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Liouville-type theorems for a system of elliptic
inequalities on weighted graphs

Anh Tuan Duong and Nguyen Cong Minh

Abstract. Let .V; E/ be an infinite, connected, locally finite weighted graph. We are concerned
with the system of elliptic inequalities´

��u � vp in V;

��v � uq in V;

where p are q are real numbers and� is the standard graph Laplacian. For p � 0 or q � 0 or p;q > 0
and pq � 1, we show that the system has no positive solution. Moreover, we also establish some
non-existence results of positive solutions of the system in the case where p;q > 0 and pq > 1 under
some assumptions on the volume growth of graph and weight. We also construct an explicit example
to show the existence result in the super-critical case. Our result is, in particular, a natural extension
of some results in [Gu, Huang, and Sun, Calc. Var. Partial Differential Equations 62 (2023), no. 2,
article no. 42] to the system of inequalities.

1. Introduction

In the celebrated paper [11], Gidas and Spruck studied the existence and non-existence of
positive solutions of the Lane–Emden equation

��u D u� in RN : (1.1)

They showed that the equation has positive solution if and only if � � �c WD NC2
N�2

, see
also [3].

For the Lane-Emden system,´
��u D vp in RN ;

��v D uq in RN ;
(1.2)

the Lane–Emden conjecture states that (1.2) has no positive solution if and only if

1

p C 1
C

1

q C 1
> 1 �

2

N
:
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This conjecture was confirmed for the radial solutions; see [25, 26, 33]. In general, this
conjecture has been only proved when N � 4, see [31, 33, 34], and it is left open when
N � 5.

Concerning the elliptic inequality

��u � u� in RN (1.3)

and the system of elliptic inequalities´
��u � vp in RN ;

��v � uq in RN ;
(1.4)

the existence and non-existence of positive solutions were completely established for
p; q > 1, see [27, 28] and for all p; q 2 R, see, e.g., [1]. It was proved that the opti-
mal range for the existence of positive solutions of (1.3) and (1.4) is, respectively, given
by � > N

N�2
and

p; q > 0; pq > 1 and max
²
2.p C 1/

pq � 1
;
2.q C 1/

pq � 1

³
< N � 2:

On Riemannian manifolds, the sharp non-existence results for non-negative solutions
of the semi-linear elliptic inequality

�uC u� � 0 (1.5)

with � > 1 were obtained in the pioneering paper [15]. More precisely, by developing the
test function method on the Riemannian manifold M , which is different from the one in
the Euclidean setting, it was proved in [15] that, under the volume growth condition

vol.B.x0; r// � Cr
2�
��1 .ln r/

1
��1

for some x0 2M and all r large enough, any non-negative solution of (1.5) must be trivial.
Here, B.x0; r/ � M denotes the geodesic ball. In addition, an example is also given to
show that the volume growth condition is sharp up to the exponent in the logarithmic term.
It is also worth mentioning some generalizations of [15] in [36, 37].

In the Euclidean setting, the test function method for an inequality (1.3) with � > 1 can
be easily generalized to the system of inequalities (1.4) with p; q � 1; see, e.g., [27, 28].
Nevertheless, it is really a challenging task to extend the test function method from an
inequality (1.5) to the system of inequalities on Riemannian manifolds. In [42], the authors
studied the existence and non-existence of non-negative solutions of the system of elliptic
inequalities ´

�
1uC v
p � 0 in M;

�
2v C u
q � 0 in M;

(1.6)

whereM is a geodesically complete connected non-compact Riemannian manifold. Here,
p > 
2 � 1 > 0 and q > 
1 � 1 > 0 are given exponents and �
u WD div.jruj
�2ru/
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with 
 > 1. In order to make the test function method work for the system (1.6), they need
to assume an extra condition


1q

q � 
1 C 1
D


2p

p � 
2 C 1
: (1.7)

This condition is very restrictive in comparison with the Euclidean setting; see, e.g., [6–8,
27, 29] for some generalizations of (1.6). In particular, if 
1 D 
2 D 2, then (1.7) implies
that p D q. Up to now, the classification result in [42] has been a unique result for the
system (1.6). We also want to mention some results for other systems of inequalities on
manifolds [38, 39].

