meet of � and � in the dominance order.

For any two symmetric strongly shifted ideals I and J , one has

B.I C J / D max
E
¹B.I / [ B.J /º and B.I \ J / D max

E
¹B.I / ^ B.J /º:

Proof. For (1), it is clear that x� 2 Sss.A/C Sss.B/ whenever � 2 A [ B . Hence,
since sssi’s are closed under sums by Proposition 2.1, we deduce that Sss.A [ B/ �
Sss.A/C Sss.B/. Conversely, let p 2 Pn be so that xp 2 Sss.A/C Sss.B/. Since xp

is a monomial, we must then have xp 2 Sss.A/ or xp 2 Sss.B/. In either case, there
exists a partition � 2 A [ B with p E �. Thus, xp 2 Sss.A [ B/.

For (2), notice that x�^� 2 Sss.A/ \ Sss.B/ whenever � 2 A and � 2 B , since
�^�E �, �^�E � and Sss.A/\ Sss.B/ is symmetric strongly shifted by Propo-
sition 2.1. Therefore, Sss.A ^ B/ � Sss.A/ \ Sss.B/. Conversely, let p 2 Pn be so
that xp 2 Sss.A/ \ Sss.B/. Then, there exist partitions � 2 A;� 2 B so that p E �
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and p E �. Since � and � have a meet by Lemma 3.7, it then follows that p E �^�,
so xp 2 Sss.A ^ B/.

The remaining statement follows from the other two, since for any sssi’s I and J

Sss.B.I / [ B.J // D Sss.B.I //C Sss.B.J // D I C J

and
Sss.B.I / ^ B.J // D Sss.B.I // \ Sss.B.J // D I \ J:

This implies that

max
E
¹B.I / [ B.J /º D max

E
¹ƒ.I C J /º D B.I C J /

and
max

E
¹B.I / ^ B.J /º D max

E
¹ƒ.I \ J /º D B.I \ J /;

which completes the proof.

Proposition 3.9. For A;B;C � Pn, set ACB D ¹�C� W � 2 A;� 2 Bº. Then, we
have

(1) Sss.A/ � Sss.B/ D Sss.AC B/,

(2) B.IJ / D maxE¹B.I / C B.J /º for any symmetric strongly shifted ideals
I , J .

Proof. For (1), it is clear that x�C� 2 Sss.A/ � Sss.B/ whenever � 2 A and � 2
B . Therefore, using the fact that Sss.A/ � Sss.B/ is symmetric strongly shifted by
Proposition 2.2, we deduce that Sss.ACB/� Sss.A/ � Sss.B/. Conversely, let p 2Pn
be so that xp is a monomial generator of Sss.A/ � Sss.B/. Then, by Proposition 3.4 (1),
there exist partitions � 2 A, � 2 B , and �0; �0 2 Pn and permutations �; � 2 Sn so
that �0 E �, �0 E �, and p D �.�0/C �.�0/. Since �0; �0 are ordered increasingly,
for all k one has that

pk C � � � C pn D �
0

��1.k/
C � � � C �0

��1.n/
C �0

��1.k/
C � � � C �0

��1.n/

� �0k C � � � C �
0
n C �

0
k C � � � C �

0
n

� �k C � � � C �n C �k C � � � C �n;

where the last inequality follows from the fact that �0 E � and �0 E �. Thus, p E
�C �, whence xp 2 Sss.AC B/, which completes the proof.

For (2), notice that part (1) and the fact that I , J are strongly shifted imply the
identity

Sss.B.I /C B.J // D Sss.B.I // � Sss.B.J // D IJ:

This ensures that maxE¹B.I /C B.J /º D maxE¹ƒ.IJ /º D B.IJ /, as desired.



The combinatorial structure of symmetric strongly shifted ideals 225

3.1. Principal Borel sssi’s and discrete polymatroids

Strongly stable ideals with one Borel generator are called principal Borel ideals. They
play a key role in the study of strongly stable ideals, due to their rich combinatorial
structure and to the fact that every strongly stable ideal is a sum of principal Borel
ideals. Analogously, we introduce the following notion.

Definition 3.10. A principal Borel symmetric shifted ideal is any ideal of the form
Sss.¹�º/ for some � 2 Pn, i.e., an ideal whose set of partition Borel generators is a
singleton.

Note that a principal Borel sssi is necessarily equigenerated; that is, all its minimal
generators have the same degree.

Example 3.11. Examples of principal Borel sssi’s include the following.

• Powers of the maximal ideal .x1; : : : ; xn/d D Sss.¹.0n�1; d /º/.

• The square-free Veronese ideal of degree n� cC 1 in n variables (see Remark 2.6)

In;c D Sss.¹.0c�1; 1n�cC1/º/:

• Powers Imn;c D Sss.¹.0c�1; mn�cC1/º/ of a square-free Veronese ideal. The for-
mula for the unique partition Borel generator of Imn;c follows from Proposition 3.9.

It is clear from Proposition 3.8 (1) that every sssi is a sum of principal Borel sssi’s
and that the class of principal Borel sssi’s is not closed under sums. However, it is
closed under intersections, products, and powers, thanks to Proposition 3.8 (2) and
Proposition 3.9 (1).

A remarkable consequence of Proposition 3.9 is that a principal Borel sssi decom-
poses as a product of square-free Veronese ideals. Recall that the transpose of �,
denoted by �T , is defined as the partition corresponding to the transpose of the Young
diagram of � so that the parts of �T record the number of boxes in each row of the
Young diagram of �. More precisely, �T 2 P�n is defined by

�Ti D j¹j W �j � �n � i C 1ºj � n:

Theorem 3.12. Let � 2 Pn be a partition and set �0 D 0. The principal Borel sssi
Sss.¹�º/ decomposes as

Sss.¹�º/ D
nY
iD1

I
�i��i�1
n;i :

Proof. By the definition of �T , � can be decomposed as

� D

�nX
jD1

.0
n��T

j ; 1
�T
j /:
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Therefore, by Proposition 3.9 (1), it follows that

Sss.¹�º/ D
�nY
jD1

Sss.¹.0n��
T
j ; 1

�T
j /º/ D

�nY
jD1

In;n��T
j
C1:

It remains to observe that, by definition of �T , the number of parts of �T of size
n � i C 1, that is, the number of rows for the Young diagram of � which contain
exactly n � i C 1 boxes, is �i � �i�1. Thus, combining the repeated factors of the
previous identity yields the claim.

This factorization property will allow us to give another combinatorial character-
ization of principal Borel sssi’s in Theorem 3.14 below. To state this result, we need
to recall the following definition, which is due to Herzog and Hibi [26, Definition 2.1
and Remark 6.4].

Definition 3.13. An equigenerated monomial ideal I is called a polymatroidal ideal
if any two monomial generators xu11 � � �x

un
n and xv11 � � �x

vn
n of I satisfy the following

exchange property:

For every i so that ui > vi there exists a j so that uj < vj
and .xu11 � � � x

un
n /xj =xi 2 I .

The terminology refers to the fact that the exponent vectors .u1; : : : ; un/ 2 Zn

of the monomials xu11 � � � x
un
n generating a polymatroidal ideal form a set of bases

of a discrete polymatroid. The index j in Definition 3.13 can be chosen so that also
.x
v1
1 � � � x

vn
n /xi=xj 2 I [26, Theorem 4.1]. This is referred to in the literature as the

symmetric exchange property and is conjectured to determine the algebraic structure
of the toric ring of a polymatroidal ideal [26, 51] (see Conjecture 6.6 and our discus-
sion therein).

Examples of polymatroidal ideals include powers of square-free Veronese ideals
and principal Borel ideals by [26, Examples 2.6 (c) and 9.4]. Since the former are
principal Borel sssi’s and the latter become principal Borel sssi’s after symmetrization
in the sense of Theorem 3.6, it is then natural to ask whether every principal Borel sssi
is polymatroidal. The following theorem shows that this is indeed the case.

Theorem 3.14. A principal Borel sssi is a polymatroidal ideal. In fact, a symmetric
monomial ideal is polymatroidal if and only if it is a principal Borel sssi.

Proof. That every principal Borel sssi is a polymatroidal ideal follows from Theo-
rem 3.12, since square-free Veronese ideals are polymatroidal and products of poly-
matroidal ideals are polymatroidal by [11, Theorem 5.3].

To prove the converse, we first show that every symmetric polymatroidal ideal is
a sssi. Let I be a symmetric polymatroidal ideal. Let � 2 ƒ.I / be a partition with
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�j < �i , and let � D .ij / 2Sn. Then, as I is symmetric, the monomials f D x� and
gD �.f / are in I . For convenience, in the following, we denote degi .h/ the exponent
of xi in a monomial h. By assumption, we have �i D degi .f / > degi .g/D �j and j
is the only index for which �j D degj .f / < degj .g/ D �i . Since I is polymatroidal,
the exchange property then yields that f xj =xi 2 I , so I is symmetric strongly shifted.

We next prove that every polymatroidal sssi must be a principal Borel sssi. Let
I be a polymatroidal sssi and suppose that there exist distinct �; � 2 B.I /. After
possibly switching the names of � and �, we may assume that �1 D �1, �2 D
�2; : : : ; �i�1 D �i�1, and �i < �i . Since I is polymatroidal, there exists an index
j so that �j > �j and x�xj =xi 2 I . Since �k D �k for k < i , and �i < �i , j
must satisfy i < j . Setting �0 WD part.x��eiCej /, it follows that �0 2 P.I /. Note that
�0 D �� ei 0 C ej 0 , where if �i < �j , then i 0 D max¹k W �k D �iº and j 0 D min¹k W
�k D �j º and if �i D �j , then i 0 D min¹k W �k D �j º and j 0 D max¹k W �k D �j º
and in both cases i � i 0 < j 0 � j . Hence, x� D x�

0

xi 0=xj 0 is obtained from x�
0

via a
Borel move and thus�0 2ƒ.I / and�E�0. But this is a contradiction, since�2B.I /
is a maximal element of ƒ.I / with respect to dominance by Proposition 3.4 (3).

A polymatroidal ideal I is said to satisfy the strong exchange property if, for any
two distinct monomial generators xu11 � � � x

un
n and xv11 � � � x

vn
n of I and all indices i

and j so that ui > vi and uj < vj , then .xu11 � � �x
un
n /xj =xi is in I (see [26, Definition

2.5]).
Notice that square-free Veronese ideals and their ordinary powers satisfy this

property. However, this is not true for arbitrary principal Borel sssi’s.

Proposition 3.15. Let I D Sss.¹�º/ be a principal Borel symmetric strongly shifted
ideal. Then, I satisfies the strong exchange property if and only if � is of one of the
following types:

(1) � D .a; : : : ; a/ for some a ¤ 0 2 N;

(2) � D .as; bn�s/ for some a < b 2 N, s > 0;

(3) � D .as; b; cn�s�1/ for some a < b < c 2 N, s > 0.

