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On stability and regularity for subdiffusion equations
involving delays

Dinh-Ke Tran and Thi-Thoa Lam

Abstract. We study a class of nonlocal evolution equations involving time-varying delays which is
employed to depict subdiffusion processes. The global solvability, stability and regularity are shown
by using the resolvent theory, nonlocal Halanay inequality, fixed point argument and embeddings of
fractional Sobolev spaces. Our result is applied to the nonlocal Fokker—Planck model with nonlinear
force fields.

1. Introduction

Let Q c R4 (d > 2) be a bounded domain with a smooth boundary, and let y and & be
positive numbers. Consider the following equation:

g + (=A)Y'u =G, u,), t>0, (1.1)
where the unknown u = u(¢, x),t > —h, x € 2, obeys the initial condition
u(t,x) = ¢(t,x), tel[-h0], xeQ, (1.2)
and the Dirichlet boundary condition
u(t,x)=0, t>—h, x €9Q. (1.3)

In (1.1), the notation 9, ; denotes the nonlocal derivative in time of Caputo type with
respect to the kernel k € LL (RT);i.e.,

loc

Oy xu(t,x) = %/Ot k(t —t)[u(t,x) —u(0,x)]d.

In addition, u,(¢) = u(t — p(¢)) with p € C(R") such that —h <7 — p(r) < ¢, and G is
a given function. In order to deal with (1.1), we use the following standing hypothesis.

(PC) The kernel function k € L1 (R¥) is nonnegative and nonincreasing, and there

loc
exists a function / € L} (R¥) such that k % I(t) := [; k(¢ — ©)l(r)dt = 1 for
t € (0,00).
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Let go(t) = t*71/T(a), @ € (0,1),¢ > 0. Then, (1.1) in the well-known case k() =
g1—a(t) becomes a fractional/slow diffusion equation. For the case k(¢) = fol ga(t)da,
we have (1.1) as an ultraslow diffusion model. Typical cases of the kernel k obeying
(PC) were discussed in an extensive study, in which we refer to [10, 12, 13, 15, 19, 21,
22,27,29,30] for significant results in qualitative theory, e.g., the solvability, regularity,
and behavior of solutions. In general, (1.1) with k satisfying (PC) has been employed to
describe processes in materials with memory. It is worth noting that the nonlocal derivative
0 x was mentioned in [1, 16,20] as general fractional derivative, where the fundamental
calculus, comparison principle, and the associated diffusion equation were studied.

As a matter of fact, various processes in chemistry, biology, and engineering are sub-
ject to inheritance, which appears in modeling as delayed terms. It should be noted that the
presence of time delays affects remarkably the performance and stability of systems. From
the mathematical point of view, the stability and regularity analysis for models subject to
time delays is much more complicated. The first attempt was given in [6] to analyze the
stability of solutions to (1.1) in the case G takes values in LZ(Q); meanwhile, no attempt
has been made to address the regularity of solutions, up to our investigation. Our aim in
this work is to deal with the question of stability and regularity of solutions to (1.1) in
the case G admits weak values, i.e., G(u, u,) belongs to a Hilbert scale H" with negative
order (see the next section for the definition). This allows us to consider various cases
of nonlinearity, where G may contain polynomial/gradient terms. It should be mentioned
that, this situation was studied for non-delayed model in [3]; however, the analyzing rou-
tine in the aforesaid work cannot apply to the delayed case. In addition, the stability result
in this note extends nontrivially the one established in [6]. Indeed, the setting in [6] does
not allow G to contain polynomial/gradient terms, the important cases in applications.
Moreover, the stability statement in [6] does not provide any decay rates, which becomes
an issue to address in this work.

The rest of our work is as follows. In the next section, we recall some notions and
facts related to Hilbert scales and fractional Sobolev spaces, as well as some estimates for
the resolvent families in Hilbert scales. Section 3 is devoted to showing the existence and
stability results. In Section 4, we prove the Holder continuity of solution to (1.1)—(1.3).
In the last section, the obtained results are demonstrated for a nonlocal Fokker—Planck
equation involving nonlinear force fields.

2. Preliminaries

In this section, we recall some notions and facts on functional spaces, the nonlocal Halanay
inequality and the resolvent families, which are the ingredients for our analysis.

