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Optimal control problems for a parabolic system inspired
by a cancer therapy

Mauro Garavello and Elena Rossi

Abstract. In this paper, we consider optimal control problems for a parabolic system modeling a
therapy, based on oncolytic viruses, for the glioma brain cancer. Using several techniques typical of
functional analysis, we prove the global in time well posedness of the control model, the existence
of optimal controls for specific objective functionals, which are natural for cancer therapies, and we
derive necessary conditions for optimality.

1. Introduction

In this paper, we consider optimal control problems for a 3� 3 system of parabolic partial
differential equations modeling a therapy in the case of a brain cancer, the glioma one,
based on the infusion of oncolytic viruses. They are genetically modified viruses able to
infect cancer cells and to replicate inside them, but they are not harmful for healthy cells.
With this mechanism, they eventually kill mainly cancer cells. Moreover, when an infected
cell dies, it releases many copies of the viruses, which then spread to infect neighboring
tumor cells. The main obstacle in the use of oncolytic viruses consists in the fact that the
innate immune system recognizes the cells infected by the virus and destroys them before
the virus multiplies. In this paper, as in [11, 29], we are neglecting this aspect.

There is a huge mathematical literature for cancer modeling based on differential
equations; see [1, 10, 16, 18, 21, 22] and the references therein for a detailed description.
This is essentially due to the large variety of diseases commonly named under the word
cancer. Each tumor has some specific peculiarities and dynamics; hence, it requires an
ad-hoc model for a precise mathematical description. Also, therapies vary accordingly.
For example, they include chemotherapy, radiotherapy, stem cell transplant, surgery and
can be dosed also combined together. This justifies the large number of mathematical
papers dealing with this subject. In particular, considering Glioma type cancer, we can
distinguish the various models through different categories: based on ODEs [23–25] or
on PDEs [4, 6, 11, 12, 29], focusing on controlling aspects [6, 23–25], on therapy calibra-
tion [2, 11, 12, 29], or on asymptotic behavior of solutions [4, 11].
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The main results of this paper are the well posedness of the parabolic 3 � 3 control
system, the existence of optimal controls, and first order necessary conditions for opti-
mality. They are obtained through several techniques typical of functional analysis. In
particular, different from other papers in the literature, see, for instance, [4, 6], we use the
Banach fixed point theorem to prove local in time existence and uniqueness of solution
for the parabolic system. Moreover, a combination of a priori estimates and maximum
principles for scalar equations permits to extend the solution to arbitrary time intervals
obtaining global in time well posedness. Gronwall inequality is used to prove the Lips-
chitz continuity, in the L2 topology, of the solution with respect to the controls. Existence
of optimal controls is deduced using the direct method in the calculus of variation; see
for example [9]. Here, continuous embedding theorems and Ascoli–Arzelà theorem play
an important role in the weak and strong convergence of quasi-optimal solutions. Finally,
necessary conditions are obtained through the derivative of the input-output map and the
adjoint system.

The main novelty of the paper consists in the study of a nonlinear system of parabolic
partial differential equations with an open loop control function; see [7,13,19,28] and the
references therein for control problems for partial differential equations. Here, we derive
necessary and sufficient conditions for optimal controls.

The paper is organized as follows. Section 2 introduces the mathematical model and
the definition of solution. In Section 3, we prove the existence and uniqueness of solution
both local and global in time. In Section 4, we study the Lipschitz continuous dependence
of the solution with respect to the control function, while in Section 5, we deduce the
existence of optimal controls for some objective functionals, natural for cancer therapies.
Section 6 deals with necessary conditions for optimality. Finally, Appendix A contains
classical results about well posedness of scalar parabolic equations, used in Section 3. It
is mainly intended to ease the readability of the paper.

2. Basic definitions and notations

In this paper, we consider control problems for the system of partial differential equations8̂̂<̂
:̂
@t �1 D ��1 C .˛ � ı1/�1 � ˇ�1v;

@t �2 D ��2 C ˇ�1v � ı2�2;

@t v D �v C bı2�2 � B�1v � ıvv C u;

(2.1)

where t � 0 is the time, x 2 � is the spatial variable, � � RN is an open, bounded,
and connected set with smooth boundary denoted by @�, and N 2 N, N � 2 (typically
N D 3 in applications). Moreover, �1; �2 W .0;C1/��!R describe the density, respec-
tively, of uninfected cancer cells and of infected cancer cells, while v W .0;C1/��!R
represents the density of the injected virus. The map u D u.t; x/ is the control func-
tion modeling the velocity of the virus infusion. Finally, ˛, ˇ, ı1, ı2, ıv , b, and B are
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fixed positive constants. In the paper, we consider controls depending also on the spatial
variable, although, as detailed in [8], in real situations the viral therapy is administered
intravenously so that a control depending only on time should be more realistic.

We augment the system (2.1) with the initial conditions8̂̂<̂
:̂
�1.0; x/ D �1;o.x/;

�2.0; x/ D �2;o.x/;

v.0; x/ D vo.x/;

(2.2)

where �1;o; �2;o; vo 2 L2.�/, and with homogeneous Neumann boundary conditions8̂̂<̂
:̂
@��1.t; �/ D 0;

@��2.t; �/ D 0;

@�v.t; �/ D 0

(2.3)

for � 2 @�, where the symbol @� denotes the inner normal derivative.
Throughout the paper, we deal with the following concept of weak solution for sys-

tem (2.1), (2.2), and (2.3).

Definition 2.1. Given T > 0, the triple .�1; �2; v/ is a solution to the initial-boundary
value problem (2.1), (2.2), and (2.3) on the time interval Œ0; T � if the following statements
hold:

(1) �1; �2; v 2 L1..0; T / ��IR/;
(2) �1; �2; v 2 L2..0; T /IH1.�//;

(3) P�1; P�2; Pv 2 L2..0; T /IH1.�/�/;

(4) �1.0; x/ D �1;o.x/, �2.0; x/ D �2;o.x/, v.0; x/ D vo.x/ in L2.�/;

(5) for a.e. t 2 Œ0; T � and for any w1; w2; w3 2 H1.�/,

h P�1.t/; w1i D �

Z
�

r�1.t; x/ � rw1.x/ dx C .˛ � ı1/
Z
�

�1.t; x/w1.x/ dx

� ˇ

Z
�

�1.t; x/ v.t; x/w1.x/ dx;

h P�2.t/; w2i D �

Z
�

r�2.t; x/ � rw2.x/ dx � ı2

Z
�

�2.t; x/w2.x/ dx

C ˇ

Z
�

�1.t; x/ v.t; x/w2.x/ dx;

h Pv.t/; w3i D �

Z
�

rv.t; x/ � rw3.x/ dx C b ı2

Z
�

�2.t; x/w3.x/ dx

� B

Z
�

�1.t; x/ v.t; x/w3.x/ dx � ıv

Z
�

v.t; x/w3.x/ dx

C

Z
�

u.t; x/w3.x/ dx:
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Remark 1. Note that assumptions 2 and 3 of Definition 2.1 imply that the functions �1,
�2, and v belong to the space C0.Œ0; T �IL2.�//; see [27, Theorem 7.104]. This justifies
the condition 4 of Definition 2.1.

2.1. Model justification

In [23–25], the authors proposed a mathematical model for the therapy of glioma based on
oncolytic viruses infusion. Oncolytic viruses are genetically altered viruses able to infect
cancer cells but not normal ones. They reproduce in cancer cells and eventually kill them,
and when an infected cell dies, many new viruses are released and spread out. The model
in [23–25] is given by the following system of nonlinear ordinary differential equations:8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Px D ˛x � ˇxv � ıxx;

Py D ˇxv � �y T
KCT

� ıyy;

PM D AC syM � ıMM;

PT D �
1Cu2

M � !y T
KCT

� ıT T;

Pv D bıyy � �xv � ıvv C u1;

(2.4)

where the unknowns x, y, M , T , and v represent, respectively, the density of uninfected
cancer stem cells, the density of infected cancer cells, the density of the macrophages, the
concentration of TNF-˛ inhibitors, and the density of the virus. The control functions u1D
u1.t/ and u2 D u2.t/ denote, respectively, the amount of virus and of TNF-˛ inhibitor
that is injected at time t . The descriptions and realistic values of the various parameters
appearing in system (2.4) can be found in [25, Table 2]. One can also note in [25] that the
dynamics of the unknowns M and T is almost static around the values M � 0:1 g

cm3
and

T � 5 � 10�6 g

cm3
. Hence, (2.4) can be approximated by the 3 � 3 system8̂̂<̂

:̂
Px D ˛x � ˇxv � ıxx;

Py D ˇxv � Q�y � ıyy;

Pv D bıyy � �xv � ıvv C u1:

(2.5)

Model (2.1) is the natural generalization of (2.5) once we allow the densities of cancer
cells and of the virus to depend also on the spatial coordinate.

