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On the partial regularity of weak
solutions for the magnetohydrodynamics system in R*

Zhongbao Zuo

Abstract. In this paper, the partial regularity of the weak solutions to the magnetohydrodynamics
(MHD) system in R* is studied. In order to tackle the lack of compactness arising in the spatially
high-dimensional setting, inspired by Wu [Arch. Rational Mech. Anal. 239 (2021), 1771-1808],
we use the defect measures and prove the existence of partially regular weak solutions (satisfying
certain local energy inequality) to the 4-dimensional MHD system. As an application, we obtain
that the 2-dimensional Hausdorff dimension of singular sets of these weak solutions is finite.

1. Introduction

In this paper, we study partial regularity results for the 4D incompressible MHD equations,
which are given by the following system:

osu — Au+u-Vu—B-VB + VII =0,
0;B—AB+4+u-VB—B-Vu =0, in R* x [0, 00), (1.1
divu =divB = 0.

Here, the unknown variable u denotes fluid velocity field, B represents the magnetic
field,and IT = 7w + %Bz signifies the total pressure, respectively. The MHD system (1.1)
plays a crucial role in the dynamics of electrically conducting fluids, such as plasmas
(see [2], for example). Because of the nonlinear interaction between the fluid velocity
field and the magnetic field, the MHD system can accommodate much richer phenomena
than the Navier—Stokes system. One important example is that the magnetic field can
actually stabilize the fluid motion [1]. There have been extensive studies on various topics
concerning the MHD system (see, e.g., [4,6,9, 12—-14, 19, 28] and references therein).
The global weak solutions and the local strong solutions to the 3D MHD system were
constructed by Duvaut and Lions [9] and Sermange and Teman [24]. Meanwhile, as in the
classical incompressible Navier—Stokes equations (see [3,21,22,26,27]), partial regularity
of suitable weak solutions to the 3D MHD system was investigated by He and Xin in [13].
Wang and Zhang [28] removed the magnetic field hypothesis of the regularity criteria
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for the suitable weak solutions to the 3D MHD system. The results obtained in [13, 28]
indicate that the velocity field plays a more dominant role than the magnetic field does
on the regularity of solutions to the MHD system. Recently, by introducing the notion of
dissipative solutions, Chamorro and He [5] weakened the hypothesis on the pressure and
obtained a generalization of C-K-N type theorem for weak solutions of MHD system (1.1).

The partial regularity of weak solutions satisfying the local energy inequality was
originated from Scheffer [21-23] for the Navier—Stokes equations. And the author studied
the Hausdorff measure of potential singular points set of the solutions to the 3D and 4D
Navier—Stokes equations. Later, Caffarelli, Kohn, and Nirenberg [3] proved that the one-
dimensional Hausdorff measure of potential singular set of suitable weak solutions to
the Navier—Stokes equations is zero. Since then, there have been extensive studies on the
partial regularity of solutions to the Navier—Stokes equations, MHD equations, and other
hydrodynamic models; see [15—-17,27], for example. For the high-dimensional Navier—
Stokes equations, Dong and Du [7] proved that the 2-dimensional Hausdorff measure of
the set of singular points at the first blow-up time is zero. As in [3] for the dimensional
analysis of the Navier—Stokes equations, time is equivalent to two space dimensions.
Later, Dong and Strain [8] proved the partial regularity theory of suitable weak solu-
tions of the 6D stationary Navier—Stokes equations. Wang and Wu [29] gave a unified
proof on the results of [3,7, 8]. Recently, by introducing the defect measure, Wu [30,31]
constructed partially regular weak solutions which satisfy local energy inequalities to
the non-stationary incompressible Navier—Stokes equations in R* and stationary Navier—
Stokes equations in R®, whose singular sets have a local finite 2-dimensional parabolic
Hausdorff measure. In context of MHD equations in high-dimensional space, Han and
He [11] studied the 4-dimensional non-stationary MHD equations (1.1) interior partial
regularity. Recently, Gu [10] and Liu—Wang [18] also obtained some boundary regular-
ity criteria for the 4D non-stationary MHD equations and 6D stationary MHD equations.
Motivated by [3, 30] for Navier—Stokes equations, we obtained the existence of partially
regular weak solutions for the 4D MHD equations and proved that the 2-dimensional
parabolic Hausdorff measure of singular set is finite. Before presenting our main result,
we first give the definition of parabolic Hausdorff dimension.

Definition 1.1. Givenaset D C R* x R, for a fixed positive real number s, s-dimensional
parabolic Hausdorff measure is defined as

H’(D) = lim H3(D),
(D) s, 5(D)
where

o0
H5(D) =inf{zr;|D c | 9n(z0). 0<ri <8. 2 = (x0.10) € R* XR}.

i=1 ieN*t

Here, O, (zo) is centered parabolic cylinder defined by

2 2
0r(z0) := Br(xo) X (lo — %,lo + %)
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The main result of the present paper is the following statement.

Theorem 1.1. For a fixed time T > 0, there exists a weak solution set (u, B, I1, A, w)
for the non-stationary MHD system (1.1) in R* x [0, T], which satisfies the local energy
inequalities (2.11) and (2.12). Moreover, the 2-dimensional Hausdorff dimension of sin-
gular set S of weak solutions to (1.1) is finite.

2. Existence of weak solutions set and local energy inequalities

In order to construct generalized weak solutions to the non-stationary MHD system (1.1),
we consider the following regularized MHD system:

dpur — Aug + [(rr * uk) - Vuk — [(xx * Bi) - V]Br + VII = 0,

divuy = div By = 0,

d¢ B — ABi + [(xx * uic) - V1B — [(Xk * Bie) - V]ug =0,

ug(-,0) = uo, Bx(-,0) = By.

2.1

Here, {xx}xen C C°(R*) denotes the standard mollifiers.

Lemma 2.1. For the regularized non-stationary MHD system (2.1), we have a sequence
{(ug, B, M) }ken C L®L2 N L2HYR* x [0, T]) x L®L2 N L2HY(R* x [0, T]) x
L3 (R* x [0, T)) such that (uy, Bx, I1) is a weak solution to the system (2.1). Moreover,
(1) {ug}rxen and {By}ren are uniformly bounded in L°L2 N L2H(R* x [0, T));
(2) {g}keN is uniformly bounded in L3 (R* x [0, T));
(3) {0:ur}ken and {0; By }xen are uniformly bounded in L}H)ZIIOC(R“ x [0, T).
Therefore, there exists a triple (u, B, I1) such that
up — u, By > B weakly in L?H}(R* x [0, T]),
ug — u, By — B weakly-*in L L2(R* x [0, T]), (2.2)
Iy — 11 weakly in L%(]R4 x [0, T]).
Additionally, for any bounded smooth function ¢ with bounded derivatives, this sequence
satisfies the following local energy inequality:

t
/ (ux @ + B (t)dx + / / (|Vug > + |V By |*)pdxds
Re o Jre
! t
2 2 5 PP
< [ G 1B + agionas + [ [ Gl + 1B Dparas
t ¢ B
+2/0 /R4 Hk(uk-V)qbdxds—/o /R‘t(Bk'Vﬁﬁ)(Mk'Bk)dxds

+ [ (ol + B 0, 3

where Uy 1= X * U, Ek ‘= Yk * By.
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Proof. The existence of weak solutions u and B can be obtained by a standard Galerkin
method (see [20, Theorems 4.4 and 14.1], for example). The existence of I1 can be proved
by Calderon—Zygmund theory. It is noteworthy that u; ¢ and By ¢ are admissible test func-
tions in the regularized system (2.1). Multiplying equation (2.1); by u¢, integrating the
resulting equation over R*, and using integration by parts and incompressible conditions,
we get that

1d
2dr Jr
1

1
= -/ lug|?(0; + Ap)dx + -/ g |2 tig -v¢dx+/ Muy - Vdx
2 Jr4 2 Jr4 R4

|uk|2¢dx+/ |Vug|*pdx
4 ]R4

—fR4(§k'V)uk-Bk¢ + (By - Vo) (uy. - By)dx. 2.4

Next, multiplying equation (2.1); by By ¢, integrating the resulting equation over R*, and
applying integration by parts and incompressible conditions again, we obtain that

1d
2dt Jre
1 1 . ~
= -/ |Be|? (9, + Ap)dx + —/ | B |*iix - Vopdx +/ (By - V)uy - Brgpdx.
R4 2 R4 R4

2
2.5)

BePgds + [ (VBPgds

Hence, by adding (2.4) and (2.5) and after integrating over [0,t], we yield the local energy
inequality (2.3). For the uniform boundedness of {d,uy }xen and {0; B }ren, applying
duality theory, we know that, for almost every ¢ € [0, T'], the weak formulations (2.1) for
Uy and By are equivalent to

(8t“k»é§)H;1xH)}

- —/ VupVE + (iig - Vyugé — (By - V)Bgédx, VE € H! withdivE = 0
R4
and
(0: B, M sy = —/R4 VBV + (il - V)Bien — (B - Vugndx, Ve HY.

