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Bogoliubov-type recursions for renormalisation
in regularity structures

Yvain Bruned and Kurusch Ebrahimi-Fard

Abstract. Hairer’s regularity structures transformed the theory of singular stochastic partial
differential equations and their solutions. The notions of positive and negative renormalisa-
tion are central and the intricate interplay between these two renormalisation procedures is
captured through the combination of cointeracting bialgebras and an algebraic Birkhoff-type
decomposition of bialgebra morphisms. This work revisits the latter by defining Bogoliubov-
type recursions similar to Connes and Kreimer’s formulation of BPHZ renormalisation. We then
apply our approach to the renormalisation problem for SPDEs.

1. Introduction

The theory of Regularity Structures (RS) has been developed to its full generality
within a few years since its initial presentation by Hairer [19]. Thanks to recent pro-
gress, one has local well-posedness results for a large class of singular Stochastic
Partial Differential Equations (SPDEs). This achievement relies, among others, on
the following papers [4, 6, 12]. It culminated in the construction of a natural ran-
dom dynamic on the space of loops in a Riemannian manifold described in [5] and
the Langevin dynamic for the 2D Yang-Mills measure in [11]. Friz and Hairer [18]
present a textbook introduction to RS and [1, 7] give short, respectively, extended
surveys on these developments. The algebraic foundation of the theory has been
developed in [6], where two renormalisation procedures are shown to be in cointerac-
tion: the first recenters distributions around a point such that they can be understood
as recentered monomials. The second renormalisation cures divergences coming from
ill-defined distributional products in a singular SPDE. In the abstract of reference [6],
the key parts of these renormalisations have been highlighted: “Two twisted antipodes
play a fundamental role in the construction and provide a variant of the algebraic Birk-
hoff factorisation”.
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The main contribution of this paper is to make this link more precise and to explore
the extent to which Bogoliubov’s recursions and hence the algebraic Birkhoff fac-
torisation are altered in the context of the renormalisation problem of SPDEs. We
establish a new Birkhoff factorisation different from the one introduced by Connes—
Kreimer in [16]. Birkhoff factorisations are essential objects that appear in many
different fields such as numerical analysis, where it is used in [8] for the local error
analysis of low-regularity schemes for dispersive PDEs. We expect to see them used
again in the context of (S)PDEs and this work provides new tools in this direction.

Let us outline the paper by summarising the content of its sections. In Section 2,
we recall the algebraic Birkhoff factorisation following Connes and Kreimer [16],
which unveiled an elegant group theoretical formulation of the BPHZ renormalisa-
tion procedure in perturbative quantum field theory [2, 20, 23]. We refer the reader
to [10, 14,21, 22] for useful references on renormalisation in perturbative quantum
field theory. Bogoliubov’s recursions for counterterms and renormalised amplitudes
are characterised as solutions of a factorisation problem in the group of characters
over a (specific Feynman graph or rooted tree) Hopf algebra. Then, we introduce
a factorisation-type renormalisation with the coproduct replaced by a coaction. The
counterterm recursion is defined via a comodule structure. These two structures are
considered for a connected Hopf algebra. We introduce also Taylor-jet operators form-
ing a (family of) Rota—Baxter map(s), which is central for the Bogoliubov recursions
to solve the factorisation problem. Section 3 contains the new and important res-
ults. We consider decorated trees as they appear in regularity structures and define
a comodule-Hopf algebra structure on them. This structure has been originally intro-
duced in [6]. We present its algebraic construction and postpone the link to SPDEs to
the next section. The main difficulty lies in the fact that the Hopf algebra at play is
not connected. Therefore, the results presented in Section 2 cannot be applied directly
if one wants to set up a Birkhoff-type factorisation. This problem is circumvented
by defining a modified reduced coproduct and use a family of Rota—Baxter maps in
order to give one of the main definitions of this paper (Definition 3.10). Then, by
exploiting the Rota—Baxter property one can show the main result (Theorem 3.13).
It is also shown that under certain assumptions, the recentering map does not depend
on a priori recentering of the polynomials. These results have to be understood as an
alternative way of defining the notion of model, which forms a critical part in Hairer’s
theory [19]. In Section 4, we present two Birkhoff factorisations connected to singular
SPDEs. The first one concerns the construction of the recentering map which crucially
relies on the main result of Section 3. Then, we present the notion of negative renor-
malisation, which is close in spirit to the approach outlined in Section 2, where the
comodule structure is used.
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2. Algebraic Birkhoff factorisation

Connes and Kreimer discovered a Hopf algebraic formulation of the renormalisation
process in perturbative quantum field theory [16]. It permits to capture the so-called
BPHZ subtraction method [14,22] in terms of an algebraic Birkhoff decomposition
of Feynman rules seen as an element in the group of Hopf algebra characters. The
factors in this decomposition give the renormalised, respectively, counterterm parts.

The notion of renormalisation in regularity structures permits as well a Hopf
algebraic formulation. However, the tree Hopf algebras at play are not necessarily con-
nected. Moreover, renormalisation cannot be described as decomposition at a group
theoretical level. Instead, we will have to consider a variant of this approach using a
comodule structure.

Let

H=Cle@PH™
n>0

be a connected graded Hopf algebra over C with coproduct A : H — H ® H, anti-
pode A : H — H and counit 1* : H — C. Recall that the latter is a linear map which
equals 1 on 1 and zero else. In the sequel, we will use Sweedler’s notation in order to
describe the coproduct, A, as well as the corresponding reduced coproduct, A’:

ArzZr(l)(X)r(z)=A’r+r®1+1®r= Z 7’7" +11+1Q .
(€] (7)

Remark 2.1. Let RT denote the set of non-planar rooted trees and 7 := (RT) its
linear span. A tree is naturally graded by its number of vertices. The Butcher—Connes—
Kreimer Hopf algebra of rooted trees, Hy, provides a key example of a connected
graded Hopf algebra of combinatorial nature. It plays an important role in the theory
of Butcher’s B-series [13] in numerical analysis. Connes and Kreimer studied Hy
in great detail in the context of renormalisation in perturbative quantum field the-
ory [15]. They defined its coproduct using the notion of admissible cuts on rooted
trees. Moreover, they also described a recursive formula based on the fact that any
rooted tree T € T, different from the empty tree, 1, can be written in terms of the B -
operator. Indeed, in terms of the latter, we have that T = B4 (73 - - - 7,,), which connects
the roots of the trees in the forest t; - - - 7, € Hy to a new root. The coproduct on Hy
then satisfies the relation

Ack(r) =1® 7 + (B4 ®id)Ack (71 -+ Tn)- (2.1)

We denote by char(H, A) the set of characters from the Hopf algebra H into
a commutative unital C-algebra A. These are linear algebra morphisms forming a
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group with respect to the convolution product