Let us now turn to the graph setting. In this paper, .V; E/ is an infinite, connected,
locally finite graph, where V is the set of vertices and E is the set of edges. Let

w W V � V ! Œ0;1/

be a weight satisfying wxy > 0 if and only if .x; y/ 2 E and wxy D wyx . Given a vertex
x 2 V , we write y � x if there exists an edge between y and x. Let us put

�.x/ D
X
y�x

wxy :

The standard graph Laplace operator is defined by

�u.x/ D
X
y�x

wxy

�.x/
.u.y/ � u.x//; x 2 V:

We refer the readers to the book [12] for the elementary properties of the graph Laplace
operator.

In recent years, nonlinear partial differential equations on graph have received con-
siderably attention of many mathematicians [2, 9, 10, 12–14, 16–18, 20–24, 30, 40]. The
existence and non-existence of global solutions of the parabolic equation

ut ��u D u
1C˛ in .0;1/ � V

were studied in [20, 21]. In [24], the author established Kato’s inequality on graphs and
applied it to study the boundedness of solutions of the Ginzburg–Landau equation

�uC u.1 � u2/ D 0 in V:

By using the monotone iteration scheme, the existence of positive solutions of Yamabe-
type equation

�uC au D bu� in V;

where a; b are functions on V was obtained in [22]; see also [14].
In [10], a uniform lower bound on the energy of the solutions to the Liouville equation

��u D eu

on weighted graphs was established under the assumption of the isoperimetric inequality.
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Very recently, inspired by the result in [15] on manifolds, the Liouville property, i.e.,
the existence and non-existence of positive solutions, for the elliptic inequality

��u � u� in V (1.8)

has been established in [16]. Here, a positive solution u means u.x/ > 0 for all x 2 V .
Before presenting the main result in [16], let us recall some notations. Let d.x; y/ denote
the minimal number of edges among all possible paths connecting x and y in V . The ball
centered at o 2 V of radius n is

B.o; n/ D ¹x 2 V I d.o; x/ � nº;

and the volume of B.o; n/ is given by

�.B.o; n// D
X

x2B.o;n/

�.x/:

Theorem 1.1 ([16]). The following statements hold true.

(1) Let �1 < � � 1. Then, (1.8) has no positive solution.

(2) Let � > 1. Suppose that there exists p0 > 1 such that if x � y, then

wxy

�.x/
�

1

p0
: (1.9)

Assume, in addition, that there exists o 2 V such that

�.B.o; n// . n
2�
��1 .lnn/

1
��1 for n largeI

then (1.8) has no positive solution.

Here and in the sequel, given two non-negative functions f and g, f . g means
f � Cg and f � g means cg � f � Cg for some c; C > 0.

We would like to mention that in [16, Theorem 1.1], the author considered � > 0.
However, the proof of [16, Theorem 1.1] still holds true for the non-existence of positive
solutions of (1.8) when � � 0. Furthermore, in this direction, it is worth mentioning a
result in [30] on the non-existence of positive solutions of (1.8), where condition (1.9) is
replaced by the existence of a pseudo metric on V .

Inspired by the interesting results in [16, 42], we address a natural question on the
existence and non-existence of positive solutions of the system of elliptic inequalities´

��u � vp in V;

��v � uq in V;
(1.10)

where p;q 2R. Here, .V;E;w/ is the infinite, connected, locally finite graph given above.
Our purpose is to extend the result in [16] to the system (1.10). More precisely, we

obtain the non-existence of positive solutions as follows.
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Theorem 1.2. The following statements hold true.

(1) The system (1.10) has no positive solution if one of the following conditions is
satisfied:

(i) p � 0 or q � 0,

(ii) p > 0; q > 0 and pq � 1.

(2) Suppose that p � q > 0 and pq > 1. Assume that condition (1.9) is satisfied on
.V;E;w/. If there exist a vertex o 2 V and a positive constant " such that

�.B.o; n// . n
2.pqCp/
pq�1 �" for all large enough n; (1.11)

then the system (1.10) has no positive solution.

Remark 1.3. Some remarks are in order.

(1) To the best of our knowledge, Theorem 1.2 is the first result on the non-existence
of positive solutions of the system (1.10) on weighted graphs.

