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A Logvinenko–Sereda theorem for vector-valued
functions and application to control theory

Clemens Bombach and Martin Tautenhahn

Abstract. We prove a Logvinenko–Sereda theorem for vector-valued functions. That is, for an
arbitrary Banach space X , all p 2 Œ1;1�, all � 2 .0;1/d , all f 2 Lp.Rd IX/ with suppF f 2

�diD1.��i=2; �i=2/, and all thick sets E � Rd , we have

k1Ef kLp.Rd IX/ � Ckf kLp.Rd IX/:

The constant is explicitly known independent of the geometric parameters of the thick set and the
parameter �. As an application, we study control theory for normally elliptic operators on Banach
spaces whose coefficients of their symbol are given by bounded linear operators. This includes
systems of coupled parabolic equations or problems depending on a parameter.

1. Introduction

The paper is split into two parts. The first part concerns a generalization of the classical
Logvinenko–Sereda theorem to vector valued functions. The second part then studies an
application to control theory.

The Logvinenko–Sereda theorem goes back at least to the papers [42, 43], and has
been proven independently in [27, 34]. In order to formulate its result, we introduce some
notation. Let � 2 .0; 1� and L D .Li /diD1 2 .0;1/

d . A set E � Rd is called .�;L/-thick
if E is measurable, and for all x 2 Rd , we haveˇ̌̌̌

E \

� d¡

iD1

.0; Li /C x

�ˇ̌̌̌
� �

dY
iD1

Li : (1.1)

Here, j�j denotes the Lebesgue measure. For � 2 .0;1/d , we use the notation

…� D �
d
iD1.��i=2; �i=2/ (1.2)

for the parallelepiped with side lengths �i , i 2 ¹1; 2; : : : ; dº. For f 2 Lp.Rd /, we denote
by F f its Fourier transform. The results of the above-mentioned papers can be summa-
rized as follows.
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Theorem 1.1. For all p 2 Œ1;1�, all � 2 .0;1/d , all � > 0, all L 2 .0;1/d , and all
.�; L/-thick sets E � Rd , there exists a constant C � 1 such that for all f 2 Lp.Rd /
with supp F f � …�, we have

k1Ef kLp.Rd / � Ckf kLp.Rd /: (1.3)

Thus, the result compares the overall Lp-norm of the function f with its norm only
on a thick subset E � Rd . The papers [27, 34] also show that the constant C can be
chosen as C D c1ec2j�j with some positive constants c1 and c2 depending only on the
space dimension and the geometric parameters � and L. This result has been significantly
improved in [29, 30], in which it is shown that C can be chosen as

C D
� �
K

�K.1C��L/
with some positive constant K depending only on the dimension, which appears to be
optimal. Subsequently, the classical Logvinenko–Sereda theorem has been adapted to var-
ious settings, e.g., to L2-functions whose Fourier–Bessel transform is supported in an
interval [23], or to functions on the torus in [16].

In the case p D 2, the condition supp F f � …� is implied by f 2 ranPp
�
.��/,

where �� denotes the negative Laplacian and Pp
�
.��/ denotes the associated spectral

projector onL2.Rd / onto energies below
p
�. One can therefore ask whether Theorem 1.1

continues to hold if we assume that f 2 ranP�.H/ for a certain self-adjoint operator H
acting onL2.Rd /. This is indeed the case ifH D��g C V , where g is an analytic pertur-
bation of the flat metric and V WRd!R is analytic and decays at infinity, as shown in [31].
Moreover, the recent [15] provides a sufficient condition (a Bernstein-like inequality) for
f 2 ranP�.H/ such that inequality (1.3) with p D 2 holds for thick observation sets E.
Examples include the pure Laplacian, which is covered by Theorem 1.1, divergence-type
operators, and the harmonic oscillator.

In this paper, we generalize Theorem 1.1 to vector-valued functions f 2 Lp.Rd IX/
with values in an arbitrary Banach space X . It is formulated in Theorem 3.1. Let us stress
that the substantial novelty of Theorem 3.1 is that X may be of infinite dimension. In
particular, this allows to consider infinite-dimensional state spaces in our application to
control theory. This is the topic of the second part of our paper which we introduce in the
following.

We consider for T > 0 the linear control problem

@ty.t/C Apy.t/ D 1Eu.t/; y.0/ D y0 2 Xp
D Lp.Rd IX/; t 2 Œ0; T �; (1.4)

where X is an arbitrary Banach space, p 2 Œ1;1/, Ap is a normally elliptic differen-
tial operator in Xp , and where E � Rd is a thick set. We study null-controllability in
Lr .Œ0; T �IXp/ with r 2 Œ1;1�, that is, for all y0 2 Xp there exists a control function
u 2 Lr .Œ0; T �IXp/ such that the mild solution y of (1.4) satisfies y.T / D 0. A weaker
variant of this is approximate null-controllability. This means that for all " > 0 and all
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y0 2Xp , there exists a control function u 2 Lr .Œ0; T �IXp/ such that the mild solution y
of (1.4) satisfies ky.T /k < ".

Null-controllability for heat-like equations is well known in the scalar-valued case
X D C and p D r D 2, see, e.g., [18, 19, 21, 32, 36] for bounded regions � � Rd ,
and [8, 9, 28, 37–39, 47] for unbounded regions. We prove in Theorem 4.10 that for arbi-
trary (possibly infinite-dimensional) Banach spaces X , the system (1.4) is approximately
null-controllable if p D 1 and null-controllable if p 2 .1;1/. As a special case of our
result, one may consider, e.g., a system of n coupled parabolic partial differential equa-
tions (if X D Cn), or problems depending on a parameter (here X is a function space).
For example, our results apply to strongly elliptic control systems of the form

@ty.t/C .�Arr
>/my.t/CBy.t/D 1Eu.t/; y.0/D y0 2L

p.Rd ICn/; t 2 Œ0;T �;

where A; B 2 Cn�n are such that .�Arr>/m is strongly elliptic. For a related result,
we refer to [4], where controllability for finite-dimensional systems is studied using a
suitable Kalman rank condition. As another example, we consider the following setting:
for � 2 Œ0; 1�, let

A� D

dX
i;jD1

ai;j .�/@i@j

with ai;j 2 C Œ0; 1� and consider the parameter dependent linear control problem

@tz.t/C A�z.t/ D 1Ev.t/; z.0/ D z0 2 L
p.Rd /; t 2 Œ0; T �; (1.5)

where we view A� as an unbounded operator in Lp.Rd /. Concerning the question of
null-controllability, we remark that the control function v may depend on the parameter
�. Next, we reformulate this as a single linear control problem in Lp.Rd IC Œ0; 1�/. We
write ai;j 2 L.C Œ0; 1�/ for the multiplication operator given by f 7! ai;jf . Consider the
operator

A D

dX
i;jD1

ai;j @i@j

acting on Lp.Rd IC Œ0; 1�/. Under certain assumptions on the coefficients ai;j , the oper-
ator A is normally elliptic and equation (1.4) with Ap replaced by A and X D C Œ0; 1�

is well posed. Therefore, the parameter-dependent equation (1.5) can be rewritten in the
form (1.4) with, X D C Œ0; 1�, Ap D A, and y0 D z0 ˝ 1Œ0;1�. The thick set E � Rd in
equation (1.4) may be chosen as in equation (1.5).

For the proof of Theorem 4.10, we employ the classical equivalence between (approxi-
mate) null-controllability and final state observability for the adjoint problem. This follows
from Douglas’ lemma, see [14] in the case of Hilbert spaces, and [10–13, 17, 20, 24] for
its generalization to Banach spaces. The observability estimate is formulated in Theo-
rem 4.8. Its proof is based on the classical Lebeau–Robbiano strategy. For Hilbert spaces,
it goes back to the papers [26, 32, 33, 40] and was further studied, e.g., in [5, 6, 41, 46, 49].
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Recently, it has been adapted to Banach spaces in [7, 22]. The main idea of this strategy
is that a so-called spectral inequality and a dissipation estimate implies an observability
estimate. While the spectral inequality is provided by our vector-valued version of the
Logvinenko–Sereda theorem, the dissipation estimate is derived from representing the
semigroup generated by �Ap as a Fourier multiplier with an operator-valued symbol.

2. Preliminaries

The theory of vector-valued distributions was developed by Schwartz in [44, 45]. In [1],
this theory was applied to study vector-valued Fourier multipliers. Further results in this
direction can be found in [3,25]. It turns out that we cannot literally apply these results for
our purpose, we present in this section some basic properties of vector-valued distributions
and Fourier multipliers.

