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Coarse-graining and reconstruction for Markov matrices

Artur Stephan

Abstract. We present an operator theoretic coarse-graining (or model order reduction) procedure
for stochastic matrices by clustering. The method is consistent with the natural structure of Markov
theory, preserving positivity and mass, and does not rely on any tools from Hilbert space theory.
The reconstruction is provided by a generalized Penrose–Moore inverse of the coarse-graining oper-
ator incorporating the inhomogeneous invariant measure of the Markov matrix. As we will show,
the method provides coarse-graining and reconstruction also on the level of tensor spaces, which
is consistent with the notion of an incidence matrix and quotient graphs, and, moreover, allows
to coarse-grain and reconstruct fluxes. Furthermore, we investigate the connection with functional
inequalities and Poincaré-type constants.

1. Introduction

Coarse-graining or model reduction is a fundamental procedure that reduces the complex-
ity of a physical model. It is a well-established tool used in many branches of applied
mathematics including analysis, modeling, and numerics. In this paper, we are interested
in coarse-graining for physical systems on a finite state space described by Markov matri-
ces.

Let us first describe the mathematical setting. Fixing a finite state spaces ZD¹1; : : : ;nº,
n 2 N, the statistical states are given by the set of probability vectors

Prob.Z/ D
²
p 2 Rn W pi � 0;

nX
iD1

pi D 1

³
� Rn WD X�:

The distinction between primalX and dual spacesX� (although both are isomorphic to the
Rn as real-vector spaces) is important, where the first contains functions on Z equipped
with the supremum-norm, and the second contains probabilities on Z equipped with the
1-norm. Dual pairing is denoted by h�; �i. Apart from X being a vector space, it has a
natural order, i.e., x � y if the pointwise estimate xi � yi holds for all i 2 Z. Moreover,
it is an algebra, i.e., the product of two elements x and y is given by .x � y/i D xi � yi by
pointwise multiplication.
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The change of statistical states is described by a Markov matrix (or operator) K W
X ! X , which, by definition, satisfies Kij � 0 and

P
j2ZKij D 1 for all i 2 Z. Equiv-

alently, K maps non-negative elements in X to non-negative, and K1X D 1X , where
1X D .1; : : : ; 1/T is the constant one-vector. The invariant vector � 2 Prob.Z/ � X�

of the adjoint matrix K� is defined by satisfying
P
i �iKij D �j , or, equivalently, by

�TK D �T , or K�� D � . Throughout the paper, we assume that the invariant vector is
unique and positive. (See, e.g., [19] for introductory reading on Markov matrices.) We
remark that for further generalizations to infinite and continuous state spaces (in which
caseX andX� are infinite dimensional) we denote byB� W Y �!X� the dual (or adjoint)
operator of B W X ! Y , which is just the (real) transpose in matrix representation.

The aim of the paper is to recall a well-known coarse-graining procedure for Markov
matrices by introducing an operator-theoretic formalism, that, by preserving the under-
lying structure, fits nicely into the theory of Markov matrices. Here, the coarse-graining
procedure is based on clustering of the states. Clustering (often also called lumping or
aggregation) is an old and well-known technique for model-order reduction for Markov
matrices [13, 25]. It can be used for computing the invariant measure of large Markov
matrices (see, e.g., [7, 16, 26] and references therein) or solving large linear equations [5,
6, 16]. Recently, the construction of the coarse-graining map via stochastic methods has
got increased attention [1, 18].

The idea in that paper is to understand the clustering as an action of a deterministic
Markov matrix, which will be called the coarse-graining operator. Together with a recon-
struction operator, which can be understood as the inverse transformation, they define a
projection in the state space. Implicitly, the involved operators (maybe in a modified form)
have been used in literature (see, e.g., [5,11,20]), and we recall technical results from [17]
in Section 2. However, to the author’s knowledge, no structural study has been done so
far. In applications, the original system is often called microscopic, and the coarse-grained
system macroscopic, and we will also use that notion.

In contrast to classical model order reduction procedures, this construction does not
rely on tools from Hilbert space theory like orthonormal projections or symmetry, as
for example, Krylov subspace projection methods and so on (see, e.g., [23]). In gen-
eral, Hilbert space projections will not preserve positivity and mass of the measures, and
they are therefore unphysical. Here, the coarse-graining procedure is based on the struc-
tural duality betweenX andX�. Heuristically, the reconstruction rebuilds the information
from the coarser system back to the finer system using the local information of the invari-
ant probability vector � . With that, the theory is not based on homogeneous Euclidean
spaces, which are not canonical for Markov matrices as the invariant measure � 2 Prob.Z/
is in general not homogeneous. However, the reconstruction operator can be understood
as generalized Penrose–Moore inverse of the coarse-graining operator respecting the (in
general inhomogeneous) invariant measure � (see Proposition 2.5).

In Section 2, it is shown how to define a macroscopic (or coarse-grained) Markov
process from a microscopic process using the coarse-graining operator. In particular, The-
orem 2.6 shows that the coarse-grained process is obtained exactly if an equilibration of
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the microscopic states occurs. In practical applications, where coarse-graining results from
a multi-scale problem and scale-separation, the difference between the coarse-grained pro-
cess and the reduced process (see Section 2.3) is relevant. Difficulties occur, because the
latter is in general not a Markov process. The so-defined error provides a measure of how
good the coarse-graining model is. Different approaches to estimate the error have been
developed in recent years. We refer, e.g., to [15] in the context of diffusion, and to [11]
for the discrete counterpart, where the comparison of microscopic and macroscopic func-
tional inequalities and their constants is used. A recent approach is the so-called resolvent
approach from [14] in the context of metastability (see also [24]). In Section 2.4, we
connect the operator-theoretic framework to the resolvent approach and show their con-
sistency. Because metastability is not the main focus of the paper, we consider only one
fixed microscopic system. In Section 2.5, we show how to control and estimate the coarse-
graining error. In contrast to [11] where the error is measured in terms of relative entropies
and the estimate is derived by functional inequalities, we consider directly the Markov
chain and derive a bound using spectral properties, which fits with the operator-theoretic
approach.

Despite practical applications, the operator-theoretic coarse-graining procedure has
many different mathematical advantages. First, it is consistent with the graph-theoretic
notion of the incidence matrix (or operator) and the quotient graph as explained in Sec-
tion 3. This property is particularly interesting for detailed balance Markov matrices,
which define gradient-flow equations written in a continuity equation form (see, e.g., [17,
22]). As it turns out, the corresponding fluxes can be reconstructed, too (see Section 4.2
for more details).

These technical preparations are finally used for the consistency result between coarse-
graining and functional inequalities. The first nontrivial eigenvalue defines the spectral gap
and provides useful information regarding asymptotical decay of the process (see, e.g., [2]
and references therein). However, a direct calculation of the spectrum is often not feasible
and functional inequalities are used instead to provide at least bounds on the decay rate.
In the last decades, functional inequalities for Markov processes on discrete states spaces
have been studied intensively [2,8–10,12]. In Section 5, we connect the operator-theoretic
coarse-graining procedure to energy functionals. In particular, we derive coarse-grained
functional inequalities and estimate the associated discrete Poincaré-type constants (like
the Poincaré constant, or log-Sobolev constant). As a consequence, we can derive the
folklore result that coarse-graining always increases Poincaré-type constants by a simple
calculation showing the consistency of the operator-theoretic coarse-graining framework.