3. Local and global existence

In this section, we prove both the local and global well posedness for system (2.1). The
local in time result is proved using a fixed point technique, while a priori estimates permit
to extend the solution to arbitrary time intervals. In the following, we use the notation
�T D .0; T / ��.
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Theorem 3.1. Assume ˛, ˇ, ı1, ı2, ıv , b, B , and U fixed positive constants. Let� � RN

be an open, connected, and bounded domain with smooth boundary @�. Fix �1;o; �2;o; vo2
L1.�IRC/ and u 2 L1.R ��IRC/, with kukL1.R��/ � U . There exist T > 0 and a
unique solution .�1; �2; v/ to (2.1), (2.2), and (2.3) on the time interval Œ0; T �, in the sense
of Definition 2.1. Moreover, for a.e. t 2 Œ0; T � and x 2 �,

�1.t; x/ � 0; �2.t; x/ � 0; v.t; x/ � 0: (3.1)

Finally, if moreover �1;o; �2;o; vo 2 H1.�IRC/, then

�1; �2; v 2 L2..0; T /IH2.�//:

Proof. Define

M D 2max
®
k�1;okL1.�/; k�2;okL1.�/; kvokL1.�/

¯
C 1: (3.2)

Fix T > 0 such that

T < min

´
1

˛ C ı1 C
3M�1
2

ˇ
ln
�
M C 1

M � 1

�
;
1

ı2
ln
�

M

M � 1

�
;

1

ı2
ln
�
1C

2 ı2

ˇ .3M � 1/2

�
;

2

.3M � 1/B C 2 ıv
ln
�

M

M � 1

�
;

2

.3M � 1/B C 2 ıv
ln
�
1C

ıv

.3M � 1/b ı2 C 2U

�
;

2

2 ˛ C 2 ı1 C .3M � 1/ ˇ
ln
�
3

2

�
;

1

9ˇ2.3M � 1/2
;

1

ı2
ln
�
3

2

�
2

2 ıv C .3M � 1/B
ln
�
3

2

�
;

1

36 b2 ı22
;

1

9B2.3M � 1/2

µ
:

(3.3)

Consider the Banach space C0.Œ0; T �IL2.�// and the closed subsets

X1 D
°
� 2 C0.Œ0; T �IL2.�// W sup

t2Œ0;T �

k�.t/ � �1;okL1.�/ �M
±
;

X2 D
°
� 2 C0.Œ0; T �IL2.�// W sup

t2Œ0;T �

k�.t/ � �2;okL1.�/ �M
±
;

X3 D
°
� 2 C0.Œ0; T �IL2.�// W sup

t2Œ0;T �

k�.t/ � vokL1.�/ �M
±
;

endowed with the norm of C0.Œ0; T �IL2.�//, namely,

k�kXi D sup
t2Œ0;T �

k�.t/kL2.�/

for i 2 ¹1; 2; 3º.
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DefineX D X1 �X2 �X3 with the norm k.�1; �2; �3/kX D
P3
iD1k�ikXi and the map

T W X ! X

such that for every .r1; r2;w/ 2 X , T .r1; r2;w/D .�1; �2; v/ is the unique weak solution
to the decoupled system8̂̂<̂

:̂
@t �1 D ��1 C .˛ � ı1 � ˇ w/�1;

@t �2 D ��2 � ı2�2 C ˇr1w;

@t v D �v C bı2r2 C u � .Br1 C ıv/v

with initial data .�1;o; �2;o; vo/ and Neumann homogeneous boundary conditions. Such
solution exists by Theorem A.1, since the functions r1w; r2; u 2 L2..0; T /IH1.�/�/.
Indeed, to comply with Theorem A.1, we have the following:

• u 2 L1..0; T / ��/ � L2..0; T / ��/,

• r2 2 L2.�T /, being in X2,

• r1; w 2 L2.�T /, being, respectively, in X1 and X3,

• w; r1 are needed to be in L1.�T / and this is true since, by (3.2), for instance,

jr1.t; x/j � jr1.t; x/ � �1;o.x/j C j�1;o.x/j �M C k�1;okL1.�/ �M C
M � 1

2
:

We observe that if r1 2 X1, r2 2 X2 and w 2 X3, then

kr1kL1.�/; kr2kL1.�/; kwkL1.�/ �
3M � 1

2
: (3.4)

We need to show that T is well defined, in the sense that .�1; �2; v/ 2 X . First, note
that �1, �2, and v belong to H1..0; T /IH1.�/;H1.�/�/, see (A.2), and so, by [27, Theo-
rem 7.104], to the space C0.Œ0; T �IL2.�//.

Consider first the case of �1. By Proposition A.2, we deduce that

0 � �1.t; x/ � k�1;okL1.�/e
.˛Cı1C

3M�1
2 ˇ/t :

Therefore,

j�1.t; x/ � �1;o.x/j � j�1.t; x/j C j�1;o.x/j

D �1.t; x/C �1;o.x/

�
M � 1

2

�
1C e.˛Cı1C

3M�1
2 ˇ/t

�
:

By (3.3),

sup
t2Œ0;T �

k�1.t/ � �1;okL1.�/ �
M � 1

2

�
1C e.˛Cı1C

3M�1
2 ˇ/T

�
< M;

proving that �1 2 X1.
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Pass now to �2. Proposition A.2 yields

0 � �2.t; x/ �

�
k�2;okL1.�/ C

ˇ kr1wkL1.�t /

ı2

�
eı2 t �

ˇ kr1wkL1.�t /

ı2
:

By (3.4), we deduce that

kr1wkL1.�/ �
.3M � 1/2

4
:

Thus,

j�2.t; x/ � �2;o.x/j � k�2;okL1.�/.1C e
ı2 t /C

ˇ kr1wkL1.�t /

ı2
.eı2 t � 1/

�
M � 1

2
.1C eı2 t /C

ˇ

ı2

.3M � 1/2

4
.eı2 t � 1/:

By (3.3), we obtain

sup
t2Œ0;T �

k�2.t/ � �2;okL1.�/ �
M � 1

2
.1C eı2 T /C

ˇ

ı2

.3M � 1/2

4
.eı2 T � 1/

�

�
M �

1

2

�
C
1

2
DM;

proving that �2 2 X2.
Consider now v. Proposition A.2 yields

0 � v.t; x/ �

�
kvokL1.�/ C

b ı2 kr2kL1.�t / C U

B kr1kL1.�t / C ıv

�
e.B kr1kL1.�t /Cıv/ t

�
b ı2 kr2kL1.�t / C U

B kr1kL1.�t / C ıv
:

Exploiting (3.2) and (3.4), we obtain

0 � v.t; x/ � kvokL1.�/ e
.B kr1kL1.�t /Cıv/ t

C
b ı2 kr2kL1.�t / C U

B kr1kL1.�t / C ıv

�
e.B kr1kL1.�t /Cıv/ t � 1

�
�
M � 1

2
C
b ı2 .3M � 1/C 2U

2 ıv

�
e.B

3M�1
2 Cıv/ t � 1

�
:

Thus,

jv.t; x/ � vo.x/j �
M � 1

2

�
1C e.B

3M�1
2 Cıv/ t

�
C
b ı2 .3M � 1/C 2U

2 ıv

�
e.B

3M�1
2 Cıv/ t � 1

�
:
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By (3.3), we obtain

sup
t2Œ0;T �

kv.t/ � vokL1.�/ �
M � 1

2

�
1C e.B

3M�1
2 Cıv/ T

�
C
b ı2 .3M � 1/C 2U

2 ıv

�
e.B

3M�1
2 Cıv/ T � 1

�
�

�
M �

1

2

�
C
1

2
DM;

proving that v 2 X3.
Fix . Nr1; Nr2; Nw/ 2 X and . Qr1; Qr2; Qw/ 2 X . Define

. N�1; N�2; Nv/ D T . Nr1; Nr2; Nw/ and . Q�1; Q�2; Qv/ D T . Qr1; Qr2; Qw/:

Note that´
@t . N�1 � Q�1/ D �. N�1 � Q�1/C .˛ � ı1 � ˇ Nw/. N�1 � Q�1/C ˇ. Qw � Nw/ Q�1;

. N�1 � Q�1/.0; x/ D 0@�. N�1 � Q�1/.t; �/ D 0:

Theorem A.1 implies that, for t 2 Œ0; T �,

k N�1.t/ � Q�1.t/k
2
L2.�/

� e2k˛�ı1�ˇ NwkL1.�T /tbig

Z t

0

kˇ. Qw.s/ � Nw.s// Q�1.s/k
2
H1.�/� ds

� e2.˛Cı1Cˇ
3M�1
2 /T

Z t

0

kˇ. Qw.s/ � Nw.s// Q�1.s/k
2
L2.�/ ds

� ˇ2e2.˛Cı1Cˇ
3M�1
2 /T .3M � 1/

2

4

Z t

0

k Qw.s/ � Nw.s/k2L2.�/ ds

� ˇ2e2.˛Cı1Cˇ
3M�1
2 /T .3M � 1/

2

4
sup

s2Œ0;T �

k Qw.s/ � Nw.s/k2L2.�/T;

where we used the fact that Q�1 2 X1. Therefore, using (3.3),

k N�1 � Q�1kX1 � ˇe
.˛Cı1Cˇ

3M�1
2 /T 3M � 1

2

p
T k Qw � NwkX3 �

1

4
k Qw � NwkX3 :

Proceed analogously for the other two equations. Indeed, since8̂̂<̂
:̂
@t . N�2 � Q�2/ D �. N�2 � Q�2/ � ı2. N�2 � Q�2/ � ˇ Nr1 Nw C ˇ Qr1 Qw;

. N�2 � Q�2/.0; x/ D 0;

@�. N�2 � Q�2/.t; �/ D 0;

Theorem A.1 implies that, for t 2 Œ0; T �,

k N�2.t/ � Q�2.t/k
2
L2.�/ � e

2 ı2 t

Z t

0

ˇ2k. Nr1 Nw � Qr1 Qw/.s/kH1.�/� ds:
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Observe that, for s 2 Œ0; T �, we have

k. Nr1 Nw � Qr1 Qw/.s/kH1.�/�

� kNr1.s/. Nw.s/ � Qw.s//kH1.�/� C k. Nr1.s/ � Qr1.s// Qw.s/kH1.�/�

�
3M � 1

2
.k. Nw � Qw/.s/kL2.�/ C k. Nr1 � Qr1/.s/kL2.�//;

since Nr1 2 X1 and Qw 2 X3 and we exploited (3.4). Therefore, using (3.3),

k N�2 � Q�2kX2 � e
ı2 T ˇ

3M � 1

2

p
T .k Nw � QwkX3 C kNr1 � Qr1kX1/

�
1

4
.k Nw � QwkX3 C kNr1 � Qr1kX1/:

Lastly, we have8̂̂<̂
:̂
@t . Nv � Qv/ D �. Nv � Qv/ � .ıv C B Nr1/. Nv � Qv/ � B. Nr1 � Qr1/ Qv C b ı2. Nr2 � Qr2/;

. Nv � Qv/.0; x/ D 0;

@�. Nv � Qv/.t; �/ D 0:

Again, Theorem A.1 implies that, for t 2 Œ0; T �,

k Nv.t/ � Qv.t/k2L2.�/

� e2kıvCB Nr1kL1.�T /t
Z t

0

kb ı2. Nr2.s/ � Qr2.s// � B . Nr1.s/ � Qr1.s// Qv.s/k
2
L2.�/ ds

� e2.ıvCB
3M�1
2 /T

Z t

0

kb ı2. Nr2.s/ � Qr2.s// � B . Nr1.s/ � Qr1.s// Qv.s/k
2
L2.�/ ds

� e2.ıvCB
3M�1
2 /T T

�
b ı2 sup

s2Œ0;T �

kNr2.s/ � Qr2.s/kL2.�/

C B
3M � 1

2
sup

s2Œ0;T �

kNr1.s/ � Qr1.s/kL2.�/

�2
;

where we used the fact that Qv 2 X3. Hence, using (3.3),

k Nv � QvkX3

� e.ıvCB
3M�1
2 /T

p
T max

°
b ı2; B

3M � 1

2

±
.kNr1 � Qr1kX1 C kNr2 � Qr2kX2/

�
1

4
.kNr1 � Qr1kX1 C kNr2 � Qr2kX2/:

Therefore, for t 2 Œ0; T �,

k N�1 � Q�1kX1 C k N�2 � Q�2kX2 C kNv � QvkX3

�
1

4
.2 kNr1 � Qr1kX1 C kNr2 � Qr2kX2 C 2 k Nw � QwkX3/

�
1

2
.kNr1 � Qr1kX1 C kNr2 � Qr2kX2 C k Nw � QwkX3/;
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proving that T is a contraction. Banach fixed point theorem implies that the map T admits
a unique fixed point in X , thus ensuring the existence of solutions to (2.1) on the time
interval Œ0; T �. Observe that the solution .�1; �2; v/ preserves the positivity of the initial
data .�1;o; �2;o; vo/.

If the initial data are in H1.�IRC/, then, due to Proposition A.3, each component of
T maps L2..0; T /IH2.�// into itself. Therefore, repeating the same argument as above
yields �2, �2, v 2 L2..0; T /IH2.�//.

The next result deals with the global existence of solutions.

Theorem 3.2. Assume ˛, ˇ, ı1, ı2, ıv , b, B , U fixed positive constants. Let � � RN be
an open, connected, and bounded domain, with smooth boundary @�. Fix �1;o; �2;o; vo 2
L1.�IRC/ and u 2 L1.R � �IRC/, with kukL1.R��/ � U . Then, for every T > 0,
there exists a unique solution .�1; �2; v/ to (2.1), (2.2), and (2.3) on the time interval
Œ0; T �, in the sense of Definition 2.1.

Moreover, for a.e. .t; x/ 2 Œ0; T � ��, we have the following estimates:

0 � �1.t; x/ � k�1;okL1e
j˛�ı1jT ; (3.5)

0 � �2.t; x/ � .k�1;okL1 C k�2;okL1/e
˛T ; (3.6)

0 � v.t; x/ � kvokL1 C .bı2.k�1;okL1 C k�2;okL1/e
˛T
C U/T: (3.7)

Proof. Define

xT D sup
®
T > 0 W the solution to (2.1) exists in Œ0; T �

¯
:

Clearly, Theorem 3.1 implies that xT > 0. Assume by contradiction that xT < C1. Since
�1 and v are positive by (3.1) and since ˇ > 0, then �1 is a subsolution to

@t�1 � ��1 C .˛ � ı1/�1:

Hence, Proposition A.2 implies that

0 � �1.t; x/ � k�1;okL1e
j˛�ı1j xT (3.8)

for every t < xT and for a.e. x 2 �.
Consider now the equation for the sum �1 C �2:

@t .�1 C �2/ D �.�1 C �2/C .˛ � ı1/�1 � ı2 �2:

Since ˛ > 0, ı1 > 0, ı2 > 0, and �2 � 0 by (3.1), �1 C �2 is a subsolution to

@t .�1 C �2/ � �.�1 C �2/C ˛.�1 C �2/:

Hence, Proposition A.2 implies that

0 � �1.t; x/C �2.t; x/ � .k�1;okL1 C k�2;okL1/e
˛ xT



Optimal control problems for a parabolic system inspired by a cancer therapy 365

for every t < xT and for a.e. x 2 � so that

0 � �2.t; x/ � .k�1;okL1 C k�2;okL1/e
˛ xT (3.9)

for every t < xT and for a.e. x 2 �.
Using the estimates (3.8) and (3.9), we deduce that v is subsolution to

@t v � �v C bı2.k�1;okL1 C k�2;okL1/e
˛ xT
C U;

where we used the fact that b > 0, ı2 > 0, B > 0, ıv > 0, kukL1 � U , and �1 � 0, v � 0
by (3.1). Hence, Proposition A.2 implies that

0 � v.t; x/ � kvokL1 C .bı2.k�1;okL1 C k�2;okL1/e
˛ xT
C U/ xT (3.10)

for every t < xT and for a.e. x 2 �.
Standard arguments in Sobolev spaces dependent on time together with the estimates

(3.8), (3.9), and (3.10) and the assumptions on � permit to extend �1, �2, and v by conti-
nuity at time xT . Since �1. xT / 2 L2.�/, �2. xT / 2 L2.�/, and v. xT / 2 L2.�/, Theorem 3.1
implies that the solution .�1; �2; v/ exists also for times bigger than xT . This is in contra-
diction with the definition of xT . Finally, the estimates (3.5), (3.6), and (3.7) easily follow
from (3.8), (3.9), and (3.10).

4. Dependence from the control u

In this part, we show that the solution to (2.1) continuously depends on the control u,
viewed as a function in L2..0; T / ��I Œ0; U �/ endowed with the strong topology.

Theorem 4.1. Assume ˛, ˇ, ı1, ı2, ıv , b, B , and U fixed positive constants. Let � �
RN be an open, connected, and bounded domain, with smooth boundary @�. Fix T >

0, �1;o; �2;o; vo 2 L1.�IRC/ and Nu; Qu 2 L1.R � �I Œ0; U �/. Define . N�1; N�2; Nv/ and
. Q�1; Q�2; Qv/ the solutions to (2.1), (2.2), and (2.3) on the time interval Œ0; T � with controls
Nu and Qu, respectively.

Then, there exists a positive constant C , depending on k�1;okL1.�/, k�2;okL1.�/, and
kvokL1.�/, on T , and on the constants ˛, ı1, B , ˇ, b, ı2, ıv such that for every t 2 Œ0; T �,

k N�1.t/� Q�1.t/kL2.�/Ck N�2.t/� Q�2.t/kL2.�/CkNv.t/� Qv.t/kL2.�/ � Ck Nu � QukL2..0;t/��/;

(4.1)
andZ t

0

�
k N�1.�/ � Q�1.�/k

2
H1.�/ C k N�2.�/ � Q�2.�/k

2
H1.�/ C kNv.�/ � Qv.�/k

2
H1.�/

�
d�

� Ck Nu � Quk2L2..0;t/��/: (4.2)
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Proof. Fix two control functions Nu; Qu 2 L1..0; T / ��I Œ0; U �/ and denote by . N�1; N�2; Nv/
and by . Q�1; Q�2; Qv/ the corresponding solutions to (2.1), (2.2), and (2.3).

Consider the difference between the equations for Nv and Qv in (2.1), and rearrange it as
follows:

@t . Nv � Qv/ D �. Nv � Qv/ � .ıv C B N�1/. Nv � Qv/C bı2. N�2 � Q�2/ � B Qv. N�1 � Q�1/C Nu � Qu:

Observe first that the bilinear form appearing above is weakly coercive, so, in particular,Z
�

�
r. Nv � Qv/ � r. Nv � Qv/C .ıv C B N�1/. Nv � Qv/

2
�

dx

C

�1
2
C ıv C Bk N�1.t/kL1.�/

�
k Nv � Qvk2L2.�/ �

1

2
k Nv � Qvk2H1.�/: (4.3)

By Definition 2.1, point (5), we have that, for a.e. t 2 Œ0; T � and for all w 2 H1.�/,Z
�

. PNv � PQv/w dx C
Z
�

r. Nv � Qv/ � rw dx C
Z
�

.ıv C B N�1/. Nv � Qv/w dx

D bı2

Z
�

. N�2 � Q�2/w dx � B
Z
�

Qv. N�1 � Q�1/w dx C
Z
�

. Nu � Qu/w dx:

Takingw.x/D . Nv.t;x/� Qv.t;x// in the previous equation and exploiting (4.3), we deduce
that, for a.e. t 2 Œ0; T �,

1

2

d
dt
k Nv.t/ � Qv.t/k2L2.�/ C

1

2
k Nv.t/ � Qv.t/k2H1.�/

� bı2

Z
�

. N�2.t; x/ � Q�2.t; x//. Nv.t; x/ � Qv.t; x// dx

� B

Z
�

Qv.t; x/. N�1.t; x/ � Q�1.t; x//. Nv.t; x/ � Qv.t; x// dx

C

Z
�

. Nu.t; x/ � Qu.t; x//. Nv.t; x/ � Qv.t; x// dx

C

�1
2
C ıv C Bk N�1.t/kL1.�/

�
k Nv.t/ � Qv.t/k2L2.�/

�
b ı2

2

�
k N�2.t/ � Q�2.t/k

2
L2.�/ C kNv.t/ � Qv.t/k

2
L2.�/

�
C
B

2

�
k Qv.t/k2L1.�/k Nv.t/ � Qv.t/k

2
L2.�/ C k N�1.t/ � Q�1.t/k

2
L2.�/

�
C
1

2
k Nu.t/ � Qu.t/k2L2.�/ C

1

2
k Nv.t/ � Qv.t/k2L2.�/

C

�1
2
C ıv C Bk N�1.t/kL1.�/

�
k Nv.t/ � Qv.t/k2L2.�/:
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We proceed similarly for N�1 and Q�1: for a.e. t 2 Œ0; T �, we get