Let X be a Banach space with norm k�kX . We denote by D.Rd IX/, �.Rd IX/ and
E.Rd IX/ the spaces of X -valued test functions, Schwartz functions, and smooth func-
tions with the usual topologies, and by D 0.Rd IX/, � 0.Rd IX/ and E 0.Rd IX/ the spaces
of X -valued distributions, tempered distributions, and compactly supported distributions,
respectively. Note that F 0.Rd IX/DL.F .Rd /IX/, where F 2 ¹D ;� ;Eº. We denote by
OM .Rd IX/ the space of slowly increasing X -valued functions, that is, ' 2 OM .Rd IX/
if for each multi-index ˛, there exist constants C˛; m˛ such that

k@˛'.x/kX � C˛.1C jxj/
m˛ ; .x 2 Rd /:

For v 2 X and ' 2 D.Rd /, we denote by ' ˝ v the element of D.Rd IX/ given by

.' ˝ v/.x/ D '.x/v:

The set of these functions is called the set of elementary tensors. The set of finite linear
combinations of elementary tensors is dense in F .Rd IX/, where F 2 ¹D ;D 0; � ; � 0;E;

E 0;OM º.
In the usual fashion, we may extend the operations of differentiation, multiplication

by smooth functions and Fourier transform to the appropriate classes of distributions by
duality. In the case of the Fourier transform, this can be done as follows. We define for
z; x 2 Cd the Fourier character ez.x/ D eiz�x . Note that ez 2 E.Rd / and that z 7! ez.x/
is entire. We define the Fourier transform F W �.Rd IX/! �.Rd IX/ by

.F '/.�/ D

Z
Rd

e��'dx:

It is an automorphism of �.Rd IX/ with inverse given by

.F �1'/.x/ D
1

.2�/d

Z
Rd

ex'd�:



A Logvinenko–Sereda theorem for vector-valued functions and application 327

If f 2 � 0.Rd IX/, then we define the Fourier transform F W � 0.Rd IX/! � 0.Rd IX/ by

.F f /.'/ D f .F '/; .' 2 �.Rd //

and obtain an automorphism of � 0.Rd IX/.
If u 2 E 0.Rd IX/, i.e., u has compact support, then F �1u 2 E.Rd IX/. Thus, we may

define the inverse Fourier–Laplace transform L W E 0.Rd IX/! C1.Cd IX/ by

.Lu/.z/ D .F �1.ei Im zu//.Re z/:

By checking that the Cauchy–Riemann differential equations hold for Lu, it follows that
Lu is an entire function. It follows that if f 2 � 0.Rd IX/ is such that F f 2 E 0.Rd IX/,
then f can be extended to an entire function f W Cd ! X given by LF f . In particular,
f is analytic on Rd .

For i D 0; 1; 2, let Xi be a Banach space with norm k�kXi . By a multiplication we
mean a bilinear continuous map

� W X1 �X2 ! X0; .x1; x2/ 7! x1 � x2

such that
kx1 � x2kX0 � kx1kX1kx2kX2 :

In particular, we will be interested in the cases where

(i) X1 D C, X2 D X0 and � � x D �x,

(ii) X1 D X
0
2, X0 D C and x0 � x D hx0; xi,

(iii) X1 D L.X2; X0/ and A � x D Ax.

Note that the first two cases can be seen as special cases of the third case.
From [1], we infer that any multiplication gives rise to a unique hypocontinuous bilin-

ear map

B W E.Rd IX1/ �D 0.Rd IX2/! D 0.Rd IX0/; f1 � f2 7! B.f1; f2/

such that for all '1; '2 2 D.Rd /, x1 2 X1, x2 2 X2, we have

B.'1 ˝ x1; '2 ˝ x2/ D .'1'2/˝ .x1 � x2/:

Here, hypocontinuous means that it is continuous in each variable, and uniformly con-
tinuous if one of the variables is restricted a bounded set. Furthermore, the restriction
BjOM .Rd IX1/�� 0.Rd IX2/

is hypocontinuous as well. We write B.f1; f2/ D f1 � f2 in the
following.

Set D D �ir. Given m 2 OM .Rd IX1/, we define the Fourier multiplier

m.D/ W � 0.Rd IX2/! � 0.Rd IX0/; f 7! F �1.m � F f /:
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We note that in the special case of X0 D X2 D X , X1 D L.X/, we have

m1.D/m2.D/ D .m1m2/.D/;

with respect to the above multiplication �, we define the convolution �� of two elementary
tensors '1 ˝ x1 and '2 ˝ x2 (with '1; '2 2 D.Rd /, x1 2 X1, and x2 2 X2) by

.'1 ˝ x1/ �� .'2 ˝ x2/ D .'1 � '2/˝ .x1 � x2/;

where � denotes the usual convolution of scalar-valued functions. Theorem 3.1 in [1]
implies that �� extends to bilinear, hypocontinuous maps:

�� W �.R
d
IX1/ � � 0.Rd IX2/! � 0.Rd IX0/;

�� W D
0.Rd IX1/ � E 0.Rd IX2/! D 0.Rd IX0/:

Moreover, according to [1, Theorem 3.5], for 1 � p � 1, there is a third extension

�� W L
1.Rd IX1/ � L

p.Rd IX2/! Lp.Rd IX0/; .f; g/ 7!

Z
Rd

f .� � y/ � g.y/dy;

satisfying Young’s inequality

kf �� gkLp.Rd IX0/
� kf kL1.Rd IX1/

kgkLp.Rd IX2/
:

In the following, we will suppress the symbol � if it is clear from the context which
multiplication is being employed.

Combining [1, Theorem 4.1] and [1, Corollary 4.4], we obtain the following lemma.

Lemma 2.1. Let " > 0. Then, there exists C > 0 such that for all � > 0 and all m 2
W dC1;1.Rd IX1/ satisfying

kmkW dC1;1 C max
j˛j�dC1

sup
�2Rd

j�jj˛jC"k@˛m.�/kX1 � � <1;

we have
kF �1mkL1.Rd IX1/

� C�:

In particular, it follows from Young’s inequality m.D/ 2 L.Lp.Rd IX2/; Lp.Rd IX0//
with

km.D/k � C�:

Following [1, Theorem 2.3], we can define a hypocontinuous bilinear mapping Œ�; ��� W
� 0.Rd IX1/ � �.Rd IX2/! X0 by setting

Œf ˝ x1; ' ˝ x2�� D hf; 'i� 0.Rd /��.Rd /x1 � x2

for elementary tensors given by f 2 � 0.Rd /; ' 2 �.Rd /; x1 2X1; x2 2X2 and extending
by density. As before, we will suppress the notation of � when it is clear from the context
which multiplication is being employed. It follows that

ŒF f; '� D Œf;F '�I (2.1)
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i.e., the Fourier transform is symmetric with respect to this form. If f 2 L1loc.R
d IX1/ and

' 2 D.Rd IX2/, we have

Œf; '� D

Z
Rd

f .x/'.x/dx:

In the following, we specialize to the case X2 D X , X1 D X 0 and x1 � x2 D hx1; x2i.
Suppose thatm 2OM .Rd IL.X// and considerm.D/ W �.Rd IX/! �.Rd IX/. It is clear
that the symbolm0.��/ given by Rd 3 � 7!m.��/0 2L.X 0/ belongs to OM .Rd IL.X 0//.
Here, m.��/0 denotes the adjoint operator of m.��/. For any Banach space Y and f 2
� 0.Rd IY /, ' 2 �.Rd IY /, we set R' D '.��/ and define Rf 2 � 0.Rd IY / by Rf . / D
f .R /, where  2 �.Rd IY /. Using that F �1f D .2�/�dF Rf for f 2 � 0.Rd IX/, we
deduce from (2.1) that

Œm0.�D/f; '� D Œf;m.D/'�:

In particular, if f 2 Lp.Rd IX 0/, where 1 � p <1 and ' 2 D.Rd /, we deduceZ
Rd

h.m0.�D/f .x/; '.x//idx D
Z

Rd

hf .x/;m.D/'.x/idx:

We may therefore deduce the following result, which will be important when relating our
observability estimate to null controllability.