(2) We want to emphasize that when both exponents p > 1 and q > 1, it is very
difficult to generalize the test function method from the inequality (1.8) to the
system (1.10) because of the special structure of the test functions; see, e.g., Step
2 in the proof of [16, Theorem 1.2], and also [42]. Moreover, in our paper, the
exponents p and q may be smaller than one. This is the second reason why the
test function method does not work.

(3) On graphs, condition (1.9) is a replacement for uniform ellipticity. As mentioned
in [16], condition (1.9) may be superfluous. It is still left open.

(4) We conjecture that the second assertion in Theorem 1.2 is still true when condition
(1.11) is replaced by

�.B.o; n// . n
2.pqCp/
pq�1 .lnn/

pC1
pq�1 for all large enough n: (1.12)

Inspired by [16] and (1.12), for any " > 0, we will construct a concrete example show-
ing the existence of positive solutions on the homogeneous tree TN with

�.B.o; n// � n
2.pqCp/
pq�1 .lnn/

pC1
pq�1C" for n large enough:

Let N � 2, we recall the notion of homogeneous tree TN . It means that T D .V; E/ is a
tree where all vertices have degreeN . Fix an arbitrary vertex o 2 V as the root. For n � 0,
we denote by Dn D ¹x 2 V I d.o; x/ D nº the collection of all the vertices with distance
n from o, and denote by En the collection of all the edges from vertices in Dn to vertices
in DnC1.

Theorem 1.4. Let .VE/DTN ,N � 2. Suppose that p � q > 0 and pq > 1 and let " > 0.
Then, there exists an edge weight w on TN such that the following hold.

� �.B.o; n// � n
2.pqCp/
pq�1 .lnn/

pC1
pq�1C" for n � 2.

� There exists a positive solution .u; v/ to the system (1.10).
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More precisely, we can take w and u; v as follows:

wxy D wn D
.nC n0/

2.pC1/
pq�1 C1.ln.nC n0//

pC1
pq�1C"

.N � 1/n
for any .x; y/ 2 En; n � 0;

u.x/ D un D
ı1

.nC n0/
2.pC1/
pq�1 .ln.nC n0//

pC1
pq�1

for any x 2 Dn; n � 0;

v.x/ D vn D
ı2

.nC n0/
2.qC1/
pq�1 .ln.nC n0//

qC1
pq�1

for any x 2 Dn; n � 0;

where n0 � 2 is sufficiently large and ı1; ı2 > 0 are sufficiently small.

Let us close the introduction by giving the idea of the proof of our main results. For
the system of inequalities when p 6D q, the test function method in [16] seems not appli-
cable, see [42]. On the other hand, when p � 1 or q � 1, the classification of positive
solutions becomes more difficult since we cannot use the Hölder inequality and the test
function method. Then, to prove Theorem 1.2, we use instead a simple approach which is
completely different from the one in [16]. In fact, we establish a discrete reduction version
in order to transform the system of inequalities into an inequality, see [32,35], and also [4]
for the related results in the Euclidean setting. Hence, we apply the result for the inequal-
ity, see Theorem 1.1 above, to obtain the desired results. We believe that our approach can
be used to study the system of elliptic inequalities on manifolds.

The organization of the paper is as follows. In Section 2, we give some auxiliary
lemmas. The proof of our main results is provided in Section 3.

2. Some auxiliary lemmas

In this section, we provide some lemmas which will be used in the next section. The
following result is a kind of maximum principle.

Lemma 2.1. Let p > 0 and q > 0. If .u; v/ is a non-negative solution to the system (1.10),
then either u � 0; v � 0 or u > 0; v > 0 in V .

Proof. Assume that there exists some point x0 2 V such that u.x0/ D 0. It follows from
the first inequality of the system (1.10) thatX

y�x0

wx0y

�.x0/
.u.y/ � u.x0//C v.x0/

p
D

X
y�x0

wx0y

�.x0/
u.y/C v.x0/

p
� 0:

It implies that v.x0/ D 0 and u.y/ D 0 for any y � x0. Hence, u � 0 by the connected
property of V . Similarly, from the second inequality of the system (1.10), we haveX

y�x0

wx0y

�.x0/
.v.y/ � v.x0//C u.x0/

q
D

X
y�x0

wx0y

�.x0/
v.y/ � 0:
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Therefore, v.y/D 0 for any y � x0. Then, v � 0 by the connected property of V . The
proof is complete.

From condition (1.9), we prove the boundedness and a Harnack-type inequality for
positive solutions of system (1.10) on weighted graphs.

