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Some results on Quillen’s conjecture via equivalent-poset
techniques

Kevin Iván Piterman and Stephen D. Smith

Abstract. We extend the main theorem of Aschbacher and Smith on the Quillen conjecture
from p > 5 to the remaining odd primes p D 3; 5. In the process, we develop further com-
binatorial and homotopical methods for studying the poset of non-trivial elementary abelian
p-subgroups of a finite group. The techniques lead to a number of further results on the conjec-
ture, often reducing dependence on the CFSG; in particular, we also provide some partial results
toward the case of p D 2.
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1. Introduction: Background and statement of principal results

The original version of this paper was designed to prove an extension to p D 3; 5

of [4, Main theorem], which we state as Theorem 1.1 below. But our methods also
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led to other useful results, notably a closely related Theorem 1.4—which provides
simplifications both in the hypothesis for the extension and in certain aspects of the
inductive proof (including a “milder” use of the CFSG, as we will indicate in our
discussion of Theorem 1.4 below and Remark 1.5). Other results contribute to the
conjecture for the remaining prime p D 2.

This introduction will provide some general background for all these results,
beginning with a discussion of these two versions of the extension to all odd p, high-
lighting their similarities and differences.

Throughout this paper, we only consider finite groups. Recall for a prime p that
Ap.G/ is the poset of non-trivial elementary abelian p-subgroups of a finite group G
with ordering given by inclusion. Note that G acts on this poset by conjugation. We
regard Ap.G/ as a topological space with the topology of its order complex.

Quillen showed that if Op.G/, the largest normal p-subgroup of G, is not the
trivial subgroup, then Ap.G/ is contractible [19, Proposition 2.4]. The converse is the
original statement of Quillen’s conjecture (see [19, Conjecture 2.9]): that ifOp.G/D
1, then Ap.G/ should be non-contractible. As in much of the subsequent literature,
we instead work with a stronger “homology” form of the conjecture, replacing non-
contractibility with non-vanishing of rational (reduced) homology.

(H-QC) If Op.G/ D 1, then zH�.Ap.G/;Q/ ¤ 0.

We will recall some of the general literature on the conjecture, starting at later Theo-
rem 2.19.

Extending the Aschbacher–Smith result and its overall strategy

But next, we will begin our introduction by instead focusing on one particular contri-
bution to that literature, namely, the main theorem of Aschbacher–Smith in [4]. This
somewhat technical discussion will indicate some motivation for our approach and
results, and the details may be appropriate mainly for the more expert reader; other
readers may prefer to skip over the details and return to this discussion at the later
indicated points.

Indeed, one of our principal results in this paper is Theorem 1.1 below, in which
we extend their original statement, by adding the cases p D 3; 5 to their original
treatment for p > 5. We mention that the original extension to p D 5 was given
in [16]—see later Corollary 2.23.

Recall that a group G satisfies .QD/p if Ap.G/ has non-zero homology in the
largest possible degree, namely, mp.G/ � 1, where mp.G/ denotes the p-rank of G.
Also, a p-extension of a group L is a split extension LB of L by an elementary
abelian p-group B of outer automorphisms (we will call such a B a p-outer of L).
See Definition 2.15. The term “(H2u)” below is a name we have invented for the
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restriction on unitary groups in the hypothesis in [4]. For components of G, see later
Remark 2.1—these quasisimple subnormal subgroups are crucial to building up the
structure of G.

We extend [4, Main theorem], from p > 5 there, to all odd p here.

Theorem 1.1. Suppose that G is a finite group, p is an odd prime, and the following
condition holds.

(H2u) If L Š Un.q/ is a component of G, with q odd and p dividing q C 1, then
every p-extension of Um.qp

e
/ satisfies .QD/p for all m � n and e 2 Z.

Then, G satisfies (H-QC).

We will prove this extension Theorem 1.1 as later Theorem 9.2. Our proof there
mainly follows the path of the proof in [4].

In fact, the possibility of such an extension was already suggested in [4], just after
the statement of the main theorem there, using the language “by excluding certain
further groups as components of G”. We implement such an approach here—but now
using the language of elimination results in our recent work [18]: that is, results which
state that a particular quasisimple L cannot appear as a component in a counterexam-
pleG to (H-QC). It will be convenient to describe the role of these eliminations within
the following general context.

Remark 1.2 (Adapting the overall strategy of Aschbacher–Smith). Here is our (over-
simplified) viewpoint on the basic structure of the proof in [4]. The first main step can
be phrased as follows.

(ElimQD). Apply [4, Proposition 1.7] to eliminate any component L of G that satis-
fies .QD/p .

The remaining main step, carried out in [4, Theorem 5.3] amounts to the following.

(Rob-nonQD). Show that any remaining component L (i.e., failing .QD/p) has a
“Robinson subgroup”.

To be more precise, the final argument at [4, pp. 490–492] shows that such Robin-
son subgroups lead to z�.Ap.G/g/ ¤ 0 for some g 2 G. Here, Ap.G/

g denotes the
subposet of Ap.G/ of elements fixed by g under the conjugation action. The non-
vanishing of the Euler characteristic of the fixed points Ap.G/

g therefore implies
(H-QC) (see Section 8 for more details on this argument). Of course, this strategy is
idealized: since (only) certain unitary groups might1 fail both steps, and hence they
must be excluded via the hypothesis (H2u).

1[4, Conjecture 4.1], that unitary groups should have .QD/p , remains open.
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Now, in proving our extension as Theorem 9.2, it turns out that we will need some
further elimination results—which we will establish along the way. For example, for
p D 5 we can mostly use the original strategy above, but we will need Theorem 9.1 to
eliminate three particular components, which would otherwise prevent the application
of the intermediate result [4, Theorem 2.3]. And for p D 3, we will need Theorem 6.4
to eliminate Ree-group components—since Ree groups do not have Robinson sub-
groups in the argument for [4, Theorem 5.3] and also fail .QD/3.

As a result, we are in effect implementing the following obvious adaptation of the
original Aschbacher–Smith strategy.

(Elim). Apply various elimination results to further reduce the possible components
L.

(Rob-nonelim). Show that Robinson subgroups occur for any component L in the
smaller non-(Elim) list.

As we will indicate later, we will adopt this strategy and extend the approach
of [4] to the final prime p D 2 in Section 10. We mention that because of difficulties
in extending to p D 2 the .QD/-List of [4, Theorem 3.1] (which we reproduce as
later Theorem 2.16), it seems likely that significant further elimination results will be
needed in treating p D 2.

Variant hypotheses such as (H1), related to inductive approaches

Our methods for Theorem 1.1 above also lead to another closely related principal
result, namely, Theorem 1.4 below. This further variant continues the above theme of
adding the cases p D 3; 5; but it also involves simplifications both in the hypotheses,
and in certain corresponding aspects of the essentially inductive proof (including a
“milder” use of the CFSG).

In order to cast some light on these simplifications, we will now continue our
introduction by developing some of the rationale for the variant hypotheses—which
will lead up to our statement of Theorem 1.4.

In proving [4, Main theorem], it is assumed thatG is a counterexample to (H-QC),
of minimal order subject to satisfying (H2u). Now, mimicking the language of “(H1)”
used in the recent paper [16], we give this condition the name (H1u); that is,

(H1u) if H satisfies (H2u) and further jH j < jGj, then H satisfies (H-QC).

Therefore, in the proof of [4, Main theorem], those arguments which rely on the min-
imality of G to deduce that (H-QC) holds for certain groups of order smaller than jGj
can be replaced2 by applications of (H1u)—regarded as a further formal hypothesis

2This roughly avoids the mechanics of re-verifying the various hypotheses, at each applica-
tion of induction.
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in Theorem 1.1. Thus, in this viewpoint, we regard the original proof in [4] as roughly
showing the following:

If p > 5, and G satisfies (H1u) and (H2u), then G satisfies (H-QC).

In fact, our variant Theorem 1.4 takes this viewpoint even further. Namely, in place
of the hypotheses (H1u), (H2u) above, it uses the simplified versions (H1), (H2)
indicated below. These will lead to the promised simplifications in the proof of Theo-
rem 1.4.

We first lead up to the variant hypothesis (H1) used in [16]. Note that (H1u) above
includes mention of (H2u)—since it is designed for a minimal-order counterexample
to Theorem 1.1. However, if we instead want to study the context of a minimal-order
counterexample just to (H-QC) itself, we could at least in principle consider the some-
what simpler replacement hypothesis given by the following.

(H1-) Any H , with jH j < jGj, must satisfy (H-QC).

And then, (H2u) would be just one possible “second condition (H2)”, for our more
general counterexampleG. But we can also further observe that, in [4], (H1u) is in fact
applied to handle just subgroups and quotients by a central p0-group. So (as in [16]),
we will prefer to work instead with the further-simplified hypothesis:

(H1) Proper subgroups and proper p0-central quotients of G satisfy (H-QC).

In fact, [16] shows that it can be advantageous in proof to focus our arguments on
classes of groups closed under subgroups and central quotients. In the following
remark, we give further details from that paper.

Remark 1.3 (Some context for results under (H1)). First, results proved under (H1)
are not really “standalone” results—in the sense that we usually would not expect to
verify (H1), within some general argument toward (H-QC); instead, such results might
be regarded as “segments of logic”, applicable when we already have (H1)—typically
because we are in the situation of a minimal-order counterexample to (H-QC). So, in
particular, as we had essentially observed in the discussion above,

(MOC) (H-QC)-results under (H1) apply to a minimal-order counterexample to
(H-QC).

For example, [18, Corollary 1.2] assumes a counterexample as in (MOC)3, which
gives (H1)—as needed, for quoting the more technical result Theorem 1.6 there.

But we also want to know when proposed results with hypotheses “(H2x)” other
than (H1) in fact automatically satisfy (H1). Such results are important for the overall

3By a standard argument (e.g., [4, p. 487]), it suffices to take a minimal (under inclusion)
counterexample.
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context of the growing literature of results on the possible structure of a counterexam-
ple to (H-QC). So, we mention the following statement.

(Inh) For an (H-QC)-result, if hypotheses (H2x) other than (H1) are inher-
ited by subgroups and p0-central quotients, then (H1) is automatic for
a minimal-order counterexample to that result—so that in fact (H-QC)
holds, without assuming (H1).

This observation is of course just a version of the effect of induction on jGj in such a
result. For example, [16, Theorem 4] has “(H2x)” given by mp.G/ � 4—which has
(Inh); this is essentially why its proof can be given under (H1), so that (H1) need not
be in its statement.

By contrast, Theorems 4.1, 5.1, and 6.1 there are proved under (H1)—since the
relevant (H2x) in those cases does not satisfy (Inh), so that those results do not auto-
matically hold without assuming (H1).

Considerations such as the above provide some initial motivation for stating our
particular variant Theorem 1.4 below under (H1). We will indicate further benefits, as
we go on.

Now, we introduce (H2), our specific choice of “(H2x)”, to use in place of (H2u)
in our statement of Theorem 1.4 under (H1). Here, it turns out that a further advantage
of the form (H1) is that we will be able to avoid the restrictions on m � n and e 2 Z

that appear in (H2u) of Theorem 1.1 above. Namely, we can just use the following.

(H2) If L Š Un.q/ is a component of G with q odd and p j q C 1, then the
p-extensions of Un.q/ occurring in G satisfy the .QD/p property.

This version allows us to focus just on the single component Un.q/, and not on other
unitary extensions for different n, q. This will simplify proofs. However, as mentioned
above, the application of this version is for situations where, for instance, we have a
minimal-order counterexample just to (H-QC), and hence (H1) automatically holds.

So, we will be proving the following variant-form of Theorem 1.1, whose appears
in the latter part of Section 9.

Theorem 1.4. Let p be an odd prime, and let G be a finite group satisfying (H1) and
(H2) above. Then, G satisfies (H-QC).

We had mentioned earlier that the proof of this theorem makes a milder use of the
CFSG than the proof of Theorem 1.1. To be more precise, this amounts to avoiding
the use of [4, Theorem 2.3], as we will see via our Theorem 1.4, whose proof is
discussed towards the end of Section 9. Below, we briefly preview some aspects of
that simplification.

Remark 1.5 (Reducing use of the CFSG in Theorem 1.4 under (H1)). The proof
of our Theorem 1.4 stated under (H1) employs the classification of the finite simple
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groups to a much lesser extent than in [4] (and hence in Theorem 1.1). This is thanks
to our corresponding (H1)-variants of [4, Propositions 1.6 and 1.7], which are given
by [16, Theorem 4.1] and Theorem 7.2 here—as we summarize below.

The original forms of those two propositions in [4] state in effect that under (H1u),
we can suppose that Op0.G/, the largest normal subgroup of G of order prime to p,
is trivial, and that any simple component of G, where the indicated p-extensions
satisfy .QD/p leads to (H-QC). We contrast that situation with our (H1)-variants.
In [16, Theorem 4.1], it was shown that if G satisfies (H1), and Op0.G/ ¤ 1, then
(H-QC) holds forG. And in Theorem 7.2, we show that, assuming (H1), if for a given
component L of G, .QD/p holds for all the p-extensions of L, then G satisfies (H-
QC). Thus, our variants proved under (H1) give us essentially the same reductions as
in [4] with Propositions 1.6 and 1.7 there.

Furthermore, the proof of [16, Theorem 4.1], leads to the reduction Op0.G/ D 1,
only uses the CFSG to invoke the p-solvable case of the conjecture; and the proof
of Theorem 7.2 does not use the CFSG at all. Moreover, both [16, Theorem 4.1] and
Theorem 7.2 hold for any prime p � 2. In contrast, the proofs of [4, Propositions 1.6
and 1.7] invoke [4, Theorem 2.3], which is stated for odd p, and relies deeply on
the CFSG.

Remark 1.6 (Equivalent posets and simplification of boundary-calculations). In addi-
tion, the proofs of both our above extensions of [4] to all odd p will in fact involve
focusing on some more intrinsic combinatorial properties of the Ap-posets—as indi-
cated in the title of this paper. See especially Sections 3 and 4. For example, results
such as Proposition 3.11 allow us to “remove unnecessary points” from the posets,
and so, we can work toward (H-QC) using smaller and more convenient posets homo-
topy equivalent to Ap.G/. Other equivalences such as Theorem 4.10 (building on the
viewpoint of Theorem 3.6) provide a convenient visual-format for poset-chains based
on the Cartesian product and resulting in simplified boundary-calculations in technical
results on homology propagation. This last term means, roughly, the process of show-
ing for some H < G that non-zero reduced homology for Ap.H/ “propagates” to
non-zero homology also for Ap.G/—to give (H-QC). We will begin a more detailed
discussion of the fundamental technique of propagation at later Remark 3.1.

Some sample results—toward the case p D 2

To continue an (H1)-theme from Remark 1.5 just above, we can in fact use any prime
p, including p D 2, in the reduction toOp0.G/D 1 in [16, Theorem 4.1] (which does
not require the CFSG for this prime), and in the elimination of .QD/p-components
in Theorem 7.2. These features provide strong motivation for working under (H1), in
future contributions toward (H-QC) for p D 2.
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In particular, we could at least in principle follow essentially the Aschbacher–
Smith strategy of (ElimQD), (Rob-nonQD) that we indicated earlier in Remark 1.2.
However, as we had also mentioned in that remark, there seem to be significant dif-
ficulties in extending to p D 2 the .QD/-List of [4, Theorem 3.1]—namely, the
components which would ideally be eliminated by Theorem 7.2 in the (ElimQD) step.
For this reason, it seems likely that many such components will need to instead be
handled via new elimination results, following then the modified strategy of (Elim),
(Rob-nonelim) in Remark 1.2.

So, we now state some partial elimination results for p D 2. Denote by Z.G/ the
center of the group G.

Theorem 1.7. Assume p D 2, and let G be a group satisfying (H1) and L a compo-
nent of G. Suppose one of the following holds:

(1) L=Z.L/ is isomorphic to one of the following groups:

Alt5; Alt6; Sz.22nC1/; 2F4.22nC1/0; 2G2.32nC1/;

M11; M12; M22; M23; M24;

J1; J4; �1; �2; �3; M.23/; HS; Ly; Ru; F3; F2; F1I

(2) L is simple and every 2-extension LB � G of L satisfies .QD/2;

(3) L=Z.L/ is a finite group of Lie type in characteristic 2 other than the types:
PSLn.4m/ .n � 3/; Dn.4m/ .n � 4/; E6.4m/;

(4) if K is a component of G such that K=Z.K/ is a group of Lie type, then K is
either as described in (1)–(3), or else K=Z.K/ is defined in characteristic 3.

Then, G satisfies (H-QC).

We remark that conclusion (4) is not really a “pure” elimination result—but instead
depends on some of our later results about Robinson subgroups. The proof of this
theorem can be found at the end of Section 10.

Recall that CG.H/ denotes the centralizer of a subgroup H of G. Write

OG.H/ WD ¹E 2 Ap.G/ W E \ .HCG.H// D 1º:

Using the above theorem in conjunction with the results of [16, 18], we get the fol-
lowing corollary.

Corollary 1.8. Let p D 2. If G satisfies (H1) but fails (H-QC), then the following
hold:

(1) O2.G/ D 1 D O20.G/;

(2) A2.G/ is simply connected;

(3) G has 2-rank at least 5;
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(4) for every component L of G, OG.L/ ¤ ;;

(5) G contains a component L of Lie type in characteristic ¤ 3, and some p-
extension LB � G of L fails .QD/p;

(6) G does not contain components of the following types:

of Lie type and Lie rank 1 in characteristic 2;

Alt6; Sz.22nC1/; 2F4.22nC1/0; 2G2.32nC1/; M11; M12;

M22; M23; M24; J1; J4; �1; �2; �3; M.23/; HS; Ly; Ru; F3; F2; F1:

In view of the length of the paper, we provide the reader with a brief explanatory
road map.

Remark 1.9 (Overview: Organization of the paper). The preliminary Section 2 estab-
lishes our overall context, collecting standard definitions and various quoted results.

Then, Sections 3–8 lead up to the main proofs in Section 9 of our two variants
extending [4] to p D 3; 5 (namely, Theorems 1.1 and 1.4). The logical sequence is
perhaps best explained in reverse order—regarded roughly as a sequence of successive
reductions.

The proofs of the main results above follow the basic strategy indicated in Remark
1.2. The (Rob-nonelim) step requires in Section 8 some extensions of earlier results on
Robinson subgroups. The (Elim) step requires some new elimination results: in Sec-
tion 7, a variant Theorem 7.2 of the (ElimQD)-step eliminating .QD/p-components
in [4]; and in Section 6, the elimination via Theorem 6.4 of some Lie-type groups in
the same characteristic p.

The required results above in turn depend on some more technical results, which
appear in still earlier sections. Notably, the generalized homology propagation result
Theorem 5.10 established in Section 5. This result is in fact stated in the viewpoint
of the pre-join (rather than the usual poset-join), which is developed in Section 4:
the Cartesian product structure of the pre-join can be much more convenient for our
various calculations than the standard poset join. The propagation uses a replacement
poset homotopy equivalent to Ap.G/; such a replacement is a suitable adjustment, for
the pre-join, of a more standard replacement construction indicated in Definition 3.4
of Section 3.

Finally, Section A of the appendix recalls a generalized version of the Quillen fiber
Theorem 2.10. Further appendix sections provide various technical details—which we
moved to there, in order to not slow down the more fundamental parts of the logical
flow in the main text.

This article is intended to be primarily self-contained. In particular, to avoid the
need for frequent external look-ups, statements will be given for many quoted results.
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Results concerning the Quillen conjecture will often be expressed with several
alternative hypotheses, with the aim of finding different approaches to proving (H-
QC), particularly those that avoid much of the use of the CFSG.

2. Preliminaries

In this section, we recall various elementary facts that we will need on finite groups,
posets, and simplicial complexes. We also establish the notation that we will use
throughout the article and review some of the literature on Quillen’s conjecture.

Finite groups

Our main reference for the properties on finite groups is Aschbacher’s book [2].
We will follow the conventions and notation on simple groups of [4, 11, 12]. We
use [12, Definition 2.5.13] for the different types of automorphisms of simple groups
(see [12, pp. 57–62] for more details on the automorphism group structure). Since we
will sometimes refer to [11], the reader should take into account that some notation
and definitions on simple groups and their automorphism types occasionally differ
between [11, 12]. We will always try to indicate such differences.

We always work with finite groups. Denote by Cn, Dn, Symn and Altn the cyclic
group of order n, the dihedral group of order n, the symmetric group on n letters and
the alternating groups on n letters, respectively. By a simple group we always mean a
non-abelian simple group.

Let G be a finite group. For subgroups K;H � G, let NK.H/ be the normalizer
ofH inK, and CK.H/ the centralizer ofH inK. Recall thatH is self-centralizing if
CG.H/�H . Denote byNG.H1; : : : ;Hn/ the intersection of normalizersNG.H1/\
� � � \ NG.Hn/ for subgroups Hi � G. Write ŒH; K� for the subgroup generated by
the commutators between elements of H and K. For a fixed prime p, �1.G/ is the
subgroup of G generated by the elements of order p. The p-rank of G, denoted by
mp.G/, is the maximal dimension of an elementary abelian p-subgroup of G.

Denote by Z.G/, F.G/, Op.G/, Op0.G/ the center, the fitting subgroup, the
largest normal p-subgroup, and the largest normal p0-subgroup of G, respectively.
Recall that the fitting subgroup F.G/ is the direct product of all the subgroupsOp.G/,
for p prime dividing the order ofG. For solvable groupsG, we have that F.G/ is self-
centralizing: CG.F.G// � F.G/. However, this property does not hold for arbitrary
groups G, and so, in general we instead work with the generalized fitting subgroup
F �.G/ of G; it is fundamental for the structure of finite groups.

Remark 2.1 (Components and the generalized fitting subgroup). Recall that F �.G/
is the central product of the subgroups F.G/ and E.G/; here E.G/ is the layer of G,
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that is, the central product of the components of G—namely, the quasisimple subnor-
mal subgroups of G. The generalized fitting subgroup is self-centralizing:

CG.F
�.G// � F �.G/:

WhenG is solvable, F �.G/D F.G/. Also,Z.F �.G//DZ.F.G// andZ.E.G//�
Z.F.G//.

We sometimes use the following (non-standard) notation for an orbit of compo-
nents of G.

Definition 2.2. Let L be a component of a finite group G. We denote by yL the (cen-
tral) product of the G-conjugates of L, and by yNG.L/ the kernel of this action. That
is, if L1; : : : ; Lr is the G-orbit of L. Then,

yL D L1 � � �Lr and yNG.L/ D NG.L1; : : : ; Lr/ D
\
i

NG.Li /:

Note that for any prime p we have F.G/ � Op.G/Op0.G/. For the Quillen con-
jecture, we will often work under the assumption that Op.G/ D 1 D Op0.G/, so that
F.G/ D 1, and hence, Z.E.G// D 1. Since Z.E.G// is the product of the centers
of the components of G, we see that the components of G are simple groups in this
case. We include this in the following frequently used lemma.

Lemma 2.3. Let G be a finite group and p a prime number dividing its order.

(1) If F.G/ D 1, then F �.G/ D E.G/ D L1 � � �Lt is the direct product of the
componentsLi ofG, which are all simple. Since CG.F �.G//DZ.F.G//D1,
we have a natural inclusion

F �.G/ � G � Aut.F �.G//:

This holds when Op.G/ D 1 D Op0.G/; and then p divides the order of the
components.

(2) E.CG.E.G/// D 1; and hence; F �.CG.E.G/// D F.G/.

(3) LetL1; : : : ; Ls be distinct components ofG, then the components ofCG.L1 � � �
Ls/ are the components of G other than the Li for 1 � i � s.

(4) Under the hypothesis of (3), F.CG.L1 � � � Ls// D F.G/. In particular, if
Op.G/ D 1, then Op.CG.L1 � � �Ls// D 1.

Proof. Part (1) is immediate from the previous discussion.
We prove part (2). Suppose that L is a component of CG.E.G//. Since E.G/ is

normal in G, so is CG.E.G//, and therefore, L is a component of G (see [2, (31.3)]).
So, L is a subgroup of E.G/ as well as of CG.E.G//, which means that L is abelian



K. I. Piterman and S. D. Smith 276

and not quasisimple, contrary to our assumption. This proves thatE.CG.E.G///D 1,
and so, F �.CG.E.G/// D F.CG.E.G///. But the latter is a normal nilpotent sub-
group ofG, which contains F.G/ since ŒF .G/;E.G/�D 1. Hence, F.CG.E.G///D
F.G/.

We prove part (3). Let ¹M1; : : : ;Mrº be the set of components of G distinct from
theLi , so thatE.G/DL1 � � �LsM1 � � �Mr . WriteK DCG.L1 � � �Ls/. Then,Mj �K
for all 1 � j � r and then theMj are components ofK. That is,M1 � � �Mr � E.K/.

For the reverse inclusion, letM denote a component ofK, hence ofE.K/. Assume
by way of contradiction, that M ¤ Mj for all j . By [2, (31.5)] applied in K, we see
thatM centralizes eachMj . SinceM�KDCG.L1 � � �Ls/, we getM �CG.E.G//�
K. This shows that M is also a component of CG.E.G//. But this contradicts item
(2). In consequence, M DMj for some j . This concludes the proof of part (3).

Finally, we prove part (4). Let M D F.CG.L1 � � �Ls//. By part (3) we see that
ŒM;E.G/�D 1. Hence,M � CG.E.G//� CG.L1 � � �Ls/�G. Then,M is a normal
nilpotent subgroup ofCG.E.G// using (3). Therefore, we haveM�F.CG.E.G///D
F.G/. Since F.G/ � CG.E.G// � CG.L1 � � �Ls/, we see that F.G/ is a normal
nilpotent subgroup of CG.L1 � � �Ls/, and so, F.G/ � M . So, we have M D F.G/;
hence, Op.CG.L1 � � �Ls// D Op.F.CG.L1 � � �Ls/// D Op.F.G// D Op.G/.

We will also often use (sometimes possibly implicitly) the following elementary
lemma.

Lemma 2.4. If K;L � G, where L is a component of G and K normalizes a non-
central subset S of L, then K normalizes L.

Proof. Let k 2 K, and suppose Lk ¤ L. Then, Sk D S � L\Lk � Z.L/, contrary
to the hypothesis that S 6� Z.L/. Hence, K � NG.L/.

Lemma 2.5 below is for more specialized situations: it provides a downward-
inheritance property for trivial p-core, in centralizers of extensions of components by
p-groups—such as the p-extensions of Definition 2.15. TheOp.�/D 1 condition for
the centralizers in the lemma will correspond to the “non-conical”-centralizer situa-
tion in homology-propagation literature; see, for example, the hypothesis “(someNC)”
in our discussion in later Remark 3.10. We will apply the non-conical conclusion of
the lemma to provide the particular version of (someNC) which is appropriate for
the propagation used in proving later Theorem 7.2; and also in the proof of Proposi-
tion 4.12.

Lemma 2.5. Suppose that L � G is a subgroup, and let B;E � NG.L/ be abelian
p-subgroups. Suppose in addition that LB � LE and that Op.CG.LE// D 1. Then,
Op.CG.LB// D 1.

If further L is a component of G, then also Op.LB/ D 1.
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Proof. Let N WD Op.CG.LB//. We show that N D 1.

Note that LB is normal in LE since LB=L � LE=L Š E=E \ L is abelian.
Therefore, E acts on CG.LB/, and hence on the characteristic subgroup N . Since
N and E are p-groups, from N > 1 we would get CN .E/ > 1. On the other hand,
CN .E/ is a normal subgroup of CG.LE/: since for x 2 CG.LE/, we see CN .E/x D
CNx .Ex/ D CN .E/ using CG.LE/ � CG.LB/. So, we get that

CN .E/ � Op.CG.LE// D 1

using the hypothesis, which forces N D 1, as desired.
Finally, assumeL is a component ofG. Note then thatOp.LB/ is centralized byL

and normalized by B . Thus, COp.LB/.B/ � Op.Z.LB// � Op.CG.LB//D N D 1,
which forces Op.LB/ D 1.

Now, we establish some notation on automorphism groups. Denote by Aut.G/
the group of automorphisms of G, by Inn.G/ the group of inner automorphisms of G
(which is G=Z.G/), and by Out.G/ D Aut.G/= Inn.G/ the group of outer automor-
phisms of G. If x 2 Aut.G/ n Inn.G/, we say that x induces an outer automorphism
on G.

If H � G, then AutG.H/ D NG.H/=CG.H/ is the group of automorphisms of
H induced by G. Similarly, OutG.H/ D NG.H/=.HCG.H// is the group of outer
automorphisms of H induced by G. The subgroup HCG.H/ can be regarded as the
subgroup ofG whose elements induce inner automorphisms onH . We say that a sub-
groupK � G induces outer automorphisms onH ifK normalizesH andK contains
no non-trivial inner automorphism of H . That is, K induces outer automorphisms on
H if and only if K \ .HCG.H// D 1.

We recall now some basic facts on outer automorphisms of simple groups. Recall
that by simple we mean non-abelian simple.

Remark 2.6 (Summary: Outer automorphisms of the finite simple groups). We will
usually abbreviate the Classification of Finite Simple Groups by CFSG. The CFSG
states in overview that a simple group is one of the following:

(a) an alternating group;

(b) a simple group of Lie type;

(c) one of the 26 sporadic groups.

One celebrated consequence of the CFSG is the Schreier conjecture, which states that
for a simple group L, Out.L/ is solvable. But we get fuller details from the study of
the cases for L (using the CFSG to know that our list of simple groups is complete):
if L is a simple group, then we have a detailed description of the structure of Out.L/.
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These specific descriptions are important throughout the literature; but especially
for the study of p-extensions: for example, in establishing the Aschbacher–Smith
.QD/p-List (which we quote below as Theorem 2.16), and in many other results on
the Quillen conjecture—including our results in Section 6. (Indeed, Theorem 2.24
shows that we should expect p-extensions in pursuing (H-QC).)

Here are some of those fundamental details.

• For L an alternating group, Out.L/ D C2, except for L D Alt6, where

Out.Alt6/ D C2 �C2 :

See, e.g., [12, Theorem 5.2.1].

• For L a sporadic group, Out.L/ D 1 or C2. See, e.g., [12, Section 5.3] for the
specific cases.

• Now, consider L of Lie type—defined over a field of characteristic r , where r is
a prime. Below, we give a fairly informal summary of the structure of Out.L/4,
based on the beginning of [11, Section 7 (Part I)]. For our later results, we will
require a more detailed description based on the treatment in [12, Section 5.2] (see
our “first aspect” discussion after the statement of Theorem 6.4, and the underly-
ing structures in Appendix B.) In the standard overview:

Every element of Aut.L/ can be written as a product idfg,

where i is an inner automorphism, d a diagonal automorphism, f a field automor-
phism, and g a graph automorphism [12, Theorem 2.5.1]. For present purposes, it will
suffice to describe these automorphism types fairly informally.

(d) Diagonal automorphisms correspond to suitable diagonal matrices, if L is
given in adjoint form—namely, as a group of matrices group over the field
Fra for suitable a. In particular, diagonal automorphisms have order dividing
ra � 1 and hence coprime to r .

(e) Field automorphisms of that adjoint matrix group are induced by elements of
the Galois group of Fra over Fr . In particular, the subgroup of field automor-
phisms is cyclic5.

4In the case of the Lie-type groupsLC Š Sp4.2/,
2F4.2/,G2.2/, 2G2.3/ for pD 2;2; 2; 3,

this description applies to Out.LC/; whereas the simple group L is the commutator subgroup
of index p—which has further automorphisms, that we must treat separately. For example,
this distinction arises explicitly in our later Definition 6.1 (2). See also the discussion Lieexc

in [12, Definition 2.2.8].
5Of order a—or at least dividing a, depending on naming-conventions we describe in later

Definition B.1.
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(f) Graph automorphisms arise6 from elements of the symmetry group � of the
underlying Dynkin diagram for the Lie type of L. The following are cases
where � > 1, listed by diagram type.

(i) �DC2 forAn (n� 2),B2,C2,Dn (n> 4),E6, F4,G2; and�D Sym3

for D4.
In particular, the only possible primes s dividing the order of � are
s D 2; 3. Furthermore, (see [12, Theorem 1.15.4 (b)]) for a diagram-
symmetry to actually lead to a graph automorphism (in the original
sense of Steinberg) of an untwisted group L, at the level of an over-
lying algebraic group xL, some of the above Lie types give a further
restriction on the characteristic r .

(ii) A graph automorphism requires r D 2 in B2 Š C2 or F4; and r D 3 in
G2.
Here, B2 Š C2 recalls a standard isomorphism of the finite groups of
those types.
Finally, for the single-bond diagrams in (i) above (Lie types An, Dn,
E6), the graph automorphisms from � always lead to corresponding
twisted simple groups; whereas for the Lie types in (ii) above, there is a
further restriction.

(iii) The cases in (ii) give a twisted group only over a field with order a
power of r with odd exponent.

Posets and simplicial complexes. We establish the main notation and definitions on
posets and simplicial complexes.

We will always consider finite posets and simplicial complexes. We typically
denote the order-relation of some unspecified poset X by �. In posets of subgroups
of a finite group G, the relation will usually coincide with group-inclusion �—but
we will also consider some other relations, for which we will normally specify some
different notation.

We write x < y if x � y and x ¤ y. If X is a finite poset, denote by K.X/

its order complex: recall that the simplices of K.X/ are the non-empty <-chains of
X . We will study the homotopy properties of the poset X—meaning the homotopy
properties of the complex K.X/7. In particular, we write X ' Y if the geometric
realisations of the posets X; Y are homotopy equivalent.

6Our wording here is deliberately vague, for the moment. We will be more precise about
the meaning of “graph automorphism” (and various other points) in the already-mentioned later
discussions beginning after Theorem 6.4.

7Thus, in topological situations, we in effect identify X with K.X/: this should be implic-
itly clear from the context—but usually we try to make the complex K.X/ explicit.
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If f W X ! Y is an order-preserving map between finite posets, then f induces a
simplicial map f WK.X/!K.Y / between the order complexes.

The basic homotopy property: Assume f; g W X ! Y are two order-preserving
maps between finite posets. We say that f and g are <-comparable, if either f � g
(which means f .x/ � g.x/ for all x 2 X ), or analogously f � g. In that case, we
have a homotopy of the maps f; g WK.X/!K.Y / induced on the order complexes.

If G is a group acting on X by poset automorphisms, we say that X is a G-poset.
In that case, it is clear that K.X/ is a G-complex and hence its geometric realization
is a G-space. If X; Y are G-posets and f; g W X ! Y are G-equivariant maps such
that f � g, then f , g are G-equivariant homotopy equivalent. We write X 'G Y if
the geometric realizations of X and Y are G-homotopy equivalent as G-spaces.

We often use the following special case where X D Y , so that f is a poset endo-
morphism. If X is a G-poset and f is further G-equivariant, we say that f is a
G-endomorphism of X .

Lemma 2.7 (Homotopy from endomorphisms). LetX be a finiteG-poset, for a group
G.

(1) Assume f0; f1; : : : ; ft are G-endomorphisms of X , with f0 D IdX and such
that the following statements hold:

(i) for all i we have fi � fiC1 or fi � fiC1;

(ii) the final map ft is constant.

Then, IdX D f0 is G-homotopy equivalent to the constant map ft ; so X is
G-contractible.

(2) Assume that f is a monotone G-endomorphism of X : that is, f � IdX or
f � IdX . Then, f induces a G-homotopy equivalence X 'G f .X/ with its
image; indeed, we get X 'G Y for any intermediateG-invariant subposet Y ,
namely, where f .X/ � Y � X .
If further f is the identity on f .X/, then f induces a poset-strong deforma-
tion retraction.

Proof. Standard; e.g., [19, Subsection 1.5].

Here are a few comments about our usage of these results.
In applications of (1), the overall setup is summarized via a “zigzag” or “fence”;

where for x 2 X , we record just the following information, roughly in the form:

(i0) x.D f0.x// � f1.x/ � f2.x/ � � � � � .ft .x/ D/xt .

In particular, this includes the definition of the maps fi , and their <-comparability
relations for (1) (i)—in this case f0 � f1 � f2 � � � � � ft . We emphasize that we must
still prove that the set-maps fi thus defined really do afford poset endomorphisms.
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Moreover, we frequently want to use (1) to show equivariant contractibility of
some subposet Z � X . And then, in order to have the endomorphism-condition for
the restrictions fi jZ , we must further show that fi .Z/ � Z. In fact, showing this can
often be the trickiest part of the proof.

We will illustrate these zigzag features, within our standard p-subgroup poset
context, in the upcoming Example 2.14.

In (2), our strong deformation retraction has a further “very-strong” property,
namely, the map f is even poset-homotopic to IdZ ; that is, here we have the length-1
case of a sequence of comparable maps as in (1)—where we replace the constant map
ft with the retraction f . We will normally reserve the term “deformation retraction”
for this “poset-strong” situation, where f has such a poset-homotopy sequence.

Assume Y �X and x 2X . Set Y�x WD ¹y 2 Y W y � xº. Define analogously Y>x ,
Y�x , Y<x . The link LkY .x/ in Y of some x 2 X is given by the subposet Y<x [ Y>x .
We will usually call Y<x the lower link in Y of x, and Y>x the upper link in Y of x.

The following standard condition is relevant in later Proposition 3.11.

Definition 2.8 (Upward-closed subposets). A subposet Y � X is said to be upward-
closed in X , if for all y 2 Y , we have X>y � Y .

For a poset X , a chain is an “inclusion-chain”—a subset a � X such that the
elements of a are pairwise comparable.

Write sd.X/ for the poset of non-empty chains of X .

This is just the face poset of the order complex K.X/. An n-chain of X is a chain
a � X with size jaj D nC 1. Recall that X and sd.X/ are homotopy equivalent. If
we wish to emphasize the order of the elements in the n-chain a 2 sd.X/, we may
write a D .x0 < x1 < � � � < xn/. We will denote by max.a/ the maximal element of
the chain a.