For every § € C2°(Q2) with @ CC R*, the Holder inequality and the Sobolev embedding
inequality imply that

/w Vur VE + (iig - Vyugé — (By - V) BeEdx

< IVurll2 IVEN Lz + (IVurllzz luelis + 1V Billpz | BellLa) 11l L4
< Cllluellzyy + luellgy + 1 Bellz + 1 Bell g 16z
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Integrating in time yields that {0z 1 }xen are uniformly bounded in L H_L (R*x[0, 7).

x,loc
Applying the same procedure, we can obtain the uniform boundedness of {d; B }ren in
L}H;}OC(R“ x [0, T1]). ]

Next, we prove that certain measures in the limit are relatively compact. We recall that
a collection of measures {/;}ica on R¥ is called tight if, for any & > 0, there exists a
compact set 2, C RY such that 1; (R¥\2,) < e foranyi € A.

Lemma 2.2. Let the assumptions be as in Lemma 2.1; then, {(|Vuy|*+|VBy|?)dxdt }ren,
{(lug|? + | Be|?)dxdt b ken, and {(Jug|® + | Bx|?)dxdt }xen are tight in the sense of mea-
sures.

Proof. For fixed r > 0, we consider a smooth cutoff function & € C>®(R*) such that
0<£<1, &l =0, §|gs\ B, = 1, satisfying property |VE|? +|V2E| < Cr~2. Testing the
regularity non-stationary MHD system (2.1); with ux& and (2.1)5 with By £, respectively,
we get

sup / (ux O + |Be()2)edx — [ (uol? + | BoP)edx
t R4 R4
T
+/ /(|vuk|2+|VBk|2)gdxdz
0 R4
T T
s/ /(|uk|2+|Bk|2>|A5|dxdt+/ /<|uk|2+|Bk|2)|ak||V5|dxdz
0 R4 0 R4

T T
+2/ / |Mgug||VE|dxde +/ [ | Br||VE||ug || By |dxdz.
0 R4 0 R4

According to the properties of test function and the Holder inequality, we have

sup f (ux@OP + |Be(0)?)dx — / (ol + | BoP)dx
R4\BZr R4\Br

t
T
+/ / (|Vug|* + |V Bg|?)dxdr
0 R4\ B>,
T
<Cr / / (el + | Bl?)dxdr
0 BZr\B
T
Lot / / (ul® + | Be )il dxdr
0 BZr\B

T T
+Crt / / |Txuy|dxdt + Cr! / / | B ||ux || B |dxdt
0 BZr\Br 0 BZr\Br

< Cr3Ts +Crt,

where we have used the fact that {uz }xen and { Bx }ren are uniformly bounded in L3 (R3x
[0,T]) and {I1}xeN is uniformly bounded in L: (R3 x [0,T]). Letting r be arbitrarily large
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implies the tightness of {(|Vug|? 4+ |V Bx |?)dxdt }xen and {(Jug ()| + | Bx ()|*)dx }ken
uniformly in ¢, which implies the tightness of {(|ux|> + | Bx|?)dxdt}xen. On the other
hand, applying Sobolev inequality, we have

T
//(|uk§|3+|3k$|3)dxdt
0 R4

T T
<l [ [ IVedPaxar + 1Bl [ [ 198 Paxa
0 R4 0 R4

T T
fcuuksuLng( [ vuepierasan [ [ uepivepaca)
! 0o JRr¢ o JRr4

T T
+C||Bks||LooLg( | [vseigpasa s [ f |Bk|2|VS|2dxdr)
! 0o JRr¢ o Jr4

T
< Cllnlumss + 1Beklzrn) [ [ (Ve + VBl

T 3
2.1
T Cllutllerz + I Bitler2)r 3T3( [ 4(|uk|3+|Bk|3>dxdr) |

Combining the tightness of {(|Vug|> + |V Bx|?)dxdt }xen With the uniform boundedness
of uy and By, in the natural energy space implies the tightness of {(|ux |3 +|Bx|?)dxdt }ren.
[

In order to obtain local energy inequalities for the weak limit (u, B, IT), we will pass
to the limit k — oo in the local energy inequalities (2.3).

Lemma 2.3. Given a bounded sequence {uy }xen,
{Bi}ken C LPLENLTH(R* x [0, T]),

let (u, B) be given by the limit in (2.2). Assume that uy converges to u and By converges to
B, respectively, in L} _(R* x [0, T]). Suppose that ux = (|Vug|* + |V Bg|?)dxdt — p,
vi = (Jug|® + |Be|?)dxdt — v weakly in the sense of measures, where . and v are
bounded nonnegative measures on the R* x [0, T|. Then, there exist nonnegative finite
measures A and w such that, for any n € C°(R* x [0, T)),

T T T
/ / nd;L:/ [ r;(|Vu|2+|VB|2)dxdt+/ / ndA, (2.6)
0 R4 0 R4 0 R4
T T T
/ / ndv:/ / n(|u|3+|B|3)dxdt+/ [ ndew. (2.7)
0 R4 0 R4 0 R4

Moreover, w < A, and for any open subdomain Q of R* x [0, T],

Q k—o00 Q
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In particular, the Radon—Nikodym derivative satisfies

do T
o = € limliminf(fug — vl e 1200, (xo.0)) + 1Bk = BllLgeL2(0, (xo.t00)):

2 2
where Q(xo,10) := Br(xo) x (to — 5,10 + 5).
Proof. Weletvy =up —u € Lf"Li N L%H;, Ar = By — B € L?"Li N L%H;, Com-
bining Simon compactness theory (see [25]) with Lemma 2.1 implies that

2
t,x?

vg = 0, Ax — 0 strongly in L locally in space,
vy = 0, Ay —> 0 weakly in L?H;,
vg — 0, Ay — 0 weakly-* in L°L2.
Defining A := (|Vvg|? + |V Ag|?)dxdt, we claim that {A; };crw is tight. Indeed, for any
compactness subset @ C R*, let D¢ := (R*\Q) x [0, T']. Then,
IVullLz(pey = IVukllLzpey + IVullL2(pe).
IVAkllL2pey = IVBillL2(pey + VBl L2(Dey-
Due to the weak convergence of {ix}ren, We know that {ux}ren is tight; hence,
IVugllz2(pey and ||V Akl 2(pey are arbitrarily small given Q large enough. Thus, we

can extract a weakly convergent subsequence with a limit denoted by A. For any n €
CX2(R* x [0, T]), we have

T T
/ / ndp = lim / / ndpk
0 R4 k—o0 Jo R4

T
= lim/ / n(|Vug|* + |V Bg|?)dxds
0 R4

k—o00

T
:/ / n(|Vul|* + |VB|?)dxdt
0 R4

T
+ 1imf / n(|Vor|> + |VAg|*)dxds
k—o0 Jo R4

T T
=/ / r](|Vu|2+|VB|2)dxdt+/ f ndA,
0 R4 0 R4

where we have used the fact that interaction term vanishes since uy — u and By — B
weakly in LZH}!(R* x [0, T]). Let

W = (|vk|3 + |Ak|3)dxdt —

weakly in the sense of measures. A similar process verifies (2.7). On the other hand, for
any ne C°(R*x[0,T)), using interpolation inequality and Sobolev embedding inequality,
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we have

T
//dew
0
= llm/ / In]3dowy

= lim/ / lven|® + |Agn|>dxds
R4

k—o00 0

T
=< liminf sup ([lvenllzz + I 4enllz) ||Uk'7||i§ + 1Akl 7 4dr

k=00 0<t<T

T
< Climint sup (lvenlzz + 14enl3) / L 19l + 19 Gt

k—oo o<t<T

T
< Climinf sup (Jvenlyg + [Aenlzg) [ [ 1019l + P9 AP

—00 0<t<T

T
< Climinf sup (Ivenlyg +IAunlz) [ [ P

k—oo o<t<T
Notice that, in the third inequality, the terms converge to zero when at least one derivative
hits 7. Using smooth functions to approximate the indicator function €2 yields the inequal-
ity (2.8). Hence, w is absolutely continuous with respect to A, and by Radon-Nikodym
theorem, we have

dw
e L'R* x [0, T]: A
e L'RY < [0, 4)
with, for any (xo, ) € R* x (0, T),
dw o
a(m to) = C lim liminf([vell e 120, ro.ton + 1B lLeL2 0 roton)- ™

Using the parabolic concentration-compactness framework in Lemma 2.3, we can
define the weak solution sets involving concentration measures.