Vrp=mawops, HESHeHL2 Agal 4 (22

The convolution inverse of a character, ¢ € char(H, A), is given through compos-

1 = ¢ o s, and the unit for the convolution product is

ition with the antipode, i.e., ¢~
the co-unit 1* (see footnote!).
It is furthermore assumed that a linear projection, Q : A — A, is defined on A,

which satisfies the (weight —1) Rota—Baxter identity

O(f)40(8) =0(2(f)ag+ f-a0@)—-0(f-48) (23)

forany f,g € A. Here, f + 4 g :=m4(f ® g) denotes the commutative product of f
and g in the algebra A. The associated projector,

Q 1= 1dy —Q,
also satisfies identity (2.3). As a result, A splits into two subalgebras A_ := Q(A)
and A4 1= Q(A)

A=A_D Ay

Remark 2.2. One of the main examples is given by the algebra of Laurent series,
A = C[[t,t7"]]. In this context A_ = t~'C[t~!] and A+ = C[[t]] such that O keeps
only the pole part of a series:

Q(Zant") = Zant" cA_.
n n<0

The Hopf algebraic approach of Connes and Kreimer [16] describes the so-called
BPHZ renormalisation method in perturbative quantum field theory in terms of a fac-
torisation theorem for — dimensionally regularised — Hopf algebra characters. We now
recall Connes and Kreimer’s so-called algebraic Birkhoff decomposition.

Proposition 2.3. For every character ¢ € char(H, A), there exist unique algebra
morphisms ¢— : H — A_ and ¢+ : H — A defined in terms of the recursions

- =1"=0((¢ —1%) x ¢_),

.~ . 2.4)
¢+ =1+ 0((p —17) x ¢-),
and yielding the algebraic Birkhoff factorisation
prx9-! =g, (2.5)

!For the sake of notational transparency, we will suppress here the unit map, n: 4 — H,
that should follow the co-unit.
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Definition 2.4. The map ¢ = (¢ — 1*) * ¢_ is called Bogoliubov’s preparation map.
The maps ¢_ and ¢ are called counterterm, respectively, renormalised character.

Remark 2.5. We note that gojrl = ¢4 o s can be computed recursively

o' =1"=0(¢pi' * (9 —1%).
Identity (2.3) then implies that ¢! * ¢_ = 1* — ¢! % (¢ — 1*) % ¢_, from which
(2.5) follows immediately.

Observe that o = ¢ x o— = m4(¢ ® ¢—)A and evaluating on an element t € H
different from 1 yields the explicit formulas

p-(1) =1%(1) = Q((p — 1") % p_) (1) = = Q(9(1)),

G0 = 0@+ Y o) ap_(").
(Xr): (2.6)

0 (0 =@ + 3 (@) ap_ (") + 9 (1) = OG(D)).
()

Remark 2.6. Note that when Q = id4, one recovers the recursive definition for the
antipode +. Indeed, from (2.4), we deduce that

1 o
=11 wgo = oy = olid ) =gon,

which is consistent with the antipode being the convolution inverse of the identity
map, implying the antipode recursions (thanks to the connectedness of H')

AT = —T — Z At = -1 — Z A(t)”.
() ()

In the next section, we consider H being a right comodule over H. The space H
is a connected graded unital algebra and we denote its product by m ;. We suppose
the coaction

ArA—->H®H
to be an algebra morphism and we will use it for building a variant of factorisation
(2.5). We suppose that we are also given an injection ¢ : H — H.

Proposition 2.7. Forevery ¢ € cha.r(ﬁ , A), there are unique linear maps ¢— : H —
A_and oy : H - A

g-=1"—Qogor, ¢=ma(lp—1")®¢)A,
0+ =@ xg_ =malp ® p_)A,
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where the reduced co-module map is such that for every t € H

Aon)= Y 1) ®u1)'=Aoi(n) - () ®1-1®7
(@)

corresponds to the reduced coaction. The linear maps ¢_ and ¢ are also algebra
morphisms. Moreover, the map ¢+ ot : H — A takes values in A .

Proof. 1t follows essentially from the computation in (2.6), which can be verified
using the Rota—Baxter relation. The uniqueness of the decomposition follows from Q
being idempotent. |

Remark 2.8. Whereas Proposition 2.3 gives a factorisation in the group (char(H, A),
*) of characters, Proposition 2.7 does not encode a group factorisation, because the
product x is derived from a coaction in this case.

Remark 2.9. When Q = id4, one recovers the recursive definition for the so-called
twisted antipode A : H — H

a‘i:—t—mﬁ(idﬁ ®A)A o,
po=1"—gor=1"—my((9p —1") ®p_)A oL =go A

Remark 2.10. Another example of linear maps Q that satisfy (2.3) is idempotent
algebra morphisms

O(f-48)=0(f)-40(), Qo00Q0=0. 2.7

They appear in the negative renormalisation for Regularity Structures [6], but also
in numerical analysis when one wants to perform local error analysis. We refer the
reader to [8] for details.

Remark 2.11. The Rota—Baxter map Q can be replaced by a Rota—Baxter family of
maps, (Qq)ecR . satisfying the identity [17]

Qu(f) 4088 = Qutp (Qu(f)oag+ f-408& —f-a8).

The identity above is a generalisation of the Rota—Baxter identity (2.3). The main
difference is the introduction of some parameters «. The important property is to
have a monoid on these parameters. The main example are Taylor jets given in (3.8)
satisfying (3.9). The parameters correspond there to the order of the Taylor expansion.
In practical examples, this could be the degree of a subdivergence or in the case of
regularity structures, one wants to subtract a Taylor jet for getting the correct local
behaviour of some iterated integrals and this is performed according to their degrees.
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3. Bogoliubov-type recursions on regularity structure trees

3.1. Decorated trees

Recall Remark 2.1 that RT referred to the set of non-planar rooted trees. Let £ be
a finite set containing so-called types. For a given d € N, we define the set of dec-
orations O = £ x N9*1 and consider the set RT L of D-decorated rooted trees
that we call RS (Regularity Structures) Trees. Elements of RT P are of the form
Tt = (T, n,e), where T is a non-planar rooted tree with node and edge sets Nr,
respectively, E7. The maps n : Ny — N4+1and e = (e, e2) : Er — D are node,
respectively, edge decorations. The tree product « on RT P is defined by

(T,n,e)«(T,7,8) = (T+T,n+f,e+ @), (3.1

where T « T is the rooted tree obtained by identifying the roots of 7 and 7. The sums
n 4+ 1 and e + ¢ mean that decorations are added at the root and extended to the
disjoint union by setting them to vanish on the other tree. In other words, each edge
and vertex of both trees keeps its decoration, except the roots which merge into a new
root decorated by the sum of both corresponding decorations. In this paper, we will
use mainly a symbolic notation for these decorated trees.

(1) An edge decorated by (t, p) € D is denoted by Iy p). The symbol Iy p) is
also viewed as the operation that grafts a tree onto a new root via a new edge
with edge decoration (t, p). The new root at hand is decorated with 0. In other
words, I ) sends trees into planted trees.

(2) A factor X* encodes a single node o decorated by k € N4+1 We write X;,
ie{l,...,d+ 1}todenote X, where the {e1,...,eq+1} form the canonical
basis of N4*+1. The element X is identified with 1.