Definition 2.9 (The join and Cartesian product of posets). We denote by X � Y the
join of the posets X and Y . This is a poset whose underlying set is the disjoint union
of X and Y , and the order is given as follows. We keep the given order in X and
Y , and we put x < y for x 2 X and y 2 Y . It can be shown that K.X � Y / D

K.X/ �K.Y /, where the latter join is the join of simplicial complexes. Moreover,
after taking geometric realizations, it coincides with the classical join of topological
spaces. That is, if jKj denotes the geometric realization of the simplicial complex K,
then we have a homeomorphism

jK � Lj Š jKj � jLj:

For more details see [19].
Recall also that the Cartesian product X � Y of two posets is a poset with the

order given by .x; y/ � .z; w/ if x � z and y � w.
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We will explore these constructions more carefully in Section 4.
We will often use Quillen’s fiber theorem to prove that certain maps between

posets are homotopy equivalences (see [19, Proposition 1.6]), and hence that certain
posets have the same homotopy type. We include an equivariant version (see [26]) in
Theorem 2.10 below, and an extended version in the appendix as Proposition A.1.

Theorem 2.10 (Quillen’s fiber theorem). Suppose f W X ! Y is a map between
G-posets X and Y such that for all y 2 Y , we have that f �1.Y�y/ � Y>y (resp.,
f �1.Y�y/ � Y<y) is contractible. Then, f is a homotopy equivalence. If in addition f
isG-equivariant, and we haveGy-contractibility for each y, then f is aG-homotopy
equivalence.

In particular, if X � Y , f is the inclusion map, and for all y 2 Y n X , we have
X<y �Y>y (respectively,X>y �Y<y) contractible, then f is a homotopy equivalence;
and indeed a G-homotopy equivalence, when we have Gy-contractibility for those
links.

Let X be a finite poset. We denote by zH�.X;R/ the reduced homology of X with
coefficients in the ringR, which is the reduced homology of its order complex K.X/.
In general, we will work with R D Q and we will just write zH�.X/. Finally, z�.X/
denotes the reduced Euler characteristic of a topological space or finite poset X .

Remark 2.11 (Product homology for joins). If R is a field, the homology of a join of
spaces is the tensor product of homologies. That is, we have that

zH�.X � Y;R/ D zH�.X;R/˝R zH�.Y;R/;

zHn.X � Y;R/ D
M

iCjDn�1

zHi .X;R/˝R zHj .Y;R/:

For more details on this isomorphism, see [14].
By the above isomorphism between the homology of a join of spaces and the

tensor product of homologies, we get

z�.X1 � � � � �Xn/ D .�1/
n�1

nY
iD1

z�.Xi /:

Product homology for joins is fundamental for the “classical” approach to homol-
ogy propagation. See the discussion at Remark 4.5.

The p-subgroup posets and results on Quillen’s conjecture

We close the preliminaries section with the notation of the different p-subgroup posets
that we will work with, along with some background results from the literature on
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Quillen’s conjecture. The main posets are

�p.G/ D Brown poset D poset of all non-trivial p-subgroups of G;

Ap.G/ D Quillen poset D ¹A 2 �p.G/ W A is elementary abelianº;

Bp.G/ D Bouc poset D ¹P 2 �p.G/ W P D Op.NG.P //º:

The elements of the Bouc poset are usually called (non-trivial) radical p-subgroups
or p-radical.

We will also use the following definition.

Definition 2.12 (The poset i.X/). Suppose next that X is finite poset such that every
non-empty and lower-bounded subset Y �X has an infimum inX . Denote by i.X/�

X the subposet whose elements are the infimum of the maximal elements above them.
Note that i.X/ is a poset-strong deformation retract of X , via the retraction sending
x 2 X to the infimum of the set of maximal elements of X above x. We denote this
retraction by ri.

Since the posets �p.G/ and Ap.G/ satisfy this property (that is, every non-empty
lower bounded subset has an infimum given by the intersection of that set), we will
also consider the posets i.�p.G// and i.Ap.G//. Note that i.�p.G// consists of the
non-trivial intersections of Sylow p-subgroups of G. On the other hand, it can be
shown (see [15, Remark 4.5]) that i.Ap.G// is the poset of elements E 2 Ap.G/

such that E D �1.Z.�1.CG.E////.

By the results of [19, 26], we have the following proposition.

Proposition 2.13. Let G be a finite group and p a prime. Then, the posets �p.G/,
Ap.G/, Bp.G/, i.�p.G// and i.Ap.G// are all G-homotopy equivalent.

For example, if G is a p-group P , then �p.P / is contractible to its maximal
element P . Hence, the other posets above such as Ap.P / are also contractible.

In view of the above equivalences, we could equally well use these other posets in
the statement of Quillen’s conjecture, though of course it is customary to use Ap.G/

there.
At the start of this paper, we had mentioned Quillen’s result [19, Proposition 2.4]

on “conical contractibility”. Here, we state it in the following form.

If Op.G/ > 1, then �p.G/ is contractible.

In order to illustrate how we will later be using Lemma 2.7 (1) in contractibility
proofs, we now use that lemma to prove Quillen’s proposition—expanding on his
homotopy of maps in [19, Subsection 1.5].

Example 2.14 (Quillen’s conical contractibility via the endomorphism Lemma 2.7).
Recall the notation of Lemma 2.7 (1), including (i0) in our discussion thereafter.



K. I. Piterman and S. D. Smith 284

Let us begin in a somewhat more general context than the p-subgroup posets
above. Namely, as our overall-context poset “X”, we take S.G/—the poset of all
subgroupsH � G (including the identity 1D 1G). And let us assume that N denotes
some normal subgroup of G (possibly N D 1). Then, we have a zigzag of group
inclusions determined by any H 2 S.G/:

H � HN � N:

In the viewpoint of (i0), this defines maps

f0.H/ D H; f1.H/ D HN; f2.H/ D N I

and we have the <-comparability relations f0 � f1 � f2. Furthermore, the iden-
tity map f0 D IdS.G/ and the constant map f2 to ¹N º, are easily seen to be poset
endomorphisms. However, for f1, we further need to make a few observations. First,
normality of N has the group-theoretic consequence that HN is also a subgroup—
that is, f1.H/ D HN 2 S.G/, so that f1 is at least a set-endomorphism. Second,
properties of group-inclusion show that H � K implies HN � KN—so that f2 is
in fact a poset map. We have now completed the verification of the hypotheses of
Lemma 2.7 (1), and we conclude by that result that S.G/ is (conically) contractible
to ¹N º—for any normal subgroup N . Moreover, since these maps are G-equivariant,
we conclude that S.G/ is even G-contractible.

Now, we turn to the actual result of Quillen on p-subgroups. For our subposet
“Z”, we take the Brown poset �p.G/ of non-trivial p-subgroups, and we now further
assume that our normal subgroup N is a non-trivial p-group (so that N 2 �p.G/).
This time we take H 2 �p.G/. We still get the inclusion-zigzag as above, and also
the indicated properties for the restrictions f 0i of the fi to �p.G/—except possibly
for the endomorphism-property on �p.G/. That is, here we must further show that
each f 0i .H/ actually lies in �p.G/. For the identity map Id�p.G/, we have f 00.H/ D
H 2 �p.G/ by our original choice of H . For the constant map to ¹N º, we saw
f 02.H/ D N 2 �p.G/ above—crucially using our hypothesis that N is a non-trivial
p-group. Finally, we see f 02.H/ D HN is a non-trivial p-group, using the group-
theoretic product-order formula. Since the f 0i are also G-equivariant, this completes
the endomorphism-proof, and hence the hypotheses of Lemma 2.7 (1), applied to
�p.G/. So, by that result, �p.G/ is conically G-contractible to ¹N º (and indeed more
generally to ¹Op.G/º).

Notice this proof does not work, if for Z we take the Quillen poset Ap.G/: for
N might not be elementary abelian; and even if so (e.g., using�1.Z.N //), f1.H/ D
HN might not be elementary abelian (though both H and N are, they may not com-
mute). Thus, to conclude that Ap.G/ is contractible when Op.G/ > 1, we have to
first quote the result for �p.G/—and then apply the homotopy equivalence of �p.G/

with Ap.G/ for general G.
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Note that mp.G/ � 1 equals the dimension of the order complex of Ap.G/. This
dimension is the focus of the following definition.

Definition 2.15 (Quillen dimension andp-extensions). We sayG satisfies the Quillen
dimension property at p if

.QD/p If Op.G/ D 1, then zHmp.G/�1.Ap.G// ¤ 0.

In particular, .QD/p implies (H-QC).

The condition .QD/p is often studied for a p-extension LB of a component L of
G: following [4, p. 474], this means a split extension of L by an elementary abelian
p-group B of outer automorphisms. (From now on, we usually reserve the notation
“LB” for this p-extension situation.)

For solvable G with Op.G/ D 1, Quillen obtained (H-QC) using the above prop-
erty (see [19, Corollary 12.2]). The term “Quillen dimension” for the property was
introduced by Aschbacher–Smith in [4] they showed in their Proposition 1.7 (roughly)
that for a simple component L of a general G with Op.G/ D 1, having the .QD/p-
property forp-extensionsLB guarantees that non-zero reduced homology for Ap.LB/

(indeed extended to LBCG.LB/, in the “non-conical” caseOp.CG.LB//D 1) prop-
agates to Ap.G/, and hence gives (H-QC). The proof of this result uses their original
homology propagation Lemma 0.27 (we provide a full statement later, as Lemma 5.11)
which exploits the interaction of the .QD/p-property with the calculation of the
boundary operator on poset-chains. So, in order to extend their ideas, we will be
studying that boundary-calculation in more detail—e.g., at later Remark 4.5.

To maximize the applicability of [4, Proposition 1.7] in their main proof, Asch-
bacher and Smith were able to show, by using the CFSG, that p-extensions of “most”
simple groups L do indeed have the .QD/p-property. That result also will be relevant
to our extensions, so for convenience, we recall it in Theorem 2.16 below.

If p − q, denote by jqj the multiplicative order of q mod p.

Theorem 2.16 (.QD/p-List, [4, Theorem 3.1]). Assume that p is odd, and L is
simple. Then, the p-extensions LB satisfy .QD/p , except possibly when L is the
following:

(1) of Lie type in the same characteristic p;

(2) Un.q/ with q��1 .mod p/; and either n� q.q � 1/ or n� q1=p.q1=p � 1/,
with field automorphisms B > 1;

(3) for q D rp , either 3D4.q/ for jqj D 3; 6, or E8.q/ for jqj D 8; 12, with field
automorphisms B > 1;

(4) F1 with p D 7, and J4 with p D 11.
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(Cases with p D 5)

(5) E8.q/ with jqj D 4;

(6) 2F4.2/
0; Sz.32/ or 2F4.32/, with field automorphisms B > 1;

(7) F5, F2, F1, McL, Ly.

(Cases with p D 3)

(8) alternating Alt6 or Altn (n � 9);

(9) of non-linear type over F2;

(10) of non-linear type over F8, with field automorphisms B > 1;

(11) L3.4/; L2.8/, 2F4.r3/ for jqj D 2, with field automorphisms B > 1;

(12) M11, J3, �1, �2, �3, M.22/, M.23/, M.24/0, F5, F3, F2, F1, McL, Suz, Ly,
O’N.

In view of the above list, and the role of p-extensions in many results on Quillen’s
conjecture, we will be interested in understanding, for a given subgroup L of G (usu-
ally a component), the outer automorphisms of order p of L which in fact arise in
NG.L/. Correspondingly, we define two related posets (cf. [18, Definitions 4.2 and
6.1]).

Definition 2.17. Let L � G and p a fixed prime. Define the p-outer poset of L to be
the poset

OG.L/ WD
®
B 2 Ap.NG.L// W B \ .LCG.L// D 1

¯
:

We usually call an element B of OG.L/ a p-outer of L in G, since it induces outer
automorphisms (and hence LB is a p-extension as in Definition 2.15). We also write

yOG.L/ WD OG.L/ [ ¹1º:

The image poset of L in G is

AG;L WD
®
BCG.L/=CG.L/ W B 2 Ap.NG.L//; CB.L/ D 1

¯
:

Remark 2.18. Note that Ap.L=Z.L// � AG;L � Ap.AutG.L//. In particular, if
Z.L/ D 1, then Ap.L/ � AG;L and

AG;L nAp.L/ D
®
.BCG.L/=CG.L//A W A 2 Ap.L/ [ ¹1º; B 2 OG.L/

¯
:

To close this section, we summarize some main results on (H-QC) in the earlier
literature.

Theorem 2.19. IfG is a p-solvable group, then it satisfies .QD/p and, in particular,
(H-QC).
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The p-solvable case was established by various authors, based on the ideas of
Quillen on the solvable case [19]. See [24, Chapter 8] for further details.

Theorem 2.20 (Aschbacher–Kleidman [3]). An almost simple group G satisfies (H-
QC).

Here is the original Aschbacher–Smith result for p > 5, motivating our extension
in Theorem 1.1.

Theorem 2.21 (Aschbacher–Smith [4]). Let G be a finite group and p a prime.
Assume that

(i) p > 5;

(ii) whenever G has a unitary component Un.q/ with q � �1 .mod p/, then
.QD/p holds for all p-extensions Um.qp

e
/ with m � n and e 2 Z.

Then, G satisfies (H-QC) for p.

Recall that in our discussion in the introduction leading up through Remark 1.3,
we indicated in (MOC) that a minimal order counterexample to (H-QC) satisfies the
following induction replacement hypothesis.

(H1) Proper subgroups and proper p0-central quotients of G satisfy (H-QC).

Below, we summarize various results obtained under (H1) in the articles [16, 18].

Theorem 2.22 ([16]). LetG be a group and p a prime. Suppose thatG satisfies (H1),
and that one of the following holds:

(1) Z.G/ ¤ 1 or �1.G/ < G;

(2) Op0.G/ ¤ 1;

(3) Ap.G/ is not simply connected;

(4) G has p-rank at most 4;

(5) G has a component L such that L=Z.L/ has p-rank 1;

(6) p D 3, and G has a component L such that L=Z.L/ Š U3.8/.

Then, G satisfies (H-QC).

The result [16, Corollary 3] first showed that Theorem 2.21 above extends to p D
5. (So, our extension Theorem 1.1, which we prove as later Theorem 9.2, in effect
adds just the “new” prime p D 3 in the proof.)

Corollary 2.23. Theorem 2.21 extends to p D 5.

However, there is a small gap in the explanation given in [16]; it can be fixed
without requiring the results of this paper—and we indicate that adjustment during
the proof of Theorem 9.2.
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Next, we recall a recent result that establishes (H-QC) for groups G containing
components L such that OutG.L/ is a p0-group. The proof of the following theorem
does not depend on the CFSG. Moreover, in the language of [18] (which we had
described in earlier Remark 1.2), this result is an example of an “elimination result”:
it allows us to eliminate possible components from a potential counterexample to (H-
QC) subject to certain minimality conditions.

Theorem 2.24 (cf. [18, Corollary 5.1]). Let p be a prime and L a component of a
group G. Let H D yNG.L/. Suppose the following.

(1) p divides the order of L, and CG.yL/ satisfies (H-QC).

(2) The induced map Ap.L/! A is not the zero map in homology, where A is
one of the following posets:

AH;L; AG;L; Ap.AutH .L//; Ap.AutG.L//; Ap.Aut.L//:

Then, G satisfies (H-QC).
In particular, ifG is a counterexample of minimal order to (H-QC), then AutG.L/

must contain p-outers; for odd p, this eliminates alternating and sporadic compo-
nents.

The final statement about odd primes p uses details about outer automorphisms
in Remark 2.6.

Using the above results, if G is a counterexample of minimal order to (H-QC),
then by (MOC) in Remark 1.2, G satisfies (H1)—so it fails conditions (1)–(6) of
Theorem 2.22. Therefore, every component L of G has order divisible by p (by
Lemma 2.3); the map Ap.L/ ! A yNG.L/;L

is the zero map in homology (by The-
orem 2.24); G is not p-solvable nor almost simple (by Theorems 2.19 and 2.20); and
if p � 5, then it contains some unitary component for which some p-extension does
not satisfy .QD/p (by Theorem 2.21).

3. Overview: Using replacement-posets homotopy equivalent to
Ap.G/

In this section, we implement a theme we had indicated in earlier Remark 1.6, namely,
we recall from the literature—and extend—some methods for replacing Ap.G/ with
more convenient (and typically smaller) homotopy equivalent posets.

First, in Definition 3.4, we will review (and slightly generalize) an earlier con-
struction of an equivalent poset XG.H/, obtained with respect to a subgroupH � G.
We will indicate a variant in Proposition 3.7, namely, a further-reduced equivalent
subposet XG.i.H//.
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Finally, in the latter part of the section, we will review in Remark 3.10 a different
notion of reducing Ap.G/ to an equivalent poset—by “removing points with conical
centralizer”. Then, in Proposition 3.11, we present a result for implementing these
removals in some relevant situations.

As motivation for our main work on equivalences, we first give some relevant
general background. Recall first that for (H-QC), we of course need to show under
Op.G/ D 1 that zH�.Ap.G// ¤ 0.

Indeed, in some situations, we can establish the non-zero homology “immedi-
ately” for Ap.G/ itself: sometimes this proceeds by direct construction of reduced
homology. See, for example, the methods in [24, Section 8.1], which, in particular,
are used in obtaining the Aschbacher–Smith .QD/-List in Theorem 2.16. But the
procedure can also be indirect, namely, just establishing existence of non-zero homol-
ogy. This is the case, for example, in the Aschbacher–Kleidman result Theorem 2.20
for almost simple G. We will examine the underlying Robinson subgroup method
further in our later Section 8.

But in studying (H-QC) for more general situations, we more typically proceed
via some intermediate proper subgroup H < G.

Remark 3.1 (Equivalences in the broad context of homology propagation). That is,
often we begin just with knowledge of non-zero reduced homology of Ap.H/ for
some proper subgroup H < G. Sometimes via direct construction, or also possibly
via induction—or induction-replacement, e.g., as in (H1) in earlier Remark 1.3.

And then (as we had briefly mentioned after Remark 1.5), we wish to show that
the non-zero homology for Ap.H/ leads to non-zero homology also for Ap.G/. This
rough notion of “homology propagation” is probably broader than the more conven-
tional meaning in the literature, but it seems appropriate for a preliminary exposition.
Stated more precisely, we mean here that the natural poset inclusion i W Ap.H/!
Ap.G/ should induce a non-zero map i� in homology.

Of course, the simplest case of such a non-zero map arises when i is a homotopy
equivalence—so that the induced map i� is actually a homology isomorphism. This
simplest situation arises for example in Claim 4 in the proof of [16, Theorem 4.1],
as well as in Lemma 3.3 (3) in this paper. Such results already begin to motivate our
study of equivalences in this section.

And this equivalence-theme continues, when we consider the extension in [16,
Lemma 3.14] of the naive propagation above—for convenience, we have given a full
statement of this result as later Lemma 5.14. There, the propagation proceeds from
Ap.H/, not to Ap.G/ but instead to some possibly-proper subset X � Ap.H/; and
then it remains to show independently that this X is homotopy equivalent to Ap.G/.
This type of equivalence arises for example in Claim 5 in the proof of [16, Theo-
rem 4.1], as well as in various cases in this paper, such as Theorem 4.10—where X is
given by a replacement-poset such as W A

G .H;K/ defined there.



K. I. Piterman and S. D. Smith 290

Equivalences via shrinking a subposet inside a poset union

We now begin the main work of the section, with our review of the construction of
the “basic” replacement-poset XG.H/.

As a rough preliminary overview.
We want to understand how Ap.G/ is built up from suitable subposets of Ap.H/.

To that end, we first consider the “inflation” NG.H/, namely, a certain larger sub-
poset, which retracts to H ; and then we recover Ap.G/, by adding the remaining
elements E 2Ap.G/ nNG.H/—which “glue” to the poset NG.H/, via connections
within the subposets Ap.CG.E//. In particular, we are viewing Ap.G/ as the poset
union NG.H/ [ .Ap.G/ nNG.H//.

The smaller replacement-posetXG.H/ (equivalent to Ap.G/) is then obtained by
“deflating” the inflation term NG.H/ inside that union: basically, collapsing it down
to Ap.H/—so that the added-E terms indicated above now remain glued just via
the corresponding smaller centralizer-posets Ap.CH .E//. But this process requires
replacing the original inclusion-ordering < on XG.H/ by a new ordering �. As a
result, XG.H/ is just a subset, but not a <-subposet, of Ap.G/.

Thus, we start by recalling from the literature the definition of the underlying poset
NG.H/, which is the inflation of Ap.H/ (indeed slightly generalizing its context
from Ap.G/ to a suitable subposet B).

Definition 3.2 (The N [F -decomposition). ForH a subgroup ofG, and a subposet
B such that Ap.H/ � B � Ap.G/, set

NB.H/ WD ¹E 2 B W E \H ¤ 1º;

FB.H/ WD ¹E 2 B W E \H D 1º:

Note that B is the disjoint union of NB.H/ and FB.H/. We focus on one feature of
this union, with respect to the <-ordering: note that if F 2 FB.H/ and A 2 NB.H/,
then we cannot have F > A—as that would violate F \H D 1. That is,

for A 2 NB.H/, we have B>A \ FB.H/ D ;; so B>A D NB.H/>A.

Thus, members of FB.H/ only appear as the left segment of inclusion-chains:

(i) A<-chain begins with any terms from FB.H/, followed by any terms from
NB.H/.

This type of property will be relevant frequently, as our development continues. For
example, in Remark 3.5, we will at least begin to see its significance for our viewpoint
on boundary calculations, for homology propagation.

When BDAp.K/ for someK�G, write NK.H/ WDNAp.K/.H/ and FK.H/ WD

FAp.K/.H/. In particular, for K D G, we get

Ap.G/ D NG.H/ [ FG.H/:
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We have the following immediate results (cf. [16, 17, 21]).

Lemma 3.3. Assume H � G, with Ap.H/ � B � Ap.G/ as in Definition 3.2, and
let K � G be such that Ap.H/ � Ap.K/. Then, we get the following.

(1) NB.H/ poset-strong deformation-retracts onto Ap.H/—via r W NB.H/!

Ap.H/ defined by r.E/ WD E \H (we may call this the “deflation” map).

(2) If E 2 FK.H/, then NK.H/>E 'NG.H;K;E/ Ap.CH .E//.

(3) IfOp.CH .E//>1 for allE2FK.H/, then Ap.H/,!Ap.K/ is aNG.H;K/-
homotopy equivalence. So, if this further condition holds for K D G, we get
Ap.H/ 'NG.H/ Ap.G/.

Proof. For part (1), we apply Lemma 2.7 (2), with r;NB.H/ in the roles of “f , X”:
Notice that we have r.E/ � E, with r the identity when restricted to r.NB.H// D

Ap.H/. We emphasize that for the endomorphism-hypothesis in that Lemma, we
further need to check that r.E/ D E \H lies in NB.H/: this holds here, since we
have E \H 2 Ap.H/ � B, while .E \H/\H D E \H > 1—so that E \H 2
NB.H/. For part (2), we use the poset map f W NK.H/>E ! Ap.CH .E// defined
by f .B/ WD B \H , with homotopy inverse g.C / WD EC ; for the homotopies, we
observe that gf .B/ D E.B \H/ � B , along with fg.C / D EC \H � C—that
is, gf � IdNK.H/>E

, and fg � IdAp.CH .E//. Part (3) is a consequence of (2), via the
Quillen fiber Theorem 2.10. Finally, the equivariant assertions are easy to verify from
the given endomorphisms.

In Definition 3.4, we introduce XG.H/—the first of our replacement-posets for
Ap.G/. Similar constructions had been considered earlier in [21], and also at [25,
p. 134]; compare also with [1, (6.8)]. The related construction in [16] shrank Ap.G/

to a smaller equivalent poset but did not change the order relation. In this paper, we
change the ordering—obtaining more general equivalent posets, which will help to
make the later homology propagation clearer and more explicit.

In fact, we will see in Definition 3.4 how we can use the deflation map r above
to shrink NB.H/ to Ap.H/—within the decomposition given by the poset union
in Definition 3.2; though this comes at the cost of defining a new poset-ordering on
the resulting subset. We will denote the new order-relation by �: since it agrees with
inclusion<, except at certain specified cross-terms between F and N , in the language
of the decomposition in Definition 3.2. The result is a “replacement-poset” XB.H/.
That is, we will see in Theorem 3.6 that it will be equivalent to B in our standard
situations, where it will often be more convenient for us to work with, for our later
applications on homology propagation.

Definition 3.4 (The replacement-posetXB.H/, with its ordering�). LetH �G and
take an intermediate poset B with Ap.H/�B �Ap.G/, as in Definition 3.2. Define
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XB.H/ to be the poset which—just as a set, rather than a poset—is the disjoint union:

XB.H/ D Ap.H/ [ FB.H/

and with a new poset order-relation �WD�XB.H/ given as follows.

(1) Inside Ap.H/, and also inside FB.H/, as � we keep the group-inclusion
ordering �.

(2) When F 2 FB.H/, and A 2 Ap.H/ with CA.F / > 1, we define F � A.

We need to check transitivity for this new relation �. Since � agrees with the old
ordering � inside each of the two factors in the union for XB.H/, we only need to
check transitivity of extensions at either end of cross-terms8 between the two fac-
tors; and by the F -left property of � in (2) above (see also (3) below), these have
form F � A, for F 2 FB.H/ and A 2 Ap.H/—where we have CA.F / > 1. And
such extensions must then have the forms E < F for E 2 FB.H/, or A < B for
B 2 Ap.H/. When E < F , we get 1 < CA.F / � CA.E/, so that also E � A. And
when A < B , we get 1 < CA.F / � CB.F /, so that also F � B . This completes the
transitivity proof. Hence, XB.H/ is indeed a poset.

Note that (2) gives the analog, for �, of the F -left property (i) in Definition 3.2.

(3) A �-chain begins with terms from FB.H/, followed by terms from Ap.H/.

We typically write out such a �-chain a in the form

a D .F1 < � � � < Fr � A1 < � � � < As/ for Fi 2 FB.H/ and Aj 2 Ap.H/:

Here, we have in fact written the new notation � only at the cross-term case (where it
is definitely required), but used the old notation < at all the other adjacencies, where
� in fact agrees with <. This viewpoint has another alternative form, again analogous
to a property in Definition 3.2: if A 2 Ap.H/, then XB.H/�A \ FB.H/ D ;. That
is, Ap.H/ � XB.H/�A D Ap.H/>A.

If B D Ap.K/ � Ap.H/, for K � G, we write just XK.H/ for XB.H/. When
K D G, we get

XG.H/ D Ap.H/ [ FG.H/

as a subset of Ap.G/ (though not a subposet under group-inclusion �).

Remark 3.5 (A left-focused format for poset-chains involved in boundary calcula-
tions). A new feature of our use ofXG.H/ in this paper is that (as we had briefly sug-
gested in earlier Remark 1.6) we can exploit the F -left condition in Definition 3.4 (3),

8Notational comment: We will typically reserve the letter-pairs F , A and F; B for such
cross-terms.
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to get a more “visual” format for its poset-chains—which makes analysis of their
boundaries easier than in Ap.G/.

Very roughly, for a suitable cycle from Ap.H/ involving a <-chain a, the main
preliminary calculation in homology propagation shows that chains from Ap.G/ prop-
erly containing a, which are built just from further members of NG.H/, do not
contribute to the boundary of a in Ap.G/; so that the only problematic members
must come from the FG.H/ factor in the union.

And after applying the homotopy equivalence of XG.H/ with Ap.G/ in Theo-
rem 3.6 below, it will be an advantage of the XG.H/-formulation for the boundary
calculation that any such problematic members of FG.H/ appearing in�-chains con-
taining a are concentrated together at the left end of those chains. We will flesh out
this vague description later, notably in Remark 5.5.

This left-focused format for the chains in XG.H/ (and in other posets later in the
paper) will help simplify the proofs of some new homology propagation results, such
as Theorem 6.6.

As promised earlier, we next get an explicit equivariant homotopy equivalence
between B and XB.H/ under suitable extra conditions on B which hold, for exam-
ple, when B is of the usual form Ap.K/.

Theorem 3.6. AssumeH � G, with Ap.H/�B �Ap.G/ as in Definition 3.2; and
write NG.H;B/ for the largest subgroup of NG.H/ acting on B. Recall the poset
XB.H/ D Ap.H/ [ FB.H/ under � from Definition 3.4. Assume also the further
condition.

(i) When F 2FB.H/,B 2NB.H/ satisfy F � .B \H/ (that is, CB\H .F / >
1), then also CB.F /; CB.F /F 2 B.

Then, we have an NG.H;B/-homotopy equivalence ˛B;H W B ! XB.H/, defined
using the deflation map on the NB.H/-term:

˛B;H .D/ D

´
D \H W D 2 NB.H/;

D W D 2 FB.H/:

Moreover, the following statements hold.

(1) The homotopy equivalence ˛B;H is the identity when restricted to Ap.H/.

(2) For F 2 FB.H/, XB.H/�F n FB.H/ D Ap.H/�F D NH .CH .F //; this
has a poset-strong deformation retraction to Ap.CH .F // via the CH .F /-
deflation map B 7! B \ CH .F / D CB\H .F / D CB.F /.

(3) If B � NG.H/, then B D NB.H/'Ap.H/; and ˛B;H is the restriction to
B of the deflation map, i.e., the retraction B 7! B \H .
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In particular, if B DAp.K/�Ap.H/ forK �G, the above hypotheses (notably (i))
hold, and we write ˛K;H for the above map, which is an NG.H;�1.K//-homotopy
equivalence.

Thus, for K D G, we get an NG.H/-homotopy equivalence of Ap.G/ with the
poset XG.H/9.

Proof. First, we check that ˛B;H is order-preserving—from < to �. Since < agrees
with � inside the images of each of the two factors in the union giving the domain B,
we only need to check images of cross-terms between those two factors, which by the
F -left property (i) in Definition 3.2 must be of the form F < A, for F 2 FB.H/, and
A 2 NB.H/ (so that A \H > 1). Here, F centralizes A just since A is abelian, so
that CA\H .F / D A\H > 1—and so, we do indeed get F � A\H for the images,
as needed.

To show ˛B;H is an equivariant homotopy equivalence, we will use the Quillen
fiber Theorem 2.10.

The first step is the equivalence (with equivariance indicated later) for x2XB.H/,
we will show below that the preimage

Zx WD ˛
�1
B;H .XB.H/�x/

is contractible.
Consider first the case x D A 2 Ap.H/. Then, using the F -left property in Defi-

nition 3.4 (3), and the hypothesis Ap.H/ � B, we have XB.H/�A D Ap.H/�A, so
that our preimage is

ZA D ˛
�1
B;H .XB.H/�A/ D ˛

�1
B;H .Ap.H/�A/ D ¹B 2 NB.H/ W B \H � Aº

D NB.H/�A;

which is contractible since it has minimal element A > 1.
Now, consider the remaining case xD F 2FB.H/. This argument will be length-

ier. Note that

XB.H/�F D Ap.H/�F [ FB.H/�F D NH .CH .F // [ FB.H/�F ;

and in particular, we get the first part of (2). Furthermore, our preimage then has the
following form.

(ii) Z WD ZF D ˛�1B;H
.XB.H/�F / D NB.CH .F // [ FB.H/�F .

We will show using Lemma 2.7 (1) that Z is contractible (to ¹F º). As in (i0) in our
discussion after that lemma (compare also the worked-out details of the application

9Notice that we do not say “retraction” because XG.H/ is just a subset, not a �-subposet
of Ap.G/.



Some results on Quillen’s conjecture via equivalent-poset techniques 295

in earlier Example 2.14), the arguments are summarized by the following zigzag of
group-inclusions for D 2 Z:

D � CD.F / � CD.F /F � F: (3.1)

This abbreviated form expands to defining maps j0, j1, j2, j3 on Z, with images at
D given by D, CD.F /, CD.F /F , F . In particular, j0 D IdZ , and j3 is the constant
map to ¹F º. We see via elementary group-theoretic properties that each ji is a poset
map with the <-comparability conditions j0 � j1 � j2 � j3.

So, to complete the hypotheses of Lemma 2.7 (1), it remains to check the endo-
morphism condition, namely, that ji .D/ 2 Z for all i . For j0 D IdZ , this is clear (by
choice of D D j0.D/ in Z); and for j3 also, since j3.D/ D F 2 FB.H/�F � Z by
(ii). Thus, it remains to consider j1, j2, that is, to show that the corresponding images
CD.F /, CD.F /F lie in Z.

Now, since our Z is defined in the context of a subposet B, which is not neces-
sarily all of Ap.G/, as a preliminary, we first need to see that these images fall into
B.

(a) Show that the images CD.F / and CD.F /F lie in B.

In the case D lies in the right-factor for Z in (ii) above, i.e., D D E 2 FB.H/�F ,
we have CE .F / D E D CE .F /F , where E 2 FB.H/�F � B, giving (a) for both
images. Indeed, since these images lie in FB.H/�F � Z in (ii), this even gives (b)
and (c) below for suchD DE. The remaining case, that is, the left-factor forZ in (ii),
has D D B 2 NB.CH .F //, so that B \ CH .F / > 1. Observe that we have several
ways of viewing this intersection, so that we can write this condition in the expanded
form

B \ CH .F / D CB\H .F / D CB.F / \ CH .F / > 1:

In particular, we have CB\H .F / > 1, so that we are in the situation of hypothesis (i)
of the theorem. We now crucially quote that hypothesis, to get CB.F / and CB.F /F
in B, as desired. This completes (a) in both cases D D E;B for a member of Z.

(b) After (a), it is routine to check that j1.D/ D CD.F / 2 Z.

For we covered the right-factor case D D E 2 FB.H/�F in the proof of (a) above.
The left-factor case, where D D B 2 NB.CH .F //, has CB.F / \ CH .F / > 1 as in
that proof; and so, now using the conclusion of (a), we have CB.F / 2NB.CH .F //�

Z in (ii), as desired.

(c) After (a), it is routine to check that j2.D/ D CD.F /F 2 Z.

For again the right-factor case D D E 2 FB.H/�F was covered in the proof of (a).
In the left-factor case given by D D B 2 NB.CH .F //, we have

CB.F /F \ CH .F / � B \ CH .F / > 1
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as in that proof. So, using the conclusion of (a), we get CB.F /F 2NB.CH .F //� Z

in (ii), as desired.
This completes the proof that j1.D/; j2.D/ 2 Z, and hence of the hypotheses of

Lemma 2.7 (1). We conclude by that lemma that Z D ZF is contractible, in this case
for x D F .

In conjunction with the contractibility proof for the preimage in the previous case
x D A, we have completed the proof that ˛B;H is a homotopy equivalence.

For the equivariance of the equivalence, we need to note that the homotopies we
produced above preserve the action of the stabilizer of x. To be more precise, letK WD
NG.H;B/ and let x 2XB.H/. The contractibility ofZx in the case x DA 2Ap.H/

is given by B � A, which isNK.A/-equivariant; and in the case x D F 2 FB.H/ the
zigzag in equation (3.1) showing contractibility for Zx is also NK.F /-equivariant.
Since ˛B;H is also K-equivariant, we conclude it is a K-homotopy equivalence by
the equivariant version of the Quillen fiber Theorem 2.10.

Furthermore, the homotopies above are the identity when we restrict them to ele-
ments of Ap.H/—additionally giving (1). Finally, item (3) follows from Lemma
3.3 (1). This also gives the remaining part of (2) when we take H , CH .F / in the
roles of “G, H”.

In our later equivalence-result Proposition 4.9, we will adjust the construction of
XG.H/ in Definition 3.4 as follows. First, the role of “H” will in fact be played
by a p0-central product HK D H � K; and second, we will replace the customary
corresponding poset-join Ap.H/ � Ap.K/ ' Ap.HK/ by its “pre-join” variant—
which we describe in Section 4. Indeed, in the subsequent equivalence-result Theo-
rem 4.10, we will even generalize our notion of shrinking to actual replacement of
the pre-join factor Ap.H/ by related posets such as �p.H/ and Bp.H/—resulting in
replacement-posets which are more general than just Ap-posets.

For the moment, we indicate several variations on XB.H/, using just naive-
shrinking.

First, inside XB.H/, we can shrink Ap.H/ to the subposet i.Ap.H// of Defini-
tion 2.12.

Proposition 3.7. Under the hypotheses of Theorem 3.6, set

XB.i.H// WD i.Ap.H// [ F B.H/ � XB.H/:

Then, the retraction ri W Ap.H/! i.Ap.H// extends to an NG.H;B/-equivariant
retraction map yri WXB.H/!XB.i.H//. In particular, we haveNG.H;B/-homotopy
equivalences

B ' XB.H/ ' XB.i.H// D i.Ap.H// [ FB.H/;

which are the identity when restricted to i.Ap.H//.
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In the subcase for B D Ap.G/, we get NG.H/-homotopy equivalences

Ap.G/ ' XG.H/ ' XG.i.H// D i.Ap.H// [ FG.H/:

Proof. Let yri W XB.H/! i.Ap.H// [ FB.H/ be the set-map extending ri by the
identity on FB.H/. We check that it is a poset map, for the corresponding extension
of the ordering < to �. Recall that ri.B/ � B for all B 2 Ap.H/; and the identity
is a poset map on the FB.H/-part of the union. So, it remains to consider cross-
terms, which by the F -left property in Definition 3.4 (3) must be of form F � A, for
F 2 FB.H/ and A 2 i.Ap.H//. Then, we have yri.F / D F � A � ri.A/ D yri.A/.
Therefore, using transitivity, yri is order-preserving. Further, yri.A/ � A, for all A 2
XB.H/: that is, we have yri � IdXB.H/; the equivariant-retraction follows from this
(cf. Lemma 2.7 (2)).

Here is one sample use of the above further-shrinking proposition.

Example 3.8 (ConstructingXSym5
.i.Alt5//). LetGD Sym5 andH DAlt5, with pD

2. The choice BDA2.G/ satisfies the “In particular” hypotheses of Theorem 3.6, and
hence also of Proposition 3.7—from which (using normality of H in G), we obtain
G-homotopy equivalences

A2.G/ ' XG.i.H// ' i.A2.H// [ FG.H/:

We can use this equivalent form to explicitly determine the G-homotopy type of
A2.G/. Note that A2.G/ is obtained from A2.H/ by adding

�
5
2

�
D 10 involutions.