1

2

d
dt
k N�1.t/ � Q�1.t/k

2
L2.�/ C

1

2
k N�1.t/ � Q�1.t/k

2
H1.�/

� �ˇ

Z
�

Q�1. N�1.t; x/ � Q�1.t; x//. Nv.t; x/ � Qv.t; x// dx

C

�1
2
C ı1 C ˇk Nv.t/kL1.�/

�
k N�1.t/ � Q�1.t/k

2
L2.�/

�
ˇ

2
k Q�1.t/k

2
L1.�/k N�1.t/ � Q�1.t/k

2
L2.�/ C

ˇ

2
k Nv.t/ � Qv.t/k2L2.�/

C

�
1

2
C ı1 C ˛ C ˇk Nv.t/kL1.�/

�
k N�1.t/ � Q�1.t/k

2
L2.�/:

Finally, the same arguments can be applied to N�2 and Q�2: for a.e. t 2 Œ0; T �, we get

1

2

d
dt
k N�2.t/ � Q�2.t/k

2
L2.�/ C

1

2
k N�2.t/ � Q�2.t/k

2
H1.�/

� ˇ

Z
�

N�1.t; x/. Nv.t; x/ � Qv.t; x//. N�2.t; x/ � Q�2.t; x// dx

C ˇ

Z
�

Qv.t; x/. N�1.t; x/ � Q�1.t; x//. N�2.t; x/ � Q�2.t; x// dx

C

�
1

2
C ı2

�
k N�2.t/ � Q�2.t/k

2
L2.�/

�
ˇ

2

�
k N�1.t/k

2
L1.�/k N�2.t/ � Q�2.t/k

2
L2.�/ C kNv.t/ � Qv.t/k

2
L2.�/

C kQv.t/k2L1.�/k N�1.t/ � Q�1.t/k
2
L2.�/ C k N�2.t/ � Q�2.t/k

2
L2.�/

�
C

�1
2
C ı2

�
k N�2.t/ � Q�2.t/k

2
L2.�/:

Thus, collecting together the estimates obtained above, for a.e. t 2 Œ0; T �, we get

d
dt

�
k N�1.t/ � Q�1.t/k

2
L2.�/ C k N�2.t/ � Q�2.t/k

2
L2.�/ C kNv.t/ � Qv.t/k

2
L2.�/

�
C k N�1.t/ � Q�1.t/k

2
H1.�/ C k N�2.t/ � Q�2.t/k

2
H1.�/ C kNv.t/ � Qv.t/k

2
H1.�/

�
�
B C ˇk Q�1.t/k

2
L1.�/ C ˇk Qv.t/k

2
L1.�/ C 1C 2 ı1 C 2 ˛ C 2 ˇk Nv.t/kL1.�/

�
� k N�1.t/ � Q�1.t/k

2
L2.�/

C
�
ˇ C ˇk N�1.t/k

2
L1.�/ C b ı2 C 1C 2 ı2

�
k N�2.t/ � Q�2.t/k

2
L2.�/

C
�
2 ˇ C b ı2 C Bk Qv.t/k

2
L1.�/ C 2C 2 ıv C Bk N�1.t/kL1.�/

�
� kNv.t/ � Qv.t/k2L2.�/

C k Nu.t/ � Qu.t/k2L2.�/:
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Set

C.t/ D max
°
B C ˇ

�
k Q�1.t/k

2
L1.�/ C kQv.t/k

2
L1.�/ C 2 k Nv.t/kL1.�/

�
C 1C 2 ı1 C 2˛; ˇ C ˇk N�1.t/k

2
L1.�/ C b ı2 C 1C 2 ı2;

2 ˇ C b ı2 C Bk Qv.t/k
2
L1.�/ C 2C 2 ıv C Bk N�1.t/kL1.�/

±
:

An application of Gronwall’s inequality yields the following bound for the L2-norm:

k N�1.t/ � Q�1.t/k
2
L2.�/ C k N�2.t/ � Q�2.t/k

2
L2.�/ C kNv.t/ � Qv.t/k

2
L2.�/

�

Z t

0

k Nu.s/ � Qu.s/k2L2.�/ exp
�Z t

s

C.�/ d�
�

ds:

Moreover, we getZ t

0

�
k N�1.�/ � Q�1.�/k

2
H1.�/ C k N�2.�/ � Q�2.�/k

2
H1.�/ C kNv.�/ � Qv.�/k

2
H1.�/

�
d�

�

�
1C

Z t

0

C.�/ exp
�Z s

�

C.s/ ds
�

d�
�Z t

0

k Nu.�/ � Qu.�/k2L2.�/ d�

D exp
�Z t

0

C.�/ d�
�Z t

0

k Nu.�/ � Qu.�/k2L2.�/ d�:

Note that, using the estimates (3.5), (3.6), and (3.7) of Theorem 3.2, the function C.t/ can
be controlled by a constant depending on T , on the initial conditions, on j�j, and on the
various constants appearing in system (2.1). Therefore, the estimates (4.1) and (4.2) hold
and the proof is finished.

5. Optimal control problem

In this section, we consider optimal control problems for the system (2.1), (2.2), and (2.3),
obtained through the minimization of a functional, which explicitly depends on the control
u and consequently on the solution to (2.1). To this aim, define the (continuous) functions

 1 W R
3
! R;  2 W R

4
! R;

and the functional J W L2..0; T / ��I Œ0; U �/! R as

J.u/ D

Z
�

 1.�1.T; x/; �2.T; x/; v.T; x// dx

C

Z T

0

Z
�

 2.�1.t; x/; �2.t; x/; v.t; x/; u.t; x// dx dt ; (5.1)

which we aim to minimize. We remark that in this section we consider, as the domain of
the functional J , the space L2..0; T /��I Œ0;U �/ (with 0 < U <C1). This implies that,
since � is a bounded set, every minimizing sequence for J admits a weakly convergent
subsequence (see the proof of Theorem 5.1), also in the case some term in (5.1) is missing.
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Remark 2. The general form of the functional (5.1) describes in a unified way several
possible objective functionals, which are natural in application related to cancer therapies
against glioma.

For example, if the main objective is the maximal reduction of the volume of the
cancer at a time T , one can consider the functional

J.u/ D 
1

Z
�

�1.T; x/ dx C 
2

Z
�

�2.T; x/ dx

for suitable 
1; 
2 � 0. This is a special version of the functional (5.1), obtained with the
choice  1.�1; �2; v/ D 
1�1 C 
2�2 and  2.�1; �2; v; u/ D 0.

Another similar example is derived when the objective is the minimal cancer size at
a time T , obtained with the least dose of treatment, due to its side effects. In this case, a
meaningful functional is

J.u/ D 
1

Z
�

�1.T; x/ dx C 
2

Z
�

�2.T; x/ dx C
Z T

0

Z
�

up.t; x/ dx dt ;

where 
1; 
2 � 0 and p � 1. This is a special version of (5.1), obtained with the choice
 1.�1; �2; v/ D 
1�1 C 
2�2 and  2.�1; �2; v; u/ D up .

A third example is related to a possible way to make the glioma a chronic disease. In
this case, if N� 2 L2.�/ denotes the distribution of the cancer in a chronic situation, then
one aims to minimize

J.u/ D

Z
�

.�1.T; x/ � N�.x//
2 dx C

Z T

0

Z
�

.�1.t; x/ � N�.x//
2 dx dt

C

Z T

0

Z
�

up.t; x/ dx dt :

This is (5.1) with  1.�1; �2; v/ D .�1 � N�/2 and  2.�1; �2; v; u/ D .�1 � N�/2 C up .

Existence of optimal controls is guaranteed by the next result, whose proof is based
on the direct method of the calculus of variation; see, for example, [9, 14] and references
therein.

Theorem 5.1. Let ˛, ˇ, ı1, ı2, ıv , b, B , and U be fixed positive constants. Assume that
 1 is continuous, convex and  1.z/ � 0 for every z 2 R3. Suppose moreover that

 2.�1; �2; v; u/ D  2;1.�1; �2; v/C  2;2.�1; �2; v/u
p;

where p � 1 and 2;1; 2;2 WR3!R are continuous and positive functions. Let U¤; be
a closed (with respect to the strong topology) and convex subset of L2..0; T /��I Œ0;U �/.

Then, there exists Nu 2 U such that

J. Nu/ D min
u2U

J.u/: (5.2)
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Proof. Consider a minimizing sequence un for the functional J , i.e., a sequence un 2 U

such that
lim

n!C1
J.un/ D inf

u2U
J.u/:

This is possible, since J.u/ � 0 for every u 2 U by assumptions on  1,  2;1,  2;2, and
since J.0/ < C1, which is a consequence of the estimates in Theorem 3.2. We clearly
have that

kunk
2
L2..0;T /��/ D

Z T

0

Z
�

jun.t; x/j
2 dx dt � U 2 j�jT;

where j�j denotes the Lebesgue measure of �, so that there exists Nu 2 U (here U is also
closed in the weak topology, since it is convex) and a subsequence unh such that unh * Nu
in L2..0; T / ��I Œ0; U �/. Without loss of generality, we assume that the whole sequence
un weakly converges in L2..0; T / ��I Œ0; U �/ to Nu. Note, moreover, that there is weak
convergence to the same Nu in every Lp..0; T / ��I Œ0; U �/, p � 1.

For every n 2 N, denote with .�n1 ; �
n
2 ; v

n/ the solution to (2.1) corresponding to the
control un, in the sense of Definition 2.1, which exists by Theorem 3.2. Moreover, define
. N�1; N�2; Nv/ the solution to (2.1) corresponding to the control Nu.