2.1. Hilbert scales and fractional Sobolev spaces

Let {e,} be the orthonormal basis of L?(£2) consisting of eigenfunctions of the operator
—A with homogeneous Dirichlet boundary condition, i.e.,

—Ae, =Ape, InQ2, e,=0 ond,
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where we can assume that {1, } is nondecreasing with A; > 0. One can define the fractional
Laplace operator (—A)Y, y > 0 as follows:

o0
D((—A)) = {v €L?(Q): Y APvl < oo},

n=1

o0

(—=A)v ="M (v.en)en forve D((—A)).
n=1
Here, the notation (-, -) denotes the inner product in L2(2).
For 8 > 0, let Hf = D((—A)%); ie.,

HA = {v eL*(Q): > M(v.en)® < oo}.

n=1

Then, H# is a Hilbert space with the inner product

(M, U)Hﬂ = Z A’E(uv en)(vs en)

n=1

and the norm given by

oo
Wiz =Y AL (v.en)?.

n=1
Obviously, H® = L?(Q) and HA' — HPf: if 8, > B, > 0.
In addition, the embedding H# c L?(R2) is compact and the dual space of H? can be
identified with the space
o0 o0
H* = {¢ = ¢nen: y APe2 < oo},
n=1 n=1
endowed with norm -
161156 := D AP on.
n=1
The space H™# is monotonically increasing in 8 because the embedding H—#> < H—#
holds for ;1 > B> > 0. The Hilbert space H?, B € R, is said to be a scaling of L2().
For r > 0 and p € [1, +00), denote by W"?(L2) the fractional Sobolev space (see,
e.g., [4,5]). Let H"(Q) = W"2(RQ). Then, we have the embeddings between Sobolev
spaces, Hilbert scales, and Lebesgue spaces as follows.
Lemma 2.1 ([3]). The following statements hold.
@@ LP(Q)— H"(Q) — H if{-% <r=<0.p> 2%
(b) H" < H"(Q) = C*(QUIQ) if{r > L v=r—4%)
(¢) H" — H"(Q) — L?(Q) if

{r=%,1§p<oo} or {0§r<%,1§p§d2_d2r}.
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2.2. The auxiliary equations

Consider the following scalar integral equations:

s)+ puld =s)() =1, t >0, 2.1
r(t)+ p( *r)@) =1(@), t>0. 2.2)

The existence and uniqueness of s and r were analyzed in [25]. Recall that the function
[ is called a completely positive kernel iff s(-) and r(-) take nonnegative values for every
1 > 0. The complete positivity of / is equivalent to that (see [2]), there exist @ > 0 and
k € LL_(R™) nonnegative and nonincreasing which satisfy a/ + [ * k = 1. Particularly,
the hypothesis (PC) ensures that / is completely positive.

Denote by s(-, u) and r(-, i) the solutions of (2.1) and (2.2), respectively. As men-
tioned in [30], the functions s(-, ) and r(-, ) take nonnegative values even in the case

1 < 0. We collect some additional properties of these functions.

Proposition 2.2 ([12,30]). Let the hypothesis (PC) hold. Then, for every u > 0, s(-, ),
r(-,p) € LY (RY). In addition, we have the following.

loc

(1) The function s(-, ) is nonnegative and nonincreasing. Moreover,
t
s(t,u)|:1 + u/ l(‘L’)d‘L’] <1 Vt=>0; 2.3)
0

hence, if | & LY(RY), then lim,_, o s(¢, 1) = 0 for every 1 > 0.

(2) The function r (-, ) is nonnegative, and one has
t
st = 1= [ r@pde=kerpo. 120 24
0
50 fot r(t,pydt < p~ 'Vt >0.Ifl ¢ L"(RY), then

/ rrde = uot
0

for every u > 0.

(3) Let v(t) = s(t, W)vo + (r(-, ) * g)(t); here, g € L\ (RY). Then, v solves the
problem

d
S lex 0 —vo)l(®) + po(r) = g(1). v(0) = vo.

We now recall a Halanay-type inequality established recently in [11].

Proposition 2.3 ([11]). Assume that, for a given A > 0, there exists a constant C ,f such

that
st =p1. 1) _

lim sup = Cy

t>+00  S(t, 1)
forany A € [0, A].
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Let y be a nonnegative continuous function on [0, +00) such that

t
y(t) = s(t,a)y(0) + / r(t —t,a)b(v)y(r —p(r))dz, t>0,
0
y(0) =(0), 6=0,
where a > 0, b and ¢ are bounded functions. Then, for all numbers [t such that

0<pu<a—Cllimsupb(1),
t—>00

there exists a positive constant C (i) independent of ¢ such that
y() = C(u)s(t, p) sup lp(®)] V1 =0.
<0

Using the last result, we prove the following version of nonlocal Halanay inequality
for our stability analysis.

Lemma 2.4. Let A, o, and B be positive numbers such that
A>a+ BC ,f .