That is, jFG.H/j D 10, and the elements of this set correspond to the involutions of
G nH (that is, the transpositions). Now, the Sylow 2-subgroups of Alt5 are elemen-
tary, so here we get A2.H/ D �2.H/; and recall from Definition 2.12 that i.�2.H//

is the poset of 2-Sylow intersections in H . So, since the distinct conjugates of the
5 Sylow 2-subgroups of Alt5 intersect trivially, the poset i.A2.H// is here just a
discrete set with those 5 points (and indeed it coincides with B2.H/). For each
A 2 FG.H/, there are exactly three maximal elementary abelian groups containing
some involution commuting with A, since CH .A/ Š Sym3. Therefore, XG.i.H// is
in fact a connected bipartite graph with 10C 5 points and 3 � 10 D 30 edges. Hence,
computing with the G-equivalent XG.i.H// in place of A2.G/: we see zH1.A2.G//

has dimension 30� 15C 1D 16, and A2.G/ is G-homotopy equivalent to a bouquet
of 16 1-spheres.

We mention that this graph XG.i.H// is in fact the “triples-geometry” for Sym5,
as described in [24, Example 2.3.5], which has been used in various places in the
geometric literature.

Finally, we note that this XG.i.H// can also be realized asW B
G .H; 1/ in our later

construction in Theorem 4.10.
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Another interesting variant of XG.H/ uses the context of the poset introduced
at [25, p. 134]; notice it does not force members of FG.H/ to the left end of �-
chains, but instead leaves them on the right (that is, the left end of �-chains). We get
the relevant analogue of Theorem 3.6.

Proposition 3.9 (Thévenaz poset). Let H � G. Define the poset yXG.H/ as the dis-
joint union of Ap.H/ and FG.H/, and with the following ordering �WD� yXG.H/

:

(1) inside Ap.H/, as �, we keep the subgroup-inclusion ordering <;

(2) inside FG.H/, as�, we use the opposite of<—that is, we use group-contain-
ment ordering >;

(3) when F 2 FG.H/, we set A � F for all A 2 Ap.CH .F //.

Then, Ap.G/ ' yXG.H/ (and indeed this is an NG.H/-equivalence).

Proof. There will be some limited analogies with arguments from the proof of Theo-
rem 3.6. Indeed, since here we are in effect using the full Ap.G/ in the role of “B”
there, the arguments will be easier. In particular, we mentioned there that its hypoth-
esis (i) is automatic for Ap.G/.

The proof of transitivity of � yXG.H/
here is roughly dual to that for �XG.H/ in

Definition 3.4—due to the reversal of the usual ordering in FG.H/. As before, we
only need to check cross-terms; so suppose A � F , so that A � CH .F /. Given an
extension B < A, we have B < A � CH .F /, so that also B � F . And similarly,
given F > E, we have A� CH .F /� CH .E/, so that also A� E. By the transitivity,
yXG.H/ is indeed a poset with this order-relation.

Next, in order to construct a homotopy equivalence between Ap.G/ and yXG.H/,
we are going to work with face posets, that is, the poset of chains from our original
posets; this should help avoid confusion, since we have reversed some orders in the
new poset yXG.H/. Concretely, we first abbreviate our original poset by Y WDAp.G/,
with the usual ordering<, and setX WD yXG.H/, with the new ordering� above. The
set F WD FG.H/ is a subset of both Y andX—and indeed a subposet of each, though
with opposite orderings < and �FG.H/ (namely, >). We now consider chains in these
posets. For a <-chain a 2 sd.Y /, we define a \H WD ¹A \H W A 2 NG.H/ \ aº

and a \ F WD ¹A 2 a W A 2 F º. Recall that the ordering from a on the set a \ F is
given by group-inclusion <.

Now, for our homotopy equivalence, define the map

ˇ W sd.Y /! sd.X/; ˇ.a/ WD .a \H/ [ .a \ F /�;

where the subscript � indicates reversing the <-ordering on a \ F to >, to get the
�-ordering. Notice that this map is essentially the deflation map, as in the equivalence
map ˛B;H in the proof of Theorem 3.6.
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We see that ˇ is an order-preserving map (from < to �). Since � is either equal,
or dual, to � on the two factors in the union defining the domain sd.Y /, we only need
to check images from cross-terms F < A between the two factors; here A centralizes
F just by abelianness, so ˇ.A/ D A \H � CH .F /, and hence, we get ˇ.A/ � F
for the images. It follows at the level of face posets that ˇ.a/ is indeed a �-chain in
sd.X/.

Now, we will show that ˇ is a homotopy equivalence. To this end, we will show
that the preimage ˇ�1.sd.X�x// is contractible for all x 2 X . And then in summary,
in the language used by McCord in [13], the sd.X�x/ as x varies give a basis-like
open cover, and by [13, Theorem 6] we will be able to conclude that ˇ is a homotopy
equivalence.

We split the contractibility proof into the two usual cases for x. Because we use
lower links (with � x), rather than upper links (with � x) as in the proof of Theo-
rem 3.6, the preimages here are slightly different in form.

• x D A 2 Ap.H/. In this case, we have

X�A D Ap.H/�A D Ap.A/:

So that for the preimage, we get

ˇ�1.sd.X�A//D sd.Z/; where Z WD ZA D ¹B 2 NG.H/ W 1 < B \H � Aº:

Then, Z is conically contractible, essentially via Quillen’s homotopy

B � B \H � A:

The proof is basically dual to that in Example 2.14. Namely, we apply Lemma 2.7
condition (1) to the corresponding maps j0, j1, j2; they are visibly poset maps,
with j0 � j1 � j2. For the endomorphism requirement: note using the description
of Z displayed above that we get 1 < B \H � A; and then as .B \H/ \H D
B \ H , we see again using that description of Z that we also get j1.B/ D
B \H 2 Z for the middle term B \H above. This completes the hypotheses
of Lemma 2.7 (1), and by that result, we get contractibility of Z D ZA.

• x D F 2 F . Here, we have

X�F D Ap.CH .F // [ .F
op
< /�F D Ap.CH .F // [ F�F :

Therefore, for the preimage we get an analogue of (ii) in the proof of Theorem 3.6;
namely, we have ˇ�1.sd.X�F // D sd.Z/, where

(ii0) Z WD ZF D ¹B 2 NG.H/ W 1 < B \H � CH .F /º [ F�F .
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We claim Z is contractible, via the homotopy zigzag abbreviated by the group-
inclusions

D � CD.F / � CD.F /F � F

as D runs over Z. Recall this is the sequence that arose in the case “x D F ” in
the proof of Theorem 3.6; and indeed the proof now parallels that earlier one: we
show using Lemma 2.7 (1) that Z is contractible.
Again, j0, j1, j2, j3 are clearly poset maps, with j0 � j1 � j2 � j3. And again
j0 D IdZ , and the constant map j3 to F 2 Z, visibly satisfy the endomorphism
requirement.
So, it remains to establish the endomorphism requirement for j1, j2; that is, we
must show that j1.D/ D CD.F / and j2.D/ D CD.F /F lie in Z. This time,
since here Ap.G/ plays the role of “B” there, we automatically get step (a) of
the earlier argument; so it remains to obtain steps (b) and (c) there. In the subcase
for Z in (ii0) where D D E 2 F�F , we again have CE .F / D E D CE .F /F—
so again the earlier argument goes through. In the other subcase of (ii0), we have
D D B 2 NG.H/ with 1 < B \H � CH .F /. Then,

1 < B \H � .CB.F / \H/ \ CH .F /;

which shows using (ii0) that also j1.B/ D CB.F / 2 Z—giving step (b). Step (c)
follows, on replacing CB.F / in the above display by CB.F /F D j2.B/. This
completes the proof of contractibility of Z in the case x D F .

We have now shown that for every set U 2 U WD ¹sd.X�x/ W x 2 Xº, ˇ�1.U / is
contractible. Here, U is a basis-like open cover: this means that it is a basis for a
topology. That is, if U1; U2 2U and we have x 2 U1 \ U2, then there exists U3 2U

such that x 2 U3 � U1 \ U2. To illustrate this situation in our present case: if U1 D
sd.X�B1

/, U2 D sd.X�B2
/, and x 2 U1 \ U2, then for the �-maximal element of x,

we have max.x/�B1;B2, so that we get x 2 sd.X�max.x//� sd.X�B1
/\ sd.X�B2

/,
and further that U3 WD sd.X�max.x// 2 U.

So, since we have contractibility for this basis-like cover, [13, Theorem 6] applies,
and we conclude that ˇ is a homotopy equivalence.

Finally, to show that ˇ is an NG.H/-homotopy equivalence, note first that ˇ is an
NG.H/-equivariant poset map. Second, for K � NG.H/, we have that

UK
WD
®

sd.XK�x/ W x 2 X
K
¯

is a basis-like open cover of the K-fixed subposet .sd.X//K (notice that we always
have j sd.X/jK D j.sd.X//K j). Then, the same proof as above shows indeed that
the restriction ˇK W .sd.Y //K ! .sd.X//K verifies that ˇK.sd.XK�x// is contractible
for all x 2 X : since if K fixes B;D; F as above, then K fixes B \H , CD.F / and
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CD.F /F . Again, by [13, Theorem 6], we see that ˇK is a homotopy equivalence.
SinceK �NG.H/ is arbitrary, an application of the equivariant Whitehead’s theorem
allows us to conclude that ˇ is an NG.H/-homotopy equivalence.

Equivalences via removal of points with conical centralizers

In the final part of the section, we turn to a different kind of replacement-poset for
Ap.G/. As in the later propagation analysis (cf. Hypothesis 4.2), our background aim
is to analyze the homotopy type of Ap.G/ with respect to a fixed component L of
G. This time, however, our equivalent subposet is obtained by using the Quillen fiber
Theorem 2.10 to “homotopically remove” only certain members N of the inflation
NG.L/ of L (rather than applying deflation, which was the method of the previous
subsection)—namely, those which are faithful on L, and are suitably associated with
“conical centralizers”. Here is some further background from the literature, regarding
this distinction.

Remark 3.10 (Removing points via conical centralizers). We quickly preview a par-
ticular feature in our further discussion of homology propagation in the early part of
Section 4. Namely, we often have the situation in Hypothesis 4.2, of a component
L of G, with a p-outer B 2 OG.L/; and we study the resulting p0-central product
H � K, where H WD LB and K WD CG.LB/ as in Hypothesis 4.4. If Ap.K/ D ;,
then Ap.HK/ in fact just reproduces Ap.H/, so that we need no further constructions
for HK. Thus, our development below is really for the case that Ap.K/ ¤ ;.

Now, in view of results like the almost simple case in Theorem 2.21, we can
usually begin with knowledge of non-zero homology zH�.Ap.H// for our H D LB .
However, we need to deal with the possibility that this homology could become zero in
Ap.G/, from calculating in cones over those cycles—arising from points of Ap.K/

for our K D CG.LB/. Instead, we would like to preserve non-zero homology, by
having at least double-cones, i.e., suspensions, over those cycles. One obvious special
case of this cone problem arises when Op.K/ > 1: so that Ap.K/ is contractible to
a point �K by Quillen’s theorem, and then we cannot produce non-zero homology
cycle by joining cycles of Ap.LB/ and Ap.K/. However, when Op.K/ D 1, we
can hope instead for non-zero cycles for Ap.K/—giving non-zero product-homology
cycles for Ap.HK/, which we can then hope to propagate to non-zero homology
for Ap.G/. Correspondingly, adapting the terminology of [4], we say K is conical if
Op.K/ > 1; and K is non-conical otherwise, i.e., if Op.K/ D 1.

Therefore, for classical homology propagation, we need to start (as just indi-
cated) with Op.K/ D 1 and indeed zH�.Ap.K// ¤ 0: see, e.g., hypothesis (2) of
Lemma 5.11 (quoted from [4]), and hypothesis (v) of Lemma 5.14 (quoted from [16]);
and compare also hypothesis (3) in our new pre-join propagation Theorem 5.10. Ide-
ally, we obtain this non-zero homology essentially by induction, when we have the
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non-conical situation Op.K/ D 1. So, we often have a natural case division, where
the more propagation-friendly branch corresponds to the following.

(someNC) There is some B 2 OG.L/ with Op.CG.LB// D 1.

For example, [4, Theorem 2.4] (existence of “non-conical complements”) is a crucial
tool, which in effect establishes (someNC)—allowing for the homology propagation
required in the proof. Furthermore, earlier Lemma 2.5 in this paper helps to extend
non-conicality to further subgroups.

The other, less propagation-friendly, branch (which we instead might call ‘removal-
friendly’) of the case division is as follows.

(allC) For all B 2 OG.L/, we have Op.CG.LB// > 1.

Some version of (allC) arises in various results in the literature; and we could say
roughly that it is more relevant to homotopy equivalence methods, typically based
on using the Quillen fiber Theorem 2.10; the equivalence is with a subset of Ap.G/,
obtained by removing points corresponding to the conical centralizers. Suitable such
equivalences are implemented in a number of ways in the literature—cf. [16, Theo-
rems 4.1, 5.1, and 6.1]. And Proposition 3.11 below produces such equivalences for
situations satisfying an upper-link version of (allC).

In Proposition 3.11 below, we provide a somewhat flexible homotopy equivalence
result: where the set F1 corresponds to members of Ap.G/ with the above condition
(allC); and the conclusion allows for some leeway in choosing the set N of points to
be removed. This equivalence is used in later Proposition 4.12, with N D N1 itself;
and in Theorem 7.2, with N a possibly proper subset of N1.

We mention that the first conditionE 2Ap.NG.L// in the definition of N1 below
is actually redundant: for in view of Lemma 2.4, we getE normalizing the component
L from the second conditionE \L > 1—once we use the third (“faithful”) condition
CE .L/D 1, to guarantee thatE \L—Z.L/. However, we keep that condition about
NG.L/ in the definition, as it provides some natural context for those later conditions.

Proposition 3.11. Let G be a group, with a component L of order divisible by the
prime p. Define F1 as the subset of p-outers of L with CG.LB/ conical

F1 WD
®
B 2 OG.L/ W Op.CG.LB// > 1

¯
:

Note that F1 is upward-closed in OG.L/, by the contrapositive of Lemma 2.5.
Define the subset N1 of members of the inflation NG.L/ acting faithfully on L,

and containing some member of F1:

N1 WD
®
E 2 Ap.NG.L// W E \ L > 1;CE .L/ D 1; 9B 2 F1 W B < E

¯
� NG.L/ \Ap.NG.L//:

Note that the condition B < E guarantees that N1 \Ap.LCG.L// D ;.
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Assume that N is an upward-closed subset of N1. Then, Ap.G/ nN ,! Ap.G/

is a homotopy equivalence. Furthermore, Ap.LCG.L// � Ap.G/ nN .
In particular, for N D N1 we see that Ap.G/ n N1 ,! Ap.G/ is a homotopy

equivalence.

Proof. We abbreviate Y WD Ap.G/ n N . Note since N1 \ Ap.LCG.L// D ; that
Ap.LCG.L// � Y , as required.

We will obtain the desired equivalence using the Quillen fiber Theorem 2.10,
namely, we will show for any E 2 Ap.G/ n Y D N that Y>E is contractible. Recall
since E 2 N � N1 that we have

E � NG.L/; E \ L > 1; CE .L/ D 1 and there is some B 2 F1 such that B < E.

We begin by showing that Y>E is homotopy equivalent to Ap.CG.LE//. For
this, we will directly construct poset maps in each direction, which are homotopy
inverses. So, consider anyA in the domain space Y>E . Then,A\L�E \L> 1. But
A\L—Z.L/, sinceE \Z.L/�CE .L/D 1; soA�NG.L/ by Lemma 2.4. Further
B <E <A. Thus, we have forA three of the four defining properties for membership
in N1. So, if we had the remaining faithful property CA.L/ D 1, we would then get
A 2 N1; but then since E 2 N � N1 with E < A, and N is upward-closed in N1 by
hypothesis, we would get A 2 N —contrary to its choice in Y D Ap.G/ n N . This
contradiction shows that CA.L/ > 1. Now, A D CA.E/ since A > E; so CA.LE/ D
CA.L/ \ CA.E/ D CA.L/ > 1. Thus, a W A 7! CA.LE/ is a poset map from Y>E

to Ap.CG.LE//. For the other direction, consider now some C 2 Ap.CG.LE//.
Since CE .L/ D 1, we have CE > E; and also CCE .L/ D C > 1, so that CE 62
N1—and hence CE 62 N ; so we conclude that CE 2 Y>E . Then, b W C 7! CE is
a poset map from Ap.CG.LE// to Y>E . Note that ba.A/ D CA.LE/E � A and
ab.C / D CCE .LE/ D C ; so that the two maps are homotopy inverses, giving the
desired homotopy equivalence.

Using this equivalence, the contractibility of Y>E will follow once we show that
Op.CG.LE// > 1.

Case 1. Assume E contains an element e 2 LCG.L/ n L. Then, Op.CG.LE// > 1.
Here, we write eD lc, where l 2L and c 2CG.L/. Since e has order p, but e …L,

we see that c has non-trivial p-power order. We will show that c 2 Z.CG.LE//; so
consider any x 2 CG.LE/:

lc D e D ex D lxcx D lcx;

which forces c D cx . This shows c 2 Z.CG.LE//. So,

Op.CG.LE// � Op.Z.CG.LE/// > 1;

since we saw c is a non-trivial p-element. This finishes the proof of Case 1.



K. I. Piterman and S. D. Smith 304

Case 2. Otherwise, E \ .LCG.L/ n L/ D ;. And again, we get Op.CG.LE// > 1.
Here, the hypothesis implies that when e 2 E induces an inner automorphism of

L, then e 2 L. And so, if we write E D .E \ .LCG.L///C , where C 2 OG.L/, we
see thatE \ .LCG.L//DE \L; hence,LE DLC . Moreover, sinceB <E, we can
choose C so that C � B . Since B 2 F1 � OG.L/, and C 2 OG.L/�B , we conclude
that Op.CG.LE// D Op.CG.LC// > 1, by the upward-closed property of F1. This
finishes the proof of Case 2.

In summary, we have shown that Y>E ' Ap.CG.LE// ' �, since by Cases 1
and 2 we have Op.CG.LE// > 1. To complete the proof, apply the Quillen fiber
Theorem 2.10 to the inclusion Y ,! Ap.G/.

4. The pre-join construction and some corresponding
replacement-posets

In the next section, we will prove Theorem 5.10. This is essentially a variant of
Lemma 5.11, namely, the original homology propagation result [4, Lemma 0.27] of
Aschbacher–Smith—but now using, in place of the usual join of posets, the context
of the “pre-join”, which we develop in this section.

Furthermore, Theorem 5.10 is stated in the language just of posets—which now do
not have to be Ap-posets, in contrast to “classical” propagation of [4]. In our context
of (H-QC), this allows us to use more general replacement-posets “W ” equivalent
to Ap.G/, in the spirit of the various equivalent constructions “X” in the previous
Section 3. So, the present section, in particular, develops some replacement-posets
which use the pre-join; notably in Theorem 4.10 and Proposition 4.12.

Background: The classical poset join in homology propagation

Before introducing the pre-join, we will first review the more standard context of the
usual poset join in homology propagation.

We start with a brief continuation of our earlier more general viewpoint just on
propagation.

Remark 4.1 (Some further broad context on homology propagation). Recall from
Remark 3.1, we typically have a suitable proper subgroupH <G with fH�.Ap.H//¤
0; and we wish to show that this non-zero reduced homology “propagates” to non-
zero homology also for Ap.G/. More precisely, this means that the natural inclusion
i W Ap.H/! Ap.G/ should induce a non-zero map i� in homology. In that earlier
remark, we focused on the simplest case, where i is a homotopy equivalence, and i�
an isomorphism; but now we wish to examine more general situations for i�.
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Note first that i� can be non-zero, without even needing to be injective; that is, it
suffices to have just the (non-constructive) existence of a non-zero image i� in homol-
ogy. For example, this is the case in Theorem 2.24 quoted from [18]. (We mention
also that the knowledge of non-zero homology for Ap.H/ in that result is also non-
constructive: it relies on the existential result Theorem 2.20 quoted from [3]—applied
to H D AutG.L/, for L a component of G.)

However, it is in fact more common in the literature to have the propagation10 be
more constructive by showing i� is essentially a monomorphism in some particular
non-zero degree.

For historical background, we illustrate this via Quillen’s [19, Corollary 12.2],
which in fact essentially inspired the study of homology propagation. There we have
G solvable, with H WD LA, where L WD Op0.G/ and A is of maximal rank m in
Ap.H/ (which is also the maximal rank for Ap.G/). In particular, we get the follow-
ing description of the upper link of A:

(i) Ap.G/>A D ;,

just from the particular maximality condition that we have assumed for A.
Next, the construction there of non-zero reduced homology for Ap.H/ (basically

the property .QD/p) gives us a non-zero cycle ˛ in the topological dimension m � 1
of Ap.H/: this must involve some poset-chain a with m members, so we may take
our A WD max.a/. So, suppose, by way of contradiction to (H-QC), that ˛ is zero in
zH�.Ap.G// (that is, in the kernel of i�). Then, ˛ would appear in the image under

the boundary operator of some longer chain b with .mC 1/ members from Ap.G/,
and with b 2 LkAp.G/.a/.

We examine this situation using the later viewpoint of [4]. Note since a has
m members, with max.a/ D A of rank m, those members have consecutive orders
p;p2; : : : ;pm. So that naively, there is “no room” to insert further members of Ap.G/

either among, or below, those of a, but only above. We state this condition in the lan-
guage of “full chain” at later Definition 5.1 (2).

(ii) LkAp.G/.a/�Ap.G/>A, whereADmax.a/ (i.e., a is a full chain in Ap.G/).

And now applying (i) in (ii), we see that no such longer chain b is possible. This
contradiction shows that ˛ is non-zero for Ap.G/, giving (H-QC); and, in particular,
shows that i� is injective in this degree. (Even in all degrees, since here Ap.LA/ is a
wedge of spheres of dimension m � 1.)

The above interaction of the maximality condition on A from .QD/p , giving the
upper-link condition in (i), with a relevant restriction in (ii) on the structure of links
of simplices, is essentially the starting point for later extensions of the notion of this

10And indeed the non-zero homology of Ap.H/.
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elementary propagation. So, our continuing exposition below will follow this inter-
action theme; up through the analysis in Remark 5.5, which underlies our later main
propagation result Theorem 5.10.

The use of the usual poset join in propagation originates with Aschbacher–Smith
[4], where the argument indicated above is adapted to cover the case where Quillen’s
L D Op0.G/ is replaced with a component L of G. The adjustment, in particular,
replaces the single subgroup “H” above, with a p0-central product H �K; and then
the corresponding poset Ap.H �K/ is homotopy equivalent to the usual join Ap.H/�

Ap.K/. So, as further background for our later pre-join variants, we now indicate
some relevant details in their development.

Thus, we consider a component L of a counterexample G to (H-QC). We’ll need
to consider possible p-outers of L; so we replace “A” above by some B 2 yOG.L/ as
in Definition 2.17 (which covers the p-outers B 2 OG.L/, as well as the identity case
B D 1). Hence, the basic context for propagation in [4] is the component-hypothesis.

Hypothesis 4.2. L is a component of a counterexample G to (H-QC), with B 2
yOG.L/.

Recall that, in Remark 3.10, we had also indicated the relevance, for propagation,
of the product of LB with CG.LB/. In Lemma 4.3 below, we will see (postpon-
ing momentarily the easy proof) that the above component—Hypothesis 4.2, via the
product of LB with CG.LB/, gives our standard case of a somewhat more general
Ap-poset Hypothesis 4.4. This latter product-hypothesis is what is actually assumed
(as [4, Hypothesis 0.15]) in the propagation lemma [4, Lemma 0.27] (which we have
quoted as later Lemma 5.11).

Lemma 4.3. Assume the component-Hypothesis 4.2 for L, B . As H , choose a sub-
group ofLB (ideallyLB or evenL whenB > 1), withK WD CG.LB/ for any choice.
Then, we also have the following central product Hypothesis 4.4 for H , K.

Hypothesis 4.4 (p0-central product). We have H;K � G, with ŒH;K� D 1 and H \
K a p0-group. In particular, we have a p0-central product HK D H �K.

Proof of Lemma 4.3. Notice that ŒH; K� D 1 from the hypothesis K D CG.LB/ of
the lemma. We have

H \K � LB \ CG.LB/ D Z.LB/ � Z.L/;

sinceB is faithful (including whenB D 1). The intersectionH \K is then a p0-group
since Op.L/ � Op.G/ D 1 in our counterexample to (H-QC).

In fact, in the proof of [4, Proposition 1.7], we also have Op0.G/ D 1—so as in
Lemma 2.3 (1), in this case the product HK D H �K is even direct.
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Since we will be using such central products within the Cartesian product context
of the pre-join below, we will frequently make use of the property:

Under Hypothesis 4.4, for A 2 Ap.HK/; we have A � pH .A/ � pK.A/; (4.1)

where pH and pK denote the respective projections.
This central product situation of H �K leads us to analyze some features of the

usual join.

Remark 4.5 (Homology propagation using the classical join of Ap-posets). We con-
tinue to study certain aspects of the proof of [4, Proposition 1.7]—the elimination
of .QD/p-components; under Hypothesis 4.2 (and hence, Hypothesis 4.4, in view
of Lemma 4.3). Recall in that result we assume also that H D LB has .QD/p . We
follow the interaction viewpoint of Remark 4.1.

Here, “Step iii” at [4, p. 489] shows that we may choose an A 2 Ap.LB/ with
LA D LB D H , so that A exhibits .QD/p for H . And then with ˛ and a as in the
Quillen case in Remark 4.1, as before we get condition (ii) of that remark.

(ii0) Again, LkAp.G/.a/ � Ap.G/>A (that is, a is a full chain in Ap.G/).

However, we can no longer expect to get condition (i) of Remark 4.1. For example,
consider larger products ofAwith any C 2Ap.K/, whereK DCG.LB/. Instead, the
argument at [4, p. 490] (referring back to [4, p. 488]) obtains a suitable replacement
for (i).

(i0) Ap.G/>A � A �K.

We mention that in the replacement-poset language of earlier Definition 3.4, withHK
in the role of “H”, this amounts to showing that11

Ap.G/>A \ F .HK/ D ; so that Ap.G/>A � Ap.H �K/ ' Ap.H/ �Ap.K/:

And this suffices: for the original propagation lemma [4, Lemma 0.27] (which we
have quoted as Lemma 5.11) assumes (i0) as its first hypothesis. That lemma shows
roughly thatA �K-terms in (i0) do not obstruct propagation. Namely, if a shuffle prod-
uct12 ˛ � ˇ (with ˇ a non-zero cycle in zH�.Ap.K//) is a boundary for Ap.G/, then
the “global” boundary calculation for ˛ � ˇ from Ap.G/ reduces via the poset join

11Notice the similarity of this condition with the displayed condition before Definition 3.2 (i).
This starts to link our earlier equivalence methods with propagation conditions; the theme con-
tinues, e.g., at (i00) below.

12The classical shuffle product (see [4, Definition 0.21]) implements product homology for
the join as in Remark 2.11. This amounts to recovering the Künneth formula for the join of
spaces (cf. [7, 14]).
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Ap.H/ �Ap.K/ to a parallel calculation from Ap.K/—showing that ˇ a boundary,
contrary to its non-zero choice. This contradiction establishes (H-QC).

We mention that Lemma 5.14 (the quoted result [16, Lemma 3.14]) generalizes
the arguments above, in several ways relevant to our exposition so far. First, the prop-
agation from Ap.H/ �Ap.K/ is not necessarily to Ap.G/, but instead to a suitable
subposet X—which must then be shown to be homotopy equivalent to Ap.G/ (as in
theX -viewpoint in Remark 3.1). Further, the sufficient condition for propagation now
takes the related form:

(i00) X>A � NG.K/,

in the language of Definition 3.2. Finally, the assumption of .QD/p for H is weak-
ened essentially to its consequence of a being a full chain with A D max.a/; that is,
we have the relevant analogue of Remark 4.1 (ii):

(ii00) LkX .a/ � X>A, where A D max.a/ (a is a full chain in X ).

The proof of propagation in this situation then proceeds via a similar reduction of the
boundary calculation, via the shuffle product for the link, to Ap.K/.

The pre-join and some basic properties using the Cartesian product

With the above classical context in place, we now turn to the extended viewpoint of
the present paper. For applications in the next section (cf. Hypothesis 5.2 there), we
will start with the basic situation of Hypothesis 4.2 for a component L, along with
a non-trivial p-outer B 2 OG.L/—but in Lemma 4.3, we will now usually make
the non-classical choice of H WD L and K WD CG.LB/. We emphasize that by that
lemma, we will still get the central product Hypothesis 4.4 for this choice ofH ,K—as
needed for the hypothesis of the results given later in this section.

In fact, our main new propagation result Theorem 5.10 will use the pre-join, in
generalizing the classical context: we will replace Ap.G/with non-Quillen equivalent
posets such asW B

G .H;K/ in Theorem 4.10 (a further development beyond XG.HK/
in earlier Definition 3.4). This will give us more flexibility for propagating non-zero
homology, in the sense that we can correspondingly relax certain hypotheses that had
been required in the classical Lemma 5.11 (i.e., [4, Lemma 0.27]). We can also pursue
further analogs of the interaction of (i00) and (ii00) in Remark 4.5: using a more natural
visual format for simplices and their links—in which the Cartesian product form of the
pre-join will be more convenient for our calculations than the usual poset join. These
extensions to propagation will allow us to establish new elimination results, such as
Theorem 6.4—in whose proof we apply Theorem 5.10, replacing the Quillen poset
for a p-extension of a Lie type group (in the same characteristic p) with the homo-
topy equivalent non-Quillen poset W WD W B

G .H;K/ of typically smaller topological
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dimension. Indeed, the climax of the argument occurs in the proof of Lemma 6.7,
where a is shown to be a full chain in W—i.e., the analogue of Remark 4.5 (ii00).

We now begin the main work of the section, primarily adapting results to the pre-
join viewpoint.

Inspired by the constructions of [4, 19] using the poset join, we generalize the
context by further defining the pre-join of two general posets X , Y—which are of
course inspired by the classical Ap.H/, Ap.K/; but for us, they will not always be
Ap-posets. The pre-join turns out to be homotopy equivalent to the classical join of
the posets; but the pre-join will be more convenient for our later purposes.

Definition 4.6 (The pre-join of posets). Let X and Y be finite posets. Denote by
C�X the poset obtained from X by adjoining a minimum element 1. The pre-join of
X and Y is the subposet

X �Y WD C�X � C�Y n ¹.1; 1/º

of the Cartesian product poset (cf. Definition 2.9). Regard X and Y as subposets of
X �Y via x 7! .x; 1/ and y 7! .1; y/, respectively.

Note, in particular, that in the format for poset-chains in the pre-join, any terms
from X itself will appear to the left of “mixed” terms—that is, of .x; y/ with y ¤
1. (This continues the theme of left-focusing that we had mentioned in the earlier
Remark 3.5.)

The pre-join of posets X �Y was used by Quillen to show that the join of simpli-
cial complexes (or posets) is homotopy equivalent to the classical join of topological
spaces of their geometric realizations (see [19, p. 104]). We record the G-homotopy
equivalence as follows.

Proposition 4.7. If X , Y are G-posets, then we have a G-homotopy equivalence
� W X �Y ! X � Y defined by

�.x; y/ WD

´
x 2 X when y D 1;

y 2 Y when y ¤ 1:

Proof. This follows by applying (to the preimages of lower links) the equivariant
version of the Quillen fiber Theorem 2.10. For example, if y 2 Y , then

��1..X � Y /�y/ D X � ¹1º [ C
�X � Y�y D X �Y�y :

This poset is Gy-contractible via the zigzag Gy-equivariant homotopy

.x; z/ � .x; y/ � .1; y/

(see Lemma 2.7).
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Next, we examine the pre-join in the context of subgroup posets of products. When
X is a poset of subgroups, regard the minimum element 1 2 C�X as the trivial sub-
group. (Of course, 1 lies outside our usual posets of non-trivial p-subgroups, such as
Ap-posets.)

Then, in Quillen’s application of the usual poset join to the Ap-poset of a product,
we can now also add the pre-join.

Corollary 4.8. Assume the p0-central product Hypothesis 4.4 for H , K. Then, we
have NG.H;K/-homotopy equivalences

Ap.HK/ ' Ap.H/�Ap.K/ ' Ap.H/ �Ap.K/:

Here, Ap.HK/ poset-strongly retracts to its subposet of members which are the prod-
uct of their projections; and we may in turn identify subposet with Ap.H/�Ap.K/.

In particular, for a direct productGDHKDH�K, normality givesG-homotopy
equivalences.

Proof. The first homotopy equivalence is given by the coordinate a W A 7! .pH .A/;

pK.A//, where the projection pH WAp.HK/! C�Ap.H/ is map obtained from the
quotient by K. Observe, since H \K is a central p0-subgroup of H , that Ap.H/ Š

Ap.H=H\K/. Define pK analogously. The map b in the reverse direction is obtained
by multiplying the two coordinates; observe that ba.A/ D pH .A/pK.A/ � A using
(4.1), and ab.C;D/ D .pH .CD/; pK.CD// D .C;D/, so that the maps are homo-
topy inverses. Note using Lemma 2.7 (2) that from ba � IdAp.HK/ above, we get the
retraction conclusion.

The second equivalence is that of Quillen [19, Proposition 2.6], in earlier Propo-
sition 4.7. The assertions about the case G D H �K are then straightforward.

We mention that as our development proceeds, we will be seeing a number of
further variations on the projection/product equivalence above.

Some replacement-posets based on the pre-join

We just gave in Corollary 4.8 the relationship of Ap.HK/, for the central product
HK of Hypothesis 4.4, with the pre-join Ap.H/�Ap.K/.

We will wish to apply this to the context of the replacement-poset XG.HK/, as
defined in the previous section. Note that from Theorem 3.6, with HK in the role of
“H”, we get

XG.HK/ D Ap.HK/ [ FG.HK/ is NG.H;K/-homotopy equivalent to Ap.G/I

where we will write �X for the ordering in XG.HK/.
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We indicate how to substitute the corresponding pre-join for the term Ap.HK/

above, so as to get a replacement-subposet WG.H;K/ of XG.HK/, adapted now to
our pre-join viewpoint.

Proposition 4.9. Assume the p0-central product Hypothesis 4.4 for H , K. Regard
Ap.H/ �Ap.K/ as the direct product subposet of Ap.HK/, by the identification in
Corollary 4.8.

Then, we may similarly regard as a subposet of XG.HK/ the following poset:

WG.H;K/ WD .Ap.H/�Ap.K// [ FG.HK/;

whose order-relation �W is the obvious corresponding re-interpretation of �X :

(1) inside Ap.H/ �Ap.K/ and FG.HK/, �W agrees with �X (i.e., with inclu-
sion <),

(2) for F 2 FG.HK/ and .B; C / 2 Ap.H/ �Ap.K/, we set F �W .B; C / iff
CBC .F / > 1

13.

Using the retraction in Corollary 4.8, we see Ap.G/ and WG.H;K/ are NG.H;K/-
homotopy equivalent.

Proof. Here, we are essentially observing the poset retraction Ap.HK/ to Ap.H/�

Ap.K/ in Corollary 4.8 extends, via the identity on FG.HK/, to a poset-strong
retraction fromXG.HK/ toWG.H;K/. The retraction again proceeds via the projec-
tion/product equivalence.

We modify WG.H; K/ from Proposition 4.9, in the spirit of our earlier modifi-
cation Proposition 3.7 of Theorem 3.6: this time replacing the term Ap.H/ in the
pre-join by �p.H/ or Bp.H/. Note that the resulting equivalent replacement-posets
are typically not Ap-posets: since they include pre-joins such as �p.H/ �Ap.K/,
which do not have a natural HK-interpretation like Corollary 4.8—except possibly
via subposets of

�p.H/� �p.K/ ' �p.HK/:

In fact, the new poset W B
G .H;K/ will be the “W ” used to fit the hypotheses of our

new propagation result Theorem 5.10, in the proof of later Theorem 6.4—more specif-
ically in the branch of that theorem given by Lemma 6.7. (We had also mentioned,
in earlier Example 3.8, that the construction there via Proposition 3.7 could also be
realized in the language here of W B

Sym5
.Alt5; 1/.)

13This definition begins to illustrate how we exploit the Cartesian product format of the pre-
join; we’ll be seeing more such definitions as we proceed.
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Theorem 4.10. Assume the p0-central product Hypothesis 4.4 for H , K. Consider
the posets:

W A
G .H;K/ D .Ap.H/�Ap.K// [ FG.HK/;

W �
G .H;K/ D .�p.H/�Ap.K// [ FG.HK/;

W B
G .H;K/ D .Bp.H/�Ap.K// [ FG.HK/:

The order-relation � in each of these posets is the obvious extension of �W in Propo-
sition 4.9:

(1) inside �p.H/�Ap.K/ and FG.HK/, as � we keep the ordering induced by
inclusion <,

(2) for F 2 FG.HK/ and .B; C / 2 �p.H/ �Ap.K/, we set F � .B; C / if and
only if CBC .F / > 1.

Thus, W A
G .H; K/ and W B

G .H; K/ are subposets of W �
G .H; K/; and from Proposi-

tion 4.9, we have
W A
G .H;K/ D WG.H;K/ ' Ap.G/:

Then, the three posets displayed above are homotopy equivalent; thus, we have

Ap.G/ ' W
A
G .H;K/ ' W

�
G .H;K/ ' W

B
G .H;K/:

Proof. Note that in our construction, we do not get W �
G .H;K/ as a natural subposet

of XG.HK/—though we could in fact construct a suitable over-poset of XG.HK/,
which uses �p-posets rather than Ap-posets. However, here we really just need a poset
inclusion i W W A

G .H;K/! W �
G .H;K/.

So, we can begin the proof by checking transitivity of our extension of the order-
relation �W from W A

G .H; K/ D WG.H; K/, to � for W �
G .H; K/. And here we

can just follow the transitivity proof for �X in Definition 3.4—since that argument
depends just on standard properties of group-inclusion, and not on elementary-abeli-
anness in Ap-posets.

Now, let i above and j WW B
G .H;K/!W �

G .H;K/ be the natural inclusion maps.
To complete the proof of the theorem, we will show that i , j are homotopy equiva-
lences.

