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Correlations in the continuous multispecies TASEP on a ring

Nimisha Pahuja and Surjadipta De Sarkar

Abstract. In this paper, we prove a conjecture proposed by Aas and Linusson regarding the
two-point correlations of adjacent particles in a continuous multispecies TASEP on a ring
(AIHPD, 2018). We use the theory of multiline queues, as devised by Ferrari and Martin (AOP,
2008), to interpret the conjecture in terms of the placements of numbers in triangular arrays.
Further, we use projections to calculate the correlations in the continuous multispecies TASEP
using a distribution on these placements.

1. Introduction

Multispecies exclusion processes and their combinatorial properties have been a pop-
ular topic of investigation in recent times [5, 6, 8, 19]. One property of great interest
is the correlation of two or more particles in the stationary distribution of the pro-
cess [1, 3, 10]. This paper aims to prove a conjecture of Aas and Linusson [3] on
correlations of two adjacent points in a multispecies totally asymmetric exclusion
process (TASEP) on a continuous ring.

A lot of attention has been given to various properties of the multispecies TASEP
in recent years. Connections between TASEPs and various mathematical structures,
including affine Weyl groups [2, 16], Macdonald polynomials [12], Schubert polyno-
mials [15], and multiline queues [13], have been explored extensively. Multispecies
TASEP on a ring has been studied in [4, 9, 11]. Ayyer and Linusson [10] studied
multispecies TASEP on a ring, where they proved conjectures by Lam [16] on random
reduced words in an affine Weyl group and gave results on two-point and three-point
correlations.

One of the first instances where the continuous multispecies TASEP on a ring was
mentioned is by Aas and Linusson [3]. They studied a distribution that should be a
certain infinite limit of the stationary distribution of multispecies TASEP on a ring.
They also conjectured [3, Conjecture 4.2] a formula for correlations ci;j , which is
given by the probability that the two particles, labelled i and j , are next to each other
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with i on the left of j in the limit distribution. We prove this conjecture first for the
case i > j (Theorem 1.1) in Section 3 and then for the case i < j (Theorem 1.2) in
Section 4. The technique we use is similar to and inspired by the work of Ayyer and
Linusson [10], where they study correlations in multispecies TASEP on a ring with a
finite number of sites.

To carry out the analysis, we use the theory of multiline process that Ferrari and
Martin described in [13]. The multiline process is defined on structures known as mul-
tiline queues or MLQs. This process can be projected to the multispecies TASEP using
a procedure known as lumping of chains (see [17, Lemma 2.5]). This lets us study the
stationary distribution of the multiline process to infer results for the stationary dis-
tribution of the multispecies TASEP. It is defined using an algorithm known as bully
path projection, which projects a multiline queue to a word. See Section 2 for the
precise definitions.

We study the two-point correlations in a continuous TASEP with type

h1n
i D .1; : : : ; 1/„ ƒ‚ …

n

:

In this case, there are n particles, each with a distinct label from the set Œn�D¹1; : : : ;nº.
Let ci;j .n/ denote the probability that two particles, labelled i and j , lie adjacent on a
ring in the limiting distribution for the continuous multispecies TASEP with type h1ni,
with i followed by j . Aas and Linusson gave an explicit conjecture [3, Conjecture 4.2]
for calculating ci;j .n/. We prove their conjecture in this paper separately for the two
cases.

Theorem 1.1. For n � 2 and i > j , we have the following two-point correlations:

ci;j .n/ D

8̂<̂
:

n

.nCj
2 /
�

n

.nCi
2 /

if j < i < n;

n.jC1/

.nCj
2 /
�

n.j�1/

.nCj�1
2 /
�

n

.2n
2 /

if j < i D n:

Theorem 1.2. For n � 2 and i < j , we have the following two-point correlations:

ci;j .n/ D

8<:
n

.nCj
2 /

if i C 1 < j � n;

n

.nCj
2 /
C

ni

.nCi
2 /

if i C 1 D j � n:

We begin Section 2 by establishing key definitions, followed by a description of
the bully path projection and the encoding of multiline queues as Young tableaux. This
sets up the combinatorial framework for analysing multiline queue configurations.
These methods are first applied to the base case of continuous two-species TASEP
in Section 2.4, deriving initial correlation expressions that motivate the general case.
Theorem 1.1 is proved in Section 3 using the techniques developed in Section 2. In
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Section 4, we introduce preliminary lemmas for the case i < j , which lead to a com-
plete proof of Theorem 1.2 in Section 5, thereby resolving the conjecture by Aas and
Linusson. Finally, Section 5.2 offers an alternative approach to solving Theorem 1.2
using first principles.