Proposition 2.2. Let q be such that p�1 C q�1 D 1. Let X be a Banach space such that
X 0 has the Radon–Nikodym property and 1 � p <1. Let m 2 OM .L.X// such that

kF �1mkL1.Rd IL.X// <1:

Then, m.D/0 D m0.�D/ 2 L.Lq.Rd IX 0// with

km.D/0k � kF �1mkL1.Rd IL.X//:

Before we proceed with the proof, let us recall that, as in the scalar case, we have the
convolution identity

F .f � g/ D F f F g; .f 2 L1.Rd IL.X//; g 2 Lp.Rd IX//:

This identity can be verified first on elementary tensors and then established in the general
case by a density argument. Thus, it follows from Fourier inversion, the above identity,
and Young’s inequality that

km.D/kL.Lp.Rd IX// � kF
�1mkL1.Rd IL.X//:

Proof. From the Radon–Nikodym property ofX 0, we have thatLp.Rd IX/0'Lq.Rd IX 0/
and

hf; giLq.Rd IX 0/�Lp.Rd IX/D

Z
Rd

hf .x/; g.x/iX 0�Xdx; .f; g/2Lq.Rd IX 0/�Lp.Rd IX/:
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In particular, if ' 2 D.Rd IX/, it holds that

hm0.�D/f; 'iLq.Rd IX 0/�Lp.Rd IX/ D hf;m.D/'iLq.Rd IX 0/Lp.Rd IX/:

Now, let .f; g/ 2 Lq.Rd IX 0/ �Lp.Rd IX/. Since �.Rd IX/ is dense in Lp.Rd IX/, we
can choose a sequence .'k/1kD0 2 �.Rd IX/N such that

k'k � gkLp.Rd IX/ ! 0; .k !1/:

Thus, m.D/'k ! m.D/g in Lp.Rd IX/ as k !1 and since

hm0.�D/f; giLq�Lp D hf;m.D/'kiLq�Lp C hm
0.�D/f; g � 'kiLq�Lp ;

it follows that
hm0.�D/f; giLq�Lp D hf;m.D/giLq�Lp ;

which proves m.D/0 D m0.�D/.
Let x 2 Rd . It follows that for .`; v/ 2 X 0 �X

hŒ.F �1m/.x/�0`; vi D h`; .F �1m/.x/vi D
1

.2�/d

Z
Rd

ei��x
h`;m.�/vid�

D
1

.2�/d

Z
Rd

ei��x
hm.�/0`; vid�

D h.F �1m0/.x/`; vi:

Therefore, since m.D/0 D m0.�D/, we obtain

kF �1m0.��/kL1.Rd IL.X 0// D k.F
�1m/0kL1.Rd IL.X 0// D kF

�1mkL1.Rd IL.X// � k;

and the result follows.

3. Logvinenko–Sereda theorem for vector-valued functions

Let X be a Banach space with norm k�kX . In order to formulate our main result, we recall
the notion of a .�; L/-thick subset E of Rd and the notation …� for the parallelepiped
with side lengths �i , i 2 ¹1; 2; : : : ; dº, cf. equations (1.1) and (1.2) in the introduction.
For f 2 Lp.Rd IX/, we denote by F f its Fourier transform, cf. Section 2.

Theorem 3.1. There exists a constant CLS � 1 such that for all p 2 Œ1;1�, all � 2
.0;1/d , all f 2 Lp.Rd IX/ with supp F f � …�, all � > 0, all L 2 .0;1/d , and all
.�; L/-thick sets E � Rd , we have

k1Ef kLp.Rd IX/ �

� �

CLS

�CLS.dCL��/

kf kLp.Rd IX/:
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In the case where X D C, this theorem was originally proven by Logvinenko and
Sereda in [34] and significantly improved by Kovrijkine in [29,30]. For further references
concerning the case X D C, we refer to the introduction. Let us stress that the essential
improvement of Theorem 3.1 is reflected in the (possible) infinite dimensionality of the
Banach space X . To this end, let us consider the following example.

Example 3.2. Let I be a countable index set, and consider for i 2 I the functions fi 2
Lp.Rd / with supp F fi � …� for some � 2 .0;1/. Thus, the classical Logvinenko–
Sereda theorem (i.e., X D C) applies to each fi separately. Now, we assume that the
pointwise supremum g W Rd ! R,

g.x/ D sup¹jfi .x/jW i 2 I º;

is in Lp.Rd /. Then, Theorem 1.1 with X D `1.I / applied to the function f W Rd !
`1.I /, .f .x//i D fi .x/, gives

k1EgkLp.Rd / D

�Z
E

kf .x/k
p

`1.I /
dx
�1=p

�

� �

CLS

�CLS.dCL��/

kgkLp.Rd /:

Indeed, if the index set I is finite, it is feasible to conclude this estimate directly from
the classical Logvinenko–Sereda theorem (X D C) with a constant depending on the
cardinality of I . If the cardinality of I is infinite, our Theorem 3.1 applies.

For the proof of Theorem 3.1, we will follow the main strategy given in [30]. However,
in order to deal with Banach space valued functions instead of C-valued functions, we will
need two preparatory results, i.e., Propositions 3.3 and 3.4, which we formulate next. The
final proof of Theorem 3.1 is postponed to the appendix.

For z 2 C and r > 0, we denote by D.z; r/ � C the open disc of radius r centered at
z. As well, let B.x; r/ � Rd be the ball of radius r centered at x 2 Rd . If z D 0 or x D 0,
respectively, we simply write D.r/ or B.r/.

Proposition 3.3. There exists a constant C1 � 1 such that for all closed intervals I � R
with 0 2 I and jI j D 1, all analytic functions f W D.6/! X satisfying

sup
z2D.5/

kf .z/kX �M and sup
x2I

kf .x/kX � 1

for some M > 0, and all measurable A � I , we have

sup
x2A

kf .x/kX �

�
jAj

C1

� ln.M/
ln.2/

sup
x2I

kf .x/kX : (3.1)

Proposition 3.4. There exists a constant C2 > 0 such that for all � 2 .0;1/d , all p 2
Œ1;1�, all f 2 Lp.Rd IX/ with supp F f � …� and all ˛ 2 Nd

0 , we have

k@˛f kLp.Rd IX/ � C
j˛j
2 �˛kf kLp.Rd IX/:
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Proof of Proposition 3.3. Without loss of generality, we assume that jAj > 0. Since I is
closed and kf .�/kX is continuous on I , there exists x0 2 I such that supx2Ikf .x/kX D
kf .x0/kX . By a consequence of the Hahn–Banach theorem, we can find x0 2 X 0 such that
kx0kX 0 D 1 and

hx0; f .x0/i D kf .x0/kX :

The function ' W D.5/! C given by ' D hx0; f .� C x0/i is analytic and we have

j'.0/j D kf .x0/kX � 1

as well as
j'.z/j � kf .z C x0/kX �M

for all z 2 D.4/. Moreover, the sets I � x0 and A � x0 are such that A � x0 � I � x0,
A � x0 is of positive measure by assumption and 0 2 I � x0. Applying Lemma 1 in [29]
with ' as above as well as I andA replaced by I � x0 andA� x0, respectively, we obtain
that there exists a constant C1 > 0 such that

sup
x2A�x0

j'.x/j �

�
jAj

C1

� ln.M/
ln.2/

sup
x2I�x0

j'.x/j:

Inequality (3.1) now follows from

sup
x2A

kf .x/kX � sup
x2A

jhx0; f .x/ij D sup
x2A�x0

j'.x/j

�

�
jAj

C1

� ln.M/
ln.2/

j'.0/j D

�
jAj

C1

� ln.M/
ln.2/

sup
x2I

kf .x/kX :

Proof of Proposition 3.4. The proof is an adaption of the classical proof, as it can be
found, for example, in [50], to the vector-valued setting. We only prove the assertion in
the case j˛j D 1. The case j˛j D 0 is trivial, and the case j˛j > 1 follows by induction.
We choose a real-valued function ' 2 �.Rd / such that 0 � ' � 1 as well as ' D 1 on
Œ�1=2; 1=2�d and define '� D '.T��/, where

T� W R
d
! Rd ; .x1; : : : ; xd / 7! .x1=�1; : : : ; xd=�d /:

Clearly, '� D 1 on …�, F �1'� D �1�2 � � ��d .F
�1'/.T �1

�
�/. Moreover, since the usual

convolution identity also holds in the vector-valued setting, we have f D F �1.'�F f /D

.F �1'�/ � f . From Young’s inequality, we conclude for all j 2 ¹1; 2; : : : ; dº that

k@jf kLp.Rd IX/ D k.@jF �1'�/ � f kLp.Rd IX/ � k@jF �1'�kL1.Rd /kf kLp.Rd IX/:

Since

k@jF �1'�kL1.Rd / D �j k�1�2 � � ��d .@jF �1'/.T �1� �/kL1.Rd / D �j k@jF �1'kL1.Rd /;

the assertion (in the case j˛j D 1) follows with C2 D supjD1;:::;dk@jF �1'kL1.Rd /.
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4. Control theory for normally elliptic operators on Banach spaces

4.1. Normally elliptic operators and their semigroups

In [2], the notion of normal ellipticity has been introduced for operators with variable,
L.X/-valued, non-smooth coefficients and it was shown that their negatives generate
analytic semigroups on Lp.Rd IX/. This general framework is technically challenging
and involves, for example, Besov spaces of vector-valued functions. In what follows, we
consider normally elliptic operator A with constant coefficients only. As a consequence,
certain proofs of [2] simplify and we obtain stronger results. In particular, using ideas
from [1–3], we show the following.

(i) The operator �Ap , the part of �A in Lp.Rd IX/, is a semigroup generator
and one can represent the resulting semigroup as a Fourier multiplier. This is
suggested by [1, Remark 7.5]. Here, we give a full proof of this result.

(ii) The derivatives of the symbol of this multiplier decay exponentially. This is
the content of Lemma 4.4 which is the crucial result of this section for our
application to control theory. In Proposition 3.5.7 of [3], a similar estimate is
given, but with polynomial decay.