Case i . The map i is a homotopy equivalence.

Proof. We will apply the Quillen fiber Theorem 2.10 to preimages for the map i .
Namely, we will show that for any x 2W �

G .H;K/ nW
A
G .H;K/, we get contractibility

for the corresponding preimage i�1.W �
G .H;K/�x/DW

A
G .H;K/�x . Notice that this

preimage is the left-hand term of the join of form “f �1.Y�y/ � Y>y” in our statement
of Theorem 2.10.
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Such an x has the form .C; D/, with C 2 �p.H/ n Ap.H/ (so that C is not
elementary abelian), and D 2 Ap.K/ [ ¹1º. Then,

(i) W A
G .H;K/�.C;D/ D .Ap.H/�C /� .Ap.K/�D/ [ FG.HK/�.C;D/

D .Ap.C /�Ap.D// [ ¹F 2 FG.HK/ W CCD.F / > 1º:

Now, even though C is not elementary abelian, it is a standard property of the Ap-
poset in the case of a p-group that Ap.C /' �p.C /' �. On the other hand, we could
get Ap.D/ D ;, when we have D D 1. But in any case for D, we get

Ap.C /�Ap.D/ ' �:

So, it suffices to show the inclusion

k W Ap.C /�Ap.D/ ,! .Ap.C /�Ap.D// [ FG.HK/�.C;D/

is a homotopy equivalence—as this gives

W A
G .H;K/�.C;D/ ' Ap.C /�Ap.D/ ' �;

as desired.
To establish the equivalence for k, we will again use the Quillen fiber Theo-

rem 2.10 to remove the elements F 2FG.HK/�.C;D/ from the union by showing that
.Ap.C /�Ap.D//�F is contractible. Recall that such anF satisfiesCCD.F /> 1; and
Ap.CCD.F //' �p.CCD.F // is contractible. So, it will even suffice to show for each
such F that

(ii) .Ap.C /�Ap.D//�F is homotopy equivalent to Ap.CCD.F // ' �:

To obtain (ii), we see that for any .A;B/2.Ap.C /�Ap.D//�F , we get 1<CAB.F /�
CCD.F /. Then, our desired homotopy equivalence will be given by a variation on the
projection/product equivalence in Corollary 4.8. Here, we replace the earlier product-
map b with the centralizer-adjusted variant given by the map b0 W .A;B/ 7! CAB.F / 2

Ap.CCD.F //; while the homotopy inverse for b0 will still be given by the earlier pro-
jection map a WE 7! .pC .E/;pD.E// forE 2Ap.CCD.F //. For observe using (4.1)
that we have 1<E �pC .E/pD.E/, so that we getCpC .E/pD.E/.F / > 1—and hence
we obtain that F � .pC .E/; pD.E//, giving the image a.E/ D .pC .E/; pD.E// 2
.Ap.C /�Ap.D//�F . Finally, note that

ab0.A;B/D.pC .CAB.F //;pD.CAB.F ///D.pA.CAB.F //;pB.CAB.F ///� .A;B/:

For the inverse correspondingly, we have

b0a.E/ D CpC .E/pD.E/.F / D pC .E/pD.E/ \ CCD.F / � E:
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These homotopies complete the proof of the contractibility in (ii), and hence of the
contractibility of W A

G .H; K/�.C;D/ in (i). This in turn establishes the homotopy
equivalence needed for Case i .

Case j . The map j is a homotopy equivalence.

Proof. As in Case i , we will apply the Quillen fiber Theorem 2.10: but this time
not to the left term, but instead to the right term of the join of form “f �1.Y�y/ �
Y>y” in the theorem. That is, we will show that if x 2 W �

G .H; K/ n W
B
G .H; K/,

then W �
G .H; K/�x is contractible. Such an x has the form x D .C; D/: where we

have D 2 Ap.K/ [ ¹1º, and C 2 �p.H/ n Bp.H/ (so that C is not a “p-radical”
subgroup of H ). We get

W �
G .H;K/�x D ¹.A;B/ 2 �p.H/�Ap.K/ W .A;B/ > .C;D/º

D .�p.H/�C �Ap.K/>D/ [ .�p.H/>C � .Ap.K/ [ ¹1º/�D/

D �p.H/>C �Ap.K/>D ' �I

where the contractibility holds because �p.H/>C is contractible: this is a standard
property of non-p-radical subgroups C 2 �p.H/ nBp.H/ (see [5] and [24, p. 152]).
Then, j is a homotopy equivalence by the Quillen fiber Theorem 2.10. This concludes
the proof of Case j .

And that in turn completes the proof of the equivalences in Theorem 4.10.

It turns out that in proving Theorem 6.4—in the (allC)-branch covered by Lemma
6.8—we need to apply the propagation Theorem 5.10 to a variant of the replacement-
posetW DW B

G .H;K/ indicated in Theorem 4.10 above. We denote this variant using
a tilde, in Proposition 4.11 below.

So, to finish the section, we now describe a further modification of the posets used
in Theorems 3.6 and 4.10; recall these are based on the method of “shrinking a sub-
poset inside a union” in the first subsection of Section 3. The modification roughly
allows us to take account of the method of removals in the second subsection of Sec-
tion 3, namely, the (allC)-removals indicated in Proposition 3.11 there. We will not in
fact make any further removals of elements from our poset union; we work instead at
the level of poset-orderings, where we will adjust the earlier� to a new @, by in effect
removing certain order-relations (i.e., pairs) from �, rather than removing actual ele-
ments from the poset14. We will thus obtain suitable new replacement-posets, now
denoted using a tilde, which are homotopy equivalent to Ap.G/.

14However, when we later consider subposets of the form Zwx , there will be corresponding
exclusions of elements.
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We will first construct the posets in Proposition 4.11 below, with the equivalences
given afterwards in Proposition 4.12. Recall that earlier Proposition 3.11 is for the
analysis of a fixed component L of G. But in these two upcoming propositions, we
will not actually require G to be a counterexample to (H-QC); and correspondingly,
instead of assuming the component-Hypothesis 4.2 for L (with B D 1).

In the remainder of the section, we assume Z.L/ is a p0-group, and set

H WD LCG.L/:

This will in effect still provide the p0-central product Hypothesis 4.4 forH ; in partic-
ular, we still have the analogue of (4.1):

For A 2 Ap.H/; we have A � pL.A/pCG.L/.A/; (4.2)

where pL and pCG.L/ denote the respective projections. We get from Lemma 2.4 the
following:

If A 2 Ap.G/ and CL.A/ > CZ.L/.A/; then A � NG.L/: (4.3)

We will use such properties in our results in the remainder of the section, begin-
ning with the following proposition.

Proposition 4.11. Assume G has a component L, with Z.L/ a p0-group. Set H WD
LCG.L/, so

FG.H/ \Ap.NG.L// D OG.L/:

Recall also from Proposition 3.11 the subposet

F1 WD ¹B 2 OG.L/ W Op.CG.LB// > 1º;

which we saw that it is upward-closed in OG.L/ � FG.H/.
Then, the definitions below give transitive order-relations—so the given set-unions

afford posets.

(1) zXG.H/ WD Ap.H/ [ FG.H/, with order @X “mostly” given by �X from
X D XG.H/:

• inside Ap.H/, and inside FG.H/, @X agrees with �X (hence with inclu-
sion <),

• forA 2Ap.H/ and F 2 FG.H/, @X agrees with�X—except we exclude
certain pairs.
For F 2 F1, we require F 6@X A, when F �W A but CA.F / � L. We
denote this by

F @X A iff 1 < CA.F / .— L when F 2 F1/:
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(2) zW �
G .L;CG.L// WD �p.L/�Ap.CG.L//[FG.H/, with order @W “mostly”

given by �W from W D W �
G .L; CG.L//:

• inside �p.L/ �Ap.CG.L//, and inside FG.H/, @W agrees with �W
(hence with <),

• for .A;C / 2 �p.L/�Ap.CG.L// and F 2 FG.H/, @ agrees with �W—
except that we exclude certain pairs.

For F 2F1, we require F 6@W .A;C /, when F �W .A;C / but CAC .F /�
L. We write

F @W .A; C / iff 1 < CAC .F / .— L when F 2 F1/:

(3) We also define the following subposets of zW �
G .L; CG.L//:

zW B
G .L; CG.L// WD Bp.L/�Ap.CG.L// [ FG.H/;

zW A
G .L; CG.L// WD Ap.L/�Ap.CG.L// [ FG.H/:

Using the identification of Ap.L/ �Ap.CG.L// as a subposet of Ap.LCG.L//

in Corollary 4.8, we may regard zW A
G .L; CG.L// as a subposet of

zXG.LCG.L// D zXG.H/:

Note that each @ has the F -left property: that members of FG.H/ can appear
only below members of the left-factor in the relevant union.

Proof. We must show that the restricted relations above for the sets zXG.H/ in (1) and
zW �
G .L; CG.L// in (2) are indeed transitive order-relations. Since the new @ agrees

with our known ordering � within the factors in the union, as well as on cross-terms
between the factors when the F -term lies outside F1, the work amounts to checking
transitivity of extensions at either end of a cross-term relation (of the form “F @ A”
by the F -left property), where the extension involves at least one term from F1.

(1) To see transitivity, so that zXG.H/ is a poset.

Assume A;B 2 Ap.H/, with A < B; and F1; F2 2 FG.H/, with F1 < F2;
and also,

(i) F2 @ A. Hence, 1 < CA.F2/ (— L when F2 2 F1).

We must show that F1 @ A and F2 @ B; we may assume at least one of F1,
F2 lies in F1.

We begin by adding some easy subgroup-inclusions to (i):

(ii) 1 < CA.F2/ � CA.F1/ \ CB.F2/.
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Then, we consider the cases where at least one of F1; F2 lies in F1:

• F2 2 F1: Here, (i) includes also CA.F2/ — L. So, from (ii) we get 1 <
CA.F1/—L, and similarly 1 < CB.F2/—L; and hence F1 @A and F2 @
B;

• F2 … F1, F1 2 F1: Here, (ii) gives CB.F2/ > 1, so we get F2 @ B; while
for F1 2 F1, we similarly get CA.F1/ > 1—but we still need to show
CA.F1/ — L. So, assume by way of contradiction that CA.F1/ � L. Then,
using (ii), F2 centralizes the non-trivial p-subgroup CA.F2/ � CA.F1/ �
L, so that F2 normalizes L by (4.3). So, we obtain that F2 2 FG.H/ \

Ap.NG.L// D OG.L/. Now, F1 < F2, and we have F1 2 F1 � OG.L/;
and we saw in Proposition 3.11 that F1 is by its construction upward-
closed in OG.L/. We conclude that F2 2 F1—contrary to our choice in
this case of F2 … F1. This contradiction shows that we have CA.F1/ — L,
and so, completes the proof that F1 @ A in this final case.

This establishes transitivity of the order-relation; so that zXG.H/ is indeed a
poset.

(2) To see transitivity, so that zW �
G .L; CG.L// is a poset, we parallel the previous

proof as follows. First, we replace “A < B” above by elements .A; C / <
.B;D/ from the pre-join �p.L/ �Ap.CG.L//, where of course C � D; and
with members F1 < F2 of FG.H/. Assume the analogue of (i):

(i0) F2 @W .A; C /. Hence, 1 < CAC .F2/ (— L when F2 2 F1).

We must show F1 @W .A;C / and F2 @W .B;D/; we may assume one of F1,
F2 lies in F1. We get the analogue of (ii):

(ii0) 1 < CAC .F2/ � CAC .F1/ \ CBD.F2/.

And we have a similar case division according to membership of F1; F2 in
F1. In the first case, where F2 2 F1, (i0) includes also CAC .F2/ — L. This is
what is further needed to complete the proof, using (ii0), that F1 @W .A; C /

and F2 @W .B;D/.
So, the only substantial argument required is for the second case, where F1 2
F1, F2 … F1. Again F2 @ .B;D/ follows directly from 1 < CBD.F2/ in (ii0);
but for .A;C /we only getCAC .F1/ > 1—so we still need to showCAC .F1/—
L. So, suppose by way of contradiction that CAC .F1/ � L. Then, F2 central-
izes the non-trivial p-subgroup CAC .F2/ � CAC .F1/ � L, so again F2 nor-
malizes L by (4.3), and then we get F2 2 FG.H/ \Ap.NG.L// D OG.L/.
And since F1 <F2 with F1 2F1 �OG.L/, the upward-closed property of F1

gives F2 2 F1—contrary to its choice in this case. This contradiction shows
that CAC .F1/ — L—which gives F2 @W .A; C /, to complete the proof for
the order-relation; so that zW �

G .L; CG.L// is indeed a poset, as desired.
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Of course, conclusion (3) is just a definition of subsets of giving subposets, and so,
does not require further proof.

Now, we prove our equivalence-result analogous to Theorem 4.10, showing that
the new tilde-posets can be used as replacement-posets for Ap.G/—notably in apply-
ing our new propagation Theorem 5.10 in situations related to Proposition 3.11, as we
will do in the proof of the branch of Theorem 6.4 given by Lemma 6.8.

Proposition 4.12. Continue the hypotheses of Proposition 4.11: thusG has a compo-
nent L, with Z.L/ a p0-group; and we set H WD LCG.L/ for the p0-central product
of these groups, so that

FG.H/ \Ap.NG.L// D OG.L/:

Recall also from Proposition 3.11 the poset

F1 WD ¹B 2 OG.L/ W Op.CG.LB// > 1º;

which we saw there is upward-closed in OG.L/.
Then, we have homotopy equivalences relating the new posets in Proposition 4.11:

Ap.G/ ' zXG.H/ ' zW
�
G .L; CG.L// '

zW B
G .L; CG.L// '

zW A
G .L; CG.L//:

Proof. Recall the further notation of Proposition 3.11, including that

N1 D
®
E 2 Ap.NG.L// W E \ L > 1; CE .L/ D 1; 9D 2 F1 with D < E

¯
� NG.L/ � Ap.NG.L//;

where the last inclusion holds using (4.3). It will be convenient to begin by replacing
Ap.G/ with

Y WD Ap.G/ nN1I recall by Proposition 3.11 that Ap.H/ � Y ' Ap.G/:

In fact, we will show first that Y ' zXG.H/. Then, we will prove that zXG.H/ '
zW A
G .L; CG.L//; and finally that the inclusions zW A

G .L; CG.L// ,!
zW �
G .L; CG.L//

and zW B
G .L; CG.L// ,!

zW �
G .L; CG.L// are homotopy equivalences.

Claim 1. Y ' zXG.H/.

Proof. The proof of Claim 1 is somewhat intricate and will require several pages.
We will mimic certain parts of the proof of Theorem 3.6: Let z̨ W Y ! zXG.H/ be

the analogue of the map ˛ there defined by using the deflation map on the NY .H/-
term:

A 2 NY .H/) z̨.A/ D A \H;

F 2 FY .H/) z̨.F / D F:
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Note since N1 � NG.L/ � NG.H/ that NY .H/ D NG.H/ n N1 � Ap.H/ and
FY .H/ D FG.H/.

We first check that z̨ is order-preserving—from < to @.
The argument begins by paralleling the corresponding segment of the proof of

Theorem 3.6. On pairs E < F within FY .H/, for the images we get E @ F , since
@ coincides with < here. On pairs A < B within NY .H/, for the images we get A \
H @ B \H since again @ coincides with< here—and we checked at Lemma 3.3 (1)
that the deflation map preserves <. So, it remains to consider cross-terms—which
by the F -left property (i) in Definition 3.2 must be of the form F < A, where F 2
FY .H/, and A 2 NY .H/ (so A \H > 1). Here, ŒF; A� D 1, which implies that

CA\H .F / D A \H > 1:

When F … F1, this already gives F @A\H for the images under z̨. So, assume F 2
F1: where it remains to show that CA\H .F / — L. (That is, now we must go beyond
the earlier argument in the proof of Theorem 3.6.) Assume by way of contradiction
that CA\H .F / � L—that is, that A \H � L; we will show A 2 N1. We see since
H D LCG.L/ that A \ L D A \H > 1; thus CL.A/ � A \ L contains non-trivial
p-elements, and so, A normalizes the component L by (4.3). Furthermore,

CA.L/ D A \ CG.L/ D .A \H/ \ CG.L/ D .A \ L/ \ CG.L/ � Z.L/;

which is a p0-group by hypothesis—so that CA.L/ D 1, and hence A is faithful on L.
Recall F < A with F 2 F1; so we have completed the requirements for A 2 N1—
contrary toA 2 Y DAp.G/ nN1. This contradiction shows that CA\H .F /—Lwhen
F 2F1; so we conclude in this final case also that z̨.F /DF @A\H D z̨.A/. Thus,
we have shown that z̨ is an order-preserving map.

We will now prove that z̨ is a homotopy equivalence, by applying Quillen’s fiber
Theorem 2.10. This reduces the rest of the proof of Claim 1 to showing for all x 2
zXG.H/ that the preimage

Zx WD z̨
�1. zXG.H/wx/

is contractible. Recall that FY .H/ D FG.H/.
The case x DA 2Ap.H/ is quickly treated: we can just parallel the case “x DA”

in proof of Theorem 3.6. Recall that @ agrees with group-inclusion < inside Ap.H/.
Hence, using the F -left property of @ from the definition in Proposition 4.11, we get
zXG.H/wA D Ap.H/wA D Ap.H/�A; so that

ZA D z̨
�1. zXG.H/wA/ D z̨

�1.Ap.H/�A/ D NY .H/�A:

And now, as in the proof of Theorem 3.6, contractibility follows from the minimum
A.
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This reduces the proof of Claim 1 to contractibility of Z WD Zx D ZF , for the
remaining case x D F 2 FY .H/ D FG.H/.

Recall that the ordering @ agrees with< also on pairs inside FG.H/ and FG.H/ \

Ap.NG.L// D OG.L/ � F1. Here, the parallel with the case “x D F ” in the proof
of Theorem 3.6 will require more substantial adaptations.

For example, here for @, we get the exclusion-modified form

zXG.H/wF D Ap.H/wF [ FG.H/wF

D
®
A 2 NH .CH .F // W 1 < CA.F / .— L when F 2 F1/

¯
[ FG.H/�F :

Hence, for the preimage, we get a correspondingly exclusion-modified form (for
which we choose the numbering (ii) parallel to that in the proof of Theorem 3.6):

(ii) ZDz̨�1. zXG.H/wF /DZN [FG.H/�F , whereZN WD¹B 2NY .CH .F // W

1 < B \ CH .F / .— L when F 2 F1/º.

Thus, for this F , we have ZN � NY .CH .F //—with equality except possibly when
F 2 F1.

As usual, we begin with an easier sub case—namely, F — NG.L/; that is, F …
OG.L/. Then, in particular, F … F1; so for Z in (ii) above, we have that ZN D

NY .CH .F //, i.e., there are no exclusions required. Hence, Z is the analogue, with Y
in the role of “B”, of the preimageZ in the case “xDF ” in the proof of Theorem 3.6.
So, to continue our theme of adapting that proof: for any D 2 Z, we have the same
group-inclusion relations

D � CD.F / � CD.F /F � F:

So here, as there, we will again show via Lemma 2.7 (1) that Z is contractible to ¹F º.
Along the way, we will need to adapt the proof of (a) there—now with Y in the role of
“B”. Again, the right-factor case, where D D E 2 FG.H/�F , is no problem: since
as there, we get that both CE .F / and CE .F /F are equal to E 2 FG.H/�F � Y .
But in the left-factor case, whereD D B 2 NY .CH .F // so that B \ CH .F / > 1, we
do not try to prove hypothesis (i) of Theorem 3.6, with Y in the role of “B”, for a
general F 2 NY .H/: instead, we argue for this particular F—using F — NG.L/—
that we must have CB.F / and CB.F /F in Y for (a). Consider CB.F / first: assume
by way of contradiction that CB.F / 2N1 �NG.L/. Then, we have CB.F /\L > 1;
so we conclude by (4.3) that F � NG.L/—contrary to the choice of F in this case.
This contradiction shows CB.F / 2 Y , as desired. Similarly, assuming CB.F /F 2N1

would give 1 < CB.F /F \ L centralized by F—so that F normalizes L by (4.3),
again contrary to the choice of F . This contradiction givesCB.F /F 2 Y , as desired—
completing the proof of (a). With (a) in hand, steps (b) and (c) go through as in the
proof of Theorem 3.6. This completes the proof of contractibility of the preimage
Z, for this case where F — NG.L/.



Some results on Quillen’s conjecture via equivalent-poset techniques 321

We have now reduced the proof of Claim 1 to contractibility ofZ for F �NG.L/.
For such F , we will show that the preimage Z (where now we might have F 2

F1, so that we could get ZN ¨ NY .CH .F // in (ii)), we will obtain contractibility
via a somewhat more elaborate argument using the general method above, namely,
Lemma 2.7 (1). That is, we will use the zigzag of homotopies abbreviated by the
following longer sequence of group-inclusions (for D 2 Z):

D � .D \ F /.D \H/

� .D \ F /pL.D \H/pCG.L/.D \H/

� .D \ F /pL.CD\H .F //pCG.L/.CD\H .F //

� FpL.CD\H .F //pCG.L/.CD\H .F //

� F:

(4.4)

Here, we use j1; : : : ; j5 to denote the maps where the image of D is given in each
successive line of (4.4), with j0 WD IdZ . Note that these ji are order-preserving, with
<-comparability relations given by j0 � j1 � j2 � j3 � j4 � j5.

Therefore, we have now reduced the proof of Claim 1 to verifying the endomor-
phism requirement for that lemma, namely, that each ji .D/ 2Z. Of course, this holds
already for j0 D IdZ , and the constant map j5 to F 2 Z; so we only need to work
with ji for 1 � i � 4.

Since F 2 OG.L/, so that F acts on L and on CG.L/, we see that if further
ŒF;D� D 1, then also ŒF; pL.D/� D 1 D ŒF; pCG.L/.D/�.

As usual in such zigzags, the right factor forZ in (ii), whereDDE 2FG.H/�F ,
is no problem: for note that E \ F D F and E \H D 1; so we see that j1.E/ D F .
Also, ji .F / D F for all i ; so that for all i � 1, we get ji .E/ D F 2 Z, as desired.

Since we dealt with D D E 2 FG.H/�F just above, we have in fact made yet
another reduction, namely, to D lying in the left-factor for Z in (ii): that is, to D D
B 2 ZN � Z. So, in particular, from (ii) we have for this B the following:

(iii) 1 < B \ CH .F / (— L if F 2 F1).

As in the proof of Theorem 3.6, the first part of (iii) can be viewed in several ways:

(iii0) 1 < B \ CH .F / D CB\H .F / D CB.F / \ CB.H/.

We begin our treatment of such B with the following cases.

Case i D 1. We have j1.B/ D .B \ F /.B \H/ 2 Z.

Proof. We will show .B \ F /.B \H/ 2 ZN —where of course ZN � Z in (ii).
We begin with the case where B \ F D 1. Here, .B \ F /.B \H/ D B \H 2

Ap.H/ � Y ; and we see using (iii/iii0) that 1 < B \ CH .F / D .B \H/ \ CH .F /
(— L when F 2 F1)—so by (ii) we have B \H 2 ZN —as desired.
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We now turn to the case where B \ F > 1. We will show first that .B \ F /.B \
H/ 2 Y , so we assume by way of contradiction that we have .B \ F /.B \ H/ 2
N1. We will prove this leads to B 2 N1. For we observe, using the definition of
.B \F /.B \H/ 2N1, that 1 < C.B\F /.B\H/.F /� CB.F / and 1 < ..B \F /.B \
H// \ L D B \ L (since L � LCG.L/ D H ); and finally, there is E 2 F1 with
E � .B \ F /.B \H/ � B . Thus, we have B 2 N1—contrary to the choice of B 2
Y D Ap.G/ nN1. This contradiction shows that .B \ F /.B \H/ 2 Y .

Using (iii / iii0) as before now gives

1 < B \ CH .F / D .B \H/ \ CH .F / � .B \ F /.B \H/ \ CH .F /

.— L when F … F1/;

so by (ii) we obtain .B \ F /.B \H/ 2 ZN , as desired—completing Case i D 1.

Thus, to complete the proof of the endomorphism requirement, it now remains to
show the following.

Cases i D 2; 3; 4. For 2 � i � 4, we have ji .B/ 2 Z.
Using (iii0) and (4.2), we get a consequence for the H -projection factors in the

ji .B/:

(iv) 1<CB\H .F /�pL.CB\H .F // � pCG.L/.CB\H .F //�pL.B \H/ � pCG.L/

.B \H/.

Initial reduction. The endomorphism result for 2 � i � 4 holds either if F 2 F1, or
B \ CH .F / — L.

Proof. By (iii), the first if-condition F 2 F1 implies the second; so we just assume
B \ CH .F / — L. This assumption shows via (iii0) that CB\H .F / does not lie in the
pL.CB\H .F //-factor in (iv)—so the following hold.

(v) Since B \ CH .F / — L here, we have pCG.L/.CB\H .F // > 1.

In particular, p-overgroups of pCG.L/.CB\H .F // (such as the ji .B/ for i D 2; 3; 4)
are not faithful on L, and so, do not lie in N1—that is, they lie in Y .

To complete the proof that ji .B/ 2 Z, note that by (iv) and (v), for i D 2; 3; 4

there are inclusions:

ji .B/\CH .F /D .pL.CB\H .F //pCG.L/.CB\H .F ///\CH .F /� CB\H .F / > 1I

so that ji .B/ 2 NY .CH .F //, hence ji .B/ 2 ZN � Z by (ii), since we assume B \
CH .F / — L.

By the initial reduction, in the remainder of the proof of Cases i D 2; 3; 4, we have

F 2 OG.L/ n F1—so that ZN D NY .CH .F // in (ii); and 1 < CB\H .F / � L:
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Hence, (iv) simplifies to

1 < CB\H .F /D pL.CB\H .F //D CB\L.F / � L and pCG.L/.CB\H .F //D 1:

(4.5)
We also get the correspondingly simplified expressions

j3.B/ D .B \ F /CB\L.F / and j4.B/ D FCB\L.F /:

At this point, we can use the non-triviality in (4.5) of pL.CB\H .F // (and hence of
pL.B \H/), as we used (v) in the argument on j4.B/ \ CH .F / in the proof of the
Initial Reduction, to conclude that ji .B/ 2 NG.CH .F //.

But this time, it will require some further work below to get ji .B/ 2 Y , which
will complete the proof by giving ji .B/ 2NY .CH .F //D ZN � Z via (ii), since we
are assuming F … F1.

So, we treat the successive cases for ji .B/ 2 Y as follows.

• To see j2.B/D .B \ F /pL.B \H/pCG.L/.B \H/ 2 Y : if pCG.L/.B \H/ >

1, then j2.B/ is not faithful on L, and so, cannot lie in N1—so it lies in Y .
Otherwise, pCG.L/.B \H/D 1, so that B \H D B \LD pL.B \H/. Hence,
j2.B/D .B \F /.B \L/D .B \F /.B \H/. And this equals j1.B/ 2Z using
Case i D 1 (so, in particular, j2.B/ 2 Y ).

• We saw using (4.5) that j3.B/ simplifies to .B \ F /CB\L.F /—which is a sub-
group of LF . Assume by way of contradiction that .B \ F /CB\L.F / 2 N1.
Then, there is some E 2 F1 with E � .B \ F /CB\L.F /; so in particular, LE �
LF . Recall since F 2 OG.L/ n F1 that Op.CG.LF // D 1. So, by Lemma 2.5,
we also get Op.CG.LE// D 1; that is, E … F1—contrary to its choice. This con-
tradiction shows that j3.B/ D .B \ F /CB\L.F / 2 Y .

• To see j4.B/DFpL.CB\H .F // 2 Y : the same proof as just above, with .B \F /
replaced by F , goes through for this case.

This completes the proof that ji .B/ 2 Y for i D 2; 3; 4; and hence (as we had men-
tioned) that ji .B/ 2 NY .CH .F // D ZN � Z.

This in turn completes the proof for all 1 � i � 5 of the endomorphism require-
ment for our zigzag of equivalences in (4.4), establishing contractibility of Z in this
final case where F � NG.L/.

Now, working back through our long sequence of reductions in the proof: this
case for F then completes the proof of contractibility of Z in all cases for F , and
hence in all cases for D 2 Z; and thus also completes the proof that z̨ is a homotopy
equivalence. So, we have finally completed the proof of Claim 1.

Claim 2. zXG.H/ ' zW A
G .L; CG.L//.



K. I. Piterman and S. D. Smith 324

Proof. Our equivalence arises essentially by taking the projection/product maps a,
b of Corollary 4.8, retracting Ap.H/ to its product-subposet that we identify with
Ap.L/�Ap.CG.L//, and extending them via the identity on FG.H/.

We define the forward-map Qa W zXG.H/! zW A
G .L; CG.L// by

Qa.x/ D

´
.pL.A/; pCG.L/.A// x D A 2 Ap.H/;

F x D F 2 FG.H/:

To see that Qa is order-preserving, as usual it suffices to check cross-terms. Assume
F @X A, so that 1 < CA.F / (— L when F 2 F1). Using (4.2), we get

1 < CA.F / � CpL.A/pCG .L/.A/.F /: (4.6)

When F 62 F1, this completes the proof that F @W .pL.A/; pCG.L/.A// for the
images under Qa. So, now assume further that F 2 F1, that is CA.F / — L. Then, also
CpL.A/pCG .L/.A/.F / — L by (4.6), so F @W .pL.A/; pCG.L/.A// for the images.
Hence, Qa is indeed order-preserving.

For the reverse direction, note that zW A
G .L; CG.L// embeds into zXG.H/ via the

map Qb such that Qb.A;C /D AC 2Ap.H/ for all .A;C / 2Ap.L/�Ap.CG.L//, and
QbjFG.H/ D IdFG.H/. To see that Qb is order-preserving, assume F @W .A; C /: then
1 < CAC .F / (— L when F 2 F1). And this is just the definition of @X , in the relation
F @X AC for the images under Qb, as desired.

Finally, note that Qa Qb is the identity on zW A
G .L; CG.L//. Further Qb Qa.A/ D pL.A/

pCG.L/.A/ � A using (4.2), and Qb Qa.F /D F for F 2 FG.H/; so that Qb Qa � Id zXG.H/
.

Then, Qa is a homotopy equivalence with homotopy inverse Qb. This completes the proof
that zXG.H/ ' zW A

G .L; CG.L//, that is, of Claim 2.
In particular, assuming the identification in Corollary 4.8 of the product-subposet

of Ap.H/ with Ap.L/�Ap.CG.L//, we see that our maps retract zXG.H/ to a sub-
poset we may identify with zW A

G .L; CG.L//.

Claim 3. The maps given by the following natural inclusions Qi W zW A
G .L;CG.L// ,!

zW �
G .L; CG.L// and Qj W zW B

G .L; CG.L// ,!
zW �
G .L; CG.L// are homotopy equiva-

lences.

Proof. We proceed by making relevant adjustments to the proof of Theorem 4.10.
We first observe that Qj is a homotopy equivalence, by the argument given in

Case j there: For we want to similarly remove the elements x 2 zW �
G .L; CG.L// n

zW B
G .L; CG.L//; and the subposets zW �

G .L; CG.L//Ax do not contain members of
FG.LCG.L//. Hence, A agrees with � (that is, with >) on that subposet, so the
contractibility argument there using � and > goes through here also.

So, it remains to show that Qi is a homotopy equivalence. We follow the gen-
eral strategy for Case i in the proof of Theorem 4.10. We will again show that for
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x 2 �p.L/ �Ap.CG.L//, the interval zW A
G .L; CG.L//@x is contractible, and so, x

can be homotopically removed from zW �
G .L; CG.L//. Again, such an x has the form

.C; D/, with C 2 �p.L/ n Ap.L/ (so that C is not elementary abelian), and D 2
Ap.CG.L//[ ¹1º. But this time, we must replace (i) there with an exclusion-modified
version for @:

(i0) zW A
G .L; CG.L//@.C;D/ is equal to the union

.Ap.C /�Ap.D//[
®
F 2FG.LCG.L// W 1<CCD.F / .— L when F 2 F1/

¯
:

Again, it will suffice for contractibility in (i0) to homotopically remove the indicated
elements of F 2 FG.LCG.L//@.C;D/, by showing that .Ap.C /�Ap.D//AF is con-
tractible for each such F .

So, assume that F … F1. Then, for this F , the exclusions specified by CCD.F / —
L in (i0) are not required; so .Ap.C /�Ap.D//AF agrees with .Ap.C /�Ap.D//�F

as in (i), and of course @ agrees with � (that is, with <) on this set. So, the argument
for contractibility from the proof of Theorem 4.10, namely, via the equivalence in (ii)
there with Ap.CCD.F // ' �, goes through here also—completing the case F … F1.

Finally, we assume the remaining case where F 2F1. Here, to describe .Ap.C /�
Ap.D//AF , we now do require the exclusions specified in (i0), namely, 1<CCD.F /—
L. In this situation,CCD.F /¤pL.CCD.F //DpC .CCD.F //. Now, since F normal-
izes L and CG.L/, if c 2 C and d 2 D are such that cd 2 CCD.F / then, for f 2 F
we have cd D .cd/f D cf df . This implies c�1cf 2 Z.L/, which is a p0-group. In
particular, cf D .c�1cf /c, that is c, cf commute, and hence c�1cf is a p-element
lying in Z.L/. This shows that cf D c, and thus also df D d , that is, d 2 CD.F /.
From this we conclude pD.CCD.F // � CD.F / and

1 < pCG.L/.CCD.F // D pD.CCD.F // � CD.F /:

These exclusions require a corresponding change to the codomain for the homotopy
equivalence in (ii) of Theorem 4.10. This time, we will get our equivalence with the
exclusion-modified poset given by the difference Ap.CCD.F // nAp.CC .F //. (And
then contractibility of the latter poset will be the corresponding variant below of the
standard contractibility argument for Ap.CCD.F //.)

In particular, for the equivalence we use essentially the adjusted projection/product
maps a, b0 as in the analogous proof in (ii) for Theorem 4.10; the only new feature
is that we must check that their images really do lie in our exclusion-modified sub-
posets. First, take .A;B/ 2 .Ap.C /�Ap.D//AF , so that we have the restriction 1 <
CAB.F / — L; then CAB.F / ¤ pL.CAB.F // D pC .CAB.F //, so that CAB.F / — C .
So, we conclude that b0.A;B/DCAB.F /2Ap.CCD.F // nAp.CC .F //, as required.
Next, consider some E 2 Ap.CCD.F // nAp.CC .F //—here we see using (4.2) that
we get 1 < E � pC .E/pD.E/ D CpC .E/pD.E/.F / — L since E — CC .F /. Hence,
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F @ .pC .E/; pD.E//, so that a.E/ D .pC .E/; pD.E// 2 .Ap.C / �Ap.D//AF ,
as required. We had already checked the usual poset-equivalence properties of the
pair a; b0, so we get the equivalence of .Ap.C / �Ap.D//AF with Ap.CCD.F // n

Ap.CC .F //.
The contractibility of the latter poset Ap.CCD.F // n Ap.CC .F // will follow

using Lemma 2.7 (1) via the standard Quillen conical-contractibility zigzag

E � E ��1Z.CCD.F // � �1Z.CCD.F //;

once we show the endomorphism requirement, namely, that the two right-hand image-
terms in fact lie in the poset Ap.CCD.F // nAp.CC .F //. But

�1Z.CCD.F // � �1Z.CC .F // ��1Z.CD.F //I

so since we saw above that CD.F / > 1, we conclude that the two terms indeed
do not fall into CC .F /, as required. This completes the proof of contractibility of
Ap.CCD.F // nAp.CC .F //, and hence also of .Ap.C /�Ap.D//AF , for F 2 F1.

We have now established the contractibility of .Ap.C /�Ap.D//AF , for all cases
of F . So, we conclude that Ap.C /�Ap.D/ ,! zW

A
G .L;CG.L//@.C;D/ is a homotopy

equivalence.
Thus, zW A

G .L; CG.L//@.C;D/ ' Ap.C / �Ap.D/ ' �, where the contractibility
follows from the standard contractibility of Ap.C /, as in the argument after (i) in the
proof of Theorem 4.10. This contractibility for all .C;D/ in turn completes the proof
that Qi is a homotopy equivalence; and hence completes the proof of Claim 3.

And that in turn completes the proof of Proposition 4.12.

5. Using pre-join replacement-posets for homology propagation

In this section, we will study how to propagate non-zero homology using the more
general context of the pre-join of posets (which might not be Ap-posets), namely,
propagating (essentially) from a pre-join poset X �Y , up to a larger poset W .

In proving our new propagation result Theorem 5.10, we will in effect give a
pre-join generalization of the arguments leading up to the original propagation result
[4, Lemma 0.27] of Aschbacher and Smith (we give a statement of their result as
Lemma 5.11). Note that their overall central product context at [4, Hypothesis 0.15]
is correspondingly generalized at Hypothesis 5.4 below. So after that, we will be pro-
viding various associated definitions, which roughly generalize those starting 0.9 and
especially 0.19 of [4].

First, we recall some standard features of chain complexes and homology for gen-
eral posets. The following constructions work in any commutative ring with unit R,
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but for simplicity we will work withRDQ or Z. We also suppress the notation of the
coefficient ring R, and we implicitly assume that all the computations are always car-
ried out in R. For a finite poset X and n � �1, let Cn.X/ denote the nth chain group
of the augmented chain complex ofX . Recall that Cn.X/ is the freeR-module gener-
ated by the n-chains ofX (these are inclusion-chains of length n—that is, with .nC 1/
members). And Zn.X/ is the group of n-cycles, the kernel of the boundary map.

We emphasize an important notational distinction:

For an abstract X in this section, we write the order-relation as <—used
“unspecifically”,

meaning that in later applications, we will specify <—as either standard group-inclu-
sion <; or else one of our variants from Sections 3 and 4 such as �.

We follow [4, Section 0] in using the following general terminology.

Definition 5.1 (Full and a-initial chains). Let X be a finite poset, and a � X an n-
chain.

(1) For an arbitray element ˛ 2 Cn.X/ we write ˛ D
P
b ˛b � b, where b runs

over the set of all chains n-chains ofX , and ˛b 2R is trivial except for a finite
number of n-chains b. We write a 2 ˛ if and only if ˛a ¤ 0. If ˛ 2 Zn.X/
gives a non-zero cycle in zHn.X/ and a 2 ˛, we say that a (or its right-end
member max.a/) exhibits homology for X .