2. Preliminaries

A multispecies TASEP is a stochastic process on a graph. We first define multispecies
TASEP on a ring before studying the continuous multispecies TASEP on a ring.

2.1. Multispecies TASEP

A multispecies TASEP is a continuous-time Markov process that can be defined on a
ring with L sites. For an integer tuple m D .m1; : : : ; mn/, a multispecies TASEP of
type m has m1 C � � � Cmn sites on the ring occupied with particles. Each particle is
assigned a label from the set Œn�, and there are exactly m` particles with the label `.
The unoccupied sites are treated as particles with the highest label nC 1. The dynam-
ics of the process are as follows: each particle carries an exponential clock that rings
with rate 1. When the clock rings, the particle tries to jump to the next site in the
clockwise direction. Let this particle be labelled i . The jump is successful only if the
following site has a label greater than i or is unoccupied (label nC 1). In that case,
the two particles exchange positions. The states of the multispecies TASEP are words
of length L with the letter ` occurring m` times for all ` 2 Œn� and nC 1 occurring
L �

P
`m` times.

Now, we define the multiline process, which can be projected onto the multis-
pecies TASEP through a process called lumping. A multiline process is a Markov
process defined on a graph that consists of a collection of disjoint cycle graphs, all of
the same length. Each graph is represented as a row, numbered from top to bottom.
Each row contains the same number of sites, which may or may not be occupied by a
particle. For an n-tuple m D .m1; : : : ; mn/ with m` � 0 and L � m1 C � � � Cmn, a
multiline queue of type m is formed by stacking n rows on top of each other, each with
L sites. In the i th row from the top, Ci WD m1 C � � � Cmi of the sites are occupied.
See Figure 1 for an example of a multiline queue.

The dynamics of the multiline process are described in detail in [13] via transitions
on multiline queues of a fixed type. A multiline queue of type m can be projected to a
word by an algorithm known as the bully path procedure, which we define recursively
as follows.

(1) Let Q be a multiline queue of type m. We construct bully paths that con-
tain exactly one particle from each row. Start with the first row in Q. Choose
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Figure 1. A multiline queue of type .2; 1; 2; 2/ on 13 sites.
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Figure 2. Bully path projection on the multiline queue from Figure 1. The bully paths starting
in the first, second, and third rows are shown in blue, red, and green, respectively.

a particle in the first row and trace its path down to the second row. The path
then moves rightwards along the second row until it runs into another particle.
If no particle is found by moving rightwards, the path wraps around the end of
the second row and continues searching from the leftmost site of the second
row until it finds one. This case is known as bullying via wrapping. This pro-
cess is repeated in the third row, where the path again moves downwards and
then rightwards until another particle is encountered. This sequence contin-
ues all the way down to the last row. Each particle encountered by this bully
path is labelled “1”. We similarly construct the bully paths starting from other
particles in the first row and labelling unlabelled particles hit by the path. It
turns out that the order in which these paths are constructed, starting from the
particles in the first row, does not matter for the final labelling. At the end of
this step, we have a total of m1 bully paths. That is, m1 particles of the last
row are labelled “1”. See Figure 2 for the construction of bully paths to the
multiline queue in Figure 1. Here, the bully paths starting from each row are
constructed in a left-to-right order.
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(2) Next, we construct bully paths starting with the unlabelled particles in the
second row by repeating the same process from step (1). We label all the
particles in these paths at the end as “2”, and there are m2 paths in total. We
then repeat these steps for all the subsequent rows. Finally, we label all the
particles that remain unlabelled in the last row as “n” and all the unoccupied
sites as “nC 1”.

(3) Hence, for each `,m` particles in the last row are labelled as “`”. Let ! denote
the word formed by the labels in the last row. Then, ! is a configuration of
the multispecies TASEP of type m. Let B denote this projection map. Then,
! is known as the projected word of Q, and we write it as

! D B.Q/:

The projected word in Figure 2 is 3345515525145.

The connection between the stationary distribution of the multiline process and that
of the multispecies TASEP is established by the following theorem by Ferrari and
Martin [13].

Theorem 2.1 ([13, Theorem 4.1]). The process on the last row of the multiline pro-
cess of type m is the same as the multispecies TASEP of type m.