(3) In the following, we will employ a drastically simplified notation for decor-
ated trees by writing T = 7' € RTP.

Recall from Remark 2.1 the significance of the B -operation — in the definition
of the Connes—Kreimer coproduct on rooted trees in T . We use an analogous rep-
resentation for RS trees 7 € RT L using I (t,p)

n
= X T Ly,pn (@),

i=1

where the 7; belong to RT® and the product [ is the tree product. The factor X ko
expresses the fact that the root of the resulting tree is decorated by ko. The main
difference with the B -operation is that the edges connecting to the new root carry



Y. Bruned and K. Ebrahimi-Fard 680

different decorations. Using symbolic notation, one can reformulate the tree product
(3.1) as

(Xko ]_[f(t,-,pl—)(fi)) (Xké ]_[I(t;.,pp(f})) = xFotho [T mn @) I, ED.

i J 1]
The space of D-decorated trees is denoted as 7L = ({RT“@), where () denotes the
R-linear span. Endowed with the tree product it becomes a commutative algebra.
We now associate numbers to decorated trees, depending on the decorations. Further
below, it will become clear that they have a transparent interpretation in the context
of SPDEs. Let us fix a scaling s € N4+! and the associate | - |5 : & — R. We extend
the latter to k € N4+ by |k|5 1= sz: 11 s;k;. The degree of a decorated rooted tree
T, is defined by

T = Y In@s + Y ler(e)]s — lea(e)]s,

veNT ecET

where e = (e, e3). Using this degree, we define the set eﬂTf which is included in
RT P by

n
RTP = {xko [T 260G Lo E)ls > 0.3 € RTP ko € Nd“}.
i=1
This definition means that all the branches outgoing from the root must be of positive
degree. We denote by 'T+°@ the space (!R‘Tf) and call it the positive part. The corres-
ponding projector 74 maps 7 to ’T+°(D . In the following, we denote by M the tree

product on 7P

3.2. Hopf algebra and comodule structures

We want to endow the previously introduced algebra on decorated trees with a cop-
roduct which is similar to the Butcher—Connes—Kreimer coproduct [15] on rooted
trees (2.1). However, primitiveness of many elements is lost due to the particular
nature of the decorations of trees in our setting. We will provide a recursive defin-
ition of a coproduct, denoted by A™, similar to (2.1) which suffices for formulating
the main result, i.e., an algebraic Birkhoff-type factorisation. The map A™ is recurs-
ively defined on the space of RS trees 7

AT1=181, ATX, =X, 1+1Q X;,
. X . . x¢ .
AYIa () =18 I p(@) + Tap ®IDATE+ ) =1 @ Ler+o (D).

|
feNd+1 T
140

3.2)
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Recall that 1* : 72 — R refers to the counit. From the map AT, one can construct a
coproduct and a coaction that we denote differently.

AT : TP 5 79 @ TP Here, a specific bigrading is required. This is to make the
above infinite sum well defined. See [0, Section 2.3] for more details. A possible
choice would be

(T 1si) = (le2ls. INT \ {or}| + |ET]).

where |e2]s = D, c .. [2(€)]s, or is the root vertex of T, [Nr| and | ET | are the
numbers of nodes and edges for the tree 7. This map will have the interpretation
of performing an infinite subtraction. Its recursive description appears in [6, Pro-
position 4.16].

At = ([d@r)AT T2 5 TP g 7. Here, no bigrading is required, as the
sum in (3.2) is finite. It should be understood as finite subtraction, with its length
determined by the degree of the branch outgoing from the root vertex.

AT = (4 @ m)AT TP — 72 ® 7.2, as before no bigrading is required.
We put an extra assumption on the trunk by maintaining the positive degree of
the branches outgoing from the root. This is a rather strong constraint because
the degree of the trunk is lower than that of the original tree (branches of positive
degree have been removed).

Remark 3.1. In [8], a similar coproduct as (3.2) is used. The main difference relies
on the projection 7. Indeed, for a numerical scheme the length of the Taylor expan-

sion depends on the order of the scheme, whereas in our context it depends on the

regularity of the distribution we would like to re-center.

Following [6, Proposition 3.23], we are able to put a Hopf algebra structure on the

different sets of decorated trees.

Proposition 3.2. We have the following properties.

Considering the space T of decorated trees, there exists an algebra morphism
Ay T2 - 7D sych that H® = (‘T@, M, AT 1,1% A ) is a Hopf algebra.

Considering the positive part TJ;D C T, there exists an algebra morphism A
Tf) N g‘f) so that Hj? = (T+°®, M, AT 1,1%, AL ) is a Hopf algebra.

The map AT TP 5 7P g T+$ is a coaction satisfying
(AT @ id)AT = (dQAT)AT

and turns T2 into a right comodule for ‘T+°© .
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Remark 3.3. The antipode for H? is described in terms of a recursive formula given
in [6, Proposition 4.18] by

AL X = —X;
AN C—X3£ + A
ArTap@ == ), = MTprn ® A)ATE
feNd+1 :
The infinite sum is made rigorous by use of a specific bigrading. For the antipode
of H j? , we get a similar definition [6, Proposition 6.2]
ArXi = —X;,
(=X)*

ArIe @ =— Y 7 M4 L prey ® Ap)ATE (3.3)
LeNd+1 )

However, the difference is the introduction of the projector w4 as well as the coaction
AT, which make the sum finite.

In fact, the map which is of interest to us is the one where the projector w4 is
not used in (3.3). This map will be denoted by A : Tf) — 7P and is given in
[6, Proposition 6.3] by

AL X = —X;,

7 R -X)* S
Arlep@=— Y ( Z,) M(Iepro) ® Ay)ATE, (3.4)
s Ty Dls

It is called twisted antipode and plays a major role in describing the local behaviour
of solutions of singular SPDEs. In (3.4), the projection 74 is replaced by a global one
which is based on the degree of the decorated tree on which we apply the twisted anti-
pode. In this work, we will reinterpret this map as a Bogoliubov-type recursion. The
aim is to bridge the gap between the renormalisation procedure developed for singular
SPDEs and Connes—Kreimer’s formulation of the BPHZ renormalisation procedure in
perturbative quantum field theory in terms of an algebraic Birkhoff factorisation on
the level of regularised Feynman rules seen as a Hopf algebra character. In the next
section, we introduce a modified reduced coproduct together with a Rota—Baxter map
essential for Bogoliubov-type recursions.

Before stating the definition of a modified reduced coproduct, we notice that the
decorated tree ” = X" is not primitive with respect to the coproduct (3.2). Indeed,

ATX"=X"@1+1® X"+ (n)Xk®X”‘k,

keNd+!1
k#0,n
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(1)-T1(x)

and (Zz) is zero when k; is bigger than n;. We refer the reader to [6, Section 2] for

where the binomial coefficient

details. For a tree of the form I, ,4¢) (%), called planted tree, the main difference
from the Butcher—Connes—Kreimer coproduct (2.1) is that one goes to the next orders
by adding derivatives and polynomial decorations in (3.2). These extra terms are given

by
V4

X .
> o ® Lt p+0) (D).

feNd4d+1
{50

A natural choice is to also remove those terms from a potential definition of what we
will call modified reduced coproduct. We need to generalise this procedure to arbitrary
trees, i.e., products of planted trees with a non-zero decoration at the root. The basic
idea is to remove any polynomial part on the right-hand side of the modified reduced
coproduct.

