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Topology structure of solution set of fractional
non-autonomous evolution inclusions

Yong Zhen Yang and Yong Zhou

Abstract. This paper investigates the topological characteristics of the set of solutions to non-
autonomous fractional evolution inclusions. We present the concept of mild solutions for nonau-
tonomous fractional evolution inclusions and prove that the solution set is nonempty and compact.
Moreover, when the space is a reflexive Banach space, we demonstrate that the solution set is an
Rı -set, indicating that it may not be a single entity.

1. Introduction

Over the last two decades, fractional calculus has garnered significant interest globally
among researchers. Equations incorporating fractional derivatives serve as powerful tools
to characterize memory and hereditary attributes in various substances and operations.
Models using fractional derivatives typically yield more precise representations than those
with traditional integer-order derivatives, thereby providing superior descriptions of cer-
tain phenomena. For an in-depth discussion, refer to the works of Kilbas et al., Hilfer,
Luchko et al. [2, 15, 18, 23].

Throughout this paper, our focus lies on the subsequent fractional nonautonomous
evolution inclusions:´

CD˛
t y.t/ 2 A.t/y.t/C G .t; y.t//; t 2 Œ0; T �;

y.0/C g.y/ D y0:
(1)

We clarify that CD˛
t embodies the Caputo fractional derivative of order 0 < ˛ < 1. The

operator A.t/ W D.A.t// � Y ! Y constitutes the infinitesimal generators of analytic
semigroups ¹Tt .�/º��0 with the domain

D.A.t// DW D.A/

that is independent of t for all t 2 Œ0; T �. The term G W Œ0; T � � Y ( Y represents a
predefined multivalued map that operates on Œ0; T � � Y. The function g specified later in
context satisfies certain prerequisites and y0 signifies a member of the Banach space Y.

Mathematics Subject Classification 2020: 26A33 (primary); 34A08 (secondary).
Keywords: fractional nonautonomous evolution inclusions, multivalued analysis, Rı -set.

https://creativecommons.org/licenses/by/4.0/


Y. Z. Yang and Y. Zhou 460

The examination of system (1) holds relevance, as illustrated by a parabolic Caputo
fractional partial differential equation of the subsequent shape:8̂̂<̂

:̂
CD˛

t y.t; �/CA.t; �;D/y.t; �/ 2 G .t; y.t; �//; t 2 Œ0; T �; � 2 �;

y.t; �/ D 0; t 2 Œ0; T �; � 2 @�;

y.0; z/ �
Pm
iD0

R
�
m.�; z/y.ai ; �/d� D 0; z 2 �:

(2)

Here, ˛ belongs to .0; 1/ and� is a subset of RN , defined as a bounded domain capped by
a smooth boundary. We have 0 � a0 < a1 < a2 < � � � < am�1 < am � T and the function
m.� ; � / maps � �� into R. Our multivalued map G W Œ0; T � ��! 2R showcases weak
upper semicontinuity backed by closed convex values.

The operators A.t; �; D/ prove to be closed and densely formed, with their depen-
dence lying upon t 2 Œ0; T � and � 2 x�. These satisfy the standard ellipticity condition,
illustrated when for each t 2 Œ0; T �, � 2 x�, and � 2 RN , a constant k > 0 is found such
that

.�1/m<
X
j
 jD2m

a
 .t; �/�


� kj�j2m;

where the operator
A.t; �;D/ D

X
j
 j�2m

a
 .t; �/D



is said to uphold the uniform ellipticity condition in �. The coefficients a
 .t; �/ are
smoothly variable functions of � in x� for every t 2 Œ0; T � and for some constant C > 0

and 0 < � � 1 can satisfy

ka
 .t; �/ � a
 .s; �/k � C jt � sj
� ;

with � 2 x�, s; t 2 Œ0; T �. Adopting a method first proposed by Yagi [22], we consider the
linear operators family A.t/ in Lp.�/ given 1 < p <1 and t 2 Œ0; T �. These operators
correspond to the following domain:

D.A.t// D H 2m;p.�/ \H
m;p
0 .�/

and can be defined with

A.t/y D A.t; �;D/y for u 2 D.A.t//:

Contingent upon t , �, and the differentiation operator D, the function A.t; �;D/ results
in system (2) to representatively transform to (1).

Transforming fractional partial differential equations into fractional differential equa-
tions in an abstract manner is a crucial tactic, specifically when the densely closed operator
A.t/ gets simplified to A (not influenced by t ) for all t � 0 [12, 15, 18, 22, 23]. This
approach has been found instrumental in resolving scientific and engineering concerns
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in areas such as anomalous diffusive activities, relaxation phenomena in diverse environ-
ments, viscoelastic materials, and the field of finance. For more insights, the reader is
encouraged to look into papers [12–14, 18, 19, 23], including the associated references.
However, when confronting fractional non-autonomous evolution equations where the
operator A.t/ varies with time t , the complication levels surge significantly. El-Borai [11]
approached the issue by studying the existence and uniqueness of the strong solutions
for the Caputo fractional nonautonomous evolution equation. This was followed by an
investigation into theLp-maximal regularity of such non-autonomous evolution equations
having zero initial value within Hilbert space [7]. He [13, 14] offered another perspective
providing a fresh representation for the classical solution of the non-autonomous frac-
tional evolution equation and exploring its existence, uniqueness, and Hölder regularity.
Such studies propel us to extend our research on fractional non-autonomous development
dynamics problems, like fractional-order non-autonomous development inclusion issues,
and so on.

Growing as an instrumental fragment of nonlinear analysis theory, differential inclu-
sion theory has become indispensable, especially since its inception in the mid-20th cen-
tury. It was observed that several differential equation models, though efficient in defining
systems in engineering, physics, economics, and other fields, fell short in the accurate
depiction of real-life dynamic systems. Consequently, the development of differential
inclusion theory became necessary to accurately describe unpredictable and discontinu-
ous dynamical processes.Transition to single-valued mappings from multi-valued ones,
subject to strong regularity conditions, has facilitated the transformation of solution exis-
tence problems in differential inclusions into those for differential equations. An inherent
attribute of differential inclusions, the existence of multiple solutions stemming from a
specific point, has given rise to new research areas. These include the study of topologi-
cal properties of solution sets, confirming the significance of differential inclusions as a
fascinating field of research [1, 3–5, 9, 12, 25, 26], and others.

Extensive research efforts have been devoted to unraveling the intricate topological
properties inherent in the solution sets of differential equations and inclusions. Researchers
have delved into examining properties, such as Rı -sets, acyclicity, and components of
connectedness among others [3–6, 9, 17, 20, 26]. The study of topological concepts is
foundational for the qualitative examination of differential equations, which focuses on
characterizing the nature of solution behaviors independently from precise numerical solu-
tions. Acyclicity, for example, denotes the absence of voids within the solution set. Con-
nectedness, on the other hand, signifies the unification of the solution set into a solitary,
uninterrupted whole. Moreover, compactness and the ability to contract (contractibility)
are invaluable attributes that benefit the evaluation of existence theorems and the prolifer-
ation of solutions’ multiplicity. The practical impact of this line of inquiry extends across
a plethora of domains, such as physics, engineering, and biology.Within ecology, these
topological study outcomes have been pivotal in elucidating population dynamics; simi-
larly, in epidemiology, they offer insights into disease proliferation patterns. The pursuit of
understanding the topological structure of solution sets in differential equations remains
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an endeavor of significant consequence that continues to augment our understanding of
various solution phenomena. For an in-depth exploration, the reader is directed to a selec-
tion of pertinent literature [3–6, 9, 17, 20, 26].