2.2. Continuous multispecies TASEP

Fix mD .m1; : : : ;mn/ and define Ci Dm1C � � � Cmi for all i 2 Œn�. The continuous
multispecies TASEP can be viewed as a formal limit of the stationary distribution
of the multispecies TASEP on a ring with L sites. First, we consider a multispecies
TASEP of type m on a ring with L sites. Let …L

n denote the stationary distribution of
this TASEP. As we let L approach infinity while keeping the tuple m constant (which
implies that the number of unoccupied sites tends to infinity), the ring is scaled to the
continuous interval Œ0; 1/. The limit of the stationary distribution …L

n then yields a
distribution …n of labelled particles on a continuous ring. It is important to note that
…n is not yet shown as the stationary distribution of any Markov process.

Similar to the multiline queues described in [13], we can define continuous mul-
tiline queues of a given type. For m D .m1; : : : ; mn/, let

Ci D m1 C � � � Cmi :

A continuous multiline queue of type m consists of n copies of the continuous ring
Œ0; 1/ stacked on top of each other, with Ci particles in the i th row from the top.

The location of each particle is considered to be a real number within the continu-
ous interval Œ0; 1/. In the distribution, which will consider, the horizontal position of
each particle will almost surely be distinct.
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Figure 3. A continuous multiline queue of type .1; 3; 1; 2/

Example 2.2. See Figure 3 for an example of a continuous multiline queue of type
.1; 3; 1; 2/. The rows have 1, 4, 5, and 7 particles, respectively. Note that there is no
particle directly above or below any other particle.

Consider the labels of the particles in Figure 3. The labels are assigned in the order
of the horizontal positions of the particles, moving from left to right. We now refer
to an integer representation of a continuous multiline queue, which was also used by
Aas and Linusson [3].

Definition 2.3. Let m D .m1; : : : ; mn/ be an n-tuple, with Ci D m1 C � � � C mi ,
and let N D

Pn
iD1 Ci . A placement of a continuous multiline queue of type m is

represented as a triangular array .Qi;j / with distinct integers from the set ŒN � such
that the integer Qi;j denotes the relative horizontal position of the j th particle in the
i th row of the continuous multiline queue, as seen from left to right.

Remark 2.4. For our purposes, it suffices to know the relative positions of particles
within the rows. Therefore, a continuous multiline queue will be represented by its
placement, and we will use these two terms interchangeably. The number of different
placements of type m is given by

�
N

C1;:::;Cn

�
.

Example 2.5. The placement of the continuous multiline queue in Figure 3 is given
by

Q D

5

1 3 7 9

8 10 13 15 16

2 4 6 11 12 14 17:

Each row of the array is formed by arranging the order of the particles from the
corresponding row of the continuous multiline queue in ascending order based on
their horizontal positions.
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Figure 4. Bully path procedure on a multiline queue of type .1; 3; 1; 2/. The types 1, 2, and 3
bully paths are shown in blue, red, and green, respectively.

The bully path projection is a map from the set of continuous multiline queues
of type m to words of type m. Given a continuous multiline queue Q, the algorithm
recursively maps Q to a word ! as follows.

(1) Consider the placement of Q. Choose an integer k1 in the first row. Look for
the smallest element larger than k1 in the second row and mark it as k2, if it
exists. If k1 is larger than all the available integers in the second row, mark the
smallest available integer in the second row as k2. This is known as wrapping
from the first row to the second row. We say that k1 “bullies” k2 and write it
as k1 ! k2, or k1

W
�! k2 in the case of wrapping.

(2) Mark an integer in the third row as k3 by finding the smallest integer lar-
ger than k2. If no such integer exists, wrap around and label the smallest
integer as k3. Continue this process iteratively. The sequence k1; k2; : : : ; kn
thus obtained is called a bully path starting at k1, and these integers are now
unavailable for further bullying. Similarly, construct the bully paths starting
from other integers in the first row and labelling available integers hit by the
path. Label the endpoints of all such paths as 1. There are m1 such paths,
called type 1 bully paths. For example, 5! 7! 8! 11 is a type 1 bully
path in Figure 4. The order of constructing the bully paths, starting from the
first row, does not affect the final labelling.

(3) Next, construct bully paths starting with the available integers in the second
row by following steps (1) and (2). Label the ends of all such paths with 2,
resulting in m2 bully paths of type 2. Repeat these steps sequentially for all
the other rows. The bully paths of type n are just the integers in the last row
that remain after the construction of all type .n � 1/ bully paths.
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(4) Therefore, there are m` bully paths of type ` for each `. Let ! denote the
word formed by the labels in the last row. Then, ! is a configuration for the
continuous multispecies TASEP of type m. Let B denote this projection map.
Then, ! D B.Q/ is known as the projected word of Q. The projected word
for the continuous multiline queue in Example 2.5 is 3441222; see Figure 4.
In this example, the bully paths originating from each row are constructed in
increasing order.