Definition 3.4. The modified reduced coproduct map Artd is given on X0 by

AT xko — .

red

Then, for any rooted tree
n
T = Xko HI(tian)(%i) c T"(D,
i=1
we set
Aft = ATt —t®1
L (k . A
_ Z T(kO)Xk+Zz ti & xko—k H”+I(t,~,p,»+e,»)(fi), 3.5)

|
L1yeeerkn ¢! i=1

(; keNd+
where
=]
i
and for ko = 0, the sum over k contains only the term & = 0 by convention.
Remark 3.5. Sweedler’s notation is used for the modified reduced coproduct (3.5)

+
Afg=> et (3.6)
5)
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Remark 3.6. The definition of the modified reduced coproduct implies the primitive-

ness of o", i.e., At X" = 0. Moreover, one gets the following recursion:

ArTap@) = T, @ y)ATE, (.7)

where y = id —1* is the augmentation projector, which is zero on the empty tree 1
and the identity otherwise. In the identity (3.7), one subtracts a bit more than just the
primitive part that is T ® 1 + 1 ® 7. Indeed, the Hopf algebra H f is not connec-
ted due to the monomials X¥ that could appear in the right-hand side of the tensor
product. These monomials come from the coaction A, Therefore, the coproduct A:gd
in Definition 3.4 corrects this defect by removing both the primitive part as well as
the extra terms.

3.3. Bogoliubov’s recursion

After having introduced the modified reduced coproduct (3.5), we need to consider
the space of characters, which will be used to iterate the Bogoliubov-type recur-
sion. These are linear maps from H® to the specific target space of functions, # =
€®°(R4*1 R), respecting the tree product M. The recursion we want to set up will
produce a decomposition of a specific character into a product of two characters, and
will depend on a parameter x € R¢*!. The latter is used to fix the corresponding
splitting of the target space
H=H®H,,

where J; contains the non-polynomial functions vanishing at x and J¢; consists
of polynomial functions whose coefficients are functions of x. Indeed, for any f €
H one has the straightforward splitting f = f — f(x) 4+ f(x). The next definition
presents the key map lying at the origin of the Bogoliubov-type recursion. It has to be
understood as a Taylor jet (of order o).

Definition 3.7. We setfora € Ry, x,y e Rt and f € ¥

T f = 2 S0t o, (38)

LeNd+l1
[€]s<a

From (3.8), we immediately see that Ty, x y f € H# when f € J. The next lemma
provides some key properties of the Taylor jet (3.8) which will be used in the sequel.

Lemma 3.8. The operators T. x . defined in (3.8) satisfy for every a, p € Ry and
functions f,g € € (RI*! R) the following Rota—Baxter-type identity:

(Toz,x,-f)(Tﬂ,x,-g) = Ta+B,x,-[(Ta,x,-f)g + f(Tﬂ,x,-g) - fgl. (3.9)
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For a fixed but arbitrary ¥ € R+ we have

_=\¢
Toc,x,yf = Z %Ta_wk,x’j[l)éf]. (310)

s <o

Proof. The first identity (3.9) is well known in the literature and corresponds to the
notion of family of Rota—Baxter maps [17]. We give a proof of the second one (3.10)
which is in fact essential for the sequel. One has

N o -
> %Ta—w@,x,xweﬂ: > % 3 ( 'x) DI £(x)

[|s < ) [ls<a |kls<a—|€]s k!
_ = =\
-y USRI pegy
[|s<a ’
:Toc,x,yf-

Remark 3.9. Identity (3.9) is also true for o, 8 € R_ by setting Ty x . f = 0 whenever
a <0.

We consider now linear maps from H® to # parametrised by finite sets of ele-
ments in R4+1. Of particular interest is the family of algebra morphisms

— . D
o= (wxl,n-axn)xl ..... xpeRA+1, (Z 7T T H - H.

For given x1, ..., x,, the function ¢y, , .. x,, Will also be denoted in the sequel by

The variables x1, ..., x, correspond to some quantities fixed within the definition of

¢. When n = 1, it is interpreted as the fact that some origin has been fixed and that

characters @, : H D _ ¢ contain partially a re-centering. Indeed, they are defined

on o and the natural evaluation should give the polynomial function associated to

Xk Therefore, our polynomial functions will be re-centered around this parameter.
We consider now the linear maps

(p,le‘D—>J€,
¢;;3H-{)—>J€;a
Grz  H? - #,

i H? > X

in ® and follow Proposition 2.7 in setting up a Bogoliubov-type recursion for the
counterterm map. With our notations, one has for every y € R4 *!

_ - _ +
¥z,y Oxx,y> Py Pxzy € R.
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Here, we see any map ¢ ;. : H _f) — J¢ as an element of ® because these maps admit
a natural extension to H® by setting them to be zero outside H f . It is assumed that

@z is a character parametrised by ¥ € R¢*1. The map ¢x,z plays the role of Bogoli-
+

red*
applying the Taylor jet operator, Bogoliubov’s preparation map gives the counterterm

ubov’s preparation map obtained from the modified reduced coproduct A7 ,. Upon

character, P Eventually, the renormalised character <,0;CF % follows from a convolu-

tion between ¢ ;. and ¢z using the coaction At. We will skip the injection from H _{3
into H® for notational clarity.

Definition 3.10. Let gz € ®, X € R4*! be a character. We set up the following
Bogoliubov-type recursion with respect to the points x, y € R4+, ¢ RTD:

_ n n + A — n

Priey@® =0ry@®) + Y 0z @)erz (3.
)

(p;,)_c,y(%) = _Tlflg,x,y((px,)_c,'(%))v

Ol ey =Pey * 0z = (0xy ® iz AT

(3.11)

Remark 3.11. Using the recursive formulation of the modified reduced coproduct
(3.7), one gets the following identity for ¢y x.:

P50 Tt = 02 T, () + (023 L) ® 0xz.0) AT (3.12)

The central point is to verify the following theorem that gathers various important
properties.

Theorem 3.12. Within the setup of Definition 3.10, one has the following.

(1) The counterterm map @z isan algebra morphism from H j? into K.

(2) The renormalised map (p;r ¢ Is an algebra morphism from H D into H, which

sends trees from 'J‘f) into J7.

(3) One can prove that the maps (p;r 3 and ¢x x are invariant in their second sub-
script. The map @ ; has also this invariance but only on decorated trees with
zero node decoration.