Assume that v is a nonnegative continuous function on [0, +00) satisfying

t

v(t) < s(t, A)v(0) + / r(t —t,)[av(t) + Bv(r — p(r))]dzr, t >0,
v(0) =), 06< 0.0 (2.5)
Then, for each number |1 such that
0<p<A—a—pBCr,
there exists a constant C (i) > 0 such that

v(r) < C(p)s(t, 1) sup lp(@)] Vi =0. (2.6)
<0
Proof. Denote by w(z) the right-hand side of (2.5) for ¢t > 0 and w(§) = @(§) for £ €

[—%,0]. Then, v(¢) < w(¢) for all ¢+ > —h. In addition, by Proposition 2.2 (3), w(-) is the
solution of the equation

%[k * (w—v(0)] + Aw(t) = av(t) + Bv(t — p(t)), t>0.
It follows that

d
e (w—v(O)]+ A —w) = a@) —w) + vt —p(). >0
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Now, using Proposition 2.2 (3) again, we obtain

t

w(t) = s, A —a)v(0) + /0 r(t —t,A —a)a((r) —w(r)) + fv(t — p(r))ldt
<st,A—a)v0)+ 8 /Ot rit —t,A —a)v(r — p(r))dr,
thanks to the positivity of r (-, A — &) and the fact that v(t) < w(z) for t > 0. This implies
v(t) <w() <sit,A—a)vg+ B /: rt —t,A —a)v(t — p(r))dr,
and then, (2.6) follows thanks to Proposition 2.3. The proof is complete. ]

2.3. Resolvent operators

We now define the following families of operators:

S@) =) st A (- en)en, >0, .7
n=1

R(1) = Z r(t. ALY (- en)en, 1> 0. (2.8)
n=1

Here, we use the notation (-, -) for both the inner product in L?(£2) and the dual pair
(s )u-s ms for some f > 0, if no confusion arises.
We show some basic properties of these operators in the following lemma.

Lemma 2.5 ([3]). Let {S(?)}:>0 and {R(t)} ;>0 be the families of linear operators defined
by (2.7) and (2.8), respectively. Then, the following statements hold.

(i) Forv € HC then, we have
IS vllme < s@ A vlne. 2.9)
(ii) For g € C([0, T]; H") then, we have R x g € C([0, T]; H?); here, v = 0 —
y(m+ 1) and n € (0, 1). In addition, we have

t 1(t — 2
Rl = ([ i D elad) . o)

(iii)) Forg € C([0,T]; H°™Y) then R x g € C([0, T'|; H?). Moreover, one has

nR*mmmos(Ara—nAbmam@ﬁdﬂf

In what follows, we use the notation u(¢) for u(z,-) and consider u as a function
defined on [0, T'], taking values in the space H? for some 8 € R.
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3. Solvability and stability results
In order to deal with the problem (1.1)—(1.3), we make the following assumption on the
nonlinearity.

Assumption (G). Suppose that the nonlinearity function G induces the mapping G :
H° x H° — H" witho > 0,v =0 — y(1 4+ n«) <0, n« € (0, 1), such that G(0,0) =0
and

1G(u1,v1) = G(uz, v2)|lmr < L(r)(lur —uzllme + [[vi — v2lme) (3.1

for each r > 0 and for all u;, v; € H? such that ||u; ||ge <7, ||vi||lme <r,i € {1;2}; here,
L(-) is a nonnegative function.
As stated in [12], we have the following definition.

Definition 3.1. A functionu € C([—h, T]; H?), o > 0, is said to be a mild solution to the
problem (1.1)—(1.3) on [—h, T] if and only if
u(s) = ¢(s) fors € [—h,0]

and
t
u(t) = S(t)p(0) + / R(t —1)G(u(r),up(r))dtr fort €[0,T].
0
If T can be arbitrary large, then the solution is said to be a global solution.

In what follows, we use || - ||5,00 to denote the supremum norm of a continuous func-
tion defined on a compact interval taking values in H°.

Theorem 3.1. Let ¢ € C([—h,0]; H?) and the assumption (G) hold. Suppose that

limsup L(r) = L«

r—>0

with
16L2(1 — ) ' + D'™(T) < 1. (3.2)

Then, there exists r« > 0 such that if

1
lollo,oo < 57'*,
the problem (1.1)—(1.3) has a unique mild solution on [0, T] satisfying
u@®lme < r«.

Proof. Foru € C([0,T]; H?) and ¢ € C([—h, 0]; H?), denote by u[¢] the function given
by
u() ift >0,

ulel0) = {go(t) if —h<t=<0
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Let
€ = {u e C(0.T:H?) : u(0) = ¢(0)}

and
uplpl(r) = ulpl(z — p(r)), 7=0.
We make use of the Banach contraction principle for the mapping defined as follows:
M:Cy, = €y,

t

Mu](t) = S(t)p(0) +/(; R(t —1)G(u(r), uple](r))dr fort [0, T].
Due to condition (3.2), we can choose a number & > 0 such that
16(L% + &)1 —n) " (1 D'7™(T) < 1. 3.3)
By the formulation of L, there exists a number r, > 0 such that
L) <L2+¢c Vre(0r

Let B,, be the closed ball centered at the origin with radius 7 in €y. We will derive some
estimates for M[u] with u € B,, and

1
lello,oo < 5"*'
Firstly, in the light of Lemma 2.5 (ii) with g(¢) = G(u(t),u,[¢](t)), we have
IR * G, up[9])) () o