(2) We say that a is a full chain in X , if for every x 2 X such that a [ ¹xº is a
longer chain, we have x >max.a/; that is, LkX .a/�X>max.a/. (That is, there
is “no room” for extending a either below or within it.)

(3) For a ¤ ;, a chain b 2 sd.X/ containing a is called an a-initial chain if for
every x 2 b n a, we have that x > max.a/ (i.e., b “begins with” a.)

(4) If ˇ 2 Cm.X/ is any chain, then ˇa D
P
bWb is a -initial ˇb � b.

In particular, if a is a full chain, then every chain b containing a is a-initial.
Furthermore, a is a maximal chain in X if it cannot be lengthened, that is,

LkX .a/ D ;:

In particular, a maximal chain is full.

Our further development below will continue the theme around Remark 4.5, of
propagation calculations which exploit a full chain a as in Definition 5.1 (2) above, in
interaction with restrictions arising from .QD/-type conditions.

Next, in the spirit of earlier Hypothesis 4.4, which provided the more general
group-theoretic context for the propagation in Lemma 5.11—we give in Hypothe-
sis 5.4 below a more general poset-context for our new propagation in Theorem 5.10.
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Here is a brief, informal preview. We will propagate up to a poset W as in Theo-
rem 4.10—where this W is the union of a pre-join with a related F -poset, for F in
the spirit of Definition 3.2. Now, the naive analogue of the classical case would begin
propagation just at that pre-join. However, we saw after Remark 4.5 that we wish to
make the non-classical choice ofH WD L rather than LB; so in order to include treat-
ment of the p-outer B in the p-extension LB , we will actually begin propagation at
the union of the pre-join with OLB.L/—which is a subposet of the F -poset in W .
(Indeed, in Hypothesis 5.2 below, we see that OLB.L/ will be the model for the more
abstract “Z” in our upcoming Hypothesis 5.4.)

We now flesh out the above overview more formally.
First, we present our augmented version Hypothesis 5.2 of the earlier component-

Hypothesis 4.2.

Hypothesis 5.2. Assume Hypothesis 4.2 for L, B . Choose K WD CG.LB/ as in the
classical case.

But now take H WD L only (even though we will sometimes have B > 1). Recall
from Lemma 4.3 that we still get Hypothesis 4.4—so that we can apply the later
results from Section 4. In particular, we can choose our replacement-poset as in The-
orem 4.10 as follows:

W WD W B
G .H;K/ D Bp.H/�Ap.K/ [ FG.HK/ D X �Y [ FG.HK/;

where we have used the abbreviations X WD Bp.H/ D Bp.L/ and Y WD Ap.K/ D

Ap.CG.LB//. Finally, set Z WD OLB.L/.
Here, we specify the abstract order-relation “<” as the relation � in the definition

of W .

Next—mimicking the sequence after earlier Hypothesis 4.2, and again postponing
briefly the proof—we see in part (b) of Lemma 5.3 below that the above hypothesis
is a case of a somewhat more general poset-Hypothesis 5.4, which is what is actually
assumed in our new propagation result Theorem 5.10. We also add a further part
(a)—which we use in later Corollary 5.12, in checking that Lemma 5.11 (i.e., our
quoted statement of “old” [4, Lemma 0.27]) is in fact a particular case of our new-
Theorem 5.10.

Lemma 5.3. Assume that we have either

(a) Hypothesis 4.4 for H , K—with X WD Ap.H/, Y WD Ap.K/, Z WD ;, and
with W given by Ap.G/ under group-inclusion <, or

(b) Hypothesis 5.2 for L;B (including the definitions of H , K, X , Y , Z, and W
under �).

Then, we also get Hypothesis 5.4 below for X , Y , Z, W .
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Hypothesis 5.4 (The poset-context (Zleft)). For our new propagation results, we will
work in the following poset-context; with the order-relation denoted unspecifically by
<.

(Zleft) (i) we have posets X , Y , Z (disjoint) and W , with .X �Y /[Z � W ,

(ii) if .x; y/ 2 X �Y and z 2 Z are comparable in W , then z < .x; y/,

(iii) if .x; y/ 2 X �Y with y ¤ 1, then Z � W<.x;y/.

We identify X and Y as subposets of W via X � 1 and 1 � Y , respectively.

For propagation in the context of the (Zleft)-Hypothesis 5.4, we will be showing
how to construct homology cycles for W , from homology cycles of X [ Z and Y .
But first, let us see the following proof which we had postponed.

Proof of Lemma 5.3. First, consider the posets X , Y , Z, W chosen in part (a) of the
lemma. Here, we have X � Y D Ap.H/ �Ap.K/, which as in Corollary 4.8 can be
identified with the subposet of Ap.HK/ whose elements are of form C �D, where
.C;D/ 2 Ap.H/�Ap.K/; these Ap-posets are disjoint, since H \K is a p0-group
by Hypothesis 4.4. And since here we also haveZ D ;, we now easily get the desired
containment for (i) of (Zleft):

X �Y [Z D X �Y D Ap.H/�Ap.K/ � Ap.HK/ � Ap.G/ D W;

as chosen in (a). And again, using Z D ;, we get conditions (ii) and (iii) vacuously.
This completes (a).

We turn to the posets X , Y , Z, W chosen in (b), i.e., in Hypothesis 5.2—where
we recall H D L and K D CG.LB/. Here, we observe that

Z D OLB.L/ � FG.LCG.LB// D FG.HK/

since, given a member C 2 OLB.L/, we have C \ LCG.LB/ � C \ LCG.L/ D 1.
Further X , Y , Z are disjoint—since we have H \ K a p0-group just as in part (a);
while members of FG.HK/ have trivial intersection with HK. Hence, X �Y [Z �
X �Y [FG.HK/DW , as chosen in Hypothesis 5.2, giving (i). Now, just as we had
emphasized in Remark 3.5 on the earlier XG-construction, the order-relation � in the
construction of our present choice of

W D W B
G .H;K/ D Bp.H/�Ap.K/ [ FG.HK/

shows that elements z 2 Z � FG.HK/ can only appear below elements of Bp.H/�

Ap.K/DX �Y—giving (ii). Finally, the p-outerB 2ZDOLB.L/�LB commutes
with all of the members of Ap.CG.LB// D Y ; so we see that for any .C; D/ with
D > 1 as assumed in (iii), we in fact get 1 < D D CD.B/ � CCD.B/—so that B �
.C;D/ in the ordering on W , as desired.
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We mention that conditions (ii) and (iii) for Z, in the poset-context in our (Zleft)-
Hypothesis 5.4 above, will tie in with our various F -left conditions in Sections 3
and 4; and hence with the left-focusing theme of earlier Remark 3.5. This is of course
the reason for the nickname “(Zleft)”. To continue with that viewpoint.

Remark 5.5 (Simplex format under Hypothesis 5.2, for boundary calculations under
(Zleft)). We are now in a position to expand on our earlier preview of left-focused
format in Remark 3.5; here is a brief (and still somewhat informal) overview of cor-
responding aspects in the upcoming arguments.

We will mainly describe applications of propagation based onLB under Hypothe-
sis 5.2; and we had mentioned in introducing hypothesis that we expect B > 1. How-
ever, we will essentially avoid dealing with the full poset of elementary subgroups
Ap.LB/ of LB—by working instead with the smaller poset Bp.L/ [ OLB.L/ D
X [ Z; here we are using the language of the (Zleft)-Hypothesis 5.4, as we may by
Lemma 5.3. For this smaller poset, we will have a suitable maximal-dimension homol-
ogy condition analogous to .QD/p; cf. Theorem 6.6. As usual, we then study a chain
a—involved in a non-zero cycle ˛ in that appropriate maximal dimension. Recall that
by definition of the ordering in W B

G .L; CG.LB// D W , we get the format:

(i) A chain a of X [Z has the format a D .B1 < � � � < Br � A1 < � � � < As/,

where Bi 2 OLB.L/ D Z and Aj 2 Bp.L/ D X . In particular, the p-outer terms Bi
all appear at the left end of the sequence (prior to the occurrence of the order-relation
�, which may differ from group-inclusion <).

Next, just as in the classical case in earlier Remark 4.5, we must in fact con-
sider products, namely, of ˛, with ˇ arising from Y DAp.CG.LB//; see Lemma 5.9
below for the appropriate generalization T�.˛ ˝ ˇ/ of the classical shuffle product.
We will wish to apply propagation to these products, to see they remain non-zero in
the homology of W , hence establishing (H-QC).

Note that these usual ˛ and ˇ appear in hypotheses (1), (2) (a), and (3) of our
new propagation result Theorem 5.10. So, in order to apply that propagation, results
assuming Hypothesis 5.2 will mainly focus on establishing the other hypothesis (2) (b);
note that this is the relevant analogue of (i0) and (ii0), in the interaction-viewpoint of
Remark 4.5. The condition in (2) (b) primarily involves eliminating the possibility of
any member of FG.LCG.LB// lying in LkM .a/ there; note that this analysis takes
place in the left-hand part of (i) above—before A1, hence in the vicinity of the Bi .
After that, it remains to similarly eliminate members of .Bp.L/�Ap.CG.LB///<As

,
and establish the precise structure in (2) (b) for members above As . Note that this
latter analysis instead takes place in the right-hand part of (i) above—first before or
among the Aj , and then after As . These remarks illustrate the “visual” convenience
(mentioned earlier in the paper) of the format in (i), arising from the definition of the
ordering.
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Now, the argument so far has basically reduced LkW .a/ to members ofX �Y hav-
ing the special form given in (2) (b). Applying the propagation result, Theorem 5.10
will show in effect that these members are not an obstruction to propagation—by
reducing to a boundary calculation just in Y . We had made a similar in-effect com-
ment at Remark 4.5, in describing 0.27 of [4] (i.e., our quoted result Lemma 5.11);
and indeed the new propagation proof below is essentially a pre-join version of that
earlier proof.

Now, we begin the details for our pre-join variant of homology propagation.
The next few pages, through Lemma 5.9, require the (Zleft)-Hypothesis 5.4 only

for X , Y , Z; we will not involve W until Theorem 5.10. More precisely, recall that
we regard X and Y as subposets of W , via X � 1 and 1 � Y , respectively. So, before
propagating to W , we will first in Lemma 5.9 below construct product-homology
cycles for .X �Y / [Z, from homology cycles of X [Z and Y .

We begin by introducing some notions which will allow us to generalize the clas-
sical shuffle product; recall that definition was given at [4, p. 483], and later extended
in [16, Section 3].

Let a be a chain ofX [Z. Then, aD aZ [ aX , where aZ D a\Z, aX D a\X .
Note by condition (Zleft) (ii) that for all z 2 aZ , and x 2 aX , we get z < .x; 1/,
where of course we have identified .x; 1/ in the pre-join X � Y with x 2 X . That is,
(Zleft) (ii) in particular, essentially reproduces the F -left property in the poset W of
Hypothesis 5.2, so we still have the simplex format of Remark 5.5 (i):

(i0) A chain a of X [ Z has the form a D aZ [ aX D .z1 < � � � < zr < x1 <

� � � < xs/,

where zi 2 Z and xj 2 X .

Definition 5.6 (The notation aX � b, and classical shuffles). Now, take a chain b � Y .
Following [4, Definition 0.19], we write

aX � b WD the chain “aX < b”; obtained by placing aX to the left end of b:

More formally, aX � b must be a <-chain in the pre-join X � Y ; so our discussion
here is a variant of that in [4], which takes place instead in the context of Ap.HK/.
Namely, we first “naively” regard aX � b just as a sequence, from the set X [ Y—
and then we specify the requirements for the needed poset-relations, in terms of the
Cartesian product coordinates of the pre-join X � Y . Note that the chain aX � b is
aX -initial, in the sense of Definition 5.1 (3).

As a simple example: suppose we have a D .z1 < z2 < x1 < x2/ and b D .y1 <
y2/; then from the naive-sequence .x1; x2; y1; y2/, we get the <-chain

aX � b D ..x1; 1/ < .x2; 1/ < .x2; y1/ < .x2; y2//
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in the pre-join. In particular, the terms yi 2 b in the sequence for aX � b are appearing
in the pre-join element aX � b—but not in the form .1; yi / (from our standard identi-
fication of Y with a subset of the pre-join)—they appear instead in the two right-hand
terms, in the form needed for the poset-relations in the pre-join.

This sequence-viewpoint also makes it easier to discuss the classical shuffle prod-
uct.

Recall, essentially as in [4, p. 483], that a shuffle is a set-permutation � of the
sequence for aX � b, whose image preserves the original order within the two sub-
sets aX and b. Thus, it can “shuffle” members of b to the left, among those of
aX (and, in particular, the result need not be aX -initial). For instance, if we apply
the shuffle � D .13/.24/ to the sequence for aX � b in the example above, we get
the shuffled sequence .y1; y2; x1; x2/—resulting in the pre-join element given by
..1; y1/ < .1; y2/ < .x1; y2/ < .x2; y2//.

We will write .aX � b/� for the pre-join element corresponding to the shuffled-
sequence �.aX � b/; and then the classical shuffle product of aX and b is defined as
the alternating sum of those elements

aX � b WD
X
�

.�1/� .aX � b/� ;

where � runs through all the shuffle permutations.

We now examine a special feature of the shuffling process above—making crucial
use of our Z-left Hypothesis 5.4. Consider some member .x; y/ of .aX � b/ for some
� . First, if y D 1, then x 2 aX (with no member of b shuffled before it); and we
see using (Zleft) (ii) (compare (i0) above) that each z 2 aZ has z < .x; 1/ D .x; y/.
Otherwise, y > 1, and here by (Zleft) (iii), we see that each z 2 aZ has z < .x; y/.
Thus, we obtain the fundamental property

Every element of aZ is <-below every element of .aX � b/� :

Therefore, we can write aZ [ .aX � b/� , for the unique <-chain obtained by adding
the elements of aZ to the bottom of the chain .aX � b/� . (This ability to add-before
illustrates another visually natural feature of the format in (i0) above.) We can extend
this notation by linearity and define the operation

.a; b/ 7!
X
�

.�1/� .aZ [ .aX � b/� / DW aZ [ .aX � b/:

We emphasize a notational point here: our definition above is on pairs .a; b/ of chains
taken from .X [ Z/ and Y ; we are not claiming there is any subposet of form .X [

Z/ � Y—the important point here is that the image of our map is in fact a chain, in
the target-poset .X �Y / [Z.
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Definition 5.7. Let a, b be chains in X [ Z and Y as above, under the (Zleft)-
Hypothesis 5.4 for X , Y , Z. Then, the initial shuffle product T of a and b (i.e., of
the pair .a; b/ in sd.X [Z/ � sd.Y /) is

T .a; b/ WD aZ [ .aX � b/:

In Lemma 5.9, we record pre-join versions of the basic facts (cf. [4, pp. 484–
485]) about the classical shuffle product—for use with our generalized version of the
product in Definition 5.7.

To this end, we first introduce the following useful notation: if a denotes a chain
of a poset X , which we write as a sequence a D .x0 < � � � < xr/, then for 0 � i � r ,
we set

@i .a/ WD a n ¹xiº D .x0 < � � � < bxi < � � � < xr/:
We let jaj D r C 1 denote the size of a as a set; recall that this a has length r as a
poset-chain—and defines an r-chain in the chain complex C�.X/.

We will also use the following straightforward extension to complexes of the
notion of full chain in earlier Definition 5.1 (2).

Definition 5.8. LetX be a finite poset. For a subcomplexM �K.X/, and a chain a2
sd.X/ such that a 2M , we say a is a full chain inM if LkM .a/ �K.X>max.a//.

We now recollect the basic facts needed for our generalization to the initial shuffle
product.

Lemma 5.9. Let X , Y , Z be as in the (Zleft)-Hypothesis 5.4, and let a, b denote
chains of X [Z and Y , respectively. Write aZ WD a \Z and aX WD a \X .

(1) If aZ D ;, then T .a; b/ D a � b is the classical shuffle product.

(2) T extends by linearity to a map of chain complexes

T� W Cm.X [Z/˝ Cn.Y /! CmCnC1..X �Y / [Z/:

(3) In particular, if ˛ is a cycle of X [Z, and ˇ is a cycle of Y , then T�.˛ ˝ ˇ/
is a cycle of .X �Y / [Z.

(4) The a-initial part of T .a; b/ is T .a; b/a D aZ [ .aX � b/. (Recall Defini-
tion 5.6 for �.)

(5) If V is a finite poset, and c is a full chain of a subcomplex M � K.V /, then
when 
 2 Ct .M/ for some t , we have .@
/c D .@.
c//c .

Proof. Item (1) is clear from the definition of the initial shuffle product T .
We next show item (2). We need to prove that T� commutes with the boundary

operator; that is, that T�.@.a ˝ b// D @.T�.a ˝ b//, for every m-chain a of X [ Z,
and n-chain b of Y .
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We first compute T�.@.a˝ b//. Using the graded Leibniz derivation rule, we get

@.a˝ b/ D .@a/˝ b C .�1/ma˝ .@b/:

Decomposing .@a/˝ b into its Z- and X -sums, we get

T�.@.a˝ b// D T�

 
jaZ j�1X
iD0

.�1/i@i .aZ [ aX /˝ b

C

mX
iDjaZ j

.�1/i@i .aZ [ aX /˝ b C .�1/
ma˝ .@b/

!
:

Moving T� inside the sums by linearity and re-indexing the second for the aX -ordering
we have

D

jaZ j�1X
iD0

.�1/iT�..@i .aZ/ [ aX /˝ b/

C .�1/jaZ j

m�jaZ jX
iD0

.�1/iT�..aZ [ @i .aX //˝ b/

C .�1/mT�..aZ [ aX /˝ .@b//:

Recall from Definition 5.7 that we defined T� on pairs .a; b/ of chains from X [ Z

and Y ; so identifying a ˝ b with the pair .a; b/, and applying that definition (which
has the effect of shifting relevant parentheses), we have

D

jaZ j�1X
iD0

.�1/i .@i .aZ/ [ .aX � b//C .�1/
jaZ j

m�jaZ jX
iD0

.�1/i .aZ [ .@i .aX / � b//

C .�1/m.aZ [ .aX � .@b///:

Now, combining the last two summands, while extracting the common factor aZ ,
yields

D

jaZ j�1X
iD0

.�1/i .@i .aZ/ [ .aX � b//

C .�1/jaZ jaZ [

 
m�jaZ jX
iD0

.�1/i .@i .aX / � b/C .�1/
m�jaZ j.aX � .@b//

!

D

jaZ j�1X
iD0

.�1/i .@i .aZ/ [ .aX � b//C .�1/
jaZ jaZ [ .@.aX � b//I
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where the last equality holds by the classical shuffle product

@.a � ˇ/ D @.a/ � ˇ C .�1/jaja � @.ˇ/:

See [6, Theorem 5.2].
The above expression for T�.@.a˝ b// will now turn out to be equal to our com-

putation below of @.T�.a˝ b//:

@.T�.a˝ b// D @.aZ [ .aX � b//

D

jaZ j�1X
iD0

.�1/i .@i .aZ/ [ .aX � b//

C

X
�

.�1/�
mCnC1X
iDjaZ j

.�1/i@i .aZ [ .aX � b/� /:

In view of the expression obtained above for T�.@.a˝ b//, it remains to show that the
sum over � in the second line of the previous equation coincides with .�1/jaZ jaZ [

.@.aX � b//. We have

X
�

.�1/�
mCnC1X
iDjaZ j

.�1/i@i .aZ [ .aX � b/� /

D .�1/jaZ j
X
�

.�1/�
m�jaZ jCnC1X

iD0

.�1/iaZ [ @i ..aX � b/� /

D .�1/jaZ jaZ [

 X
�

.�1/�
m�jaZ jCnC1X

iD0

.�1/i .@i .aX � b/� /

!
D .�1/jaZ jaZ [ .@.aX � b//:

This is exactly the expression that we obtained above for T�.@.a ˝ b//, completing
the proof of item (2). Note also that item (3) follows from item (2).

Item (4) follows from the same property of the classical shuffle product since

T .a; b/a D .aZ [ .aX � b//a D aZ [ .aX � b/aX
D aZ [ .aX � b/:

Item (5) holds in the context of general posets; cf. [4, Lemma 0.24].

Now, we will state and prove our pre-join version of the homology propagation
lemma [4, Lemma 0.27] (for comparison, we will state that earlier result afterward,
as Lemma 5.11).
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Theorem 5.10. Let X , Y , Z, W be as in the (Zleft)-Hypothesis 5.4. Assume M is
some intermediate simplicial complex, namely, one satisfying

K..X �Y / [Z/ �M �K.W /:

Suppose that we further have the following.

(1) A non-zero homology cycle ˛ 2 Zm.X [Z/, m � 0.

(2) A chain a 2 ˛ that the following hold:

(a) the coefficient q of a in ˛ is invertible,

(b) LkM .a/�K.¹max.a/º � Y /. In particular, a is a maximal chain ofX [
Z.

(3) A non-zero homology cycle ˇ 2 Zn.Y /, n � �1.

Then, T�.˛ ˝ ˇ/ defines a non-zero homology cycle in ZmCnC1.M/.

Proof. We mimic the proof of [4, Lemma 0.27]—i.e., our quoted result Lemma 5.11
below. Compare also with the proof of [16, Lemma 3.14], quoted as Lemma 5.14.

By Lemma 5.9 (3), T�.˛ ˝ ˇ/ is a cycle of .X �Y /[Z. So, since K..X �Y /[

Z/�M by hypothesis (which implicitly involves the containment .X �Y /[Z �W
in (Zleft) (i)), it follows that T�.˛ ˝ ˇ/ is also a cycle of M . Suppose by way of
contradiction that it is in fact a boundary

T�.˛ ˝ ˇ/ D @.
/ (5.1)

for some 
 2 CmCnC2.M/. Note that hypothesis (2) (b) implies that a is a full chain
of M . Then, we may apply Lemma 5.9 (5) to get

.@.
a//a D .@.
//a D T�.˛ ˝ ˇ/a D q.aZ [ .aX � ˇ//; (5.2)

where the second equality follows using (5.1), and the third using Lemma 5.9 (4).
We describe the chains involved in 
a; these must involve elements of LkM .a/.

We saw via our format-discussion—at (i0) after Remark 5.5—that we may write a D
aZ [ aX , where aX has the form ..xrC1; 1/ < � � � < .xm; 1// (with all members of aZ
below min.aX /D .xrC1;1/). Let c 2 
a be a-initial, and pick an elementw 2 c n a. By
the description of LkM .a/ in hypothesis (2) (b), it follows thatw >max.a/D .xm; 1/;
so w D .xm; y/ for some element y 2 Y—by the definition of the ordering in the pre-
join. Hence, we see c D aZ [ .aX � Oc/, where Oc D ¹y 2 Y W .xm; y/ 2 cº. Note that
Oc is a non-empty chain in Y since jcj D mC nC 2 > m D jaj. If we write


a D
X
i2I

qici D
X
i2I

qi .aZ [ .aX � Oci //;
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then working at the i th term, we have

@.aX � Oci / D
X
j

.�1/j @j .aX � Oci /I

and so, since the a-initial part of the boundary only removes members of the chain Oci ,
we see that

@.aX � Oci /a D
X

j>jaX j

.�1/j @j .aX � Oci / D .aX � .�1/
m@. Oci //:

Thus, we obtain

.@.
a//a D
X
i

qi .@.aZ [ .aX � Oci ///a D
X
i

qi .aZ [ .aX � .�1/
m@. Oci ///

D aZ [
�
aX � .�1/

m@
�X
i

qi Oci

��
: (5.3)

Equating the final values for .@.
a//a in (5.2) and (5.3), we get

q.aZ [ .aX � ˇ// D aZ [
�
aX � .�1/

m@
�X
i

qi Oci

��
;

and this holds if and only if

qˇ D @
�
.�1/m

X
i

qi Oci

�
:

But then, ˇ D @.q�1.�1/m
P
i qi Oci / is zero in the homology zHn.Y /, contrary to

hypothesis (3). This contradiction completes the proof.

As a natural first application, we will deduce the original propagation result [4,
Lemma 0.27] from Theorem 5.10. For reference, we first provide a statement of that
earlier result.

Lemma 5.11 (Original homology propagation, [4, Lemma 0.27]). Assume the p0-
central product Hypothesis 4.4 for H;K � G; and that the following further condi-
tions hold:

(i) for some A exhibiting .QD/p for H , Ap.G/>A � A �K,

(ii) zH�.Ap.K/;Q/ ¤ 0.

Then, also zH�.Ap.G/;Q/ ¤ 0.

Corollary 5.12. [4, Lemma 0.27] (i.e., Lemma 5.11) is a particular case of Theo-
rem 5.10.
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Proof. LetA,H ,K,G be as in the hypotheses of [4, Lemma 0.27]—i.e., Lemma 5.11
above. We saw in Lemma 5.3 (a) that we get the (Zleft) Hypothesis 5.4, when we
make the indicated choices X D Ap.H/, Y D Ap.K/, Z D ;, and W D Ap.G/

under group-inclusion <.

We now check the conditions required for our new propagation Theorem 5.10,
for the further choice M D W D Ap.G/. By hypothesis (i) of Lemma 5.11, H has
.QD/p exhibited by A; giving a non-zero homology cycle ˛ 2 Zmp.H/�1.Ap.H//

and a chain a 2 ˛ such that max.a/ D A—yielding condition (1) for Theorem 5.10.
Moreover, since in [4] the authors work with rational homology, we immediately get
invertibility for the coefficient q of a in ˛—giving condition (2) (a). The latter part of
hypothesis (i) also gives

Ap.G/>max.a/ D Ap.G/>A � ¹Aº �Ap.K/:

And since A has maximal rank in Ap.H/, we have

LkAp.G/.a/ � Ap.G/>AI

and this with the previous inclusion completes condition (2) (b). Finally, condition (3)
holds since zH�.Ap.K// ¤ 0 by hypothesis (ii).

Since all the conditions for Theorem 5.10 hold, we conclude that

zH�.Ap.G// D zH�.M/ ¤ 0:

Remark 5.13. We can alternatively prove the above corollary by invoking Theo-
rem 5.10, with the same posets X D Ap.H/, Y D Ap.K/, Z D ;, but by taking
M DW to be the Thévenaz poset yXG.HK/ of Proposition 3.9 (with its order-relation
�)—of course we saw there that this poset is homotopy equivalent to Ap.G/.

We mention that for the purposes of this paper, the main applications of Theo-
rem 5.10 will come in the proof of Theorem 6.4—more precisely, in the proofs of
Lemmas 6.7 and 6.8, covering the two parts of that theorem.

We close the section by giving a statement below the extended propagation result
[16, Lemma 3.14]; which we will use several times later—but which does not follow
from Theorem 5.10 above. (However, note the similarity of conditions (iv) + (ii) in
the lemma with condition (2) (b) in the theorem.)

The lemma holds for homology with coefficients in any commutative ring R with
unit. For the purposes of this article, we can suppose that R D Q or Z.

Lemma 5.14 ([16, Lemma 3.14]). Assume that Hypothesis 4.4 for H;K � G have

(i) ŒH;K� D 1, and H \K is a p0-group.
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Further, assume there is X � Ap.G/ with the following.

(ii) NG.K/ � X .

(iii) There exist a chain a 2 sd.Ap.H//\ sd.X/ and a cycle ˛ 2 Cm.Ap.H//\
Cm.X/ such that the coefficient of a in ˛ is invertible, and ˛ is non-zero in
zHm.Ap.H// (for some m � �1).

(iv) In addition, a is a full chain in X , and also X>max.a/ � NG.K/.

(v) zH�.Ap.K// ¤ 0.

Then, zH�.X/ ¤ 0.

6. Eliminating many simple components of Lie type in the same
characteristic p

When we prove later Theorem 9.2 (i.e., our extension of the Aschbacher–Smith main
theorem stated earlier as Theorem 1.1), we will see toward the end of that proof that
in the case p D 3 (cf. Remark 9.3), the argument for [4, Theorem 5.3] breaks down
for components L given by the simple Ree groups in characteristic 3. We will want to
avoid this problem by establishing an elimination result: to guarantee (earlier in the
overall proof) that such a component could not arise in our counterexample.

In fact, it turns out to be no more difficult, in our results Theorems 6.4 and 6.5
below, to eliminate a wide array of simple Lie-type components L in the “same”
characteristic p (i.e., the p for which we study (H-QC)), subject to a restriction on
the p-outers OG.L/ arising inG. This class of possible components is significant: for
example, these same-characteristic groups give the main family (1) of obstructions in
the Aschbacher–Smith .QD/p-List (which we have quoted as Theorem 2.16).

To treat these cases, we will use propagation techniques applied to some of the
replacement-posets we studied in the previous section. We will show in Theorem 6.4
that if the p-outers of a simple component L of Lie type in characteristic p are of
“field” typeˆ (in the sense of Definition 6.3 below), then (H-QC) holds for our group
G—under suitable inductive hypotheses (notably (H1)) on CG.L/.

It will be convenient to abbreviate our overall generic-context hypothesis with the
following name.

Definition 6.1. We say that a group L is of type (sLie-p), if it is of Lie type in char-
acteristic p, and is simple.

We expand on several technical issues, which may not be obvious, related to this
definition.

(1) Our choice of L simple—rather than just quasisimple (e.g., for a compo-
nent)—is primarily for convenience. In fact, our arguments will typically apply to L
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quasisimple of Lie type15, and indeed we hope, in a future version, to adjust this sec-
tion to proceed under that more general quasisimple hypothesis (qLie-p). For now, we
assume L is simple, and this guarantees, for example, that L is adjoint (cf. [12, The-
orems 2.2.6 and 2.2.7]).

(2) Of course, those adjoint Lie type groups are almost always automatically
simple, and those simple L in (sLie-p) correspondingly provide our generic case.
But we also need to indicate the status, for our arguments, of the few non-generic
simple groups not satisfying (sLie-p): these arise from the four non-solvable mem-
bers of the set called Lieexc in [12, Definition 2.2.8]; namely, the Lie-type groups
LC D B2.2/;

2F4.2/;G2.2/;
2G2.3/. For these, it is the commutator subgroup .LC/0

(of index p D 2; 2; 2; 3) which is the actual simple group. These simple commu-
tators .LC/0 are considered (more or less honorarily) to be of Lie type—for the
purposes of stating the CFSG. However, they are not themselves of Lie type, in the
strict sense of satisfying the Lie theory (though the overgroup LC does). As a result,
these four commutator subgroups—namely, Sp4.2/

0 Š Alt6, 2F4.2/0 (the Tits group),
G2.2/

0 Š U3.3/, and the smallest Ree group 2G2.3/0 Š L2.23/—do not satisfy (sLie-
p) for the relevant primes p D 2; 2; 2; 3. Hence, they must be excluded, when we
apply results depending on the full Lie theory—notably our generic analysis of outer
automorphisms in the set ˆ mentioned earlier, as in Theorem 6.4. However, we are
still able to treat these four non-generic cases via other arguments, particularly under
the inductive hypothesis (H1)—as we will see in Theorem 6.5 below. Of course, we
will need to make a specific mention of this exceptional situation later, when any of
these non-generic cases arises.

Thus, (sLie-p) gives the main hypothesis for our generic-case Theorem 6.4 below.
Furthermore, now assuming characteristic-p in (sLie-p), we can also provide

some initial motivation for another main hypothesis used in part (2) of Theorem 6.4,
namely,

(p-cyclic) The members of OG.L/ are cyclic.

That is, the p-outers arising inG should be of order exactly p. This means that OG.L/
will be a poset of dimension 0, which will be important for our applications.

We can begin the motivation for frequently expecting (p-cyclic) by using just the
overview description of Out.L/ in earlier Remark 2.6. Observe first the following.

Under (sLie-p), we have p D r (namely, the characteristic prime “r” for L).

15But note that we avoid the further generalization to just quasisimple with L=Z.L/ of Lie
type: for then we might get an “exceptional” Schur multiplier term (cf. [12, Table 6.1.3]) in
Z.L/, which would prevent us from applying the Lie theory to L itself.
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And then since p cannot divide the order pa � 1 of the multiplicative group of the
field Fpa in the description of diagonal automorphisms in (d) there, we further see the
following.

(i) Outdiag.L/ is a p0-group.

It follows from (i) that each member of OG.L/ maps faithfully into the quotient

Out.L/� WD Out.L/=Outdiag.L/:

We observe next that each Outdiag.L/-conjugacy class falls into a single coset of
Outdiag.L/—which might contain several such classes. So, to investigate the behav-
ior of some particular individual p-outer B 2 OG.L/, i.e., defined at the group-
element level in Aut.L/, we can view B up to such conjugacy via its image B� in
Out.L/�, i.e., at the level of quotients modulo inner-diagonal elements. In summary:

(ii) Study p-outers via their faithful images in OG.L/� � Ap.Out.L/�/.

Now, we move on to a description of Out.L/ more detailed than in Remark 2.6.
Caution: We now temporarily—up to the end of Remark 6.2—suspend our assump-

tion that p D r (which came from (sLie-p)); that is, this more-detailed description
holds for simple L of Lie type of general characteristic r , independent of our special
prime p for (H-QC).

The above quotient Out.L/� can be described via a standard normal series for
Aut.L/, which more generally gives a natural viewpoint on the idfg-representation
of automorphisms that we quoted in Remark 2.6. One form of the series appears in (7-
1) of [11, Part I], but we will use the more extensive treatment in [12, Section 2.5]. By
Theorem 2.5.12 (b) there, Out.L/ is a split extension of Outdiag.L/16 by the product

Out.L/� D ˆL�L with ˆL cyclic and normalI (6.1)

where ˆL and �L are given in parts (a) (b), and (c) of Definition 2.5.10 there—for
present purposes, we’ll just informally single out a few overview features.

First, elements of �L require elements of the group� of symmetries of the Dynkin
diagram—and we listed the possible Dynkin diagrams for L with � > 1, in (i) of
Remark 2.6. Second, the normal subgroup ˆL is the image of the natural field auto-
morphisms of an overlying algebraic group xL: arising (cf. [12, Definition 1.15.5 (a)])
from powers of the generator x 7! xr of the Galois group of the algebraic closure Fr
of the characteristic r of the field Fq of definition of L. This, in particular, shows that
ˆL is cyclic.

Furthermore, the case of � > 1 for ˆL�L splits into cyclic and “nearly cyclic”
subcases below.

16We mention also that Outdiag.L/ is cyclic—except when LŠDn.q/ with n � 4 even and
q odd, where Outdiag.L/ D C2 � C2.
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Remark 6.2 (The cases for ˆL�L). From [12, Theorem 2.5.12 (f),(e)], we get the
following possibilities for the product Out.L/� D ˆL�L in (6.1).

(0) For twistedL, or untwistedLwith diagram having�D1: �LD1; soˆL�LD
ˆL is cyclic.
Otherwise,L is untwisted with diagram having�>1 and the possibilities are:

(1) For untwisted L of type B2, F4, G2 with r D 2; 2; 3: ˆL�L is cyclic, and
ˆL�L=ˆL Š � Š C2.

(2) For untwisted types A�2, D�4, E6: ˆL�L D ˆL � �L, and �L Š � Š C2,
or Sym3 for D4.

Now, as case (0) above suggests, we will often have the condition OutG.L/� �
ˆL; indeed, under (sLie-p) where p D r , we will usually get the following stronger
condition for p-outers:

(p-ˆ) OG.L/� � Ap.ˆL/.

Note that (p-ˆ) implies (p-cyclic) since ˆL is cyclic in (6.1).
Furthermore, the definition ofˆL via powers of x 7! xr suggests that its members

exhibit “field-like enough” behavior for our purposes in this section. (Of course, under
(sLie-p) we will have p D r .) Consequently, we have the following definition.

Definition 6.3. Assume that L has type (sLie-p), and that L � G for some group G.
We say that a p-outer B 2 OG.L/ of order p is of type ˆ if B� � ˆL. Write OˆG.L/
for the subposet of OG.L/ whose elements are of type ˆ:

OˆG.L/ D ¹B 2 OG.L/ W jBj D p and B� � ˆLº:

Note that OˆG.L/ is a discrete poset of cyclic p-outers (no proper <-relations).

In the following technical result, the two cases corresponding to Remark 3.10 will
proceed under somewhat different hypotheses, for reasons to be indicated later.

So, we state our generic theorem below. We work with rational homology. We will
prove the following.

Theorem 6.4 (Generic Lie-eliminations under (sLie-p)). Assume p is a prime, and
G a finite group satisfying the following:

(sLie-p) G has a component L of type (sLie-p).
Assume further that one of the following conditions holds.

(allC+H) For all B 2 OG.L/, Op.CG.LB// > 1, and CG.L/ satisfies (H-QC).

(someNC+ˆ) For some B0 2 OˆG.L/, zH�.Ap.CG.LB0/// ¤ 0, and (p-cyclic)
holds for L.

Then, G satisfies (H-QC).
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In particular, if G satisfies (H1), and also contains a component L of type (sLie-
p) with (p-ˆ) (that is, OG.L/� �Ap.ˆL/), thenG satisfies (H-QC). Notice that any
L of Lie-rank 1 has (p-ˆ) by Remark 6.2 (0).

Furthermore, the above statement holds if “(H1)” is replaced by “(H1u) + (p
odd)”.

We will postpone the proof of Theorem 6.4—while we first discuss two aspects
of its hypotheses.

First aspect. The further hypotheses (allC+H) and (someNC+ˆ) of Theorem 6.4 are
of course extensions of the case-division we had described earlier in Remark 3.10.
Namely,

(allC)—where for all B 2 OG.L/ we have Op.CG.LB// > 1;

(someNC)—where we have some B with Op.CG.LB// D 1.

These extensions are meant (roughly) to provide purely propagation-theoretic hypoth-
eses. Note that (someNC+ˆ) adds, to the propagation-friendly situation of (someNC),
a p-outer B0 which must specifically be of the type ˆ, which behaves well in homol-
ogy calculations; here we will need the assumption (p-cyclic) to guarantee propaga-
tion. By contrast, hypothesis (allC+H) adds to (allC) a propagation-friendly non-zero
homology condition on CG.L/; in applications, we will typically obtain this condi-
tion essentially automatically, via a suitable inductive hypothesis such as (H1)—as in
the “In particular” statement in the theorem.