Definition 2.1. (u,B,I1,A, w) is a weak solution set of the MHD system (1.1) if
(1) u, B, and IT are obtained as weak limits of the weak solutions {(uy, Bi, 1) }ken
of the regularized MHD system (2.1);
(2) A and w are obtained as weak limits of the measures in Lemma 2.3.
In order to obtain local energy inequalities for weak solution sets, we need the follow-

ing lemma, which shows that the concentration in |uIT|dxd¢ is localizable and comparable
to the concentration in |u|3dxdz.

Lemma 2.4. Assume that {(ug, By, Ilg)}xen are the solutions of the regularized sys-
tem (2.1) and (u, B, 1, A, w) is the corresponding weak solution set; then,

T T
limsup/ / Elug (M — y) —u(Il — p)|dxdr < C/ / Edw
0o Jr4 o Jr¢

k—o00

forany y € C®(R* x [0, T]) and y € R with ¢ > 0.
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Proof. According to the regularized system (2.1);, we see that IT satisfies Poisson equa-

tion formally:
—Amy = 0;0; (”k”k BkB])

Then, we localize the above equation with an arbitrary Lipschitz function ¥ € C%!(R#),
which yields

—~A(Tgy) = Yd;9; (Fhul — BLB]) — div(Ilx V) — VIIg - Vy
= 0,0, [W(ukuk BkB])] [(ukuk Bka)a V]
-9 (ukuk BkBJ)B Y —div(ITy V) — VIIg - Vyr
= 0;0; [W(ukuk BkB’)]
—0; [(ukuk BkB])B ¥ + M VY]
—9; (ukuk BkB’)B Y — VI - Vyr
= —ATl, — ATI; — ATTR. (2.9)

Similarly, we decompose ITy in a similar way. From the Calderon—Zygmund theory, we

get
Im@® =@l

< Cllyi ey ) =yt eyl O] 3+ Cly B Bl — ¢ B’ OB ()] 3

< Cly (@ (1) — it (1)) (uf, (1) — uf(r))an% + Cllyit ()l (1) — w O, 3
+ Clyw @0 = O 3 + v (B - B () (B} (1) = B, 3
+Clly B'())(B] (1) — BI)I 3 + CllyB’ (1)(Bi(1) — B’ O, 3

< CIY2 @) —w/ )3y + CIYa )6l (0) =/ )] 3
+ Clyw! @) =~ B ) 3+ w2 (Bl(0) ~ B (t)>||

+Clly B (1) (B (1) - B’(t))IIL% + CllyBY (1) (B () — Bi(l))llL%-

. j i3 j i3 . . .
Since w; — w weakly, |u,’€ —ul|2 and |B,£ — B7|2 are uniformly integrable with respect
3,73 35002 .
to |y|2|u*|2dxdt and |y |2|B?|2dxdt, respectively, we have

T
limsupf / ITIL — '3 dxds
k—o0 JO R4

T
§Climsup/ / |1/f|%(|uk—u|3+|Bk—B|3)dxdt
0o Jr¢

k—o00

T , _ . .
+Climsup/ / |1/f|%(|ﬁi(u,j€—u’)|%+|B’(B,£—B’)|%)dxdt
o Jre

k—o00



Z.Zuo 286

T
+Climsup/ / W3 (u’ @@ — )| + |BY (Bl — B)|3)dxd:
0 R4

k—o00

T 3
SC/ [ |[¥]2dw,
0o JR¢

where we have used the Vitali’s convergence theorem for the second and third lines:

I — 11

3
2
t

= | (=8) " [ div(uerf —uu) ) — (BB = BB,y + (M = VP 3

,X

< C||(ugu] —uu!)d;y — (B B] — BB)d;y + (I — MVyll 3

172

< CIVY (s, — w3 g+ BB = BBY) 3 g M) i)
l' L t -x

< ClIVY Lo (lux —ull | 24 +||Bk—B|| L Jr||Hk—H|| R

L3L)] L7 L]
Similarly,
Iz — 1 I3
tX
= CIVYlleo(lux —ull , 25 + [|Bx — B 24+||Hk_n|| 3 1)

L3 L3L} FLI!

Since forany f € LL2 N L?H}, with the help of interpolation inequality and Sobolev
inequality, we have

T
/ 1F@O 2 dr = / 7Ol 17O
0 L 0
3 1
2 2 2
<11, 1 ||f||ﬁ <A1, A1 A0

1
3 1 12
s||f||z%,x||f||z;qx( /0 111 ||f||L4dt)
2o !
<10 1FUGs 1F ez IV S
Hence, taking f = uy —u or f = By — B, we get that
limsup ||ug —u| . 24 =0, 11msup||Bk—B|| 2 =0.
k—o00 LILy! k—o0 7Ly
Combining Calderon—Zygmund theory, this yields
limsup || T — H|| = 0. (2.10)

3 1t
k—o0 x

Collecting (2.9)—(2.10), we know that

llmsup||(1'[k—l'[)1//||2 <11msup2||l'[k 1'[||2 //|1/f|2da)

k—o00 k—o00 =1
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Thus, applying Vitali’s convergence theorem and taking & = %, we get

T
limsup/ / Elug (M —y) —u(Il — y)|dxdt
0o JR*

k—o00

T T
< limsu ur||Ily — p|dxdt + lim su up — ul|Il — y|dxdz
p P p 14
0 JR4 0o JR4

k—o0 k—o0

T T
glimsup/ / $|uk—u||1'[k—p|dxdt+limsup/ / Elu||TTy — p|dxdt
0o JR* 0o JR*

k—o00 k—o00

T
< C/ tdw.
o Jre

Hence, we complete the proof of Lemma 2.4. |

Now, we can prove the following local energy inequalities.

Proposition 2.1. Let the assumptions be as in Lemma 2.1; then, for any nonnegative cut-
off functions n € C2°(R* x [0, T]) with n(-,0) = 0 and {n; }1<i<n C CX(R* x [0, T])with
n=Yi_1 N any functions {y; }1<i<n C L%([O, T],R) and B C L3([0, T]; R*), the fol-

lowing local energy inequalities hold:

lim sup sup /]R4(|Mk(l‘)|2 + [ Be(t)[*)n(t)dx

k—oo 1

T T
+/ / (|Vul® + |VB|2)ndxdt-|—/ / ndA
0o JR#4 0o JR4

T n r
’ i=170

n T n T
3
+3E / / |V77-|da)+2§ [ f | Vi ||IT — y;|2dxdt; (2.11)
i—170 JR l i=170 JR t l

lim sup sup /R4(|uk(t)|2 + | B (1) *)n(1)dx

k—oo 1

T T
+/ / (|Vu|? + |VB|?)ndxd: +/ / ndA
0o JR* o JR*

T T
5/ /(|u|2+IB|2)|3m+Anldxdt+/ /(|u|2+|B|2)<u«V)ndxdz
0 R4 0 R4

T T
+2/ [ (|u—,8|3+|B—ﬁ|3)|V17|dxdt+3/ / |Vy|dew
0 R4 0 R4

T
+ 2/ / I (u - V)ndxdr. (2.12)
o Jr4



Z.Zuo 288

Proof. Substituting the test function 7 defined above into the local energy inequality (2.3)
yields

t
[ Q@ + BeoPax+ [ [ 4Vl + 198y
R4 0 JR#
t t
5[ / (Iuk|2+IBklz)Iatn+Anldxdf+/ / (luxc|? + | By |*) (it - Vndxdr
0 JR4 0 JR4
t t
+ 2/ / Mg (ug - V)ndxde —/ / (Bx - Vn)(ug - By)dxdt. (2.13)
0 JR4 0 JR4
The convergence of the second term can be obtained by Lemma 2.2 and (2.6). Since

ur — u and By — B in L2(R* x [0, T]), then the convergence of the third term is straight-
forward. On the other hand, we note that