< tl(t;":) 2
B /o (Ix D)™ (t —7) 1G @ (@), uple)() - d

N
< 2/0 m@i + &) ([u@ e + luplel (@) 1Fe)d T

I

< 4(Li + 8)rf/(; —(l 1) (0) T

N

<4L2 4 &)1 —n) N1 * DT < %

Here, we used (3.1) and (3.3). Using the formulation of M, we see that

IM[u]() e < 218 (O)@0) 3o + 2IIR * G, uple]) (0)[3e
2
<2[lgll3 o + % <r; Viel0,T]

That means
M[B;,] C By,.
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It remains to show that the mapping .M is a contraction map on B,, . Indeed, let u,v € B,, .
Then, employing Lemma 2.5 (ii) and (3.1), we get

1M [] (£) — MV () Fyo

t (¢t —
< [ o 16wl = GO, vl ) d

t 1(t —
=2 [ s+ 9 ~ 0@ + uplel(0) = vl o)

7)
l(t)
<2003+ ) = vl + sl ~ el [
(1% )!=1(T)
=412 o) v
1
= glu—vlee Vielo.T],
thanks to (3.3), which implies the contraction of M on B,,. The proof is complete. ]

In the case G (u, u,) takes values in H” 7 instead of He—7(+1) we are able to prove
that the solution of (1.1)—(1.3) exists globally and is asymptotically stable.

Theorem 3.2. Assume that G : H° x H® — H°~Y obeys the conditions
G(0,0) =0, |G(u1,v1) — G(uz, v2)llme— < L(r)([ur —uzllme + [lv1 — v2/lme)

for all u;,v; € HY satisfying ||u;llme < 7, [|villme < r, i € {1;2}, where L(-) is a non-
negative function such that

A2
L, = limsup L(r) < (-1) . (3.4)
r—0 8
Then, there exists § > 0 such that for any initial datum ¢ with ||¢|¢.c0 <, the problem
(1.1)=(1.3) has a unique global solution. Furthermore, if | ¢ L'(RY) and

1

L, < %(1 i{c,f)z’ (3.5)

then the obtained solution is asymptotically stable.

Proof. We first look for § > 0 and r > 0 such that

*M[Er*] C Er* for |¢]lg,00 < 6.

In view of assumption (3.4), one can take ¢ > 0 and r, > 0 such that

Vv 1

L(r) < L«+e=< (%‘)2 Vr e (0,14 (3.6)
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Then, for u € By, and [|¢]|s.00 < 7+, We get

[ M[u](t) 1240
<2|IS1)¢(0) |3 + 2[R * G (u, uplo]) (1)l|3

t
< 2s(t, A))?1l9(0) I3 + 2/0 r(t = T ADNG (). uplel () 1o d T
t
< 2s5(t, A))?1l9(0) I3 + 4(Ls + 8)2/0 r(t — 7. A (@) e + luplel(0) o) T
t
<25(t. A)*@l3 00 + 8(Lx + a)%f/ rt —t,AN)dr.
0

Now, using the properties of the relaxation functions stated in Proposition 2.2, we have

[Mu]O)lIFe < 25 A @12 o0 + 8(Lu + &)2rZAT7 (1 — s(t. AY)
= 25(t, AD@llZ 00 — 4(Lx +&)°r2AT"1 + 8(Lx + 8)%rZA]"
<8(L« +&)?rZr,",

provided that
lolloco0 < 2(Lx + 8)r*)k1_”/2,

Taking (3.6) into account, we obtain

M) () fge < rZ fort = 0and [[p]loe0 <

for
§ = min {r*;Z(L* + s)r*)&l_y/z}.

This implies M[B,,] C B,,. In the next step, we show that .M is a contraction mapping
on B,,.Foru,v € B,,, one gets

IME)(E) — MI1O) e
< [[ 0= ADIGE )0 ~ G0 ol ) s
<2 [ 0= R L+ P 0~ v e + sl o]0
< A(Le o=l [ 7= e = 4L+ ol
< %Hu —v[lZ Yi>0,

which implies the contraction of M. We conclude that the problem admits a mild solution
on [0, T']. Since the assumption of the theorem does not depend on 7' > 0, the obtained
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solution is global. We now testify the uniqueness. Let u, v be solutions of (1.1)—(1.3).
Then, there exists R > 0 such that ||u(?)| go, ||v(¢)|lme < R for¢ > 0. Hence,

lu(2) = v(©) 5o

S/O r(t =, ADNG (@), uplpl(r)) = G (@), vol@l () I Fo—d T

t
< 2/0 r(t — . A LR(Ju(x) — v() |13 + uplel(r) — vole](0) |30 )d T
for all # > 0. Noting that

uplel(t) = vplel(r) = 0, forz — p(z) <0,

we have
e (2) = v(@) 1o

52/0 r(t =t ADLR?(Ju(®) = v(@)lfge + sup [lu(s) — v(s)lfgo)d

s€l0,7]

54L(R)2f’r(t—r,x¥) sup. [u(s) — v(s) | B d .