2. Coarse-graining

We present the operator theoretic framework for capturing the collection of states, which
has also been introduced in [17].
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2.1. Operator theoretic coarse-graining

For two finite state spaces Z D ¹1; : : : ; nº, yZ D ¹1; : : : ; Onº with On < n, we assume that
there is a given surjective function � WZ! yZ, which plays the role of a coarse-graining or
clustering map. We define the coarse-graining operator M W yX ! X by .M Ox/i D Ox�.i/
for all Ox 2 yX . One easily sees that M is a deterministic Markov matrix since the adjoint
(or dual) matrix M � W X� ! yX� maps pure states (or Dirac-measures) to pure states. In
fact, the dual operator M � should be called coarse-graining operator because it maps
statistical states in X� to coarser states in yX�. Since M is a deterministic Markov matrix
we have that for all Ox; Oy 2 yX it holds M. Ox � Oy/ D M Ox �M Oy, where the multiplication is
meant pointwise. By the way, this characterizes all deterministic Markov matrices.

Fixing a positive probability vector � 2X�, we may define the multiplication operator
given by the diagonal matrixQ� W X ! X�, i.e., .Q�x/i D �ixi . We observe thatQ� is
symmetric and its inverse is given byQ�1� WX

�!X , p 7! �D .pi=�i /i . One easily sees
that the multiplication operator satisfies hx;Q�yi D hx � y;�i for all x; y 2 X . Although
the spaces are finite-dimensional and isomorphic, we remark that the parameter � of Q�
is an element of the dual space and the inverse Q�1� W p 7! � maps a probability vector p
to the relative density � of p with respect to � as a discrete analog of the Radon–Nikodym
derivative.

We define a new coarse-grained measure O� by O� DM �� . We easily observe that O� is
also positive. Moreover, we observe the following.

Lemma 2.1 ([17, Lemma 2.4]). We have O� DM �� if and only if Q O� DM �Q�M .

Proof. EvaluatingQ O� DM �Q�M at O1, we have O� DQ O� O1DM �Q�M O1DM �Q�1D
M �� , which is one direction of the claim. For the other claim, we introduce the multipli-
cation operator … Oy W yX ! yX by .… Oy Ox/j D Oyj Oxj with the dual operator …�

Oy
W yX� ! yX�

given by…�
Oy
OcDQ Oc Oy. Using thatM is a deterministic operator we haveM… Oy D…M OyM ,

which yields, by dualizing,…�
Oy
M � DM �…�

M Oy
. So, we get for any Ox thatQ O� Ox D…�Ox O� D

…�
Ox
M �� DM �…�

M Ox
� DM �Q�M Ox.

This important relation does not hold if M is not a deterministic operator. Moreover,
it implies that the following diagram commutes:

OX�

OX

X�

X
M

M �
Q O� Q�

Since Q O� is invertible, it is now possible to “invert” the coarse-graining operator M
by defining the so-called reconstruction operator N W X ! yX :

N D Q�1
O� M �Q� W X ! yX; N � D Q�MQ

�1
O� W
yX� ! X�: (2.1)
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The operator N � reconstructs the coarser statistical states in yX� respecting the mea-
sure � 2 X�:

yX�

yX

X�

X
M

N

M �

N �

Q O� Q�

Before summarizing properties of N in the next proposition, we introduce the notion
of detailed balance.

Definition 2.2. A Markov matrix K is said to satisfy the detailed balance condition with
respect to its positive invariant measure � if K�Q� D Q�K.

Proposition 2.3 ([17, Lemma 2.5, Proposition 2.7]). Let M W yX ! X be a deterministic
Markov matrix, let � 2 X� be a given positive probability vector and let O� DM �� . Let
N and N � be defined by (2.1). Then, the following holds:

(1) N is a Markov matrix and N � O� D � , i.e., N � inverts with respect to � ,

(2) NM D id yX and MN DW P is a (Markov) projection on X . We have the splitting
X D Range.P /C Ker.P / D Range.M/C Ker.N /. The adjoint P � has � as its
stationary measure and satisfies detailed balance.

Proof. Clearly, N is nonnegative and N1 D Q�1
O�
M �Q�1 D Q

�1
O�
M �� D Q�1

O�
O� D O1.

Hence, N is a Markov matrix. Moreover, we have N � O� D Q�MQ�1O� O� D Q�M O1 D � .
For the second claim, we use Lemma 2.1, which implies M �N � DM �Q�MQ�1O� D

id yX� . Hence, NM D id yX and P DMN is a projection. This provides the decomposition
of X since N is surjective and M is injective. Since it is the composition of Markov
matrices P is again a Markov matrix and obviously P �� D � . To see that P satisfies
detailed balance, we observe

Q�P D Q�MN D Q�MQ
�1
O� M �Q� D N

�M �Q� D P
�Q� :

Remark 2.4. We remark that in [29] inverse operators for general Markov operators (not
necessarily deterministic) have been introduced and their relation to the direction of time
has been investigated.

Finally, we investigate the connection between the ‘inverse’ operatorN and the Penrose–
Moore inverse of linear algebra. First, we see that N W X ! yX is a pseudo inverse of
M W yX ! X , because MNM D M and NMN D N by Proposition 2.3. Recall that for
an injective M W yX ! X , the Penrose–Moore inverse of M can be defined by

MC D .M �M/�1M �:

The next proposition shows, that this formula provides exactly N , if the adjoint operator
M � is understood in the space L2.�/. In particular, if � D 1

n
.1; : : : ; 1/T, we have that
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N DMC. To see this, we define the L2.�/-inner product in X by

.x; y/� WD hx;Q�yi D hx � y; �i:

Proposition 2.5. The reconstruction operator N D Q�1
O�
M �Q� is the L2.�/-adjoint of

M . In particular, N is a generalized Penrose–Moore inverse of M in L2.�/.

Proof. We have that

.M Ox; y/� D h Ox;M
�Q�yi D h Ox;Q O�Nyi D . Ox;Ny/ O� :

We note that the notion of detailed balance from Definition 2.2 means that the Markov
matrix K is symmetric in L2.�/.

2.2. Example

For an example, we consider Z D ¹1; 2; 3º and OZ D ¹O1; O2º and define �.1/ D O1, �.2/ D
�.3/ D O2. In matrix representation, the coarse-graining operator has the form

M D

0@1 1

1

1A ; M � D

�
1

1 1

�
:

Setting � D .�1; �2; �3/T, we obtain O� D .�1; �2 C �3/T, and hence,

N D

 
1

�2
�2C�3

�3
�2C�3

!
; P DMN D

0B@1 �2
�2C�3

�3
�2C�3

�2
�2C�3

�3
�2C�3

1CA :
2.3. Coarse-graining for Markov matrices

Let a Markov matrix K W X ! X be given. We assume that its adjoint K� has a unique
invariant measure � , i.e., K�� D � . We define the coarse-grained Markov matrix yK by
contracting K via

yK D NKM W yX ! yX:

The next theorem shows that yK can indeed be understood as a coarse-grained version of
K.