T
/ / i || Vnldxdt = ||g1 + g2135,
0 R4
where

gi(x.1) = /R uie(x = 3.0 2V OF = [V = y.0)])dy.
a0 = [ 6=y 0Vt - oy,

For g1, using Young’s inequality for convolution, we have

1 1
|V77(X,Z)|3 B |V77(x - yvt)|3 d%

lgillzs < o 4y

/ we(x — v, 1)
R4

L3
1 ~

= Cdi Inllc2llull s
1

= Cd¢ Inllczllurllzs.

where dj := diam(supp yx) — 0 when k — oo. For g5, using Young’s inequality for
convolution again, we have

1 1
lg2llzs = el Vnl3) * xillLs < llurl Vil s

Hence, combining the estimates of g; and g,, we have

T
lim sup/ / lug|?(iig - V)ndxdt
0 R4

k—o00

T T
<C limsup/ / lug)?|Vyldxdt + C limsup/ / liix |2 |V n|dxde
0o JR4 0o Jr4

k—o0 k—o00

T T
5/ [ |u|3|V77|dxdt+/ / |Vn|dw.
0o JR* 0o JR*



On the partial regularity of weak solutions for the magnetohydrodynamics system 289

Going through a similar process, we have

T
lim sup/ / (Br - V) (uy - Br)dxdt
0o JR4

k—o00

T T
SC/ / |B|3|V17|dxdt+C/ / |Vn|dw.
0 JR4 0 JR4

For the term involving pressure, with the help of incompressible condition and Lemma 2.4,
we have

T T
lim sup/ / g (ug - V)ndxdt = lem sup/ / Iy (ug - V)n;dxde
k—>oo Jo JR* R4

llk—)oo

hmsup/ / I (ug - V)n;dxde

llk—>oo

<C //|u|3|Vn~|dxdt

n n
+ / [ [Vn;|dw
n T ,
+ZC/ / Vo ||TI =y |2dxde.  (2.14)
i— J0 JR

Combining (2.13)—(2.14), we complete the proof of (2.11). For the local energy inequal-
ity (2.12), from incompressible conditions, we have

r T
/0 /R4(|uk|2 + |Bk|2)(ﬁk - V)ndxdt +/0 Ay(ﬁk - V) (ug - Bi)dxdt
T T
< C/o /R4|Mk—,3+,3|2(ﬁk-V)ndxdt+C/O /R4|Bk—ﬁ+ﬂ|2(ﬁk-V)ndxdz
T T
< C/(; /R4 lux — BI[(ix — B) - V]ndxdt + C/(; /];U g — BI2(B - V)ndxd:
T T
+ C/O /11@4[(1”( — B) - BlGix - V)ndxdr + C/O /W By — BI2(iix — B) - V]ndxdr

r T
_RI2(R. P
+C/O /R4|Bk BI=(B V)ndxdt+C/0 /]1@4[(Bk B) - Bl(ix - V)ndxdr.

(2.15)
Since

iy —B=(ur—B)*xx and By — B = (ugx — B) * 1.
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applying Young’s inequality for convolution yields
T T
/ / g — BRIk — B) - Vindxdr + f / (B — B2[(Gix — B) - VIndxdr
0 R4 0 R4
T
5/ /<|uk—u|3+|Bk—B|3>|Vn|dxdr
0 R4
T
+[ /(Iu—ﬂl3+|B—ﬂ|3)|andxdt
0 R4
T
~|—C/ / |uk—u|2|u—,3||Vn|dxdt
0 R4
T
~|—C/ / |uk—u||u—,3|2|Vr]|dxdt
0 R4
T
+C/ / |Bx — B|?|B — B||Vn|dxdt
0 R4
T
+C/ / |Bx — B||B — B|*|Vn|dxdt
0 R4
T
sc/ /(|uk—u|3+|Bk—B|3)|Vn|dxdt
0 R4
T
+C/ /(Iu—ﬁ|3+|B—ﬁ|3)|Vn|dxdt
0 R4
T T
—>c/ / |Vn|da)+C/ /(|u—/3|3+|B—ﬁ|3)|Vr/|dxdlas(k—>oo).
0 R4 0 R4
Now, we can pass k — oo in (2.15), which yields

T
hmsuP/ /4(|Mk|2 + | Be ) (g - V)ndaxde
0 R

k—o00

T
+limsup/ /(Bk'vn)(uk‘Bk)dxdt
0 R4

k—o0

r T
SC/ / |V77|da)+C/ / (- BIP + B — BP)|Valdxdr
o Jre o Jre

T
_ B|? a2 )
+C/o /R4(|u Bl~+|B —BI")(B - V)ndxdt
T
+C/0 /R4[(u_/3)"3+(B_:3)'ﬂ](u'v)ndxdt

r T
SC] / |V77|da)+C/ / (i BI® + |B — BP)|Valdxdr
o Jre A

T
+C / / (Jul® + |BI*)(u - V)ndxds
0 R4
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T
2 2
+C [ [ Gu=pi+18 =P =) rindxas
0

T T
§C/ /Iwmw+C/ /(w—ﬂP+w—ﬁmwmmm
0 R4 0 R4
T
—l—C/ / (Jul*> + |B|*)(u - V)ndxdt.
0 R4

Finally, using Lemma 2.4 yields

T T T
limsup/ / g (ug - V)ndxde 5/ / I (u - V)ndxde ~|—/ / |Vn|dw.
k—oo JO JR# 0o JR4 0o JR4

Hence, we complete the proof of Proposition 2.1. ]

3. Partial regularity theory: Part I

This section is devoted to establishing an e-regularity criterion for weak solution sets
(u, B, TI, A, w) of (1.1) in terms of L3-norm of (u, B). The argument we will present is
based on an iterative method. Firstly, as mentioned in [30], the weak solution sets have the
following scaling property.

Lemma 3.1. If (u, B, 1, A, w) is a weak solution set of the MHD system (1.1), then, for
any r > 0, the scaled set (uy, By, 1, Ay, ;) is also a weak solution set of (1.1), where
Uy, By, 1, Ay, and w, are defined as

up(x,t) =ru(rx,r’t), By(x,t) =rB(rx,r?t), T,.(x,t) = r’*I(rx,rt),

r 1 r 1
/ / iy = _2// a, / / doy, = _3// do
0 JR* r {(Grx,r2t)|(x,t)eR} 0 JR* r {(rx,r2t)|(x,t)eQ}

forany o C R* x R.

Proposition 3.1. There exist an r > 0 and an absolute positive constant € > 0 such that
if a weak solution set (u, B, I1, A, w) of the MHD system (1.1) satisfies

1

3 3 3 !
= [ul”> + |BI” + [II|2dxdt + — do <e,
= J 0 (z0) r~Jo

Fz0)

then zo = (xo, to) is a regular point and Q,(z¢) := Byr(xo) X (to — 2, to) denote the
parabolic cylinder centered at zg = (xg, o).

For the proof of Proposition 3.1, we need two auxiliary lemmas, which play an impor-
tant role in the proof of Proposition 3.1. Before stating lemmas, we introduce the following
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dimensionless quantities due to the scaling property of system (1.1):

A(r) =limsup  sup |uk(t)|2 + |Bk(t)|2dx,

2
k—oo tog—r2<t<tg '™ JBr(x0)

1 ~ 1
B(r) = —2/ [Vu|?> + |VB|*dxdt, B(r) = —2/ dA,
% J0,(z0) reJo

r(ZO)
1 ~ 1
C(r) = —3/ [u]®> +|B|?dxdt, C(r) = —3/ dw,
r 0 (20) r 0 (20)
— 1
Cor)=— |u —u,|> + |B — B,|3dxdr,
r 0 (z0)
1 3 — 1 3
D(r)=— [TI|2dxdt, D(r) = — |TT — I1,|2dxdt,
" J 0, (20) "= Jo-r(z0)

where f,(t) := m fBr(xo) f(x,t)dx is the integral average of f(x,?) on B,(xg). By
using iteration method, we can state that ¥ and B are locally bounded if u, B, I1, and
concentration measure o satisfy a local smallness condition.