Proof. The first two points are described in Theorem 3.13. The third point is covered
in Theorem 3.17. u

Assumption 1. We assume that the family of characters (¢z)zcga+1 satisfies
@z, (Xi) = yi — Xi,

07.-(Le.0)(2) = D oz .(I(t.0) (D).
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The first identity in Assumption | corresponds to interpreting the point X as a re-
centering of polynomials. The second identity shows that adding decoration to an edge
amounts in fact to taking derivatives. This identity is crucial and combined with (3.10)
allows us to prove the character property of the counterterm ¢, +. For the rest of this
section, we consider a family of characters (¢z)zcgae+1 satisfying this assumption.

From (3.12) and Assumption 1, we have for I x4¢)(7) € ’]f) that

G5 (L kr0(D) = D G 5Lty (D)) (3.13)

Assumption 1 gives also the behaviour of Bogoliubov’s recursion on the polyno-

mials. From the primitiveness,
A:e_ka =0,
one gets
Prey(X5) = 0z, (X5 = (v — DX

Then

O 5.y (X5) = —Tpe ey @r.2(XF) = =Ty ((— D)
k
=- 2 (e)w — 0 -k
s <lkls
For y = x, we then have
_ k\ L
x,x,x(Xk) == Z ¢ (X —x)f(x —x)k¢
s <lkls
kY- 4 k=L | (% k (3.14)
=- Z / =) x—-X) """+ x—-x)
s <lkls
= (¥ — x)k.
At the end, A
0F ey (XF) = (pzy ® 0y 5 ) AT XK

k
= > (g)wx,y(xf)go;x,x(xk—f)

[€ls<lkls

- > ()o-na-om
s <lkls

= (y -0k

Theorem 3.13. The map ¢z is an algebra morphism from H_"P into H and goj’ P
is an algebra morphism from H® into H.
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Proof. We proceed by induction on the number of edges and the decoration at the
root. We consider trees 71, T € ﬁ?‘f According to our convention they both admit
symbolic representations of the form

7 = X" l_[ Ttk (T1i)s
i

%2 = Xn l_[ I(f,,/éj)(%Zj)
J
We expand the recursive expression of the counterterm ¢~ giving for y € R4+1

_ N A A + A A — A A
Oxzy(T172) = —Tig 42,y (‘Pi,-(TITZ) + Z oz ({0112} )y z s ({11 T2}N))

(#112)
A + A — Al
= _Tlflleg,x,y({(/?fc;(fl) + 3 (p)_c,-(fl)(px,i,fc(fl)}
(@)
_ A + _ A~/ — Al
X 9x.(T2) + Z Px.:(12)0x 2.2(T
(%2)

" XX btk
D> (k)‘””( f )

Liseska
lk|s<|nls

X @y % (Xn_k 1_[ I(tj,kj+ej)(f1j))

J

) o
x {wfc,-(fz) + ) o) }
(%22)

7 XXiti+k
= (D)

k'l <]

_ i—k’ n
X Oy 3% (Xn l_[ I(fj K +£j)(‘[2j))

J

+
4y

" + arn n
x {%z,-(fl) 'y wx,-(r;)sox,x,,—xr{’)}),
(1)

where £! = [[; £;! and we have used several times Sweedler’s notation for the reduced
coaction A:gd see (3.6). The computation above illustrates the fact that the reduced
coaction A:gd is not multiplicative and one has to add more terms involving monomi-
als of the form X Xi £itk and X Xi Ltk By applying the induction hypothesis on each
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xnk Hi I(t,—,k,- +Z,-)(f1i), we obtain

(e (X"_k 1_[ I(t,-,k,-+e_,-)(f1j)) = pr s (X"7F) Hfﬂ;,;,;c(f(r_,-,k, +2,)(T17))-
J J

We use identity (3.10) to get for each Iy, x,)(71;) With a; := | L1, x;)(T1i)ls

(p):,)_c,y (I(tl‘ ,ki)(fli)) = _T(xi ,X,Y (@x,fc,-(-[(t,- ki) (%ll)))
(y —0)b - )
=— Y o Taty i [PY Grs (Lt ke (1))

1€ s<a; I

(y =) _ )
= - — 7 Tai—t;.x% (@5, (L(t; s +2)(T10)) ]

1€ ]s<a; I

X4\ _ .
= Z %'c,-(W)fﬂx,x,x(f(t,»,k,-+e,)(fn))-
1€)1s <ai &
On the other hand, we get
_ n _ _
a0 = 5 () Jen e,
lkls<lnls
We conclude by applying identity (3.9) that
Oriy@112) = =Tz 61000y (P2 (FDPx.2.4(22) = Tigy g x (P2 (21)) P 2.4 (F2)
- @x,)’c,-(%l)TlfQIs,x,-(@x,fc,-(%Z)))
= Tigy ey (x5, (F1)) Ty a2,y (P, (22))
= (/);,)_c,y (%l)w;j,y(%Z)'

The fact that (/);L %y is an algebra morphism follows from its definition together with
@z and ¢ ¢ y being algebra morphisms. |

Remark 3.14. From the proof above, one can see that for a tree T with a negative
sub-branch we get ¢ () = 0 by using the extension mentioned in Remark 3.9.

In the next proposition, we connect the twisted antipode, A TE) — TP, given
in (3.4) with the character ¢ ; . H _f) — R constructed through the Bogoliubov-type
recursion.

Proposition 3.15. Let ¢z x: H® — R be a character. One has the following identity
between characters from H _ff) to R:

Pz 5 = Prxdy.
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Proof. We proceed by induction on trees. Recall that Assumption 1 is in place. By
multiplicativity, we just consider a planted tree I x)(7) and set o = | L (¢ x)(T)]s

7 R s ( X)* .
(p)'c,x(A-i-I(t,p)(T)) = Z adad ———(¢x xI(t p+0) & @x, fol—i-)A-i_
[¢]s<c

We use the inductive hypothesis and
0z-(Le.pro®) = Dioz (Lt (3))

to get

Px x('A’-i-I(t P)(f)) - Z - 1z ((Dé(px (I(t P)()))(x) ® (pxxx)A+%

[€]s <«

= ~(Tap,s(05-(Z,p) () ® 9z ) AT
= —To x5 (Pz.-(Lt,p) (7))
— (To x5 (0z,.) ® ‘P;,)‘C,)E)A:erd'[(t,p) (7)

= _Tot,x,)_c (@x,fc,-(f(t,p) (%)))

= ¢rzx(Le.p) (D). "
Givenatree T = X" [[; T(¢; x,) (%), with; = | I, k;)(Ti) |, we define for every

y € Rd+1
(Px.5y = Thax.y (@x,5)) (D)
= (‘/_’x,)'c,y (Xn) - Tlnlg,x,y ((Z)x,)'c,-(Xn)))
X 1_[ (D%, (Lt k) E)) — Ty x,y (@5, (L ity 1) (1))
i

Proposition 3.16. One has for every T € TP

g0):cip,)c,y (1) = (Px.z.y — TI-Ig,x,y((ﬁx,fc))(%)-
Therefore, (p;’ x.(T) belongs to Jt .

