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On a p.x; :/-integrodifferential problem with Neumann
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Abstract. This study examines a class of a bi-nonlocal problem involving a generalized integro-
differential operator of elliptic type, characterized by a singular kernel, with nonlocal nonlinear
Neumann boundary conditions. We establish the existence of infinitely many solutions in a general
fractional Sobolev space with variable exponent.

1. Introduction and statement of the problem

The purpose of this study is to investigate the existence of solutions for a bi-nonlocal
problem with nonlocal nonlinear Neumann boundary conditions of the following form:8<:L

p.x;�/
K .u.x//C juj Np.x/�2u.x/ D f .x; u/

� R
�
F.x; u/dx

�r in �;

N
p.x;�/
K u.x/C ˇ.x/juj Np.x/�2u.x/ D 0 on RN n�;

(PK)

where � is a Lipschitz bounded domain of RN with N > 1, s 2 .0; 1/, and spC < N .
Consider the set Q defined as follows:

Q WD RN �RN n.�c ��c/; where �c D RN n�:

• L
p.x;:/
K refers to the generalized integro-differential operator with variable exponent

which is introduced in [4] as follows:�
L
p.x;:/
K .u/

�
.x/

WD p.v.
Z

RN

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dy for all x 2 RN ;

where p.v. is a commonly used abbreviation in the principal value sense.
• p W RN �RN ! .1;C1/ is a continuous bounded function that satisfies

1 < p� D min
.x;y/2R2N

p.x; y/ 6 p.x; y/ 6 pC D max
.x;y/2R2N

p.x; y/ < C1 (1.1)
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and
p is symmetric, that is, p.x; y/ D p.y; x/ for all .x; y/ 2 R2N : (1.2)

• The kernel K W RN � RN ! .0;C1/ is a measurable function with the following
properties:

K.x; y/ D K.y; x/ for any .x; y/ 2 RN �RN I (1.3)

there exists k0 > 0 such that

K.x; y/ > k0jx � yj
�.NCsp.x;y// for any .x; y/ 2 RN �RN and x ¤ y; (1.4)

mK 2 L1
�
RN �RN

�
; where m.x; y/ D min

®
1; jx � yjp.x;y/

¯
: (1.5)

As a particular case of the singular kernel K, we can take

K.x; y/ D jx � yj�.NCsp.x;y//: (1.6)

In this case, the generalized integro-differential operator L
p.x;:/
K is reduced to the frac-

tional p.x; :/-Laplacian operator .��/s
p.x;:/

which is considered as a generalisation of the
well-known p.x/-Laplacian operator into the fractional case.

• The operator N
p.x;:/
K represents the new generalized nonlocal (nonlinear) normal

p.x; :/-derivative with singular kernel given by�
N
p.x;:/
K u

�
.x/ WD

Z
�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dy; x 2 RN nx�:

If we take the particular case of the kernel K given in (1.6), the generalized nonlocal
normal p.:; :/-derivative N

p.x;:/
K coincides with the fractional normal p.:; :/-derivative

N
p.x;:/
s introduced in [7] by (1.9).

• The functions f and ˇ satisfy the following assumptions:
.B/ W ˇ 2 L1.RN n�/ and ˇ � 0 in RN n�.
.F / W f W x� �R! R is a continuous function satisfying

– f is an odd function with respect to t .

– There exist two positive constants l1 and l2 such that

l1t

1.x/�1 6 f .x; t/ 6 l2t


2.x/�1; (1.7)

where 
1.x/; 
2.x/ 2 C.x�/ are two variable exponents that verify the following
condition:

1 < 
1.x/ 6 
2.x/ < p
�
s .x/; 8x 2

x� and 
C2 <
p�

r C 1
: (1.8)

– It is worth noting that F.x; u/ D
R u
0
f .x; �/d�.

In the context of PDEs and variational problems with nonstandard p.x/-growth condi-
tions, over the past decades, there exists a considerable body of literature in the field of
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nonlinear analysis. The investigations related to these topics were motivated by a pro-
posed application of variable exponent spaces to modeling electrorheological fluids [26],
as well as additional applications to image restoration [11] and the nonlinear Darcy’s law
application in porous media [2].