Lemma 2.2. Let p > 1; q > 1 and .V;E;w/ satisfy condition (1.9). If .u; v/ is a positive
solution of the system (1.10), then 0 < u < 1 and 0 < v < 1 in V . Moreover,

1

p0
�
u.x/

u.y/
� p0 and

1

p0
�
v.x/

v.y/
� p0 for any x � y in V:

Proof. For x 2 V , it results from the system (1.10) thatX
y�x

wxy

�.x/
.u.y/ � u.x//C v.x/p D

X
y�x

wxy

�.x/
u.y/ � u.x/C v.x/p � 0

and X
y�x

wxy

�.x/
.v.y/ � v.x//C u.x/q D

X
y�x

wxy

�.x/
v.y/ � v.x/C u.x/q � 0:

This combined with the positivity of solutions gives´
v.x/p � u.x/ < 0;

u.x/q � v.x/ < 0;
(2.1)

and for x � y, we have ´
wxy
�.x/

u.y/ � u.x/ < 0;
wxy
�.x/

v.y/ � v.x/ < 0:
(2.2)

Hence, (2.1) implies that 0 < u;v < 1. On the other hand, using conditions (1.9) and (2.2),
we obtain that

u.x/

u.y/
�
wxy

�.x/
�

1

p0
and

v.x/

v.y/
�
wxy

�.x/
�

1

p0
:

Exchanging x and y, we get the other side inequality, and hence, our statement follows.

3. Proof of main results

In this section, we give the proof of our main results.

3.1. Proof of Theorem 1.2

We prove the first assertion in Theorem 1.2.
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Proof of Theorem 1.2 (1).

Lemma 3.1. If a positive function u satisfies ��u � Cu� for some C > 0, then u D 0
under the assumptions on � and �.B.o; n// made in Theorem 1.1.

Proof of Lemma 3.1. By using a scaling argument z D C
1
��1u, we reduce the inequality

��u � Cu� to the inequality ��z � z� : Hence, we obtain a conclusion.

We now turn to the proof of Theorem 1.2. Notice that p D 0 or q D 0, we obtain from
the system (1.10) that ��u � 1 or ��v � 1. However, by Theorem 1.1 (� D 0), these
inequalities have no positive solution. Then, it is sufficient to consider p 6D 0 and q 6D 0.

Suppose, on the contrary, that .u; v/ is a positive solution of the system (1.10). The
following lemma is concerned with p < 0 and q < 0.

Lemma 3.2. Assume that p < 0 and q < 0. Then, there exists C > 0 such that �� Qw �
C Qw�s; where Qw D uC v and s D � 2pq

pCq
> 0.

Proof of Lemma 3.2. Adding the two inequalities in the system (1.10), we have

�� Qw D ��u ��v � uq C vp

� C.uC v/�s D C Qw�s;

where in the last inequality, we have used the Young inequality as follows:

1

.uC v/s
�

1

2s.uv/s=2
� C.u�sm=2.m�1/ C v�sm=2/ D C.uq C vp/

withmD pCq
q
>1 and some positive constantC . The proof of Lemma 3.2 is complete.

The next lemma is concerned with q < 0 < p or 0 < q � p.

Lemma 3.3. Assume that q < 0<p or 0< q�p. There existC >0 and a;b > 0;aC bD
1 such that

�� Qw � C Qw
1C

pq�1
a.pC1/Cb.qC1/ ; (3.1)

where Qw D uavb .

Before giving the proof of Lemma 3.3, we note that the change of variable Qw D uavb

was first used in [35] with a D b D 1
2

and then in [32] with a C b D 1 for the existence
and symmetry of components of semi-linear elliptic systems on RN . This technique was
also used in [4, 5, 19, 41] for elliptic or parabolic inequalities on the Euclidean spaces.
Nevertheless, Lemma 3.3 is the first result, where this technique is exploited on weighted
graphs.