Proof. By multiplicativity, we just need to check this property for X; and trees of the
form Iy x)(7). First, one can check that

Pxx,y (Xi) = T1x,y (Px,5,-(Xi)) = @5,y (Xi) — @x,x(Xi)
= (i —Xi) — (i — %) = yi —x;.
From X; being primitive follows that

Ol ey (X)) = (9ry ® 9y s AT X, = yi — xi.
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For T = I x)(T1), we get
(pz,y ® ‘/’;,x,;c)A—i_f
= (pz,y ® ‘P;)‘c,g)A+I(t o (1)

= (pro L ® iz )ATH+ D ((ny o @ ¥xrsla k+£)(T1))

s <IZls
A (v —%)°
=griy(@®— ) €—T|r|g lex, % [P %0 Lt +0) (T1)]
[tls<IZls ’
= Qx,%,y (T) - Tl%lg,x,y((ﬁx,)'c,-(%)),
where we have used the identities (3.10) and (3.13). ]

In order to get some X-invariant properties, we need to be more precise in the
choice of the characters which is the aim of the next assumption.

Assumption 2. We assume that the family of characters (¢x)zcga+1 satisfies

{wi,y(Xi) =y, — X,
93y (L4 (D) = [ga+1 D¥Ke(y — 2)9z.2 (3)dz,

where (Ki)ieg is a family of smooth and compactly supported kernels.

Note that Assumption 2 implies Assumption 1. Indeed, the kernels K; being
smooth and compactly supported, one can exchange derivatives and integrals. A good
example to have in mind is when the K are in € (R¢*! R) and compactly suppor-
ted.

Theorem 3.17. Under the Assumption 2, one gets the following.

(1) The renormalised character map goj ¢ Is invariant in its second subscript:
+ .t ’
(px,O T (px,fc'
(2) Bogoliubov’s preparation map ¢y 3 is invariant in its second subscript on
planted trees and

Pty T (@) = (DFKy x o . (2)().

(3) The counterterm map ¢ _ ; is invariant in its second subscript on trees which
have a zero node decoration at the root.

Proof. We first prove the invariance of the renormalised character map (p;cIr ¢ in its

second subscript. By the morphism property we need to checkiton 1, X; and I x)(7).
One has

gojc:i,y(l) =1 ‘ch:)‘c,y(Xi) = Vi — Xi.
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Then, for I x)(7), one gets

Prz- L) = @z L1k ® 9r ) ATE
= (Dth * Q5. ® go;’)—cj)A’L%
= (D*Ky % ¢ : (D))

We conclude by applying an induction hypothesis on goz )-C,,(%) and by using Propos-
ition 3.16. We also proved the formula for ¢y z , and its invariance in the second
subscript on planted trees. For ¢, we use the character property and we consider
only planted trees. By the definition of ¢,” ; which involves ¢y 3, we conclude from
the invariance of ¢y 3 on its second subscript. |

Remark 3.18. Let us mention that the map ¢ is not invariant in its second subscript
on planted trees with a non-zero node decoration at the root. Indeed, this produces a
factor of the form ¢ . (X k) which is not invariant.

4. Applications to singular SPDEs

In this section, we present algebraic Birkhoff-type factorisations connected to Pro-
position 2.7 and its extension with Theorem 3.12. In each case, we will specify
the coaction and the target space A, respectively, A_ and A4, which are different
depending on the application. The first application is the recentering character for
regularity structures also called positive renormalisation and first introduced in [19].
Its construction using a twisted antipode has been made precise in [6]. We revisit its
construction in light of Theorem 3.12. The second application is the negative renor-
malisation for SPDEs, which is reproducing the BPHZ algorithm by incorporating all
the Taylor expansions at the level of the algebra. It was introduced in [6] and is also
described by a twisted antipode. We reinterpret this construction with Proposition 2.7
and a Rota—Baxter map satisfying the identity (2.7).

4.1. Positive renomalisation

The formalism of decorated trees has been developed originally for singular stochastic
partial differential equations (SPDEs). In this context, a decorated tree is a combin-
atorial representation of an iterated integral obtained from a perturbative expansion
performed using the mild formulation of the equation. Indeed, considering an SPDE
of the form

du—Au = Fu,Vu,£), (1,x) e Ry xR?, 4.1)
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where £ is a space-time noise, the mild formulation of (4.1) is given by
u=Kx(Fu,Vu,§)), (4.2)

where K is the heat kernel and * denotes space-time convolution. We suppose for
simplicity that #(0,+) = 0. Then, if F is a polynomial, one iterates this equation on u
as well as Vu. The noise £ is replaced by a mollified noise &;. If F' is not a polynomial,
the iteration is performed after its Taylor expansion, which makes polynomials appear
in the iterated integrals.

More generally, we suppose, given a finite set £ = £ L £_, a collection of ker-
nels (Kt)teg, which corresponds to the kernels appearing in the mild formulation
and a collection of smooth noises (£;)eg_ . The scaling s € N+ is fixed to be para-
bolic, i.e.,s = (2,1,...,1). Furthermore, it is supposed that (4.1) is locally subcritical
in the sense that one can associate a subcritical and normal complete rule R to (4.1).
Then, one can construct a subspace 7O = (Bo) € TP, which is stable under the
coproduct on decorated trees and generated by R. The set B, C RT L is formed by
the decorated trees that conform the rule R. In other words, they are generated by
iterating the mild formulation (4.2). We will refrain from giving further details and
refer the reader to [6, Section 5], where those rules have been detailed. The decorated
trees in 72 associated to the equation allow to describe the iterated integrals coming
from its perturbative expansion.

The essential point is that 72 is a subset of 7% but not necessarily a subalgebra.
Indeed, the rules reflect the distributional products of the equation, which imply that
trees cannot be multiplied using the tree product. Indeed, we do not want to create
new products that do not come from the right-hand side of (4.1).

However, the (co)algebraic results given in Section 3 remain valid when one
replaces 79 by 79 This is possible because T is compatible with the coproduct
and one can use the product in 7% to decompose elements of 79 into smaller com-
ponents. Note that decorated trees are still abbreviated by 7 € 72,

Then, the iterated integrals are given by a family of characters, n® .59 - g,
indexed by X € R?*! and recursively defined by

MO1)(y) =1,
MO X)) = yi — %,

- % _ 4.3)
MOTep@0) = [ DK =@PD@dz te Ly,

MW I (D)(y) = DFe(y), teg-.

We add as an extra assumption that edges of type t € £_ can only appear as terminal
edges. We also assume that branches of the form I ) (X Hwith¢ £#0andt € £_
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cannot appear. The character
n:=n®

has been introduced in [19], where it was identified as the main character for the
construction of the model in [6]. However, we would like to consider instead H()_‘),
where a priori recentering of the polynomials around ¥ € R4*! is allowed, and see
how the main objects used in the theory of SPDEs behave toward this change.