Proof. Notice that I satisfies the strong exchange property trivially if (1) holds. Let
� be as in (2), and let u D xu11 � � �x

un
n ; v D x

v1
1 � � �x

vn
n be distinct monomial minimal

generators of I . Then, if ui > vi and uj < vj , it must be that uj D vi D a and
ui D vj D b. Hence, for u0 D uxj =xi , we have

part.u0/ D

´
.as�1; aC 1; b � 1; bn�s�1/ E � if b > aC 1;

.as�1; b � 1; aC 1; bn�s�1/ D � if b D aC 1:

Thus, in any case, part.u0/ 2 P.I /, whence u0 2 I , so I satisfies the strong exchange
property. Similarly, if (3) holds, exchanging variables xi ; xj appearing with distinct
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exponents among distinct monomial generators u; v of I produces u0 D uxj =xi ,
where either part.u0/ D �, or part.u0/ D .as�1; a C 1; b � 1; cn�s�1/, or part.u0/ D
.as; b C 1; c � 1; cn�s�2/, or

part.u0/ D .as�1; aC 1; b; c � 1; cn�s�2/:

Since part.u0/ 2 P.I / in each of these cases, the strong exchange property is satisfied.
We next show that in all other cases the strong exchange property does not hold.

Assume first that � D .as; bt ; cq; d r ; : : :/ has at least four distinct parts a < b < c <
d . Then, there exist monomial generators of I of the form u D xa1x

b
2x

c
3x
d
4 � � � and

v D xc1x
a
2x

d
3 x

b
4 � � � , respectively. Hence, u0 D ux3=x2 is such that

part.u0/ D .as; b � 1; bt�1; cq; c C 1; d r ; : : :/:

Since � E part.u0/, � ¤ part.u0/ and I D Sss.¹�º/, we deduce part.u0/ … P.I /,
whence u0 … I . Finally, suppose that �D .as;bt ; cq/with a < b < c;s;q� 1; t � 2 and
consider minimal generators for I of the form uD xa1x

b
2x

b
3x

c
4; : : : ; vD x

b
1x

a
2x

c
3x
b
4 � � � .

Then, u0 D ux3=x2 is such that part.u0/ D .as; b � 1; bt�2; b C 1; cq; : : :/. Since
� E part.u0/, it follows that part.u0/ … P.I /, which completes the proof.

The factorization of principal Borel sssi’s given in Theorem 3.12 parallels the
known factorization of principal Borel ideals as products of monomial prime ideals;
see, e.g., [20, Propositions 2.7]. Polymatroidal ideals endowed with such a factor-
ization property are called transversal polymatroidal ideals. In detail, a transversal
polymatroidal ideal is an ideal which can be written as a product of monomial ideals
generated by subsets of the variables x1; : : : ; xn, with repeated factors allowed. The
following proposition shows that principal Borel sssi’s need not be transversal. In its
statement, for � 2 Pn, we define the discrete difference vectors �i� inductively by
�0� D �, .��/j D �jC1 � �j , and �i� D �.�i�1�/.

Proposition 3.16. The following are equivalent:

(1) I D Sss.¹�º/ with � 2 Pn is a transversal polymatroidal ideal;

(2) there exist integers aj � 0 such that �i D
Pi
jD1

�
i�1
j�1

�
aj for 1 � i � n;

(3) for some (equivalently, for each) 1 � i � n � 1 we have �i� 2 Pn�i and
Sss.¹�i�º/ is transversal polymatroidal;

(4) .�i�/1 � 0 for all 0 � i � n � 1.

Proof. Notice that a symmetric transversal polymatroidal ideal in n variables is of the
form

J D

 
nY
iD1

.xi /
a1

!� Y
1�i<j�n

.xi ; xj /
a2
�� Y

1�i<j<k�n

.xi ; xj ; xk/
a3
�
� � � .x1; : : : ; xn/

an
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for some integers aj � 0. Indeed, if .xi1 ; xi2 ; : : : ; xic /
ac is a factor in the product

decomposition of J , then for each � 2 Sn we have .x�.i1/; x�.i2/; : : : ; x�.ic//
ac as a

factor in a product decomposition of

�.J / D J:

Conversely, since the decomposition of J as a product of powers of monomial prime
ideals is unique [29, Lemma 4.1], .xi1 ; xi2 ; : : : ; xic /

ac must appear in the factorization
of J whenever .x�.i1/; x�.i2/; : : : ; x�.ic//

ac does.
To prove the equivalence of (1) and (2), note that if I D Sss.¹�º/, then � is the

largest monomial in G.I / with respect to the monomial order antilex defined by
˛ <antilex ˇ if the leftmost non-zero entry of ˛ � ˇ is positive; this is because this
order refines the dominance order on partitions. Thus, in order to establish whether
I D J for some J as described above, we must identify the largest monomial u in
G.J / with respect to antilex. We claim that this monomial u is obtained as follows:

u D

 
nY
iD1

x
a1
i

!� Y
1�i<j�n

x
a2
j

�� Y
1�i<j<k�n

x
a3
k

�
� � � xann D

nY
iD1

x

Pi
jD1 .

i�1
j�1/aj

i :

Indeed, if i1 < i2 < � � � < ic , then the largest monomial in .xi1 ; xi2 ; : : : ; xic /
ac with

respect to antilex is xacic and since this is a monomial order, hence compatible with
products, it follows that u is indeed the antilex-largest monomial ofG.J /. The second
equality in (3.1) holds as for fixed c and ic there are

�
i�1
j�1

�
ideals .xi1 ; xi2 ; : : : ; xic /

with 1 � i1 < i2 < � � � < ic � n. Thus, � D part.u/ yields the desired description of
the �i in statement (2). Conversely, if the �i can be described as in statement (2), then
J is a symmetric polymatroidal ideal and thus J D Sss.part.u// by Theorem 3.14.
Since part.u/ D �, we have I D J , and so, I is transversal.

We next observe that the system of equations �i D
Pi
jD1

�
i�1
j�1

�
aj for 1� i � n is

equivalent to the system �iC1 � �i D
Pi�1
jD2

�
i�1
j�2

�
aj for 1 � i � n in the unknowns

a2; : : : ; an, together with the equation �1 D a1.
If the latter system admits nonnegative solutions, then �� is a partition, since the

functions
�
i�1
j�2

�
are nondecreasing in the argument i . Moreover, this system admits

nonnegative solutions if and only if Sss.¹��º/ is transversal polymatroidal, by the
equivalence of (1) and (2). Hence, if (2) holds, it follows by induction on i that, for
each 1 � i � n � 1, �i� 2 Pn�i and Sss.¹�i�º/ is transversal polymatroidal. Thus,
.2/ implies the stronger form of .3/ and hence also the weaker form.

The equivalence of the above systems of equations also shows that if �� 2 Pn�1
and Sss.¹��º/ is transversal polymatroidal, then Sss.¹�º/ is transversal polyma-
troidal. Thus, it follows by induction on i that if for some 1 � i � n we have �i� 2
Pn�i and Sss.¹�i�º/ is transversal polymatroidal, then Sss.¹�º/ is transversal poly-
matroidal. Thus, the weaker (hence also the stronger) form of .3/ implies .1/.
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Since (3) clearly implies (4), we end by showing that .4/ implies .2/. Note that the
solution to the system of identities listed in .2/ is ai D .�i�/1 � 0. This can be seen
by induction on i , using the fact that taking the difference of consecutive identities
replaces the system in .2/ for � with the similar system for �� and the equation
ai D �1, as noted above.

Remark 3.17. Principal Borel ideals can also be regarded as lattice path polyma-
troidal ideals, i.e., polymatroidal ideals whose minimal generators correspond to cer-
tain planar lattice paths [45]. On the other hand, principal Borel sssi’s are almost never
lattice path polymatroidal. Indeed, using Proposition 3.16, one can prove that a lattice
path polymatroidal ideal I is symmetric if and only if either I D Sss.¹.a; : : : ; a/º/
for some a 2 N, or I is a power of the homogeneous maximal ideal.

Proposition 3.15, Proposition 3.16, and Remark 3.17 suggest that the combi-
natorial properties of principal Borel sssi’s might be very different from those of
square-free Veronese ideals or principal Borel ideals. In fact, one can easily con-
struct principal Borel sssi’s which simultaneously fail to satisfy the strong exchange
property and are not transversal.

Example 3.18. Let I D Sss.¹.1; 3; 4; 5/º/. By Proposition 3.15, I does not satisfy
the strong exchange property. Moreover, I cannot be transversal, since the equations
for the aj ’s in Proposition 3.16 have no integer solutions for the given values �1 D 1,
�2 D 3, �3 D 4, �4 D 5. Alternatively, �� D .2; 1; 1/ is not a partition.

Nevertheless, we will see in later sections that ordinary powers of principal Borel
sssi’s share similar algebraic properties as powers of polymatroidal ideals that are
either transversal or satisfy the strong exchange property.

3.2. Numerical invariants of symmetric shifted ideals

Inspired by the case of strongly stable ideals, in this subsection, we use partition gen-
erators to calculate numerical invariants associated with symmetric strongly shifted
ideals. In fact, most formulas will hold more generally for arbitrary symmetric ideals.

For a 2 Nn, denote min.a/D min¹i Wai ¤ 0º and max.a/D max¹i Wai ¤ 0º. If I
is a strongly stable ideal, it is known that

ht.I / D max¹min.a/W xa 2 G.I /º and pd.R=I / D max¹max.a/W xa 2 G.I /º:

The latter formula follows from the Eliahou–Kervaire resolution [17]. Moreover, in
both cases, it is enough to only consider the Borel generators of I ; see [19, Proposition
2.14].

Replacing exponent vectors with partitions, we derive an analogous formula for
the codimension of a symmetric monomial ideal.
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Proposition 3.19. Let I be a symmetric monomial ideal. For each � 2 ƒ.I /, denote
min.�/ D min¹i W �i > 0º. The height of I is given by

ht.I / D max
�2ƒ.I/

¹min.�/º:

Moreover, if I is symmetric strongly shifted, then ht.I / D max�2B.I/¹min.�/º.

Proof. From (2.6), it follows that
p
I D In;c , where c D ht.I /. To determine the

height of I , notice that a monomialm 2
p
I if and only if jsupp.m/j > n� c. There-

fore, one has that

c D n � min
m2I
¹jsupp.m/jº C 1 D n � min

�2ƒ.I/
¹jsupp.�/jº C 1

D n � min
�2ƒ.I/

¹n �min.�/C 1º � 1 D max
�2ƒ.I/

¹min.�/º:

In the first line of the displayed equalities, we use the fact that

supp.m/ D supp.part.m//:

Suppose now that I is a sssi. We prove that we can replace ƒ.I / with B.I / in
the formula above by showing that each Borel move can only increase the size of the
support. This is because if �j > �i and �0 D �� ej C ei , then either �j � 1 > 0 and
then supp.�/ � supp.�0/ or �j D 1 and �i D 0, in which case part.�0/D � and thus
jsupp.�0/j D jsupp.�/j.

On the other hand, the projective dimension of a symmetric strongly shifted ideal
cannot be expressed in terms of min/max of the partition Borel generators. In Propo-
sition 3.21 below, we provide a formula for the projective dimension of a symmetric
shifted ideal in terms of its partition generators using a different partition statistic,
which we call med. Recall from [2, Theorem 3.1] that the Betti numbers of a sym-
metric shifted ideal are given by

ˇi .I / D
X

u2G.I/

�
jG.C.u//j

i

�
;

where, for a monomial uD �.x�/ 2 G.I / with � 2 Pn and � 2Sn, the ideal C.u/ is
constructed as follows (see [2, proof of Theorem 3.2]). First, one defines a total order
on the set of monomials in S D kŒx1; : : : ; xn�.