0 s€l0,7]
Observing that the last integral is nondecreasing in ¢, we get
t
sup |lu(s) — v(s)||%lg < 4L(R)2/ r(t —t,AY) sup u(s)— v(s)||ﬁgdr.
s€[0,¢] 0 s€lo,7]

It follows that supge(q 4 [|u(s) — v(s)||me = O for all # > 0, thanks to the Gronwall-type
inequality established in [12]. This ensures the uniqueness.

In the final step, we prove that the obtained solution is asymptotically stable, pro-
vided (3.5). assumption (3.5) enables us to take ¢ > 0 such that

4Ly +8)*(1+CP) < AY. (3.7)

Let % be the solution of (1.1) with respect to the initial datum ¢ such that ||@||ge < 8.
Then, ti € B,,. Moreover, for t > 0, we have

Ii[@1(6) — ule) ()1} < 2526, A7) [6(0) — p(0)1 o
+2 fo r(t — T ADIGEEG)(1). 11,[5](2)) — Gule](r). uple] () |- d T
< 25(t, A))1$(0) — (0) 1o

+4(L*+8)2/0 r(t = AD(1E[@)(0) —ul@](D)lIfgo + 11 [8)(1) —u, el (D) | o )d 7.

Denote
v(t) = a[@] (1) —ulpl(®)llf. ¢ = —h.
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Then, the last estimate reads
t
v(t) < 2s(t,)k’1/)v(0) +4(Ly + 8)2/ r(t— r,k’ll)[v(r) +v(t — p(r))]dz, t=0.
0

Due to (3.7), one can apply Lemma 2.4 to get

v(t) < C(u)s(t,u) sup v(r), t>0
t€[—h,0]

for0 < pu < AV —4(L« +¢)2(1 + C,f); here, C () is a positive constant.
Since ¢ L'(R™), we get s(¢, 1) — 0 as t — oo, which completes the proof. |

4. Holder regularity result

We first recall some notions related to the regularity of the resolvent families. For [ €
L} (R¥), we denote by / the Laplace transform of /.

Definition 4.1 ([28]). Let/ € L! (R¥) be a function of subexponential growth, i.e.,

loc

o0
/ [[(t)|e ¥ dt < o0
0

for every ¢ > 0.

* Suppose that f()L) # 0 for all Re(A) > 0. For § > 0, [ is said to be 6-sectorial if
larg (1) < O for all Re(X) > 0.

» For given m € N, [ is called m-regular if there exists a constant ¢ > 0 such that
AT )| < c]l(A)] forallRe(A) >0, 0 <n <m.

In this section, we replace (PC) with a stronger one to get the differentiability of the
resolvent family.

(K) The assumption (PC) is satisfied with [ being 2-regular and 0-sectorial for some
0 <.

Lemma 4.1 ([12]). Let (K) hold. Then, the resolvent family S(-) is differentiable on (0, 00)
and the estimate

M
IS'O1 = —. 1 €(0,00), 4.1)
hold for some M > 1.

For given positive numbers g, 7, r, and 1 € (0, %), denote

tM|u(f) — u(t
B}(‘T;tYr = {M (S 8(” : ”u”J,oo < ry; sup || (2 EI)”HU < r}.
0<t<i<T ()]
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Denote a A b = min(a; b). Let

£ = pOI" At = p()]"

£,(t, 1) = — —,
(1) i —t + p(t) — p(D)|"
0 o
.0 =F"p
- 1 1 -
W(t,t) = — + = 0<t<t.

01, 1)2  L,(1,0)2

Theorem 4.2. Let the hypothesis of Theorem 3.1 and (K) hold. Then, the obtained solution
to the problem (1.1)—(1.3) is Holder continuous on (0, T), provided that

"I(D)W(t —1,f — 1)

Ky :=6L% su Et,fZ/ dt <1,
: O<t<?§T .5 0 (I )m™(z)
~ I(7)
Ky = Su Et,t2/ ————d1 < 00,
S S AT Y

(@) — (D) llae < LolT —7|" VT,7€[-h,0]
where 1 € (0, %) and L, is a positive constant.

Proof. We will show that the solution map M is a contraction on ]Bf;f’r for a suitable r > 0
and r taken from Theorem 3.1. It suffices to show that M[B;.".] C B;.",. Let

dg u)(t.7) = G (@), up[p)(D)) — Gu(t), uplel(t)) Iz

foru e €, v=0—y(1+n*),and0 <t <7 <T.
Assume that u € ]B%f;f’r; then, we have

dg () (t.7) = 2(La + &)* (@) —u @l + uple]@) —uple] ). (4.2)
where ¢ > 0 is adjusted such that

1)WYt —1,f—1)

Tx (D) dr < 1.

k1(e) := 6(Lsx + €)% sup Z(t,f)zf
0

0<t<i<T
Case 1. t — p(f) > 0and t — p(t) > 0. We see that
ot D upl@) (@) = upl@)(D e = Lo, D2 Iu(@ = p(@)) —ult — p()) e < 12,
thanks to the formulation of By.”, and £,,.