A wealth of modern publications reveals extensive investigations into the solvability
aspect of mild solutions and the topological structure of solution sets pertinent to frac-
tional evolution inclusions (refer to [3, 4, 10, 12, 16, 21, 24, 25] and others). However, it
has come to our notice that the fractional nonautonomous evolution equation inclusion
research is yet to be initiated. In this manuscript, we establish the existence of a moder-
ate solution for the inclusion system as expressed in (1) and delve into the topological
properties of this solution set, specifically by demonstrating it to be a nonempty compact
Rı -set. Compared with fractional autonomous evolution equation, the solution operator
for fractional nonautonomous evolution equation, known for its compactness, typically
mandates that the closed dense operator families A.s/ must generate an analytic semi-
group Ts.t/ (t � 0) for each s � 0 as seen in [14]. This requirement stands relatively
rigid. Acknowledging this issue and drawing inspiration from the autonomous evolution
equation, we apply a noncompact measure condition to the nonlinear term. The distinction
here is our workflow wherein we apply analytical techniques to validate and present con-
ditions that are less stringent than the non-compact measure condition imposed in [23].
Conversely, an Rı -set implies an intersection of multiple compact, contractible sets void
of emptiness. Nevertheless, asserting a set as contractible often requires the compactness
of the solution’s operator (see [21,24,25]). Taking cue from [16,24,25], we also prove the
topological properties of the solution set under the condition of non-compactness of the
solution operator.

The sections of this article are organized as follows. We recall some definitions, no-
tions, and preliminary facts including multivalued analysis and solution operators in Sec-
tion 2. Section 3 is assigned for proving the solution set of (1) is a nonempty compact in
some assumptions. In Section 4, we consider the topology structure of the solution sets.

2. Preliminaries

This section provides an introduction to the background materials that are relevant through-
out the entire paper.

Let .Y; k � k/ be a Banach space with the norm k � k, L.Y/ denote the space of all
linear bounded operators on Y with the norm k � kL, and Lp.I;Y/ stand for the space of
all p-Bochner integrable functions from

I D Œ0; T �

to Y with the norm k � kp , and C.I;Y/ be the space of all continuous functions with the
sup-norm k � kc . We call a bounded integral sequence ¹fnº � Lp.I;Y/ semicompact in
Lp.Œ0;T �;Y/, if, for almost every t 2 Œ0;T �, the sequence ¹fn.t/º1nD1 is relatively compact
in Y.
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Definition 2.1 ([23]). Let k W Œ0;1/! R be a function. The fractional integral of order
0 < ˛ < 1 is defined by

0I
˛
t k.t/ D

1

�.˛/

Z t

0

.t � s/˛�1k.s/ ds D g˛.t/ � k.t/;

where g˛.t/ D t˛�1

�.˛/
denotes a function involving the gamma function.

Definition 2.2 ([18]). Given a function k W Œ0;1/! R, and for any ˛ 2 .0; 1/, the ˛-
Caputo fractional derivative of k is delineated as

CD˛
t k.t/ D

d

dt
.g1�˛.t/ � .k.t/ � k.0///:

Further, we introduce the Mittag–Leffler function E˛;ˇ .z/ and the Mainardi’s Wright-
type function M˛.z/, z 2 C:

E˛;ˇ .z/ D

1X
nD0

zn

�.˛nC ˇ/
; ˛; ˇ > 0; z 2 C

and

M˛.%/ D

1X
nD0

.�%/n

nŠ�.1 � ˛.nC 1//
; ˛ 2 .0; 1/; % 2 C:

For more details of Riemann–Liouville fractional integral and Caputo fractional deriva-
tive, we can refer to [15, 18, 23].

Next, we consider some multivalued results. For the metric space A;Z, define

P .A/ D ¹S � A W S is nonemptyº; Pcv.A/ D ¹S 2 P .A/ W S is convexº;

Pcl.A/ D ¹S 2 P .A/ W S is closedº; Pcp.A/ D ¹S 2 P .A/ W S is compactº;

Pcl;cv.A/ D Pcl.A/ \Pcv.A/:

A multivalued map denoted by �.� / establishes a correspondence between a metric
spaceA and another metric spaceZ, assigning to each member y 2A a unique, nonempty
subset �.y/ � Z which is referred to as the image of y. The set symbolized as Gra.�/ D
¹.a;b/ W a 2A;b 2 �.a/º �A�Z is the graphical representation of �.� /, whereas �.B/DS
a2B �.a/ defines the image of the subset B in terms of �. The set

��1.B/ D ¹a 2 A W �.a/ \ B ¤ ;º for B � A

represents the preimage of the subset B with respect to �.

Definition 2.3. A multivalued map � W A! P .Z/ is defined as the one that

(i) is closed when the graph Gra.�/, a closed subset from the Cartesian product
A �Z, satisfies Gra.�/ � A �Z;
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(ii) is quasicompact when, for every compact subset B � A, the closure of � image,
x�.B/, is also compact;

(iii) is upper semi-continuous (u.s.c) when, for each closed subset B 2 P .A/, the
preimage set ��1.B/ is closed;

(iv) is weakly upper semi-continuous (w.u.s.c) when, for every weakly closed subset
B 2 P .A/, the preimage ��1.B/ remains closed.

The following results can be found in [9, 17].

Lemma 2.4. Consider a multivalued map � W D ! P .Y /.

(i) If � is characterized as a closed and quasicompact multivalued map, then �
manifests as upper semi-continuous (u.s.c).

(ii) If � has weakly compact and convex values, then � corresponds to weakly upper
semi-continuous (w.u.s.c) if and only if, for a sequence xn � D converging to
x0 2D with yn 2 �.xn/, there exists a subsequence such that yn*y0 2 �.x0/.

The following exposition concerns the set Rı and contractible subsets. For a com-
prehensive explanation, we refer the readers to [10, 17]. Given a metric space Y and
a nonempty subset B � Y , we define B to be contractible if there exist a continuous
map ˇ W B � Œ0; 1�! B and a certain point z0 2 B . This implies that ˇ.z; 0/ D z0, and
ˇ.z; 1/ D z for all z belonging to B .

Definition 2.5. A subset B of a metric space is called an Rı set if there exist a decreasing
sequence ¹Bnº of compact and contractible sets such that B D

T1
nD1 Bn.

The Kuratowski measure of noncompactness �.�/ (MNC �) defined on bounded set S
of Banach space Y is

�.S/ D inf

´
ı > 0 W S D

n[
kD1

Sk ; diam.Sk/ � ı; k D 1; 2; : : : ; n

µ
:

Lemma 2.6. Several properties regarding the MNC, denoted as �.� /, are given as fol-
lows.

(i) Given that D � C.Œ0; T �;Y/ is bounded and equicontinuous, �.D.� // exhibits
continuity over the span Œ0; T �. Moreover, the equality

�.D/ D max
t2Œ0;T �

�.D.t//

holds.

(ii) Considering a bounded set D � Y, there exists a sequence ¹unº1nD1 � D satis-
fying the condition �.D/ � 2�.¹unº1nD1/C � for any � > 0.

(iii) Assuming a countable set

D D ¹unº
1
nD1 � C.Œ0; T �;Y/;
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where there exists a function m 2 L1.Œ0; T �;RC/ such that kun.t/k � m.t/ for
almost every t 2 Œ0; T �, �.D.t// D �.¹un.t/º

1
nD1/ is Lebesgue integrable on

Œ0; T �. Further, the inequality �.¹
R T
0
un.t/dt W n 2 N º/ � 2

R T
0
�.D.t//dt is

satisfied.