Definition 3.20. Let �;� 2 Pn, and let v D �.x�/ and u D �.x�/ be distinct mono-
mials in S for some �; � 2 Sn. Define v � u if one of the following conditions holds:

(1) � <antilex �, that is, either j�j < j�j or j�j D j�j and the leftmost non-zero
entry of � � � is positive;
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(2) � D � and v <antilex u; that is, the leftmost non-zero entry of �.�/ � �.�/ is
positive.

Next, for a symmetric shifted ideal I and a monomial u D �.x�/ 2 G.I /, one
defines J D .v 2 G.I / W v � u/ and

C.u/ WD J W u D .x�.1/; : : : ; x�.p//C .x�.k/ W p C 1 � k � n� r; �.k/ < umax/;

where

p D p.�/ D #¹k W �k < �n � 1º;

r D r.�/ D #¹k W �k D �nº;

umax D max¹�.k/ W �k D �nº:

We are now ready to calculate the projective dimension of a symmetric shifted
ideal.

Proposition 3.21. Let I be a symmetric shifted ideal and define for every � 2 Pn the
integer med.�/ D j¹i W �i < �nºj. Then, the projective dimension of I is given by

pd.R=I / D max
�2ƒ.I/

¹med.�/º C 1:

Proof. Utilizing the notation in (3.2), from the formula for the Betti numbers given
by (3.2), we deduce that

pd.I / D max¹i W 9u 2 G.I / with jG.C.u//j � iº D max¹jG.C.u//j W u 2 G.I /º:

From (3.2), it follows that jG.C.u//j � G.C.xpart.u///. Moreover, it can also be seen
from the definitions that jG.C.x�//j D med.�/ for all � 2 Pn. Therefore, it follows
that

pd.I / D max¹med.�/ W � 2 ƒ.I /º:

Unlike for height, when calculating the projective dimension of a symmetric
strongly shifted ideal, we cannot replace ƒ.I / with the partition Borel generators
of I .

Example 3.22. Let I D Sss.¹.1; 5; 5/º/. Notice that .2; 4; 5/ 2 ƒ.I /; however,

med..2; 4; 5// D 2 > 1 D med..1; 5; 5//:

Another useful invariant is the analytic spread, `.I /, of I (i.e., the Krull dimen-
sion of the fiber cone F .I / of I , which we define in Section 6). This is well studied,
since it controls the asymptotic growth of the powers of I , as we will see in Section 5.

The analytic spread of an arbitrary ideal is usually difficult to calculate. However,
if I is an equigenerated monomial ideal, `.I / coincides with the rank of the matrix



The combinatorial structure of symmetric strongly shifted ideals 233

whose rows are the exponent vectors of the monomial generators of I (see [34, Exer-
cise 8.21]). Using this fact, we can compute the analytic spread of any equigenerated
symmetric monomial ideal.

Proposition 3.23. Let I be an equigenerated symmetric monomial ideal. The analytic
spread of I is given by

`.I / D

´
n if I ¤ Sss.¹.a; : : : ; a/º/ for any a 2 N;

1 if I D Sss.¹.a; : : : ; a/º/ for some a 2 N:

In particular, if I D Sss.B/ is an equigenerated sssi with B ¤ ¹.a; : : : ; a/º for any
a 2 N, then `.I / D max�2B¹max.�/º, where for each � 2 B we denote

max.�/ D max¹i W �i > 0º:

Proof. By [34, Exercise 8.21], the analytic spread of an equigenerated monomial ideal
I is the rank of the matrix M whose rows are the exponent vectors of the monomial
generators of I . Hence, we only need to show thatM contains n linearly independent
rows.

Towards this end, let V be the row space of M viewed as a Q-vector space. Since
I is a symmetric ideal, V � Qn is a representation of Sn acting naturally on Qn.
Recall that the natural permutation representation of Sn on Qn decomposes into two
irreducible representations: the trivial representation T D ¹.a; : : : ; a/ W a 2 Qº and
the standard representation S D ¹.q1; : : : ; qn/ W qi 2 Q;

Pn
iD1 qi D 0º. Consider the

projections VT and VS of V onto T and S , respectively. Since VT and VS are subrep-
resentations of the irreducible representations T and S , respectively, we have VT D 0
or VT D T and VS D 0 or VS D S , respectively, which yields four possibilities for
V : V D 0 or V D T or V D S or V D S ˚ T D Qn.

Since ƒ.I / � V , ƒ.I / contains at least one non-zero vector, and no element
of ƒ.I / is in S (as every non-zero element of S must have at least one negative
coordinate), we are left with the possibilities V D T or V D S ˚ T D Qn. Now,
the case V D T corresponds to I D Sss.¹.a; : : : ; a/º/ for some a 2 N, which gives
`.I /D dim.V /D dim.S/D 1. The case V DQn corresponds toƒ.I /\ S ¤ ; and
gives `.I / D dim.V / D n.

For I ¤ Sss.¹.a; : : : ; a/º/, Proposition 3.23 implies that

`.I / D max
�2ƒ.I/

¹max.�/º;

where for each � 2ƒ.I / we denote max.�/Dmax¹i W �i > 0º. A similar formula for
the analytic spread of an equigenerated strongly stable ideal, with partitions replaced
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by exponent vectors of the monomial generators, was proved in [18, Proposition 6.3]
using methods from convex geometry.

In [15, 25], the analytic spread of an equigenerated monomial ideal I has been
characterized in terms of the linear relation graph � D �.I / of I . This graph is
defined as follows. If G.I / D ¹u1; : : : ; umº denotes a minimal monomial generating
set for I , the edge set of � is given by

E.�/ D ¹¹i; j º W there exist uk; ul 2 G.I / such that xiuk D xjulº;

while the vertex set of � is given by V.�/ D
S
i W¹i;j º2E.�/¹iº.

Assume that I is equigenerated and let r and s denote the number of vertices and
the number of connected components of �.I /, respectively. By [25, Lemma 4.2], one
has that

`.I / � r � s C 1;

with equality holding if I is a polymatroidal ideal, or, more generally, if I has linear
syzygies [15, Lemma 4.3]. Since equigenerated symmetric shifted ideals have a linear
resolution by [2, Theorem 3.2], we then deduce the following immediate corollary.

Corollary 3.24. Let I be an equigenerated symmetric shifted ideal. Then, `.I /D r �
s C 1, where r is the number of vertices in �.I / and s is the number of its connected
components.

In fact, we can give a full description of the linear relation graph of an equigener-
ated ssi, which we will use in Section 5 to study the depths of powers of sssi’s.

Proposition 3.25. Let I be an equigenerated symmetric shifted ideal. If

I D Sss.¹.a; : : : ; a/º/

for some a 2 N, then the linear relation graph � D �.I / is the graph with n vertices
and no edges. Otherwise, � is connected, with V.�/ D ¹1; : : : ; nº.

Proof. The first claim is clear, since I D Sss.¹.a; : : : ; a/º/D .xa1 � � �x
a
n/ is a principal

ideal, so no linear relations occur.
Suppose that I ¤ Sss.¹.a; : : : ; a/º/. Then, there exists a � 2 ƒ.I / with �1 < �n.

Let� WD �C e1 � en; then,�2ƒ.I / since I is symmetric shifted. Moreover, x1x�D
xnx

�, that is, ¹1; nº 2 E.�/. We show that for any 1 < i < n either ¹i; nº 2 E.�/
or ¹1; iº 2 E.�/; thus, � is a connected graph on n vertices. If �i < �n, since I is
symmetric shifted, we have that � WD �C ei � en 2 ƒ.I /. Moreover, xix� D xnx� ,
that is, ¹i; nº 2 E.�/. If instead �i D �n, let � D .i; n/ 2 Sn. Then, applying � to
the equality x1x� D xnx�, we get x1x� D xi�.x�/. Since �.x�/ 2 G.I /, this means
that ¹1; iº 2 E.�/ and the proof is complete.
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4. Integral closure

In the rest of this article, we use the results from Section 3 to study ordinary and
symbolic powers of symmetric strongly shifted ideals. In particular, in this section,
we study the integral closure and normality property of symmetric strongly shifted
ideals.

Our first result parallels an analogous result of Guo [24, Theorem 2.1] for the
integral closure of strongly stable ideals.

Proposition 4.1. The integral closure xI of a symmetric (strongly) shifted ideal I is
also symmetric (strongly) shifted.

Proof. First, note that the integral closure of a symmetric ideal is symmetric. Indeed,
if f is a solution of a monic polynomial

xn C r1x
n�1
C � � � C rn D 0

with ri 2 I i and if � 2 Sn, then �.f / is a solution of the equation

xn C �.r1/x
n�1
C � � � C �.rn/ D 0

in which each �.ri / 2 �.I i / D I i because I i is stable under the action of Sn.
Second, recall that since I is a monomial ideal, x˛ 2 xI if and only if it satisfies

an equation of the form

xs˛ D

sY
kD1

xˇ
.k/

for some s 2 N;

where xˇ
.k/
2 I for each k; see [34, p. 9]. Now, assume that ˛ 2 P.xI / and take

i < j so that ˛i < j̨ . (If I is shifted but not strongly shifted, assume additionally
that j D n.) Set S D ¹k 2 ¹1; : : : ; sº j ˇ.k/i < ˇ

.k/
j º and ˛0 D ˛ C ei � ej . From (4),

it follows that X
k2S

.ˇ
.k/
j � ˇ

.k/
i / � s. j̨ � ˛i / � s:

Therefore, there exist nonnegative integers ck , one for each k 2 S so that
P
k2S ck D s

and ck � ˇ
.k/
j � ˇ

.k/
i for each k 2 S . Define ˛0 WD ˛ C ei � ej and


 .k/ D

´
ˇ.k/ C ck.ei � ej / if k 2 S;

ˇ.k/ otherwise

so that
Pn
kD1 


.k/ D
Pn
kD1 ˇ

.k/C s.ei � ej /D s˛
0. Then, 
 .k/ 2 I by the (strongly)

shifted property and the relation xs˛
0

D
Qs
kD1 x


.k/ shows that x˛
0

2 xI , concluding
the proof.
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An ideal is said to be integrally closed if it coincides with its integral closure and
is called normal if all its powers are integrally closed. To understand normality of an
ideal I , a useful object is the Rees ring of I , which is defined as the subring

R.I / D
M
i�0

I i t i � RŒI t�:

Indeed, since R D KŒx1; : : : ; xn� is a normal domain, I is normal if and only if the
Rees algebra R.I / is a normal domain [34, Propositions 5.2.1 and 5.2.4].

The following example shows that a sssi need not be integrally closed or normal.

Example 4.2. Consider I D Sss.¹.2;2;8/; .0;6;6/º/ and observe that for �D .1;4;7/
one has 2� D .2; 2; 8/C .0; 6; 6/. Hence, x2� 2 I and x� 2 xI . However, � 62 P.I /
so x� 62 I . Hence, I is not integrally closed and therefore not normal.

However, Theorem 3.6 indicates a strategy to construct sssi’s which are integrally
closed or normal. In particular, in the next proposition, we identify two classes of nor-
mal symmetric strongly shifted ideals, obtained by symmetrization of certain normal
strongly stable ideals.