Define, for every n 2 N, Sn D �n1v
n. By (3.5) and (3.7), we deduce that

jSn.t; x/j � k�1;okL1kvokL1e
j˛�ı1jT

C k�1;okL1
�
bı2.k�1;okL1 C k�2;okL1/e

˛T
C U

�
T

for a.e. .t;x/2 Œ0;T ���. Thus, without loss of generality, there exists NS 2L2..0;T /��/

so that Sn weakly converges to NS in L2..0; T / ��/.
Note that for every n 2 N, the triple .�n1 ; �

n
2 ; v

n/ is a solution to the linear system8̂̂<̂
:̂
@t �1 D ��1 C .˛ � ı1/�1 � ˇSn;

@t �2 D ��2 C ˇSn � ı2�2;

@t v D �v C bı2�2 � BSn � ıvv C un

(5.3)

in the sense of Definition 2.1.
We apply Corollary A.1 to each linear equation of (5.3). Since the operator defined

in Corollary A.1 is also continuous with respect to the weak topology of both domain and
codomain, see [3, Theorem 3.10], there exist Q�1, Q�2, and Qv in H1..0; T /IH1.�/;H1.�/�/

such that
�n1 * Q�1; �n2 * Q�2; vn * Qv

weakly in H1..0; T /IH1.�/;H1.�/�/ and the triple . Q�1; Q�2; Qv/ satisfies the linear system8̂̂<̂
:̂
@t Q�1 D � Q�1 C .˛ � ı1/ Q�1 � ˇ NS;

@t Q�2 D � Q�2 C ˇ NS � ı2 Q�2;

@t Qv D � Qv C bı2 Q�2 � B NS � ıv Qv C Nu:

(5.4)
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Moreover, since the space H1..0; T /IH1.�/;H1.�/�/ is continuously embedded in the
space C0.Œ0; T �IL2.�// (see [27, Theorem 7.104]), we also deduce that

�n1.T / * Q�1.T /; �n2.T / * Q�2.T /; vn.T / * Qv.T / (5.5)

weakly in L2.�/. This is a consequence that the dual of C0.Œ0;T �IL2.�// can be identified
with integral operators from C0.Œ0; T �IR/ to the dual space of L2.�/ (see [26, Sections
3.2 and 3.5]), which can be described through vector measures on Œ0; T � over the dual of
L2.�/; see [26, Proposition 5.28].

By [17, Theorem 10.1], for every n 2N, the solution .�n1 ; �
n
2 ; v

n/ is Hölder continuous
in each subset compactly embedded in .0; T / � �, with exponent not depending on n.
Therefore, by Ascoli–Arzelà theorem, there exist continuous functions O�1, O�2, and Ov such
that, possibly extracting a subsequence,

�n1 ! O�1; �n2 ! O�2; vn ! Ov

as n!C1, and the convergence is uniform. Hence, Q�1 D O�1, Q�2 D O�2, Qv D Ov, and so,

Sn D �
n
1v
n
! O�1 Ov

uniformly and in L2..0; T / ��/.
Therefore, the triple . O�1; O�2; Ov/ solves (5.4) with NS D O�1 Ov and control Nu. Since by The-

orem 3.2 the solution to such problem is unique, it holds . O�1; O�2; Ov/ D . N�1; N�2; Nv/.
We now show that the control Nu is indeed optimal. Consider the three terms defining

the functional J separately. The functional

L2.�/ � L2.�/ � L2.�/! R

.�1; �2; v/ 7!

Z
�

 1.�1.x/; �2.x/; v.x// dx

is sequential lower semicontinuous with respect to the strong topology. Since  1 is a
convex function, then it is also sequential lower semicontinuous with respect to the weak
topology. Therefore, since (5.5), we deduce that

lim inf
n!C1

Z
�

 1.�
n
1.T; x/; �

n
2.T; x/; v

n.T; x// dx

�

Z
�

 1. N�1.T; x/; N�2.T; x/; Nv.T; x// dx:

Moreover, since .�n1 ; �
n
2 ; v

n/ converges to . N�1; N�2; Nv/ for a.e. .t; x/ 2 .0; T / ��, the
estimates (3.5)–(3.7) hold, and 2;1 and 2;2 are continuous functions, then the dominated
convergence theorem implies that

lim
n!C1

Z T

0

Z
�

 2;1.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x// dx dt

D

Z T

0

Z
�

 2;1. N�1.t; x/; N�2.t; x/; Nv.t; x// dx dt ;
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and also that
lim

n!C1
 2;2.�

n
1 ; �

n
2 ; v

n/ D  2;2. N�1; N�2; Nv/ (5.6)

in Lp.�/ for every p 2 Œ1;C1/.
Finally, by (5.6) and the fact that

ˇ̌
u
p
n .t; x/

ˇ̌
�U p for all .t;x/ 2 Œ0;T ���, we deduce

that

lim inf
n!C1

Z T

0

Z
�

 2;2.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x//upn .t; x/ dx dt

D lim inf
n!C1

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x//u
p
n .t; x/ dx dt

C lim
n!C1

Z T

0

Z
�

Œ 2;2.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x//

�  2;2. N�1.t; x/; N�2.t; x/; Nv.t; x//�u
p
n .t; x/ dx dt

D lim inf
n!C1

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x//u
p
n .t; x/ dx dt :

Since the functional

Lp..0; T / ��I Œ0; U �/! R

u 7!

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x//u
p.t; x/ dx dt

is convex and sequentially lower semicontinuous with respect to the strong topology, then
it is also sequentially lower semicontinuous with respect to the weak topology, and so,

lim inf
n!C1

Z T

0

Z
�

 2;2.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x//upn .t; x/ dx dt

� lim inf
n!C1

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x// Nu
p.t; x/ dx dt :

This permits to conclude that

lim inf
n!C1

J.un/ � J. Nu/;

proving that Nu is an optimal control, i.e., (5.2) holds. This concludes the proof.

Remark 3. Theorem 5.1 still holds under the following more general assumption on the
function  2 appearing in J.u/:

 2 W R
4
! R

.�1; �2; v; u/ 7!  2.�1; �2; v; u/
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is Lipschitz continuous in all variables, positive and convex in u. Indeed, since .�n1 ; �
n
2 ; v

n/

converges to . N�1; N�2; Nv/, and the function  2 is Lipschitz continuous, it holds

lim
n!C1

Z T

0

Z
�

�
 2.�

n
1.t; x/; �

n
2.t; x/; v

n.t; x/; un.t; x//

�  2;2. N�1.t; x/; N�2.t; x/; Nv.t; x/; un.t; x//
�

dx dt D 0:

Therefore,

lim inf
n!C1

Z T

0

Z
�

 2;2.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x/; un.t; x// dx dt

D lim inf
n!C1

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x/; un.t; x// dx dt :

The convexity of  2 with respect to u ensures, by [28, Theorem 2.12], the weakly lower
semicontinuity of the functional

Lp..0; T / ��I Œ0; U �/! R

u 7!

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x/; u.t; x// dx dt

so that

lim inf
n!C1

Z T

0

Z
�

 2;2.�
n
1.t; x/; �

n
2.t; x/; v

n.t; x/; un.t; x// dx dt

� lim inf
n!C1

Z T

0

Z
�

 2;2. N�1.t; x/; N�2.t; x/; Nv.t; x/; Nu.t; x// dx dt ;

allowing to conclude that
lim inf
n!C1

J.un/ � J. Nu/:

6. Necessary optimality conditions

In this section, given the initial data �1;o; �2;o; vo 2 L1.�IRC/, we aim to prove nec-
essary conditions for optimal controls, i.e., for controls satisfying (5.2) of Theorem 5.1.
First, we prove the differentiability of the control-to-state map and then we deduce opti-
mality conditions using the adjoint system.

6.1. Differentiability of the control-to-state map

We follow the line of [6], see also [5]. Consider the control-to-state map G, defined as

G W L1..0; T / ��I Œ0; U �/! C0.Œ0; T �I .L2.�//3/

u 7! .�1; �2; v/; (6.1)
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where the triple .�1; �2; v/ is the unique solution to (2.1), (2.2), and (2.3), corresponding
to the control u with initial data �1;o; �2;o; vo.

First, observe that, by Theorem 4.1, the map G is Lipschitz continuous, since it holds
L1..0; T / ��I Œ0; U �/ ,! L2..0; T / ��I Œ0; U �/. Let u� 2 L1..0; T / ��I .0; U // be
fixed and denote the corresponding state byG.u�/D .��1 ; �

�
2 ; v
�/. Given Nu 2 L1..0;T /�

�I Œ0; U �/, we introduce the linearized system at .��1 ; �
�
2 ; v
�/:8̂̂̂̂

ˆ̂̂<̂
ˆ̂̂̂̂̂:

@t X D �X C @�1F1.�
�
1 ; v
�/X C @vF1.�

�
1 ; v
�/Z;

@t Y D �Y C @�1F2.�
�
1 ; �
�
2 ; v
�/X C @�2F2.�

�
1 ; �
�
2 ; v
�/Y

C@vF2.�
�
1 ; �
�
2 ; v
�/Z;

@t Z D �Z C @�1F3.�
�
1 ; �
�
2 ; v
�/X C @�2F3.�

�
1 ; �
�
2 ; v
�/Y

C@vF3.�
�
1 ; �
�
2 ; v
�/Z C Nu � u�;

(6.2)

coupled with zero initial conditions and homogeneous Neumann boundary conditions8̂̂<̂
:̂
X.0; x/ D 0;

Y.0; x/ D 0;

Z.0; x/ D 0;

8̂̂<̂
:̂
@�X.t; �/ D 0;

@�Y.t; �/ D 0;

@�Z.t; �/ D 0:

(6.3)

Above, we used the following notation:

F1.�1; v/ D .˛ � ı1/�1 � ˇ�1v;

F2.�1; �2; v/ D ˇ�1v � ı2�2;

F3.�1; �2; v/ D bı2�2 � B�1v � ıvv: (6.4)

Lemma 6.1. The system (6.2)–(6.3) has a unique strong solution .X; Y; Z/ 2 X3, satis-
fying

kXk2X C kY k
2
X C kZk

2
X � Ck Nuk

2
L2..0;T /��/; (6.5)

where X D C0.Œ0; T �IH1.�//.