Lemma 3.2. Assume that (u, B, I1, A, ) is a weak solution set of the MHD system (1.1)
in Qr(z9); then, there exists a universal positive constant C > 0 such that, for any r > 0,

C(r) < CA2(r) + CB2(r), G.1)
C(r) < CAZ(rB(r), (3.2)
C(r) < CAz(r)B(r). (3.3)

Proof. By using interpolation inequality and Sobolev inequality, we have

It =10 53, ey + 1B = Brlcm, ceon
< Cllu = urlZa, oo 14 = r 228, xo))
+C|B - Br||]244(Br(x0))”B = BrllL2,(xo))
< IVulZaa, o 112208, o)) + IV Bl 723, (1) | B 1228, (x0)-

Then, integrating in time, we get
/ lu—u,|® +|B — By*dxdt < Cr3A2(r)B(r).
0, (z0)

where we have used the lower semi-continuity of weak-* convergence, this is, (3.3). Not-

ing that ||f||L4(Br(xo)) < C||f||L2(Br(xo)) + ”Vf”LZ(B,(xO))» by a direct calculation, we
get (3.1). The inequality (3.2) follows directly from Lemma 2.3. ]

In order to prove Proposition 3.1, we will define a quantity E(r), which is not scale-
invariant: E(r) = % fQ (o) 11— M, |3dxdt = r2 D(r).
r2 r
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Lemma 3.3. Suppose that (u, B, I1, A, ) is a weak solution set of the MHD system (1.1)
in Q,(z0). Then, there exists a universal positive constant C > 0 such that, for any 0 <

r<%
1 3 3
E(r)<C— [u]®> + | B|*dxdt
rz Q2r(ZO)
3
2 B 2 2
+Cr? sup / —|u| ul 5| dy
to—r2<t<ty J 2r<|y—xol<p |y — Xol
r? 3 3 3
+CT/ lul> + |B|> + |TT|>dxdr. (3.4)
107 Qp(ZO)

Proof. We consider a smooth cutoff function ¢ € C>°(R*) suchthat0 <¢ <1,¢ = 1in
B%p(xo), ¢ = 0in R*\ B,(xo), satisfying property |V¢|*> + [V2¢| < Cp—lz. Then, similar
to (2.9) for the local decomposition for pressure, we have

M0 0600 = 13 /R ﬁ(naifh (uiu; — B Bj) — 2V - VI — TIAG)dy
=g [ = B (= o
1 1
ti2 /Bp(xo)\Bzr(xo)(uiuj — BiBj)¢$0;0; (m)d)’
1 A Ax—y)-V
o S

=TI (x,1) + Hz(x,l) + H3(X,l) + H4(X,l).
3.5

Hence, the term E(r) can be decomposed into four terms involving I1y, I15, 13, Iy,
respectively:

4

1

Er) <Y — / M, — 11, dxdr. (3.6)
I=1 rz JQ,(zo)

Using the Calderon—Zygmund theory for IT;, we get

/ |n1|%dx§c/ lu|® + |B)dx,
By (x0) B> (x0)

which implies

/ ITT; — Iy, | 2dxdt < c/ u|® + | B3dxdt.
0r(zo0) Q2r(20)
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For I15, it is noteworthy that 2|x — y| > |y| when x € B, (xp) and y € B5, (x¢); thus, for
any (x,t) € Q,(z0),
ul? + |BJ? ul? + |BJ?
|[VII(x,2)| < C/ de < C/ %dx,
2r<lyl<p |x_y| 2r<|y|<p |y|
by which one has
to

3 3
[ Mot e =crt 7= Myl )
0r(20) to—r?

11

to 3
<crt / IVIT2117 o0 5, (o) 4
to—r2

3

ul>+ 1B\’

sup ——dx ] .
to—r2<t<ty J2r<|y|<p |y|

Similarly, we note that V¢p = V2¢ = 0 in B (xo),and |x —y| > £ when x € B, (xo), y €
B,(x0)\B3p (x0). Thus, for any (x,?) € Q(zo),
4

1

IA
ol

Cr

\Y \Y
v zc [ (wﬁ+wﬁmf'w3+ '¢H)®
By (x0)\Bj p(x0) [x — yl [x — vl
1
<C— (lul® + [B[*)dy.

0’ Bo(x0)\B plxo)

\% \%
v =c | (2 e
By(x0)\B 3 p(x0) lx — vl lx — y|

1
< C—5 |IT|dy.
o Bp(xo)\B%P(xo)

Hence,
4 , 4 fo R
}:[ Hh—nmpmmsCES#/ T = Ty 117 oo 5, (g
1=3 r(20) 1=3 to—r2
4 11 3
=C) r> / IV oo (B, (x93
1=3 Qy(20)
r
<Cc(H)? / u|® + |B)® + || 2dxdr.  (3.7)
P Qp(z0)
Combining (3.6) with (3.7) yields the inequality (3.4). ]

Proof of Proposition 3.1. We let r, = 27" with n > 2. The method is to iteratively prove
the following estimates:

C(rn) + Crn) + E(rp) < 312, (3.8)

A(ra) + B(rn) + B(rn) < Cr2e3. (3.9)
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First, we claim that the inequality (3.8); holds. Indeed, the Holder inequality yields
C(r) + C(r) + E(ry)

< 8/ lu|®> + |B|>dxdr + 8/ do + 16/ ITT|2 dxdr.
Q%(Zo) Q%(Zo) Q%(Zo)

Then, we take & < 272! and apply the smallness assumption, which implies that
C(ry) + 5(1’1) + E(ry) < 16g < s%rf’.
Claim 1: {(3.8)x }a<k<n implies (3.9),11. Let ¢, be the localized solution of the back-

ward heat equation
_ .0 |x|?
e = 2 on (= 553 )

where y is a cutoff function such that y=1in Q 1 (z0) and y=0in R*x(—o0, O)\Q% (zo)-
A direct computation yields that ¢, satisfies the following properties:

ipn + Agn = 0in Q1(20).  |9rpn + Agpn| < C in R* x (=00,0),

Clr* <¢p <Cr;* and |Vg,| <Cr,”in Q,(z0),

On < Crk_4 and |V¢,| < Crk_5 in Qr,_,(z0)\Qr (20) forany 2 < k < n.
Next, we define the smooth cutoff function {1 }ren such that

Me = 1in QOry, (20). M =0in R* x (=00,00\Qr, (20), |Vl < Cr’".

Then, we define ¢ := ¢ (N — Nk+1) for 1 <k <n —1 and @, := ¢,n,. It is easy to
see that ¢, = Y x_; ¥k and

IVor| = |¢n Vi + nk V| < Cr> forany k <n.

Substituting ¢, into the local energy inequality (2.11) yields

lim sup sup/ (luic () * + | B (1)|*) pndx
t 1 (xo0

k—o00

+/ (|Vul* + |VB|2)¢ndxdt+[ PndA
01 (20) 0

1 (20)
2

s/ (ul? + [BP)|:dn + Adyldxds
1(Zo
+2Z/ Verli(ul® + | B*)dxds + do]

+2Z/ |Veor||TT — T, |2 dxds

1 (z0)

=11+ I, + I5. (3.10)
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With the properties of ¢,,, we deduce that
C 2 (A(rag1) + B(rng1) + B(rag)) < I + I + L.

For I, applying the Holder inequality and the smallness assumption yields

I < C/ lu|? + | B|?dxdt
01 (20)

1
3 3
C(/ ldxdt) (/ lu|® + |B|3dxdt)
Q1 (z0) 01 (z0)
2 2
%
§C(/ |u|3+|B|3dxdt)
01(z0)

L= Z/ IVerll(Jul® + |B[?)dxdt + do]
01, Go\Ory (20)

IA

+/ Vol [(ul® + B )dxds + do]
Zo

<CZ

/ (Ju|® + |B)?)dxdt + dw
b 2rk 01, Z\Qr, (20)

+C—5 (Ju)® + |B|?)dxdt + dw
r
an Zo)

<C Z 3 [ (|u|3 + |B|?)dxdt + dw
k-1 7@

’kl

—I—C— (|u|® + |B|?)dxdt + dew

2 J 0., (z0)

<CZrk8%
I3<CZ

/ T — 0, |3 dxdr
k=2 rk Qrk I(ZO)\Qrk (z0)

+C— ITT — 11, |3 dxdt
01, (z0)

1
SCZrkZES.
k=1

Combining the estimates for Iy, I, I3 and the local energy inequality (3.10), we deduce
that (3.9),,4, holds.
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Claim 2: {(3.9); }2<k<n implies (3.8),,. Lemma 3.2 yields that, forany 2 < k < n,
C(re) + Cre) = CA3 () + CB3 (1) + CB(rp) < Cer. 3.11)

Taking p = ry, r = r, and using Lemmas 3.2 and 3.3, we have

1
E(r) < C—S/ lu|> + | B|>dxdt
e /e

m—1 (z0)