To state our result, we recall that a monomial ideal is called a lex-segment ideal
if, for every degree d , the set of monomials of degree d in I forms a lex-segment;
namely, for each degree d , there exists a monomial u 2 I of degree d so that I
contains every degree-d monomial v which is larger than u in the lexicographic order.
It is well known that lex-segment ideals are strongly stable, e.g., [27, p. 103].

Proposition 4.3. Let J be an integrally closed strongly stable ideal, and let I DT
�2Sn

�.J / be its symmetrization in the sense of Theorem 3.6. Then, I is an inte-
grally closed sssi.

Moreover, if I is a sssi such that Borel.xB.I// is normal, then I is normal. In
particular, I is normal if either of the following conditions hold:

(1) B.I / D ¹�º for some � 2 Pn, i.e., I is a principal Borel sssi; or

(2) Borel.xB.I// is an equigenerated lex-segment ideal.

Proof. First, suppose that J is integrally closed. Since every � 2 Sn acts as an iso-
morphism on R, then �.J / is integrally closed for every � 2 Sn. As the intersection
of integrally closed ideals is integrally closed [34, Remark 1.1.3], it follows that I is
integrally closed.

Now, let I be a sssi and J D Borel.xB.I//. Then, for every k � 1,

J k D Borel
�
xkB.I/

�
is strongly stable by [24, Proposition 1.2]. Moreover, by Proposition 2.2 and Propo-
sition 3.9, we have that I k is symmetric strongly shifted, with I k D Sss.kB.I //.
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Hence, Theorem 3.6 (2) implies that I k D
T
�2Sn

�.J k/. Therefore, from the first
part of the proof, it follows that I k is integrally closed whenever J k is; that is, I is
normal whenever J is.

Finally, to establish the two particular cases, it remains to note that if I is a prin-
cipal Borel sssi, then J is a principal Borel ideal. Furthermore, principal Borel ideals
and equigenerated lex-segment ideals are normal by [14, Proposition 2.14].

The normality of an ideal I as in Proposition 4.3 has important applications to
the study of the asymptotic behavior of the ordinary powers of a sssi which we will
explore in Section 5. A key result will be the following corollary, whose proof is well
known (see, for instance, [34, Propositions 5.2.1 and 5.2.4] and [27, Theorem B.6.2]).

Corollary 4.4. Let I be an equigenerated, normal sssi (e.g., I satisfies one of the con-
ditions in Proposition 4.3). Then, the Rees ring R.I / is a Cohen–Macaulay normal
domain.

4.1. Convex polytopes and minimal reductions

A useful tool to determine the integral closure of a monomial ideal I is its New-
ton polyhedron. In this subsection, we study the Newton polyhedron of a symmetric
strongly shifted ideal, discovering an interesting geometric description of ideals of
this kind in terms of well-studied convex polytopes.

We recall that the Newton polytope of a monomial ideal I is defined as the convex
hull of the exponents of its minimal generators, that is,

np.I / D conv¹.a1; : : : ; an/ j xa 2 G.I /º:

Moreover, the Newton polyhedron of I is defined as the Minkowski sum

NP.I / WD np.I /CRn�0:

(The Minkowski sum of polytopesA;B is defined asACBD¹aC b j a 2A;b 2Bº.)
It is well known that the integral closure xI of I can be determined via the formula

NP.xI / D NP.I / \Nn:

Moreover, by [3, Theorem 2.3], the analytic spread of I is

`.I / D max¹dimF j F is a compact face of NP.I /º C 1:

If I is an equigenerated monomial ideal, the Newton polyhedronNP.I / has a unique
compact face of maximal dimension, which coincides with the Newton polytope
np.I /. As a consequence of Proposition 3.23, we then have the following descrip-
tion of the Newton polytope of an arbitrary equigenerated symmetric monomial ideal.
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Corollary 4.5. Let I be an equigenerated symmetric monomial ideal, and let np.I /
denote the Newton polytope of I . Then,

dim.np.I // D

´
n � 1 if I ¤ Sss.¹.a; : : : ; a/º/ for any a 2 N;

0 if I D Sss.¹.a; : : : ; a/º/ for some a 2 N:

If I is symmetric strongly shifted, we can provide a more detailed description of
the Newton polytope of I (see Proposition 4.6 below). Recall that in convex geometry
a permutohedron is a convex body defined as follows:

P.a1; : : : ; an/ D conv¹.a�.1/; : : : ; a�.n// j � 2 Snº;

where conv denotes taking the convex hull of a set of points in Rn. Permutohedra
have emerged as objects of recent interest in combinatorics [42] and in algebraic
geometry [32]. We now show that the convex geometry of sssi’s is governed by per-
mutohedra. Some geometric implications of this fact will be discussed in Section 6.2.

Proposition 4.6. The Newton polytope of a principal Borel sssi is a permutohedron,
namely,

np.Sss.¹�º// D P.�/ D conv¹�.�/ j � 2 Snº:

In general, the Newton polytope of a sssi I is a convex hull of permutohedra, namely,

np.I / D conv
� [
�2B.I/

P.�/
�
:

Proof. It is clear from the definitions that P.�/ � np.Sss.¹�º// since the vertices of
the permutohedron are exponent vectors for some of the monomials in G.Sss.¹�º//.
For the converse, a theorem by Rado [43], as transcribed in [42, Proposition 2.5],
states that P.�/ is defined by the following (in)equalities:

P.�/ D

8̂̂<̂
:̂.t1; : : : ; tn/ 2 Rn j

8̂̂<̂
:̂
t1 C � � � C tn D �1 C � � � C �n

tik C � � � C tin � �k C � � � C �n

81 � k � n;81 � ik � � � � � in � n

9>>=>>; :
Each exponent vector of a monomial in G.I / satisfies the above system by Remark
2.8; thus, we obtain np.Sss.¹�º// � P.�/.

To deduce the general statement from that regarding principal Borel sssi’s, it suf-
fices to note that by Proposition 3.8 (1) an arbitrary sssi I decomposes as

I D
X

�2B.I/

Sss.¹�º/

and that the Newton polytope of a sum of ideals is the convex hull of the union of the
Newton polytopes of the summands.
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An important example of permutohedron is the hypersimplex

�n;d D P.0n�d ; 1d /:

Our decomposition formula for principal Borel sssi’s in Theorem 3.12 recovers a well-
known decomposition for the permutohedron as a Minkowski sum of hypersimplices.

Corollary 4.7. For � 2 Pn and �0 D 0, there is an identity

P.�/ D
nX
iD1

.�i � �i�1/�i;n:

Proof. Theorem 3.12 yields the following polyhedral identities, as the Newton poly-
tope of a product of ideals is the Minkowski sum of the Newton polytopes of the
summands

np.Sss.¹�º// D
nX
iD1

np.I�i��i�1n;i / D

nX
iD1

.�i � �i�1/�i;n:

An ideal L � I is called a reduction of I if xL D xI ; equivalently, if there exists an
integer r so that LI r D I rC1. If this is the case, it follows that LI k D I kC1 for every
k � r . Hence, the reductions of an ideal I give information on the growth of powers
of I . A reduction L of I is called a minimal reduction if it is minimal with respect to
inclusion.

While the reductions of a monomial ideal need not be monomial, in [47, Propo-
sition 2.1], Singla showed that every monomial ideal I admits a unique minimal
monomial reduction, that is, a reduction which is monomial and contains no other
monomial reduction of I . Thanks to Proposition 4.6, we can determine the unique
monomial reduction of a principal Borel sssi.

Corollary 4.8. For � 2 Pn, define the monomial ideal generated by the Sn-orbit of
x� as

L.�/ D .�.�/ j � 2 Sn/:

Then, L D L.�/ is the minimal monomial reduction of Sss.¹�º/ and we have

Sss.¹�º/ D xL:

Proof. Let I D Sss.¹�º/. In [47, Proposition 2.1 and Remark 1.3], it is shown that
the exponents for the monomial generators of the minimal monomial reduction of
I correspond to the vertices of NP.I / D np.I / C Rn�0, which coincide with the
vertices of np.I /, as the vertices of a Minkowski sum are obtained as sums of vertices
from each summand. Therefore, we only need to show that V D ¹�.�/ j � 2 Snº

is the set of vertices of np.I /. The latter form a subset of V , because np.I / D P.�/
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by Proposition 4.6. Since V forms an orbit under the Sn action on Rn and since
np.I / and hence its vertex set are Sn-invariant, we conclude that V coincides with
the set of vertices of np.I /. Hence, L is indeed the minimal monomial reduction of I .
Now, the fact that L is a reduction of I implies that xL D xI , while xI D I follows by
Proposition 4.3 (1), finishing the proof.

The smallest integer r so that LI r D I rC1 for a minimal reduction L of I is
called the reduction number of I with respect to L, denoted by rL.I /. The reduction
number of I is

r.I / D min¹rL.I / W L is a minimal reduction of I º:

The following corollary estimates the reduction number of any equigenerated normal
sssi.

Corollary 4.9. Let I � R D KŒx1; : : : ; xn� be equigenerated, normal sssi (e.g., let
I satisfy either one of the assumptions in Proposition 4.3) and assume that K is an
infinite field. Then, r.I / � n � 1, and r.I / D 0 if I D Sss.¹.a; : : : ; a/º/ for some
a 2 N.

Proof. By Corollary 4.4, R.I / is Cohen–Macaulay, whence [35, Theorem 2.3] im-
plies that r.I / � `.I / � 1. The claim now follows from Proposition 3.23.

5. Associated primes and primary decomposition

In this section, we continue our study of the ordinary powers of a symmetric strongly
shifted ideal I , by examining how the depths and associated primes of I k depend
on the exponent k. In turn, thanks to (2) and (2), this process will sometimes give
information on the symbolic powers of I as well.

Our analysis begins by recalling some well-known results which hold for an
arbitrary ideal I in a Noetherian ring. In [5, 6], Brodmann proved that, for k � 0,
Ass.I k/ D Ass.I kC1/ and depth.R=I k/ D depth.R=I kC1/; moreover,

lim
k!1

depth.R=I k/ � n � `.I /:

The smallest number k0 for which Ass.I k0/ D Ass.I k0C1/ is called the index
of stability of I and is denoted by astab.I /; Ass.I k0/ is called the stable set of
associated primes and is denoted by Ass1.I /. Similarly, the smallest integer so that
depth.R=I k/ D depth.R=I kC1/ is called the index of depth stability of I , dstab.I /.
An ideal I is said to satisfy the persistence property if Ass.I k/ � Ass.I kC1/ for
every k � 1.
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For monomial ideals in a polynomial ring, these notions have been studied by
several authors using various combinatorial techniques; see, for instance, [20, 25, 29,
30, 36]. In particular, in [25, Theorem 3.3], Herzog and Qureshi provide bounds for
the depths of powers of an equigenerated monomial ideal I in terms of its linear
relation graph � D �.I /, which is recalled in (3.2). If r and s denote the number of
vertices and the number of connected components of � , respectively, they show that
if r � s � 1, then

depth.R=I k/ � n � k � 1 for 1 � k � r � s:

Using their result and Proposition 3.25, we next describe the depths of powers of
equigenerated sssi’s.

Proposition 5.1. Let I be an equigenerated symmetric strongly shifted ideal of a
polynomial ring in n variables. Then, depth.R=I k/ � depth.R=I kC1/ for all k � 1.
Moreover,

(1) if I D Sss.¹.a; : : : ; a/º/ for some a 2 N, then depth.R=I k/ D n � 1 for all
k � 1, and dstab.I / D 1;

(2) otherwise, depth.R=I k/� n� k � 1 for 1� k � n� 1 and depth.R=I k/D 0
for k � n � 1; in particular, dstab.I / � n � 1 and m 2 Ass.I k/ for every
k � n � 1.