Proof. System (6.2)–(6.3) is linear parabolic, the coefficients of X; Y , and Z are func-
tions in L1..0; T / � �/ by Theorem 3.2, the source term Nu � u� is by hypothesis in
L1..0; T / � �/, the initial data are zero, then smooth. Hence, by [15, Theorem 3.6]
or by [20, Theorem 1.1, Chapter IV], there exists a unique triple .X; Y; Z/ 2 X3 that
solves (6.2)–(6.3) and satisfies (6.5).

Let � 2 .0; 1/, and set
u� D u� C �. Nu � u�/: (6.6)

Clearly, u� 2 L1..0; T / ��I Œ0; U �/, so that we can define the corresponding state

.��1 ; �
�
2 ; v

�/ D G.u�/:
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Note that, as �! 0, by construction we have u�! u� and by the Lipschitz continuity of
the control-to-state map G we have .��1 ; �

�
2 ; v

�/! .��1 ; �
�
2 ; v
�/.

The next proposition describes the directional derivative of the control-to-state map G
at u�.

Proposition 6.1. The directional derivative of the control-to-state map G in the direction
. Nu � u�/ is given by

D. Nu�u�/G.u
�/ D .X; Y;Z/; (6.7)

where the triple .X; Y;Z/ is the solution to the linearized system (6.2)–(6.3).

Proof. Set

X� D
��1 � �

�
1

�
�X; Y � D

��2 � �
�
2

�
� Y; Z� D

v� � v�

�
�Z: (6.8)

We claim that the triple .X�; Y �;Z�/ converges strongly to the point .0; 0; 0/ in the space
C0.Œ0; T �IL2.�/3/ \ L2..0; T /IH1.�/3/.

Starting from the definition (6.8), we write the system8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

@t X
� D �X� C @�1F1.a

�
1 ; v

�/X� C @vF1.�
�
1 ; c

�
1 /Z

� C A1X C A3Z;

@t Y
� D �Y � C @�1F2.a

�
2 ; �

�
2 ; v

�/X� C @�2F2.�
�
1 ; b

�
2 ; v

�/Y �

C@vF2.�
�
1 ; �
�
2 ; c

�
2 /Z

� C B1X C B2Y C B3Z;

@t Z
� D �Z� C @�1F3.a

�
3 ; �

�
2 ; v

�/X� C @�2F3.�
�
1 ; b

�
3 ; v

�/Y �

C@vF3.�
�
1 ; �
�
2 ; c

�
3 /Z

� C C1X C C2Y C C3Z;

where F1; F2; F3 are defined as in (6.4), a�1 ; a
�
2 ; a

�
3 are intermediate values between ��1

and ��1 , b�2 ; b
�
3 are intermediate values between ��2 and ��2 , c�1 ; c

�
2 ; c

�
3 are intermediate

values between v� and v�, and

A1 D @�1F1.a
�
1 ; v

�/ � @�1F1.�
�
1 ; v
�/ D ˇ.v� � v�/;

A3 D @vF1.�
�
1 ; c

�
1 / � @vF1.�

�
1 ; v
�/ D 0;

B1 D @�1F2.a
�
2 ; �

�
2 ; v

�/ � @�1F2.�
�
1 ; �
�
2 ; v
�/ D ˇ.v� � v�/;

B2 D @�2F2.�
�
1 ; b

�
2 ; v

�/ � @�2F2.�
�
1 ; �
�
2 ; v
�/ D 0;

B3 D @vF2.�
�
1 ; �
�
2 ; c

�
2 / � @vF2.�

�
1 ; �
�
2 ; v
�/ D 0;

C1 D @�1F3.a
�
3 ; �

�
2 ; v

�/ � @�1F3.�
�
1 ; �
�
2 ; v
�/ D B.v� � v�/;

C2 D @�2F3.�
�
1 ; b

�
3 ; v

�/ � @�2F3.�
�
1 ; �
�
2 ; v
�/ D 0;

C3 D @vF3.�
�
1 ; �
�
2 ; c

�
3 / � @vF3.�

�
1 ; �
�
2 ; v
�/ D 0:
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We now test the equation for X� (respectively, Y � and Z�) with X� (respectively, Y �

and Z�). Exploiting the weakly coercivity of the bilinear forms, as in the proof of Theo-
rem 4.1, since

@vF1.�
�
1 ; c

�
1 / D �ˇ�

�
1 ;

we obtain

1

2

d
dt
kX�.t/k2L2.�/ C

1

2
kX�.t/k2H1.�/

�

Z
�

@vF1.�
�
1 ; c

�
1 /X

�Z� C

Z
�

A1XX
�

C

�1
2
C ı1 C ˛ C ˇkv

�.t/kL1.�/

�
kX�.t/k2L2.�/

�
ˇ

2
k��1.t/k

2
L1.�/kX

�.t/k2L2.�/ C
ˇ

2
kZ�.t/k2L2.�/

C
ˇ

2
kv�.t/ � v�.t/k2L2.�/ C

ˇ

2
kX.t/k2L1.�/kX

�.t/k2L2.�/

C

�1
2
C ı1 C ˛ C ˇkv

�.t/kL1.�/

�
kX�.t/k2L2.�/;

where the L1-norms appearing above can be controlled using (3.5)–(3.7) and the fact that
X belongs to L1..0; T / ��/ by Lemma 6.1.

Proceed similarly for Y �, since

@�1F2.a
�
2 ; �

�
2 ; v

�/ D ˇv� and @vF2.�
�
1 ; �
�
2 ; c

�
2 / D ˇ�

�
1 ;

we get

1

2

d
dt
kY �.t/k2L2.�/ C

1

2
kY �.t/k2H1.�/

�

Z
�

@�1F2.a
�
2 ; �

�
2 ; v

�/X�Y � C

Z
�

@vF2.�
�
1 ; �
�
2 ; c

�
2 /Y

�Z� C

Z
�

B1XY
�

C

�1
2
C ı2

�
kY �.t/k2L2.�/

�
ˇ

2
kv�.t/k2L1.�/kX

�.t/k2L2.�/ C
ˇ

2
kY �.t/k2L2.�/

C
ˇ

2
k��1.t/k

2
L1.�/kY

�.t/k2L2.�/ C
ˇ

2
kZ�.t/k2L2.�/

C
ˇ

2
kv�.t/ � v�.t/k2L2.�/ C

ˇ

2
kX.t/k2L1.�/kY

�.t/k2L2.�/

C

�1
2
C ı2

�
kY �.t/k2L2.�/;
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where the L1-norms appearing above can be controlled using (3.5)–(3.7) and the fact X
belongs to L1..0;T /��/ by Lemma 6.1. Lastly, considerZ�, since @�1F3.a

�
3 ; �

�
2 ; v

�/D

�Bv� and @�2F2.�
�
1 ; b

�
3 ; v

�/ D b ı2, we get

1

2

d
dt
kZ�.t/k2L2.�/ C

1

2
kZ�.t/k2H1.�/

�

Z
�

@�1F3.a
�
3 ; �

�
2 ; v

�/X�Z� C

Z
�

@�2F2.�
�
1 ; b

�
3 ; v

�/Y �Z� C

Z
�

C1XZ
�

C

�
1

2
C ıv C Bk�

�
1.t/kL1.�/

�
kZ�.t/k2L2.�/

�
B

2
kv�.t/k2L1.�/kX

�.t/k2L2.�/ C
B

2
kZ�.t/k2L2.�/

C
b ı2

2
kY �.t/k2L2.�/ C

b ı2

2
kZ�.t/k2L2.�/

C
B

2
kv�.t/ � v�.t/k2L2.�/ C

B

2
kX.t/k2L1.�/kZ

�.t/k2L2.�/

C

�1
2
C ıv C Bk�

�
1.t/kL1.�/

�
kZ�.t/k2L2.�/;

where the L1-norms appearing above can be controlled using (3.5)–(3.7) and the fact that
X belongs to L1..0; T / ��/ by Lemma 6.1.

Collecting together the estimates above, for a.e. t 2 Œ0; T �, we obtain

d
dt

�
kX�.t/k2L2.�/ C kY

�.t/k2L2.�/ C kZ
�.t/k2L2.�/

�
C kX�.t/k2H1.�/ C kY

�.t/k2H1.�/ C kZ
�.t/k2H1.�/

� C.t/
�
kX�.t/k2L2.�/ C kY

�.t/k2L2.�/ C kZ
�.t/k2L2.�/

�
C .B C 2ˇ/kv�.t/ � v�.t/k2L2.�/;

where we set

C.t/ D max
°
ˇk��1.t/k

2
L1.�/ C ˇkX.t/k

2
L1.�/ C 1C 2ı1 C 2˛

C 2ˇkv�.t/kL1.�/ C .ˇ C B/kv
�.t/k2L1.�/;

ˇ C ˇk��1.t/k
2
L1.�/ C ˇkX.t/k

2
L1.�/ C 1C 2 ı2 C b ı2;

2 ˇ C B C b ı2 C BkX.t/k
2
L1.�/ C 1C 2 ıv C 2Bk�

�
1.t/k

2
L1.�/

±
:

An application of Gronwall’s inequality yields

kX�.t/k2L2.�/ C kY
�.t/k2L2.�/ C kZ

�.t/k2L2.�/

C

Z t

0

�
kX�.s/k2H1.�/ C kY

�.s/k2H1.�/ C kZ
�.s/k2H1.�/

�
ds

�

Z t

0

.B C 2ˇ/kv�.t/ � v�.s/k2L2.�/ exp
�Z t

s

C.�/ d�
�

ds :

(6.9)
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Since, in the limit �! 0, we have the convergence v�! v�, by (6.9) we obtain the thesis,
i.e.,

.X�; Y �; Z�/! .0; 0; 0/ strongly in C0.Œ0; T �IL2.�/3/ \ L2..0; T /IH1.�/3/:

Due to the definition (6.8) of the triple .X�; Y �; Z�/, this amounts to�
��1 � �

�
1

�
;
��2 � �

�
2

�
;
v� � v�

�

�
�!0
���! .X; Y;Z/;

which in terms of the control-to-state operator G gives its directional derivative in the
direction Nu � u�:

D. Nu�u�/G.u
�/ D .X; Y;Z/;

concluding the proof.