Theorem 2.6. Let a Markov matrix K W X ! X with an invariant measure � be given.
Let M be a deterministic Markov matrix, and reconstruction operator N be defined by
(2.1). Let yK WD NKM W yX ! yX . Then, we have the following:

(1) yK is a Markov matrix on yX ;

(2) yK� has O� as its invariant measure;
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(3) Define the Markov chain pkC1 D K�pk , p0 2 X�, k 2 N. If there is an equili-
bration of the form pk D N

� Opk for Opk 2 yX� and all k � 0, then the probability
vectors Opk satisfy the coarse-grained Markov chain Opk D yK� Opk�1;

(4) If K satisfies the detailed balance condition with respect to � , then does yK with
respect to O� .

Important for exact coarse-graining is the equilibration pk D N � Opk which means that
the densities of pk and Opk with respect to � or O� , respectively, are equilibrated, i.e.,

pk D Q�MQ
�1
O� Opk” �k DM O�k ; (2.2)

where
�k D Q

�1
� pn; O�k D Q

�1
O� Opk :

Of course, we have the reduced process M �pk D Opk and the above result shows, that the
reduced process is exactly the coarse-grained process. In particular, this makes clear why
yK is the natural coarse-graining Markov matrix of K.

Proof. Since yK is the composition of Markov matrices it is itself a Markov matrix. More-
over, we see that O� is the invariant measure of yK, because

yK� O� DM �K�N � O� DM �K�� DM �� D O�:

Considering the Markov chain, let pk D K�pk�1 be given. Assuming that pk D N � Opk ,
we conclude that Opk DM �N � Opk DM �pk . Hence,

Opk DM
�pk DM

�K�pk�1 DM
�K�N � Opk�1 D yK

�
Opk�1:

Finally, if K satisfies detailed balance with respect to � then Q�K D K�Q� , and hence,
we have

Q O� yK D Q O�NKM DM
�Q�KM DM

�K�Q�M DM
�K�N �Q O� D yK

�Q O� :

Conversely, if OpkC1 D yK� Opk , and yK D NKM , then a direct computation shows that
pk WD N

� Opk solves the projected Markov chain pkC1 D P �K�P �pk , which in general
is different to pkC1 D K�pk . In this sense, the projection P describes the information
loss going from a coarser system to a finer system.

Of course, Theorem 2.6 naturally generalizes to continuous time Markov processes
(see, e.g., [17]). Let p.t/D etA

�

p0 or equivalently p solving Pp D A�p be given, where A
is a Markov generator such that etA is a semigroup of Markov matrices. If p.t/DN � Op.t/,
then the coarse-grained probability vectors Op satisfies the coarse-grained Markov process
POp D OA� Op, with the coarse-grained Markov generator

yA D NAM:
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2.4. Connection to the resolvent

From Theorem 2.6, it is now clear to compare three different processes.

(1) The microscopic process: pnC1 WD K�pn, p0 2 X�.

(2) The reduced process: Opn WDM �pn 2 yX� for n � 1 and Op0 DM �p0.

(3) The coarse-grained process: OqnC1 WD yK� Oqn, Oq0 2 yX�,

where the coarse-grained Markov oprator is defined as above by yK� WD M �K�N � on
yX�. Note that in general the reduced process is not described by a Markov operator.

Theorem 2.6 shows that the reduced process is exactly given by the coarse-grained
process if the equilibration p 2 range.N �/ holds. In application, this property can be
derived from time-scaling arguments [11, 15, 17, 27].

Recently, an equivalent characterization is derived in terms of the resolvent of the
generator [14] in the context of metastability, which we translate here in our operator-
theoretic framework. In contrast to [14], we are not considering a sequence of Markov
process, but only one Markov process and a fixed coarse-graining mapM W yX ! X . Note
that for the resolvent approach, we consider the time-continuous process.

The resolvent condition from [14] can be stated as follows: for the Markov process
defined by the generator A W X ! X , let Og 2 yX and g D M Og 2 X be given, and let
f� D f�;g be the unique solution of the resolvent equation

.� � A/f� D g:

Assume that f� is in the image ofM , i.e., there is Of� 2 yX such that f� DM Of�. Moreover,
assume that there is generator yA W yX ! yX such that for all

.� � OA/ Of� D Og:

It has been shown in [14], that the reduced process .M �etA
�

/t�0 is given by .etbA�/t�0.
Moreover, in [14] it has been also shown that the reduced resolvent condition can also be
stated asymptotically for a sequence of Markov processes, and this actually characterizes
metastability. Here, we are only discussing the resolvent equation in the context of the
equilibration of the microscopic dynamics as stated in Theorem 2.6.

First, we see that applyingN to the resolvent equation .��A/M Of� DM Og and using
NM D id yX , we get that .��NAM/ Of� D Og. Since the resolvent determines uniquely the
generator, we conclude the characterization of the coarse-grained generator yA D NAM W
yX ! yX as we have seen before.

Moreover, it is clear that also the semigroup etA keeps the subspace range.M/ � X

invariant. Indeed, recalling the relation of the resolvent and the semigroup by the Laplace
transform (denoted by G.�/ D L.g.�//.�/), we have

g.t/ D etAg0, Pg.t/ D Ag.t/;

g.0/ D g0, �G.�/ � g0 D AG.�/, .� � A/G.�/ D g0:

Hence, we conclude that etArange.M/ � range.M/.
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To transfer the above property to the evolution of the statistical states described by the
adjoint Markov generator A�, we rely on (2.2). Indeed, assuming that etA describes the
evolution of the relative densities h.t/ D Q�1� p.t/, then by (2.2) we have that the cor-
responding measures p.t/ D etA

�

p0 are equilibrated (i.e., are in range.N �/), and hence,
Theorem 2.6 characterizes the reduced process. We summarize the considerations in the
following proposition if A satisfies detailed balance.

Proposition 2.7. Let a coarse-graining operator M W yX ! X be given and consider for
a detailed balance Markov generator A� with A�� D 0 and � > 0 the Markov process
p.t/D etA

�

p0, p0 2 range.M/. Assume that the resolvent of A WX !X keeps range.M/

invariant. Then, for all t � 0, there is Op.t/ 2 yX� such that p.t/ DM � Op.t/ and t 7! Op.t/

is the process generated by yA� D N �A�M �.

Proof. We simply observe that the relative densities h.t/DQ�1� p.t/, with h0 DQ�1� p0,
solve

h.t/ D Q�1� etA
�

Q�Q
�1
� p0 D etQ

�1
� A�Q�h0 D etAh0;

where we have used that A� satisfies detailed balance.

2.5. Coarse-graining error

Now, we want to compare the distance between the coarse-grained process and the reduced
process. We have seen in Theorem 2.6 that whenever the macroscopic process equilibrates,
i.e., there are Opn 2 yX� such that pnDN � Opn, thenM �pnD Opn is described by the coarse-
grained process. However, in application this equilibration is a priori not guaranteed, and
an estimate is desired.