Proof. Since equigenerated symmetric (strongly) shifted ideals have a linear free res-
olution by [2, Theorem 3.2], and powers of sssi’s are symmetric strongly shifted by
Proposition 2.2, it follows from [29, Proposition 2.2] that

depth.R=I k/ � depth.R=I kC1/ for all k � 1:

If I D Sss.¹.a; : : : ; a/º/ for some a 2 N, then for all k � 1 one has

I D Sss.¹.ka; : : : ; ka/º/

by Proposition 3.9 (2). Hence, for all k � 1, depth.R=I k/D n� pd.R=I k/D n� 1,
where the latter equality follows from Proposition 3.21. This implies that

dstab.I / D 1:

Assume now that I ¤ Sss.¹.a; : : : ; a/º/ for any a 2N. Then, by Proposition 3.25,
the linear relation graph � of I is connected, with V.�/ D ¹1; : : : ; nº. Thus, (5)
implies that depth.R=I k/ � n � k � 1 for 1 � k � n � 1. In particular,

depth.R=I n�1/ D 0;

whence from (5) we obtain that depth.R=I k/ D 0 for all k � n � 1. The remaining
claims now follow immediately (see also [25, Corollary 3.4]).
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Remark 5.2. In the previous proof, we only used the assumption that I is symmetric
strongly shifted in order to apply Proposition 2.2. Thus, the same statement would
hold for arbitrary equigenerated symmetric shifted ideals, should Question 2.4 have
an affirmative answer.

In [25, Theorem 1.3], it was proved that an equigenerated graded ideal I satisfies
the persistence property if I kC1 W I D I k for all k � 1. While in general this equality
is only known to hold for k � 0, it is satisfied for every k if I is normal; see [44,
Propositions 4.1 and 4.7]. Proposition 4.3 then implies that many equigenerated sssi’s,
including all principal Borel sssi’s, satisfy the persistence property.

Theorem 5.3. Let I D Sss.B/ be an equigenerated, normal symmetric strongly shift-
ed ideal (e.g., I satisfies one of the assumptions in Proposition 4.3). Then, the follow-
ing hold.

(1) For every k � 1, I kC1 W I D I k .

(2) For every k � 1, Ass.I k/ � Ass.I kC1/ for every k � 1. That is, I satisfies
the persistence property.

(3) limk!1 depth.R=I k/ D n � `.I /

D

´
0 if � ¤ .a; : : : ; a/ for any a 2 N;

n � 1 if � D .a; : : : ; a/ for some a 2 N:

Proof. Since I is a normal ideal, [44, Proposition 4.7] implies (1), whence (2) follows
from [25, Theorem 1.3]. Moreover, since the Rees ring R.I / is Cohen–Macaulay by
Corollary 4.4, a well-known result of Huneke implies that equality holds in Brod-
mann’s inequality

lim
k!1

depth.R=I k/ � n � `.I /

(see, e.g., [27, Proposition 10.3.2]). This implies the first equality in (3), whence the
second equality follows from Proposition 3.23.

While the techniques used to prove [25, Theorem 1.3] do not seem to apply to
arbitrary equigenerated symmetric strongly shifted ideals, we currently do not know
of any sssi failing to satisfy Theorem 5.3 (1). This motivates the following questions.

Question 5.4. Is it true that I kC1 W I D I k for every k � 1 if I is an arbitrary sym-
metric strongly shifted ideal? Does any sssi satisfy the persistence property?

5.1. Stable associated primes of a principal Borel sssi

When I is a principal Borel sssi, its polymatroidal nature complements the informa-
tion provided by Proposition 5.1 and Theorem 5.3, allowing us to estimate the indices
of stability and depth stability of I .
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Proposition 5.5. Let I D Sss.¹�º/ be a principal Borel symmetric strongly shifted
ideal of a polynomial ring in n variables. Then,

(1) dstab.I / D 1 if and only if either � D .a; : : : ; a/ for some a 2 N, or � ¤
.a; : : : ; a/ for any a 2 N and m D .x1; : : : ; xn/ 2 Ass.I /.

(2) dstab.I / � astab.I / � n � 1, provided n � 2.

Proof. From Proposition 5.1, it follows that, for all k � 1,

depth.R=I / � depth.R=I k/ � lim
k!1

depth.R=I k/:

Then, dstab.I / D 1 if and only if depth.R=I / D limk!1 depth.R=I k/. By The-
orem 5.3 (3), the latter equality is equivalent to the condition that m 2 Ass.I / if
� ¤ .a; : : : ; a/ for any a 2 N and follows from Proposition 5.1 (1) otherwise. This
proves (1).

To prove (2), assume first that � ¤ .a; : : : ; a/ for any a 2 N. Then, from the
persistence property and (5.1), it follows that

dstab.I / D min¹k W depth.R=I k/ D 0º D min¹k W m 2 Ass.I k/º:

Hence, dstab.I /� astab.I /� n� 1 by Proposition 5.1 (2) (see also [36, Lemma 2.20]
and [25, Theorem 4.1]). If � D .a; : : : ; a/ for some a 2 N, then I is a transversal
polymatroidal ideal, whence astab.I /D dstab.I /D 1� n� 1 by [29, Corollaries 4.6
and 4.14].

The inequality dstab.I / � astab.I / in Proposition 5.5 (2) is remarkable, as for
an arbitrary monomial ideal I either of the integers astab.I / and dstab.I / might be
smaller than the other; see [29, p. 295]. It is known that dstab.I / D astab.I / if I is
a transversal polymatroidal ideal [29, Corollaries 4.6 and 4.14], an ideal of Veronese
type [29, Corollary 5.7], or a polymatroidal ideal with the strong exchange property
[36, Proposition 2.15]. It thus makes sense to investigate whether dstab.I /D astab.I /
for symmetric polymatroidal ideals.

In Example 5.7, we show that this is not true in general; however, it follows from
Theorem 5.9 below that several principal Borel sssi’s satisfy dstab.I /D astab.I /D 1.
A key ingredient in the proof is the following decomposition of a principal Borel sssi
as an intersection of symbolic powers of square-free Veronese ideals.

Theorem 5.6. Let �D.�1; : : : ;�n/ be a partition. For 1� j � n, letPjD.x1; : : : ;xj /
and denote aj D

Pj
iD1�i . Then, the principal Borel sssi Sss.¹�º/ can be decomposed

as

Sss.¹�º/ D
n\

jD1

� \
�2Sn

�.Pj /
aj

�
D

n\
jD1

I
.aj /

n;j :
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Proof. By Theorem 3.6, we know that I D
T
�2Sn

�.Borel.x�//. Moreover, from
[20, Proposition 2.7 and Theorem 3.1], it follows that

Borel.x�/ D
nY

jD1

P
�j
j D

n\
jD1

P
aj
j ;

where aj D
P
i WPi�Pj

�i D
Pj
iD1 �i . Therefore, we deduce the identity

Sss.¹�º/ D
\
�2Sn

�.Borel.x�// D
\
�2Sn

�

 
n\

jD1

P
aj
j

!
D

n\
jD1

� \
�2Sn

�.Pj /
aj

�
:

Now, for every j , we can rewrite
T
�2Sn

�.Pj /
aj D I

.aj /

n;j , which proves the last
equality.

Note that the first equality in Theorem 5.6 gives a (possibly redundant) primary
decomposition of I D Sss.¹�º/, as for every j and every � 2 Sn the ideals �.Pj /aj

are Pj -primary. Since the powers of a principal Borel sssi are still principal Borel
sssi’s, Proposition 3.9 and Theorem 5.6 then together imply that, for every integer
k � 1,

I k D Sss.¹�º/k D Sss.¹k�º/ D
n\

jD1

I
.kaj /

n;j :

Using this formula, we can construct a principal Borel sssi I such that astab.I /¤
dstab.I /.

Example 5.7. Let I D Sss.¹1; 2; 2; 4; 4º/. Irredundant primary decompositions of I
and I 2 computed using Macaulay2 [22] are the following:

I D I5;1 \ I
.3/
5;2 \ I

.9/
5;4 \ I

.13/
5;5 ;

I 2 D I
.2/
5;1 \ I

.6/
5;2 \ I

.10/
5;3 \ I

.18/
5;4 \ I

.26/
5;5 :

Thus, it follows from (5.1) and the persistence property Theorem 5.3 (1) that

astab.I / D 2:

Moreover, dstab.I / D 1 by Theorem 5.3 (3), since m D I5;5 2 Ass.I /.

Our next goal is to determine Ass1.I /, astab.I /, and dstab.I / for a principal
Borel sssi I . To this end, one needs to be able to predict which components in (5.1)
are irredundant in a systematic way. We identify sufficient conditions in Theorem 5.8
below, showing that, for every k � 1, Ass.I k/ � ¹�.P1/; : : : ; �.Pn/ W � 2 Snº, and
�.Pj / 2 Ass.I k/ if and only if I .kaj /n;j is needed in (5.1). Our proof relies on the
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following description of the partition generators of the symbolic powers of square-
free sssi’s from [2, Proposition 4.1]: for all j � 1,

P
�
I
.kaj /

n;j

�
D

´
� 2 Pn W

jX
iD1

�i � kaj

µ
;

ƒ
�
I
.kaj /

n;j

�
D

´
� 2 Pn W

jX
iD1

�i D kaj and �i D �j for all i > j

µ
:

Theorem 5.8. Let I D Sss.¹�º/ and j 0 WD min.�/. Adopt the notation of Theo-
rem 5.6. Then, for a fixed k � 1,

(1) all components I .kaj /n;j with j < j 0 are redundant in (5.1);

(2) I
.kaj 0 /

n;j 0 is not redundant in (5.1) and moreover I .k/Min D I
.k�j 0 /

n;j 0 ;

(3) if j > j 0 and �j�1 < �j , then the component I .kaj /n;j is not redundant in (5.1);

(4) if �1 < �j and either k > j.j � 1/ or �j >
qCj�r
k

, where k
Pj�1
iD1 �i D

.j � 1/q C r and 0 � r � j � 2, then the component I .kaj /n;j is not redundant
in (5.1) if and only if j � j 0.

(5) if �1 D �j for some j > 1, then the component I .kaj /n;j is redundant in (5.1).