Remark 2.7. It is commonly understood that the MNC, denoted as �, possesses the
properties of monotonicity, nonsingularity, and regularity. However, in C.J;Y/, the reg-
ularity of MNC �.� / does not hold. Indeed, for any B � C.J; Y/, given that �.B/ D
supt2Œ0;T � �.B.t//, if �.B/ D 0, then �.B.t// D 0 for every t 2 Œ0; T �. As a result, B.t/
is relatively compact in Y for all t 2 Œ0; T �. Regardless, the convergence of any subse-
quence ¹xnº � B is independent of t 2 Œ0; T �, implying a lack of regularity for the MNC
� in C.Œ0; T �;Y/ when defined over the Banach space Y.

Based on the above facts, we introduce the modulus of equicontinuous to define the
MNC $ on C.Œ0; T �;Y/.

For a bounded set B � C.Œ0; T �;Y/, we define

$.B/ D max
B2ƒ.B/

. sup
t2Œ0;T �

�.B.t//;modC .B//;

where
ƒ.B/ D ¹D � B W D is denumerable subset of Bº;

and modC .B/ represents the functions B’s equicontinuous modulus in the following
form:

modC .B/ D lim
ı!0

sup
y2B

max
jt2�t1j<ı

ky.t2/ � y.t1/k; t1; t2 2 Œ0; T �:

On the other hand, we also can define MNC � on C.Œ0; T �;Y/; that is,

�.B/ D max
B2ƒ.B/

�
sup
t2Œ0;T �

e�Lt�.B.t//;modC .B/
�
;

where L is a given constant. The MCN $ and MCN � each have monotonicity, nonsin-
gularity, and regularity. For more details on MNC, one can refer to [8, 9, 17].

Lemma 2.8 ([17]). Assume that Y represents a Banach space and ‰ denotes an operator
‰ W Lp.Œ0; T �;Y/! C.Œ0; T �;Y/, satisfying the following prerequisites.

(S1) Existence of a constant c0 > 0 such that

k‰.f /.�/ �‰.g/.�/kc � c0kf .� / � g.� /kp

holds for every pair of functions f; g 2 Lp.Œ0; T �;Y/ with p > 1.

(S2) Suppose that ¹fnº1nD1 � L
p.Œ0; T �;Y/ is a sequence of functions and

¹fn.t/º
1
nD1 � S

holds for every n, where S � Y is compact. Then, if fn * f0 in Lp.Œ0; T �;Y/,
it leads to the convergence ‰.fn/! ‰.f0/ in C.Œ0; T �;Y/.
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Under such premise, we have the following.

(i) Suppose that a sequence of integrably bounded functions ¹fnº1nD1�L
p.Œ0;T �;Y/

exists such that �.fn.t// � q1.t/ is valid for almost every t 2 Œ0; T �, with
q1 2 L

1.Œ0; T �;RC/. Then, the following inequality holds:

�.¹‰.fn/.t/º
1
nD1/ � c0

Z t

0

q1.s/ds:

(ii) For any given semicompact sequence ¹fnº�Lp.Œ0;T �;Y/, the sequence ¹‰.fn/º
results in relative compactness in C.Œ0; T �;Y/. Furthermore, if fn*f0, it con-
cludes that ‰.fn/! ‰.f0/.

In this work, we examine a linear operator that satisfies the Acquistapace–Terreni
conditions. For additional information regarding the Acquistapace–Terreni conditions, the
reader is referred to [13,14,22]. Subsequently, we construct the solution operator detailed
in [13, 14].

We analyze the following operators:

�s.t/ D

Z 1
0

M˛.�/Ts.t
˛�/d�;  s.t/ D

Z 1
0

˛� t˛�1M˛.�/Ts.t
˛�/d�;

where Ts.t/ denotes the analytic semigroup generated by A.s/. We then define the opera-
tors:

zQ.t; s/ D �ŒA.t/ � A.s/��s.t � s/; zR.t; s/ D �ŒA.t/ � A.s/� s.t � s/;

which are continuous in the operator uniform topology for all 0 � s < t � T . According
to [22], the subsequent Volterra-type integral equations

Q.t; s/ D zQ.t; s/C

Z t

s

zR.t; �/Q.�; s/d�;

R.t; s/ D zR.t; s/C

Z t

s

zR.t; �/R.�; s/d�

guarantee that Q.t; s/ and R.t; s/ are the unique solutions of the respective equations.
Furthermore,Q.t; s/ andR.t; s/ are continuous in the uniform operator topology on L.Y/

for t > s.

Definition 2.9. Let y W Œ0;T �!Y be a continuous function. The function y is a mild solu-
tion to (1) if it satisfies the initial condition y.0/C g.y/ D y0, and there exists a function
f 2 Lp.Œ0;T �;Y/ such that, for almost every t 2 Œ0; T �, we have f .t/ 2 G .t; y.t//. More-
over, for each t 2 Œ0; T �, y.t/ is given by the integral equation

y.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; s/f .s/ds;
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where the operators S˛.t; s/ and P˛.t; s/ are defined as

S˛.t; s/ D �s.t � s/C

Z t

s

 � .t � �/Q.�; s/d�;

P˛.t; s/ D  s.t � s/C

Z t

s

 � .t � �/R.�; s/d�:

Lemma 2.10. Let " > 0 and t; s 2 Œ0; T � be given. The operator-valued functions S˛.t; s/
and P˛.t; s/ exhibit strong continuity on Y for t 2 Œs C "; T �. Furthermore, there exists a
constant M dependent on ˛ fulfilling the following conditions:

kS˛.t; s/kL �M for all t 2 Œs; T �;

kP˛.t; s/kL �M.t � s/
˛�1 for all t 2 .s; T �:

Definition 2.11. Let B be a subset of a Banach space Y. The multimap � W B ! P .Y/ is
said to be �-condensing, if for any bounded set D � B, which is not relatively compact,
the condition �.�.D// < �.D/ holds.

The following fixed-point theorem is instrumental in establishing the existence of a
mild solution, as detailed subsequently.

Theorem 2.12 ([17]). Suppose that � is a closed, bounded, and convex subset of a
Banach space Y. Let � W �! Pcp;cv.�/ be a multivalued map that is upper semicontinu-
ous and�-condensing. Then, the set of fixed points denoted by Fix.�/D¹y 2� W y 2 �.y/º
is nonempty and compact.

3. Existence results

First, we show the following lemma.