For this, let again K� W X ! X be fixed, and assume that we have a unique invariant
probability measure � 2 X�. Moreover, let the coarse-graining operator M � W X� ! X�

be given and define the coarse-grained Markov operator yK� WDM �K�N � on yX�. Using
the notation from 2.4, we want to compare the processes . Opn/n2N and . Oqn/n2N . To make
the difference comparable, we assume that the initial data is well-prepared, i.e., that also
Oq0 DM

�p0. Then, we have

Op1 � Oq1 DM
�p1 � yK

�
Oq0 D .M

�K� � yK�M �/p0 DM
�K�.I � P �/p0;

where we have used the projection P � D N �M � in X�. This means that the difference of
the coarse-grained process and the reduced process is essentially described by the distance
of the initial value p0 and the range of P �, and how K� acts on the range of I � P �.

We compute the difference of Opn and Oqn. We have

OpnC1 � OqnC1 DM
�pnC1 � . yK

�/nC1 Oq0 DM
�.K�/nC1p0 � . yK

�/nC1M �p0

D .M �.K�/nC1 � . yK�/nC1M �/p0:

Using the projection, we have

. yK�/nC1M � D .M �K�N �/nC1M � DM �K�P �K�P � � � �P �K�P �;
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with in total K� appearing nC 1 times. Hence, we get

OpnC1 � OqnC1 DM
�K�..K�/n � .P �K�P �/n/p0:

This means that the difference for n � 1 between the coarse-grained process and the
reduced process is essentially given by

��n D .K
�/n � .P �K�P �/n:

The operator ��n describes exactly the error between the coarse-grained process and the
reduced process. Of course, it is bounded (because Markov operators are bounded by 1),
and it is essentially given by an averaging formula between the subsequent application of
the projection P � and Markov operator K�.

We are now going to estimate the difference by exploiting spectral properties of K�.
For this, we recall that the Markov chain .K�/n converges to the projection P �� on the
invariant measure � 2 X�, which we have assumed to be unique. The projection is given
by

P �� W X
�
! X�; P ��p D h1; pi�;

and it is a classical result that k.K�/n � P �� k � C�
n
K;2, where �K;2 < 1 is the real-part

of the second largest eigenvalue ofK (the largest is of course �1 D 1). Similarly, we have
k. yK�/n �P �

O�
k � C�n

yK;2
, where � yK;2 < 1 is the real-part of the second largest eigenvalue

of yK.
Note that we have for all p 2 X� that

M �P ��p DM
��hp;1i D O�h1; pi D O�hM1; pi D O�h1;M �pi D P �

O�M
�p:

Hence, we have

j OpnC1 � OqnC1j

D k.M �.K�/nC1 � . yK�/nC1M �/k � jp0j

� ¹kM �.K�/nC1 �M �P �� k C kM
�P �� � P

�

O�M
�
k C kP �

O�M
�
� . yK�/nC1M �kºjp0j

� C max¹�K;2; � yK;2º
n
jp0j:

Later in Section 5, the connection of coarse-graining, functional inequalities, and spectral
gaps are discussed in more detail. In particular, Theorem 5.6 shows that � yK;2 � �K;2,
which now can be summarized in the following result.

Proposition 2.8. The difference between the coarse-grained process Oqn and the reduced
process Opn can be estimated by

j OpnC1 � OqnC1j � C� yK;2
n
jp0j;

where p0 2 X� is the initial value of the microscopic process, C > 1 is a constant, and
� yK;2 is the real part of the second largest eigenvalue of yK.
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We finally remark that since the time-continuous semigroup etA
�

also converges to
the projection with the same speed, an analogous result holds for the reduced and coarse-
grained time-continuous process.

3. Coarse-grained network

Graph theoretically, a Markov matrix K defines a directed graph G D G.V; E/, with
vertices given by the state space Z and edges between states zi and zj whenever Kij > 0.
An equivalence relation given by the coarse-graining map � W Z! yZ (i.e., zi � zj iff
�.zi / D �.zj /), defines a partition of the graph into blocks. By definition, these blocks
define the vertices of the so-called quotient graph yG. The edges in the quotient graph are
defined as follows: two blocks B1 and B2 are adjacent if some vertex in B1 is adjacent
to some vertex in B2 with respect to the edges in the starting graph. That means if on
G D G.V; E/ there is an equivalence relation �, then yG has vertices yV D V= � and
edges ¹.Œu��; Œv��/ W .u; v/ 2 Eº. In particular, the edges in each equivalence class (or
block) vanish (see, e.g., [3]).

Since we are interested in functions that are defined on the edges (e.g., fluxes), we
translate the above state-based coarse-graining procedure to edges. For this, it is conve-
nient to introduce tensor spaces.

3.1. Coarse-graining in tensor spaces

Naturally, the space over the edges can be identified by matrices or equivalently by the
tensor product space X ˝ X ' L.X�; X/, where the latter is the space of linear maps
fromX� toX . In particular, we use both formulations and switch between them whenever
necessary. In principle, also multi-tensor spaces can be considered, for example, to capture
cycles between several states. However, we restrict ourselves to tensors of second order.

Importantly, the tensor space X ˝ X , which is the state space in that section, is con-
sistent with the concept of Markov matrices capturing positivity and duality. Positivity is
again defined pointwise. The constant 1-element in X ˝X is given by 1˝ 1 and will be
denoted by 1˝. Recall from linear algebra that the dual space of L.X�; X/ is given by
L.X�; X/� ' L.X��; X�/ ' L.X;X�/ ' X� ˝X�. The duality mapping is given by

A 2 L.X;X�/ 7! Tr.A��/ 2 L.X�; X/�:

In the following, we will denote the dual paring between L.X�; X/ and L.X;X�/ by

hhA;Bii WD Tr.A�B/ D Tr.AB�/ D
X
i;j

AijBij ;

which is just the usual dual paring by pointwise multiplication if the matrices are under-
stood as n � n-vectors.
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In Section 2, the notation of a multiplication operator was important to define the
reconstruction map. Analogously, we may also define multiplication operators with ele-
ments of the dual space here. For a given matrix m 2 L.X;X�/ ' X� ˝ X�, we define
the (diagonal) multiplication operator by

Qm W L.X
�; X/! L.X;X�/; Qmb D .mij bij /ij

by pointwise multiplication. Clearly, we have that Qm1˝ D m. Indeed, the target space
of Qm makes sense which can been seen from the following observation that Qm is sym-
metric:

hhc;Qmbii D
X
i;j

mij bij cij D
X
i;j

mij cij bij D hhb;Qmcii:

Of great importance for us is the elementmDQ�K 2 L.X;X�/'X�˝X�, which can
be understood as a weight function defined on the edges.