Proof of Lemma 3.3. We first show that

�� Qw � �aua�1vb�u � bvb�1ua�v: (3.2)
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Indeed, using the Young inequality with the pair of conjugate exponents 1
a

and 1
b

, we have�u.y/
u.x/

�a�v.y/
v.x/

�b
� a

u.y/

u.x/
C b

v.y/

v.x/
:

This is equivalent to

u.y/av.y/b � au.x/a�1v.x/bu.y/C bv.x/b�1u.x/av.y/:

Consequently,

u.y/av.y/b � u.x/av.x/b

� au.x/a�1v.x/bu.y/C bv.x/b�1u.x/av.y/ � .aC b/u.x/av.x/b :

Multiplying both sides by wxy
�.x/

and taking the sum over y � x, we obtainX
y�x

wxy

�.x/
.ua.y/vb.y/ � ua.x/vb.x// �

X
y�x

wxy

�.x/
au.x/a�1v.x/b.u.y/ � u.x//

C

X
y�x

wxy

�.x/
bv.x/b�1u.x/a.v.y/ � v.x//

or
�� Qw � �aua�1vb�u � bvb�1ua�v:

The inequality (3.2) is proved.
We next use (3.2) to get

�� Qw � �aua�1vb�u � bvb�1ua�v

� aua�1vbCp C bvb�1uaCq D uavb
�
a
vp

u
C b

uq

v

�
:

Applying the Young inequality to the right-hand side of this inequality, we arrive at

a
vp

u
C b

uq

v
� C

�vp
u

�1=m�uq
v

�.m�1/=m
;

where the constant C > 0 is independent in u; v and m > 0 will be chosen as below.
Hence,

�� Qw � Cua�
1
mCq

m�1
m vb�

m�1
m Cp

1
m : (3.3)

Now, the constant m can be chosen such that

a � 1
m
C qm�1

m

b � m�1
m
C p 1

m

D
a

b
or equivalently m D 1C

ap C b

bq C a
:

It is clear that if p; q > 0, then m > 1 for all a; b > 0. If q < 0 < p, we can choose a < 1
close to 1 and b > 0 close to 0 such that m > 1. Then, we obtain (3.1) from (3.3). The
proof of Lemma 3.3 is complete.
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Proof of Theorem 1.2. We first remark that the assertion (1) (i) in Theorem 1.2 follows
from Lemma 3.1 and Lemma 3.2. Similarly, the assertion (1) (ii) in Theorem 1.2 is a
direct consequence of Lemmas 3.1 and 3.3.

The rest of the proof is concerned with the case p � 1 > 0 and pq > 1. Let us put
z� D 1C pq�1

a.pC1/Cb.qC1/
, then (3.1) becomes

��w � Cwz� : (3.4)

Since q � p, then z� > 1C pq�1
pC1

D
pqCp
pC1

and

lim
a!1
z� D 1C

pq � 1

p C 1
D
pq C p

p C 1
:

Hence, 2z�
z��1

< 2.pqCp/
pq�1

and

lim
a!1

2z�

z� � 1
D
2.pq C p/

pq � 1
:

Therefore, there exists a close to 1 such that

2z�

z� � 1
>
2.pq C p/

pq � 1
� ":

This and (1.11) imply that

�.B.o; n// . n
2.pqCp/
pq�1 �" . n

2z�
z��1 .lnn/

1
z��1 for all large enough n:

It allows us to apply Lemma 3.1 to obtain the non-existence of positive solutions of
inequality (3.4).

3.2. Proof of Theorem 1.4

First, we will show that under the weight wn given in Theorem 1.4, we have

�.B.o; n// � n
2.pqCp/
pq�1 .lnn/

pC1
pq�1C"

for all n � 2. In fact,

�.B.o; n// D

nX
kD0

�.Dk/ D

nX
kD0

.N � 1/kwk � n
2.pqCp/
pq�1 .lnn/

pC1
pq�1C":

Now, we check that the system (1.10) holds for the w and .u; v/ given in Theorem 1.4. It
means that

u1 � u0 C v
p
0 � 0; i.e., n D 0; (3.5)

v1 � v0 C u
q
0 � 0; i.e., n D 0; (3.6)

.N � 1/wnunC1 C wn�1un�1

.N � 1/wn C wn�1
� un C v

p
n � 0 for all n � 1; (3.7)

.N � 1/wnvnC1 C wn�1vn�1

.N � 1/wn C wn�1
� vn C u

q
n � 0 for all n � 1: (3.8)
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The constants ı1 and ı2 are closely related to " and we will first determine n0 and then
ı1; ı2. For simplicity, let ˛1 D pC1

pq�1
and ˛2 D qC1

pq�1
. One can see that q˛1 D ˛2 C 1 and

p˛2 D ˛1 C 1.