6.2. Adjoint system and necessary conditions

Let us now consider the functional J defined in (5.1). Observe that J is actually a func-
tion also of .�1; �2; v/, and not only of the control u; thus, it would be more precise to
write J.�1; �2; v; u/. The control-to-state operator G introduced in (6.1) allows to write
.�1; �2; v/ D G.u/ so that we can define the reduced cost functional f as

f .u/ WD J.�1; �2; v; u/ D J.G.u/; u/: (6.10)

We introduce the following assumptions on the cost functions  1 and  2.

( )  1 2 C1.R3IR/ and  2 2 C1.R4IR/. Moreover, for every M > 0, there exists
LM > 0 such that

jr 1. N�1; N�2; Nv/ � r 1. O�1; O�2; Ov/j � LM j. N�1; N�2; Nv/ � . O�1; O�2; Ov/j ;

jr 2. N�1; N�2; Nv; Nu/ � r 2. O�1; O�2; Ov; Ou/j � LM j. N�1; N�2; Nv; Nu/ � . O�1; O�2; Ov; Ou/j

for every N�1; N�2; Nv; Nu; O�1; O�2; Ov; Ou2 Œ0;M �. Here, the notationsr 1.�1;�2;v/ and,
respectively, r 2.�1; �2; v; u/ denote the gradient with respect to the variables
.�1; �2; v/ and, respectively, .�1; �2; v; u/.

Thanks to [28, Lemma 4.12], the functional J admits partial derivatives, while Propo-
sition 6.1 ensures that the differentiability of the control-to-state operator G. Hence, the
reduced cost functional f (6.10) is differentiable in L1..0; T / ��/.

Consider a set of admissible control U¤; that is a closed convex subset of L1..0;T /�
�I Œ0;U �/. Let u� 2U be a locally optimal control for problem (2.1), (2.2), and (2.3) sub-
ject to the minimization of the functional J (5.1). Then, for any Nu 2 U, defining u� as
in (6.6) for � 2 .0; 1/, the following inequality holds:

f .u�/ � f .u�/ � 0:
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Dividing by � and passing to the limit as �! 0, we obtain

f 0.u�/. Nu � u�/ � 0 8 Nu 2 U: (6.11)

Due to the definition of f (6.10), using the chain rule and (6.7), we can compute f 0

appearing in (6.11) for any Nu 2 U as follows:

0 � f 0.u�/. Nu � u�/

D r.�1;�2;v/J.G.u
�/; u�/ �D. Nu�u�/G.u

�/C @uJ.G.u
�/; u�/. Nu � u�/

D @�1J.G.u
�/; u�/X C @�2J.G.u

�/; u�/Y C @vJ.G.u
�/; u�/Z

C @uJ.G.u
�/; u�/. Nu � u�/

D

Z
�

@�1 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//X.T; x/ dx

C

Z
�

@�2 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//Y.T; x/ dx

C

Z
�

@v 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//Z.T; x/ dx (6.12)

C

Z T

0

Z
�

@�1 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//X.t; x/ dx dt

C

Z T

0

Z
�

@�2 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//Y.t; x/ dx dt

C

Z T

0

Z
�

@v 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//Z.t; x/ dx dt

C

Z T

0

Z
�

@u 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//. Nu.t; x/ � u�.t; x// dx dt ;

where the triple .X; Y;Z/ is the solution to the linearized system (6.2)–(6.3).
Introduce the adjoint system, in the variables w; y; z:8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�@t w ��w D @�1F1.�
�
1 ; v
�/w C @vF1.�

�
1 ; v
�/z C @�1 2.�

�
1 ; �
�
2 ; v
�; u�/;

�@t y ��y D @�1F2.�
�
1 ; �
�
2 ; v
�/w C @�2F2.�

�
1 ; �
�
2 ; v
�/y

C@vF2.�
�
1 ; �
�
2 ; v
�/z C @�2 2.�

�
1 ; �
�
2 ; v
�; u�/;

�@t z ��z D @�1F3.�
�
1 ; �
�
2 ; v
�/w C @�2F3.�

�
1 ; �
�
2 ; v
�/y

C@vF3.�
�
1 ; �
�
2 ; v
�/z C @v 2.�

�
1 ; �
�
2 ; v
�; u�/;

(6.13)
with the following initial and boundary conditions:8̂̂<̂
:̂
w.T; x/ D @�1 1.�

�
1.T; x/; �

�
2.T; x/; v

�.T; x//;

y.T; x/ D @�2 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//;

z.T; x/ D @v 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//;

8̂̂<̂
:̂
@�w.t; �/ D 0;

@�y.t; �/ D 0;

@�z.t; �/ D 0:

(6.14)

A result similar to Lemma 6.1 holds, implying that there exists a unique solution to (6.13)–
(6.14).
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Lemma 6.2 ([28, Theorem 3.18]). Assume ( ) holds. Let .X; Y; Z/ be the solution to
the linearized problem (6.2)–(6.3). Let .w; y; z/ be the weak solution to the adjoint prob-
lem (6.13)–(6.14). Then,Z

�

@�1 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//X.T; x/ dx

C

Z
�

@�2 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//Y.T; x/ dx

C

Z
�

@v 1.�
�
1.T; x/; �

�
2.T; x/; v

�.T; x//Z.T; x/ dx

C

Z T

0

Z
�

@�1 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//X.t; x/ dx dt

C

Z T

0

Z
�

@�2 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//Y.t; x/ dx dt

C

Z T

0

Z
�

@�2 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//Z.t; x/ dx dt (6.15)

D

Z T

0

Z
�

. Nu.t; x/ � u�.t; x//z.t; x/ dx dt : (6.16)

Theorem 6.1. Let u� 2U be a locally optimal control for problem (2.1), (2.2), and (2.3)
subject to the minimization of the functional J (5.1). If .w; y; z/ is the associated state
solving problem (6.13)–(6.14), then the following variational inequality holds for all Nu 2
U: Z T

0

Z
�

.z C @u 2.�
�
1 ; �
�
2 ; v
�; u�//. Nu � u�/ dx dt � 0: (6.17)

Proof. Inserting (6.16) into (6.12) leads toZ T

0

Z
�

. Nu.t; x/ � u�.t; x//z.t; x/ dx dt

C

Z T

0

Z
�

@u 2.�
�
1.t; x/; �

�
2.t; x/; v

�.t; x/; u�.t; x//. Nu.t; x/ � u�.t; x// dx dt � 0;

concluding the proof.

Remark 4. With reference to the functionals introduced in Remark 2, we deduce the
following necessary conditions.

If
J.u/ D 
1

Z
�

�1.T; x/ dx C 
2

Z
�

�2.T; x/ dx

for suitable 
1; 
2 � 0, then  2 D 0, and so, (6.17) becomesZ T

0

Z
�

z. Nu � u�/ dx dt � 0:
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If

J.u/ D 
1

Z
�

�1.T; x/ dx C 
2

Z
�

�2.T; x/ dx C
Z T

0

Z
�

up.t; x/ dx dt

or

J.u/ D

Z
�

.�1.T; x/ � N�.x//
2 dx C

Z T

0

Z
�

.�1.t; x/ � N�.x//
2 dx dt

C

Z T

0

Z
�

up.t; x/ dx dt ;

where 
1; 
2 � 0, N� 2 L2.�/, and p � 1, then @u 2 D pup�1, and so, (6.17) becomesZ T

0

Z
�

.z C p.u�/p�1/. Nu � u�/ dx dt � 0:

A. Preliminary results on the linear parabolic equation
@tu D �uC c.t; x/uC f.t; x/

This appendix contains classical results about the well posedness of scalar parabolic equa-
tions. It is mainly intended to ease the readability of the paper.

Let � � Rn be a bounded domain with Lipschitz boundary @�, fix T > 0, and set
�T D .0; T / �� and ST D .0; T / � @�. Consider the following problem:8̂̂<̂

:̂
@tu ��uC c.t; x/u D f .t; x/ in �T ;

u.0; x/ D g.x/ in �;

@�u.t; �/ D 0 on ST ;

(A.1)

where � is the outward normal on � at the boundary @�, which exists for Hn�1 a.e.
� 2 @�. Assume that f 2 L2.�T IR/, g 2 L2.�IR/, and c 2 L1.�T IR/. Fix co � 1
such that kckL1.�T / � co. We define the Hilbert space

H1..0;T /IH1.�/;H1.�/�/D
®
u 2 L2..0;T /IH1.�// W Pu 2 L2..0;T /IH1.�/�/

¯
(A.2)

endowed with inner product

.u1; u2/H1..0;T /IH1.�/;H1.�/�/ D

Z T

0

.u1.t/; u2.t//H1 dt C
Z T

0

. Pu1.t/; Pu2.t//H1� dt

and norm

kuk2H1..0;T /IH1.�/;H1.�/�/ D

Z T

0

ku.t/k2H1 dt C
Z T

0

k Pu.t/k2H1� dt :

Following [27, Chapter 10], we introduce the definition of the weak solution to prob-
lem (A.1).
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Definition A.1. A function u 2 H1..0; T /IH1.�/;H1.�/�/ is a weak solution to (A.1) if
u.0/ D g and

h Pu.t/; vi� C B.u.t/; vI t / D hf .t/; vi�

for all v 2 H1.�/ and for a.e. t 2 .0; T /, where

B.u; vI t / D

Z
�

�
ru � rv C c.t; x/ u v

�
dx; (A.3)

and h�; �i� denotes the duality between H1.�/� and H1.�/.