On the other hand, over time, extensive literature has been devoted to the study of
nonlocal fractional problems regarding their wide range of applications. The investigation
of such problems in the presence of Dirichlet boundary conditions has been done; see,
for instance, [3, 6, 19, 20, 28] and the references therein. In particular, see the problems
related to the fractional Laplacian .��/s , which arise in a quite natural way in many
different contexts both for pure mathematical research and in view of concrete real-world
applications, such as [14, 27, 29]. The Dirichlet boundary conditions are used to study the
vast bulk of such problems. Nevertheless, the study of Neumann boundary problems for
the fractional nonlocal problems requires a different concept. Given what has been said,
the inception of nonlocal Neumann boundary conditions was introduced by Valdinoci et
al. [15]; This concept emerged to light from a simple probabilistic consideration, which
can be summarized as follows:

• The function u represents the probability distribution of the position of a particle mak-
ing an arbitrary move inside the domain �.

• When the particle exists in the domain of study �, it straight away comes back into
�.

• The strategy in which it comes back inside � is the following: if the particle has gone
to x 2 RN nx�, it may come back to any point y 2 �, with the probability density of
jumping from x to y being proportional to jx � yj�N�2s .

These three situations lead to the introduction to the Neumann problem for the fractional
Laplacian operator as follows:´

.��/su D f in �;

Nsu D 0 in RN nx�;

where Ns is the nonlocal normal derivative defined as follows:

Nsu.x/ WD

Z
�

u.x/ � u.y/

jx � yjNC2s
dy; x 2 RN nx�:

There exist other problems with nonlocal Neumann boundary conditions [8, 24], but the
advantage of Dipierro’s approach is that the problem has a variational structure. In partic-
ular, they studied the basic properties of this kind of boundary conditions.

In [25], the authors extend the notion of nonlocal Neumann boundary conditions to
cover the nonlinear case .p > 1/, and the nonlocal normal p-derivative is defined as fol-
lows:

N s
p u.x/ D

Z
�

ju.x/ � u.y/jp�2.u.x/ � u.y//

jx � yjNCps
dy; 8x 2 RN n�:
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This definition was also introduced in [9], where a nonlocal analog of the divergence
theorem (the integration by parts formula) is given.

Very recently, for the Neumann problem involving the fractional p.:; :/-Laplacian
operator .��/s

p.:;:/
, Bahrouni et al. have been introduced the corresponding nonlocal nor-

mal p.:; :/-derivative for this operator, which is given by

N s
p.x;:/u.x/ D

Z
�

ju.x/ � u.y/jp.x;y/.u.x/ � u.y//

jx � yjNCsp.x;y/
dy; 8x 2 RN n�: (1.9)

In their work, the authors pointed out the fundamental properties associated with this new
kind of boundary conditions.

On the other hand, bi-nonlocal problems refer to the fact of the appearance of the
nonlocality in both the differential operator and the coefficient of the source term f ,
whichever makes our study more complicated. There are many works related to bi-nonlocal
problems have been published, either the studied problem involving the p-Laplacian oper-
ator [1, 10] or the p.x; :/-Laplacian operator [12, 13].

Motivated by the above contributions, we consider in this paper a new class of problem
involving the generalized p.x; :/-integro-differential operator with singular kernel. Up to
our knowledge, this is the first attempt to treat bi-nonlocal problems with the generalized
nonlocal p.x; :/-Neumann boundary conditions N

p.x;:/
K . In an adequate new functional

framework .X; k:kX / and using Krasnoselkii’s genus theory, we establish the existence of
infinitely many solutions. More precisely, our main result is stated as follows.

Theorem 1.1. Let � be a Lipschitz bounded domain in RN and s 2 .0; 1/, p W RN �
RN!.1;C1/ is continuous variable exponent satisfying (1.1) and (1.2) with spC<N .
Let K W RN � RN ! .0;C1/ be a measurable function satisfying (1.3)–(1.5). Assume
that the assumptions .B/ and .F / are fulfilled. Then, problem (PK) has infinitely many
weak solutions.

The remainder of this paper is structured in this way. In Section 2, we present some
preliminary knowledge about the fractional Sobolev spaces with variable exponent, as
well as the basic notions on the Krasnoselkii’s genus theory. In Section 3, we will state
and construct a functional framework that will be well adapted, and the related properties
are given. Using the genus theory, we prove our main result in Section 4. Finally, in order
to illustrate our general results, we provide an explicit example and a particular case of
our problem.

2. Mathematical background and preliminaries

In this section, we collect some necessary properties and notations about variable exponent
Lebesgue and Sobolev spaces and the most properties can be found in [4–6,16,18,21–23].
Furthermore, we present some basic notions on Krasnoselkii’s genus that will be used in
the proof of our main result.