In particular, for k � 0, a minimal primary decomposition of I k is

I k D
\
j2J

\
�2Sn

�.Pj /
kaj ;

where

J D

´
¹j W j � j 0º if j 0 > 1;

¹1º [ ¹j W j > 1 and �j ¤ �1º if j 0 D 1:

Proof. For simplicity of notation, we denoteX
s

� WD

sX
rD1

�r

for any partition � 2 Pn.
(1) For j < j 0, one has aj D 0, so the corresponding component I .kaj /n;j D R of

the decomposition (5.1) is redundant.
(2) Since by Proposition 3.19 one has ht.I /Dmin.�/D j 0, the component I

.kaj 0 /

n;j 0

is the intersection of the primary ideals �.P
ka0
j

j 0 / which belong to minimal primes of

I k , that is, I .k/Min D I
.kaj 0 /

n;j 0 . It remains to note that aj 0 D �j 0 by definition.
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(3) We next establish irredundancy of the components I .aj /n;j so that j � j 0 and

�j�1<�j . This amounts to showing that
T
i¤j I

.kai /
n;i 6�I

.kaj /

n;j . Equation (5.1) implies

that for � 2 Pn, x� 2 I .kai /n;i if and only if
P
i � � kai D k

P
i �. Set

�i D

8̂̂̂̂
<̂
ˆ̂̂:
k�i for 1 � i < j;

k�j�1 for i D j;

k.�jC1 C �j � �j�1/ for i D j C 1; provided j C 1 � n;

k�i for j C 2 � i � n:

Then, � 2 Pn and x� 2 I .kai /n;i for each i ¤ j since
P
i � D k

P
i �. By contrast,

we have that
P
j � < k

P
j � since �j�1 < �j and thus x� 62 I .kaj /n;j . Therefore, the

component I .kaj /n;j is not redundant in the decomposition (5.1).
(4) Now, suppose that j > j 0 and in particular j > 1. We construct � 2 Pn so that

x� 2
T
i¤j I

.kai /
n;i . By (5.1), � must satisfy

P
i � � k

P
i � for each i ¤ j . Set

k
X
j�1

� D .j � 1/q C r with 0 � r � j � 2

and consider the partition given by

�i D

´
q C 1 for 1 � i � j;

N for j C 1 � i � n;

where N � 0 is a sufficiently large integer such that N � q C 1 and j.q C 1/ C
N.i � j / � k

P
i � for each i > j . By construction, we have that

P
i � � k

P
i � for

i > j . Also, if p 2 Pn and a; b 2 N with a � b, thenX
b

p �
X
a

p C .b � a/pa �
X
a

p C
b � a

a

X
a

p D
b

a

X
a

p:

Now, for the partition � defined in (5.1) and for i < j , we have thatX
i

� D i.q C 1/

D i

�
k
P
j�1 � � r

j � 1
C 1

�
by (5.1)

� k
X
i

�C
i.j � r � 1/

j � 1
by (5.1) .with a D i; b D j � 1; p D �/

� k
X
i

� since j � r � 1 � 0:
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Similarly, we haveX
j

� D j.q C 1/ D
jk
P
j�1 �

j � 1
C
j.j � r � 1/

j � 1

D k
X
j�1

�C k

�P
j�1 �

j � 1
C
j.j � r � 1/

k.j � 1/

�
;

whence
P
j � � k

P
j � if and only if

�j �

P
j�1 �

j � 1
C
j.j � r � 1/

k.j � 1/
D
q C j � r

k
:

Thus, x� 2 I .kaj /n;j if and only if (5.1) is satisfied.

Whenever the inequality (5.1) fails, we have
T
i¤j I

.kai /
n;i 6� I

.kaj /

n;j and hence

I
.kaj /

n;j is needed in (5.1). Assume k > j.j � 1/. Then, we see that�P
j�1 �

j � 1
C
j.j � r � 1/

k.j � 1/

�
�

P
j�1 �

j � 1
:

If (5.1) holds, it implies �j �
P
j�1 �

j�1
. But this is possible if and only if �1 D � � � D

�j�1 D �j , in which case equality holds in (5.1). Since by assumption �1 < �j , (5.1)
must then fail, so I .kaj /n;j is not redundant.

(5) If �1 D �j for some j > 1, then �1 D � � � D �j�1 D �j , whence �j D
P
j�1 �

j�1
.

Let � 2 Pn be defined as in (5.1). If x� 2 I .kaj�1/n;j�1 , (5.1) with a D j � 1, b D j ,
p D �, then it yieldsX

j

� �
j

j � 1

X
j�1

� �
j

j � 1
k
X
j�1

� � k
X
j

�:

This shows that I .kaj�1/n;j�1 � I
.aj /

n;j and thus the latter ideal is redundant in (5.1).
The formula for the primary decomposition follows by substituting

I
.kaj /

n;j D

\
�2Sn

�.Pj /
kaj

in (5.1) and removing redundant components. In detail, �.Pj /kaj is irredundant in

I k D

n\
jD1

\
�2Sn

�.Pj /
kaj
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if and only if �.Pj / 2 Ass.I k/. As I k is symmetric, Pj 2 Ass.I k/ if and only if
�.Pj / 2 Ass.I k/ for all � 2 Sn. Therefore, the primary components �.Pj /kaj are
either all simultaneously redundant in (5.1), in which case I .kaj /n;j is redundant in (5.1),

or simultaneously irredundant in (5.1), in which case I .kaj /n;j is irredundant in (5.1).
Formula (5.8) then follows from (5.1) by means of statements (1)–(5) and the previous
considerations provided k > j.j � 1/ is satisfied for every j .

Combining the previous results together, we can finally determine the stable set
of associated primes of a principal Borel symmetric strongly shifted ideal.

Theorem 5.9. Let I D Sss.¹�º/. Adopt the notation of Theorem 5.6, where j 0 D
min.�/. Then,

Ass1.I / D

´
¹�.Pj / W j

0 � j � n; � 2 Snº if j 0 > 1;

¹�.Pj / W j D 1 or .j > 1 and �j ¤ �1/; � 2 Snº if j 0 D 1:

Moreover,

(1) if either �D .a; : : : ; a/ for some a 2N, or � 2 Pn has no repeated parts other
than possibly allowing for repetitions of �1, then astab.I /D dstab.I /D 1 and
for each k 2 N, I k D I .k/Ass;

(2) otherwise, setting s D max¹j W �1 < �j�1 D �j º, we have

dstab.I / � astab.I / � min¹n � 1; s.s � 1/C 1º:

Proof. The claim regarding the stable set of associated primes follows from the pri-
mary decomposition (5.8) in Theorem 5.8.

For (1), from Theorem 5.8 (3) and (5), it follows that, in either case, Ass.I / D
Ass.I k/ for every k � 1, whence astab.I / D 1. Moreover, dstab.I / D 1 by Proposi-
tion 5.5 (1), while (2.1) implies the claim about the symbolic powers I .k/Ass .

For (2), notice that m 2 Ass.I k/ for all k > s.s � 1/ by Theorem 5.8 (3) and (4).
Hence, the conclusion follows from the persistence property and Proposition 5.5 (2).

Remark 5.10. From Theorem 5.9, it follows that astab.I / D dstab.I / D 1 for many
principal Borel sssi’s. While this equality is known to hold for transversal poly-
matroidal ideals by [29, Corollaries 4.6 and 4.14], Example 3.18 and Theorem 5.9
together show that there exist symmetric polymatroidal ideals with

astab.I / D dstab.I / D 1

which are not transversal.
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Remark 5.11. It follows from (2.1) that, for an ideal I , the equalities I k D I .k/Ass

for 1 � k � astab.I / imply that I k D I .k/Ass for all k � 1.
In particular, by Theorem 5.3 (2) and Proposition 5.5 (2), a principal Borel sym-

metric strongly shifted ideal satisfies I k D I .k/Ass for all k � 1 if and only if I k D
I .k/Ass for 1 � k � n � 1. While the latter statement is true for every polymatroidal
ideal by [25, Theorem 4.1], Theorem 5.9 shows that for a principal Borel sssi it suf-
fices to check equality of powers and symbolic powers in a potentially smaller range
for 1 � k � min¹n� 1; s.s � 1/C 1º. This addresses a question by Huneke, which is
open for arbitrary monomial ideals.

In [30], Herzog and Vladoiu define a monomial ideal to be of intersection type
if it can be decomposed as an intersection of powers of monomial primes. Principal
Borel sssi’s satisfy this property by Theorem 5.6. In fact, in [30, Proposition 2.1], it
is shown that every polymatroidal ideal is of intersection type. Moreover, for every
polymatroidal ideal I generated in degree d , one has that I .dk/Min � I k for any k � 1;
see [30, Corollary 3.5]. Our contribution below is to strengthen this containment for
principal Borel sssi’s.

Proposition 5.12. Let I D Sss.�/ be a principal Borel sssi, with

d D j�j and c D min.�/:

Then, I .m/Min � I k whenever m=k � d=�c .

Proof. Recall from Theorem 5.8 (2) that I .m/Min D I
.�cm/
n;c . Let � 2 ƒ.I .�cm/n;c / and

assume that m=k � d=�c , i.e., �cm � dk. Then, by (5.1), for each j � c, we have

jX
iD1

�i D

cX
iD1

�i C

jX
iDcC1

�i � �cmC .j � c/
�cm

c

D
�cmj

c
�
dkj

c
� dk �

 
jX
iD1

�i

!
k;

since d D
Pn
iD1 �i . In view of (5.1), the above inequality shows that I .�cm/n;c � I

.aj k/

n;j

for each c � j � n and for aj D
Pj
iD1 �i . It then follows by Theorem 5.6 that

I .�cm/n;c � I k :

The above result is particularly relevant to the Containment Problem, which asks
for an ideal I to determine the pairs m; k so that I .m/ � I k . This is an important and
well-studied problem in commutative algebra, which is open in its full generality. We
refer the reader to [12, 23, 40] for known results in the case of monomial ideals.
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5.2. The intersection property of a principal Borel sssi

The decomposition formula in Theorem 5.6 mimics analogous decompositions for
principal Borel ideals or transversal polymatroidal ideals; see [20, Theorem 3.1] and
[29, Corollary 4.10]. Inspired by these results, in [7], Bruns and Conca defined an
ideal I to be P -adically closed if

I D
\

P2Ass.I /

P .v.P //; where v.P / D max¹t W I � P .t/º:

Since the associated primes of monomial ideals are generated by a subset of the vari-
ables, that is, a regular sequence, one obtains that a monomial ideal I is P -adically
closed if

I D
\

P2Ass.I /

P v.P /; where v.P / D max¹t W I � P tº:

It thus follows from Theorem 5.6 that principal Borel sssi’s are P -adically closed,
since for each j the exponent aj coincides with v.�.Pj // for every � 2 Sn.

We now seek to characterize P -adically closed symmetric monomial ideals.

Proposition 5.13. A symmetric monomial ideal is P -adically closed if and only if it
can be decomposed as

I D

t\
iD1

I .vi /n;ci
;

where vi D v.x1; : : : ; xci /. Moreover, all such ideals I are symmetric strongly shifted.

Proof. It is clear from the definition that an ideal admitting such a decomposition
is P -adically closed. Moreover, since each I .vi /n;ci is symmetric strongly shifted by
[2, Theorem 4.3], then I is symmetric strongly shifted by Proposition 2.1.

To prove the converse, let I be a P -adically closed symmetric monomial ideal.
We first show that if I is height-unmixed with ht.I / D c, then I is a symbolic power
of a square-free Veronese ideal. This is because Ass.I / is closed under the action of
Sn and the monomial primes of height equal to ht.I / form a single orbit under the
action of Sn. Moreover, the symmetry of I yields that for P D .x1; : : : ; xc/ and each
� 2 Sn

v.P / D max¹t W I � P tº D max¹t W I � �.P /tº D v.�.P //:

Thus, setting v D v.x1; : : : ; xc/, equations (5.2) and (2.6) yield

I D
\
�2Sn

�.x1; : : : ; xc/
v
D

� \
�2Sn

�.x1; : : : ; xc/
�.v/
D I .v/n;c :
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Now, suppose that I is not height-unmixed, with associated primes of distinct
heights c1; : : : ; ct . Then, for each i , the ideal

T
P2Ass.I /Wht.P /Dci

P v.P / is a P -adically
closed symmetric ideal that is height-unmixed. Hence, setting vi D v.x1; : : : ; xci /,
equation (5.2) implies that

I D

t\
iD1

� \
P2Ass.I /Wht.P /Dci

P v.P /
�
D

t\
iD1

I .vi /n;ci
:

Comparing the previous result with Theorem 5.6, it would be natural to ask
whether a P -adically closed sssi must be a principal Borel sssi. The following exam-
ple shows that this is not necessarily true. This is in sharp contrast with the case of
strongly stable ideals, which can only be written as intersections of powers of mono-
mial prime ideals if they are principal Borel; see [30, Proposition 2.8].