Let X be a Banach space and d;m 2 N. For given coefficients a˛ 2 L.X/, where ˛
ranges over all multi-indices with j˛j � m, consider the polynomial a W Rd ! L.X/,

a.�/ D
X
j˛j�m

a˛�
˛:

We suppose that a has degreem, meaning that there exists a multi-index ˛ 2Nd
0 such that

j˛j Dm and a˛ ¤ 0. The set of all polynomials of this type is denoted by Pm.Rd IL.X//.
The associated Fourier multiplierAD a.D/ is a differential operator acting on � 0.Rd IX/,
see Section 2. The principal symbol of A is the polynomial am W Rd ! L.X/,

am.�/ D
X
j˛jDm

a˛�
˛:

Let � � 1, # 2 Œ0; �/ and ! 2 R. We write

†#;! D
®
z 2 C W jarg.z � !/j � #

¯
[ ¹0º:

Given a linear operator T 2 L.X/, we denote its resolvent set by �.T /. We say that a
differential operator A is .�; #; !/-elliptic if for all � 2 Rd with j�j D 1 it holds that

�.�am.�// � †#;!

and for all � 2 †#;! ,

k.�C am.�//
�1
k �

�

1C j� � !j
:
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We say that A is normally elliptic (with symbol a) if it is .�; �=2; 0/-elliptic and call � a
ellipticity constant of A.

Let 1 � p <1. We denote by Ap the part of A in Lp.Rd IX/, that is,

dom.Ap/ D
®
f 2 Lp.Rd IX/ W Af 2 Lp.Rd IX/

¯
; Apf D Af:

Remark 4.1. Suppose thatA is .�;#;!/-elliptic. By homogeneity, we obtain for all � ¤ 0
and � 2 �.�am.�//

.�C am.�//
�1
D .�C j�jmam.�=j�j//

�1
D j�j�m.j�j�m�C am.�=j�j//

�1:

Therefore, if � ¤ 0, and � 2 j�jm†#;! D †#;!j�jm , then

k.�C am.�//
�1
k �

�

j�jm C j� � !j�jmj
:

Proposition 4.2. If A is normally elliptic with ellipticity constant �, there exist ' > �=2
and M > 0 as well as � < 0 such that A is .M; '; �/-elliptic. Moreover, we can choose
.M; '; �/ D .2� C 1; � � arctan.2�/;�1=.2�//.

Proof. Suppose that T 2 L.X/ and K > 0, z 2 �.�T / are such that

k.z C T /�1k � K:

Then, it follows from the usual Neumann series argument that D.z;K�1/ � �.�T / and
we have for all w 2 D.z;K�1/ that

.w C T /�1 D

1X
nD0

.z � w/n.z C T /�1�n;

which leads to the estimate

k.w C T /�1k � K

1X
nD0

jz � wjnKn D
K

1 � jz � wjK
:

In particular, if w 2 xD.z; .2K/�1/, we get

k.w C T /�1k � 2K:

Now, let A be normally elliptic. Fix � 2 R and � 2 Œ0; .1C j� j/=.2�/�. Clearly, we have
�� C i� in xD.i�; .1 C j� j/=.2�//. Let j�j D 1. Applying the above considerations to
T D am.�/, we obtain

k.�� C i� C am.�//�1k �
2�

1C j� j
:

Furthermore, since

1C j�� C i� C
1

2�
j � 1C j�� C

1

2�
j C j� j � 1C

1

2�
.1C j� j/C j� j �

2� C 1

2�
.1C j� j/;
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we obtain
2�

1C j� j
�

2� C 1

1C j�� C i� C 1
2�
j
:

Moreover, we haveˇ̌̌̌
arg

�
� � C i� C

1

2�

�ˇ̌̌̌
�

ˇ̌̌̌
arg

�
�
j� j

2�
C i�

�ˇ̌̌̌
� � � arctan.2�/;

where the argument of a complex number has to be understood as an element of Œ��; �/.
Since

†��arctan.2�/;� 1
2�
\
®
� 2 C W Re.�/ � 0

¯
D

²
� � C i� W � 2 R; � 2

�
0;
1C j� j

2�

�³
;

we conclude that, for all � 2 †��arctan.2�/;�1=.2�/ \ ¹� 2 C W Re.�/ � 0º, we have

k.�C am.�//
�1
k �

2� C 1

1C j�C 1=.2�/j
:

It is easy to see that this estimate also holds if Re.�/ > 0. The latter inequality implies
that A is .2� C 1; � � arctan.2�/;�1=.2�//-elliptic.

Let n � 0 and p 2 Pn.Rd IL.X//. For all multi-indices ˛ 2 Nd
0 , we define

N˛.p/ D max
ˇ�˛

sup
�2Rd

k@ˇp.�/k

.1C j�j/n�jˇ j
;

where for multi-indices ˛; ˇ 2 Nd
0 we write ˇ � ˛ if ˇi � ˛i for all i 2 ¹1; 2; : : : ; dº.

Proposition 4.3. Suppose that A is normally elliptic with ellipticity constant �. Then,
there exist '; 
; !;M > 0 such that for all � 2 Rd , and all � 2 †';�
 j�jmC! , we have

k.�C a.�//�1k �
M

j�jm C j�C 
 j�jmj
:

The parameters '; 
 depend only on am while ! depends on am and N0.a � am/. More-
over, we can choose

M D 4� C 2:

Proof. We employ the following well-known perturbation result based on the Neumann
series: if T; S 2 L.X/ such that

kST �1k �
1

2
;

then T C S is invertible and

k.T C S/�1k � 2kT k:
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We infer from Proposition 4.2 that there exist constants C;'; 
 > 0 depending only on am
such that for all � 2 †';�
 j�jm ,

k.�C am.�//
�1
k �

C

j�jm C j�C 
 j�jmj
:

We note that a � am has degree m � 1. For a sufficiently large ! > 0, we obtain for all
� 2 †';�
 j�jmC! ,

k.a.�/ � am.�//.�C am.�//
�1
k �

CN0.a � am/.1C j�j/
m�1

j�jm C j�C 
 j�jmj
�
1

2
:

From the perturbation result and Proposition 4.2, we obtain the claimed inequality.

LetA be a normally elliptic operator. The above proposition implies that for all � 2Rd

and all � 2 †';�
 j�jmC! , we have

k.�C a.�//�1k �
1

sin.'/
M

j�C 
 j�jm � !j
: (4.1)

This can be seen as follows: using the notation �C 
 j�jm � ! D rei , where r > 0 and
 2 Œ�'; '�, we find

j�C 
 j�jm � !j

j�jm C j�C 
 j�jm
�

j�C 
 j�jm � !j

j�C 
 j�jm � ! C j�jm C !j

� sup
r>0

sup
 2Œ�';'�

ˇ̌
rei 

ˇ̌
jrei C j�jm C !j

�
r

Im.jrei C j�jm C !j/
�

1

sin.'/
:

This implies inequality (4.1). Thus, �a.�/ is a sectorial operator in the sense of [35, Def-
inition 2.0.1]. Hence, �a.�/ generates for all � 2 Rd an analytic semigroup on X which
we denote by .St .�//t�0. Consequently, there exists a C > 0 such that for all � 2 Rd and
all t � 0, we have

kSt .�/k � C e!t�
 j�j
mt : (4.2)

Note that the constant C is independent of � since M and ' in inequality (4.1) are inde-
pendent of �.

Lemma 4.4. Let A be a normally elliptic operator with symbol a and denote for each
� 2 Rd the semigroup generated by �a.�/ by .St .�//t�0. Then, there exist �; ! > 0

depending only on am such that for each multi-index ˛ there exists a constant K˛ > 0

such that for all � 2 Rd and t � 0 it holds that

k@˛St .�/k � K˛e!t��j�j
mt : (4.3)

The constant K˛ can be chosen to depend only on the principal symbol am and the con-
stant N˛.a/.
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Proof. Let � 2 Rd . Since A is normally elliptic, Proposition 4.2 implies that there exist
zM;�; 
 > 0 and ' 2 .�=2; �/ such that

k.� � 
 j�jm C ! C a.�//�1k �
zM

j�jm C j�C !j
; .� 2 †';0/: (4.4)

We set b.�/ D �a.�/C 
 j�jm � !. Due to j�C !j � sin.'/j�j for � 2 †';0 and setting
M D zM.sin.'//�1, it follows that

k.� � b.�//�1k D k.� � 
 j�jm C ! C a.�//�1k �
M

j�jm C j�j
; .� 2 †';0/:

Write .Tt .�//t�0 for the semigroup generated by b.�/. It is clear that

Tt .�/ D e�!tC
t j�j
m

St .�/: (4.5)

Let ˛ be a multi-index. We show that there exists a constant zM˛ > 0 such that

k@˛Tt .�/k � zM˛.t.1C j�j/
m�1
C t j˛j.1C j�j/.m�1/j˛j/ .� 2 Rd ; t � 0/ (4.6)

holds. For j˛j D 0, this is straightforward by inequality (4.2). Therefore, we assume that
j˛j � 1 in the following.