Lemma 3.1. Let g2L1.Œ0;a�;RC/ be such that 0I ˛t g.t/2C.Œ0;a�;R
C/ and limt!0C 0I

˛
t

g.t/ D 0. Then, there exists a continuous function �.�/ such that, for any t 2 Œ0; a� and
any " > 0, it holds that Z t

0

.t � �/˛�1jg.�/ � �.�/jd� < ":

Proof. For any t0 2 Œ0; a�, noting that the space C Œ0; t0� is dense in L1Œ0; t0� and by the
Weierstrass approximation theorem, one can choose a polynomial function wt0.�/ such
that Z t0

0

j.t0 � �/
˛�1g.�/ � wt0.�/jd� <

"

3
:

Utilizing the property of uniform continuity for continuous functions on compact sets, we
can find a ıt0 > 0 such that for any t 2 .t0 � ıt0 ; t0 C ıt0/ we haveZ t

0

j.t � �/˛�1g.�/ � wt .�/jd� <
"

3
:
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The collection ¹.t � ıt ; t C ıt / W t 2 Œ0; a�º forms an open cover of Œ0; a�. By the Heine–
Borel theorem, there exists a finite subcover, yielding an m 2 NC such that

Œ0; a� �

m[
iD0

.ti � ıti ; ti C ıti /:

Applying the Cantor intersection theorem, we find a ı0 which satisfies

j.t 0 � �/1�˛wt 0.�/ � .t
00
� �/1�˛wt 00.�/j <

"˛

3�a˛
(3)

for any jt 0 � t 00j < ı0, where � is a constant that will be determined later.
Let �.�/ D sup��t�a.t � �/

1�˛wt .�/. Using the previously derived results, we can
find a t 0 such that

j�.�/ � .t 0 � �/1�˛wt 0.�/j <
"˛

3a˛
:

Since Œ0; a� is covered by the intervals .ti � ıti ; ti C ıti /, we can find a tj such that t 0 2
.tj � ıtj ; tj C ıtj /. Thus, we haveZ t

0

.t � �/˛�1jg.�/ � .t � �/1�˛wt .�/jd� <
"

3
;Z t

0

.t � �/˛�1j�.�/ � .t 0 � �/1�˛wt 0.�/jd� <
"

3
:

Let ıDmin¹ı0; ıt0 ; : : : ; ıtmº. For any t 2 .ti � ıti ; ti C ıti / and t 0 2 .tj � ıtj ; tj C ıtj /,

we can select # 2NC such that jt � t 0j < #ı with # D d t�t
0

ı
e � d

tm�t0CıtmCıt0
ı

e. Taking

� D d
tm�t0CıtmCıt0

ı
e ensures thatZ t

0

.t � �/˛�1j.t � �/1�˛wt .�/ � .t
0
� �/1�˛wt 0.�/jd� <

"

3
: (4)

By combining (3) and (4), we obtainZ t

0

.t � �/˛�1jg.�/ � �.�/jd� �
"

3
C
"

3
C �

a˛

˛

"˛

3�a˛
D ":

This completes the proof.

We now turn our attention to an analysis involving a multivalued nonlinearity which
is formally described by the operator G W Œ0; T � � Y ! Pcl;cv.Y/. This operator is subject
to the following conditions:

(H0) Tt .�/.� > 0/ is equicontinuous; i.e., Tt .�/ is continuous in the uniform operator
topology for � > 0.

(H1) For a given y 2 Y, consider the collection

¹f .�/ W f .t/ 2 G .t; y.t// for almost every t 2 Œ0; T �º:

This set is nonempty and includes a measurable function f W Œ0; T �! Y.
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(H2) The multifunction G .t; �/ exhibits weak upper semicontinuity for almost every
t 2 Œ0; T �.

(H3) There exist a constant p > 1
˛

and a function ˛.�/ 2 Lp.Œ0; T �;RC/ that fulfil the
inequality

kG .s; y/k D sup¹kf .s/k W f 2 G .s; y/º � ˛.s/�.kyk/;

where �.�/ W Œ0;1/! Œ0;1/ is a monotonically increasing function satisfying

lim inf
n!1

�.n/

n
D 0:

(H4) A function k.�/ 2 L1.Œ0; T �;RC/ exists such that 0I ˛t k.t/ 2 C.Œ0; T �;RC/ and
limt!0C 0I

˛
t k.t/D 0. For any bounded subset B � C.Œ0; T �;Y/, the inequality

�.G .t;B// � k.t/�.B/ holds true.

(H5) The mapping g W C.Œ0; T �;Y/! Y is compact and continuous. Moreover, there
exist constants Ng1, Ng2, ı such that

kg.y/k � Ng1kyk
ı
C CNg2

for y 2 C.Œ0; T �;Y/, where 0 < ı < 1.

For y 2 C.Œ0; T �;Y/, and almost every t 2 Œ0; T �, the set of integrable selections from
the multifunction G with respect to y 2 C.Œ0; T �;Y/ is defined by

�G .y/ D ¹f 2 L
p.Œ0; T �;Y/ W f .t/ 2 G .t; y.t// for a.e. t 2 Œ0; T �º:

Proposition 3.2. The operator �G WC.Œ0; T �;Y/( Lp.Œ0; T �;Y/ has weakly upper semi-
continuous mappings with convex, weakly compact, and nonempty value sets.

Proof. Based on assumption .H3/, for every r > 0 and for each y 2 Y with kyk � r , we
can select a function �r 2 Lp.Œ0; T �;Y/ such that, for almost every s 2 Œ0; T �, we have

kG .s; y/k D sup¹kf kWf 2 G .s; y.s//º � �r .s/:

Indeed, we may take �r .s/D ˛.s/�.r/. Employing the technique used in [25], we demon-
strate that the set SG .y/ is nonempty for any y in C.Œ0; T �;Y/. For any f1; f2 2 �G .y/

and 0� � � 1, it is straightforward to verify �f1C .1� �/f2 2 �G .y/ because, for almost
every s 2 Œ0;T �, we have f1.s/ 2 G .s;y.s// and f2.s/ 2 G .s;y.s//, given G W Œ0;T ��Y!

Pcl;cv.Y/.
We denote

sup
s2Œ0;T �

ky.s/k D r I

thereby, �G .y/ is a bounded closed set in Lp.Œ0; T �; Y/ due to kG .s; y/k � ˛.s/�.r/.
Thus, the set �G .y/ is weakly compact as a result of the Banach–Alaoglu theorem, given
p > 1. Next, we establish that �G is weakly upper semicontinuous. Suppose that we have
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sequences fn 2 �G .yn/ and f 2 �G .y/ such that fn * f , where fn.s/ 2 G .s; yn.s//

and f .s/ 2 G .s; y.s// for almost every s 2 Œ0; T �. We assume that yn ! y. By way of
contradiction, suppose that there exists s0 2 Œ0; T � such that yn.s0/ ¹ y.s0/. That is,
we assume that there exists "0 > 0 and n0 2 NC such that kyn.s0/ � y.s0/k � "0 for
all n > n0. By the persistence property of continuous functions, there exists ıs0 with a
positive measure (i.e., mes.ıs0/ > 0) such that

kyn.s0/ � y.s0/k � "0=2

for any fixed s 2 ıs0 . Given fn * f , there exists s� 2 ıs0 such that fn.s�/ * f .s�/, but
yn.s

�/ ¹ y.s�/, which contradicts assumption .H2/.
The proof is thus complete.

Then, we have the following theorem.

Theorem 3.3. Assume that conditions .H0/–.H5/ are satisfied. Then, the solution set of
inclusion (1) is a nonempty compact subset of C.Œ0; T �;Y/. In particular, this conclusion
holds for the function g D 0 in (1).

Proof. For a fixed constant 0 < "0 < 1, we select an approximate constant T � > 0 such
that

"0 <
1 � 2MK�.T �/˛

˛

2M
;

where K� D max�2Œ0;T � j�.�/j and �.�/ is a continuous function satisfying Lemma 3.1.
For example, by choosing

"0 D
1

2M C 1
and 0 < T � <

� ˛

2M.2M C 1/K�

� 1
˛
;

the inequality holds.
For any y 2 C.Œ0; T ��;Y/, we define the solution multi-operator

K W C.Œ0; T ��;Y/! P .C.Œ0; T ��;Y//

as follows:
Ky.t/ D S˛.t; 0/.y0 � g.y//C .‰ ı SG .y//.t/; (5)

where

‰ ı SG .y/ D

²
‰.f / W f 2 SG .y/;‰.f /.t/ D

Z t

0

P˛.t; s/f .s/ds

³
:

It is straightforward to verify that ‰.f /.�/ 2 C.Œ0; T ��;Y/ for any f 2 SG .y/, ensuring
that multi-operator K is well defined. Mild solutions to equation (1) are the fixed points
of multi-operator K . We employ the following steps to prove the existence of these fixed
points.
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For convenience, we denote J D Œ0; T �� and proceed with the first step.