Example 5.14. The ideal I D I5;1 \ I
.4/
5;3 is P -adically closed by Proposition 5.13,

but it has partition Borel generating set B.I / D ¹.1; 1; 3; 3; 3/; .1; 2; 2; 2; 2/º.

We conclude this section by stating another interesting consequence of Theo-
rem 5.6. Recall that an ideal I is said to be sequentially Cohen–Macaulay if there
exists a filtration of R-modules

D0 D 0 ¨ D1 ¨ � � � ¨ Ds D R=I

so that, for all 1 � i � s, dim.Di�1/ < dim.Di / and the quotient modules Ci D
Di=Di�1 are Cohen–Macaulay R-modules. In particular, a Cohen–Macaulay ideal is
sequentially Cohen–Macaulay, as it suffices to construct the Di ’s by going modulo a
maximal regular sequence, one element at a time. The following result can be inter-
preted as a generalization of the fact that ideals of monomial star configurations are
Cohen–Macaulay [21, Proposition 2.9].

Proposition 5.15. Let I be a principal Borel sssi. Then, I is sequentially Cohen–
Macaulay.

Proof. By Theorem 5.6, I can be decomposed as an intersection of symbolic powers
of square-free Veronese ideals (also known as ideals defining monomial star configu-
rations). The conclusion now follows from [38, Proposition 3.1].

6. Toric ideals and Rees algebras

Given a finite set of monomials G D ¹m1; : : : ; msº � R, the toric ring of G is the
subringKŒG�DKŒm1; : : : ;ms� ofR. LetADKŒT1; : : : ;Ts� denote a polynomial ring
in s new indeterminates over K and define a surjective homomorphism � WA�KŒG�
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by �.Ti / D mi . The toric ideal of G is 	G D ker.�/. In other words, the toric ideal
of G is the defining ideal of the toric ring KŒG�. If G D G.I /, we often extend the
terminology by referring to KŒG� and 	G as the toric ring and toric ideal of I .

Toric rings of equigenerated monomial ideals are coordinate rings of projective
toric varieties. Indeed, the Zariski closureXG for the image of the map Pn�1! P s�1

given by
.x1; : : : ; xn/ 7! .m1; : : : ; ms/

has defining ideal 	G and coordinate ring KŒG�.
Toric rings are better understood by considering the blow-up algebras of the

ideal I . Recall that the Rees ring of an ideal I � R D KŒx1; : : : ; xn�, R.I / DL
i�0 I

i t i , is a quotient of a polynomial ring S D RŒT1; : : : ; Ts� under a ring homo-
morphism ' W S � R.I / given by Ti 7! fi t , with fi the i -the generator of I . The
map ' factors through Sym.I /, the symmetric algebra of I , as indicated in the dia-
gram below.

Sym.I /

S R.I /

'0

'

The fiber cone, or special fiber ring, of I is the quotient F .I /DR.I /=.x1; : : : ;xn/Š

R.I /˝R K. If G D G.I /, then, in the notation above, AD S ˝R K and � D ' ˝R
K; thus, we recognize by comparing presentations that F .I /ŠKŒG� is the toric ring
of G.

From (6), it follows that Sym.I /, R.I /, and F .I / can be described as quotients
of polynomial rings. Understanding the kernels of the maps ';'0 in (6) provides struc-
ture theorems for these algebras, identifying a presentation in terms of generators and
relations.

Since K WD Ker.'/ � L WD Ker.'0/, one always has that the relations defining
the symmetric algebra of I are also relations for the Rees algebra. In fact, it turns
out that L consists of the elements of K that are linear in the variables Ti , which we
write as L D K.�;1/ [50]. Moreover, if we denote J WD K ˝R K � KŒT1; : : : ; Ts�,
by construction it is clear that JS � K . Thus, the relations of the fiber cone are also
relations for the Rees algebra, whence K � LC JS . An ideal I is said to be of fiber
type if the latter containment is an equality. For G D G.I /, we have that J D 	G is
the toric ideal of G. It is well known that every toric ideal is a prime ideal generated
by binomials; see, e.g., [27, Proposition 10.1.1].

6.1. Fiber type property

In this section, we prove that every equigenerated symmetric strongly shifted ideal
is of fiber type (see Theorem 6.2). This property constitutes yet another similarity
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between symmetric strongly shifted ideals and strongly stable ideals, which are also
of fiber type by [28, Theorem 5.1 and Example 4.2].

A key ingredient in our proof is the fact that, for an equigenerated ideal I , one can
define a grading on S D RŒT1; : : : ; Ts� by setting

deg.r/ D .degR.r/; 0/ for r 2 R and deg.Ti / D .0; 1/:

With this grading, F .I / Š ŒR.I /�.0;�/ and Sym.I / Š ŒR.I /�.�;1/. Hence, I is of
fiber type if and only if the ideal K defining the Rees algebra is generated in bidegrees
.0; �/ and .�; 1/. We also crucially use the fact that equigenerated symmetric shifted
ideals have linear resolutions by [2, Theorem 3.2]. The following lemma yields more
information on their syzygies.

Lemma 6.1. Let I be an equigenerated symmetric shifted ideal. The syzygies on I
are generated by relations of the form xiu� xumaxv; where v � u 2 G.I /, xi 2 C.u/,
and � is defined in Definition 3.20 while C.u/ and umax are defined in (3.2).

Proof. The proof utilizes the notation in (3.2). Set J D .v 2 G.I / W v � u/ and recall
that J W .u/ D C.u/ by [2, proof of Theorem 3.2]. A resolution for I can be con-
structed as an (iterated) mapping cone from the resolution of J and that of C.u/
utilizing the short exact sequence

0! R=.J W u/! R=J ! R=.J C .u//! 0:

In particular, this yields that the relations on I are generated by the relations on J
together with the relations of the form xiu � w with xi 2 C.u/ and w 2 J . Now,
take xi 2 C.u/ and set v D uxi=xumax . From the symmetric shifted property of I and
the definitions of C.u/ and umax in (3.2), one deduces that v 2 I and that v � u.
Moreover, since I is equigenerated and deg.v/ D deg.u/, it follows that v 2 G.I /
and hence v 2 J . Since every relation xiu � w as above can be written as

xiu � w D xiu � xumaxv C .xumaxv � w/;

we deduce that the syzygies on I are generated by the syzygies of J and the set
of relations xiu � xumaxv. The desired conclusion then follows by induction on the
number of monomial generators of I .

Theorem 6.2. An equigenerated symmetric strongly shifted ideal is of fiber type. The
defining relations of its Rees algebra are generated in bidegrees .0;�/ and .1; 1/ with
respect to the grading (6.1).

Proof. Using the notation in (6), set K D ker.'/ to be the set of relations of R.I /

and set L D ker.'0/ to be the set of relations of Sym.I /. Let J be the kernel of the
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map ' ˝R K WKŒT1; : : : ; Ts�� F .I /. Our goal is to show that K DLC JS . With
the containment L C JS � K being evident, we proceed to establish the opposite
containment K � LC JS .

Since I is a monomial ideal, K is generated by homogeneous binomials. Con-
sider a minimal generator f for K of bidegree .d; k/. If d ¤ 0, f corresponds to a
minimal relation of degree d on I k . However, since I is symmetric strongly shifted
and equigenerated, the same is true of I k by Proposition 2.2 and thus by [2, Theo-
rem 3.2] I k has a linear minimal free resolution. It then follows from the minimality
of f that d D 1. Thanks to Lemma 6.1, we may also assume that f has the form

f D xiTi1 � � �Tik � xumaxTj1 � � �Tjk ;

where u D '.Ti1 � � �Tik / D fi1 � � � fik with fi` 2 G.I /. Set

v D '.Tj1 � � �Tjk / D fj1 � � � fjk

and notice that '.f / D 0 implies xiu D xumaxv.
By definition of C.u/, since xi 2 C.u/, the exponent of the variable xumax in u is

larger than the exponent of xi in u. Thus, the same must be true for at least one fi` .
Set ft D fi`xi=xumax . As I is symmetric strongly shifted, we have ft 2 G.I / and
xiTi` � xumaxTt 2 K, which yields

f D xiTi1 � � �Tik � xumaxTj1 � � �Tjk

D .xiTi` � xumaxTt /Ti1 � � �Ti`�1Ti`C1

C xumax.Ti1 � � �Ti`�1TtTi`C1 � � �Tik � Tj1 � � �Tjk / 2 LC JS:

The above equation implies the fiber-type property and also shows that K is generated
by its elements of bidegrees .1; 1/ and .0;�/.

Remark 6.3. In the proof of Theorem 6.2, the assumption that I is symmetric strongly
shifted rather than just symmetric shifted was only used in order to apply Proposi-
tion 2.2. This is because we do not currently know whether symmetric (not strongly)
shifted ideals are closed under powers. In particular, a positive answer to Question 2.4
would guarantee that equigenerated symmetric shifted ideals are of fiber type.

On the contrary, the following example shows that a symmetric (strongly) shifted
ideal which is not equigenerated need not be of fiber type.

Example 6.4. Consider the symmetric strongly shifted ideal with

B.I / D ¹.1; 1; 1/; .0; 2; 2/º:

It is given by
I D .x1x2x3; x

2
2x
2
3 ; x

2
1x
2
3 ; x

2
1x
2
2/
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and it is not equigenerated. Calculations on Macaulay2 [22] show that the Rees alge-
bra of I has the following minimal presentation

R.I / D

RŒT1; T2; T3; T4�

.x2x3T1�x1T2; x1x3T1�x2T3; x1x2T1�x3T4; x
2
3
T 2
1
�T2T3; x

2
2
T 2
1
�T2T4; x

2
1
T 2
1
�T3T4/

:

The last three listed relations of R.I / demonstrate that I is not of fiber type. In
particular, the equigeneration hypothesis is needed in Theorem 6.2.

6.2. The toric ideal of a principal Borel sssi

In this subsection, we focus on Rees algebras and fiber cones of principal Borel sym-
metric strongly shifted ideals. By Theorem 3.14 such an ideal I is a polymatroidal
ideal and hence enjoys the symmetric exchange property described in the comments
following Definition 3.13. This property yields for each pair r D xu, s D xv 2 G.I /
with ui > vi an index j , and so that

t WD xuxj =xi 2 G.I /; w WD xvxi=xj 2 G.I /; and thus rs D tw:

The last identity implies that TrTs D TtTw in the toric ring F .I /. Equivalently, the
binomial TrTs � TtTw , termed a symmetric exchange relation, belongs to the defining
ideal J of F .I /.