As presented in the previous section, we are given a scaling s together with a map
| +|s : & — R. The latter depends on the analytical assumptions put on the kernels

.

and noises. It is expected that |« | : £y — Ry corresponds to Schauder estimates

for improvement of regularity and that

s : &_ — R_ encodes the singularity of the
noises when the mollification is removed. We consider the space Tf) as not being a
subspace of 7%, but as a subspace of

n
D 4D k ” AN 2 oD
JE QU = {X | | g(ti,pi)(l'i),‘[i € J }

i=1

Here, the symbol 520, p) instead of I ,) is used for the edges outgoing from the
root. We denote by iy the injection from ‘ff) to 7L, Elements of ‘J;_,_"(O are defined
by applying the projection map w which is now considered from ‘Jifo to ‘J:f) . The
symbol ¢, ) will be a shorthand notation for 7 o j(t, p)- The map M can also be
defined on ’ff) by setting

NP g (@) = TP I (7).

The main reason for marking this difference is that T , in general, is not an
algebra. Indeed, the construction of 7P is constrained by the distributional product
appearing on the right-hand side of (4.1). On the other hand, 'J_';(D is always an algebra.

One of the main achievements of Hairer’s theory of regularity structures is to
provide a Taylor expansion of the solution u of (4.1)

u(y) =u(x)+ Y TRIE)(MA)() + R(x, ),
teT P
where ’J:ej;o C 7P contains trees generated by the perturbative expansion and Y[£](x)
are coefficients which may depend on u and its derivatives Vu. The map Il is
deduced from MM® = I in Definition 4.1 below. Then, one can define a regularity
structure (’J_'D ,G), where

« TP = Doeca fl_'ai) is a graded space with A C R bounded from below and locally
finite. For any element £ € 7,2, one has |7|s = a. When £ € 79, ||#||,, denotes
the norm of its component in ‘J:;@ s
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G is a structure group of continuous linear operators acting on 7 such that, for
every ' € G,everya € Aand T € fl'a"(o, one has

ri—te P

B<a
Elements in G are maps of the form I'g, where g : fl:f) — R is a character and
I, = (id®g)AT.

One of the main definitions in [6, 19] makes precise the structures behind the con-
struction of the map IT,.

Definition 4.1. Given the linear map IT: To J, we define for all z,z € R4+1

e alinear map I1,: 72 — # and a character f : ‘J_f) — # by
M, = (M@ AT, fo = ([MAw)(),

where A+ is the positive twisted antipode given in (4.5) below,

* alinear map I';;3: 79 — TP and a character Y2z - ‘J:'+°(D — # by
[z = (d®y2)AT.  yz = (fihy ® fH)AT

Then, under certain favourable conditions on the map IT which correspond to the
definition given in (4.3), (I1, I') is an admissible model satisfying the following.

* Algebraic properties
I'yx =id, TIxyoly; =T, I, =IIy0Tl,. 4.4)

*  Analytical bounds: for every compact set & C R?+!, we assume the existence of
a constant Cy¢ g such that the bounds

(M) < Ceglltlelx = ylg  ITxyellm < Ceglillelx = ylis™

hold uniformly over all x,y € &, allm € A withm < £ andall 7 € 79D such that

|T]s = 4.
From [6, Proposition 6.3] it follows that there exists a unique algebra morphism
Ay ‘T+°® — ’T_;O , called the “positive twisted antipode”, such that A X; = —X; and

furthermore for all {1 x)(7) € ?:f)

~ R -x) . . A
Aden®=- Y Sl eiodtt @
[els<Z.x0 (s '
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where J\:(+ : ‘ff) ® ‘ff) — ?A:EO is the tree product on ‘JQJ;@ . Then, we consider the
character ¢ defined for every X € R4 *! by

¢x(t) = (MD?). (4.6)
The main characters used for defining the model associated to an SPDE are
SO =@PA00, NP =MD @ £9).A*
Then, one can define the re-expanding map '™ as follows:
ry) = (ideyd)A*. v = (P ) ® AT
Proposition 4.2. Under the assumption (4.6), one gets
0O =efe 1O =eiss

Proof. The fact that f ® — Py iz
using Definition 3.10. ]

comes from Proposition 3.15. Then, we conclude

Corollary 4.3. The model (11, T") is invariant under translations of the monomials in

the sense that for every ¥ € R4+1

M, =1%, Ty =T%.
Proof. For Hg), the invariance follows from Theorem 3.17 and Proposition 4.2.

Then, for I'y,, we proceed by induction through the formula introduced in [3, Pro-
position 3.13]

Cry L0 (7)

(X + (7 = 0D
2.

= Lt (Txy?) + 7

(ITx I(t,k-i—() (rxy ))(y). =
Kls=<|T(t.6)Dls

We are also able to recover the recursive formulation proposed as a definition
in [19] for the maps ITy and £.

Proposition 4.4. The map T is given for I 1 x)(7) with | I (1 x)(7)|s = a by
(Ma sy (D)) = (DFKe + 1T %)(y)

-y (y (D"“Kt # T12)(x)

[€]ls <a

and the map fx()_c) is given for i) (T) witha = | It k) (T)|s > 0 by

F @) == ¥ DK s )0,

€] <a
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Proof. Indeed, from Theorem 3.17, one has an explicit formula for the preparation
map @,z given by
9x: Ltk (D) = DFKe x o (2) = DF K + Ti(D).
Therefore, for It x)(7) with [ Lt 4)(T)]s = a,
(M Lty (D) () = (id —Ta ) (@, 5 (L 2.0 (£))) ()
= (id —Ta,x,) (D¥Ke + T () ()

x)*

= (DFK * L) — Y - S (DK L) ).

s <a
Then, for k) (7) with o = [ Tt.4)(T)]s > 0, we get
(G (?) = ~Taxz(Pr.2 (4 (Fen) (D))
= _Ta x )_c(gbx x (I(t k) (%)))

-y (x Dk“K « T, 3) ().

s <a
One recovers for x = 0 the formula given in [6, Lemma 6.10]. [ ]

If we take X = x, we obtain a simple formula for fy &

£ G @) = —1|I(t.k)(f)\g>o(DkKr * 1, 7)(x).

When x = 0, which corresponds to the case considered in [6, 19], one can fix x = 0
and obtains

fo(Fei (D) =~z 1, )>0(DF K¢ % To7)(0).

If we consider only this case, some simplifications can be introduced in the algebraic
structures. The Bogoliubov recursion given in (3.11) is the same except that now one
can replace the map A by changing its value on polynomials

AtX; =X, ®1. 4.7
Indeed, when x = x = 0, one has from (3.14)

xxx( k)_O

for every k € N¢4*+1_ Then, in

‘p;;,y = (pz,y ® ¢;g,j)A+,
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monomials X¥ are killed on the right-hand side of the tensor product by Py 55
Therefore, one can work with the new definition given by (4.7). One also changes
the definition of the space fl:f) which will no longer contain the polynomials. One
gets the following definition:

{l_[ g(t: Pz)(Tl) |I(t, p,)(71)|s >0,7 € rV'SD}

i=1
Then, the coaction AT : 72 — 72 g 7;+$ is given by
AtX; = X; @1,
12

~ R A a X N
M Ip(®) = Qap ®OA*E+ Y T2 dpold).
feNd+1 7

We keep the structure of the deformation in this definition, but now X; is not primitive.
The main change occurs for the coproduct AT, where all the deformation at the edge
adjacent to the root is removed:

A+g(t,p)(f) (Ft.p) ®IDATE +18® J(1.p) (D).
Moreover, the Hopf algebra 7~ + is now connected, and one gets
ArXi ==Xi, Ardap(@) = —M(Jwp) @ A)ATE.