Second aspect. Here, we argue roughly that under the main hypothesis (sLie-p) of
Theorem 6.4, the later hypothesis (p-cyclic) in (someNC+ˆ), and indeed the stronger
hypothesis (p-ˆ), should hold “most of the time”. Furthermore, the discussion below
of when those cyclic hypotheses might fail, under the generic hypothesis (sLie-p),
will also lead essentially to the list of exceptional situations, that we must further treat
in the non-generic Theorem 6.5—thus basically explaining the list of excluded Lie
types (i.e., that we do not treat) in the statement of that theorem below.

So, during this second-aspect discussion, we continue to assume (sLie-p), and
argue to isolate those situations where (p-ˆ)—that is, the condition that OG.L/� �
Ap.ˆ/—might fail.

We saw in earlier (ii) that we may study individual members of OG.L/, up to
Outdiag.L/-conjugacy, via the cases for ˆL�L in Remark 6.2. In case (0) (i.e., for
twisted groups, and untwisted groups where � D 1) we have Out.L/� D ˆ, giving
(p-ˆ). Therefore, we are reduced to the untwisted groups L in cases (1) and (2) there
(namely, with � > 1).

First, assume case (1), with multiple bonds, and characteristic r D p by (sLie-p).
If L has type G2, we have p D r D 3, with jˆL�L W ˆLj D 2, and, in particular,
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3-outers lie in ˆL. Here, OG.L/� � A3.ˆ/, and again, we have (p-ˆ). So, consider
instead types B2 and F4, where we have p D r D 2. We first single out the odd-
power field cases. When O2.ˆL/ D 1 (i.e., L is defined over some F22a�1), then we
have Out.L/� D ˆL � �L with ˆL of 20-order, so (p-ˆ) fails but (p-cyclic) does
hold. Here, Sp4.2/ is not simple, and so, does not arise under (sLie-p). However, we
treat Sp4.2/

0 via independent arguments in the non-generic Theorem 6.5. In fact, we
are also able to treat F4.2/, and indeed the higher odd-powers for types B2 and F4,
similarly there. Thus, these groups B2 and F4 with odd-power fields do not appear in
the excluded list in that theorem below. Now, we turn to groups of those types with
even-power fields: in this case we have O2.ˆL/ > 1; so since ˆL�L is cyclic, the
2-elements of ˆL�L n ˆL must have order at least 4—hence (p-ˆ) holds here, and
the groups are treated via our generic methods.

Finally, assume case (2), with single bonds, and characteristic r D p by (sLie-p).
Here, we always have Out.L/�DˆL ��L with �LŠ�ŠC2, or Sym3 forD4. Now,
it might happen that (p-ˆ) holds, when OG.L/� induces only field automorphisms on
L, and then we can use our generic methods. But it may also happen that p divides the
order of bothˆL and �L, and then we see that (p-ˆ) and (p-cyclic) can definitely fail.
If OG.L/� induces only a graph- or graph-field automorphism, we could still have (p-
cyclic). However, we do not attempt to treat such automorphisms by our methods; so
these single-bond groups, in the case away from (p-ˆ), appear in the excluded-list in
the non-generic theorem below.

Notice that we have now reduced to exactly the cases in that excluded-list.
In fact, it is now not difficult to establish our non-generic Theorem 6.5: this time

not constructively via propagation as in the generic-Theorem 6.4, but instead via the
less-constructive elimination methods of [18]—which turn out to be suited to the few,
and suitably-“small”, cases that we in practice must treat.

Theorem 6.5 (Lie eliminations under (H1)—including non-generic cases). Assume
that G satisfies (H1) and contains a component L which is simple of Lie type in
characteristic p, in the wider CFSG-sense: either L satisfies (sLie-p), or L is one of
the four Lieexc-commutator groups in Definition 6.1 .2/.

Then, one of the following holds:

(1) G satisfies (H-QC),

(2) L is one of the following untwisted Lie types with the indicated characteristic
r D p:

PSLn.22m/.n � 3/I Dn.p
pm/ .n � 4Ip D 2; 3/I E6.2

2m/

with OˆG.L/ ¤ ; and some B 2 OG.L/ inducing a graph-automorphism or
graph-field automorphism.
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We mention that there are further technical conditions related to B which could
reduce the excluded-list above, but we have preferred to keep this simpler form of the
statement. We provide in Remark 6.9 some further discussion of the excluded cases.

Proof of Theorem 6.5. Note that under (H1), we may assume by [18, Theorem 1.6]
that OG.L/ is non-empty.

Here, most of the work is done by the “In particular” statement for (H1) in the
generic Theorem 6.4: that is, we are done in the vast majority of cases, where L has
both (sLie-p) and (p-cyclic) (and indeed (p-ˆ).) Thus, we only need to treat the cases
where one of the hypotheses fails.

Now, the simple groups failing the strict Lie-theory condition of (sLie-p) are the
four commutator subgroups in Definition 6.1 (2). And our analysis above isolated the
cases where (p-ˆ) and (p-cyclic) can fail: our excluded-list records the cases that we
will not attempt to treat—but we will in fact cover B2.q/ and F4.q/ for q an odd
power of p D 2.

We note that the condition (p-cyclic) arises in each of the separate cases just listed
in the paragraph above (it is needed as hypothesis for the results in [18]).

We first consider the four non-generic commutator groups.
First, L Š 2F4.2/

0 has OG.L/ D ; since outer 2-automorphisms B have order 4
as group elements in LB; so this case is already handled by our initial remark.

Next, the smallest case L Š Sp4.2/
0 is handled specifically for p D 2 in [18,

Corollary 8.1].
Furthermore, [18, Corollary 8.1] invokes Proposition 6.9 there, and indeed via

an easier application of that proposition, we can in fact treat in parallel the remain-
ing two cases, i.e., L D .G2.2/

0; 2G2.3/
0/ for p D .2; 3/. Since we may assume

OG.L/� is non-empty, we see that it is given by B� inducing an automorphism of
type (graph, graph-field), respectively, (though the first case is instead also called
graph-field in [12]—see Definition 2.5.13 (b) (2) there). We check then that CL.B/
has structure (order 24, Sym3) with Op.CL.B// > 1, and it follows that the reduced
homology of Ap.CL.B// for any term vanishes (i.e., in all degrees). However, Ap.L/

is a wedge of spheres of topological dimension (1; 0). So, taking these values for “k”
in [18, Proposition 6.9], we conclude that G satisfies (H-QC).

The elimination of the groups of type (B2.q/; F4.q/) (for q an odd power of
p D 2) is only marginally more complicated. Here, OG.L/� is either empty, or given
by B� inducing an automorphism of (graph, graph) type (again with [12] using the
graph-field terminology). Now, we get CL.B/ of structure (2B2.q/; 2F4.q/): so that
A2.CL.B// is a wedge of spheres in topological dimension (0; 1), with reduced
homology vanishing in degrees above those values. However, A2.L/ is a wedge of
spheres in topological dimension (1; 3). So, by taking these values for “k” in [18,
Proposition 6.9], we conclude that G satisfies (H-QC).

Finally, the structure of the groups in item (2) follows by Remark 6.9.
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We now start the details for our earlier preview, and culminating in the proof of
our generic Theorem 6.4.

Recall that the more technical aspects of our study of p-outer automorphisms are
presented in Section B of the appendix—notably the conventions in Definition B.1 for
the terminology of “field” and “graph” automorphisms.

First, we obtain an analogue of the Quillen dimension property of [4] (recall Def-
inition 2.15), in the sense that, for our almost simple extensions, we obtain non-zero
homology in a particular natural degree: given L of type (sLie-p) with Lie rank m,
and a p-outer B of type ˆ, this degree for Ap.LB/ is in fact m. Since the behavior
arises from an underlying use of the Bouc poset Bp.L/ of L, we have nicknamed the
property as “Bouc dimension” below. And this homology will be the starting point for
our propagation up to Ap.G/. We establish the following theorem.

Theorem 6.6 (“Bouc dimension”). Assume that L is of type (sLie-p) with Lie rank
m, and we have some B 2 OˆAut.L/.L/. Then, zHm.Ap.LB// ¤ 0.

Proof. Fix B 2 OˆAut.L/.L/. By part (3) of Proposition B.2, we may choose D 2
OˆLB.L/ such that Op.CL.D// D 1. (We would only need to make this choice, if
our original B happened to be in case (2) (a) of the proposition.) Since LB D LD,
we may take D in the role of “B”; thus we have Op.CL.B// D 1—that is, we have
our chosen B in case (1) or (2) (b) of the proposition.

We are going to work with the Bouc poset Bp.L/. Recall that Bp.L/ is homotopy
equivalent to the Tits building of L: it is a poset of topological dimension m � 1,
where m is the Lie rank of L, and it is homotopy equivalent to a wedge of spheres of
dimension m � 1. The number of such spheres is the dimension of zHm�1.Ap.L// D
zHm�1.Bp.L// as a vector-space, which in turn coincides with the order of a Sylow
p-subgroup of L, namely, jLjp . In particular, we have zH�.Ap.L//D zHm�1.Bp.L//.

We will use the abbreviation O WD OLB.L/. By Theorem 4.10 applied to LB—
with L, 1 in the roles of “H , K”—we get

Ap.LB/ ' W
B
LB.L; 1/.D Bp.L/ [ O/:

Therefore, Ap.LB/ is homotopy equivalent to the poset Bp.L/ [ O of topological
dimension m.

We will now let D vary over O. By (3) of Proposition B.2, we get D� � ˆL;
and since we also have B� D �1.Op.ˆL// there, we see that D� D B�. Next, apply
the proposition to this general D: then either case (2) (a) holds, with Op.CL.D// >
1—so that Ap.CL.D// is contractible; or else case (1) or case (2) (b) holds, with
CL.D/ again a group of Lie type in characteristic p of the same Lie rank m (possibly
extended by p0-diagonal automorphisms), so that Ap.CL.D// is homotopy equivalent
to a wedge of jCL.D/jp spheres of topological dimension .m � 1/. In any case, the
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reduced homology of Ap.CL.D// vanishes in degrees below .m � 1/, just as for L
itself.

At this point, we invoke the long exact sequence of [21, Main theorem] and take
L, LB in the roles of “N , G” there. Note that “M” there is O here, which consists
of cyclic elements of order p of type ˆ. With the notation of that article (where †
denotes suspension), we have that Ap.LB/L '

W
D2O †Ap.CL.D//. Now, we saw

that homology from Ap.L/ and Ap.CL.D// vanishes (in any case, contractible or
otherwise) in degrees below .m� 1/; and similarly homology from Ap.LB/ vanishes
in degrees above the topological dimension m. So, we get

0! zHm.Ap.LB//!
M
D2O

zHm�1.Ap.CL.D///!

! zHm�1.Ap.L//! zHm�1.Ap.LB//! 0:

Using the above exact sequence of vector spaces, we now calculate and give a lower
bound for the dimension of zHm.Ap.LB//. Note we get a zero contribution from any
cases where Ap.CL.D// is contractible; and we will use the fact, from (1) or (2) (b)
of Proposition B.2, that there is just one Inndiag.L/-conjugacy class of D with the
indicated centralizer structure, represented by our original choice B:

dim. zHm.Ap.LB///

D dim. zHm�1.Ap.LB//
�
� dim

�
zHm�1.Ap.L///

C

X
D2O

dim. zHm�1.Ap.CL.D////

� � dim. zHm�1.Ap.L///C
X
D2O

dim. zHm�1.Ap.CL.D////

� � dim. zHm�1.Ap.L///C
X

gNL.B/2L=NL.B/

dim. zHm�1.Ap.CL.Bg////

D �jLjp C jL W NL.B/jjCL.B/jp

D �jLjp C
jLj

jCL.B/j

jCL.B/j

jNL.B/j
jCL.B/jp

� �jLjp C
jLj

jCL.B/j

1

.p � 1/
jCL.B/jp

D jLjp

�
�1C

jLjp0

.p � 1/jCL.B/jp0

�
:

Now, our chosenB hasOp.CL.B//D 1 (that is, case (1) or (2) (b) of Proposition B.2);
so Lemma B.3 gives the inequality

jLjp0

.p � 1/jCL.B/jp0
> 1;



K. I. Piterman and S. D. Smith 348

and hence the above dimension is positive. We conclude that zHm.Ap.LB// ¤ 0, as
desired.

We now begin the details for our main proof, of the generic Theorem 6.4, splitting
it into the two cases of its conicality-hypotheses. We first deal essentially with the
case (someNC+ˆ) there, corresponding to condition (someNC) in Remark 3.10.

Lemma 6.7. Let G be a finite group such that the following hold:

(sLie-p) G has a component of L of type (sLie-p);

(p-cyclic) OG.L/ contains only cyclic p-outers;

(someNC+ˆ)� For some B0 2 OˆG.L/, zH�.Ap.CG.LB0/// ¤ 0.

Then, G satisfies (H-QC).

Proof. As usual to show (H-QC) for G, we assume Op.G/ D 1, and show that

zH�.Ap.G// ¤ 0:

Let L and B0 be as in the hypotheses (sLie-p) and (someNC+ˆ)�. Then, the
choices H WD L and K WD CG.LB0/ satisfy the component-Hypothesis 4.2; and we
showed in Lemma 4.3 that the less-usual choice ofH D L rather than LB0 still gives
the central product Hypothesis 4.4 for HK. So, by Theorem 4.10,

Ap.G/ ' W WD W
B
G .L;CG.LB0// D Bp.L/�Ap.CG.LB0//[ FG.LCG.LB0//;

where we recall that � denotes the order-relation in the poset W . Now, note that in
the above we have OLB0

.L/ � FG.LCG.LB0//; and also we have an inclusion of
posets

Ap.LB0/ ' W
B
LB0

.L; 1/ D .Bp.L/ � ¹1º/ [ OLB0
.L/ � W B

G .L; CG.LB0//:

We are going to invoke Theorem 5.10: with the subcomplexM DK.W /, and making
the choices that X D Bp.L/, Y D Ap.K/, and Z D OLB0

.L/. Recall that these are
the choices of X , Y , Z, W made in our earlier augmented-Hypothesis 5.2 (extending
the component-Hypothesis 4.2); and that in Lemma 5.3 (b), we showed that these
choices satisfy the (Zleft)-Hypothesis 5.4, as needed for that theorem.

Now, we check the other conditions for Theorem 5.10. By Theorem 6.6, we see
that W B

LB0
.L; 1/ has dimension m, and that it has non-zero homology in degree

m. Since Bp.L/ has dimension m � 1, there is a non-zero homology cycle ˛ of
zHm.W

B
LB0

.L; 1// Š zHm.Ap.LB0// with

˛ D
X
i2I

qi .B
i
� .Ri1; 1/ < � � � < .R

i
m; 1//;
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where Rij 2Bp.L/ for all j D 1; : : : ;m, and B i 2 OLB0
.L/. Moreover, since Bp.L/

has dimension m � 1, note that

.Ri1; 1/ < � � � < .R
i
m; 1/ is a maximal chain in Bp.L/I

so, e.g.,Rim 2 Sylp.L/ for all i . In particular, if x 2W and x � .Rim; 1/, then just from
the ordering in the Cartesian product we have x D .Rim; E/ 2K.¹max.a/º � Y /, for
some E 2 Ap.K/.

Now, let a 2 ˛ be one of the above chains involved in ˛, with invertible coefficient
q D qi ¤ 0. We immediately get conditions (1) and (2) (a) of Theorem 5.10, and the
above-a part of condition (2) (b) there. By (someNC+ˆ)�, we can take a non-zero
cycle ˇ of Ap.K/, giving condition (3) of Theorem 5.10. It remains to establish the
rest of condition (2) (b); at this point, we will strongly use our hypothesis (p-cyclic).
Namely, for a as just chosen, we will establish the following claim.

Claim. LkM .a/ �K.¹max.a/º � Y /. In particular, a is a maximal chain of X [Z.

Proof. Suppose that a D .B � .R1; 1/ < � � � < .Rm; 1//, and let w 2 M n a be �-
comparable with every element of a. Note that jBj D p, since B 2 OLB0

.L/ and
jB0j D p. We also have B 2 FG.HK/, so B � w by the F -left property in the
definition of the ordering. In fact, we will show that w > max.a/ D Rm, where we
saw earlier that such a w satisfies the claim.

First, we saw earlier that a n ¹Bº is a maximal chain in Bp.L/, so we cannot have
1 � i < m with .Ri ; 1/ < w < .RiC1; 1/. Thus, we only need to eliminate the case
that B � w � .R1; 1/.

So, suppose thatB �w� .R1;1/. Now,w …Bp.L/, again since we saw a n ¹Bº is
a maximal chain in Bp.L/. Hence, w DD 2 FG.HK/; that is,D \ .LCG.LB0//D
1. Since D � .R1; 1/ we see that CR1

.D/ > 1, so D normalizes L. Then, D > B

implies that D also normalizes LB . Now, since D � CG.B/, we get

D \ .LCG.L// D D \ .LCG.L// \ CG.B/

D D \ .CL.B/CG.LB//

� D \ .LCG.LB0// D 1:

Here, we have used the fact that LB D LB0 since B 2 OLB0
.L/. Thus,D 2 OG.L/,

which consists only of cyclic p-outers by our hypothesis (p-cyclic). This is contrary
to D of p-rank at least 2, since D > B . This contradiction shows that no such D
exists.

We have reduced to the case that w > .Rm; 1/ D max.a/; which we saw earlier
satisfies the claim. In particular, a is a maximal M -chain in X [Z.

Therefore, Theorem 5.10 applies, with these choices of X;Y;Z;W;M DK.W /,
and of a, ˛, ˇ; so we get zH�.Ap.G// Š zH�.W / ¤ 0, as desired.
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Next, we prove case (allC+H) of the generic Theorem 6.4, corresponding to con-
dition (allC) in Remark 3.10.

Lemma 6.8. Let G be a finite group such that the following hold:

(sLie-p) L is a component of G of type (sLie-p);

(allC+H) For all B 2 OG.L/, Op.CG.LB// > 1, and CG.L/ satisfies (H-QC).

Then, G satisfies (H-QC).

Proof. We assume Op.G/ D 1, and prove that zH�.Ap.G// ¤ 0.

We begin with a slightly easier version of the setup as in the previous lemma.

Let H WD L, K WD CG.L/: again these choices satisfy the component Hypothe-
sis 4.2; and again using Lemma 4.3 we see that these usual choices give the central
product Hypothesis 4.4 forHK. This time, in order to avoid centralizers in X �Y (of
members of OG.L/) which lie entirely inL, we instead apply Proposition 4.12 (rather
than Theorem 4.10) in order to be able to make use of the replacement-poset

Ap.G/ ' W WD zW
B
G .H;K/ D Bp.H/�Ap.K/ [ FG.HK/;

namely, the poset of Proposition 4.11. Recall that @ denotes the order-relation in the
poset W .

Note now by the initial (allC)-part of hypothesis (allC+H), we have

F1 D ¹B 2 OG.L/ W Op.CG.LB// > 1º D OG.L/I

so that the subset F1 in fact covers all of OG.L/.

In view of this, we will again be applying Theorem 5.10 for propagation: again
with M D K.W / but now for the new variant-W as above; and with X WD Bp.L/,
Y WD Ap.K/ and the “trivial” choice Z WD ;. These choices of X , Y , Z, W extend
the component-Hypothesis 4.2; and we can also directly mimic the proof in the sim-
pler case (a) of Lemma 5.3. Namely, we see that these choices satisfy the (Zleft)-
Hypothesis 5.4, as needed for Theorem 5.10. That is, the inclusion of X � Y in our
present choice of W for (Zleft) (i) is automatic—by construction; and the choice of
Z D ; makes (ii) and (iii) there vacuous.

So, we turn to verifying the other conditions needed for Theorem 5.10.

Since Op.G/ D 1, we have Op.CG.L// D 1 by Lemma 2.3 (4). Indeed, by the
latter part of hypothesis (allC+H), we see that zH�.Ap.K// D zH�.Ap.CG.L/// ¤ 0.
Thus, we can a take a non-zero homology cycle ˇ 2 Zn.Ap.K// for some n � �1.
This establishes condition (3) of Theorem 5.10.

By hypothesis (sLie-p), ifm is the Lie rank ofL, there exists a non-zero homology
cycle ˛ 2 Zm�1.Bp.L//, giving condition (1) of Theorem 5.10. To finish, we need
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to show condition (2) of Theorem 5.10 for such an ˛. Pick a 2 ˛, so a D ..R1; 1/ <
� � � < .Rm; 1// � W . First, since we work with homology with rational coefficients,
we automatically get condition (2) (a) of Theorem 5.10. For condition (2) (b), we need
to show that LkM .a/ � K.¹max.a/º � Y /. Since M D K.W /, this is equivalent to
showing that a is a full chain in W , and that if w > max.a/ then w 2 ¹max.a/º � Y .

So, let w 2 W be an element comparable with every element of a. Since a is
a maximal chain of Bp.L/, we see that either w > max.a/, or else w @ min.a/
with w … X . In the former case, by the definition of the order in W we see that
w D .max.a/; y/ 2 ¹max.a/º � Y , for some y 2 Y . In the latter case, w DW D 2
FG.LCG.L//. Since D @ .R1; 1/, we have CR1�1.D/ > 1, and this forces D 2
Ap.NG.L//. Now, the conditionD \ .LCG.L//D 1 implies thatD 2 OG.L/D F1,
an equality we observed earlier using the (allC)-part of our hypothesis. By definition
of the order-relation in the poset W D zW B

G .L; CG.L// in Proposition 4.11, we see
that D @ .E; F / 2 X �Y implies CEF .D/ — L, so F > 1, contrary to D @ .R1; 1/

above. This contradiction shows that no such w exists, so this case cannot hold. In
conclusion, LkM .a/ � ¹max.a/º � Y , giving condition (2) (b) of Theorem 5.10.

We have fulfilled the conditions of Theorem 5.10, so 0 ¤ zH�.M/ D zH�.W / Š
zH�.Ap.G//, completing the proof.

Now, we can prove our generic Theorem 6.4.

Completing the proof of Theorem 6.4. We saw that Case (someNC+ˆ) holds by
Lemma 6.7; while the other Case (allC+H) follows from Lemma 6.8: since both Lem-
mas assume the initial hypothesis (sLie-p) of the theorem.

Thus, we had already essentially completed the proof of the main assertion of the
theorem. We now turn to the final “In particular” statements.

Suppose first thatG satisfies (H1). Then, that assumption gives (H-QC) forCG.L/
and for every centralizer CG.LB/, where B 2 OG.L/. Suppose further that L has
type (sLie-p), and that (p-ˆ) holds. We see now that either Op.CG.LB// > 1 for all
B 2OG.L/ (so that (allC+H) holds, using (H1) forCG.L/ as above), or else that some
B 2 OG.L/ D OˆG.L/ verifies that Op.CG.LB// D 1—so since CG.LB/ satisfies
(H-QC), we get (someNC+ˆ). Then, we have indeed reduced to the hypotheses of
the main statement of the theorem. Namely, G satisfies (sLie-p) and one of (allC+H)
or (someNC+ˆ). Hence, G satisfies (H-QC) by that main result.

Now, suppose finally that we replace “(H1)” above with “(H1u)+(p odd)”; in par-
ticular, we are still assuming that G also satisfies (sLie-p) and (p-ˆ) (and hence (p-
cyclic)). As usual for (H-QC), we assumeOp.G/D 1, and show that zH�.Ap.G//¤ 0.

As we are assuming the inductive hypothesis (H1u) of [4], we will use the results
of that article. Since CG.L/ < G, and the components of CG.L/ are components of
G (by Lemma 2.3 (3)), we see that CG.L/ satisfies (H-QC) by (H1u). Hence, if either



K. I. Piterman and S. D. Smith 352

OG.L/ D ;, or Op.CG.LB// > 1 for all B 2 OG.L/, then (allC) holds, and in fact
we have reduced to the hypothesis (allC+H) for the main statement of the theorem,
and we get (H-QC) for G just as before.

Thus, to finish, we may assume (allC) fails, so there is B 2 OG.L/ such that
Op.CG.LB//D 1. And we need to show that zH�.Ap.CG.LB///¤ 0. In view of our
still-assumed conditions, this will complete the additional hypothesis (someNC+ˆ)
as earlier, again reducing us to the main statement of the theorem.

For this non-zero condition, we will adapt arguments from [4] (notably Theo-
rem 2.4 there), to show that there is a replacement B 0 2 OG.L/ for B satisfying the
non-zero homology condition for the desired centralizer. At some points in the argu-
ment, (H1u) will directly imply (H-QC) for G, and in those cases we will not need to
get non-zero homology for the centralizer.

Following [4, Propositions 1.4 and 1.5], if we have non-trivial N WD Z.G/ or
Z.E.G//, then the components of G=N are covered by components of G. Since
zH�.Ap.G=N// � zH�.Ap.G// by [4, Lemma 0.12], without loss of generality, we

can suppose that Z.G/ D 1 D Z.E.G//, since otherwise we get (H-QC) for G using
(H1u). By our quoted elimination result Theorem 9.1, we can also assume that G has
no component of type L2.23/, U3.23/, or Sz.25/, for p D 3; 3; 5, respectively.

Now, [4, Proposition 1.6] allows us to reduce to the case Op0.G/ D 1; and in
particular, F.G/ D 1 using our Lemma 2.3. Note that the argument in [4] that we
are quoting here depends on Theorem 2.4 there—and hence on Theorem 2.3 there,
which requires p odd; so that we are now using that part of our current “In particular”
hypothesis. We are also using the elimination result indicated above, again in order to
apply [4, Theorem 2.3].

Now, we pick B 2 OG.L/ as above. At this point, we again invoke [4, Theo-
rem 2.4], this time with CG.L/ in the role of “I ” there; so in (ii) below, as in the
previous paragraph, we are once again using our hypothesis that p is odd, and our
eliminations, in order to apply [4, Theorem 2.3]. We check conditions (i) and (ii)
of [4, Theorem 2.4] for this I , as follows.

(i) Using our Lemma 2.3 (4), Z.I / � F.I / D F.CG.L// D F.G/ D 1.

(ii) The components of I , which are components of G by Lemma 2.3, have
non-conical complements as defined in [4, Theorem 2.3]: since we have p
odd, and we eliminated components of G of type L2.23/, U3.23/ or Sz.25/
for p D 3; 3; 5, respectively.

This establishes conditions (i) and (ii) of [4, Theorem 2.4] for I D CG.L/. By that
result, there exists a complementB02Ap.IB/ to I in IB such that 1DOp.CI .B0//D
Op.CG.LB0//. In particular, B0 2 OG.L/ and Op.CG.LB0// D 1. Also, unitary
components ofCI .B0/DCG.LB0/ satisfy the conditions of (H1u) by the conclusions
of [4, Theorem 2.4]. In consequence, by (H1u), we seeCG.LB0/ satisfies (H-QC). So,
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B0 fulfills the requirements of (someNC+ˆ) of Theorem 6.4. This yields, as desired,
the hypotheses of the main statement there—so that G satisfies (H-QC).

Remark 6.9. From Theorem 6.4, if G is a counterexample of minimal order to (H-
QC) and contains a simple component L of Lie type in characteristic r D p, then one
of the following three (mutually exclusive) conditions should hold.

(1) (p-cyclic) fails and there exists B 2 OG.L/ with Op.CG.LB// D 1.

(2) (p-cyclic) holds, OG.L/ ¤ ; and OˆG.L/ D ;.

(3) (p-cyclic) holds, OˆG.L/ ¤ ;, every B 2 OˆG.L/ has Op.CG.LB// > 1, and
there exists D 2 OG.L/ n OˆG.L/ with Op.CG.LD// D 1.

In cases (1) and (3), one gets OˆG.L/ ¤ ; and OG.L/ n OˆG.L/ ¤ ;, so L is
untwisted and it is defined over a field of ppm elements.

On the other hand, case (2) can be ruled out by an application of [18, Proposi-
tion 6.9]. Namely, under the conditions of (2), if B 2 OG.L/, then Ap.CL.B// has
homological dimension less than that of Ap.L/. This can be proved by using a more
detailed description of the structure of centralizers of graph and graph-field automor-
phisms: since CL.B/ is a group of Lie type in characteristic p but of Lie rank less
than that of L. See also [12, Propositions 4.9.1 and 4.9.2]. Then, the inclusion map
Ap.CL.B// ,!Ap.L/ is zero in homology. This fulfils the requirement for the appli-
cation of [18, Proposition 6.9], where the value “k” there is given by the Lie rank of
L minus 1.

7. Eliminating QD-components under (H1)

In this section, we provide in Theorem 7.2 an alternative version of [4, Proposi-
tion 1.7] (namely, elimination of .QD/-components)—that works for any prime p,
under a somewhat different inductive hypothesis. Our proof by contrast does not
invoke the CFSG. We then use Theorem 7.2 in our proof, at the end of Section 9,
of the variant Theorem 1.4 of our more direct extension Theorem 1.1 to p D 3; 5 of
the Aschbacher–Smith main theorem.

But first, we will recall the original result [4, Proposition 1.7] which roughly estab-
lishes that under (H1u) for odd p, eitherG satisfies (H-QC), or every component ofG
has a p-extension failing .QD/p . Namely, we give in Proposition 7.1 below a slightly
different alternative formulation of [4, Proposition 1.7]—which is closer to the orig-
inal argument than our Theorem 7.2, and which we expect could be applied in wider
contexts, beyond the present paper.

The proof of [4, Proposition 1.7] uses Theorems 2.3 and 2.4 there to obtain the
non-conical complementA needed for homology propagation. In hypothesis (MaxNC)
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for our version in the proposition below, we in effect isolate that non-conicality argu-
ment (and in particular, its dependence on having odd p)—by roughly encoding the
maximal choices made for A in the original Aschbacher–Smith proof.

Proposition 7.1. Suppose that G satisfies the following conditions.

(p-extQD) G contains a simple component L of order divisible by p for which
all the p-extensions satisfy .QD/p .

(MaxNC) There existsA2Ap.NG.L// faithful onL and of maximal p-rank such
that jA \ Lj is maximal and zH�.Ap.CG.LA/// ¤ 0.

Then, G satisfies (H-QC).
In particular, if p is odd, (p-extQD) holds, and (H1) or (H1u) holds, then G

satisfies (H-QC).

Proof. The proof of this proposition essentially follows the original proof given by
Aschbacher–Smith for their [4, Proposition 1.7, pp. 489–490]. But note that Step iv
of that original proof is now replaced by the hypothesis (MaxNC). That is, here we
in effect assume the conclusion of [4, Theorem 2.4], so we are not using their Theo-
rem 2.3, which would require p odd. Also, we do not need to invoke the CFSG since
we have (MaxNC).

For the “In particular” part under (H1), we can use the earlier reductions under
(H1) that we quoted in our Theorem 2.22—first parts (1), (2), to establish [4, Propo-
sitions 1.4–1.6]; and then parts (5), (6) to eliminate the problematic components
PSL2.23/, PSU3.23/ and Sz.25/, p D 3; 3; 5, respectively. Then, we may use the
remainder of the original proofs of [4, Theorems 2.3 and 2.4], to establish (MaxNC)—
completing the reduction to the hypotheses of the main statement, and hence giving
(H-QC).

Under (H1u), the proof is essentially given using the adjustment to [4] that we
used for the corresponding “In particular” statement in Theorem 6.4 above, which we
now summarize only briefly. Here, we again get (MaxNC) from [4, Theorem 2.4]—
recalling that we may apply Theorem 2.3 there, by first eliminating the above com-
ponents PSL2.23/, PSU3.23/ and Sz.25/, for p D 3; 3; 5, respectively, now via [4,
Proposition 1.5] and our quoted result Theorem 9.1 under (H1u), and then reducing
to Op0.G/ D 1 via [4, Proposition 1.6].

We now provide, as Theorem 7.2 below, a further alternative version of [4, Propo-
sition 1.7], that works for any prime p. In particular, we do not invoke [4, Theo-
rems 2.3 and 2.4] which depend on the CFSG, assume p odd and further require
the exclusion of components of type PSL2.23/, PSU3.23/, and Sz.25/, p D 3; 3; 5,
respectively. The proof of our theorem instead relies on the combinatorial properties
of the Ap-posets, and does not invoke the CFSG.
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In contrast with Proposition 7.1 just above, here we will not assume that

zH�.Ap.CG.LA/// ¤ 0

for some A 2 Ap.NG.L// satisfying subtle conditions of maximality. Instead, we
will develop fairly elementary conditions of maximality for A, within the proof—and
then we will see roughly that we can homotopically remove any such A which would
have zero-homology for Ap.CG.LA// (that is, guaranteeing that our A produces a
non-conical complement).

As a brief summary of the proof: because of the hypothesis (p-extHQC) of The-
orem 7.2 below, zero-homology for Ap.CG.LA// would force Op.CG.LA// > 1.
This guarantees the contractibility of links in Ap.G/, so that by Proposition 3.11 we
can remove such points A from our poset—getting a homotopy equivalent smaller
poset X , to which we can apply the earlier propagation result which we quoted
as Lemma 5.14. Any such remaining A will have the non-conical requirement for
hypothesis (v) of Lemma 5.14. The removals also guarantee the condition on X>A
needed in hypothesis (iv) of Lemma 5.14.

Theorem 7.2. Suppose that G satisfies the following conditions.

(p-extQD) G contains a simple component L of order divisible by p for which
all of the p-extensions LB � G, B 2 yOG.L/, satisfy .QD/p .

(p-extHQC) If LB � G is a p-extension of L, then CG.LB/ satisfies (H-QC).

Then, G satisfies (H-QC).
Notice in particular that (p-extHQC) holds when assuming (H1).

Proof. As usual for (H-QC), we suppose Op.G/ D 1 and show that zH�.Ap.G// ¤ 0
under the hypotheses of the theorem. We use the notation of Proposition 3.11, in
particular, recalling the undesirable conical-subset of p-outers defined by

F1 WD
®
B 2 OG.L/ W Op.CG.LB// > 1

¯
:

Eventually, we will choose an A exhibiting .QD/p for a suitable LB , so this LB will
need to instead be a member of the corresponding non-conical subset

E WD ¹LE W E 2 yOG.L/ n F1º:

Note that L 2 E (the case where E D 1) since Op.CG.L// D 1 by Lemma 2.3 (4); in
particular, we have E ¤ ;.

Now, in pursuing a suitable LB , it is natural to pick a configuration LE 2 E ,
with mp.LE/ maximal among the p-ranks of the groups in E . Then, we take LE of
maximal order subject to this property; in particular, then E is a maximal element of
yOG.L/ nF1. Just from the definition of E, as a p-outer of the component L not lying
in F1, we have the following claim.
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Claim 1. Op.CG.LE// D 1, and hence, Op.LE/ D 1 using Lemma 2.5.

Next, we develop some conditions for suitable A and B in Ap.LE/. Notice that
any A 2 Ap.LE/ of maximal p-rank intersects L non-trivially: since p divides the
order of L by (p-extQD), we see the following claim.

Claim 2. We take A 2 Ap.LE/ of p-rank mp.LE/ such that jA \ Lj is maximal.
Then, jA \ Lj > 1, in particular, using Claim 1, we have Op.LA/ � Op.LE/ D 1.

Now, decompose AD .A\L/�B . SinceOp.LE/D 1 by Claim 1, LE embeds
into AutG.L/, so we see LA D LB � LE. By Claim 1 and Lemma 2.5, we get
Op.LB/ D 1 D Op.CG.LB//, and thus LB 2 E . In particular, B 2 yOG.L/, we get

jBj D jA=A \ Lj D jLAj=jLj � jLEj=jLj D jEj;

so that using our choice in Claim 2 with mp.A/ D mp.LE/, we have

mp.LE/ D mp.A/ � mp.LB/ � mp.LE/;

and hence equality holds for these ranks.
Finally, we show that we can indeed take this A to exhibit .QD/p for LB . Since

we saw above that Op.LB/ D 1, we know by our hypothesis (p-extQD) that LB has
.QD/p—exhibited by some A0 2Ap.LB/ of p-rankmp.LB/Dmp.A/. If we write
A0 D .A0 \ L/ � B0. Then,

jB0j D jA0=A0 \ Lj D jLA0j=jLj � jLAj=jLj D jBj;

and by maximality of jA \ Lj, we also have

jA0 \ Lj � jA \ Lj:

Now,mp.A0/Dmp.A/ implies that the two inequalities above must be equalities; that
is, we must have jB0j D jBj and jA0 \ Lj D jA \ Lj. Therefore, on replacing our
original A by this A0 which satisfies the same maximality properties, we can suppose
without loss of generality that A exhibits .QD/p for LB . This occurs via some non-
zero homology cycle, say ˛ involving a full chain a ending in A, of Ap.LB/.

We now verify the hypotheses for Lemma 5.14.
Recall from Proposition 3.11 the definition of the subset N1 of members of the

inflation NG.L/ acting faithfully on L, and containing some member of F1:

N1 WD
®
D 2 Ap.NG.L// W D \ L > 1;CD.L/ D 1; 9B0 2 F1 W B0 < D

¯
:

Set X WD Ap.G/ nN , where

N WD
®
D 2 N1 W mp.LD/ > mp.LE/

¯
:
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Note that N is an upward-closed subposet of N1. Therefore,X ,!Ap.G/ is a homo-
topy equivalence by Proposition 3.11.

Set H WD LB and K WD CG.LB/. Since elements of N are faithful on L, we
immediately get conditions (i) and (ii) of Lemma 5.14.

Furthermore, our cycle ˛ above exhibiting .QD/p for LB D H now extends to
a cycle for X : for note that if D 2 Ap.LB/ is involved in ˛, then we get mp.LD/ �
mp.LB/ D mp.LE/; so by definition, D cannot be contained in N . This proves the
following claim.

Claim 3. If D 2 Ap.LB/ is involved in ˛, then D 2 X . In particular, ˛ is also a
cycle of X containing a (full) chain a with AD max.a/. Hence, we get condition (iii)
of Lemma 5.14.

Claim 4. If D 2 X>A, then CD.LB/ > 1. Hence, we get (iv) of Lemma 5.14.

Proof. Suppose by way of contradiction thatD 2X>A, but 1DCD.LB/DCD.LA/D
CD.L/. Since D \ L � A \ L > 1, we get D � NG.L/.