Our first result shows that the defining ideals of the fiber cone and Rees algebra
of a principal Borel sssi are generated by quadrics. In particular, the toric ideal of a
principal Borel sssi is generated by its symmetric exchange relations.

Below we use the notation degi .m/ to mean the exponent of xi in a monomial m.

Theorem 6.5. Let I be a principal Borel sssi. Then, the toric ideal of G.I /, also
known as the defining ideal of F .I /, is generated by quadrics, namely, the symmetric
exchange relations

TrTs � TtTw ;

where r; s; t; w 2 G.I / satisfy degi .r/ > degi .s/, degj .r/ < degj .s/, t D rxj =xi 2
G.I /, and w D sxi=xj 2 G.I /.

Moreover, the defining ideal of R.I / is also generated by quadrics, specifically
by the exchange relations in (6.5) (viewed as elements of RŒT1; : : : ; Ts�) together with
the relations

xiTu � xumaxTv;

where v � u 2G.I / cf. Definition 3.20, xi 2 C.u/, and C.u/ and umax are as in (3.2).
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Proof. It follows from Theorem 3.12 that

I D Sss.¹�º/ D
nY
iD1

I
�i��i�1
n;i

is a product of square-free Veronese ideals. In particular, each factor is a polymatroidal
ideal which satisfies the strong exchange property. Now, notice that for any two poly-
matroidal ideals J1 and J2 with polymatroidal bases B1 D G.J1/ and B2 D G.J2/
the set

B1B2 D ¹b1b2 j b1 2 B1; b2 2 B2º;

is a polymatroidal base for the polymatroidal ideal J1J2, i.e.,

G.J1J2/ D B1B2

(see [11, Theorem 5.3] and [41, p. 4]). Hence, I admits a polymatroidal basis which
is a product of polymatroidal bases with the strong exchange property. Therefore, [41,
Theorem 3.5] implies that the defining ideal of F .I / is generated by the symmetric
exchange relations.

The claim on the Rees algebra follows from the fiber type property of I , The-
orem 6.2, and in particular from the computations in equation (6.1) in the proof of
this result. The fact that the defining ideal of R.I / is quadratic, without the detailed
knowledge of the generators (6.5) can also be deduced from [41, Theorem 5.2].

Since the principal Borel ideals are the symmetric polymatroidal ideals by The-
orem 3.14, from Theorem 6.5 we deduce the following result, which answers in the
affirmative conjectures of White [51] and Herzog–Hibi [26] in the special case of
symmetric polymatroids.

Conjecture 6.6 ([26, 51]). For a polymatroidal ideal I , the toric ideal of G.I / is
generated by the symmetric exchange relations.

Corollary 6.7. Every symmetric polymatroidal ideal satisfies Conjecture 6.6.

Although the proof of Theorem 6.5 heavily utilizes the polymatroidal nature of
principal Borel sssi’s, we do not have any examples of equigenerated symmetric
strongly shifted ideals whose fiber cone cannot be generated by quadrics. Therefore,
we ask the following.

Question 6.8. Is the toric ideal of any equigenerated symmetric strongly shifted ideal
quadratic?

By contrast, the following example shows that, if I is symmetric shifted but not
strongly shifted, the defining ideal of the special fiber ring of F .I / may not be gen-
erated by quadrics.
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Example 6.9. In kŒx1; x2; x3; x4�, the equigenerated symmetric shifted ideal I with

ƒ.I / D ¹.1; 1; 2; 2/; .0; 2; 2; 2/; .0; 1; 2; 3/º

is not strongly shifted; see [2, Example 2.5]. Moreover, Macaulay2 [22] shows that
the defining ideal of F .I / contains 28 minimal cubic relations.

While Conjecture 6.6 is open for arbitrary polymatroidal ideals, it is indeed satis-
fied by several classes of polymatroidal ideals. These include, for instance, polyma-
troidal ideals satisfying the strong exchange property [26, Theorem 5.3 (b)], principal
Borel ideals [14, 26], lattice path polymatroidal ideals [46, Theorem 2.10], and poly-
matroidal ideals satisfying the so-called one-sided strong exchange property [39, The-
orem 1.2]. A version of Conjecture 6.6 “up to saturation" was settled in [37].

In all of the mentioned cases, the defining ideal of the special fiber ring F .I / is
in fact generated by a Gröbner basis of quadrics. The latter condition is satisfied if
the algebra generators of I are sortable [49], a condition which unfortunately does
not necessarily hold for an arbitrary principal Borel sssi. When F .I / is generated
by a Gröbner basis of quadrics, F .I / is a Koszul algebra. Recall that a standard
graded algebra A over a field K is Koszul if the residue class field A=K has a linear
A-resolution.

Another class of polymatroidal ideals whose fiber cone F .I / is Koszul is that of
transversal polymatroidal ideals; see [10, Theorem 3.5]. For an ideal I of this kind, in
[10, Proposition 3.7] Conca proved that F .I / is generated by quadratic polynomials,
which however need not coincide with the symmetric exchange relations. In fact, to
the best of our knowledge, Conjecture 6.6 is open for arbitrary transversal polyma-
troidal ideals. (We refer the reader to [37] for a proof for transversal matroidal ideals.)

The following result provides classes of principal Borel sssi with Koszul toric
ring.

Corollary 6.10. Let I D Sss.¹�º/ be a principal Borel symmetric strongly shifted
ideal. Suppose that � is one of the following types:

(1) � D .a; : : : ; a/ for some a ¤ 0 2 N;

(2) � D .as; bn�s/ for some a < b 2 N, s > 0;

(3) � D .as; b; cn�s�1/ for some a < b < c 2 N, s > 0.

(4) � satisfies �i .�/1 � 0 for all 1 � i � n.

Then, the toric ring of I , equivalently, the special fiber ring F .I /, is a Koszul algebra.

Proof. By Proposition 3.15, if � is of one of the first three given types, then I sat-
isfies the strong exchange property. The conclusion now follows from [26, Theorem
5.3 (b)]. If � has the fourth listed property, Proposition 3.16 yields that Sss.¹�º/ is
transversal, so the desired conclusion follows from [10, Theorem 3.5].
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It is also known that high Veronese subrings of graded rings are Koszul [1, 16].
In this vein, we can establish the Koszul property of principal sssi’s up to taking a
sufficiently high multiple of the partition Borel generator.

Proposition 6.11. Let � 2 Pn be a partition. Then, for sufficiently large integers k,
the toric ring of the ideal I D Sss.¹k�º/ has a quadratic Gröbner basis. In particular,
the toric ring of I , F .I /, is a Koszul algebra.

Proof. Recall that I D Sss.¹k�º/ D Sss.¹�º/k and hence

F .I / D
M
i�0

Sss.¹�º/ki

is the k-th Veronese subring of T D F .Sss.¹�º//. It is established in [16, Theo-
rem 2] that the defining ideal J of F .I / has an initial ideal generated in degree �
max¹dreg.T /=ke; 2º, where reg denotes the Castelnuovo–Mumford regularity. There-
fore, the initial ideal of J has a quadratic Gröbner basis whenever

k � reg.T /=2:

While not all principal Borel sssi’s satisfy the assumptions of Corollary 6.10, we
do not know of any examples of principal Borel sssi’s whose fiber cones are not
Koszul. Thus, we pose the following question, which can be interpreted as the sym-
metric case of a similar question raised by Herzog and Hibi for arbitrary polymatroidal
ideals in [26, p. 241].

Question 6.12. Is the toric ring of any principal Borel symmetric strongly shifted
ideal Koszul?

We conclude this section by describing the geometry of the toric rings associated
to principal Borel sssi’s. Our first result holds more generally for every equigenerated,
normal symmetric strongly shifted ideal, and follows from well-known properties of
toric rings of normal ideals; see [27, Theorem B.6.2] and [4, 31].

Corollary 6.13. Let I D Sss.B/ be an equigenerated, normal sssi (e.g., I satisfies
one of the conditions in Proposition 4.3). Then, the Rees ring R.I / and the special
fiber ring F .I / are Cohen–Macaulay normal domains. Moreover, F .I / has rational
singularities if K is of characteristic 0 and is strongly F -regular if K is of positive
characteristic.

A convex lattice polytope P is said to be normal, or to have the integer decomposi-
tion property, if it satisfies the following condition: given any positive integer d , every
lattice point of the dilation d � P can be written as the sum of exactly d lattice points
in P. Let I be the ideal generated by all monomials with exponents in P. Normality
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of P is equivalent to I d D I d for positive integers d , hence to I being normal. As a
consequence of Proposition 4.6 and Proposition 4.3, we thus obtain the following.

Corollary 6.14. For each � 2 Pn, the permutohedron P.�/ is a normal polytope.

A normal lattice polyhedron P uniquely determines a projective toric variety XP

by means of its normal fan; see [13, Definition 2.3.14]. We term the toric variety
defined by the permutohedron P.�/ with respect to the lattice Zn=span.1; : : : ; 1/ the
permutohedral toric variety XP.�/. The homogeneous coordinate ring for the image
of the projective embedding XP.�/ ,! PN given by the divisor DP.�/ is in our nota-
tion KŒG.Sss.�//� D F .Sss.�// and hence the defining equations of XP.�/ in this
embedding are given by the toric ideal of Sss.�/. Since P.�/ is normal, DP.�/ is very
ample and XP is projectively normal. Questions 6.8 and 6.12 arise naturally for this
class of algebraic sets. Our work yields the following answer.

Corollary 6.15. For any � 2 Pn, the defining ideal of the permutohedral toric variety
XP.�/ is generated by quadratic polynomials. If � is of one of the types described in
Corollary 6.10, then XP.�/ has a Koszul coordinate ring.

Proof. The claims follows from Theorem 6.5 and Corollary 6.10, since the coordinate
ring of XP.�/ is F .Sss¹�º/.

The case � D .0; 1; : : : ; n� 1/, which yields the standard permutohedron and the
(standard) permutohedral variety XAn , has been studied extensively from the point
of view of its intersection theory [32, 33] in connection with matroid theory. While
generalized permutohedral varieties have been considered for various root systems,
toric permutohedral varieties in the generality defined above and their coordinate rings
seem currently unexplored.

One can extract several numerical invariants for permutohedral toric varieties and
hence for toric rings of principal Borel sssi’s from related invariants of the permuto-
hedra.

Remark 6.16. Consider a partition � 2 Pn.

(1) The Hilbert function ofKŒG.Sss.�//�D F .Sss.�// is the Ehrhart function of
P.�/, namely, d 7! H.d/ WD the number of integer points in d � P.�/. If

� D .0; 1; : : : ; n � 1/;

then H.d/ is the number of forests on n vertices with i edges [48, Exam-
ple 3.1].

(2) The degree of XP.�/ and the Hilbert-Samuel multiplicity of KŒG.Sss.�//� D
F .Sss.�// are given by the normalized volume Vol.P.�//

.n�1/Š
. Formulas for the vol-

ume of a permutohedron can be found in [42]. For instance, if �D .0n�d ; 1d /,
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then Vol.P.�//
.n�1/Š

is the Eulerian number, that is, the number of permutations of
size n � 1 with d � 1 descents. For an arbitrary principal Borel sssi, the vol-
ume of P.�/ is then calculated in terms of the mixed Eulerian numbers, i.e.,
normalized mixed volumes of the hypersimplices [42, Proposition 9.8 and
Definition 16.1].
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