The distribution of words of type m is the same as the distribution of the last row
of continuous multiline queues of type m, which can be obtained by taking the limit
of the distribution of the last row for discrete multiline queues.

By Theorem 2.1, …L
n denotes the distribution of the last row of the discrete mul-

tiline process of type m with L sites in each row. Therefore, as shown in [3], the
continuous process on the last row is obtained by taking the limit as L!1. Con-
sequently,…n gives the distribution of the labels in the last row for a uniformly chosen
continuous multiline queue. Thus, to study the correlations of two adjacent particles
with labels i and j in the continuous multispecies TASEP, it is enough to count the
number of placements that project to the words with i and j as adjacent particles.
Next, we define an operator on the space of all continuous multiline queues of a fixed
type.

Definition 2.6. Let Q be a continuous multiline queue of type m. Define an operator
� such that ifQ0 D �.Q/, thenQ0 is obtained fromQ by adding 1moduloN to each
element of Q and rearranging any row in increasing order if necessary. We refer to �

as the shift operator and to Q0 as the shifted continuous multiline queue.

Example 2.7. Let Q be the continuous multiline queue from Example 2.5; then, Q0

is given by

Q0 D

6

2 4 8 10

9 11 14 16 17

1 3 5 7 12 13 15:

The following lemma establishes the relationship between the projected word of
a multiline queue and that of its shifted continuous multiline queue.

Lemma 2.8. Let Q be a continuous multiline queue of type m with N D
Pn
iD1 Ci

particles. Shifting Q rotates the projected word by one position to the right when
the largest element N is in the last row of the placement while preserving the word
otherwise. Specifically, if Q0 D �.Q/, ! D B.Q/, and !0 D B.Q0/, then ! and !0

are related as follows:

(1) if N is not in the last row, then !0 D !,



Correlations in the continuous multispecies TASEP on a ring 739

(2) if N is in the last row, then !0 is obtained by rotating ! one position to the
right.

Proof. Let N be in the r th row of the placement ofQ. First, let r < n.Q0 is obtained
from Q by adding 1 to every integer less than N and by replacing N with 1. By the
increasing property of the rows, the r th row is now rotated by one position to the
right. If N lies on a bully path that starts in some row above r in Q, then all the
bully paths remain the same. This is true because N , the largest integer in Q, wraps
around and bullies the first element available to it in .r C 1/st row. In Q0, 1 being
the smallest integer bullies the first available element, which is exactly the translation
of the element bullied by N in Q. The remaining bully paths are the same since the
inequalities among all other elements do not change. On the other hand, if a type r
bully path inQ begins atN such that if s1 < s2 < � � �< smr

are all the elements of the
r C 1st row, which are hit by type r bully paths inQ, then the elements hit by the type
r bully paths in Q0 will be s1 C 1 < s2 C 1 < � � � < smr

C 1. The specific bullying
relations, however, depend on the order in which the type r paths are constructed.
Consequently, the projected word remains the same.

Finally, when r D n, that is, when N is in the last row, adding 1 modulo N to
each integer results in the last row rotating one position to the right. The bully paths
remain unchanged; thus, the projected word derived from the labels of the particles in
the last row is also rotated one position to the right.

Let h1ni D .1; : : : ; 1/ be an n-tuple. Let yQ be a continuous multiline queue of
type h1ni and � D B. yQ/ the projected word of yQ. Define

ci;j .n/ D P¹�a D i; �aC1 D j I a 2 Œn�º;

where aC 1 is defined modulo n. To make the analysis of the continuous multispecies
TASEP of type h1ni easy, we use a classical property known as the projection prin-
ciple, which states that particles of two consecutive types cannot be distinguished by
particles of other types. This is a key observation in [7, Section 1]. Thus, identifying
two consecutive labels k and k C 1 defines a natural lumping from the multispecies
TASEP with n species onto the multispecies TASEP with .n � 1/ species. Therefore,
to obtain ci;j .n/ for i > j , it is enough to find the probability that 4 is followed by a 2
in the projected word of a random five-species continuous multiline queue with type
mi;j D .j � 1; 1; i � j � 1; 1; n � i/:

We can further simplify the task by lumping many continuous multiline queues
onto a three-species system. Given a continuous multispecies TASEP with type h1ni,
consider its lumping to the continuous multispecies TASEP of type

ms;t D .s; t; n � s � t /;
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where s C t > j > s and i > s C t . Thus, a particle with label j becomes a 2, and
that with label i becomes a 3 whenever t; n � s � t > 0. To compute the correlation
ci;j .n/ for i > j , we need to look at the correlation of 3 followed by 2 in the projected
words of continuous multiline queues of type ms;t . Similarly, to formulate ci;j .n/ for
i < j , we need to look at the correlation of 2 followed by 3 in the projected words of
continuous multiline queues with type ms;t .