3
u2 32 2
+Cr; sup / |u| +5| ldy
to—r2<t<tg Y 2rn<|yl<ri [y

3
.
+Cn | + |B|® + || 2 dxdt
r? 0y, (20)

1 2 B2 2
<CriZC(rp—1) + Cr,f( sup / —lul + |B] dy) + Csr,f
2rp<|y|<ri

t()—r,%<t<t() |y|5

3
2 2 2
ul+ |B
§Csr3+Cr,f sup f —| | 5| | dy) .
to—r2<t<ty Y 2ra<|yl<ri Lyl

It is noteworthy that

n—1

2 BI? 2 BJ?
sup / Jul” + 1B +5| | dy < Z sup / Mdy
2rp<|yl<ri |y| re<|yl<rg—1 |y|

to—r3<t <t k=2 to—Ti_ <t<to

n—1 1 2n—l 1 )
SCZFA(rk_l)fCefzr—§C8§rn_1.
k=2 'k k=2 'k

(3.12)

Hence, from (3.11)—(3.12), we can deduce that

C(ra) + C(ra) + E(r) < Cer} < 37

n-

Now, we can see that (3.9); holds for any k > 2. Hence, using Lebesgue convergence
theorem, we get that zg = (x¢, #9) is a regular point. |

4. Partial regularity theory: Part 11
With the help of Proposition 3.1, we can prove the following partial regularity result,
which plays a vital role in the proof of Theorem 1.1.

Proposition 4.1. Assume that (u, B, I, A, w) is a weak solution set of the MHD sys-
tem (1.1) in some cylinder Q ,(z¢). Then, there exists a universal positive constant g9 > 0
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such that if
(|Vu|* + |VB|?)dxdt + dA < g,

9r(20)

limsup —
r—0 T
then ||“||L°°(Qr(2<>)) < Cl’o_l and ||B||L°°(Qr(20)) < Cro_lfor some 0 < rg < p.

For the proof of Proposition 4.1, we also need another decay estimate for the pres-
sure IT.

Lemma 4.1. Assume that (u, B, I1, A, ) is a weak solution set of the MHD system (1.1)
in Qr(z0). Then, there exists a universal positive constant C > 0 such that, for r > 0 and
6 (0.1,

D(0r) < CO3A3(r)B(r) + COD(r).
Proof. We consider a smooth cutoff function ¢ € C2°(R*) such that0 <y <landy = 1
in B3 (x0), ¥ = 0in R\ B, (xg), [V¥|? + |V2y| < Cr%. The pressure equation can be
written as

—AIl = aia_/ [(u; — ui,r)(uj - uj,r) —(B; — Bi,r)(Bj - Bj,r)]-
We can localize this equation like (3.5) to obtain

T(x, )Y (x) = T (x,7) + Mo (x,7) + M3 (x, 1),

where
—~ 1
My (x, 1) = 42 (i —uir)(uj —ujr) — (Bi — Bi,r)(Bj — Bjr)]
T Br(x())
1
X Y 0;0; (—|x — y|2)dy,
Mo (x,1) =

a7 I )[(Mi —ui)(uj —uj,) — (Bi — Bi,)(Bj — Bj,)]
r(Xo

0;0; ¢ 4(Xi—yi))
X 4+ 0jy ———= |dy,
(Ix—yl2 T x =yl

. 1 A 4(x—y)-V
Ms(x, 1) = _2/ H( v - (x— ) ] W)dy
472 JB.(xe) \|x — | lx — yl

For [T, the Calderon—Zygmund theory yields

~ 3 3
/ T B < C/ (i — g )ty — )3
By, (x0) By (xo0)

3
+ |(Bi — Bi;)(Bj — Bj,)|>dx

50/ lu —u,)® +|B — B,|?dx.
By (x0)
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Integrating in time gives

/ T, |2 dxdr §C/ lu —uy|? + | B — By |3dxdt.
QGr(ZO) Qr(Z())

For I1,, we note that Vi is supported in B, (xg)\B 3 +(x0). Then, for x € Bg,(xo) and
|x — y| > %, combining the properties of 1, we know that
— 1 2 2
|H2|§C_4 lu —ur|” +|B — B,|dx,
r By (x0)

which yields that

/ T 3dxdr < C(0r)* / | T oot
Qo (20) t

0—(67r)2

< C94/ |u —u,|> +|B — B,|3dxdt.
0r(20)

Similarly, for ﬁ;, we have

/ T3]3 dxdr < Ce“f |TT|2 dxdr.
04 (20) 0, (20)

Collecting all estimates for M, 5, I and applying Lemma 3.2, we complete the proof
of Lemma 4.1. |

Proof of Proposition 4.1. According to Proposition 3.1, we need only to prove that, for
ry > 0,

1 3 3 3 !
= [ul” +|B|” + []2dxdt + — do <e. 4.1)
Ty JOr (z0) Ty JQr (z0)

For fixed r > 0 and any 0 < 6 < % we consider the cutoff function

_ 1 |x|? x t 4
dpg(x,1) = mexp(— W)X(? r_z)(x’t) € R x (=00,0),

where y € C°(B1(xp) x (—1, 1)) is a cutoff function such that
. 11
=1 1nB%(x0)>< (—Z,Z),
satisfying the following properties:

C'Or)™ <¢g <COr)™ in Qp,(20),
do <COr)™*. |Vegl <C(Or) >, 10190 + Adgl < Cr~® in Q,(z0).
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Substituting ¢y into the local energy inequality (2.12) yields that

1
——— limsup sup / lug)® + | Br|*dx
COT)? kooo t9—(Or)2<t<t J By (x0)

1 / 2 2
+ == (IVul® + |VB|*)dxdt + dA
COr)? Jog, (z0)
=@ [ QuP + BE)@go + Agoxc
r(Zo
+ (9r)2[ (Ju|® + | B|*)u - Vggdxdt
0, (z0)
+(9r)2/ IVooll(Ju — ur|* + |B — Br[*)dxdt + do]
r(Zo
+(6r)? / Mu - Vpgdxdt
0r(z0)
=K1+ K> + K3 + Ky. “4.2)
Applying the Holder inequality and the interpolation inequality in Lemma 3.2, we have
Ki <CO2C3(r), K3 <CO3C(r)+C(r)], Ka<CO3DI(r)C3. (43)

For K>, using the property of ¢g and integration by parts, we know that

Ka = (0r) / (ul® + |BP)(u — uy) - Vpddi
0, (z0)
+(0r) / (ul? + 1By - Veppdxdr
r(2o
— 0y [ (= ur 2+ |B = ByP)ut — ) - Vhpdxdr
0, (20)
+2(9r)2f [u-u,(u—u,)+ B-Br(u—u,)]|- Vopgdxdt
0, (z0)
—0ry? / (2 + 1B, 1) = uy) - Vpgadi
0r(z0
+(9r)2/ (Ju|* + | B|?)u, - Vpgdxdt
0, (20)
< C(er)—3/ lu —u,|> +|B — B,|>dxds
Qr(ZO)

— 2(9r)2/Q ( )¢9[(u —uy) - Vu-ur + (u—u;)- VB - B,]dxdt
r(2o

— 2(9r)2/ dolu- (uy - V)u + B - (u, - V)B]dxdz, (4.4)
0 (z0)
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where we have used the fact that ¥ and v — u, are divergence-free. Furthermore,

/ do[(u —u;)-Vu-u, + (u —u,)- VB - B, ]dxdt
0r(20)

C o]
4/ —4/ |u|+|B|dX/ |lu —u,|(|Vu| + |VB|)dxdt
(Or)* Jig—r2 7% /B, (x0) By (x0)

C fo 3 2
_15/ (/ lu|> + |B|3dx) (/ |u—u,|2dx)
042 2
r¥" 3 Ji-r B, (x0) By (x0)
3
X ([ [Vu|? + |VB|2dx) dt
By (xo)

1 1
C 1 :
< i (/ ul® + |B|3dxdt) (/ |Vul? + |VB|2dxdt)
0%r 0, (z0) 0,(z0)

. \?
X sup / |u|“dx | .
to—r2<t<tg ¥ Br(xo)

Similarly, using the Holder equality, we have

=

/ dolu - (ur - V)u + B - (u, - V)B]dxdt
0r(20)

1 1

C 3 2

< 5(/ lu|® + |B|3dxdt) (/ |Vul|*> + |VB|2dxdt)
04>\ J o, (z) 0:(z0)