Case 2. t — p(f) > 0and t — p(t) < 0. One observes that

i = p@|" At = p(0)]
[t —p@)|"

Lo(t,1) < <1.
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So, we have
o(t. D) upl@l (@) — up[@)(1) e < lu(@ — p(7)) — ¢(t — p(1)) |0
< 2||u(@ — p®)lIfge + 2l — p() I < 4r3.
It is obvious that the same estimate follows in the case 7 — p(f) < 0 and ¢ — p(t) > 0.
Case 3.  —p(f) <0and ¢ — p(t) < 0. Clearly,
ot D2 [pl D) = uplel (D)3 = Lot D0 (F = p(E)) — 9(t — p(t) o
< Lyli = p(D[" At = p(0)|" < Lyh.
Summing up, we get
o, D)2 [upl)(D) — uplp)(0) Ife < max{r®;4rZ; Loh}. (4.3)
Combining (4.2)—(4.3) yields
d u)(2,7) < 2(Lx + &) ([[u(@) — u(@®) e + luple] (@) —uole] (@) l1fre)
max{r?;4r2; Lyh}
Lo(t,1)?
r? N max{r?; 4r2; L,h}
£t,1)? L,(t,1)?

<L+ e)z(llu(f) ) +

< 2Lat 8)2( 44)

We now testify M[u] € B;.". by showing that
L, D) Mu]@) — Mu]@)|me <r VYO<t<i<T.
Indeed, it follows from the formulation of M that
Mu](7) — M[u](t)
= [S(@) — S(®)]u

+/0 RO[G( — 1), upl0](f — 1)) — Gu(t — 1), uplpl(t —1))]d7

+ / R(T)Gu(f — 1), uplpl(f — 7))d.
Employing Lemma 2.5 (ii), we have
IM[] () — Ml < 31[S@) = SO)]e(0) |

! I(7) -
+ 3/0 de(u)(t —1,t —1)dt

r Ii - >

=31 + I + I3).
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For I, we see that

g 2 fdt
I S'(D)p(0) || aod MOl | | —)?
v= ([ 15 @eoede) < mloo ([
bd 2
<200 (1 (140 )) = MO - @)

where Lemma 4.1 and the inequality In(1 + a) < % for a > 0,71 € (0, 1) have been
utilized.
Regarding I, we employ (4.4) to get

2o [t l(v)dt
I, <2(L« +8)°r /0 (1 * D (0)(t — 1,7 —1)?

l(t)dt
(Dt — 1,1 —1)%

t
+2(L+ + €)? max{r?; 4r2; Lwh}/o axim

Choosing r > max{2ry, /Ly,h}, we have

t
I < 2(Ly + £)2r2 / 1©) ! ! Jdr. (4.6)

o (LxD)™ () L@t —1,f—1)2 + Lot — 1,1 —1)2

Concerning /3, one has

co ) .
< 2L 492 [ (= e + uglel - Dl
(o)

< 4(Ly + )*r? 4.7)

A=
It follows from (4.5)—(4.7) that
£, 02| M) (F) — Mu](D)Ifge < 3M>[l@O)Ifge + k1(e)r? + 12(Ls + &) kar .
Since k1 (e) < 1, one can take r > 0 large enough such that
6, D | M@ = Mul()je <7* VO<t <i<T,

which ensures that M[u] € B;.",. The proof is complete. L]

5. Application to nonlocal Fokker—Planck equations with nonlinear
force fields

This section is devoted to a demonstration of the obtained results in a model of nonlocal
Fokker—Planck equations.
Consider the problem (1.1)—(1.3) with

Gu,u,) = ﬁ(up)-Vu, 6D
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where F = (f1,--.. fa) is a vector field depending on the history state u,. Moreover, let

k() = g1-a(t) + pg1-p(1), O0<a<pf <1, p>0,
p(t) =qt +h, qe€(0,1), h>0.

In this case, equation (1.1) is a multi-term fractional diffusion model with the delayed
term being of pantograph type.

Equation (1.1) with G given by (5.1) becomes a nonlocal Fokker—Planck model, where
F is the force field subject to a feedback control. In this circumstance, the controller
requires an interval of delayed time to sense information. The constitution of fractional
Fokker—Planck equations can be found in [23,24] as a useful approach for the description
of transport dynamics in complex systems which are governed by anomalous diffusion
and non-exponential relaxation patterns. For recent achievements in qualitative study and
numerical analysis for nonlocal Fokker—Planck equations, we refer to [9, 14,17, 18,26].