On a p.x; :/-integrodifferential problem with Neumann boundary conditions 417

2.1. Fractional Sobolev spaces with variable exponent

Let � be a bounded domain in RN .N > 1/ with the Lipschitz boundary, and consider
the set

CC.x�/ D ¹p 2 C.x�/ W p.x/ > 1 for all x 2 x�º:

Let p 2 CC.x�/ with 1 < p� 6 p.x/ 6 pC < C1; denote

pC D sup
x2x�

p.x/ and p� D inf
x2x�

p.x/:

For any p 2CC.x�/, the variable exponent Lebesgue spaceLp.:/.�/ is defined as follows:

Lp.x/.�/ D

²
u W �! Rmeasurable such that:

Z
�

ju.x/jp.x/dx <1

³
:

The space Lp.:/.�/ is a Banach space equipped with the well-known Luxemburg norm

kukLp.x/.�/ D inf
²
� > 0I

Z
�

ˇ̌̌̌
u.x/

�

ˇ̌̌̌p.x/
dx 6 1

³
:

Let L Op.:/.�/ be the conjugate space of Lp.:/.�/, that is, 1
p.x/
C

1
Op.x/
D 1, for all x 2 x�.

The Hölder’s inequality maintains as in the classical Lebesgue spaces, and it is formu-
lated in the following lemma.

Lemma 2.1. For any u 2Lp.x/.�/ and v 2L Op.x/.�/, one has the following Hölder-type
inequalityˇ̌̌̌ Z

�

uv dx
ˇ̌̌̌

6
�
1

p�
C

1

. Op/�

�
kukLp.x/.�/kvkL Op.x/.�/ 6 2kukLp.x/.�/kvkL Op.x/.�/:

A major role in manipulating the generalized Lebesgue spaces with variable exponent
is played by the modular of the Lp.:/.�/ space, which is the mapping �p.:/ defined by

�p.:/ W L
p.:/.�/! R

u 7! �p.x/.u/ D

Z
�

ju.x/jp.x/dx:

Proposition 2.1. Let u 2 Lp.x/.�/ and ¹ukº � Lp.x/.�/. Then, we have

(i) kukLp.x/.�/ < 1 .resp.;D 1;> 1/, �p.x/.u/ < 1 .resp.;D 1;> 1/,

(ii) kukLp.x/.�/ < 1) kuk
pC

Lp.x/.�/
6 �p.x/.u/ 6 kukp�

Lp.x/.�/
,

(iii) kukLp.x/.�/ > 1) kuk
p�

Lp.x/.�/
6 �p.x/.u/ 6 kukpC

Lp.x/.�/
,

(iv) limk!C1 kuk � ukLp.x/.�/ D 0, limk!C1 �p.x/.uk � u/ D 0.

Lemma 2.2 ([17, Lemma 2.1]). Let p 2 L1.RN / be such that 1 � p.x/q.x/ � 1 for
a.e. x 2 RN . Let u 2 Lq.x/.RN / with u ¤ 0. Then,
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(1) If kukLp.x/q.x/.RN / � 1, then

kuk
pC

Lp.x/q.x/.RN /
�


jujp.x/



Lq.x/.RN /
� kuk

p�

Lp.x/q.x/.RN /
:

(2) If kukLp.x/q.x/.RN / � 1, then

kuk
p�

Lp.x/q.x/.RN /
�


jujp.x/



Lq.x/.RN /
� kuk

pC

Lp.x/q.x/.RN /
:

The natural framework to look for solutions of nonlocal problems involving .��/s
p.x;:/

is the fractional Sobolev space with variable exponent introduced in [5] in this way:

W D W s;p.x;y/.Q/ D

²
u W RN ! R measurable such that uj� 2 Lp.x/.�/ withZ
Q

ju.x/ � u.y/jp.x;y/

�p.x;y/jx � yjNCsp.x;y/
dxdy < C1 for some � > 0

³
:

Since our problem involves the generalized p.x; :/-integro-differential operator of ellip-
tic type L

p.x;/
K , we have to introduce the functional space related to it. It is the general

fractional Sobolev space with variable exponent introduced in [4] as follows:

W
s;p.x;y/
K .Q/ D

²
u W RN ! R measurable such that uj� 2 L Np.x/.�/ withZ
Q

ju.x/ � u.y/jp.x;y/

�p.x;y/
K.x; y/dxdy < C1 for some � > 0

³
:

The space W s;p.x;y/
K .Q/ is equipped with the following norm:

kuk
W
s;p.x;y/
K .Q/

D kukK;p.x;y/ D kukLp.x/.�/ C Œu�K;p.x;y/;

where Œu�K;p.x;y/ D inf¹� > 0 W
R
Q
ju.x/�u.y/jp.x;y/

�p.x;y/
K.x; y/dxdy 6 1º.