Let r > 0. Consider the contour

� D ei' Œr;1/ [ .rT \†';0/ [ e�i' Œr;1/

with positive orientation, where T denotes the unit circle in C. Let ˛ be a multi-index.
For every t � 0, we consider the functions

T
.˛/
t W Rd ! L.X/; T

.˛/
t .�/ D

1

2� i

Z
�

et�@˛.� � b.�//�1d�:

For the sake of simplicity, we will write b instead of b.�/. Since

@j .� � b/
�1
D .� � b/�1.@j b/.� � b/

�1;

it follows by induction on the length of ˛ that @˛.�� b/�1 is a finite sum of terms having
the form

Q.ˇ1;ˇ2; : : : ;ˇ� ;b;�/D .�� b/
�1.@ˇ1b/.�� b/�1.@ˇ2b/ � � � .�� b/�1.@ˇ�b/.�� b/�1;

where 1 � � � j˛j and ˇ1; ˇ2; : : : ; ˇ� are nonzero multi-indices of length � m such that
ˇ1 C ˇ2 C � � � C ˇ� D ˛, see [1, equation (7.4)]. We have the estimate

kQ.ˇ1; ˇ2; : : : ; ˇ� ; b; �/k � k.� � b/
�1
k
�C1

�Y
�D1

k@ˇ�bk

�
N˛.b/M

�C1

.j�jm C j�j/�C1

�Y
�D1

.1C j�j/m�jˇ�j

�
N˛.b/M

�C1.1C j�j/�m�j˛j

.j�jm C j�j/�C1
: (4.7)
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Now, for � D �e˙i with � > 0 and  2 Œ�'; '�, it follows that

ket�Q.ˇ1; ˇ2; : : : ; ˇ� ; b; �/k �
N˛.b/M

�C1.1C j�j/�m�j˛j

.j�jm C �/�C1
et� cos. /:

Thus, it follows that



Z
�

et�Q.˛1; ˛2; : : : ; ˛� ; b; �/d�






� N˛.b/M
�C1.1C j�j/�m�j˛j

�
2

Z 1
r

et� cos.'/

.j�jm C �/�C1
d�C

2'retr

.j�jm C r/�C1

�
� N˛.b/M

�C1.1C j�j/�m�j˛j
�

2etr cos.'/

t jcos.'/j.j�jm C r/�C1
C

2'retr

.j�jm C r/�C1

�
:

Choosing r D 1=t and noting that

1

t.j�jm C 1
t
/�C1

D
t�

t�C1.j�jm C 1
t
/�C1

D
t�

.t j�jm C 1/�C1
;

we obtain that there exists a constant C' > 0 depending only on ' such that



Z
�

et�Q.˛1; ˛2; : : : ; ˛� ; b; �/d�




 � C'N˛.b/M �C1 t

�.1C j�j/�m�j˛j

.t j�jm C 1/�C1

� C'N˛.b/M
�C1t�.1C j�j/�m�j˛j:

Denote byC a generic constant depending only on d andmwhose value may change from
line to line. Since T .˛/t .�/ is a finite sum of terms such as the one above with 1 � � � j˛j
it follows that there exists a constant C such that if we set

K0 D C'M
j˛jC1N˛.b/;

we obtain for all � 2 Rd and t � 0

T .˛/t .�/


 � CK0.t.1C j�j/m�1 C t j˛j.1C j�j/.m�1/j˛j/: (4.8)

In particular, in view of the Dunford–Riesz representation,

Tt .�/ D
1

2� i

Z
�

et�.� � b.�//�1d�:

the above calculations imply that we may differentiate under the integral sign and obtain

T
.˛/
t D @˛Tt :

Thus, (4.6) follows. To deduce (4.3) from (4.6), we merely need to observe that by (4.5)
and the Leibniz rule, we obtain that there exists a constant C
 > 0 such that if we set
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K1 D C
K0, we obtain

@˛St .�/


� Ce!t

X
ˇ�˛

ˇ̌
@ˇ .e�
t j�j

m

/
ˇ̌
k@˛�ˇTt .�/k

� CK0e!t�
t j�j
m X
ˇ�˛

.1C .
 t j�j.m�1/jˇ j/.t.1C j�j/m�1 C t j˛j.1C j�j/.m�1/j˛j/

� CK1e!t�
t j�j
m=2:

By the triangle inequality, we have that N˛.b/ � C
;!N˛.a/. Thus, we obtain the state-
ment of the lemma with � D 
=2 and

K˛ D C';
;!;d;mM
j˛jC1N˛.a/:

Remark 4.5. By inspecting the proof of Lemma 4.4, in particular, the estimate (4.7), we
note that the constant M˛ appearing in (4.3) may be chosen such that it depends only on
the parameters appearing in (4.4) and

max
j˛j�m

ka˛k;

where a˛ 2 L.X/ are the coefficients of a. From this, we see that the estimate (4.3) is
stable under certain perturbations. Let, for example, .A� /�2Œ0;1� be a family of differential
operators such that their symbols .a� /�2Œ0;1� take the form

a� .�/ D am.�/C
X
j˛j<m

a˛;��
˛; .� 2 Rd ; � 2 Œ0; 1�/;

where am.�/ is homogeneous of degree m and satisfies the normal ellipticity condition
and there exists a constant K such that

ka˛;�k � K; .j˛j � m; � 2 Œ0; 1�/:

Applying the perturbation argument of Lemma 4.3, we see that there exist '; 
; !;M > 0

independent of � such that

k.�C a� .�//
�1
k �

M

j�jm C
ˇ̌
�C 
 j�jm

ˇ̌ .� 2 Rd ; � 2 †';�
 j�jmC!/:

Let .St;� .�//t�0 be the semigroup generated by�a� .�/. Under these conditions, it follows
that for each multi-index ˛ there exists a constant M˛ independent of � such that

k@˛St;� .�/k �M˛e!t��j�j
mt :

Lemma 4.6. Let A be a normally elliptic differential operator with symbol a, denote for
each � 2 Rd the semigroup generated by �a.�/ by .St .�//t�0, and let f 2 �.Rd IX/.
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For all t � 0, we define Stf W Rd ! X; � 7! St .�/f .�/. Then, we have Stf 2 �.Rd IX/
and

.Stf � f /! 0; (4.9)

and
1

t
.Stf � f /! �af (4.10)

in the topology of �.Rd IX/ as t ! 0.

Proof. To show (4.9), we need to prove that for all multi-indices ˛ and ˇ, we have

sup
�2Rd

k�ˇ@˛.St .�/f .�/ � f .�//k ! 0 .t ! 0/:

Using the Leibniz rule, it is easy to see that we need to show that for each multi-index ˛
and t � 0, there exist ˆ˛.t/ � 0 and N˛ > 0 such that ˆ˛.t/! 0 as t ! 0 and

k@˛.St .�/ � 1/k � ˆ˛.t/.1C j�j/
N˛ ; .� 2 Rd /:

In fact, by another application of the Leibniz rule, we may reduce matters to proving

k@˛.Tt .�/ � 1/k � ˆ˛.t/.1C j�j/
N˛ ; .� 2 Rd /;

where Tt .�/ is (as in the proof of Lemma 4.4) the semigroup generated by b.�/D�a.�/C

 j�jm � ! with 
 as in Proposition 4.3. Suppose that B is a sectorial operator on X and
.Vt /t�0 the associated semigroup. Then, we have

Vt � 1 D B

Z t

0

V�d�; .t � 0/:

Applying this with B D b.�/, where � 2 Rd , we obtain by the Leibniz rule and (4.3) that
there exist C > 0 and C˛ > 0 such that

k@˛.Tt .�/ � 1/k � C
X
ˇ�˛

k@˛�ˇb.�/k

Z t

0

kT .ˇ/� kd�

� C˛.1C j�j/
m

Z t

0

d� � C˛t .1C j�j/m:

To show (4.10), we need to prove that for all multi-indices ˛ and ˇ, we have

sup
�2Rd





�ˇ@˛�1t .St .�/f .�/ � f .�//C a.�/f .�/
�



! 0

as t tends to zero. Again, we may reduce matters to proving that for each multi-index ˛
there exist ˆ˛.t/ � 0 and N˛ > 0 such that for all � 2 Rd we have



1t @˛.Tt .�/ � 1/ � @˛b.�/





 � ˆ˛.t/.1C j�j/N˛ : (4.11)
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Since
1

t
.Tt .�/ � 1/ � b.�/ D b.�/

1

t

Z t

0

.T� .�/ � 1/d�;

by the mean value theorem for integrals, we have that



1t
Z t

0

T� .�/ � 1d�




 � sup

0�s�t

kTs.�/ � 1k � sup
0�s�t





b.�/ Z s

0

T� .�/d�




 � Ctkb.�/k:

(4.12)
Therefore, we obtain



1t .Tt .�/ � 1/ � b.�/





 � Ctkb.�/k2 � Ct.1C j�j/2m:
This proves (4.11) in the case that ˛ D 0. If ˛ > 0, we may write

1

t
@˛.Tt .�/ � 1/ � @

˛b.�/

D .@˛b/.�/
1

t

Z t

0

.T� .�/ � 1/d� C
X
ˇ<˛

�
˛

ˇ

�
.@˛�ˇb/.�/

1

t

Z t

0

T .ˇ/� .�/d�:

We obtain from (4.12) that



.@˛b/.�/1t
Z t

0

.T� .�/ � 1/d�




 � C˛tk@˛b.�/kkb.�/k � C˛t .1C j�j/2m�j˛j:

If 0 � t � 1, then it follows from (4.8) that

kT .ˇ/� .�/k � Cˇ t .1C j�j/
.m�1/jˇ j;

which shows that



.@˛�ˇb/.�/1t
Z t

0

T .ˇ/� .�/d�




 � Cˇ .1C j�j/.m�1/jˇ jk@˛�ˇb.�/k Z t

0

d�

� C˛;ˇ t .1C j�j/
.m�1/jˇ j.1C j�j/jˇ j;

where we have used in the second line that m� j˛ � ˇj D m�mC jˇj D jˇj. Summing
up, we obtain 



1t @˛.Tt .�/ � 1/ � @˛b.�/





 � C˛t .1C j�j/2m�j˛j;
which concludes the proof.