1
2
x ( sup [ |u|2dx) . 4.5)
to—r2<t<tg Y Br(x0)
Combining (4.4)—(4.5), we get
K, < CO2C3(r)A2(r)B2(r) + CO73C (r). (4.6)

Substituting (4.3) and (4.6) into (4.2) and using Lemma 3.2, we get
A(Or) + B(Or) + B(6r)
< C(O2C3(r)+073D3(rC3(r) + 07 3[C(r) + C(r)] + 02C3 A2 (r)B?)
< C[02C3(r) + 078D 3(r) + 073 A2 (n)(B(r) + B(r)) + 675 A(r)B(r)]
< C[0?A(r) + 0*[B(r) + B(r)] + 078 A(")[B(r) + B(r)]

+ 07 A(r)B(r) + 078D3].
%))

On the other hand, from Lemma 4.1, we get
D3(0r) < CO*A3(r)B3(r) + 03 D3 (r)
< CO2A(r)B(r) + 0"2B%(r) + COI D3 (r). 4.8)
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Combining (4.7) and (4.8) yields

A% 4 07°D3(0r) + B(Or) + B(6r)
< C[0%A(r) + 0%[B(r) + B(r)] + 63 B*(r)
LA +075 1020 AN BG) + B+ 6O +69)07°D3i(r)].  (4.9)

We can fix 6 € (0, %] such that
4 2 1
CO+05+6%) < .

According to the smallness assumption, we deduce that there exists an 7’ > 0 such that,
forany 0 < r < r’, we have
B(r) + B(r) < 2&y.

Then, we take ¢ sufficiently small such that

C(14 6710406729, <

N

Letting G(r) = A(r) + 9_9D%(r) + B(r) + E(r), then, for any 0 < r < r’, from (4.9)
we know that
G(r) < 2G(r) + 2
-2 2

Iterating this inequality yields
AOr') + 670 D3 0%y + B(O%r') + B(6Fr) = G(O%r') < %G(r’) + &0.
Then, there exists some r; > 0 such that
A(r) + B(r)) + B(r1) + 9_9D%(r1) < 4gy.

Using Lemma 3.2 again, we can bound C(r;) 4+ C(r1) with A(r;) + B(r1) + B(r1).
Then, we can impose additional condition on &g to ensure (4.1). Hence, we complete the
proof of Proposition 4.1. ]

Proof of Theorem 1.1. Without loss of generality, we may suppose the S is bounded. Let
V' be a parabolic neighborhood of S and fix § > 0. According to Proposition 4.1, for each
(x,t) € S, we can choose Q,(x,t) C V with r < § such that

1

= (|Vu|? + |VB|?)dxdr + dA > &.

0 (z0)

Since S is bounded, we can use Vitali covering lemma to obtain a family of finite disjoint
parabolic cylinders { O, (x;, ;) };ea such that

S C U QSF,‘(X,',[;)'

ieA
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Then,

1
IS (IVu|* + |VB[*)dxd: + dA
ieA €0 ;ox J O, (xisti)

1
= —/ (|Vu|?> + |VB|?)dxdt + dA.
&0 Jv
Since § is arbitrary, we conclude that S has Lebesgue measure zero and
5
3(S) = > / (IVul?2 + |V B[2)dxds + dA
o Jv

for every neighborhood V' of S. From the fact that |[Vu|? and |V B|? are integrable func-
tion, hence, we finish the proof of Theorem 1.1. [

Conflicts of interest. The author declares that there are no conflicts of interest related to
this work.

References

[1] R. Beekie, S. Friedlander, and V. Vicol, On Moffatt’s magnetic relaxation equations. Comm.
Math. Phys. 390 (2022), no. 3, 1311-1339 Zbl 1508.35058 MR 4389083

[2] D. Biskamp, Nonlinear magnetohydrodynamics. Cambridge Monogr. Plasma Phys. 1, Cam-
bridge University Press, Cambridge, 1993 MR 1250152

[3] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the
Navier—Stokes equations. Comm. Pure Appl. Math. 35 (1982), no. 6, 771-831
Zbl 0509.35067 MR 0673830

[4] C. Cao, J. Wu, and B. Yuan, The 2D incompressible magnetohydrodynamics equations with
only magnetic diffusion. SIAM J. Math. Anal. 46 (2014), no. 1, 588-602 Zbl 1293.35233
MR 3163239

[5] D. Chamorro and J. He, Regularity theory for the dissipative solutions of the magnetohydro-
dynamic equations. SIAM J. Math. Anal. 53 (2021), no. 5, 5288-5321 Zbl 1473.76074
MR 4315481

[6] Q. Chen, C. Miao, and Z. Zhang, The Beale—Kato—Majda criterion for the 3D magneto-
hydrodynamics equations. Comm. Math. Phys. 275 (2007), no. 3, 861-872 Zbl 1138.76066
MR 2336368

[71 H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier—Stokes
equations at the first blow-up time. Comm. Math. Phys. 273 (2007), no. 3, 785-801
7Zbl 1156.35442 MR 2318865

[8] H. Dong and R. M. Strain, On partial regularity of steady-state solutions to the 6D Navier—
Stokes equations. Indiana Univ. Math. J. 61 (2012), no. 6, 2211-2229 Zbl 1286.35193
MR 3129108

[9] G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique. Arch.
Rational Mech. Anal. 46 (1972), 241-279 Zbl 0264.73027 MR 0346289

[10] X. Gu, Regularity criteria for suitable weak solutions to the four dimensional incompressible

magneto-hydrodynamic equations near boundary. J. Differential Equations 259 (2015), no. 4,
1354-1378 Zbl 1317.35198 MR 3345854


https://doi.org/10.1007/s00220-021-04289-3
https://zbmath.org/?q=an:1508.35058
https://mathscinet.ams.org/mathscinet-getitem?mr=4389083
https://doi.org/10.1017/CBO9780511599965
https://mathscinet.ams.org/mathscinet-getitem?mr=1250152
https://doi.org/10.1002/cpa.3160350604
https://doi.org/10.1002/cpa.3160350604
https://zbmath.org/?q=an:0509.35067
https://mathscinet.ams.org/mathscinet-getitem?mr=0673830
https://doi.org/10.1137/130937718
https://doi.org/10.1137/130937718
https://zbmath.org/?q=an:1293.35233
https://mathscinet.ams.org/mathscinet-getitem?mr=3163239
https://doi.org/10.1137/20M1378958
https://doi.org/10.1137/20M1378958
https://zbmath.org/?q=an:1473.76074
https://mathscinet.ams.org/mathscinet-getitem?mr=4315481
https://doi.org/10.1007/s00220-007-0319-y
https://doi.org/10.1007/s00220-007-0319-y
https://zbmath.org/?q=an:1138.76066
https://mathscinet.ams.org/mathscinet-getitem?mr=2336368
https://doi.org/10.1007/s00220-007-0259-6
https://doi.org/10.1007/s00220-007-0259-6
https://zbmath.org/?q=an:1156.35442
https://mathscinet.ams.org/mathscinet-getitem?mr=2318865
https://doi.org/10.1512/iumj.2012.61.4765
https://doi.org/10.1512/iumj.2012.61.4765
https://zbmath.org/?q=an:1286.35193
https://mathscinet.ams.org/mathscinet-getitem?mr=3129108
https://doi.org/10.1007/BF00250512
https://zbmath.org/?q=an:0264.73027
https://mathscinet.ams.org/mathscinet-getitem?mr=0346289
https://doi.org/10.1016/j.jde.2015.02.042
https://doi.org/10.1016/j.jde.2015.02.042
https://zbmath.org/?q=an:1317.35198
https://mathscinet.ams.org/mathscinet-getitem?mr=3345854

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

[21]
[22]
[23]
[24]
[25]
[26]

(27]

(28]

Z.Zuo 304

P. Han and C. He, Partial regularity of suitable weak solutions to the four-dimensional incom-
pressible magneto-hydrodynamic equations. Math. Methods Appl. Sci. 35 (2012), no. 11,
1335-1355 Zbl 1256.35081 MR 2945856

C. He and Z. Xin, On the regularity of weak solutions to the magnetohydrodynamic equations.
J. Differential Equations 213 (2005), no. 2, 235-254 Zbl 1072.35154 MR 2142366

C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magneto-
hydrodynamic equations. J. Funct. Anal. 227 (2005), no. 1, 113-152 Zbl 1083.35110