Corollary 2.1 ([7, Corollary 1]). (i) .W sp.x;y/
K .Q/;k � kK;p.x;y// is a separable and reflex-

ive uniformly convex.
(ii) If � � RN is a domain of class C 0;1, then .W s;p.x;y/

K .Q/; k � kK;p.x;y// is a
Banach space.

Next, we state a continuous and compact embedding theorem; for the proof, we refer
to [4].

Theorem 2.1. Let � be a Lipschitz bounded domain in RN and s 2 .0; 1/. Let p W
RN �RN ! .1;C1/ be a continuous variable exponent satisfying (1.1) and (1.2) with
spC < N . Let r W x�! .1;C1/ be a continuous bounded variable exponent such that
1 < r� 6 r.x/ < p�s .x/ for all x 2 x�. Suppose that K W RN � RN ! .0;C1/ is a
measurable function satisfying (1.3)–(1.5). Then, there exists a positive constant C D
C.N; p; r; s;�/ > 0 such that, for any u 2 W s;p.x;y/

K .Q/, we have

kukLr.x/.�/ 6 CkukW s;p.x;y/.�/ 6 C max
®
1; Qk0

¯
kukK;p.x;y/;

where Qk0 D max
®
k
� 1
p�

0 ; k
� 1

pC

0

¯
I
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that is, the space W s;p.x;y/
K .Q/ is continuously embedded in Lr.x/.�/. Moreover, this

embedding is compact.

Lemma 2.3 ([4, Lemma 11]). Let p W RN � RN ! .1;C1/ be a continuous variable
exponent satisfying (1.1) and (1.2), and let K W RN � RN ! .0;C1/ be a measurable
function satisfying (1.3)–(1.5). Then, the following assertions hold:

(i) L
p.x;:/
K is well defined and bounded,

(ii) L
p.x;:/
K is a strictly monotone operator,

(iii) L
p.x;:/
K is a mapping of type .SC/.

2.2. Preliminaries on genus theory

LetX be a real Banach space, and denote by R the class of all closed subsets A� Xn¹0º,
that are symmetric with respect to the origin (i.e., if u 2 A) �u 2 A).

Definition 2.1. Let A 2 R and X D RN . The genus 
.A/ of A is defined as follows:


.A/ D min
®
k � 1; there exists an odd continuous mapping ' W A! Rkn¹0º

¯
:

If such a k does not exist, we set 
.A/ D1.

Remark 2.1. (i) If A is a subset, which consists of finitely many pairs of points, then

.A/ D 1.

(ii) 
.¿/ D 0 (by definition).

Theorem 2.2. Let X D RN , and let � be an open, symmetric, and bounded subset of
RN , with @� presents its boundary with 0 2 �. Then, 
.@�/ D N .

Corollary 2.2. Let us denote by SN�1 the .N � 1/-dimensional sphere in RN . Then,

.SN�1/ D N .

The Clarke’s theorem stated below is the main tool used to prove our main result.

Theorem 2.3. Let I 2 C 1.X;R/ be a functional satisfying the Palais–Smale condition
(PS). Furthermore, we suppose that

.G1/ I is even and bounded from below.

.G2/ There exists a compact set K 2 R such that 
.K/ D k and sup
x2K

I.x/ < I.0/.

Then, I possesses at least k pairs of distinct critical points and their corresponding criti-
cal values are less than I.0/.

3. Functional framework of problem (PK )

In this section, we introduce the appropriate framework to deal with problem (PK), as
inspired by the procedure in the paper of Bahrouni et al. [7]. Moreover, we establish some
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basic properties of the generalized nonlocal normal p.x; �/-derivative N
p.x;:/
K associated

with L
p.x;/
K and nonlocal Neumann boundary conditions.

Let u W RN ! R be a measurable function and p 2 CC.x�/ satisfying (1.1) and (1.2)
such that Np.x/ D p.x; x/ for all x 2 R2N . We define the space X by

X WD
®
u W RN ! R measurable W kukX < C1

¯
;

where
kukX WD Œu�K;p.x;y/;Q C kukL Np.x/.�/ C



ˇ 1
Np.:/u




L Np.x/.�c/

;

such that

Œu�K;p.x;y/;Q D inf
²
� � 0 W

1

2

Z
Q

ju.x/ � u.y/jp.x;y/

�p.x;y/
K.x; y/dxdy � 1

³
:

Proposition 3.1. The space .X; kukX / is a reflexive and separable Banach space.