For the coarse-grained state space yX , we analogously define yX ˝ yX ' L. yX�; yX/

and yX� ˝ yX� ' L. yX; yX�/ by replacing X by yX . We define for a given coarse-graining
operator M W yX ! X a coarse-graining operator on L.X�; X/ by

zM W L. yX�; yX/ ' yX ˝ yX ! L.X�; X/ ' X ˝X;

Ob 7! zM Ob WDM ObM �:

Proposition 3.1. The operator zM has the following properties:

(1) zM is again a deterministic Markov operator,

(2) the adjoint operator is given by

zM � W L.X;X�/! L. yX; yX�/; zM �b DM �bM;

(3) let m WD Q�K. Then, Om WD zM �m D Q O� yK.

Proof. Clearly, zM is again positive. Moreover, it maps to constant 1-function O1˝D O1˝ O1
in yX ˝ yX to the constant 1-function 1˝ D 1˝ 1 in X ˝X because we have

zM. O1˝ O1�/ DM. O1˝ O1/M � DM O1˝M O1 D 1˝ 1:

Hence, zM is a Markov operator. To see that it is deterministic, we use the representation
of the adjoint operator zM � which is the second claim and proved below. Using that, we
have zM �.ei ˝ ej / DM �ei ˝M �ej which is again a pure state in yX� ˝ yX�

To compute the adjoint operator zM �, we have for Ob 2 L. yX�; yX/ and c 2 L.X;X�/
that

hh zM Ob; cii D Tr..M ObM �/�c/ D Tr.M Ob�M �c/ D Tr.M �cM Ob�/ D hhM �cM; Obii;

where we used that the trace is invariant under commuting matrices. Hence, zM �c D
M �cM .

For the last claim, we observe that Om D zM �m DM �Q�KM DQ O�NKM DQ O� yK.
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Proposition 3.1 shows that the (dual) deterministic coarse-graining operator zM � maps
the weights m D Q�K on the coarse-grained weight Om D Q O� yK. This allows to define a
reconstruction operator zN as the inverse operator of zM with respect to m as in Section 2.
We define

zN W L.X�; X/! L. yX�; yX/; zN D Q�1
Om
zM �Qm: (3.1)

Again, we have that zN1˝ D O1˝. Its adjoint (with respect to hh�; �ii) is given by

zN � W L. yX; yX�/! L.X;X�/; zN � D Qm zMQ�1
Om :

Clearly, the operator zN � maps Om to m. The definition of reconstruction operator zN has
two advantages. First, it allows to define a coarse-grained incidence matrix as we will
see next. The incidence matrix will be crucial for estimating Poincaré-type constants in
Section 5. Moreover, it can be used to reconstruct fluxes, which are functions on edges
(see Section 4).

3.2. Coarse-graining of the incidence matrix

The canonical connection between X and X ˝ X , i.e., between vertices and edges, is
given by the incidence matrix (or operator)D WX!L.X�;X/�X ˝X . In coordinates,
it is defined by

Dei D
X
j

.ei ˝ ej � ej ˝ ei / 2 X ˝X:

We remark that this definition distinguishes between outgoing and ingoing edges.
To define the adjoint operator, we fix the canonical basis in the dual space e�

k
2 X�

with he�
k
; ei i D ıik , the Kronecker symbol. This relation also defines a basis ¹e�

k
˝ e�

l
ºk;l

in the tensor space X� ˝ X� such that it holds hhe�
k
˝ e�

l
; ei ˝ ej ii D ıijkl . The adjoint

operator D� is given by

D� W X� ˝X� ! X�;

D�.e�i ˝ e
�
j /.el / D hhDel ; e

�
i ˝ e

�
j ii D

X
k

hhel ˝ ek � ek ˝ el ; e
�
i ˝ e

�
j ii (3.2)

D

X
k

hhel ˝ ek � ek ˝ el ; e
�
i ˝ e

�
j ii D

8̂̂<̂
:̂
0 l ¤ i; l ¤ j;

1 l D i;

�1 l D j;

whenever i ¤ j , and otherwise it is zero.
The next result shows that the coarse-graining procedure is indeed consistent with the

definition of the incidence matrix and the quotient graph.

Theorem 3.2. Let M W yX ! X be given as above, which is in local coordinates M Oek DP
i2��1.k/ ei . Letm 2X�˝X� be arbitrary and fixed, and let zN be defined by (3.1). The

operator yD W yX ! L. yX�; yX/ defined by

yD D zNDM W yX ! L. yX�; yX/
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is an incidence matrix, i.e., we have

yD Oek D
X
l

. Oek ˝ Oel � Oel ˝ Oek/:

Moreover, it holds zM yD D DM .

Remarkably, the form of yD is independent of them 2X ˝X . We note that the second
claim does not follow immediately from yD D zNDM , which would imply zM yD D zPDM
with the projection zP D zM zN on X ˝X . The relation zM yD D DM is finer and provides
that the coarse-graining procedure is consistent with the definition of the quotient graph.

Proof. For the proof, we compute yD Oek explicitly. We have M Oek D
P
i2��1.k/ ei , and

hence,

DM Oek D
X
j

.M Oek ˝ ej � ej ˝M Oek/ D
X
j

X
i2��1.k/

.ei ˝ ej � ej ˝ ei /:

Moreover, we have that zN D Q�1
Om
zM �Qm. To evaluate zN.ei ˝ ej /, we first observe that

zM �.ei ˝ ej / D Oe�.i/ ˝ Oe�.j / which implies that

zM �QmDM Oek D
X
j

X
i2��1.k/

.mij zM
�.ei ˝ ej / �mj i zM

�.ej ˝ ei //

D

X
j

X
i2��1.k/

.mij Oe�.i/ ˝ Oe�.j / �mj i Oe�.j / ˝ Oe�.i//

D

X
lj

X
j2��1.lj /

X
i2��1.k/

.mij Oe�.i/ ˝ Oe�.j / �mj i Oe�.j / ˝ Oe�.i//

D

X
lj

. Omklj Oek ˝ Oelj � Omlj k Oelj ˝ Oek/;

where we have used the definition of OmD zM �m given by OmklD
P
j2��1.l/

P
i2��1.k/mij .

Hence, we conclude that

yD Oek D zNDM Oek D Q
�1
Om
zM �QmDM Oek D

X
l

Oek ˝ Oel � Oel ˝ Oek ;

which is the desired formula.
Now, we prove zM yD D DM again by direct calculation. We have zM. Oek ˝ Oel / D

M Oek ˝M Oel , and hence,

zM yD OekD
X
l

M Oek˝M Oel �M Oel ˝M OekD
X
l

X
j2��1.l/

M Oek ˝ ej � ej˝M OekDDM Oek ;

which we wanted to show.
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Remark 3.3. The coarse-graining procedure can also be applied to undirected graphs.
Introducing the spaceX ˇX ' Lsym.X

�;X/ containing the symmetric tensors (or matri-
ces), the coarse-graining operator zM respects the symmetric structure. Moreover, if m D
Q�K is symmetric then also zN maps into symmetric tensors. In the following, we will
treat the case of symmetricmwith more details but we will not consider undirected graphs.