Step 1. We show that there exists a set M which is bounded, convex, and closed such that
K.M/ �M.

We demonstrate the existence of a constant r > 0 such that K.M0/ � M0, where
M0 D ¹y 2 C.J;Y/ W kykC � rº. Assuming the contrary, for any r > 0 and z 2 K.y/

but z …M0, we obtain

z.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; s/f .s/ds; t 2 J;

with some t0 2 J satisfying kz.t0/k � r . Subsequently, we have

r � kz.t0/k �Mky0k CMNg1r
ı
CMNg2 CM

Z t

0

.t � s/˛�1˛.s/ds�.r/

�Mky0k CMNg1r
ı
CMNg2 CM

�
p � 1

˛p � 1

� p�1
p

T
˛� 1p k˛kp�.r/;

which leads to a contradiction. Thus, there must exist a constant r > 0 such that K.M0/�

M0.
Define M1 D co.K.M0//. It can be shown that M1 � C.J;Y/ is a bounded, closed,

and convex set. Iterating this approach, we construct a descending sequence of sets M1 �

M2 � � � � �Mn. Define M D
T1
nD1 Mn that is closed, convex, bounded, and nonempty,

satisfying

K.M/ �

1\
kD1

K.Mk/ �

1\
kD1

Mk DM:

Step 2. We show that operator K is $ -condensing.
Suppose B �M with $.B/ � $.K.B//. If not, this would imply for any B �M ,

$.K.B// <$.B/; i.e., K is$ -condensing. Otherwise, consider a sequence ¹znº1nD1 �
K.B/ such that

$.¹znº
1
nD1/ D max.sup

t2J

�.¹zn.t/º
1
nD1/;modC .¹znº1nD1//;

where, for each n,

zn.t/ D S˛.t; 0/.y0 � g.yn//C

Z t

0

P˛.t; s/fn.s/ds; fn 2 SG .yn/;

and ¹ynº � B . From assumption (H5) and utilizing the fact that h is compact and S˛.t; 0/
is strongly continuous for t � 0, we have

�.¹S˛.t; 0/.y0 � g.yn//º
1
nD1/ D 0:

We proceed to show that

�

�²Z t

0

P˛.t; s/fn.s/ds

³1
nD1

�
D 0:
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Given 0 < "0 < 1, we find that

�.¹znº
1
nD1/ � 2M sup

t2J

Z t

0

.t � s/˛�1k.s/�.¹yn.s/º
1
nD1/ds

� 2M sup
t2J

Z t

0

.t � s/˛�1k.s/ds�.¹ynº
1
nD1/

� 2M sup
t2J

�Z t

0

.t�s/˛�1jk.s/ � �.s/jdsC

Z t

0

.t�s/˛�1�.s/

�
�.¹ynº

1
nD1/

� 2M

�
"0 C

K�T �˛

˛

�
�.¹ynº

1
nD1/:

Since 2M."0 C
K�.T �/˛

˛
/ < 1 and �.¹znº1nD1/ � �.¹ynº

1
nD1/, it follows that �.¹znº1nD1/

D 0.
Next, we establish that modC .¹znº1nD1/ D 0, which confirms that the set B possesses

the property of equicontinuity. For any 0 � t1 < t2 � T and n � 1, we have

kzn.t2/ � zn.t1/k � k.S˛.t2; 0/ � S˛.t1; 0//.y0 � g.yn//k C

Z t2

t1

kP˛.t2; �/fn.�/kd�

C

Z t1

0

k.P˛.t2; �/ � P˛.t1; �//fn.�/kd�

� I1 C I2 C I3:

As t2 approaches t1, it is clear that I1 tends to zero. Also, as t2 ! t1, we getZ t2

t1

kP˛.t; s/k˛.s/�.r/ds �M

Z t2

t1

.t2 � t1/
˛�1˛.s/ds�.r/

�M�.r/

�
p � 1

˛p � 1

� p�1
p

k˛kp.t2 � t1/
˛� 1p ! 0:

For the term I3, by choosing a sufficiently small ı > 0, we get

I3 D

Z t1

0

k.P˛.t2; �/ � P˛.t1; �//fn.�/kd�

� sup
�2Œ0;t1�ı�

kP˛.t2; �/ � P˛.t1; �/kL

Z t1�ı

0

�.r/˛.�/d�

C 2M

Z t1

t1�ı

.t1 � �/
˛�1˛.�/d��.r/

� �.r/.t1 � ı/
p�1
p k˛kp sup

�2Œ0;t1�ı�

kP˛.t2; �/ � P˛.t1; �/kL

C 2M�.r/

�
p � 1

˛p � 1

� p�1
p

k˛kpı
˛� 1p ! 0; as t2 ! t1 and ı ! 0:

Consequently, we conclude that modC .¹znº1nD1/ D 0.
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Step 3. For any y 2M, the set K.y/ is compact and convex.
Indeed, take any z1; z2 2K.y/ for each given y 2M. Then, there exist f1;f2 2 SG .y/

such that, for i 2 ¹1; 2º,

zi .t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; �/fi .�/d�:

For any � 2 Œ0; 1� and t 2 J ,

�z1.t/C .1 � �/z2.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; �/.�f1 C .1 � �/f2/.�/d�:

Applying Proposition 3.2, we deduce that �f1 C .1 � �/f2 2 SG .y/, and therefore,

�z1 C .1 � �/z2 2K.y/:

Next, we demonstrate that, given any sequence ¹fnº in SG .y/ with y 2M, and under
the assumptions .H3/ and .H4/, the following inequalities hold:

kfnkp � �.r/k˛.�/kp;

�.¹fn.t/º/ � k.t/�.y.t// D 0 for a.e. t 2 Œ0; T ��:

It follows that ¹fnº � Lp.J;Y/ is semicompact, and the condition .S1/ is obvious for the
operator

‰ W Lp.Œ0; T ��;Y/! C.Œ0; T ��;Y/;

f 7! ‰.f /;

where

‰.f /.t/ D

Z t

0

P˛.t; s/f .s/ds; c0 DM

�
p � 1

˛p � 1

� p�1
p

.T �/
˛p�1
p ;

and c0 is the constant in condition .S1/. Then, fn*f0 implies‰.fn/!‰.f0/. We also
show that the condition .S2/ is satisfied. Indeed, let a sequence ¹fnº �Lp.Œ0;T ��;Y/ and
satisfy that ¹fn.t/º � S for a.e. t 2 Œ0; T ��, where S � Y is compact. Define

¹fn.t/ W t 2 Œ0; T
��º � S [ A;

where A satisfies �.¹t W fn.t/ 2 A; n � 1º/ D 0. It follows that

�.¹‰.fn.t//º/ �

Z t

0

.t � s/˛�1�.¹fn.s/º/ds

D

Z
J1

.t � s/˛�1�.¹fn.s/º/ds C

Z
J2

.t � s/˛�1�.¹fn.s/º/ds

�

Z
J1

.t � s/˛�1�.¹fn.s/º/ds C

Z
J2

.t � s/˛�1�.A/ds D 0;
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where we split the integral as the sum over sets J1 and J2 as defined before. Therefore,
¹‰.fn/º is relatively compact in C.Œ0; T �;Y/. Since ¹fnº is bounded in Lp.Œ0; T �/, we
can extract a subsequence, still denoted by ¹fnº, such that fn * f . Due to the continuity
of ‰, we also have ‰.fn/ * ‰.f /. Thus,

‰.fn/! ‰.f /

because ¹‰.fn/º is relatively compact. Hence, the condition .S2/ is met, and we conclude
that K.y/ is compact.