Even the twisted antipode Ay is simplified in this context

At diei (®) = =My (den) ® A)ATE,
In certain cases, it will also coincide with the antipode. Indeed, one can have

ATt =3 "¥®%", |IenE)ls = 0.

@)

In fact, this case is almost the general case. Indeed, it happens for branched rough
r*'.fO
is a

eq

positive sector, that is, a subspace invariant by G and where the minimum degree is 0.

paths, generalised KPZ equations and on every equation when the space J

For a negative sector, under certain conditions one can remove the negative part with a
generalised Da Prato—Debussche trick see [4, Section 5] and work on a positive sector.
We can reformulate (3.11) in the following proposition.

Proposition 4.5. The Definition 3.10 for x = 0 becomes
PD() = (D)) + Z+ e (e~ EN().
®
¢~ (D)) = —Tjz).0.y(0(0)),
P () = e() ) * ¢~ (0) = (P()(Y) ® ¢~ (HO)AT,
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where
=1, ¢" =T ¢ ()(x)= fx

Proof. The simplification comes from the fact that terms of the form
o Xt

are set to be zero when one applies (¢(+)(y) ® ¢~ (+)(0)) to them. Indeed, ¢~ (X¢)(0)
is equal to zero. ]

Note the shift in notation due to the simplifications implied by the choice of para-
meters in the previous proposition. Then, for x = 0, the character ¢~ := ¢~ (+)(0) is
given by

9 (D)(0) = =Tjz),,0,0(9(7)) = —evo(@(7)),

where ev, is the evaluation at the point x. These simplifications have been observed
in [8, Remark 2.11] and make sense when one can just look at [T, for the convergence
of the model. This is true for a random model whose law is invariant by translation,
in the sense that I, (7) and I1(7) have the same law.

Remark 4.6. The construction relies on II being a character. In Regularity Struc-
tures, where we renormalise characters with a suitable map M : T2 — 72, we
construct ITM as a character on ’ff) but on 72 it will not be possible: we need to
renormalise ill-defined distributional product, and so, the multiplicativity will be lost.
Therefore, the construction is still valid for MM viewed as a character on ’J_f). Indeed,
MM can be extended in the following way:

Y X5 ey (@) = (O X5 [TOM I 1) ().

Therefore, ¢_ will still be a character but not ¢4. We will expand this construction in
the next section.

4.2. Negative renormalisation

Let 52 be the free commutative algebra generated by 79 We denote by - the forest
product associated to this algebra. The empty forest is given by 1;. Elements of 7 £
are of the form (F, n, e), where F is a forest. The forest product is defined by

(F,u,e)+(G,n,e) =(F-G,u+mu,e+e),

where the sums 1t + 1 and e + e mean that decorations defined on one of the forests
are extended to the disjoint union by setting them to vanish on the other forest. Then,
weset TP =7L /8L where i)’f is the ideal of 7. generated by {7 € B, : |T|s >0}.
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Then, one defines in [6], a coaction A= : T2 - 7P & 79 which is a deformation
of an extraction-contraction coproduct in the same spirit as At. By multiplicativity,
one extends it to a coaction A~ : 7P — TP ® 72,

Then, one can turn this map into a coproduct A~ : 72 — 7L ® 7P and obtains
a connected Hopf algebra for 79 endowed with this coproduct and the forest product
see [6, Proposition 5.35]. The main difference here is that we do not consider extended
decorations introduced in [6] for getting a cointeraction [6, Theorem 5.37] between
the coproducts AT and A~. These decorations are extra decorations on the nodes
taking value in R_. They correspond to degrees |t|s of subtrees T which have been
extracted via A™. The results for the Hopf algebra are the same as in [6]. The twisted
antipode is given in [6, Proposition 6.6]

Proposition 4.7. There exists a unique algebra morphism A T2 > TP that we
call the “negative twisted antipode”, such that for © € 7L N ker 17

At =—-M_(A-®id)(ATi_T -7 1),

where i_ is the injection from TP 10 T2 and M_ is the forest product between
elements of 5.

Remark 4.8. The formalism described here corresponds to the one of Remark 2.9,
where H = 72 and H = 5-2. The fact that we get a connected Hopf algebra and
that we do not see any polynomials in the reduced coaction comes from the definition
of i)’f? which contains all the polynomials X”. Therefore, after quotienting by 8L,
they do not belong to 7o,

It remains to describe the target space, where the Birkhoff factorisation takes
place. We denote by X the space of stationary processes X : Q2 — €°° over an under-
lying probability space (€2, &, P). This means that the laws of X(z) and X(0) are
equal when X € ¥ and z € R4+!. We assume that derivatives of elements in %,
computed at 0 have moments of all orders. We define 9t = S(X) as the symmetrised
tensors over the linear span of X. Any element of S(¥) is of the form

1
fl @...@fn = ; Z fg(1)®-~-®fo’(n)’
0e@y

where the f; belong to X. We consider the following splitting:
N=N_&N,,

where Ji_ is the space of constants and i is the subspace of Jt such that each
element F satisfies:
E(F)(0) =0,
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where E : S(¥) — R is definedon fi ®---® f, by

E(fio-0 f)0) = HE(ﬁ (0)

i=1

and E denotes the expectation over the underlying probability space. Then, we con-
sider the characters ¥ : 7O M, {1/ : 5P 5 RN and Vo TP 5 N_as

Yy =T, y-=E@MA)0), Viy=y-+y=-0y)A~, 4.8)

where II is extended multiplicatively to 7D The choice of the point O in the defini-
tion of _ is not arbitrary since we suppose that IT takes values in X. One can show
that 14 is taking values in 9t see [6, Theorem 6.18].

Theorem 4.9. For t € 72 and 21 € T2, one can define the same character y_ in
(4.8) as follows:

Y-(3) = —E@ (-GN, v+ () = (d-E)@ (#)(0),
Y@ =y@ + > v-EWE,
@)
where Sweedler’s notation is used for the modified reduced coaction
Agt=) P&t
®
Proof. One can easily check that E is a Rota—Baxter map in the sense of Remark 2.10
and then apply Proposition 2.7. |

Remark 4.10. The character /_ plays a central role in the definition of the renorm-
alised model T1 x» Which is given in [6, Section 6.3] by

Iy = (MM ® fM)AY, M= (y_®id)A".

The fact that this definition gives again a model relies on the cointeraction (see [6,
Theorem 5.37]) between the two Hopf algebras 7 "‘D and 7L obtained when one
adds extended decorations. This cointeraction has been observed on similar structures
without any decorations in [9].
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