4. Detailed balance Markov matrices

We now fix m D Q�K. A special situation occurs if the operator K satisfies detailed
balance meaning that mij D �iKij D �jKj i D mj i . We define the associated Markov
generator A by A D K � id and investigate the following evolution system in X�:

Pc D A�c;

where c 2 Prob.Z/ is understood as a probability distribution or a concentration. In the
next lemma, we recall that assuming that K (or equivalently A) satisfies detailed balance,
the system Pc D A�c can be written as a gradient flow expressed via the incidence operator
(see, e.g., [17, 21, 22]):

Pc D �D�b;

b D
1

2
QmD�;

� D Q�1� c;

where the first equation is a continuity equation between the fluxes b and the concentra-
tions c, the last equation defines the relative densities � of c with respect to � and the
second equation is the constitutive relation between the relative densities � and the fluxes
b, which uses the tensor valued diagonal operatorQm. Note that there is a factor 1

2
because

the incidence operator D counts every edge twice. The above continuity equation form is
a structural decomposition of the generator A� as the next lemma shows.

Lemma 4.1. LetK (or equivalentlyA) satisfy the detailed balance condition. Then,A�D
�
1
2
D�QmDQ

�1
� .

Proof. By direct computation, we have for � D
P
i �iei that

D� D
X
i

�iDei D
X
i;j

�i .ei ˝ ej � ej ˝ ei /:

Hence, we get that QmD� D
P
i;j �imij e

�
i ˝ e

�
j � �imj ie

�
j ˝ e

�
i , which implies

�D�QmD� D �
X
i;j

.�imijD
�.e�i ˝ e

�
j /C �imj iD

�.e�j ˝ e
�
i //:
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Evaluating both sides at el and using the explicit formula (3.2), we get that

.�D�QmD�/el D �
X
i;j

.�imijD
�.e�i ˝ e

�
j /el /C

X
i;j

.�imj iD
�.e�j ˝ e

�
i /el /

D �

X
j

�lmlj C
X
i

�imil C
X
i

�imli �
X
j

�lmjl

D ��l
X
j

.mlj Cmjl /C
X
i

�i .mil Cmli /:

Using that mil D mli D �iAil D �lAli and �i D ci=�i , we get�
�
1

2
D�QmD�

�
el D �cl

X
j

mlj =�l C
X
i

cimil=�i D �cl
X
j

Alj C
X
i

ciAil ;

which implies that A�c D �1
2
D�QmDQ

�1
� c for all c 2 X .

4.1. Coarse-graining for detailed balance Markov operators

We are going to show that the above gradient flow decomposition is also consistent with
the coarse-graining procedure. Crucial for that result is the relation DM D zM yD.

Theorem 4.2. Let us assume that there is an equilibration of the concentrations c D
N � Oc. Then, with the above notation, the coarse-grained concentrations Oc solve the coarse-
grained evolution equation of the form

POc D � yD� Ob;

Ob D
1

2
Q Om yD O�;

O� D Q�1
O� Oc;

which is again a gradient flow of continuity equation form. In particular, we have an
equilibration of the fluxes b D zN � Ob.

Proof. Since M �N � D idX� , we observe that M �c D Oc. By Theorem 3.2, we have that
DM D zM yD. Hence, we obtain

POc DM � Pc D �M �D�b D � yD� zM �b:

Defining Ob WD zM �b (which implies that b D zN � Ob) and using that zM �Qm D Q Om zN and
Q�1� N � DMQ�1

O�
, we get

Ob D zM �b D
1

2
zM �QmDQ

�1
� N � Oc D

1

2
Q Om zNDMQ

�1
O� Oc D

1

2
Q Om OD O�;

where we have introduced the coarse-grained relative density O� D Q�1
O�
Oc.

The above theorem can be understood as a structural refinement of the form derived in
Section 2.3, which just says that the coarse-grained generator is given by yA�DM �A�N �.
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4.2. Flux reconstruction

Theorem 4.2 provides that an equilibration of the fluxes necessarily occurs if concentra-
tions equilibrate. In practice, often the converse question arises, namely, how fluxes on
the large graph can be reconstructed out of the coarse-grained quantities like the coarse-
grained concentrations and coarse-grained fluxes. As one would guess b D zN � Ob is not the
desired flux because additional fluxes between coarse-grained states are needed.

The next proposition provides an affirmative answer and shows that for a given pair
. Oc; Ob/ satisfying the continuity equation POc D� yD� Ob, there is a microscopic flux b such that
c D N � Oc solves Pc D �D�b and the microscopic flux consists of two parts b D b1 C b2
such that b1 D zN � Ob and b2 2 Ker yD� zM �. Moreover, b depends linearly on Ob.

Proposition 4.3. Let . Oc; Ob/ satisfy the continuity equation POc D � yD� Ob. Define the micro-
scopic concentrations by c D N � Oc. Then, there is a microscopic flux b, which solves the
microscopic continuity equation Pc D�D�b and b is given by bD b1C b2 with b1 D zN � Ob
and b2 2 Ker yD� zM �, which depends linearly on Ob.

Proof. Let b1 D zN � Ob. Then, we have to construct b2 2 X� ˝X� such that

Pc D �D�.b1 C b2/ D �D
�. zN � Ob C b2/:

Since c D N � Oc, which implies Pc D N � POc D �N � yD� Ob, we get that b2 has to satisfy the
linear equation

D�b2 D .N
� yD� �D� zN �/ Ob DW x� 2 X�: (4.1)

Using Fredholm’s alternative, this equation is solvable if for all x 2 Ker.D/ we have that
hx; x�i D 0.

So, let x 2 Ker.D/ � X . Hence,

hx; x�i D hx; .N � yD� �D� zN �/ Obi D h yDNx; Obi:

Using Proposition 2.3, we decompose x 2X DKer.N /CRange.M/. Hence, for proving
that hx;x�i D 0, we may assume that x 2 Range.M/, i.e.,M Ox D x. Using that ObD zM �b1
and that NM D id yX , we compute

hx; x�i D h yDNM Ox; zM �b1i D h zM yD Ox; b1i D hDM Ox; b1i D hDx; b1i D 0;

where we have used that zM yDDDM . Hence, there exists b2 such thatD�b2 D .N � yD� �
D� zN �/ Ob, which implies that b D b1 C b2 solves Pc D �D�b. By (4.1), we see that b2
depends linearly on Ob.

To see that b2 2 Ker. yD� zM �/, we observe that

yD� zM �b2 DM
�D�b2 DM

�.N � yD� �D� zN �/ Ob

D .M �N �M �D� zN � �M �D� zN �/ Ob D 0:

Remark 4.4. We note that the existence of b2 as well as the linear dependence on Ob has
been used in [28] to coarse-grain fast-slow linear reaction-diffusion systems.
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5. Functional inequalities and Poincaré constants

Computing the first non-trivial eigenvalue of a given Markov matrix is a challenging ana-
lytic as well as numerical task, see, e.g., [4,10]. Although eigenvalues and eigenfunctions
do not fit into the Markov theory with its X �X� duality and positivity (they might even
be complex), the coarse-graining procedure can be used to derive estimates for associated
functionals. With the help of functional inequalities, insights into spectral properties can
be obtained, see, e.g., [2].