Step 4. The multi-operator K is u.s.c.
We first establish that the graph of K is closed. Consider sequences ¹ynº � M with

yn ! y and zn 2 K.yn/, where zn ! z. It is required to show that z 2 K.y/. For each
zn 2K.yn/, there exists a corresponding fn 2 SG .yn/ such that

zn.t/ D S˛.t; 0/.y0 � g.yn//C

Z t

0

P˛.t; s/fn.s/ds:

Given that the sequence ¹fnº is bounded in Lp.Œ0; T ��; Y/, there is a function f 2
Lp.Œ0; T ��; Y/ so that fn * f and f 2 SG .y/ by virtue of the upper semicontinuous
property. Moreover, since yn ! y in C.Œ0; T ��;Y/ as n!1, we have

�.¹fn.t/º/ � k.t/�.¹yn.t/º/ D 0 for a.e. t 2 Œ0; T ��:

The above implies that ¹fnº is semicompact in Lp.Œ0; T ��; Y/ and ensures the relative
compactness of ¹‰.fn/º, where ‰ is defined by

‰.f /.t/ D

Z t

0

P˛.t; s/f .s/ds for f 2 Lp.Œ0; T ��;Y/:

The convergence zn.t/! z.t/ for a.e. t 2 Œ0; T �� is given by

z.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; s/f .s/ds:

We proceed to verify that K is a quasicompact multivalued map. Given a compact
subset D � Lp.Œ0; T ��;Y/, it is shown that the set K.D/ � C.Œ0; T ��;Y/ is relatively
compact. For an arbitrary element zn 2 K.D/, similar arguments infer the relative com-
pactness of the image set ¹K.fn/º in C.Œ0; T ��;Y/, thus guaranteeing the convergence of
sequence ¹ynº in C.Œ0; T ��;Y/ and confirming that the map K is upper semicontinuous.

Therefore, by invoking Theorem 2.12, the solution set of inclusion (1) comprises a
nonempty compact subset of C.Œ0; T �;Y/. This completes the proof.

We consider the following conditions.

(H5) There exist a constant p > 1
˛

and a function ˛.�/ 2 Lp.Œ0; T �;RC/ such that,
for a.e. s 2 Œ0; T �,

kG .s; x/k D sup¹kf k W f 2 G .s; x/º � ˛.s/.1C kxk/:
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(H6) There exists a function k.�/ 2 Lp.Œ0; T �;RC/ such that, for any bounded set
D � C.Œ0; T �;Y/ and for a.e. s 2 Œ0; T �,

�.f .s;D// � k.s/�.D/:

(H7) There exists r > 0 such that the equation

Mky0k CMNg1r
ı
CMNg2 CMt

˛p�1
p�1 k˛kp CMt

˛p�1
p�1 r � r

has a positive solution T0.

Theorem 3.4. Given that conditions .H0/–.H2/ and .H5/–.H7/ hold, the solution set of
inclusion (1) is a nonempty compact subset of C.Œ0; T0�;Y/. In particular, this conclusion
holds for the function g D 0 in (1).

Proof. Given the assumptions, Proposition 3.2 is immediately satisfied. Considering the
multi-operator (5) and following the argument of Theorem 3.3, it suffices to show that
the operator K maps a bounded closed convex set to another such set and that K is �-
condensing.

Let us define S0 as the set ¹y 2 C.Œ0; T0�;Y/ W kykC � rº. For any y 2 S0, one can
find z 2K.y/ satisfying

z.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; s/f .s/ds; t 2 Œ0; T0�;

where f 2 SG .y/. By hypothesis .H7/,

kz.t/k �Mky0k CMNg1r
ı
CMNg2 CMT

˛p�1
p�1

0 kf kp CMT
˛p�1
p�1

0 r � r:

Therefore, kzkC � r , implying that K.S0/ � S0.
Let S1 D coK.S0/. Since S1 is a subset of C.Œ0; T0�;Y/, it is bounded, closed, and

convex. Employing the previous arguments, for any y 2S1 with y 2K.y/ and f 2SG .y/,
we obtain

y.t/ D S˛.t; 0/.y0 � g.y//C

Z t

0

P˛.t; s/f .s/ds; t 2 Œ0; T0�;

and confirm that ky.t/k � r . Hence, K.S1/ � S1 and S1 � S0. Let us define a sequence
of sets in the following way. For n � 1, we define SnC1 D co K.Sn/: We claim that,
by induction, the sequence ¹Snº1nD1 has the following properties: for each n � 1, the set
Sn � C.Œ0; T0�;Y/ is bounded, convex, and closed. Moreover, the sequence is decreasing
in the sense that S1 � S2 � � � � � Sn. We then consider the intersection

S D

1\
nD1

Sn:



Y. Z. Yang and Y. Zhou 476

It is straightforward to conclude that S is a nonempty, bounded, and closed subset of
C.Œ0; T0�;Y/ with the property that K.S/ � S .

Next, we aim to establish that the operator K is �-condensing. Assume that we have
D � S for which

�.D/ � �.K.D//: (6)

Suppose, contrarily to (6), that, for any D � S ,

�.D/ > �.K.D//;

which would imply that K is indeed �-condensing.
To proceed with the proof, let ¹znº1nD1 � K.D/ be an arbitrary sequence. Consider

the expression

�.¹znº
1
nD1/ D max

®
sup

t2Œ0;T0�

e�Lt�.¹zn.t/º
1
nD1/;modC .¹znº

1
nD1/

¯
;

where ¹zn.t/º is given by the relation

zn.t/ D S˛.t; 0/.y0 � g.yn//C

Z t

0

P˛.t; s/fn.s/ds;

with fn 2 SG .yn/ and ¹ynº � D for n � 1. We pick a constant L > 0 such that

M sup
t2Œ0;T0�

Z t

0

e
�L

p
p�1 .t�s/.t � s/

˛p�p
p�1 dskkkp <

1

2
:

Thus, we obtain

sup
t2Œ0;T0�

e�Lt�.¹zn.t/º
1
nD1/

� 2M sup
t2Œ0;T0�

e�Lt

Z t

0

.t � s/˛�1k.s/�.¹yn.s/º
1
nD1/ds

� 2Mkkkp sup
t2Œ0;T0�

Z t

0

e
�L

p
p�1 .t��/.t � �/

˛p�p
p�1 d� sup

�2Œ0;T0�

e�L��.¹ynº
1
nD1/:

Subsequently, similarly to Step 2 in Theorem 3.3, we obtain modC .¹znº
1
nD1/ D 0. Hence,

from the inequality (6), it follows that

sup
t2Œ0;T0�

e�Lt�.¹zn.t/º
1
nD1/ � sup

t2Œ0;T0�

e�Lt�.¹yn.t/º
1
nD1/:

Therefore, we conclude that �.¹zn.t/º/ D 0, confirming that the multivalued operator K

is �-condensing. By an application of Theorem 2.12, we confirm that the solution set
of the inclusion under consideration is a nonempty compact subset of C.Œ0; T0�;Y/. The
proof is now complete.
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4. Topological properties

We now proceed to consider a space Y, assumed reflexive within the Banach context,
assigning g D 0. This simplification transforms equation (1) into´

CD˛
t y.t/ � A.t/y.t/C G .t; y.t//; t 2 Œ0; T �;

y.0/ D y0:
(7)

We ascertain the existence of a compact solution setˆ.y0/ for equation (7), establishing it
as a compactRı -set which is nonempty. Consistent with Theorem 3.4,ˆ.y0/ also belongs
to the continuous function space C.Œ0; T0�;Y/, guaranteeing nonemptiness and compact-
ness. For s 2 Œ0; a/, where a > 0 is given, the following integral equation is examined:

z.t/ D �.t/C

Z t

s

P˛.t; �/f .�; z.�//d�; t 2 Œs; a�; (8)

with P˛.t; �/ as the operator function delineated in Definition 2.9.
Primarily, contingent on compliance of the nonlinear terms with the stipulated non-

compactness criteria, the following lemma is established, pivotal for subsequent con-
tractibility affirmation of the solution set.

Lemma 4.1. Let p > 1
˛

. Consider a singular mapping f W Œ0; a� � Y ! Y, and for every
t 2 Œ0; a�, the operator A.t/ is the generator of an analytic semigroup Tt .s/ with s � 0.
Assume that there exists a function h.�/ 2 Lp.Œ0; a�;Y/ such that, for every subset B �
C.Œ0; a�;Y/, it holds that �.f .t;B// � h.t/�.B/. Moreover, the following conditions are
satisfied:

(i) Given any compact set K � Y, there exist ı > 0 and a function

LK.�/ 2 L
p.Œs; a�IRC/

such that, for almost every t 2 Œs; a� and all z1; z2 2 Bı.K/, we have

kf .t; z1/ � f .t; z2/k � LK.t/kz1 � z2k:

(ii) The inequality kf .t;z/k� r.t/.d Ckzk/ holds for almost every t 2 Œs;a�, where
r.�/ 2 Lp.Œs; a�;RC/, z 2 Y, and d is a fixed constant.

Under these assumptions, the integral equation (8) has a unique solution that depends
continuously on the initial function  .

Proof. The proof proceeds in the following steps.

Step 1. Fix a function  .�/ 2 C.Œs; a�;Y/.
Consider the set

Q. ; �/ D ¹z 2 C.Œs; a�;Y/; max
�2Œs;��

kz.�/ �  .�/k � �º;
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where � > 0 is a constant chosen such that

M

�
p � 1

˛p � 1

� p�1
p

.� � s/
˛� 1p kr.�/kp.d C � C max

�2Œs;��
k .�/k/ � �:

Define the operator F by

F .z/.t/ D  .t/C

Z t

s

P˛.t; �/f .�; z.�//d�;

which maps Q. ; �/ into itself. Mimicking the arguments from Step 2 in Theorem 3.3
and using conditions (i) and (ii), we conclude that F is continuous and condensing. Thus,
the fixed point of F yields the local solution to equation (8), denoted by z.

Using conditions (i) and (ii) and noting that

kF .z1/.t/ � F .z2/.t/k
p
p�1 � N

Z t

s

.t � �/
˛p�p
p�1 kz1.�/ � z2.�/k

p
p�1 d�;

where
N D .MkLK.�/k/

p
p�1 I

uniqueness is also established by a Grönwall-type inequality.

Step 2. Define the extension operator ˆ.k; z/.�/ by

ˆ.k; z/.�/ D

´
z.�/; � 2 Œs; k�;

z.k/; � 2 Œk; a�;

which maps C.Œs; a�;Y/� Œs; a� onto itself. Letˆ.�; z/.�/D z�.�/ belong to C.Œs; a�;Y/�

Œs; a� and set
A D ¹k 2 Œs; a� W zk D ˆ.k;F .zk//º:

One obtains A ¤ ; as � 2 A, and for t 2 A, the interval Œs; t � is contained within A.
Let k0 D supA. Considering an increasing sequence ¹knº converging to k0, we assert

k0 2 A. In fact, for m � n and by the definition of ˆ, we have

ˆ.km; z
km/ D ˆ.km;F .z

km//; ˆ.km; z
kn/ D ˆ.km;F .z

kn// on Œs; km�:

Additionally, we arrive at

kzkm.k0/ � z
kn.k0/k D kz

km.km/ � z
kn.kn/k:

Following the method used in Step 2 of Theorem 3.4 and the continuity of .�/, we deduce
that

lim
n;m!1

kzkm.k0/ � z
kn.k0/k D 0;
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indicating that ¹zkm.k0/º is a Cauchy sequence. Define

zk0.�/ D

´
zkn.�/; � 2 Œs; kn�;

limn!1 z
kn.k0/; � 2 Œk0; a�;

and as zk0.�/ D F .zk0/.�/ for � 2 Œs; k0/, continuity implies that zk0 is also continuous,
leading to

zk0.k0/ D lim
n!1

. .kn/C

Z kn

s

P˛.kn; �/f .�; z
kn.�//d�/

D  .k0/C

Z k0

s

P˛.k0; �/f .�; z
k0.�//d�;

which confirms that zk0 D ˆ.k0; zk0/ and k0 2 A.

Step 3. We claim that k0 D a. Suppose for contradiction that k0 < a; we then define

 1.t/ D  .t/C

Z k0

s

P˛.t; �/f .�; z
k0.�//d�; t 2 Œk0; a�;

and, similar to the proof given above, there exists �1 > 0 such that

z.t/ D  1.t/C

Z t

k0

P˛.t; �/g.�; z.�//d�

admits a solution z 2 C.Œk0; k0 C �1�;Y/. Define

zk0C�1.�/ D

8̂̂<̂
:̂
zk0.�/; � 2 Œs; k0�;

z.�/; � 2 Œk0; k0 C �1�;

z.k0 C �1/; � 2 Œk0 C �1; a�;

which implies that zk0C�1 2 C.Œs; a�; X/. Consequently,

zk0C�1.t/ D  .t/C

Z t

s

P˛.t; �/f .�; z
k0C�1.�//d�; t 2 Œs; k0 C �1�;

and hence, zk0C�1.�/ D ˆ.k0 C �1; F .z
k0C�1//. This means that k0 C �1 2 A, which

contradicts the definition of k0.

Step 4. Consider the solution sequence ¹znº corresponding to the sequence of perturbation
functions ¹ nº, where  n !  in C.Œs; a�;Y/. Specifically,

zn.t/ D  n.t/C

Z t

s

P˛.t; �/f .�; zn.�//d�:

By an argument similar to that in Theorem 3.4, we deduce that modc.¹znº/ D 0 and
the sequence ¹znº is contained within a relatively compact subset of C.Œs; a�; Y/. Con-
sequently, there exists a convergent subsequence, which we continue to denote by ¹znº,
such that as n!1 the functions zn.�/ converge to a function z.�/. This completes the
proof.
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Next, we demonstrate that the set Rı constitutes all solutions to equation (7). We
introduce an auxiliary approximation lemma, slightly adapted from the versions in [10,
12], omitting the proofs for conciseness.

Lemma 4.2. Assume that hypotheses .H1/, .H2/, and .H5/ hold. Then, there exists a
sequence ¹Gnºn2N from Œ0; T0� � Y to Pcl;cv.Y/ satisfying the following.