Now, suppose by way of further contradiction that we have some d 2 .D \
LCG.L// n L; write d D lc, with l 2 L and c 2 CG.L/, jcj D p. Since Œd; A� D 1,
we get Œl; A� D 1 D Œc; A�. But l 2 L � LA, and A is of maximal p-rank in LA, so
l 2 A �D. Therefore, c 2D, that is, c 2 CD.L/D 1, contrary to c of order p above.
This intermediate contradiction shows that D \ LCG.L/ D D \ L.

So, we may write D D .D \ L/ �D1, where now D1 2 yOG.L/. Since D … N ,
while we have mp.LD/ � mp.D/ > mp.LE/ D mp.A/, we must have D … N1. In
particular,D1 … F1, and hence LD D LD1 2 E withmp.LD1/ > mp.LE/. But this
contradicts the earlier maximality of mp.LE/ in E . This final contradiction shows
that 1 < CD.L/ D CD.LB/, as we wanted.

Finally, we saw earlier thatOp.K/DOp.CG.LB//D 1. Hence, we get condition
(v) of Lemma 5.14, using our hypothesis (p-extHQC).

In conclusion, we have shown thatX 'Ap.G/ withH D LB andK D CG.LB/
satisfy the hypotheses of Lemma 5.14. Thus,

zH�.Ap.G// Š zH�.X/ ¤ 0;

as required.

8. Robinson subgroups and the Lefschetz-module version of Quillen’s
conjecture

In this section, we recall how to establish the Lefschetz-module version (L-QC) of
Quillen’s conjecture via the construction of Robinson subgroups; cf. the conditions
(Rob-xx) described in our discussion of strategy in Remark 1.2.



K. I. Piterman and S. D. Smith 358

In our context, the idea is to show that for a minimal counterexample to (H-QC),
once we have eliminated (e.g., via propagation methods) as many simple components
as possible, we can in fact establish this stronger version (L-QC) of the conjecture, and
so, obtain a final contradiction. The key point is that we can reduce the study of this
conjecture to analyzing particular aspects of the components of the group. To that end,
we take advantage of the very restrictive structures of any remaining components in a
minimal counterexample to (H-QC). The idea goes back to Robinson [20], and it was
later exploited by Aschbacher–Kleidman to establish the almost simple case of the
conjecture [3] (which we have quoted as Theorem 2.20), and then by Aschbacher–
Smith [4] to conclude the proof of their main theorem (compare (Rob-nonQD) in
Remark 1.2).

We denote by (L-QC) the following version of Quillen’s conjecture in terms of
the (reduced) Lefschetz module.

(L-QC) If Op.G/ D 1, then zLG.Ap.G// WD
P
n��1.�1/

nŒCn.Ap.G//� ¤ 0.

Recall that C�.X/ denotes the augmented chain complex of a poset X with coeffi-
cients in the rational numbers. The above alternating sum is taken in the Grothendieck
ring of representations of G over Q, with brackets denoting the character of a repre-
sentation, and zLG.Ap.G// is the reduced Lefschetz module of Ap.G/.

By the Hopf trace formula, we get a homology-version of the Lefschetz module

zLG.Ap.G// D
X
n��1

.�1/nŒ zHn.Ap.G//�:

In particular, we see that (L-QC) implies (H-QC). Moreover, the elements of the
Grothendieck ring of G are completely determined by their (virtual) characters, so
zLG.Ap.G// D 0 if and only if its virtual character is 0. By the Lefschetz fixed point
formula, the value of this character in a given element g 2 G is z�.Ap.G/g/, the
reduced Euler characteristic of the fixed point subposet Ap.G/

g . Therefore, (L-QC)
is equivalent to the following version of the conjecture:

(L0-QC) if Op.G/ D 1, then z�.Ap.G/g/ ¤ 0 for some g 2 G.

Following [3,4,20], in some particular situations, we will establish (L0-QC), and hence
(H-QC), by exhibiting an element g 2 G such that z�.Ap.G/g/ ¤ 0. In fact, we will
show that there exists a suitable p0-subgroup Q � G of the form Q D hgi �Oq.Q/,
with q a prime, and

z�.Ap.G/
g/ � z�.Ap.G/

Q/ 6� 0 .mod q/:

Note that Q is a q-elementary group, that is, a direct product of a cyclic group with a
q-group. The point of considering q-elementary p0-subgroupsQ is that the fixed point
subposet Ap.G/

Q can be smaller and easier to control. For example, we typically look
for Ap.G/

Q empty.
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With the aim of proving (H-QC), we will try to establish (L-QC) for the groups
G not satisfying the hypotheses of some of the theorems of the previous sections,
such as Theorems 2.22, 2.24, and 7.2, and Theorem 6.4 (compare (Rob-nonelim) in
Remark 1.2). For these groupsG, we have several restrictions on the components, and
possibly a concrete list such as the .QD/-List Theorem 2.16 when p is odd. The goal
is to construct q-elementary p0-subgroups QL for each component L of G, in such
a way that we can produce a q-elementary p0-subgroup Q of G satisfying the extra
property17:

Ap.G/
Q
' Ap.L1/

QL1 � � � � �Ap.Lt /
QLt ; (8.1)

where L1; : : : ; Lt are the components of G. Then, using product homology

z�.Ap.G/
Q/ � .�1/t�1

tY
iD1

z�.Ap.Li /
QLi / .mod q/: (8.2)

Hence, if z�.Ap.Li /QLi / 6� 0 .mod q/ for all i , then z�.Ap.G/Q/ 6� 0 .mod q/. This
reduces the problem of establishing (L0-QC) for G to understanding the structural
properties on the components Li , that allow us to construct these subgroups QLi

.
These q-elementary p0-subgroups Q are also known as Robinson subgroups, the ter-
minology employed in [4] to indicate the origin of the method in [20].

Now, we will study the properties that these QLi
have to satisfy, in order to

get such subgroup Q satisfying conditions (8.1) and (8.2). Note that each Qi is q-
elementary, for a fixed prime q common to all the i : that is, we fix the same prime
q¤ p for all the components. For example, when p is odd, the natural choice is qD 2.
When pD 2, one fairly natural choice could be qD 3, since most of the simple groups
have order divisible by 3.

Thus, for our extension of [4], we want to extend the context of Theorem 5.3 at
the end of Section 1 there by considering the following properties.

Property R0.p/. L is a simple group, having a subgroup QL such that for some
prime q ¤ p, we have the following.

(1) QL is a q-elementary p0-subgroup.

(2) Oq.QL/ > 1.

(3) z�.Ap.L/QL/ 6� 0 .mod q/.

(4) Ap.CAut.L/.QL// � Ap.L/.

17Below, we are using product homology as in Remark 2.11; notice this is a crucial use of
the basic group-theory fact that E.G/ is a central product—even a direct product, in our usual
situation of Lemma 2.3 (1).
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Property R.p/. QL satisfies (1)–(4) as in R0.p/ above, and further,

(5) q D 2 when p ¤ 2; while q D 3 when p D 2.

We pause to state some consequences of (4) above.

(4+) If A 2 Ap.Aut.L//QL , then A \ L > 1. In particular, Ap.Aut.L//QL '

Ap.L/
QL .

For suppose by way of contradiction that A\LD 1. Then, ŒA;QL� � A\LD 1, so
A D CA.QL/, and then (4) forces A 2 Ap.L/, contrary to our assumption A \ L D
1. This contradiction shows that A \ L > 1. In particular, A 7! A \ L is a poset
endomorphism of Ap.Aut.L//QL with image Ap.L/

QL , giving the final statement
via Lemma 2.7 (2).

Furthermore, we will often be able to establish the stronger condition.

(3+) Ap.Aut.L//QL D ;; which implies (3) and (4).

For certainly (3+) gives Ap.L/
QL D ;, with the value of �1 for (3); and gives

Ap.CAut.L/.QL// D ;, so that (4) holds vacuously.
In the following extension of [4], we show that we can establish (L-QC) if the

components of G satisfy R.p/. It roughly states that, under those very particular
Robinson-type conditions, we can propagate (L-QC): from the components of G, to
G itself. An important observation here is that this propagation depends exclusively
on the individual structure of each simple component L. The proof is based on the
original argument given in [4]—at the end of Section 1 there.

Proposition 8.1. Suppose that Op.G/ D 1 D Op0.G/, with F �.G/ D L1 � � �Lt , and
let q be a fixed prime distinct from p. Assume that every component Li of G satisfies
Property R0.p/ for some q-elementary subgroupQi � Li . Then,G satisfies (L-QC).

Proof. In overview, we construct a single group Q to satisfy (8.1) and (8.2); roughly,
we need to establish for Q properties like R0.p/—but simultaneously, that is, with
respect to all the components L in the product E.G/ D F �.G/.

Write Qi WD hgi i �Oq.Qi /, and let g WD g1 � � �gt , C WD hgi, R WD
Q
i Oq.Qi /,

and Q WD C � R. Then, Q is a q-elementary p0-subgroup of G by conditions (1),
(2) of Property R0.p/ of each Qi � Li . We show now that z�.Ap.G/g/ ¤ 0 by
showing that this integer is not zero mod q. Recall that z�.Ap.G/g/D z�.Ap.G/C /�
z�.Ap.G/

Q/ .mod q/ as Q=C D R is a q-group. Therefore, it is enough to establish
that z�.Ap.G/Q/ 6� 0 .mod q/.

Consider any E 2 Ap.G/
Q. By coprime action, E D CE .Q/ŒE;Q�. Moreover,

we note that ŒE;Q� � E \ F �.G/. We first eliminate a potentially troublesome case
for E.

Case 1. We cannot have E \ F �.G/ D 1.



Some results on Quillen’s conjecture via equivalent-poset techniques 361

For in this case, we haveE D CE .Q/, and, in particular,E � CG.Oq.Qi // for all
i . SinceOq.Qi / is a non-trivial subgroup ofLi by (2) of condition R0.p/, we see that
E �NG.Li /. Fix some i , and decomposeE as the direct product ofE \ .LiCG.Li //
with some complement E0. Then, E0 induces outer automorphisms on Li , and Qi
centralizes E0. Thus, we can embed E0 into Aut.Li / and we get E0 � CAut.Li /.Qi /.
However, (4) of condition R0.p/ along with our case hypothesis thatE \F �.G/D 1
forces E0 D 1. Therefore, E � LiCG.Li /. Varying i , we see that

E �
\
i

LiCG.Li / D F
�.G/CG.F

�.G// D F �.G/:

This is contrary to our case hypothesis that E \ F �.G/ D 1, and this contradiction
completes the proof that this case cannot arise.

Thus, all E must satisfy the remaining case.

Case 2. Every E 2 Ap.G/
Q intersects F �.G/ non-trivially.

Thus, via Lemma 2.7 (2), we have a homotopy equivalence given by the poset
endomorphism

Ap.G/
Q
! Ap.F

�.G//Q; E 7! E \ F �.G/;

with the homotopy inverse given by the inclusion.
Finally, note that the direct product of components gives us a homotopy equiva-

lence

Ap.F
�.G//Q D Ap.L1 � � �Lt /

Q

' .Ap.L1/ � � � � �Ap.Lt //
Q

D Ap.L1/
Q1 � � � � �Ap.Lt /

Qt :

That is, we have established (8.1). For (8.2), we compute the reduced Euler character-
istics of these fixed point subposets. Recall using product homology as in Remark 2.11
that the Euler characteristic of a join of spaces is the product of the Euler characteris-
tics of the spaces involved, up to a dimension-shift sign

z�.Ap.G/
Q/ D z�.Ap.L1/

Q1 � � � � �Ap.Lt /
Qt / D .�1/tC1

Y
i

z�.Ap.Li /
Qi /:

The rightmost term is non-zero mod q by (3) of condition R0.p/ on theQi -subgroups.
In consequence, z�.Ap.G/g/ ¤ 0; and so, G satisfies (L-QC).

In [4], Robinson methods are used to treat components L which fail the .QD/p-
property for odd primes p, as given in the .QD/-list, which we have quoted as
Theorem 2.16. In this context, simple groups of Lie type are a major exception to
.QD/. For example, in that list we see that there are basically three sub-families of
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groups of Lie type which might fail .QD/p for odd p: Lie-type groups in the same
characteristic p, Lie-type groups in characteristic 2, and unitary groups Un.q/ with
p j q C 1. There are also some assorted particular cases (arising from exceptional or
twisted groups).

The following proposition shows, in particular, that groups of Lie type in char-
acteristic r D 2 satisfy Property R.p/ for odd p. Consequently, we will then have
to focus our attention on studying the remaining components of Lie type described
in the previous paragraph. Most of the work for the proposition was already done
in [4, Theorem 5.3] for odd p.

The proof of the proposition is based on [3, Lemma 4]. However, the proof of that
lemma seems to have a small gap, which we show below how to fix. We are grateful
to R. Solomon, who provided us with some references on situations related to the
Borel–Tits theorem.

Proposition 8.2. Suppose that L is a simple group of Lie type in characteristic r ¤
p. Suppose in addition that L ¤ B2.2/0.Š A6/. Then, a Sylow r-subgroup X of L
satisfies conditions (1)–(4) of Property R0.p/, where we take r as q in that definition.
Moreover, Ap.Aut.L//X D ;. In particular, if (p is odd, and r D 2) or (p D 2, and
r D 3), we even have Property R.p/ with QL a Sylow r-subgroup of L.

Proof. Let X be a Sylow r-subgroup of L. We show that X satisfies conditions (1)–
(4) of Property R0.p/ with q D r , by using our hypothesis that r ¤ p.

Clearly,X satisfies conditions (1), (2) of Property R0.p/. On the other hand, since
P WD NL.X/ is a Borel subgroup of L, we have

CAut.L/.X/ � X;

by [11, (13-2)], except when L D B2.2/0 Š A618. This shows that X satisfies condi-
tion (4) under our hypothesis that L ¤ B2.2/0.

It remains to establish condition (3) of Property R0.p/. Indeed, we will show the
stronger condition .3C/ mentioned earlier, namely, Ap.Aut.L//X D ;, via the ideas
of [3, Lemma 4].

We first show Ap.L/
X D ; (which in fact is enough for (3)). Assume by way of

contradiction that we have some E 2 Ap.L/
X . Let M WD EX � L. At this point,

[3] claims that M lies in a parabolic by the Borel–Tits theorem. However, Borel–Tits
does not apply here, since r ¤ p. So instead, we need to quote some further develop-
ment, such as [23]. Since jL WM jr D 1, we have Or.M/ > 1 by [23, Proposition C]

18In the latter case, the centralizer of a Sylow 2-subgroup of B2.2/
0 in Aut.B2.2/

0/ is iso-
morphic to C2 � C2, and contains non-trivial elementary abelian 2-subgroups inducing outer
automorphisms on L D B2.2/

0.
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(see also [22]). We now apply the Borel–Tits theorem to conclude that there exists
a parabolic subgroup P of L such that Or.M/ � Or.P / and NL.Or.M// � P . In
particular, we see that EX DM � P and Or.P / lies in the r-Sylow X of L. Hence,
E and Or.P / normalize each other, so ŒE;Or.P /� � E \Or.P / D 1 since p ¤ r .
This implies that E � CL.Or.P //. Since Or.L/ D 1 and Or.P / > 1, P is proper in
L; and then using [11, (13-2)], CAut.L/.Or.P // � Or.P /. Again, E � Or.P / forces
E D 1 since p ¤ r , contrary to E > 1 in our assumption that E 2 Ap.L/

X . This
contradiction shows that Ap.L/

X D ;, and (3) follows. (So, the proof is actually now
complete.)

Finally, if we had some E 2 Ap.Aut.L//X , then E \ L is invariant under X ,
and by the previous paragraph, E \L D 1. Therefore, ŒE;X� � E \L D 1, so E �
CAut.L/.X/ � X , again contrary to p ¤ r . This contradiction shows Ap.Aut.L//X D
;, so we even get (3+). As we had mentioned earlier, this gives another proof that X
satisfies condition (4) of Property R0.p/.

9. Proving our two variants of Aschbacher–Smith for the primes 3
and 5

This section is devoted to proving our two extensions of [4, Main theorem] to pD 3;5:
first under (H1u), and then instead under (H1).

So, we begin by considering the variant under (H1u): that is, we extend [4, Main
theorem] to every odd prime p. Recall from the introduction that our extension Theo-
rem 1.1 will be established below as Theorem 9.2, where the proof will involve (H1u).

In fact, in [16], we already extended the Aschbacher–Smith theorem to the case
p D 5. We recall that the only obstruction there was the possible presence of a com-
ponent of Suzuki type Sz.25/. So, in [16], we showed that if G contains such a
component, then—under (H1)—G satisfies (H-QC). This is of course an example
of an elimination result.

The explanation given in [16] claiming that [4, Main theorem] extends, as it is, to
p D 5, has a small gap: one needs to work under (H1u), instead of (H1), but the proof
of such extension to p D 5 invokes [16, Theorem 5.1] which requires in fact (H1).
In view of this discrepancy, we provide below a correspondingly adjusted statement
of [16, Theorem 5.1] instead of using (H1u). We will then check that the proof of
the original theorem adapts just as well to this alternative version, by only using the
results of [16].

Theorem 9.1 (cf. [16, Theorem 5.1]). Suppose that G satisfies (H1u) and contains a
component L such that

L Š PSL2.23/.p D 3/; PSU3.23/.p D 3/ or Sz.25/.p D 5/:

Then, G satisfies (H-QC).
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Proof. We suppose that Op.G/ D 1 and show zH�.Ap.G// ¤ 0. The original proof
in [16] begins by reducing toOp0.G/D 1, just to claim thatZ.L/D 1. However, here
we have the property Z.L/ D 1 directly by hypothesis, so we do not need to reduce
to Op0.G/ D 1.

And the rest of the original proof in [16] invokes (H1) to claim that Ap.CG.L//

has non-zero homology. For that purpose, we will invoke instead (H1u). Hence, we
need to show that Op.CG.L// D 1, and that CG.L/ satisfies (H-QC). By Lemma
2.3 (3), (4), the components of CG.L/ are the components of G distinct from L, and
Op.CG.L//DOp.G/D 1. Therefore, since CG.L/ is proper inG, while any unitary
component of CG.L/ is a unitary component of G, CG.L/ satisfies the conditions of
(H1u). Hence, zH�.Ap.CG.L/// ¤ 0, as desired. And now the original proof in [16]
goes through.

With the above re-statement of [16, Theorem 5.1] in hand, we can now complete
the extension of [4, Main theorem] to every odd prime, by also using the results of
this article. While the extension to p D 5 can be done here by using Theorem 9.1 and
the existing argument of [4], the extension of [4, Main theorem] to p D 3 now further
requires us to deal with some more exceptional components, and also to extend certain
results of [4] to p D 3. Concretely, although most of the hard work has already been
done in [4], it remains to eliminate some further components on the .QD/-List (recall
we have quoted this list as Theorem 2.16), before constructing Robinson subgroups—
to finish as in the cases for p � 5. Indeed, the only component that presents a real
obstruction to constructing Robinson subgroups is the Ree group 2G2.3

a/0; and our
earlier result Theorem 6.4 shows that such a component is not a problem in our setting.

We proceed now with the details of our extension of [4, Main theorem] to every
odd prime p.

Theorem 9.2. Let p be an odd prime. Suppose that if G has a unitary component
LŠ PSUn.q/ such that q is odd and p j qC 1, then .QD/p holds for the p-extensions
of PSUm.qp

e
/ for m � n and e 2 Z.

Then, G satisfies (H-QC).

Proof. The proof largely follows the path of the original proof of [4, Main theorem]:
indeed we quote those original arguments when p > 5; and also, when they apply
equally well to the “new” primes pD 3;5—but when not, we must indicate alternative
arguments.

We take G to be a counterexample of minimal order subject to the conditions of
the theorem. Hence,G satisfies (H1u). Then, we haveOp.G/D 1 and zH�.Ap.G//D
0. The proofs of the reductions in [4, Propositions 1.3–1.5] apply for any p (including
the primes p D 3; 5), so we also get Z.E.G// D 1 D Z.G/. In particular, E.G/ is
the direct product of the components of G, which are simple.
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At this point, we insert into the original argument of [4] an application of the
elimination result Theorem 9.1 to exclude PSL2.23/ (p D 3), PSU3.23/ (p D 3), and
Sz.25/ (pD 5) as possible componentsL ofG. We could optionally also apply further
elimination results here, which would have the effect of some simplification, over the
original path of [4], of later details. However, here we instead prefer to closely parallel
that original path.

The three eliminations above now remove the obstruction, for the new primes
p D 3; 5, to the proof of the non-conical complement result [4, Theorem 2.3]. Hence,
also the further result [4, Theorem 2.4] can be applied in the remainder of our proof.

So, we now obtain, first, the reduction [4, Proposition 1.6] to Op0.G/ D 1; and
then also [4, Proposition 1.7], namely, the elimination of .QD/-components. This is
because their proofs use [4, Theorem 2.4], as allowed by the previous paragraph. We
note that this part of the proof does not depend on the particular prime p (and so, in
particular, goes through for p D 3; 5).

In the next few paragraphs, let us describe more precisely the effect of the elim-
inations above. Now, every component L of G has some p-extension LB � G such
that LB fails .QD/p . In particular, if L is a component of G, then by the hypoth-
esis (H1u), L is not PSUn.q/ with q odd and p j q C 1. This gives the hypothesis
for [4, Theorem 3.1]—which is stated for all odd p (hence including p D 3; 5). That
result shows that L must appear in the .QD/-List—which we have reproduced as
Theorem 2.16 in the present paper.

Now, for p > 5, Aschbacher and Smith complete the proof by invoking [4, Theo-
rem 5.3]—which establishes R.p/ for any L in the above .QD/-List. Indeed, since
that result applies also to p D 5, we obtain our extension of their main result to p D 5
as well.

Hence, in the remainder of our proof, we may assume p D 3. In brief overview:
we will first apply some further elimination results to avoid certain classes of groups
in the .QD/-List; and after that, finish with results on R.3/ much as in [4, Theo-
rem 5.3]—cf. Proposition 8.1.

So, let us briefly assess the .QD/-sublist for p D 3 that we must start with.

(1) We must deal with the Lie.3/ cases in (1) of the .QD/-List.

(2) The unitary cases in (2) of that list are ruled out by hypothesis (H1u).

(3) Case (3) of the .QD/-List is eliminated: For there, we would have q D r3,
with the orders-mod-3 given by jqj D jr j D 3; 6; 8; 12; but here, 3 cannot
divide r , q (otherwise, these orders are not defined)—and so, for us, those
orders-mod-3 can only be 1, 2.

(4) We do not get case (4), since there p D 7 or 11.
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(5) But we must still contend with the specific cases for p D 3 in (8)–(12) of
the .QD/-List. (We mention that the three special eliminations applied at the
start of our proof have already removed L2.23/ from (11), and U3.23/ from
(10).)

Thus, it remains to deal with the appropriate cases in (1) and (8)–(12) of the .QD/-
sublist for p D 3.

We next setup to apply the elimination result Theorem 2.24. Note by our early
reduction to Op0.G/ D 1 that every component L has order divisible by p D 3. Fur-
thermore, by Lemma 2.3 (3), the components of CG.yL/ are components of G and
hence satisfy (H1u); so since G is a counterexample of minimal order to our theorem,
we have that CG.yL/ satisfies (H-QC). This gives the hypotheses of Theorem 2.24, up
to (1) there.

Since G is, in particular, a counterexample to (H-QC), we see that the remaining
hypothesis (2) of Theorem 2.24 must fail; so that p must divide the order of OutG.L/.
Thus, for p odd (and hence for our present p D 3), this eliminates L of alternating or
sporadic type. So, we eliminate cases (8) and (12) in the .QD/-List from our list of
possible components of G.

We will here apply one further elimination result, namely, Theorem 6.4. Note
that we have the “in particular” hypotheses (H1u) and p D 3 odd there; furthermore,
the previous paragraph shows that we have B > 1. And we saw that the remain-
ing in-particular hypothesis of (p-ˆ) holds for the Lie-type groups of Lie-rank 1, by
Remark 6.2 (0). So, we eliminate the subcase of Lie-rank 1 from the Lie.3/ part of
case (1) of the .QD/-list. (Note that the smallest Ree group L Š 2G2.3/

0 Š L2.23/
was already eliminated by our earlier application of Theorem 9.1; we cannot apply
Theorem 6.4 to it since it is one of the exceptional commutators which are not of type
(sLie-p) in Definition 6.1 (2).)

To summarize the effect of these eliminations: we have reduced our p D 3 sublist
(1), (8)–(12) of the .QD/-List to Case (1) for Lie-rank > 1, and cases (9)–(11) (with
L2.23/ already eliminated from (11)).

And now, we are ready to finish by turning to results which will give R.3/ for this
latest sublist. Proposition 8.2 gives R.3/ for the Lie.2/ cases—except Sp4.2/

0DAlt6,
which was already eliminated above via Theorem 2.24 as the alternating group Alt6.
This completes the treatment of the cases in (9)–(11) and reducing us to Case (1) with
Lie-rank > 1.

We now observe that the proof of [4, Theorem 5.3] for the Lie.p/ case actually
works for p D 3 and R.3/—except when L Š 2G2.3

a/ for a > 1 odd, which we
already eliminated above via Theorem 6.4.

In conclusion, we have shown every remaining possible component L of G (that
is, not ruled out by our elimination results above) satisfies R.3/. By Proposition 8.1,
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G satisfies (L-QC)—and hence also (H-QC). This completes our proof of Theo-
rem 9.2.

Remark 9.3. Property R.3/ cannot be established for the Ree groups 2G2.3a/ (for
a > 1 odd), since there every field automorphism of order 3 of the Ree group com-
mutes with some Sylow 2-subgroup. However, R.3/ does hold for the smallest Ree
group 2G2.3/0, which has no field automorphisms.

Finally, we close this section by proving Theorem 1.4, the alternative version
under (H1) of Theorem 1.1 (that is of Theorem 9.2 above). We will particularly
emphasize the points of the proof that use the CFSG.

Proof of Theorem 1.4. We assume that G satisfies both (H1) and (H2). As usual for
(H-QC), we may suppose thatOp.G/D 1, and we must show then zH�.Ap.G//¤ 0—
now for all odd p, including p D 3; 5.

By Theorem 2.22 (2), we can assume that Op0.G/ D 1 (this reduction makes use
of the CFSG to invoke the p-solvable case of (H-QC)). Note that this implies that
every component of G is simple and of order divisible by p (see Lemma 2.3).

We get the following constraints on the components of G, which do not invoke
the CFSG.

(1) By (5) and (6) of Theorem 2.22, we can suppose that G does not contain
components isomorphic to PSL2.23/, PSU3.23/, or Sz.25/ for p D 3; 3; 5,
respectively.

(2) By Theorem 2.24, we can suppose that G does not contain components of
alternating or sporadic type.

(3) By Theorem 7.2, we can suppose that for every component L of G there is a
p-extension of L in G failing .QD/p .

(4) By Theorem 6.4, we can suppose that G does not contain a component of Lie
type and Lie rank 1 in characteristic p.

In view of (3) above, we can invoke at this point the .QD/-List, which we have quoted
as Theorem 2.16, to eliminate possible components of G. Here, we do use the CFSG.

Note that (H2) guarantees that the unitary groups in item (2) of Theorem 2.16 are
not a possibility in our context. Hence, using the further eliminations noted in (1), (2),
(4) just above, we see that items (1), (3), (5), (6), (9), (10), and (11) of the .QD/-
List Theorem 2.16 contain the possible components of G. Now, all of these simple
groups satisfy the Robinson property R.p/ in view of [4, Theorem 5.3] and its proof
(compare with the end of the proof of Theorem 9.2). Recall here that 2G2.3a/0 does
not arise as a component of G when p D 3, in view of the elimination in item (4)
above, along with (1) when a D 1 since PSL2.23/ Š 2G2.3/

0. Finally, note that this
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step does not require the CFSG, since Property R.p/ is shown for specific families
of simple groups.

Remark 9.4. In summary, in the proof of Theorem 1.4 above, the CFSG is used
just in two steps: first, to appeal to the p-solvable case of the Quillen conjecture in
reducing to Op0.G/ D 1, and then, to invoke the .QD/-List of [4].

10. Some results toward the case p D 2 of Quillen’s conjecture

In view of the previous results on odd p, in this section, we give some insights for the
study of (H-QC) for p D 2.

First, for overall context, recall our general discussions of strategy in Remark 1.2.
In general, the theorems of [4] only work for p odd. We have been able to extend

some of them to every prime p by using more general combinatorial methods in Ap-
posets. For example, the reductionOp0.G/D 1was originally stated in [4, Proposition
1.6] for p > 5; and an extension to all primes p was given in [16] by using a more
general combinatorial argument. In addition, the main reductions in Theorems 2.22
and 2.24 here also have no restrictions on p, and so, we can apply them to p D 2.
In a similar vein, Theorem 7.2 extends [4, Proposition 1.7] to every prime p, at the
cost of assuming an alternative inductive hypothesis, namely, (H1); so in this section,
we will make use of the (H1)-versions of various results. Finally, the Robinson path
to (L-QC) described in the previous two sections (notably Proposition 8.1) has no a
priori restrictions on p, so it also admits the possibility of treating p D 2.

Thus, (in view of (MOC) in Remark 1.3) we see using (H1) that a minimal coun-
terexample G to (H-QC) when p D 2 must satisfy O2.G/ D 1 D O20.G/, using [16,
Theorem 4.1]. Further, for every component L of G we have that some p-extension
in G fails .QD/p (by Theorem 7.2), it is not of Lie type in characteristic p D 2

except possibly for the cases listed in Theorem 6.5, and OutG.L/ is not a 20-group
(by Theorem 2.24).

In consequence, if we adapt the strategy of [4] in the spirit of (Elim) and (Rob-
nonelim) in Remark 1.2, we can try to exhibit a .QD/-List for p D 2, and then show
that the possible components in such a list satisfy the Robinson property R.2/.

So, in this section, we give some further elimination results for p D 2, as conse-
quences of our methods. We also establish the Robinson property R.2/ for some of
the simple groups. These results will allow us to conclude, for example, that a minimal
counterexample G to (H-QC) for p D 2 has some component L which is of Lie type
in some characteristic¤ 3. (cf. Theorem 1.7, and its proof at the end of this section.)

So, we now embark on the various results just described. The following initial
elimination result is an easy consequence of Theorem 2.24.
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Proposition 10.1. Let p D 2, and suppose that G satisfies (H1). If a component L of
G is of Suzuki type Sz.22nC1/, or of Ree type 2F4.22nC1/0 or 2G2.32nC1/0, then G
satisfies (H-QC).

In particular, if G satisfies (H1) but fails (H-QC), then G contains no component
of Suzuki type nor of Ree type.

Proof. We saw in the discussion preceding Definition B.1 that Out.L/ is a 20-group
in each case. Hence, A2.L/ D A2.AutG.L//; and A2.L/ ! A2.AutG.L// is the
identity map, and so, is non-zero in homology using the almost simple case of the
conjecture, which we quoted earlier as Theorem 2.20. The result follows then by
Theorem 2.24 (cf. [18, Corollary 1.5]).

Corollary 10.2. For p D 2, if G satisfies (H1), then either G satisfies (H-QC), or
each component of G has order divisible by 3.

Proof. The only19 simple groups of order not divisible by 3 are the Suzuki-type
groups, which as components lead to (H-QC) by the previous proposition.

So, it is natural in this section to use qD 3 in our q-elementary Robinson subgroup
analysis.

In the remainder of the section, we, in particular, show that alternating or sporadic
components of G are either eliminated from a minimal counterexample to (H-QC)
with p D 2 (by using one of our homology propagation methods), or else they satisfy
the Robinson property R.2/. We summarize the results for sporadic components, in
Proposition 10.4 below; and for alternating components, in later Corollary 10.8.

The following lemma will give us a quick condition for establishing Property
R.2/ on a simple group. For primes p, q, recall that the p-local q-rank of a finite
group L is the largest q-rank of a p-local subgroup of L. More concretely, it is the
following number:

mp;q.L/ WD max¹mq.NL.A// W A 2 Ap.L/º:

Lemma 10.3. LetL be a simple group such that one of the following conditions hold.

(1) WheneverE2A2.Aut.L//, thenNL.E/ does not contain a Sylow 3-subgroup
of L.

(2) m2;3.Aut.L// < m3.L/.

Then, L has property R.2/.

19This is a well-known pre-CFSG result, going back to Thompson and Glauberman (see [9,
Theorem C]); cf. Theorem 4.174 and the discussion beforehand (using also [10, Theo-
rem 4.126]).
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Proof. We show first that (2) implies (1). Assuming (2), take a Sylow 3-subgroup P
of L. Since m3.L/ D m3.P /, and m2;3.Aut.L// < m3.L/ by hypothesis, for every
E 2 A2.Aut.L//, we have

m3.NL.E// � m3.NAut.L/.E// � m2;3.Aut.L// < m3.L/ D m3.P /:

Therefore, NL.E/ cannot contain P , giving (1) as claimed.
It remains to show that condition (1) implies Property R.2/ (with P in the role

of “QL”). By (1), P does not normalize an element E 2 A2.Aut.L//. Therefore, we
have established (3+), namely, that A2.Aut.L//P D ;; and we had seen earlier that
(3+) suffices to guarantee (3) and (4) of R0.2/, so we see L satisfies Property R.2/

for P .

We show next how to deal with sporadic components when studying (H-QC) for
p D 2.

Proposition 10.4. Let L be a sporadic simple group and let p D 2. Then, A2.L/!

A2.Aut.L// does not induce the zero map in homology if L is one of the following 17
sporadic groups:

M11; M12; M22; M23; M24; J1; J4; �1; �2; �3; M.23/; HS; Ly; Ru; F3; F2; F1:
(10.1)

In the remaining 9 sporadic cases, L satisfies Property R.2/:

J2; J3; M.22/; M.24/0; McL; He; Suz; O’N; F5: (10.2)

Proof. For the proof of this proposition, we use the results of [12, Table 5.3].
We first consider L in the list (10.1). Then, either Out.L/ D 1 or else L D M12,

M22, HS. In the cases where Out.L/ D 1, A2.L/! A2.Aut.L// is the identity map
and hence non-zero in homology by the almost simple case of (H-QC), which we had
quoted as Theorem 2.20. So, we study the remaining three cases of this list.

• IfLDM12, then for allB 2OAut.L/.L/,B is of type 2C and henceO2.CL.B// >
1 (see [12, Table 5.3 (b)]). So, A2.L/! A2.Aut.L// is a homotopy equivalence
using part (3) of Lemma 3.3, and hence is non-zero in homology using the almost
simple case as above.

• IfLDM22, then for all B 2OAut.L/.L/, B is of type 2B or 2C , and in either case
we have O2.CL.B// > 1 (see [12, Table 5.3 (c)]). Then, A2.L/! A2.Aut.L//
is again a homotopy equivalence using part (3) of Lemma 3.3, and is non-zero in
homology as above.

• If L D HS, then using [18, Theorem 7.1], we see that A2.L/! A2.Aut.L// is
non-zero in homology.

This completes the treatment of the list (10.1).
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It remains to consider L in the list (10.2). Then, j Out.L/j D 2. Note that, in
each case, if B 2 OAut.L/.L/, then jBj D 2, so every element there is maximal, and
also Aut.L/ D LB . We study Property R.2/ in each case. From [12, Tables 5.6.1
and 5.6.2], we see that in fact m3.L/ > m2;3.Aut.L// if L is one of the follow-
ing seven sporadic groups:

J3; M.22/; M.24/0; McL; Suz; O’N; F5I

and then we may apply Lemma 10.3 (2) to obtain R.2/ for these cases. We complete
the details of the proof by analyzing the two remaining cases J2 and He.

Case L D J2. Let Q 2 Syl3.L/. Note that Q does not centralize outer involutions.
Moreover, we getCAut.L/.Q/�Q and Ap.L/

QD;—either by looking into the max-
imal subgroups, or by direct computation. This gives (4) and (3) of Property R0.2/,
so we see that L satisfies property R.2/.

Case L D He. We get Property R.2/ by Lemma 10.5 below.

The assertions in the following lemma were checked with GAP [8]. We follow the
conventions of [12, Table 5.3 (p)].

Lemma 10.5. Let L D He, and let Q be a cyclic subgroup of order 21 generated by
elements of type 3B and 7A. Then, Q satisfies the requirements of Property R.2/.

Proof. Clearly, Q is q-elementary for q D 3, giving (1) and (2) of Property R0.2/.
And CAut.L/.Q/ D Q, giving A2.CAut.L/.Q// D ;, for (4) there. Further, B2.L/

Q

consists of exactly two non-conjugate elements E1 and E220. Since the equivalence
of A2.L/ with B2.L/ in Proposition 2.13 is L-equivariant, we get the value of C1
for the reduced Euler characteristic in (3) of R0.2/. So, as q D 3, we conclude that
Q satisfies the requirements of property R.2/.

We now make an analysis for alternating components, similar in spirit to Proposi-
tion 10.4 above for sporadic components.

Note that the alternating components Alt5 Š PSL2.22/ and Alt6 Š Sp4.2/
0 are

eliminated from a minimal counterexample in view of Theorem 6.5. So, we show that
Altn, with n � 7, satisfies the Robinson property R.2/.

Proposition 10.6. Let L be an alternating group Altn with n � 7. Then, L satisfies
Property R.2/.

Proof. Recall that we have Aut.Altn/D Symn since n� 7. In particular, OSymn
.Altn/

consists only of elements of order 2, which, in particular, are minimal. So, we see that
Symn D Altn B for all B 2 OSymn

.Altn/.

20Both are isomorphic to C2 � C2, and are generated by involutions of type 2A, with E1 \

E2 D 1; and E1 is L-conjugate to O2.CL.2A//, with hE1; E2i Š PSL3.2/.
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Now, we establish Property R.2/ for Altn for our value of n � 7. We letQ denote
the following subgroup of Altn:

Q D

8̂̂<̂
:̂
h.1 2 3/; .4 5 : : : n/i 2 j n;

h.1 2 : : : n/i 2 − n; 3 j n;
h.1 2 3/; .4 5 6/; .7 : : : n/i 2 − n; 3 − n:

Note that in each case Q is a 3-elementary 20-subgroup of Altn with O3.Q/ > 1, so
we get conditions (1), (2), and (5) of Property R.2/ for this Q � Altn. So, it remains
to prove conditions (3) and (4) for each case of Q.