Case 1: n D 0. Using the values of u; v, the inequalities (3.5) and (3.6) are equivalent to8<:
ı1

.1Cn0/
2˛1 .ln.1Cn0//˛1

�
ı1

n
2˛1
0 .lnn0/˛1

C
�

ı2

n
2˛2
0 .lnn0/˛2

�p
� 0;

ı2
.1Cn0/

2˛2 .ln.1Cn0//˛2
�

ı2

n
2˛2
0 .lnn0/˛2

C
�

ı1

n
2˛1
0 .lnn0/˛1

�q
� 0:

This system is equivalent to 8<:
ı
p
2

ı1
� C1.n0/;

ı
q
1

ı2
� C2.n0/;

(3.9)

where

C1.n0/ D n
2˛2p
0 .lnn0/˛2p.n

�2˛1
0 .lnn0/�˛1 � .n0 C 1/�2˛1.ln.n0 C 1//�˛1/

and

C2.n0/ D n
2˛1q
0 .lnn0/˛1q.n

�2˛2
0 .lnn0/�˛2 � .n0 C 1/�2˛2.ln.n0 C 1//�˛2/:

We can choose ı1 small enough and then ı2 satisfying (3.9) as follows:

ı1 � .C2.n0/
pC1.n0//

1
pq�1 and

1

C2.n0/
ı
q
1 � ı2 � C1.n0/

1
p ı

1
p

1 : (3.10)

Case 2: n � 1. Using the values of u; v and the weight w, the inequalities (3.7) and (3.8)
are equivalent to

ı
p
2

ı1
� .nC n0/

2 ln.nC n0/ � .nC n0/2˛1C2.ln.nC n0//˛1C1F1 (3.11)

and

ı
q
1

ı2
� .nC n0/

2 ln.nC n0/ � .nC n0/2˛2C2.ln.nC n0//˛2C1F2; (3.12)

where

F1 WD

.nCn0/
2˛1C1.ln.nCn0//˛1C"

.nCn0C1/
2˛1 .ln.nCn0C1//˛1

C
.nCn0�1/

2˛1C1.ln.nCn0�1//˛1C"

.nCn0�1/
2˛1 .ln.nCn0�1//˛1

.nC n0/2˛1C1.ln.nC n0//˛1C" C .nC n0 � 1/2˛1C1.ln.nC n0 � 1//˛1C"

and

F2 WD

.nCn0/
2˛2C1.ln.nCn0//˛2C"

.nCn0C1/
2˛2 .ln.nCn0C1//˛2

C
.nCn0�1/

2˛2C1.ln.nCn0�1//˛2C"

.nCn0�1/
2˛2 .ln.nCn0�1//˛2

.nC n0/2˛2C1.ln.nC n0//˛2C" C .nC n0 � 1/2˛2C1.ln.nC n0 � 1//2˛2C"
:
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Using the same argument as in the estimate (4.5) in [16], we also obtain that

lim
n!1

 
n2 lnn � n2˛iC2.ln.n//˛iC1

.n/2˛iC1.ln.n//˛iC"

.nC1/2˛i .ln.nC1//˛i
C

.n�1/2˛iC1.ln.n�1//˛iC"

.n�1/2˛i .ln.n�1//˛i

.n/2˛iC1.ln.n//˛iC" C .n � 1/2˛iC1.ln.n � 1//2˛iC"

!
D ˛i"

for i D 1; 2. This implies that there exists some large n0 such that for all n � 0, the right-
hand sides of (3.11) and (3.12) are bounded from below by ˛1"=2 and ˛2"=2, respectively.
Thus, it is sufficient to choose 8<:

ı
p
2

ı1
�

˛1"
2
;

ı
q
1

ı2
�

˛2"
2
:

(3.13)

As above, we can choose ı1 small enough and then ı2 satisfying (3.13) as follows:

ı1 �
��˛1"

2

�p ˛2"
2

� 1
pq�1

and
2

˛2"
ı
q
1 � ı2 �

�˛1"
2

� 1
p
ı
1
p

1 : (3.14)

It is easy to see that, we can choose ı1 small enough and then ı2 satisfying both (3.10)
and (3.14). Then, we finish the proof.
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