Proof. The proof is similar to Proposition 3.1 in [7].

Theorem 3.1. Let � be a Lipschitz bounded domain in RN and s 2 .0; 1/. Let

p W RN �RN ! .1;C1/

be a continuous variable exponent satisfying (1.1) and (1.2) with spC<N . Let r 2CC.x�/
such that 1 < r� 6 r.x/ < p�s .x/ for all x 2 x�. Suppose thatK W RN �RN ! .0;C1/

is a measurable function satisfying (1.3)–(1.5). Then, there exists a positive constant C D
C.N; p; r; s;�/ > 0 such that, for any u 2 X , we have

kukLr.x/.�/ 6 CkukX :

Moreover, this embedding is compact.

Proof. It is obvious to see that

kuk
W
s;p.x;y/
K .Q/

� kukX for all u 2 X:

Then, by Theorem 2.1, we get the desired result.

Definition 3.1. Let p W RN �RN ! .1;C1/ be a continuous bounded function satisfy-
ing (1.1) and (1.2), and letK W RN �RN ! .0;C1/ be a measurable function satisfying
(1.3)–(1.5). For any u 2 X , we define the modular �K;p.:;:/ W X ! R by

�K;p.:;:/.u/D

Z
Q

ju.x/� u.y/jp.x;y/K.x;y/dxdyC

Z
�

juj Np.x/dxC

Z
�c
ˇ.x/juj

NP.x/dx;

and

kuk�K;p.:;:/ D inf
²
� > 0 W �K;p.:;:/

�
u

�

�
6 1

³
:
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Remark 3.1. It is clear that kuk�K;p.:;:/ is a norm on X , which is equivalent to the norm
kukX .

Lemma 3.1. Let p W RN � RN ! .1;C1/ be a continuous bounded function satisfy-
ing (1.1) and (1.2) with spC < N , and let

K W RN �RN ! .0;C1/

be a measurable function satisfying (1.3)–(1.5); moreover, the function ˇ verifies .B/.
Then, for any u 2 X , we have

(i) For u ¤ 0, we have kukX D a if and only if �K;p.:;:/.ua / D 1.

(ii) If kukX < 1, then kuk
pC
X

3p
C�1
� �K;p.:;:/.u/ � 3kuk

p�

X .

(iii) If kukX > 1, then kukp
�

X � �K;p.:;:/.u/.

Following that, we state and prove the following propositions, which are crucial in the
study of nonlocal problems with nonlinear nonlocal Neumann boundary conditions.

Proposition 3.2. Let p W RN �RN ! .1;C1/ be a continuous bounded function satis-
fying (1.1) and (1.2) with spC < N , and let

K W RN �RN ! .0;C1/

be a measurable function satisfying (1.3)–(1.5). Then, for any u a bounded C 2-function
in RN , we have Z

�

L
p.x;:/
K u.x/dx D �

Z
RN n�

N
p.x;:/
K u.x/dx:

Proof. We argue as in [7], since K and p are symmetric, then by direct computations we
get Z

�

Z
�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dxdy

D �

Z
�

Z
�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dxdy;

which implies thatZ
�

L
p.x;:/
K u.x/dx D

Z
�

p:v

Z
RN

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dydx

D

Z
�

lim
"!0

Z
RN nB.x;"/

ju.x/�u.y/jp.x;y/�2.u.x/�u.y//K.x; y/dydx

D

Z
�

Z
RN n�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dydx

D

Z
RN n�

Z
�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dxdy

D �

Z
RN n�

N
p.:;y/
K u.y/dy:
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Proposition 3.3. Let p W RN �RN ! .1;C1/ be a continuous bounded function satis-
fying (1.1) and (1.2) with spC < N , and let

K W RN �RN ! .0;C1/

be a measurable function satisfying (1.3)–(1.5). Then, for any u and v two bounded C 2-
functions in RN , we have the following equality:

1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

D

Z
�

vL
p.x;:/
K .u/dx C

Z
�c
vN

p.x;:/
K .u/dx:

Proof. By conditions (1.2) and (1.3), we have

1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

D

Z
Q

v.x/ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dxdy

D

Z
�

v.x/

�Z
RN

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dy

�
dx

C

Z
C�

v.x/

�Z
�

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//K.x; y/dy

�
dx

D

Z
�

vL
p.x;:/
K .u/dx C

Z
C�

vN
p.x;:/
K .u/dx:

Based on the integration by parts formula given by Proposition 3.3, we give the definition
of a weak solution for problem (PK) in the following form.