Let A W � 0.Rd IX/! � 0.Rd IX/ be a normally elliptic differential operator with sym-
bol a and for each � 2 Rd , denote by .St .�//t�0 the semigroup generated by �a.�/ and
by St W Rd ! L.X/ the mapping � 7! St .�/. As a consequence of (4.3), we obtain that
for all t � 0 we have that St 2 �.Rd IL.X// � OM .Rd IL.X//. Therefore, the Fourier
multiplier

Vt D St .D/ W �
0.Rd IX/! � 0.Rd IX/; f 7! F �1StF f
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is well defined. Let 1 � p �1. From Lemma 2.1 withmD St , we obtain that there exist
constants K and ! such that

kVtkLp.Rd IX/!Lp.Rd IX/ � Ke
t! ;

and by checking on elementary tensors, we see that the semigroup property

VtVs D VtCs; .s; t � 0/

holds. Thus,
.V

.p/
t /t�0 D .Vt jLp.Rd IX//t�0

is a bounded semigroup. If p < 1, then it follows from the density of �.Rd IX/ in
Lp.Rd IX/ and the first statement of Lemma 4.6 that V .p/t is a C0-semigroup. We denote
the negative of the generator of V .p/t by zAp .

Lemma 4.7. We have Ap D zAp . In particular, �Ap generates a semigroup given by
St .D/jLp.Rd /.

Proof. Let us start by showing the inclusion zAp � Ap . Using the second statement of
Lemma 4.6, we have

1

t
.V

.p/
t f � f /! �Af

in the topology of �.Rd IX/ as t ! 0, and thus, zApf D Af D Apf for f 2 �.Rd IX/.
Moreover, �.Rd IX/ is dense in dom. zAp/ since �.Rd IX/ is dense in Lp.Rd IX/ and
�.Rd IX/ is invariant under V .p/t . Hence, using the notation Xp D Lp.Rd IX/, we con-
clude

Graph. zAp/ D ¹.f; zApf / W f 2 �.Rd IX/º
Xp�Xp

D ¹.f; Apf / W f 2 �.Rd IX/º
Xp�Xp

� Graph.Ap/
Xp�Xp

:

Since the embedding J WLp.Rd IX/ ,! � 0.Rd IX/ is continuous and Graph.A/ is closed,
Graph.Ap/ D .J � J /�1Graph.A/ is closed.

Now, observe that it follows directly from Lemma 2.5.5 in [25] that

Graph.Ap/ D ¹.f; Af / W f 2 D.Rd IX/º
Xp�Xp

:

Note that, in [25], it is assumed that the coefficients of A are scalar. However, the proof
given there generalizes to operator coefficients without change. Since

¹.f; Af / W f 2 D.Rd IX/º
Xp�Xp

� ¹.f; Af / W f 2 �.Rd IX/º
Xp�Xp

D Graph.Ap/;

we obtain zAp D Ap .
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4.2. Observability estimate

Let m 2 N and A W � 0.Rd IX/! � 0.Rd IX/ is a normally elliptic differential operator of
order m with symbol a 2 Pm.Rd IX/. Set

St W R
d
! L.X/; � 7! St .�/;

where .St .�//t�0 denotes the analytic semigroup generated by �a.�/. Furthermore, for
t � 0, we define Vt D St .D/ W � 0.Rd IX/! � 0.Rd IX/ the Fourier multiplier with sym-
bol St . Let p 2 Œ1;1�. Then, the restriction .V .p/t /t�0 D .Vt jLp.Rd IX//t�0 is a bounded
semigroup on Lp.Rd IX/. If p <1, the semigroup .V .p/t /t�0 is strongly continuous and
we denote its generator by Ap . In the following, we will write Vt D V

.p/
t when there is

no risk of confusion.

Theorem 4.8. Let �; T > 0, L 2 .0;1/d , E � Rd a .�;L/-thick set, and 1 � p; r �1.
Then, there exists a constant Cobs > 0 such that for all f 2 Lp.Rd IX/ it holds that

kVT f kLp.Rd IX/ � CobskV.�/f kLr .Œ0;T �ILp.E IX//:

We choose a function ' 2 C1c .R/ such that 0 � ' � 1, supp ' � B.0; 1/ and ' D 1
on B.0; 1=2/. For � 2 Rd , we set ��.�/ D '.j�j=�/ and define P� D ��.D/.

Lemma 4.9. There exist constants c1; c2; �0 > 0 depending only on a such that for all
t � 0 and � � �0, we have

kF �1.1 � ��/StkL1.Rd IL.X// � c1e
�c2t�

m

:

Moreover, for all p 2 Œ1;1�, t � 0 and � � �0, we have

k.I � P�/VtkLp.Rd IX/!Lp.Rd IX/ � c1e
�c2t�

m

:

Proof. We consider 3 separate cases.

Case 1. t > 1. Let " > 0. By Lemma 2.1, it suffices to show that

k.1 � ��/StkW dC1;1 C max
j˛j�dC1

sup
�2Rd

j�jj˛jC"k@˛..1 � ��/.�/St .�//k � c1e
�c2�

mt

(4.13)
for some constants c1; c2. For this, we observe that by the Leibniz rule, for each multi-
index ˛, there exists a constant C˛ such that

k@˛..1 � ��.�//St .�//k � C˛
X
ˇ�˛

j@ˇ .1 � ��/.�/jk@
˛�ˇSt .�/k:

Observe that if � � 1, there exists an absolute constant Cˇ > 0 such that

j@ˇ .1 � ��/.�/j � Cˇ1j�j��=2:



C. Bombach and M. Tautenhahn 344

Therefore, by (4.3), it follows that there exist K˛; !; � such that

k@˛.1 � ��.�//St .�/k � K˛1j�j��=2e!t��j�j
mt :

Choosing �m0 D max¹1; 2mC1��1!º, we obtain for all multi-indices ˛ such that j˛j �
d C 1 and � � �0

k@˛..1 � ��.�//St .�//k � K˛e��2
�m�1�mt :

This shows that there exist constants c01; c
0
2 such that

k.1 � ��/StkW dC1;1 � c
0
1e�c

0
2�
mt :

Moreover, observe that

j�jj˛jC"k@˛..1 � ��/.�/St .�//k � K˛j�j
j˛jC"1j�j��=2e!t��j�j

mt ;

and thus, employing that t > 1, it follows that there exists K 0˛ such that

j�jj˛jC"k@˛..1 � ��/.�/St .�//k � K
0
˛1j�j��=2e!t�.�=2/j�j

mt :

Arguing as before, we find c001 ; c
00
2 such that

j�jj˛jC"k@˛.1 � ��.�//St .�/k � c
00
1e�c

00
2�

mt :

We now obtain (4.13) by summing up.

Case 2. 0 � t � 1, t1=m� > 1. We begin with two easy observations. Firstly, ifm W Rd !
L.X/ is such that kF �1mkL1.Rd IL.X// <1, then for any � > 0, we have

kF �1Œm.��/�kL1.Rd / D �
�d
k.F �1m/.��1�/kL1.Rd / D kF

�1mkL1.Rd /: (4.14)

Secondly, if .Wt /t�0 is a C0-semigroup with generator B , then for any � > 0 the rescaled
semigroup defined by . zWt /t�0 D .W�t /t�0 is associated to �B . Denote by .T�;t /��0 the
semigroup on X associated to �ta.t�1=m�/ 2 L.X/. We consider the rescaled symbol

�t;� D ..1 � ��/St /.t
�1=m
�/ D .1 � �t1=m�/St .t

�1=m
�/ D .1 � �t1=m�/T1;t :

It follows from (4.14) that it suffices to show that there exist constants c1; c2 > 0 such that

kF �1�t;�k � c1e
�c2t�

m

:

Observe that
ta.t�1=m�/ D am.�/C

X
j˛j<m

t1�
j˛j
m a˛�

˛;

and therefore, N0.am.�/ � ta.t�1=m�// � K for some constant K independent of t . It
thus follows from Lemma 4.4 and Remark 4.5 that for each multi-index ˛ there exist
constants K˛; � > 0 such that

k@˛T1;t .�/k � K˛e
��j�jm :
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Moreover, since t1=m� > 1, we have that for each multi-index ˇ there exist constants
Cˇ > 0 such that

j@ˇ .1 � �t1=m�/.�/j � Cˇ1j�j�t1=m�=2:

By the Leibniz rule, it therefore follows that there exist constants C˛ > 0 such that

k@˛�t;�.�/k � C˛1j�j�t1=m�=2e
!t��j�jm :

Let " > 0. Arguing as in Case 1, we see that there exist �0 > 0 and constants c01; c
0
2 and

c001 ; c
00
2 such that for all � � �0,

k@˛�t;�.�/k � c
0
1e
�c02t�

m

and
j�jmC"k@˛�t;�k � c

00
1e
�c002 t�

m

for all multi-indices ˛ with j˛j � d C 1. We can thus apply Lemma 2.1 also in this case.