The bilinear form B (A.3) is continuous, with

jB.u; vI t /j � .1C co/kukH1.�/kvkH1.�/:

Moreover, B is weakly coercive, since, for every � > co and ˛ 2 �0; 1�,

B.u; uI t /C �kuk2L2.�/ � ˛kuk
2
H1.�/:

Finally, for every u;v 2H1.�/, the map t 7!B.u;vI t / is measurable by Fubini’s theorem.
Hence, we can apply [27, Theorem 10.6].

Theorem A.1. There exists a unique weak solution u to problem (A.1) in the sense of Def-
inition A.1. Moreover, for every t 2 Œ0; T �, we have

ku.t/k2L2.�/ � e
2 co t

²
kgk2L2.�/ C

Z t

0

kf .s/k2H1.�/� ds
³
;Z t

0

ku.s/k2H1.�/ ds � e2 co t
²
kgk2L2.�/ C

Z t

0

kf .s/k2H1.�/� ds
³
;Z t

0

k Pu.s/k2H1.�/� ds � 2.1C co/2e2cotkgk2L2.�/

C .2.1C co/
2e2cot C 2/

Z t

0

kf .s/k2H1.�/� ds: (A.4)

A first simple consequence is the continuity of the solution operator for (A.1).

Corollary A.1. The operator, which associates to every f 2L2.�T IR/ and g 2L2.�IR/
the unique solution to (A.1), is linear and continuous as a map

L2.�T IR/ � L2.�IR/! H1..0; T /IH1.�/;H1.�/�/:

A second consequence of the estimates provided by Theorem A.1 is the stability of
solutions to problem (A.1) with respect to the source function f .

Proposition A.1. Let u1 and u2 solve8̂̂<̂
:̂
@tu1 ��u1 C c.t; x/ u1 D f1.t; x/;

u1.0; x/ D g.x/;

@�u1.t; �/ D 0;

8̂̂<̂
:̂
@tu2 ��u2 C c.t; x/ u2 D f2.t; x/;

u2.0; x/ D g.x/;

@�u2.t; �/ D 0;
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with g 2 L2.�/, c 2 L1.�T / and f1; f2 2 L2.�T /. Then,

ku1.t/ � u2.t/k
2
L2.�/ � e

2 co t

Z t

0

kf1.s/ � f2.s/k
2
H1.�/� ds:

Proof. Set u WD u1 � u2. Clearly, u solves8̂̂<̂
:̂
@tu ��uC c.t; x/ u D f1.t; x/ � f2.t; x/;

u.0; x/ D 0;

@�u.t; �/ D 0:

Applying Theorem A.1 to u, we obtain the thesis.

The following a priori L1 estimate holds.

Proposition A.2. Let g 2 L1.�IRC/, f 2 L1.�T IRC/, and c 2 L1.�T IR/. Let u
be the unique weak solution to (A.1). Then, for t 2 Œ0; T �,

0 � u.t; x/ �

8<:
�
kgkL1 C

kf kL1
kckL1

�
ekckL1 t �

kf kL1
kckL1

; kckL1 > 0;

kgkL1 C kf kL1 t; kckL1 D 0:

Proof. Define the linear operator

v 7! Pv WD @tv ��v � cv:

Clearly, Pu D f � 0 and u.0/ D g � 0; hence, u.t; x/ � 0 by the weak maximum prin-
ciple; see, for example, [27, Theorem 10.18 and Remark 10.19].

Define

w.t; x/ D

8<:
�
kgkL1 C

kf kL1
kckL1

�
ekckL1 t �

kf kL1
kckL1

if c ¤ 0;

kgkL1 C kf kL1 t if c � 0:

In the case c ¤ 0, we have

P .w � u/ D Pw �Pu

D kckL1
�
kgkL1 C

kf kL1

kckL1

�
ekckL1 t

� c.t; x/
�
kgkL1 C

kf kL1

kckL1

�
ekckL1 t C c.t; x/

kf kL1

kckL1
� f .t; x/

D .kckL1 � c.t; x//kgkL1e
kckL1 t C kf kL1e

kckL1 t

�
c.t; x/

kckL1
kf kL1

�
ekckL1 t � 1

�
� f .t; x/

� kf kL1
�
ekckL1 t � 1

��
1 �

c.t; x/

kckL1

�
� 0:
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On the other hand, in the case c � 0, we have

P .w � u/ D kf kL1 � f .t; x/ � 0:

In both cases, @�.w � u/ D 0 in ST and

.w.0; x/ � u.0; x// D kgkL1 � g.x/ � 0:

Hence, the weak maximum principle implies that w � u in�T , completing the proof.

We briefly recall a regularity result, see [27, Remark 10.17]: the more regular the initial
data, the more regular the solution.

Proposition A.3. Let u be the unique weak solution to problem (A.1) in the sense of Def-
inition A.1. If g 2 H1.�/, f 2 L2..0; T /IL2.�//, and c 2 L1.�T /, then u is such that
u 2 L1..0; T /IH1.�// and Pu 2 L2..0; T /IL2.�//.

If, in addition, � is a C2-domain, then u 2 L2..0; T /IH2.�//.

Proof. The proof is based on Faedo–Galerkin approximation for problem (A.1); see [27,
Theorem 10.14] for a similar case.

Take a sequence ws of eigenvalues of the Laplace operator in � with 0 Neumann
boundary condition. We select the eigenvalues such that the closure of their span coincides
with the space H1.�/, they are orthogonal in H1.�/ and orthonormal in L2.�/. For every
m > 1, define a Faedo–Galerkin approximation um of u as

um.t/ D

mX
jD1

cjm.t/wj ;

where the coefficients cjm.t/ belong to H1..0; T /IR/ for every j 2 ¹1; : : : ; mº, so that
for a.e. t 2 Œ0; T �, for all m, and for all v 2 H1.�/,

h Pum.t/; vi� C B.um.t/; vI t / D hf .t/; vi�; (A.5)

where the bilinear term B is defined in (A.3). Note that for a.e. t 2 Œ0;T �, um.t/ converges
to u.t/ in H1.�/ as m! C1 and Pum.t/ 2 H1.�/ for every m � 1. Thus, substituting
v D Pum.t/ in (A.5) and using (A.3) and the hypothesis that f 2 L2..0; T /IL2.�//, we
get that

k Pum.t/k
2
L2.�/ C

Z
�

rum.t/ � r Pum.t/ dx„ ƒ‚ …
I1

D

Z
�

f .t/ Pum.t/ dx„ ƒ‚ …
I2

�

Z
�

c.t; x/ um.t/ Pum.t/ dx„ ƒ‚ …
I3

: (A.6)
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Note that
I1 D

1

2

d
dt
krum.t/k

2
L2.�/: (A.7)

Moreover, for a.e. t 2 .0; T /,

I2 �

Z
�

jf .t/j j Pum.t/j dx � kf .t/kL2.�/k Pum.t/kL2.�/

� 2kf .t/k2L2.�/ C
1

8
k Pum.t/k

2
L2.�/: (A.8)

Finally, for a.e. t 2 .0; T /,

j�I3j �

Z
�

jc.t; x/j jum.t/j j Pum.t/j dx

� kckL1.�T /kum.t/kL2.�/k Pum.t/kL2.�/

� 2kck2L1.�T /kum.t/k
2
L2.�/ C

1

8
k Pum.t/k

2
L2.�/; (A.9)

provided kckL1.�T / > 0. Inserting (A.7), (A.8), and (A.9) into (A.6), we deduce that, for
a.e. t 2 Œ0; T �,

3

4
k Pum.t/k

2
L2.�/ C

1

2

d
dt
krum.t/k

2
L2.�/

� 2kf .t/k2L2.�/ C 2kck
2
L1.�T /kum.t/k

2
L2.�/;

and so, integrating in time, since krum.0/k2L2.�/
� kgk2L2.�/

,

3

4

Z t

0

k Pum.s/k
2
L2.�/ ds C

1

2
krum.t/k

2
L2.�/

�
1

2
krum.0/k

2
L2.�/ C 2

Z t

0

kf .s/k2L2.�/ ds C 2kck2L1.�T /

Z t

0

kum.s/k
2
L2.�/ ds

�
1

2
krgk2L2.�/ C 2

Z t

0

kf .s/k2L2.�/ ds C 2kck2L1.�T /

Z t

0

kum.s/k
2
L2.�/ ds:

Passing to the limit as m!C1 and using (A.4), we have

3

4

Z t

0

k Pu.s/k2L2.�/ ds C
1

2
kru.t/k2L2.�/

�
1

2
krgk2L2.�/ C 2

Z t

0

kf .s/k2L2.�/ ds C 2kck2L1.�T /

Z t

0

ku.s/k2L2.�/ ds

�
1

2
krgk2L2.�/ C 2

Z t

0

kf .s/k2L2.�/ ds

C 2kck2L1.�T /e
2kckL1.�T /tkgk2L2.�/t

C 2kck2L1.�T /e
2kckL1.�T /t t

Z t

0

kf .s/k2L2.�/ ds:
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The previous inequality proves that u2L1..0; T /IH1.�// and Pu2L2..0; T /I L2.�//

since by (A.4), u2L1..0;T /IL2.�//. If the boundary @� of� is of class C2, then u.t/2
H2.�/ for a.e. t 2 Œ0;T � (see [27, Theorem 8.28]), proving that u 2L2..0;T /IH2.�//.
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