5.1. Holder regularity
Assume that f; : R — R, 1 <i < d, obeys f;(0) = 0 and there exists L > 0 such that
|fi(Z)— fi(z)]| < LflzZ—z| Vz,ZeR.

Letl <o < %,n* €(0,1),andv=0—y(1 4+ n«) € (—%,0).Then,forvj,ﬁj eH, 1<
Jj <2and g« = %,we have

[G(v2,02) — G(v1,01)]|Lax

d d
< Z | (fx(D2) = fr(01))0x, v1|lLax + Z | fk (D2)0x, (v2 — v1)||Lax

k=1 k=1
d d

<Lrp Y @2 = 50)0gv1llLes + Lr Y 19205, (v2 = v1) | s (5.2)

k=1 k=1
Letp = —% = )'(I-FdW Since qL* = % + %, applying the generalized Holder inequality

for (5.2) gives
d
1G(v2.%2) = G(v1. 51)llLa= < LF Y 52 — 1llLr 19,0122
k=1
d
+Lr Y [52llelldx, (v2 = v1)]22
k=1

< Lr(|v2 = 01lzellvillm + 10202 [lv2 — villm)-

Let p < p* := di‘;g. Then,

H c LP"(Q) C LP(Q).
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This implies

|G(v2, U2) — G(v1, U1)|lLex < C(||V2 — V1llmo Vi g + [102]lme [v2 — villm),

where C > 0 is a generic constant depending on L r and constants in Sobolev embeddings.
Therefore,

|G (v2, 2) — G(v1, V1) |lmy < C(||v2 — U1 llme |villme + 192 |me |v2 — villme),

thanks to the fact that H” C L9* and H® C H!. This allows us to state that assumption
(G) is fulfilled with L(r) = Cr and

L, =limsup L(r) = 0.
r—>0
We are now in a position to verify the technical conditions imposed in Theorem 4.2.
Since k is completely monotonic, (PC) is satisfied due to [8, Theorem 5.4, p. 159] (see
also [25]). In addition, the associated kernel / is nonincreasing (see [2]) and admits the

Laplace transform as
~ 1
I(A) = ———= VReA>0.
A%+ uAp

Hence,

— 1 1
I*I(A)ZA“+1+V,M;+1 ~ R as A — 4o0.

Using the Karamata—Feller Tauberian theorem in [7, Theorem 3, p. 445] with the inter-
change between 0 and oo, we get

th A1
— - )~
wL(B+1) wI(B)
It was testified in [12] that the kernel / is 2-regular and %—sectorial. So, the assumption

(K) takes place.
For given delayed function p and 5 € (0, %), we have

1x1I(t) ~

ast — 0. 5.3)

(Lt [t ) e S e ey
A —q)1fi—1n | —t|n ’ 1—q°
(5.4)

Lo(t, 1) =

Denote

(Wt — 1,1 —1)
(1 * 1) (7)

- -, t I(7) 1 1
= {(t,1) /0 1 * 1) (0) [ﬁ(l—f,f—f)z + gp(t—t,f—‘[)21|d‘[_

At f) = Z(t,f)zf
0
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Then, our aim is to demonstrate that supy ., ;<7 A(7, f) < o0o. One has

t2n ! [(T)|f —t]*7

|t — )27 /0 (L* D) (2)(t —7)*"

N 120 /, I(x)|7 — ¢

[t—1>" Jo (1% )1 (0)(|7 — T —h|" A |t — T — h|T)2

A, 1) =

[ (@)
- || e

(. T
o (I1xD)™(@)(jt —T—h|" At —T — h|7)2
= A1(t,7) + Aa(2, 1),

thanks to (5.4). According to (5.3), we get

) t I(7) ‘
Ai(t,F) =" d <t2"/ U=nIB=1(; _ g)=214
1(8) A(numma—ﬂ%’” ) (¢ 7y dz

SPGB * 81—2n(t) = 12" gy p+1-29 (1),

where the property g, * &y, = &y, +5, Was employed and the notation A < B means
A < mB for some m > 0. So,

A (t,7) S tUmIB <7018 w0 <t <f<T
Estimating A, (¢, 7), we assume that T < h. Then,
i—t—h"Alt—1—h|"=(t+h—0)".
It follows that

= 2n ! [(r)dt
A (2,1) /(; (1L x D (t)(r + h— 27)217
T2 /‘t I()dt T2”(1 * [)1=1(T)
(h T)2n Jo (Lx ) @ = (1 —n4)(h—T)?"

Vo<t <t<T.