Case 3. 0 � t � 1; 0 � t1=m� � 1. Employing the notation of Case 2, we see from (4.2)
and Lemma 2.1 that there exists A > 0 such that

kF �1T1;tk � A:

Again by (4.14) it follows that there exists B > 0 such that

kF �1.1 � �t1=m�/k � B:

It thus follows from Young’s inequality that

kF �1�t;�k � AB:

Since we have due to the restriction 0 � t1=m� � 1 for any c > 0 that

AB � ABece�ct�
m

;

the result also follows in this case.

Proof of Theorem 4.8. We apply Theorem A.1 from [7] to the semigroup .V .p/t /t�0 acting
on the Banach space Lp.Rd IX/ and the family of quasi-projections .P�/�>0. We only
need to verify that there exist positive constants �0, d0; d1; d2; d3 such that for all f 2
Lp.Rd IX/, all � > �0 and all t 2 Œ0; T=2�, we have

kP�f kLp.Rd IX/ � d0e
d1�k1EP�f kLp.Rd IX/

and

k.I � P�/Vtf kLp.Rd IX/ � d2e
�d3�

mt
kf kLp.Rd IX/;
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and that the mappingˆ W Œ0; T � 3 t 7! k1EVtf kLp.Rd IE/ is measurable. The first inequal-
ity is satisfied by Theorem 3.1, whereas the second inequality follows from Lemma 4.9.
Measurability of ˆ follows from the strong continuity of Vt if p <1. Suppose now that
p D1. By Proposition 1.3.1 of [25], we have that the linear subspace²

f 7!

Z
Rd

hg.x/; f .x/iX 0�XdxWg 2 L1.Rd IX 0/
³
� .L1.Rd IX//0

is norming for L1.Rd IX/, meaning that

ˆ.t/ D k1EVtf kL1.Rd IX/ D sup
²Z

Rd

hg.x/; 1EVtf .x/iX 0�XdxW kgkL1.Rd IX 0/ D 1

³
:

By the strong continuity of Vt , the map

t 7!

Z
Rd

hg.x/; 1EVtf .x/iX 0�Xdx

is continuous for each g 2 L1.Rd IX 0/. Thus, ˆ is lower semicontinuous as it is the
supremum of continuous functions and therefore measurable.

4.3. Null-controllability

Let E � Rd be measurable, p 2 Œ1;1/ and T > 0. Set Xp D Lp.Rd IX/ and consider
the controlled system

@ty.t/C Apy.t/ D 1Eu.t/; y.0/ D y0 2 Xp; t 2 Œ0; T �: (4.15)

Let r 2 Œ1;1�. Given a control function u 2 Lr .Œ0; T �IXp/, the mild solution of (4.15)
is given by

y.t/ D Vty0 C

Z t

0

Vt�s1Eu.s/ds:

We say that the system (4.15) is null-controllable in Lr .Œ0; T �IXp/ in time T if for any
y0 2 Xp there exists an u 2 Lr .Œ0; T �IXp/ such that y.T / D 0. Setting

BT W L
r .Œ0; T �IXp/! Xp; u 7!

Z T

0

Vt�s1Eu.s/ds;

we see that (4.15) is null-controllable inLr .Œ0;T �IXp/ at time T if and only if ran.VT /�
ran.BT /. Moreover, we define (4.15) to be approximately null-controllable at time T if

ran.VT / � ran.BT /

with the bar denoting the norm closure of the set ran.BT / in Xp . Thus, (4.15) is approxi-
mately null-controllable at time T if and only if for all " > 0 and all y0 2Xp there exists
u 2 Lr .Œ0; T �IXp/ such that ky.T /kXp < ".
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Theorem 4.10. Let � > 0, L 2 .0;1/d and E .�; L/-thick, and assume that X 0 has the
Radon–Nikodym property. Then, the following statements hold.

(a) If p 2 .1;1/, the system (4.15) is null-controllable in Lr .Œ0; T �IXp/ at time T .

(b) If p D 1, the system (4.15) is approximately null-controllable in Lr .Œ0; T �IXp/

at time T .

Proof. Let q be such that p�1 C q�1 D 1 and s such that r�1 C s�1 D 1. Write Yq D

.Xp/0: It holds that Yq D Lq.Rd IX 0/ due to the Radon–Nikodym property of X 0. For
t � 0, we set Wt D V 0t . By Douglas’ lemma, the statement of the theorem is equivalent to
the fact that there exists a constant Cobs such for every f 2 Yq we have the observability
estimate

kWT f kYq � CobskB
0
T f kLr .Œ0;T �IXp/0 : (4.16)

By [48, Theorem 2.1], it holds

kB 0T f kLr .Œ0;T �IXp/0 D kW.�/f kLs.Œ0;T �IYq/:

Recall that St is the symbol of Vt . To obtain (4.16), we note that due to Proposition 2.2
and Lemma 4.9, we obtain for all � � �0 the dissipation estimate

k.I � P�/Wtk � kF
�1St .1 � ��/kL1.Rd IL.X// � c1e

�c2t�
m

:

Since the uncertainty principle also holds for functions with values in X 0, we obtain the
observability estimate as in the proof of Theorem 4.8.

A. Proof of Theorem 3.1

First, we assume L D .1; 1; : : : ; 1/, and fix � 2 .0;1/d , � > 0, a .�; 1/-thick set E,
and f 2 Lp.Rd IX/ with supp F f � …� as in the assumptions of the theorem. Note
that f is analytic since supp F f is compact, see Section 2. For k 2 Zd , we denote by
ƒk D .�1=2; 1=2/

d C k � Rd the open unit cube centered at k. Let

A >
1

1 � .2d C 1/�1=d
2 .3=2; 2/; (A.1)

and let C2 > 0 be the absolute constant from Proposition 3.4. We call k 2 Zd bad if there
exists ˛ 2 Nd

0 with ˛ 6D 0 such that

k1ƒk@
˛f kLp.Rd IX/ � 2

dAj˛j.C2�/
˛
k1ƒkf kLp.Rd IX/:

Otherwise, we call k 2 Zd good. Moreover, we will use the notation

ƒbad D
[
k2Zd W
k is bad

ƒk and ƒgood D
[
k2Zd W
k is good

ƒk :
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Lemma A.1. (i) We have k1ƒgoodf kLp.Rd IX/ � C3kf kLp.Rd IX/, where

C3 WD C3.A/ WD 1 �

�
1

2d

��
1

1 � 1=A
/d � 1

��1=p
2 .0; 1/

if p 2 Œ1;1/, and C3 D 1 if p D1.
(ii) There exists B > A such that for all good k 2 Zd , there exists x 2 ƒk such that

for all ˛ 2 Nd
0 , we have

k@˛f .x/kX � 4
dB j˛j.C2�/

˛
k1ƒkf kLp.Rd IX/:

Proof. It follows by definition that for all p 2 Œ1;1/

k1ƒbadf k
p

Lp.Rd IX/
D

X
k2Zd\ƒbad

k1ƒkf k
p

Lp.Rd IX/
�

X
k2Zd\ƒbad

X
˛2Nd

0 W

˛ 6D0

k1ƒk@
˛f k

p

Lp.Rd IX/

2dpApj˛j.C2�/p˛

D

X
˛2Nd

0 W

˛ 6D0

k1ƒbad@
˛f k

p

Lp.Rd IX/

2dpApj˛j.C2�/p˛
�

X
˛2Nd

0 W

˛ 6D0

k@˛f k
p

Lp.Rd IX/

2dpApj˛j.C2�/p˛
:

By Proposition 3.4, and since A � 1, we conclude for all p 2 Œ1;1/ that

k1ƒbadf k
p

Lp.Rd IX/
�

X
˛2Nd

0 W

˛ 6D0

kf k
p

Lp.Rd IX/

2dpApj˛j
D

1

2dp

��
1

1 � 1=Ap

�d
� 1

�
kf k

p

Lp.Rd IX/

�
1

2d

��
1

1 � 1=A

�d
� 1

�
kf k

p

Lp.Rd IX/
D .1 � C3/

p
kf k

p

Lp.Rd IX/
:

For p 2 Œ1;1/, it follows that

k1ƒgoodf kLp.Rd IX/ � C3kf kLp.Rd Ix/:

By (A.1), we have C3 2 .0;1/. This proves the first claim in the case p 2 Œ1;1/. If pD1,
the proof is even easier. By the definition of bad and Proposition 3.4, we have

k1ƒbadf kL1.Rd IX/ � sup
k2Zd Wk bad

X
˛2Nd

0 W

˛ 6D0

k1ƒk@
˛f kL1.Rd IX/

2dAj˛j.C2�/˛

�
1

2d

��
1

1 � 1=A

�d
� 1

�
kf kL1.Rd IX/:

Since the prefactor in the last inequality is strictly smaller than one, we conclude that
k1ƒgoodf kL1.Rd IX/ D kf kL1.Rd IX/.
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In order to prove part (ii), we consider the contraposition, that is, for all B > A there
exists a good k 2 Zd such that for all x 2 ƒk there is ˛ 2 Nd

0 with

k@˛f .x/kX > 4
dB j˛j.C2�/

˛
k1ƒkf kLp.Rd IX/:

This and the definition of good implies that there exists a good k 2 Zd such that we have

2dk1ƒkf kLp.Rd IX/ <
X
˛2Nd

0

k1ƒk@
˛f kLp.Rd IX/

2dB j˛j.C2�/˛
�

X
˛2Nd

0

�A
B

�j˛j
k1ƒkf kLp.Rd IX/:

Choosing, for instance, B D 3A, we obtain

2dk1ƒkf kLp.Rd IX/ �

�
1

1 � .1=3/

�d
k1ƒkf kLp.Rd IX/;

which is a contradiction.

Let s D 1 if p 2 Œ1;1/ or some arbitrary number s 2 .0; 1/ if p D 1, k 2 Zd be
good and y 2 ƒk be such that kf .y/kX � sk1ƒkf kLp.Rd IX/. Furthermore, let � � ƒk
be a measurable set to be chosen later. Then, using spherical coordinates, we have

j�j D

Z
ƒk

1�.x/dx D
Z
Sd�1

Z r.#/

rD0

1�.y C r#/rd�1drd�.#/;

where r.#/D sup¹t > 0Wy C t# �ƒkº, and where � denotes the surface measure. There
exists a #0 2 Sd�1 such that

j�j � �.Sd�1/

Z r.#0/

0

1�.y C r#0/rd�1dr: (A.2)

Indeed, if the converse inequality to (A.2) would hold for all # 2 Sd�1, then averaging
over Sd�1 would give a contradiction. Let now I0 D ¹y C r#0W r > 0; y C r#0 2 ƒkº

be the largest line segment in ƒk starting in y in the direction of #0. Since r.#0/ � d1=2,
we conclude from (A.2) that j�j � �.Sd�1/d .d�1/=2j� \ I0j, where, with some abuse
of notation, we use the notation j� \ I0j D

R r.#0/
0

1�.y C r#0/dr .
Now, we define the function F WCd ! X by

F.w/ D
1

N
.LF f /.y C wjI0j#0/;

where L denotes the inverse Fourier–Laplace transform, cf. Section 2, and where N de-
notes the normalization N D sk1ƒkf kLp.Rd IX/. Note that F is an entire function which
extends .1=N /f .y C �jI0j#0/ to Cd , see Section 2. Thus, we have for all w 2 Cd and
x 2 Rd ,

kF.w/kX �
1

N

X
˛2Nd

0

kf .˛/.x/kX

˛Š

dY
iD1

j.y C wjI0j#0 � x/i j
˛i :
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By Lemma A.1, there exists x0 2 ƒk such that for all w 2 Cd ,

kF.w/kX �
4d

N

X
˛2Nd

0

B j˛j.C2�/
˛k1ƒkf kLp.Rd IX/

˛Š

dY
iD1

j.y C wjI0j#0 � x0/i j
˛i :

Since for all w 2 D.5/ we have

y � x0 C wjI0j#0 2

d¡

iD1

D.6
p
d/;

we conclude for all w 2 D.5/ that

kF.w/kX �
4d

N

X
˛2Nd

0

B j˛j.C2�/
˛k1ƒkf kLp.Rd IX/

˛Š
.6
p
d/j˛j

D
4d

N
k1ƒkf kLp.Rd IX/ exp.6d1=2BC2j�j/ D 4d exp.6d1=2BC2j�j/ DWM:

We recall that by assumption on y we have kF.0/kX D N�1kf .y/kX � 1. By Proposi-
tion 3.3, we have for all closed intervals I �R with 0 2 I and jI j D 1, and all measurable
A � I that

sup
x2A

kF.x/kX �

�
jAj

C1

� ln.M/
ln.2/

sup
x2I

kF.x/kX

with some absolute constant C1 � 1. Choose I D Œ0; 1� and A D ¹t 2 Œ0; 1�W y C t#0 2
� \ I0º; then,

sup
x2�\I0

kf .x/kX �

�
j� \ I0j

C1

� ln.M/
ln.2/

sup
x2I0

kf .x/kX :

By our choice of y, we have that supx2I0kf .x/kX � kf .y/kX � sk1ƒkf kLp.Rd IX/.
Moreover, we have shown above that j�j � �.Sd�1/d .d�1/=2j� \ I0j. Hence, we con-
clude

sup
x2�

kf .x/kX �

�
j�j

C1�.Sd�1/d .d�1/=2

� ln.M/
ln.2/

sk1ƒkf kLp.Rd IX/:

Recall that s D 1 if p 2 Œ1;1/, and that the above inequality holds for arbitrary s 2 .0; 1/
if p D1. By taking limits, we obtain

sup
x2�

kf .x/kX �

�
j�j

C1�.Sd�1/d .d�1/=2

� ln.M/
ln.2/

k1ƒkf kLp.Rd IX/: (A.3)

Now, we choose

� D

²
x 2 ƒk W

�
jE \ƒkj

2C1�.Sd�1/d .d�1/=2

� ln.M/
ln.2/

k1ƒkf kLp.Rd IX/ > kf .x/kX

³
:
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By inequality (A.3) and the definition of �, we obtain�
jE \ƒkj

2j�j

� ln.M/
ln.2/

sup
x2�

kf .x/kX �

�
jE \ƒkj

2C1�.Sd�1/d .d�1/=2

� ln.M/
ln.2/

k1ƒkf kLp.Rd IX/

� sup
x2�

kf .x/k;

and thus, j�j � jE \ƒkj=2. The definition of � implies that

k1E\ƒkf kLp.Rd IX/

� k1E\ƒk1�cf kLp.Rd IX/

�

�
jE \ƒkj

2C1jSd�1jd .d�1/=2

� ln.M/
ln.2/

k1ƒkf kLp.Rd IX/k1E\ƒk\�ckLp.Rd /:

Moreover, since j�j � jE \ƒkj=2, we have

jE \ƒk \�
c
j D jE \ƒkj � jE \ƒk \�j � jE \ƒkj � j�j �

jE \ƒkj

2
:

SinceE is thick, we have that 1� jE \ƒkj> 0; thus,E \ƒk \�c has positive measure
as well. We conclude that

k1E\ƒk\�ckLp.Rd / �
jE \ƒkj

2
:

Hence, using C4 WD 2C1jSd�1jd .d�1/=2 � 2, the fact that jE \ƒkj � � by the definition
of the thick set E, and �=C4 � 1, we can conclude that

k1E\ƒkf kLp.Rd IX/ �

�
jE \ƒkj

2C1jSd�1jd .d�1/=2

� ln.M/
ln.2/

k1ƒkf kLp.Rd IX/

�
jE \ƒkj

2

�
�

�
�

C4

� ln.M/
ln.2/ C1

k1ƒkf kLp.Rd IX/:

Since k 2Zd was arbitrary but good, we can either sum over all good cubes (if p 2 Œ1;1/),
or take the supremum over all good cubes (if p D1), and obtain by using Lemma A.1

k1Ef kLp.Rd IX/ � k1E\ƒgoodf kLp.Rd IX/ � C3

� �
C4

� ln.M/
ln.2/ C1

kf kLp.Rd IX/:

By the definitions of M , C3, and C4 and using that � � 1, we find that there exists a
constant Cd � 1 depending only on the dimension d such that for all p 2 Œ1;1�, we have

k1Ef kLp.Rd IX/ �

� �
Cd

�Cd .1Cj�j1/
kf kLp.Rd IX/:

This proves the statement in the case LD .1; 1; : : : ; 1/. Let now L 2 Œ0;1/d be arbitrary.
Theorem 3.1 follows by applying the result for L D .1; 1; : : : ; 1/ to the function f ı TL,
where TL W Rd ! Rd is given by TLx D .Lkxk/dkD1.
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