Definition 3.2. We say that u 2 X is a weak solution of (PK) if

1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

C

Z
�

juj Np.x/�2uvdx C

Z
�c
ˇ.x/juj Np.x/�2uvdx

D

�Z
�

F.x; u/dx

�r�Z
�

f .x; u/vdx

�
; (3.1)

for every v 2 X .

As a consequence of the above definition, we obtain the following result.

Proposition 3.4. Let u 2 X be a weak solution of (PK); then,

N
p.x;:/
K u.x/C ˇ.x/juj Np.x/�2u.x/ D 0 a.e. in RN nx�:
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Proof. First, we start by taking v 2 X such that v � 0 in� as a test function in (3.1), and
because of the symmetry of the exponent variable p.:; :/ and the kernel K, we find

0 D
1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

C

Z
�c
ˇ.x/juj

NP.x/�2uvdx

D

Z
RN nx�

v.x/

Z
�

ju.x/ � u.y/jjp.x;y/�2.u.x/ � u.y//K.x; y/dydx

C

Z
�c
ˇ.x/juj Np.x/�2uvdx

D

Z
RN nx�

v.x/N
p.x;:/
K u.x/dx C

Z
�c
ˇ.x/juj Np.x/�2uvdx

D

Z
RN nx�

�
N
p.x;:/
K u.x/C ˇ.x/juj Np.x/�2u

�
v.x/dx:

Consequently, Z
RN nx�

�
N
p.x;:/
K u.x/C ˇ.x/juj Np.x/�2u

�
v.x/dx D 0

for every v 2 X , with v D 0 in �. In particular, this is true for every v 2 C1c .R
N nx�/;

therefore,
N
p.x;:/
K u.x/C ˇ.x/juj Np.x/�2u.x/ D 0 a.e. in RN nx�:

4. Genus theory analysis of problem (PK )

In order to apply the genus theory to our problem, we need to establish some auxiliary
results. To this end, we associate to problem (PK) the energy functional J W X ! R
defined as follows:

J.u/ D

Z
Q

ju.x/ � u.y/jp.x;y/

2p.x; y/
K.x; y/dxdy C

Z
�

juj Np.x/

Np.x/
dx

C

Z
�c

ˇ.x/juj Np.x/

Np.x/
dx �

1

r C 1

�Z
�

F.x; u/dx

�rC1
for every u 2 X:

Proposition 4.1. Under the assumptions .B/ and .F /, the functional J is well defined;
moreover, J 2 C 1.X;R/, and for all u, v 2 X , the derivative of J is given by

hJ 0.u/; vi D
1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

C

Z
�

jujp.x/�2uvdx C

Z
�c
ˇ.x/juj Np.x/�2uvdx

�

�Z
�

F.x; u/dx

�r Z
�

f .x; u/vdx:
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Proof. Let u 2 X ; by using Lemma 3.1 and condition .F � (1.7)/, we get

J.u/ 6 CkukX ; where C D C.p; 
2; l2; r/:

Standard argument as that used in [3, Lemma 3.1] shows that J 2 C 1.X;R/, and its
derivative is given by the following formula:

hJ 0.u/; vi D
1

2

Z
Q

ju.x/ � u.y/jp.x;y/�2.u.x/ � u.y//.v.x/ � v.y//K.x; y/dxdy

C

Z
�

jujp.x/�2uvdx C

Z
�c
ˇ.x/juj Np.x/�2uvdx

�

�Z
�

F.x; u/dx

�r Z
�

f .x; u/vdx

for any u, v 2 X . Therefore, we can find weak solutions of (PK) as the critical points
of J .

To prove our main result, we will need the following technical lemmas.

Lemma 4.1. We suppose that hypotheses .B/ and .F / are satisfied; then, the functional
J is bounded from below on X .