In this section, we apply the coarse-graining procedure to derive estimates between
functionals on X and yX . First, we observe the following for the expectations:

E�.x/ WD
X
i2Z

�ixi D hx; �i; E O�. Ox/ WD
X
j2 OZ

O�j Oxj D h Ox; O�i:

Lemma 5.1. If Ox D Nx or x DM Ox, then E�.x/ D E O�. Ox/.

Proof. If Ox D Nx, we have E O�. Ox/D h O�; Oxi D h O�;Nxi D hN
� O�; xi D h�; xi D E�.x/.

If x DM Ox, we conclude that Nx D Ox.

5.1. Coarse-graining for energy functionals

For any strictly convex and non-negative functionˆ WR! Œ0;1Œ, we define the associated
energy functional on X by

Eˆ.x/ D E�ˆ.x/ �ˆ.E�x/ D hˆ.x/; �i �ˆ.hx; �i/;

where for a vector x 2 X ' Rn the function ˆ.x/ 2 X is defined componentwise, i.e.,
ˆ.x/i D ˆ.xi /. Note, that the measure � 2 X� is fixed and implicitly given in the defi-
nition of Eˆ.

Lemma 5.2. The functional Eˆ is non-negative and its minimum is attained on constant
vectors. Moreover, we have for the rescaled function ẑ .r/ D ˆ.r/C cr C d that E ẑ D

Eˆ.

Proof. The first claim follows directly be Jensen’s inequality since ˆ is strictly convex.
Moreover, a direct computation shows that

E ẑ .x/ D E� ẑ .x/ � ẑ .E�x/ D hˆ.x/C cx C d; �i �ˆ.E�x/ � cE�x � d D

D hˆ.x/; �i C chx; �i C d h1; �i �ˆ.E�x/ � cE�x � d D Eˆ.x/:

Typical examples for the function ˆ are the following.

(1) ˆ.r/ D 1
2
r2. Then, Eˆ.x/ D

1
2
.hx2; �i � hx; �i2/ corresponds to the quadratic

energy or statistical variance.

(2) ˆ.r/ D r log r � r C 1. Then, Eˆ corresponds to the entropy or free energy of
Boltzmann type, which will be denoted by Ent� in the following.
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Remark 5.3. There are several remarks in order.

(1) Often functionals of the form E�.p/D h‰.p=�/;�i as relative energies or entro-
pies are considered. In contrast to Eˆ, which is defined on X , functionals of the
latter form are defined on probability vectors as elements of the dual space X�.
However, they are related via the Legendre transform. To see this, forgetting about
the normalization term �ˆ.E�x/, the Legendre transform of the functional fEˆ,fEˆ.x/ WD hˆ.x/; �i is given byfEˆ�.p/ D sup

x2X

.hp; xi �fEˆ.x// D sup
x2X

.hp; xi � hˆ.x/; �i/:

Introducing the relative density g of p with respect to the positive probability
vector � , we get thatfEˆ�.p/ D sup

x2X

.hg�; xi � hˆ.x/; �i/ D sup
x2X

.hg � x; �i � hˆ.x/; �i/

D sup
x2X

hg � x �ˆ.x/; �i D hsup
x2X

.g � x �ˆ.x//; �i

D hˆ�.g/; �i D
D
ˆ�
�p
�

�
; �
E
;

which is exactly the desired form.

(2) We could also investigate functionals of the form zEˆ.x/ D hˆ.x � E�x/; �i as
a generalization of the variance ˆ.r/ D r2. These functionals have the property
that they are always convex. However, we will restrict to the above form.

Analogously, we define yEˆ on yX by replacing x by Ox and � by O� . The functionals Eˆ
on X and yEˆ on yX can be estimated as follows.

Proposition 5.4. We have the following relation for the functionals regarding coarse-
graining and reconstruction.

(1) For all Ox 2 yX , x DM Ox implies Eˆ.x/D yEˆ. Ox/. This holds even for all functions
ˆ W R! R not necessarily convex.

(2) For all x 2 X , Ox D Nx implies yEˆ. Ox/ � Eˆ.x/.

Proof. For the first claim, take any Ox 2 yX . Then, we have with Lemma 5.1 that

Eˆ.x/DEˆ.M Ox/D
X
i

�iˆ..M Ox/i /�ˆ.E�.M Ox//D
X
j2 OZ

X
iD��1.j /

�iˆ..M Ox/i /�E O� Ox

D

X
j2 yZ

X
iD��1.j /

�iˆ. Ox�.i// � E O� Ox D
X
j2 OZ

ˆ. Oxj /
X

iD��1.j /

�i � E O� Ox

D

X
j2 yZ

O�jˆ. Oxj / � E O� Ox D yEˆ. Ox/;

where we used that O�j D
P
iD��1.j / �i .
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For the second claim, take any x 2 X . Using Jensen’s inequality for the convex func-
tion ˆ, which means that we have the pointwise inequality ˆ.Nx/ � Nˆ.x/, we obtain

yEˆ.Nx/ D h O�;ˆ.Nx/i � E O�.Nx/ � h O�;Nˆ.x/i � E�.x/

D hN � O�;ˆ.x/i � E�.x/ D h�;ˆ.x/i � E�.x/ D E�.x/:

The log-Sobolev constant is defined via Eˆ.x
2/whereˆ.r/D r log r . From the above

proposition it is not clear that is possible to obtain estimates between Ent O�.. Ox/2/ and
Ent�..M Ox/2/. In fact, we prove that this is possible even for general convex functions not
necessarily quadratic.

Proposition 5.5. Let g WR! Œ0;1Œ be convex and satisfy g.x/ > 0 if x¤ 0 and g.0/D 0.
Then, we have

8 Ox 2 yX W Ent O�.g. Ox// � Ent�.g.M Ox//;

where again with a small abuse of notation g.x/ is meant component-wise, i.e., g.x/i D
g.xi /.

Proof. The proof is done in two steps. First, we shift the functionˆ.r/D r log r to incor-
porate g. Secondly, we derive the estimate.

Step 1. Clearly, we have equality for Ox D 0. So, let us take Ox ¤ 0. Then, g. Ox/ > 0

and because � > 0, there is a constant C > 0 such that hg.M Ox/; �i � C > 0.
Let us define c > 0 by c WD e�.1CC/. We define ẑ .r/ D r log r C cr , which has
its minimum at r D C . So, we have ẑ .r1/ � ẑ .r2/ for r1 � r2 � C . Recalling
that the energy functional is invariant under affine shifts (Lemma 5.2), we have
that Ent�.x/ D E ẑ .x/ and analogously also for the coarse-grained states Ox. So,
we are going to show OE ẑ .g. Ox// � E ẑ .g.M Ox//, or, equivalently,

h ẑ .g. Ox//; O�i � ẑ .hg. Ox/; O�i/ � h ẑ .g.M Ox//; �i � ẑ .hg.M Ox/; �i/:

Step 2. We observe that (completely similar to the proof of Proposition 5.4)

h ẑ .g.M Ox//; �i D
X
i

ẑ .g.M Ox//i�i

D

X
i

ẑ .g.M Ox/i /�i D
X
j2 yZ

X
iD��1.j /

�i ẑ ı g. Ox�.i//

D

X
j2 yZ

O�j ẑ ı g. Oxj / D h ẑ .g. Ox//; O�i:

Hence, it suffices to prove that ẑ .hg. Ox/; O�i/ � ẑ .hg.M Ox/; �i/. To see this, we
use Jensen’s inequality which states that g.M Ox/ �Mg. Ox/ for all Markov matri-
ces M and convex functions g. Hence, we get hg.M Ox/; �i � hMg. Ox/; �i D
hg. Ox/;M ��i D hg. Ox/; O�i. Since hg.M Ox/; �i � C and the function ẑ is mono-
tone for arguments larger than C by construction, we conclude ẑ .hg.M Ox/;�i/ �
ẑ .hg. Ox/; O�i/. Hence, the claim is proved.