We have shown that supy_, .z<7 A(?, ) is finite. It remains to test the finiteness of

()

7\ - — 2
O, 1) := £(t, ) i

dt, 0<t<t<T

Using the mean value theorem, we get

- e I(t + 0(f — 1))
O, t) ;= L(t, 1)~ (t — 1) Ax D)1 0G-1) for some 6 € [0, 1].
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Since the function ¢ — %,t > (), is nonincreasing, we have

- o~ 1(t) - _ 1(1)
207 _ —2ng _p\l=29__ VS
O, t) <Lt 1)(t t)(1 D) <M1t —1) a0
In view of (5.3), one has
£21() pr 2+ =naB=1 a5t 5 0.

(Lx D)) [uT(B)] 7
Thus, O(t, 7) is finite if 27 + (1 — 74)B8 — 1 > 0. In this case, we obtain the Holder regu-
larity of solution to (1.1)—(1.3).
5.2. Asymptotic stability

We consider a special case of the nonlinearity as follows:

Gu,up) = F*(lupllrr) - Vu,

where F* = (fl*,...,fd*), f;¥.1 =i < d, are smooth functions and 1 < p < dz—fz.

Obviously, G(u, u,) belongs to L?(Q) as long as u € H'. In this case, the force field F*
is of nonlocal type.
Then, for v;, 3; € H' such that ||vj |lgn < 7, [|3;]lm <7, j = 1,2, we observe that

19jllr@) < Cpll¥j e for Cp >0,

d
1G (2, 52) = Gvr, 5)llz2 < D | £ UIB2lle) = £ 11 llo)| 11l
k=1

d
+ | UB2llo) 192, (v2 = v1) [ 22

1

k=
d
= Z Ck(r)|||52||Lp - ||51||LP’||3xkvl||L2
k=1

d
+ Y D)9 (02 = v1) |2,
k=1

where
Ce(r)= sup |fF@I. Di(r)= sup [fF(@)I.

0=<z=<Cpr 0<z=<Cpr

Then,

|G (v2, V2) — G(vy,01) |12 < C(r)|[v2 — V1ller V1l + D(F)llv2 — villm
< C(r)r|v2 = vrllgr + D()llvz — villgms
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thanks to the embedding H'! C L?(2), where
C(r) = max {Cr(r)}, D(r) = max {Dg(r)}.
1<k<d 1<k=d
Therefore, the hypotheses of Theorem 3.2 hold with

y=1, o=1, L(r)=max{C(r)r;D(r)}, L.«= D(0)= 1r<I}€ai(d{|fk’k(0)|},

which ensure the asymptotic stability of solution to (1.1)—(1.3) in this setting.

Remark 5.1. (i) It should be noted that our approach is able to work with various cases of
kernel function satisfying (PC). The case k(¢) = g1—«(t), o € (0, 1), is well known. We
have demonstrated, in the last section, our results in the case k(¢) = g1 (t) + g1 (),
0<a < pf <1,u>0,corresponding to the multi-term fractional diffusion equation. Recall
that, the assumption (K) is imposed to ensure the differentiability of S(¢) for # > 0. This
assumption is fulfilled in the important case, namely, the tempered fractional diffusion:

k(t) = gi_a(®)e™¥, ae€(0,1),y>0.

In this case, we get /(1) = A~1(X + y)'~® and it was shown in [3] that / is 7 -sectorial
and 2-regular.
(ii)) We now mention another case of kernel function:

k(t) = gg(t)Eq p(—wt*), O0<a<p <1 w>0,

where E, g(-) is the standard Mittag—Leffler function. This case is referred to as the

weighted fractional diffusion [22]. In this case, one has I L) = Aﬁjﬁ"ﬁ (see, e.g., [27]).

Let ReA > 0. Then,

b4
larg(A” + w)| < |arg(A%)| = alarg(A)| < 7
thanks to the fact that w > 0. In addition,

e fraamp )| = e = (1 4+ o= p)laneh) < 5

The last estimates imply that |arg(i (A)| < %, which guarantees that [ is Z-sectorial. We
are in a position to check that / is 2-regular. By direct computations, we have
aw

Al = (/3 T w)i(x),
22170 = A2TY (L) =200 ()
_ (5 1 xaaj:w)zi(“ - 2(ﬁ —1-

(1—a)A* +w\»
+ (,3 —1 —Olww)l(k)

[040)] ~
l(A
A“w)()
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Since ReA > 0, one gets

A+ o] >0, |[(1-a)A*+ o] <|A*+ol.
Thus,

MM < (1 =B+,

D27 < (1= B +a)® + 31— B+ )],

which implies that / is 2-regular.
(iii) Finally, let us consider the case

1
k0 = [ galda 150,
0
which is referred to as the ultra-slow diffusion. In this case, we get the explicit formula

for [ as follows:
o0 e—StdS
I(t) = [ , >0,
0 1+

and [ 1) = }L“_Al It was shown in [28, Theorem 2.1, Example 2.2] that the resolvent S ()
admits an analytic extension on the sector (0, 0) = {A € C : |arg(A)| < 6} for some
0 < m. In particular, we obtain the differentiability of S(¢) for ¢ > 0, regardless of testing

the assumption (K).
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