Proof. Using condition (1.7), Lemma 3.1, and the embedding results, we have, for any
u 2 X ,

J.u/ D

Z
Q

ju.x/ � u.y/jp.x;y/

2p.x; y/
K.x; y/dxdy C

Z
�

juj Np.x/

Np.x/
dx C

Z
�

ˇ.x/juj Np.x/

Np.x/
dx

�
1

r C 1

�Z
�

F.x; u/dx

�rC1
>

1

2pC

�Z
Q

ju.x/ � u.y/jp.x;y/K.x; y/dxdy C

Z
�

juj Np.x/dx

C

Z
�

ˇ.x/juj Np.x/dx

�
�

1

r C 1

�
l2


�2

�rC1�Z
�

u
2.x/dx

�rC1
:

Taking kukX > 1, we obtain from Lemma 3.1 that

J.u/ >
1

2pC
kuk

p�

X �
1

r C 1

�
l2


�2

�rC1�Z
�

u
2.x/dx

�rC1
:

Theorem 3.1 and the fact that 
2.x/ < p�s .x/ imply that

J.u/ >
1

2pC
kuk

p�

X �
1

r C 1

�
l2C


C2


�2

�rC1
kuk


C2 .rC1/

X ; (4.1)

where C D C.N; p; 
2; s;�/ is a positive constant.
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Since the upper bound of the exponent variable 
2 verifies 
C2 < p�

rC1
, inequality (4.1)

shows that J is bounded from below.

Proposition 4.2. Let ¹unº � X be a sequence such that un* u 2 X ; then, the following
assertions hold.

(i) limn!1

R
�
junj

Np.x/�2un.un � u/dx D 0.

(ii) limn!1

R
RN n�

ˇ.x/junj
Np.x/�2un.un � u/dx D 0.

Proof. (i) Applying Hölder’s inequality, we getZ
�

junj
Np.x/�2un.un � u/dx 6 kjunj Np.x/�2unkL Op.x/.�/kun � ukL Np.x/.�/;

where Op.:/ is the conjugate of Np.:/.
If kunkL Np.x/.�/ � 1, we have

kjunj
Np.x/�2unkL Op.x/.�/ 6 kunk Np

C

L Np.x/
:

If kunkL Np.x/.�/ � 1, we have

kjunj
Np.x/�2unkL Op.x/.�/ 6 kunk Np

�

L Np.x/
:

Hence,
kjunj

Np.x/�2unkL Op.x/.�/ 6 max
®
kunk

Np�

L Np.x/
; kunk

NpC

L Np.x/

¯
:

Since the embedding X ,! L Np.x/.�/ is compact, we get the desired result.
(ii) By analogy, using the fact that the embedding X ,! L Np.x/.RN n�/ is compact

and ˇ 2 L1.RN n�/, we have that

lim
n!1

Z
RN n�

ˇ.x/junj
Np.x/�2un.un � u/dx D 0:

Lemma 4.2. The functional J satisfies the Palais–Smale (PS) condition.

Proof. Let ¹unº � X be a sequence such that

J.un/! Nc > 0 and J 0.un/! 0 in X�: (4.2)

From inequality (4.1), we have

J.un/ >
1

2pC
kunk

p�

X �
1

r C 1

�
l2C


C2


�2

�rC1
kunk


C2 .rC1/

X :

Then, by the fact that ¹J.un/ºn is bounded, we conclude that ¹unºn is bounded in X .
As a consequence, there exists a subsequence, still denoted by ¹unºn, such that un*u

in X .
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By (4.2), we get that hJ 0.un/; un � ui ! 0. Therefore,

hJ 0.un/; un � ui D

1

2

Z
Q

jun.x/�un.y/j
p.x;y/�2.un.x/�un.y//Œ.un�u/.x/�.un�u/.y/�K.x; y/dxdy

C

Z
�

junj
Np.x/�2un.un � u/dx C

Z
�c
ˇ.x/junj

Np.x/�2un.un � u/dx

�

�Z
�

F.x; un/dx

�r Z
�

f .x; un/.un � u/dx ! 0:

Since un * u in X , then, by Theorem 3.1, we have

un ! in L
2.x/.�/;

un ! u a.e. �:

On the other hand, by using Hölder’s inequality and condition (1.7), we obtainˇ̌̌̌ Z
�

f .x; un/.un � u/dx

ˇ̌̌̌
6
Z
�

jf .x; un/jj.un � u/jdx

6 l2

Z
�

junj

2.x/�1j.un � u/jdx

6 C1


junj
2.x/�1



L


2.x/

2.x/�1 .�/

kun � ukL
2.x/.�/;

which tends to 0 as n!1. Consequently,�Z
�

F.x; un/dx

�r Z
�

f .x; un/.un � u/dx ! 0 as n!1:

Using Proposition 4.2, we get

lim
n!1

Z
Q

jun.x/�un.y/j
p.x;y/�2.un.x/�un.y//Œ.un�u/.x/�.un�u/.y/�K.x; y/dxdy

D 0;

which implies
lim
n!1

˝
L
p.x;/
K .un/; un � u

˛
D 0I

by a similar argument, we have limn!1hL
p.x;/
K .u/; un � ui D 0. Then,

lim
n!1

˝
L
p.x;/
K .un/ �L

p.x;/
K .u/; un � u

˛
D 0:

Thus, from Lemma 2.3, we conclude that ¹unº converges strongly to u in X ; as a conse-
quence, the functional J satisfies the Palais–Smale condition.

Now, we are in the position to prove our main result by means of Krasnoselskii’s genus
theory.
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Proof of Theorem 1.1. The proof procedure consists of verifying that the functional J
satisfies the hypotheses of Theorem 2.3. Indeed, we have that J 2C 1.X; R/, and by
Lemma 4.2, J satisfies the Palais–Smale compactness condition. Moreover, it is obvious
to see that the functional J is even; also, it is bounded from below (because of Lemma 4.1).

It remains to show that condition .G2/ of Theorem 2.3 is fulfilled. Indeed, for each
m 2N, considerXm the linear subspace ofX generated bym vectors e1; e2; : : : ; em. Since
all the norms in the finite-dimensional space are equivalent, then there exists a constant
Cm such that

kukL
1.x/.�/ > CmkukX for u 2 Xm:

For every u 2 Xm, we obtain for kukX small enough

J.u/ 6
3

p�
kuk

p�

X �
1

r C 1

�
l1


C1

�rC1�Z
�

u
1.x/dx

�rC1
6

3

p�
kuk

p�

X �
1

r C 1

�
l1C


C1
m


C1

�rC1
kuk


C1 .rC1/

X ;

or also

J.u/ 6 kuk

C
1 .rC1/

X

 
3

p�
kuk

p��.rC1/
C1
X �

1

r C 1

�
l1C


C1
m


C1

�rC1!
:

Let �m and H be two positive constants such that

�m < H < min

´
1;

�
p�

3.r C 1/

�
l1C


C1
m


C1

�rC1� 1

p��.rC1/
C1

µ
;

and consider S .m/�m D ¹u 2 Xm W kukX D �mº; then, by this condition p� > .r C 1/
C1 ,
we obtain for any u 2 S .m/�m

J.u/ 6 �

C1 .rC1/
m

 
3

p�
�
p��.rC1/
C1
m �

1

r C 1

�
l1C


C1
m


C1

�rC1!

< H 
C1 .rC1/

 
3

p�
Hp��.rC1/
C1 �

1

r C 1

�
l1C


C1
m


C1

�rC1!
< 0:

Consequently, sup
u2S

.m/
�m

J.u/ < 0 D J.0/.

On the other hand, S .m/�m is homeomorphic to the .m � 1/-dimensional sphere in Rm.
Then, 
.S .m/�m / D m.

In view of Clarke’s theorem, J has at least k pairs of distinct critical points, because
k is arbitrary, we infer the existence of infinitely many critical points of J . The proof is
completed.
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5. Example and particular case

In this section, we give an explicit example in order to illustrate our main results. As a
particular case, we can take

• The singular kernel is given by

K.x; y/ D jx � yj�N�sp.x;y/:

• For the nonlinearity function f , we can take

f .x; t/ D ajt j
.x/�2t;

where a is a positive constant and 
.x/ < p�s .x/ 8x 2 x�, as well as 
C < p�

rC1
.

Therefore, problem (PK) turns to a bi-nonlocal problem involving the fractional p.x; :/-
Laplacian operator with nonlocal Neumann boundary conditions:8<:.��/sp.x;:/.u.x//Cjuj Np.x/�2u.x/D.juj
.x/�2u/

� R
�

1

.x/
juj
.x/�1udx

�r in �;

Ns;p.x;:/u.x/C ˇ.x/juj
Np.x/�2u.x/ D 0 in RN n�:

(Ps)
It easy to see that the kernel K satisfies conditions (1.3)–(1.5). Moreover, f .x;�t / D
�f .x; t/ and f verifies (1.7)–(1.8). Then, as a direct consequence of Theorem 1.1, we
get the following result.

Corollary 5.1. Problem (Ps) has infinitely many weak solutions.
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