(i) For each s 2 Œ0; T0� and y 2 Y, we have the inclusion chain

G .s; y/ � GnC1.s; y/ � Gn.s; y/ � co.G .s; B31�n.y/// for all n � 1:

(ii) The norm of Gn.s; y/ is bounded by kGn.s; y/k � ˛.s/.2 C kyk/ for almost
every s 2 Œ0; T0� and all y 2 Y, where n � 1.

(iii) There exists a null set J � Œ0; T0� in terms of the Lebesgue measure #.�/ such
that, for any e 2 Y�, ı > 0, and .s; y/ 2 Œ0; T0� n J � Y, one can find a constant
N.ı; e/ > 0 ensuring that

e.Gn.t; x// � e.G .t; x//C .�ı; ı/ for all n � N:

(iv) Gn.s; �/ is a continuous mapping from Y to Pcl;cv.Y/ for almost every t 2 Œ0; T0�
and all n � 1.

(v) Each Gn admits a selection zn such that zn.�; y/ is measurable for any fixed
y 2 Y, with zn.s; y/ 2 Gn.s; y/ for almost every s 2 Œ0; T0�. Additionally, for
every compact subset D � Y, there exist a constant CU > 0 and " > 0 such that
U D D C B".0/ and for almost every s 2 Œ0; T0�, any y1; y2 2 U satisfy

kzn.s; y1/ � zn.s; y2/k � CU˛.s/ky1 � y2k:

(vi) If Y is reflexive, then Gn satisfies condition .H2/ for each n � 1.

Thus, we have the following theorem.

Theorem 4.3. Let y0 be given. If the conditions of Theorem 3.4 hold, then the set ˆ.y0/
is a compact Rı set.

Proof. To establish the compactness of ˆ.y0/, consider the fractional evolution inclusion´
CD˛

t y.t/ 2 A.t/y.t/C Gn.t; y.t//; t 2 Œ0; T0�;

y.0/ D y0;
(9)

where ˆn.y0/ denotes the solution set of inclusion (9).

Step 1. Let ¹ynº be a sequence such that yn 2 ˆn.y0/ for all n � 1. Since Y is a reflexive
Banach space, each yn.t/ for t 2 Œ0; T0� satisfies

yn.t/ D S˛.t; 0/y0 C

Z t

0

P˛.t; s/zn.s/ds;
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where zn.s/ 2 G .s; yn.s//. Invoking property (i) from Lemma 4.2, for any N � 1, we
establish

�.¹zn.s/ºn�1/ D �.¹zn.s/ºn�N /

� �.G .s; B.¹yn.s/ºn�N ; 3
1�N ///

� k.s/�.B.¹yn.s/ºn�N ; 3
1�N //

� k.s/.�.¹yn.s/ºn�N /C 3
1�N /;

and consequently,

�.¹yn.t/ºn�N /
p
p�1 � .2Mkkkp/

p
p�1

Z t

0

.t � s/
˛p�p
p�1 .�.¹yn.s/ºn�N //

p
p�1 ds:

Applying Grönwall’s inequality leads to �.¹yn.t/ºn�N / D 0 for all t 2 Œ0; T0�. Theo-
rem 3.3 provides the equicontinuity of ¹ynº. Thereupon, a subsequence ¹ynk º converges,
denoted as ynk ! y.

Simultaneously, having �.¹znºn�N / D 0 and letting

zn.s/! z.s/ 2 Lp.Œ0; T0�;Y/ for s 2 Œ0; t �

yield

y.t/ D S˛.t; 0/y0 C

Z t

0

P˛.t; s/z.s/ds:

Finally, since Gn adheres to condition .H2/, it follows that

z.t/ 2 G .t; y.t// � Gn.t; y.t//;

confirming the compactness of ˆn.y0/.

Step 2. We aim to demonstrate that ˆ.y0/ D
T1
nD1ˆ

n.y0/.
Firstly, for any n � 1, it is evident that ˆ.y0/ � ˆn.y0/ since

G .t; y/ � GnC1.t; y/ � Gn.t; y/:

Therefore,

ˆ.y0/ �

1\
nD1

ˆn.y0/:

Conversely, given y 2
T1
nD1ˆ

n.y0/, there exists a sequence ¹znº � Lp.Œ0; T0�;Y/ such
that

kzn.t/k � ˛.t/.2C kyk/ for a.e. t 2 Œ0; T0�;

where zn 2 SGn.y/ and

y.t/ D S˛.t; 0/y0 C

Z t

0

P˛.t; s/zn.s/ds:
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Employing the Banach–Alaoglu theorem results in the existence of a subsequence,
still denoted by ¹znº, with zn * z in Lp.Œ0; T0�; Y/. By Mazur’s theorem, we select a
sequence ezn 2 co¹zk W k � nº for n � 1 such that ezn ! z in Lp.Œ0; T0�;Y/, where

ezn D knX
iD0

an;iznCi ; an;i � 0; and
knX
iD0

an;i D 1:

Therefore, for almost every t 2 Œ0; T0�, ezn.t/! z.t/ and zn.t/ 2 Gn.t; y.t// for all n � 1.
For the set

A D ¹t 2 Œ0; T0�W ezn.t/! z.t/ and 8n � 1; zn.t/ 2 Gn.t; y.t//º;

Lemma 4.2 (iii) implies that, for each t 2 .Œ0; T0� n J / \ A and each e 2 Y�,

e.ezn.t// 2 co¹e.zk.t//W k � nº � e ı Gn.t; y.t// � e ı G .t; y.t//C .�"; "/;

which implies e.z.t// 2 e ı G .t; y.t// for each t 2 .Œ0; T0� n J /\A. Since F has convex
and closed values, we conclude that z.t/ 2 G .t; y.t// for each t 2 .Œ0; T0� n J / \ A,
implying that z 2 SG .y/. Noting that y 2

T1
nD1 ˆ

n.y0/, and that for each n � 1, zn 2
SGn.y/, it follows that ¹znº is semicompact in Lp.Œ0; T0�;Y/. By Lemma 2.8, we have

y.t/ D S˛.t; 0/y0 C

Z t

0

P˛.t; s/z.s/ds 2 ˆ.y0/:

Step 3. For every n � 1, we prove that ˆn.y0/ is a contractible set.
Consider any y 2 ˆn.y0/ and the following integral equation:

b.t/ D S˛.t; 0/y0 C

Z ıT0

0

P˛.t; s/z
y.s/ds C

Z t

ıT0

P˛.t; s/fn.s; z.s//ds; (10)

where zy 2 SelGn.y/ and fn is the measurable selection from Gn satisfying property (v)
in Lemma 4.2. By Lemma 4.1, equation (10) has a unique solution on ŒıT0; T0�, denoted
by b.t; ıT0/.

We can now define a homotopy ˇW Œ0; 1� �ˆn.y0/! ˆn.y0/ by

ˇ.ı; y/.t/ D

´
y.t/; t 2 Œ0; ıT0�;

b.t; ıT0/; t 2 ŒıT0; T0�;

for each .ı; y/ 2 Œ0; 1� � ˆn.y0/. The mapping ˇ.�/ is well defined, and it is clear that
ˇ.0; y/ D y0, ˇ.1; y/ D y 2 ˆn.y0/. Hence, we deduce that ˆ.y0/ D

T1
nD1ˆ

n.y0/ is a
nonempty compact Rı -set. The proof is now complete.
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