MR 2165089

Q. Jiu and Y. Wang, Remarks on partial regularity for suitable weak solutions of the incom-
pressible magnetohydrodynamic equations. J. Math. Anal. Appl. 409 (2014), no. 2, 1052-1065
Zbl 1306.35096 MR 3103218

0. A. Ladyzhenskaya and G. A. Seregin, On partial regularity of suitable weak solutions to the
three-dimensional Navier—Stokes equations. J. Math. Fluid Mech. 1 (1999), no. 4, 356-387
Zbl 0954.35129 MR 1738171

E. Lin, A new proof of the Caffarelli-Kohn—Nirenberg theorem. Comm. Pure Appl. Math. 51
(1998), no. 3, 241-257 Zbl 0958.35102 MR 1488514

F-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid
crystals. Discrete Contin. Dynam. Systems 2 (1996), no. 1, 1-22 Zbl 0948.35098

MR 1367385

J. Liu and W. Wang, Boundary regularity criteria for the 6D steady Navier—Stokes and MHD
equations. J. Differential Equations 264 (2018), no. 3, 2351-2376 Zbl 1378.35221

MR 3721431

W. Ren and G. Wu, Partial regularity for the 3D magneto-hydrodynamics system with hyper-
dissipation. Acta Math. Sin. (Engl. Ser:) 31 (2015), no. 7, 1097-1112 Zbl 1320.35129

MR 3360775

J. C. Robinson, J. L. Rodrigo, and W. Sadowski, The three-dimensional Navier—Stokes equa-
tions. Classical theory. Cambridge Stud. Adv. Math. 157, Cambridge University Press, Cam-
bridge, 2016 Zbl 1358.35002 MR 3616490

V. Scheffer, Partial regularity of solutions to the Navier—Stokes equations. Pacific J. Math. 66
(1976), no. 2, 535-552 Zbl 0325.35064 MR 0454426

V. Scheffer, Hausdorff measure and the Navier-Stokes equations. Comm. Math. Phys. 55
(1977), no. 2,97-112 Zbl 0357.35071 MR 0510154

V. Schefter, The Navier—Stokes equations in space dimension four. Comm. Math. Phys. 61
(1978), no. 1, 41-68 Zbl 0403.35088 MR 0501249

M. Sermange and R. Temam, Some mathematical questions related to the MHD equations.
Comm. Pure Appl. Math. 36 (1983), no. 5, 635-664 Zbl 0524.76099 MR 0716200

J. Simon, Compact sets in the space L? (0, T'; B). Ann. Mat. Pura Appl. (4) 146 (1987), 65-96
7Zbl 0629.46031 MR 0916688

M. Struwe, On partial regularity results for the Navier—Stokes equations. Comm. Pure Appl.
Math. 41 (1988), no. 4, 437-458 Zbl 0632.76034 MR 0933230

A. F. Vasseur, A new proof of partial regularity of solutions to Navier—Stokes equations.
NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 753-785 Zbl 1142.35066
MR 2374209

W. Wang and Z. Zhang, On the interior regularity criteria for suitable weak solutions of the
magnetohydrodynamics equations. SIAM J. Math. Anal. 45 (2013), no. 5, 26662677

Zbl 1284.35104 MR 3097270


https://doi.org/10.1002/mma.2536
https://doi.org/10.1002/mma.2536
https://zbmath.org/?q=an:1256.35081
https://mathscinet.ams.org/mathscinet-getitem?mr=2945856
https://doi.org/10.1016/j.jde.2004.07.002
https://zbmath.org/?q=an:1072.35154
https://mathscinet.ams.org/mathscinet-getitem?mr=2142366
https://doi.org/10.1016/j.jfa.2005.06.009
https://doi.org/10.1016/j.jfa.2005.06.009
https://zbmath.org/?q=an:1083.35110
https://mathscinet.ams.org/mathscinet-getitem?mr=2165089
https://doi.org/10.1016/j.jmaa.2013.07.052
https://doi.org/10.1016/j.jmaa.2013.07.052
https://zbmath.org/?q=an:1306.35096
https://mathscinet.ams.org/mathscinet-getitem?mr=3103218
https://doi.org/10.1007/s000210050015
https://doi.org/10.1007/s000210050015
https://zbmath.org/?q=an:0954.35129
https://mathscinet.ams.org/mathscinet-getitem?mr=1738171
https://doi.org/10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
https://zbmath.org/?q=an:0958.35102
https://mathscinet.ams.org/mathscinet-getitem?mr=1488514
https://doi.org/10.3934/dcds.1996.2.1
https://doi.org/10.3934/dcds.1996.2.1
https://zbmath.org/?q=an:0948.35098
https://mathscinet.ams.org/mathscinet-getitem?mr=1367385
https://doi.org/10.1016/j.jde.2017.10.028
https://doi.org/10.1016/j.jde.2017.10.028
https://zbmath.org/?q=an:1378.35221
https://mathscinet.ams.org/mathscinet-getitem?mr=3721431
https://doi.org/10.1007/s10114-015-4498-8
https://doi.org/10.1007/s10114-015-4498-8
https://zbmath.org/?q=an:1320.35129
https://mathscinet.ams.org/mathscinet-getitem?mr=3360775
https://doi.org/10.1017/CBO9781139095143
https://doi.org/10.1017/CBO9781139095143
https://zbmath.org/?q=an:1358.35002
https://mathscinet.ams.org/mathscinet-getitem?mr=3616490
https://doi.org/10.2140/pjm.1976.66.535
https://zbmath.org/?q=an:0325.35064
https://mathscinet.ams.org/mathscinet-getitem?mr=0454426
https://doi.org/10.1007/BF01626512
https://zbmath.org/?q=an:0357.35071
https://mathscinet.ams.org/mathscinet-getitem?mr=0510154
https://doi.org/10.1007/BF01609467
https://zbmath.org/?q=an:0403.35088
https://mathscinet.ams.org/mathscinet-getitem?mr=0501249
https://doi.org/10.1002/cpa.3160360506
https://zbmath.org/?q=an:0524.76099
https://mathscinet.ams.org/mathscinet-getitem?mr=0716200
https://doi.org/10.1007/BF01762360
https://zbmath.org/?q=an:0629.46031
https://mathscinet.ams.org/mathscinet-getitem?mr=0916688
https://doi.org/10.1002/cpa.3160410404
https://zbmath.org/?q=an:0632.76034
https://mathscinet.ams.org/mathscinet-getitem?mr=0933230
https://doi.org/10.1007/s00030-007-6001-4
https://zbmath.org/?q=an:1142.35066
https://mathscinet.ams.org/mathscinet-getitem?mr=2374209
https://doi.org/10.1137/120879646
https://doi.org/10.1137/120879646
https://zbmath.org/?q=an:1284.35104
https://mathscinet.ams.org/mathscinet-getitem?mr=3097270

On the partial regularity of weak solutions for the magnetohydrodynamics system 305

[29] Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of
non-stationary and stationary Navier—Stokes equations. J. Differential Equations 256 (2014),
no. 3, 1224-1249 7Zbl 1283.35069 MR 3128938

[30] B. Wu, Partially regular weak solutions of the Navier—Stokes equations in R* x [0, oo[. Arch.
Ration. Mech. Anal. 239 (2021), no. 3, 1771-1808 Zbl 1513.35440 MR 4215201

[31] B. Wau, Partially regular weak solutions of the stationary Navier—Stokes equations in dimension
6. Calc. Var. Partial Differential Equations 61 (2022), no. 4, article no. 152 Zbl 1491.35324
MR 4438343

Received 14 October 2023; revised 13 March 2025.

Zhongbao Zuo
School of Mathematics and Statistics, Central South University, 410083 Changsha, P. R. China;
zuozhongbao0927@163.com


https://doi.org/10.1016/j.jde.2013.10.014
https://doi.org/10.1016/j.jde.2013.10.014
https://zbmath.org/?q=an:1283.35069
https://mathscinet.ams.org/mathscinet-getitem?mr=3128938
https://doi.org/10.1007/s00205-020-01603-6
https://zbmath.org/?q=an:1513.35440
https://mathscinet.ams.org/mathscinet-getitem?mr=4215201
https://doi.org/10.1007/s00526-022-02273-w
https://doi.org/10.1007/s00526-022-02273-w
https://zbmath.org/?q=an:1491.35324
https://mathscinet.ams.org/mathscinet-getitem?mr=4438343
mailto:zuozhongbao0927@163.com

	1. Introduction
	2. Existence of weak solutions set and local energy inequalities
	3. Partial regularity theory: Part I
	4. Partial regularity theory: Part II
	References