Coarse-graining and reconstruction for Markov matrices 271

5.2. Dirichlet forms and Poincaré-type estimates

To estimate Poincaré-type constants, we introduce the Dirichlet form (or dissipation) for
K and yK by

DK.x/ D
1

2

X
i;j

�iKij .xi � xj /
2; D yK

.x/ D
1

2

X
i;j

O�i yKij .xi � xj /
2:

Without loss of generality, we assume that K and yK satisfy detailed balance, because
the Dirichlet form takes into account only the symmetric part of QmK. Using m DQ�K
and Om D Q O� yK, the Dirichlet form is related to the generator A D K � id by

DK.x/ D
1

2
hhDx;QmDxii D

1

2
hx;D�QmDxi

D �hx;A�Q�xi D �hAx;Q�xi D �hx � Ax; �i:

Moreover, we have

D yK
. Ox/ D

1

2
hh yD Ox;Q Om yD Oxii D �h Ox � yA Ox; O�i:

We are interested in estimating the spectral gap � D �.K;ˆ/, which is defined by the
largest constant c > 0 that satisfies the discrete Poincaré-type inequality

DK.x/ � cEˆ.x/; i:e:; �.K;ˆ/ D inf
²

DK.x/

Eˆ.x/
W 8x Eˆ.x/ ¤ 0

³
:

Analogously, we define

O� D O�. yK;ˆ/ D inf
²

D yK
. Ox/

yEˆ. Ox/
W 8 Ox yEˆ. Ox/ ¤ 0

³
:

We also define the log-Sobolev constants

�g;LS D inf
²

DK.x/

Ent�.g.x//
W Ent�.g.x// ¤ 0

³
and analogously O�g;LS.

The next theorem relates the Poincaré-type constants to their coarse-grained counter
part. In particular, it states that coarse-graining always increases the log-Sobolev con-
stants.

Theorem 5.6. With the above notation, we have the following:

(1) for all Ox 2 yX , we have that DK.M Ox/ D D yK
. Ox/,

(2) for all functions ˆ, we have that �.K;ˆ/ � �. yK;ˆ/,

(3) we have for the log-Sobolev constants that �g;LS � O�g;LS.
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Proof. We have

DK.M Ox/ D
1

2
hhDM Ox;QmDM Oxii D �hM Ox;A

�Q�M Oxi

D �h Ox;M �A�N �Q O� Oxi D �h Ox; yA
�Q O� Oxi D

1

2
h Ox; yD�Q OmD Oxi D D yK

. Ox/;

which is the first claim. Hence, we obtain the following relations for the functional ine-
qualities:

� D inf
²

DK.x/

Eˆ.x/
W Eˆ.x/ ¤ 0

³
� inf

²
DK.M Ox/

Eˆ.M Ox/
W Eˆ.M Ox/ ¤ 0

³
D inf

²
D yK

. Ox/

Eˆ.M Ox/
W Eˆ.M Ox/ ¤ 0

³
:

For the second claim, we use Proposition 5.4 which implies that Eˆ.M Ox/ D yEˆ. Ox/, and
hence, � � O�. For the third claim, we use Ent O�.g. Ox// � Ent�.g.M Ox// by Proposition 5.5
to obtain the bound �g;LS � O�g;LS.

The above theorem answers the question how Poincaré-type constants behave under
coarse-graining. So, the natural question arising is what happens by the inverse recon-
struction procedure. Although Proposition 5.4 states that we have E�.x/ � E O�.Nx/ for
all x 2X , it is not possible to obtain uniform estimates between and DK.x/ and D yK

.Nx/

as the counterexample in the next section shows.

5.3. Counterexample

We compute and compare D yK
.Nx/ and DK.x/ for a fixed x 2 X . We have

D yK
.Nx/ D

1

2
hh yDNx;Q Om yDNxii D

1

2
hx;N � yD�Q Om yDNxi D �hx; P

�A�Q�Pxi D

D �hPx;Q�APxi D �hPx � APx; �i:

Recall, that we have DK.x/ D �hx � Ax; �i. It is clear that DK.x/ � D yK
.Nx/ holds

for all x 2 Range.P / (because then the inequality is a trivial equality) and also for all
x 2 Range.id � P / D Ker.P / (because D yK

.Nx/ D 0). In particular, we always have
DK.x/ � D yK

.Nx/ in the simple case of Z D ¹1; 2º.
For a � 0, we define on R3 the parameter dependent Markov generator

Aa D

0@�8 4 4

1 �2 1

a a �2a

1A :
Then, A�a has the stationary measure �a D 1

5aC4
.a; 4a; 4/T. One easily checks that Aa

satisfies detailed balance with respect to �a. As in the example from Section 2.2, we
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define the coarse-graining function � W Z! yZ with �.1/ D O1 and �.2/ D �.3/ D O2. The
corresponding Markov operatorM W yX ! X is given byM D

�
1
1
1

�
. The coarse-grained

stationary measure is given by O�a D M ��a D
1

5aC4
.a; 4a C 4/T:The inverse operator

Na W X ! yX and the projection Pa W X ! X are given by

Na D Q
�1
O�a
M �Q�a D

�
1

a
aC1

1
aC1

�
; Pa DMNa D

0B@1 a
aC1

1
aC1

a
aC1

1
aC1

1CA :
We compute DKa.x/ and DbKa.Nax/ for x D .3; 1; 2/T. We have �hx �Aax;�ai D 24a

5aC4
.

Moreover, we have �hPax �AaPax;�ai D
8a.1C2a/2

.aC1/2.5aC4/
: Hence, we have that DKa.x/ �

D yKa
.Nax/ is equivalent to

24a

5aC 4
�

8a.1C 2a/2

.aC 1/2.5aC 4/
, .1C 2a/2 � 3.aC 1/2, a � 1C

p
3 DW a�:

In particular, we have for x D .3; 1; 2/T that DKa.x/ � D yKa
.Nax/ for a 2 Œ0; a�� and

that DKa.x/ � D yKa
.Nax/ for a 2 Œa�;1Œ. Summarizing, it is not possible to have uni-

form estimates between DKa and D yKa
.Na�/. Hence, no inequality for the Poincaré-type

constants can be expected.
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