Case 1. 2 j n.
This case is done in [3, p. 212], below their Lemma 3, where it is shown that

A2.Symn/
Q D ; (including for n D 6). Therefore, we have (3+), which we saw suf-

fices to give conditions (3) and (4) of Property R.2/ for thisQ. This finishes the proof
of Case 1.

Case 2. 2 − n, 3 j n.
Note thatQ is transitive onX WD ¹1; : : : ;nº, which has an odd number of elements

by hypothesis. If there is any E 2 A2.Symn/, then E acts non-trivially on X ; hence
Lemma 10.7 below would show n is even, contrary to the hypothesis of this case.
This contradiction shows that A2.Symn/

Q D ;. So, again we have (3+), finishing the
proof of Case 2.

Case 3a. 2 − n, 3 − n, n > 7 (so n � 11).
Suppose that there is some E 2 A2.Symn/

Q. Write x WD .1 2 3/, y D .4 5 6/,
and z WD .7 8 : : : n/, with Q WD hx; y; zi. Note that both CE .x/ and CE .y/ are Q-
invariant.

Claim. CE .x/ D 1 D CE .y/; in particular, E is not trivial on ¹1; 2; 3º or ¹4; 5; 6º.
Note that CE .x/ � CSymn

.x/ D hxi � Sym¹4;5;:::;nº by [12, Proposition 5.2.6].
Now, since E is a 2-group, we conclude that CE .x/ � Sym¹4;5;:::;nº. But also note
that y; z 2 Sym¹4;5;:::;nº, so CE .x/ 2 A2.Sym¹4;5;:::;nº/

hy;zi [ ¹1º. By Case 1 (with
n� 3 � 8 in the role of “n”), we see that we have A2.Sym¹4;5;:::;nº/

hy;zi D ;: so that
we must have CE .x/ D 1.

Since y is also a 3-cycle, an analogous argument shows that CE .y/ D 1. This
finishes the proof of the claim.

Now, since n is odd with E a 2-group, we see that Fix.E/ ¤ ;; and Q acts on
Fix.E/. Recall that theQ-orbits of the action ofQ on ¹1; : : : ;nº are ¹1;2;3º, ¹4;5;6º,
and ¹7; 8; : : : ; nº. Further, Fix.E/ is a non-empty union of Q-orbits. On the other
hand, the above claim shows that E cannot be trivial on ¹1; 2; 3º or ¹4; 5; 6º. This
forces Fix.E/ D ¹7; 8; : : : ; nº, and so, E � Sym6, that is, E 2 A2.Sym6/

hx;yi. But
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this is Case 1 again, and we saw there that also for n D 6, we get A2.Sym6/
hx;yi D

;, contrary to our choice of E just before the claim. This contradiction shows that
A2.Symn/

Q D;. In particular, we again get condition (3+), and hence Property R.2/

for this Q. This concludes the proof of Case 3a.

Case 3b. n D 7.
It follows by direct computation that A2.Sym7/

Q D A2.Alt7/Q is discrete with
two points. In particular, A2.CSymn

.Q// � A2.Alt7/ and z�.A2.Alt7/Q/ D 1 6� 0

.mod 3/. Hence, Q satisfies conditions (4) and (3) of Property R.2/ for L D Alt7.
This finishes the proof of Case 3b, and hence of Case 3.

We have shown in all cases that Altn for n � 7 satisfies Property R.2/.

During the proof, we used the following easy consequence of non-trivial action
under a p-group.

Lemma 10.7 (cf. [3, Lemma 3]). Assume that Q � G and that E 2 Ap.G/
Q acts

non-trivially on some Q-orbit O. Then, p j jOj.

We combine the results above on the alternating-component case in the following
corollary.

Corollary 10.8. Let p D 2, and suppose that G satisfies (H1). Suppose in addition
that L is a component of G, such that L=Z.L/ Š Altn.

(1) If n D 5 or 6, then G satisfies (H-QC).

(2) If n � 7, then L=Z.L/ satisfies Property R.2/.

We can now prove Theorem 1.7.

Proof of Theorem 1.7. The elimination-parts (1)–(3) are established as follows. Note
that from Theorem 6.5 and the list (10.1) in Proposition 10.4, we get conclusion (1)
there. Then, Theorem 7.2 gives conclusion (2); and Theorem 6.5 gives conclusion (3).

In proving conclusion (4), we may as well assume we have already eliminated
components L described in (1)–(3). Then, all the remaining components L of G sat-
isfy R.2/: the alternating components by Proposition 10.6, the sporadic components
via the “remaining-9”-list (10.2) in Proposition 10.4, and the Lie-type components,
which must be defined in characteristic 3 by the hypothesis of (4), by Proposition 8.2.
Then, the standard Robinson-type argument on R.2/ in Proposition 8.1 gives (L-QC),
and hence (H-QC) as required.

Remark 10.9. The simple group L D PSL3.22/ is a potential candidate to fail most
arguments that we describe here, for the case p D 2.

• This simple group satisfies (sLie-p), but corresponds to one of groups in the
exclusion list of Theorem 6.5: there exist 2-outers B 2 OAut.L/.L/ of 2-rank 2,
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generated by graph and field automorphisms. Hence, OG.L/ may contain non-
cyclic 2-outers if L is a component of G (see also the discussion in Remark 6.9.)

• We have m2.L/ D 4 and A2.L/ ' B2.L/ has the homotopy type of a bouquet
of 1-spheres. This shows that .QD/2 fails for L. Thus, Theorem 7.2 cannot be
applied for L.

• It can also be proved that A2.Aut.L// has the homotopy type of a bouquet of
2-spheres, so the map A2.L/! A2.Aut.L// is the zero map in homology. This
shows that we cannot apply Theorem 2.24 in general.

• Finally, we see that we cannot produce Robinson subgroups for q D 3. That is,
PSL3.22/ fails R.2/. Indeed, it fails R0.2/ for any possible choice of q: since
j PSL3.4/j D 20160 D 26 � 32 � 5 � 7, here q could be 3; 5; 7. In any case, for a
non-trivial q-subgroup Q of L, we have that CL.Q/ is a Sylow q-subgroup of
L, and CAut.L/.Q/ contains 2-outers of L. So, A2.CAut.L/.Q// is not included in
A2.L/.

The pathological behavior of this simple group shows that, as a component of a
finite group, this cannot be treated by using some of the theorems described in this
article. In conclusion, further elimination results will be necessary to study the case
p D 2 of the conjecture, if we attach to the usual strategy (Elim)/(Rob-nonelim).

This behavior of PSL3.22/ is closely related to the fact that Aut.PSL3.22// satis-
fies the Robinson Property (R2), as defined in [3] (cf. Theorem 2 there).

A. An extended form of Quillen’s fiber theorem

We had stated Quillen’s fiber theorem in earlier Theorem 2.10. Below, we recall gen-
eralized version and outline a combinatorial proof.

Recall that an n-equivalence is a continuous function f W X ! Y such that f
induces isomorphisms in the homotopy groups �i with i < n, and an epimorphism
in �n. By the Hurewicz theorem, an n-equivalence also induces isomorphisms in the
homology groups of degree � n � 1, and an epimorphism in degree n.

Proposition A.1 (Extended quillen fiber theorem). Let f WX ! Y be a map between
finite posets, and let n � 0.

(1) Suppose that for all y 2 Y , f �1.Y�y/ � Y>y (resp., f �1.Y�y/ � Y<y) is in
fact .n � 1/-connected. Then, f is an n-equivalence.

(2) In addition, assume thatX;Y areG-posets for some groupG, and that f is a
G-equivariant map of posets such that for all y 2 Y , f �1.Y�y/ � Y>y (resp.,
f �1.Y�y/ � Y<y) is Gy-contractible. Then, f is a G-homotopy equivalence.
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Proof. (Sketch) We begin by showing item (1). To that end, we consider the non-
Hausdorff cylinder of the map f . This is the finite poset B.f / whose underlying set
is the disjoint union of X and Y . It keeps the given order in X and Y ; and if x 2 X
and y 2 Y , set x < y if f .x/ � y. It can be shown that Y is a strong deformation
retract of B.f /, via the map r W B.f /! Y defined by r.x/D f .x/ if x 2X (and the
identity in Y ). Moreover, if i WX ,! B.f / is the inclusion map, then .ri/.x/D f .x/,
i.e., ri D f . Since r is a homotopy equivalence, we see that f is an n-equivalence if
and only if the inclusion i W X ,! B.f / is an n-equivalence.

Let Y WD ¹y1; : : : ; ysº be a linear extension of Y , that is, a numbering of the
elements of Y such that yi � yj implies i � j . Further, set Xi WD X [ ¹yi ; : : : ; ysº.
Hence, X0 D B.f / and XsC1 D X . Note that X ,! B.f / is the composition of all
the inclusions XiC1 ,! Xi . We show that each inclusion is an n-equivalence. Note
that

Xi D X [ ¹yi ; : : : ; ysº D XiC1 [ ¹yiº;

Xi>yi
D Y>yi

and Xi<yi
D X<yi

D f �1.Y�yi
/:

Therefore, the conclusion of item (1) follows from Lemma A.2 below.
Next, we prove item (2). Here, we will use the fact that if f; g W X ! Y are two

equivariant maps between G-posets such that f � g, then f and g are equivariantly
homotopic (see also the discussion in [15, p. 285]). Observe that the non-Hausdorff
cylinder B.f / is naturally a G-poset; we have X � B.f / and r W B.f /! Y is a G-
equivariant strong deformation retract (and hence a G-homotopy equivalence) since
r.z/� z for all z 2 B.f /. And by the equality ri D f , we see that it remains to show
that the inclusion i W X ,! B.f / is a G-homotopy equivalence.

Now, instead of taking an arbitrary linear extension of Y , we decompose Y into a
disjoint union of G-orbits Y1; : : : ; Ym, such that if y 2 Yi and y0 2 Yj are such that
y < y0, then i < j . (Note that we can never have y < y0 with i D j .) Let Xi D
X [ Yi [ � � � [ Ym. It remains to see that if we remove a whole orbit Yi , then we
get a G-homotopy equivalence XiC1 ,! Xi . Hence, it is enough to establish the case
B.f /DZDX [Y0, where Y0 is aG-orbit, and for all y 2 Y0 we have that LkZ.y/D
X<y �X>y is Gy-contractible.

At this point, we pass through the posets of chains sd.X/ and sd.Z/. Since the
natural maps sd.X/!X and sd.Z/!Z, which send a chain to its maximal element,
are G-homotopy equivalences, we see that i W X ,! Z is a G-homotopy equivalence
if and only if the inclusion j W sd.X/ ,! sd.Z/ is. We show that the latter map is a
G-homotopy equivalence. To this aim, we prove that the maps j1 W sd.Z/ n sd.Y0/ ,!
sd.Z/ and j2 W sd.X/ ,! sd.Z/ n sd.Y0/ are G-homotopy equivalences. Since j D
j1 ı j2, this will conclude the proof.
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First, note that an element s 2 sd.Y0/ is just a chain of the form s D sy WD .y/

for some y 2 Y0. Then, we see that .sd.Z/ n sd.Y0//>sy D sd.Z/>sy D sd.LkZ.y//
is Gy-contractible by hypothesis. Therefore, j1 is a G-homotopy equivalence by the
Thévenaz–Webb result [26, Theorem 1].

Second, we show that j2 is a G-homotopy equivalence. If � 2 sd.Z/ n sd.Y0/,
then r.�/ WD � n Y0 is a non-empty chain lying in sd.Z n Y0/ D sd.X/. Thus, the
map r W sd.Z/ n sd.Y0/! sd.Z n Y0/ is an equivariant map that satisfies r.�/ � � .
To finish the argument, note that r ı j2 D Idsd.X/ and j2 ı r � Idsd.Z/nsd.Y0/. Since all
these maps areG-equivariant, we conclude that j2 is aG-homotopy equivalence with
inverse r .

Lemma A.2. Let X be a finite poset, and x 2 X such that X<x � X>x is .n � 1/-
connected. Then, the inclusion X n ¹xº ,! X is an n-equivalence.

Proof. (Sketch) For simplicity, we only show the homology version of the result. The
homotopy version follows from the homotopy excision theorem.

Consider the covering X D .X n ¹xº/ [ StX .x/, where StX .x/ D ¹y 2 X W y �
x or y � xº. Then, .X n ¹xº/\ StX .x/DX<x �X>x . Note that StX .x/ is contractible
since every element is comparable with x. By the Mayer–Vietoris sequence applied
to this decomposition, and since the intersection is .n � 1/-connected, if m � n then
we have

zHm.X<x �X>x/
D0 whenm<n

! zHm.X � x/! zHm.X/! zHm�1.X<x �X>x/ D 0:

Hence, the inclusion X n ¹xº ,! X is an isomorphism in the homology groups of
degree at most n � 1, and it is an epimorphism in degree n.

B. Field and graph automorphisms in the same characteristic p

In this section, we collect some more-technical aspects of the automorphisms in the
set ˆL—which we had indicated in Definition 6.3 as our preferred “field-like” outer
automorphisms of L under (sLie-p).

Introduction: Motivation for the terminology. Our first goal in the section will be
to lead up to the general naming-conventions for “field” and “graph” automorphisms
in ˆL—we will follow the conventions used in [12, Section 2.5].

Caution: We do not assume that p D r , where p is the prime used for (H-QC)
and r is the characteristic of the underlying field of a group of Lie type. This initial
discussion will hold for any prime r .

Recall that the group automorphisms of L in ˆL are defined, at the level of the
overlying algebraic group xL, using powers of the generator x 7! xr of the Galois
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group of the algebraic closure Fr of the prime field Fr . So, from that algebraic-group
viewpoint, it would be natural to call the members ofˆL by the name “field automor-
phisms” of L.

And indeed, this is “mostly” the convention in [12, Section 2.5]. Namely, we will
see in Proposition B.2 (1) below that usually the members B of OˆG.L/ have the intu-
itively natural property of centralizing in L a subgroup of the same Lie type—but
defined instead over the fixed subfield of B . However, we’ll also see that in some
of the d -twisted groups L, certain members of ˆL (a subset that we will call ˆd )
exhibit a further diagram-symmetry aspect, causing them to centralize in L a sub-
group which is defined instead by a “twisted” Dynkin diagram, as we will record in
Proposition B.2 (2). These two cases are correspondingly called “field” and “graph”
automorphisms in [12]. This post-classical terminology, determined by the above
centralizer behavior, appears in Definition 2.5.13 there. We will then indicate our
particular special subcase, under (sLie-p), in Definition B.1 below.

We turn to providing some details implementing the above overview.
We’ll now make use of the following expanded notation of [12]. For q denoting

the order of the characteristic-r field of definition, we can write L in the form

L Š d†.q/;

where the case d D 1 indicates that L is the untwisted group with Dynkin diagram
of type †; but d D 2 or 3 indicates that L is the twisted group corresponding to †,
constructed using a diagram-symmetry of order d .

In particular, the value of d > 1 is one of the possibilities s in Remark 2.6 (g) (i)
for elements of the group of diagram-symmetries � Š C2, or Sym3 for D4. We
emphasize these distinct notations as follows. Here, d > 1 indicates the order of a
symmetry from � that was previously fixed and used in the construction of twisted
L, and indeed identifying it by name. By contrast, as we go on to further consider
the possible automorphisms x 2 Aut.L/, the various order-s symmetries in� are still
available as potential ingredients in the action of x on L. In particular, the d -notation
does not mean that L itself has a graph automorphism of order d . Indeed, we saw
in Remark 6.2 (0) that for twisted L (where d > 1), we have �L D 1—so that even
though � has order at least d , it makes no graph-contribution to x 2 Aut.L/.

We now examine the automorphisms in ˆL in the above d -context.

Case d D 1. So, L is untwisted, and † can be any Dynkin diagram.
Here, ˆL consists just of the usual field automorphisms. And since in our context

we mainly work under (p-ˆ) (i.e., the only possible outer automorphisms of order p
are field automorphisms), this is basically what we need to know for untwisted L.

But for completeness, and especially as background to the twisted groups below,
we now examine the conventions related to classical graph automorphisms for the
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untwisted groupsLD 1†.q/. So, we consider the subcases for†, namely, with�>1,
where such automorphisms might arise from diagram symmetries.

We saw for the single-bond diagrams † D An; Dn; E6 in Remark 6.2 (2) that
Out.L/� D ˆL � �L, with �L Š � Š C2, or Sym3 for D4. Here, the non-trivial
members of �L Š � give graph automorphisms in the classical sense of Steinberg.
Their products with non-trivial members of ˆL give graph-field automorphisms.

We also saw in Remark 6.2 (1) for the multiple-bond diagrams † D B2; F4; G2
with the further restriction r D 2; 2; 3 that we somewhat-similarly have Out.L/� D
ˆL�L cyclic, with ˆL of index 2. Now, in the special case where ˆL is an r 0-group,
we get ˆL�L D ˆL � �L, so that the order-r subgroup �L as above gives rise to the
classical graph automorphisms in the Steinberg-sense. These also determine graph-
field automorphisms via products as in the previous paragraph. But more generally, a
generator of �L has r th power given by a non-trivial member of ˆL, and so, should
be considered a graph-field automorphism. Indeed, the later terminology-convention
in [12, Definition 2.5.13 (b)] is to just call all the members ofˆL�L nˆL by the name
of graph-field automorphisms (that is, even the classical Steinberg-sense graph auto-
morphisms in the above special case); so there are never any graph automorphisms in
this multiple-bond case, in the new convention.

Now, consider the remaining case.

Case d > 1. So that L D d†.q/ is twisted (for the relevant † above).
Here, we saw in Remark 6.2 (0) that �L D 1. Thus, there are no Steinberg-sense

graph automorphisms, and Out.L/� D ˆL, which classically would be called field
automorphisms. So, we examine the revised convention in [12, Definition 2.5.13 (c)],
in which the name “graph automorphism” is used for certain members of ˆL.

In the multiple-bond cases † D B2; F4; G2 with r D 2; 2; 3, we have d D 2; and
here there is no change of terminology: all members of ˆL are still called “field auto-
morphisms”. Furthermore, we recall (e.g., [12, Theorem 2.2.3 (b)]) that our twisted L
in these cases is defined over a field of order an odd power of r ; so we see that for
d D 2 here, we have ˆL a d 0-group.

So, now consider the single-bond cases†D An;Dn;E6, with d D 2 (or possibly
3 in caseD4). Again, there is no change of terminology, for elements a 2ˆL of order
coprime to d—they are still called “field automorphisms”. However, if d does divide
the order of a, the revised terminology of [12] is to call a a “graph automorphism”.
And correspondingly, for this d > 1, we set

ˆd WD
®
a 2 ˆL W d divides jaj

¯
;

which is non-empty if and only if L D d†.q/ with single-bond † (since ˆL is a
d 0-group for the twisted multiple-bond cases).
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The motivation for this choice of terminology is indicated in the remark after [12,
Definition 2.5.13], and we expand now on one aspect which suggests the “graph-like”
behavior of such a. Namely, our d -twisted group L arises as the fixed point subgroup
CxL.

Nf Ng/, where xL is an overlying algebraic group of (untwisted) type†, for a suitable
order-d field automorphism Nf 2 ˆxL, and a commuting order-d graph automorphism
Ng 2 �xL. In particular, we can regard L as the subgroup on which Nf acts as Ng�1. Since
ˆxL is cyclic, we can expect a to be influenced by this graph behavior of Nf (notably
when Na D Nf , which leads to the “if” part of the “if and only if” statement above).
And indeed, we will see in Proposition B.2 (2) (b) below that we can get CL.a/ of Lie
type—for a diagram different from † for L D d†.q/.

With the above discussion of general naming-conventions in place, in the remain-
der of the section, we will obtain some results which are related to our further hypoth-
esis of L satisfying (sLie-p). Recall this means that L is a simple group of Lie type in
characteristic r , where now r D p for the prime p we use in studying (H-QC). Note
since L is simple that L is adjoint (cf. [12, Theorems 2.2.6 and 2.2.7]).

So, for this context, we will first specialize our naming-conventions to outer auto-
morphisms of order p. Recall that ˆL is a cyclic and normal subgroup of Out.L/� D
Out.L/=Outdiag.L/ (see (6.1)). Thus, for x 2Aut.L/, we see that we have x Aut.L/-
conjugate to y with y� 2 ˆL if and only if we already have x� 2 ˆL. In particular,
for such an x of order p, its location in ˆL is determined, since

Cyclic ˆL has a unique subgroup �1.Op.ˆL// of order p (which is also
normal).

We can now check, using the discussion above, that such non-trivial elements
x 2 �1.Op.ˆL// lie in ˆd if and only if p D d ; recall we already had p D r . (Here,
we are again using the fact that for the twisted groups with multiple-bond diagrams,
ˆL is a d 0-group for d D 2.)

Below, we indicate the [12]-naming for such order p automorphisms x of L. We
will use the case division on whether x� lies in ˆL nˆd or in ˆd .

Definition B.1 (“Field” and “graph” naming-conventions for order-p automorphisms
in ˆL). Assume that LD d†.q/ satisfies (sLie-p), so that p D r , and we have some
x 2 Aut.L/ of order p, with x conjugate under Aut.L/ to an element of ˆL. Then, in
fact x� itself lies in ˆL, and so, generates �1.Op.ˆL//. And the naming-convention
of [12] gives us the following two cases.

(1) (ˆL n ˆd=field). When x� 2 ˆL n ˆd , x is called a field automorphism.
Notice, when we now consider the specific diagram types † for L D d†.q/, that
this field-type is the “usual” case: since we sawˆd D ; for untwisted L (i.e., d D 1);
and also for many twisted casesL—namely, with d > 1 but not indicated in (2) below.
Indeed, we saw in our preliminary discussion above that for twisted L, where † has
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multiple bonds (namely, B2, F4, G2 with d D 2), we have ˆL is a 20-group in each
case. Hence, since we are now further assuming (sLie-p) so that p D r D 2; 2; 3, such
an x exists if and only if p D 3 and L has type 2G2. By contrast, when † has single-
bonds, our twisted L here is in the proper-subcase where p ¤ d , namely, p ¤ 2 in all
types An, Dn, E6, or p ¤ 3 in type 3D4.

(2) (ˆd=graph). Otherwise, x� is in ˆd , and x is called a graph automorphism.
Recall that ˆd ¤ ; requires L twisted, with single-bond diagram † (namely, of type
An, Dn, E6), and d dividing the order of ˆL; while p D d by our assumption that x
has order p. Thus, the possibilities for the group L are

L D 2An.q/ D PSUnC1.q/ .n � 3/I 2Dn.q/ .n � 4/I
2E6.q/I and 3D4.q/;

with p D d D 2; 2; 2; 3, respectively.

Next, we summarize the structure of the centralizers of order-p elements of type
ˆL. Recall the poset OˆAut.L/.L/ from Definition 6.3.

Proposition B.2. Let L Š d†.q/ be of type (sLie-p). Assume B 2 OˆAut.L/.L/, and
note since ˆL is cyclic that B� D �1.Op.ˆL//.

(1) Assume B as in case .1/ of Definition B.1, i.e., B� � ˆL n ˆd . Then, the
elements of OˆAut.L/.L/ are all Inndiag.L/-conjugate to B . Furthermore, Op

0

.CL.B// Š
d†.q1=p/, that is, the (adjoint) group of the same Lie type (and

hence the same Lie rank), but over the B-fixed subfield. We further have
CInndiag.L/.B/ D Inndiag.d†.q1=p//, and, in particular, Op.CL.B// D 1.

(2) Assume instead B is in case (2) of Definition B.1, so x� 2 ˆd for a gener-
ator x of B . Then, B satisfies one of the following two mutually exclusive
conditions:

(1) F �.CL.B// D Op.CL.B// > 1 is a non-trivial p-group; or else

(2) B is Inndiag.L/-conjugate to h
i, where 
 2 ˆd has order p, and the
centralizer CL.B/ is a subgroup of the same Lie rank m below as L, but
of the indicated different, untwisted Lie type over Fq21:

p L m CL.B/

2 PSUn.q/ Š 2An�1.q/
�
n
2

˘
Cbn

2 c
.q/ Š PSp2bn

2 c
.q/

2 2Dn.q/ n � 1 Cn�1.q/ Š PSp2.n�1/.q/
2 2E6.q/ 4 F4.q/

3 3D4.q/ 2 G2.q/:

In particular, Op.CL.B// D 1.

21The Lie type of CL.B/ can be regarded as that for a suitable quotient-diagram of the
Dynkin diagram for L, under the order-d diagram symmetry.
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(3) For any C 2 OˆAut.L/.L/, we have OLC .L/ D OˆLC .L/ so that we can take C
in the role of “B” above. Further, there is D 2 OLC .L/ (hence of type ˆ)
with Op.CL.D// D 1. In particular, if (2) (a) holds for C , then (2) (b) holds
for D.

Proof. Item (1) follows directly from [12, Proposition 4.9.1]. Here, we deduce that
Op.CL.B// D 1 from the Lie-type structure of Op

0

.CL.B//. (Indeed, that Lie-type
group is usually even simple.) Item (2) follows from [12, Proposition 4.9.2]—using
similar Lie-type remarks for Op.CL.B// D 1 in case (2) (b). The first part of (3) then
follows from the observation early in the statement thatB�D�1.Op.ˆL//. And then
by that first part, we can—and do—now take B in the role of the original “C ”.

If (1) holds for B , then the second part of (3) already holds, with B itself in the
role of “D”. So, we may assume (2) holds for B; and, in particular, L is twisted, for
† with single-bonds (hence all roots are “long”). If in fact case (2) (b) already holds
for B , then again the second part of (3) holds with B in the role of “D”. So, we may
assume that case (2) (a) holds for B .

Exclude for a moment the case p D 2 and L D 2Dn.q/, with q even. With the
notation of [12, Proposition 4.9.2], let Z be a long-root subgroup of L. Then, Z � L;
and as in the proof of that proposition, any member of OˆAut.L/.L/ is Inndiag.L/-
conjugate to h
i or h
zi (for z 2 Z]), where 
 2 ˆL of order p is as in item (2) (b).
That is, LB contains an element of the form 
g or .
z/g , with g 2 Inndiag.L/. If
we have the latter, that is .
z/g 2 LB , then since zg 2 Zg � Lg D L, we also get

g 2 LB; so we have Op.CL.
g// Š Op.CL.
// D 1, as we had noted for case
(2) (b). Hence, we can take “D” to be h
gi 2 OLB.L/.

Finally, suppose that p D 2 and L D 2Dn.q/. Then, Out.L/ is cyclic, and so,
LB D LD for every B;D 2 OˆAut.L/.L/. That is, OˆAut.L/.L/D OˆLB.L/D OLB.L/.
In particular, we can take “D” in OˆAut.L/.L/ as in (2) (b). This final case completes
the proof of the second part of (3). (See also the remark right after the statement
of [12, Proposition 4.9.2].)

Note that item (3) of the previous proposition provides a “non-conical comple-
ment”, as in [4, Theorem 2.3]—we had mentioned these via (someNC) in Remark
3.10, and we need them for the corresponding hypothesis (someNC+ˆ) in Theo-
rem 6.4.

The starting point for our homology propagation in Theorem 6.4 will be the non-
zero homology of Ap.LB/ provided by Theorem 6.6. And to bound the vector-space
dimension of that homology group above zero, we will want the following easy but
somewhat-technical numerical observation. Roughly, we check below, based on our
determination of centralizer-structures in Proposition B.2, and using just the standard
group-order formulas for the individual simple groups L of Lie type, that the index
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jL W CL.B/jp0 (which basically records the number of tori) grows very strongly with
increasing powers of p; and, in particular, exceeds the very modest bound of .p � 1/
that we require. This result may be well known, or clear to those familiar with the
polynomials in the orders.

Lemma B.3. Let L be of type (sLie-p). If B 2 OˆAut.L/.L/ satisfies Op.CL.B// D 1
(that is, case (1) or (2) (b) of Proposition B.2 holds), then jL W CL.B/jp0 > .p � 1/.

Proof. For the order-formulas discussed below, we will use [12, Table 2.2] as our
basic source. And rather than checking each detailed formula, we will try to exploit
common features of the formulas as products of cyclotomic polynomials in q, which
are easy to read from that table.

Recall that we write L Š d†.q/. We split the verification of the bound into the
two cases in the hypothesis: the field-automorphism case B� � ˆL n ˆd of (1) of
Proposition B.2; and the graph-automorphism case x� 2ˆd , hxi DB , of (2) (b) there.

The field-caseB� �ˆL nˆd . We now deviate from our earlier notational convention
of using r for the characteristic of L—of course p supplies that characteristic for us
under (sLie-p)—to instead write r for q1=p , the order of the fixed subfield under B .
Thus, q D rp , where r itself is a power of p (so, in particular, r � p).

We first treat the case of untwistedL (d D 1). The formula for jLjp0 for the adjoint
simple group L has the form

1

f

Y
e

.qe � 1/;

where the exponents e and the divisor f are specified in [12, Table 2.2]. In type An,
we have f D gcd.nC 1; q � 1/ � q � 1, while f � 4 � q for all other Lie types; so
for crude bounding, it will usually suffice to just say in summary that

f � q:

Now, we will need to compare the above product for jLjp0 with the similar product
for jCL.B/jp0 . By case (1) of Proposition B.2, CL.B/ lies between the adjoint version
of d†.r/ and Inndiag.d†.r//. Here, the possible extra order in the Inndiag-form is
controlled by f ; that is, for our bounding-purposes, the Inndiag-order formula we
need to use is the analogue for r of the polynomial-product for jLjp0 above. Note that

… WD
Y
e

.rp/e � 1

re � 1
D

Y
e

.re/p � 1

re � 1
D

Y
e

..re/p�1 C .re/p�2 C � � � C 1/I (B.1)

so it will suffice to verify the following variant form of our original bound

… D
Y
e

.re.p�1/ C re.p�2/ C � � � C 1/ should be > f .p � 1/: (B.2)
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We now observe that the number of exponents e is equal to the Lie rank n—giving
the number of factors in…. Furthermore, the smallest exponent always takes the value
e D 2. In particular, note then that each factor in … exceeds r2 C 1 > 1. So, it will
suffice to find a sub-product satisfying our bound—and it turns out that the first factor
(for e D 2) already works. Namely, since we saw f � q, it suffices for the purposes
of (B.2) to set e D 2 there, and get a value > q.p � 1/.

To that end, consider first the case that p D 2. Then, (B.2) gives r2 C 1 > r2 D
q.p � 1/—as required. So, now we assume the remaining case, that is, p � 3. Then,
2.p � 1/ � p C 1, so the leading term r2.p�1/ in the e D 2 factor in (B.2) is at least
rpC1 D qr > q.p � 1/, since r is a power of p. This completes the proof of the bound
for field-automorphisms of untwisted L.

So, we turn to field-automorphisms for the case of twisted L, where d > 1. We
will use similar ideas. Let us first recall the cases here.

We saw in the corresponding case (1) of Definition B.1 that the only multiple-
bond case arising here is type 2G2 for an odd power of p D 3; while we can have
the single-bond twisted types when p ¤ d , namely, 2An, 2Dn, 2E6 when p ¤ 2, and
type 3D4 when p ¤ 3.

Again, we obtain a product … of polynomials, in an analogue of (B.1) and (B.2),
but this time there are some differences from the untwisted case above. The number of
exponents is now the Lie rank of the overlying Lie-type group †.q/, which exceeds
the Lie rank of the twisted group L D d†.q/; and this number is always � 2—so
we have no case where … has just one single factor (even when L has Lie rank 1).
And now, the exponents e come with signs " D ˙1 (or cube roots of unity for type
3D4), giving the polynomial qe � ". We still have minimum exponent-value e D 2,
now always with sign " D �1. One effect is to give, in type 2An, the adjusted value
f D gcd.nC 1; q C 1/ � q C 1—and, correspondingly, now

f � q C 1:

Another effect is that for " ¤ 1, we do not get the even division of qe C 1 by re C 1
(nor analogously for cube roots); however, we still get the property that each factor in
… exceeds 1, just using crude estimates, such as

rpe C 1

re C 1
>
rpe

2re
�
rp.e�1/

2
� 2 > 1:

So, again, we may establish our bound on a sub-product (and again it suffices that we
have two factors).

Namely, consider any of the above types other than 3D4. Then, in each case,
there is a choice of a non-minimal exponent e � 3 with sign " D 1. So, we recall the
calculation in the untwisted case, showing this second factor contributes at least qr to
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the product. This time using r < q since L is twisted, we get

qr > qr C .r � q/C .�1/ D .q C 1/.r � 1/ � f .p � 1/;

again giving the bound desired in the analogue of (B.2).
So, we turn to the remaining case of type 3D4. Here, f D 1; so we can just quote

our earlier crude bound rp.e�1/

2
with e D 2, giving at least r

p

2
� rp�1 � r > p � 1,

as desired.
This completes the proof for field automorphisms of twistedL, and hence for field

automorphisms of all L—the case B� 2 ˆL nˆd .

The graph-case d D p. Notice here we do not consider the fixed subfield under B ,
and so, our quotient calculations in … will involve only the power q of p (that is, no
“r”).

The four types for L in Proposition B.2 (2) (b) are 2An�1.q/, 2Dn.q/, 2E6.q/,
3D4.q/, where we have pD 2;2;2;3; andCL.B/DCbn

2 c
.q/;Cn�1.q/;F4.q/;G2.q/.

Here, as before in type 2An�1.q/we have f � gcd.n; qC 1/� qC 1, and f � 4� q
in other types, so that again

f � q C 1I

and though this estimate might be sharpened by dividing out f -type terms in CL.B/,
it will suffice to use the above rough bound.

Again, we get a product …, in an analogue of (B.2)—now with still more dif-
ferences. First, the number of exponents for twisted L D d†.q/ is the Lie rank for
untwisted †.q/, namely, n, n, 6, 4, which strictly exceeds the number of exponents
for untwisted CL.B/, i.e., its Lie rank bn

2
c; n � 1; 4; 2. Now, we check in each L

(again excepting type 3D4.q/, which varies slightly) that we may pair each exponent
e for CL.B/ (which has positive sign " D C1) with an exponent e of the same value,
but negative sign " D �1, starting at the minimum value e D 2. As a result, the factor
at e in the product … has the value qeC1

qe�1
, only slightly larger than 1. Thus, to get our

bound, we focus instead on the exponents e of L which are not paired with those of
CL.B/; these give “numerator-only” terms in the product ….

And just one is enough: note we have e � 3 for such an exponent, giving a term
at least

q3 C 1 > q2 � 1 D .q C 1/.q � 1/ � f .p � 1/;

which is the bound that we needed.
To adapt the above proof to cover the remaining type L D 3D4.q/, just “pair” the

exponent e D 6 for CL.B/ D G2.q/ with the two exponents e D 4 (and their “signs”
! and x!)—the quotient of .q4 � !/.q4 � x!/ D q8 C q4 C 1 by q6 � 1 certainly
exceeds 1. This leaves an unpaired numerator-term of q8 C q4 C 1, which exceeds
the desired bound p � 1, since f D 1 in this case.

We have now verified the bound of Lemma B.3 in all cases.
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C. Additional lemma(s)

The following lemma provides an alternative way of eliminating certain components
L of a minimal counterexample G to (H-QC). Namely, those simple components L
for which Op.CL.B// > 1 for every p-outer B . The proof of this lemma invokes
Theorem 3.6 with a non-standard p-subgroup poset B. Indeed, we take B to be the
image-poset AG;L, for a simple component L of a group G.

For example, if L D PSL2.23/; PSU3.23/; Sz.25/ with p D 3; 3; 5, respectively,
then every p-outer B of L satisfies that Op.CL.B// > 1. Therefore, Lemma C.1
provides an alternative argument, via Theorems 2.24 and 3.6, to the elimination of
these components (cf. [16, Theorem 5.1].)

Lemma C.1. LetG be a finite group, andL�G a simple subgroup. IfOp.CL.B// >
1 for all B 2 OG.L/, then the inclusion Ap.L/ ,! AG;L is a homotopy equivalence.

In particular, if in addition L is a component of G of order divisible by p and
CG.yL/ satisfies (H-QC), then G satisfies (H-QC)22.

Proof. Since L is simple, we can regard Ap.L/ � AG;L � Ap.Aut.L//. Let B WD

AG;L. Then,

FB.L/ D ¹DCG.L/=CG.L/ W D 2 OG.L/º D OAut.L/.L/ \AG;L;

using Remark 2.18, again since Z.L/ D 1 by the hypothesis of simplicity of L. Fix
D 2 OG.L/, and let B be the image ofD in B. Suppose that E 2NB.L/ is such that
CE\L.B/ > 1. We may pick some F 2 Ap.NG.L// with FCG.L/=CG.L/ D E. In
particular, F \ L > 1. Then, it is straightforward to verify that

CE .B/ D CF .D/CG.L/=CG.L/ 2 B;

CE .B/B D .CF .D/D/CG.L/=CG.L/ 2 B:

Therefore, B satisfies the requirements of Theorem 3.6, so we have a homotopy
equivalence B ' XB.L/ D Ap.L/ [ FB.L/.

Now, if B 2 FB.L/, then Op.CL.B// > 1 by our hypothesis on such B . Then,
we have

XB.L/>B \Ap.L/ D ¹E 2 Ap.L/ W CE .B/ > 1º ' Ap.CL.B// ' �:

Therefore, XB.L/ collapses to the subposet Ap.L/; that is, the inclusion Ap.L/ ,!

XB.L/ is a homotopy equivalence by the Quillen fiber Theorem 2.10. Since the

22Recall from Definition 2.2 that yL denotes the product of the G-orbit of L.
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equivalence ˛B;L W B ! XB.L/ is the identity when restricted to Ap.L/ by The-
orem 3.6 (1), we conclude that Ap.L/ ,! B is also a homotopy equivalence. This
finishes the proof of the first part.

The “In particular” part follows from Theorem 2.24, since Ap.L/! AG;L is an
isomorphism in homology, and zH�.Ap.L// ¤ 0 by the almost simple case of the
conjecture (recall the result of [3] quoted as Theorem 2.20.)
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