For 1 � i; j � n, and a 2 Œn�, let Eai;j .n/ D P¹�a D i; �aC1 D j º, where aC 1
is defined modulo n. Thus,

ci;j D

nX
aD1

Eai;j : (2.1)

Consider a continuous multiline queue Q of type ms;t . Let the projected word of Q
be !. We define

‚<a .s; t/ D P¹!a D 2; !aC1 D 3º;

‚>a .s; t/ D P¹!a D 3; !aC1 D 2º

for a 2 Œn�. By the projection principle, we have

‚<a .s; t/ D

nX
jDsCtC1

sCtX
iDsC1

Eai;j ;

‚>a .s; t/ D

nX
iDsCtC1

sCtX
jDsC1

Eai;j :

Let T< (respectively, T>) denote that probability that 2 and 3 are adjacent. Then, it
can be represented as the sum of ‚<a (respectively, ‚>a ) over the index a. We have

T<.s; t/ D

nX
aD1

nX
jDsCtC1

sCtX
iDsC1

Eai;j .n/

D

nX
jDsCtC1

sCtX
iDsC1

ci;j .n/: (2.2)

Equation (2.2) follows from (2.1). Similarly,

T>.s; t/ D

nX
iDsCtC1

sCtX
jDsC1

ci;j .n/:

For i < j , the principle of inclusion-exclusion then gives us

ci;j .n/D T<.i � 1; j � i/� T<.i; j � i � 1/� T<.i � 1; j � i C 1/C T<.i; j � i/;

(2.3)
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and for i > j , we have

ci;j .n/DT>.j � 1; i � j /�T>.j; i � j � 1/�T>.j � 1; i � j C 1/CT>.j; i � j /:

(2.4)
For a 2 Œn�, we let

T <a .s; t/ D P¹!a D 2; !aC1 D 3; Q3;n D N º; (2.5)

T >a .s; t/ D P¹!a D 3; !aC1 D 2; Q3;n D N º; (2.6)

where N D nC 2s C t is the number of integers in the placement of a continuous
multiline queue of type ms;t . Then, the following lemma holds.

Lemma 2.9. We have T<.s; t/ D .nC 2s C t / T <a .s; t/ for any a 2 Œn�.

Proof. Let Q be a continuous multiline queue of type ms;t . Applying the shift oper-
ator � sequentially N D n C 2s C t times to Q generates all the rotations of the
projected word. By Lemma 2.8, in exactly n out of these N shifts, the projected word
rotates one unit to the right, and in the remaining shifts, the projected word remains the
same. For a fixed a 2 Œn�, any continuous multiline queue that contributes to T<.s; t/

can be obtained as a rotation of a continuous multiline queue for which

(i) the projected word has 2 and 3 in positions a and a C 1 mod n, respect-
ively, and

(ii) N is in the last row.

Note that if a word has a 2 followed by a 3 in p separate positions, it occurs as a
rotation of p different words with !a D 2, !aC1 D 3. Hence, the result follows.

We also have
T>.s; t/ D .nC 2s C t /T >a .s; t/

for any a 2 Œn�. Further, Lemma 2.9 holds for a D 1 in particular. Henceforth, we will
write T <1 (respectively, T >1 ) as T < (respectively, T >) for simplicity. Then, for i < j ,
(2.3) gives

ci;j .n/ D .nC i C j � 2/ T
<.i � 1; j � i/ � .nC i C j � 1/ T <.i; j � i � 1/

� .nCiCj�1/ T <.i�1; j�iC1/C.nCiCj / T <.i; j�i/; (2.7)

and for i > j , (2.4) gives

ci;j .n/ D .nC i C j � 2/ T
>.j � 1; i � j / � .nC i C j � 1/ T >.j; i � j � 1/

� .nCiCj�1/ T >.j�1; i�jC1/C.nCiCj / T >.j; i�j /; (2.8)

respectively.
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2.3. Standard Young tableaux

Consider a partition � D .�1; �2; : : : ; �`/ of a positive integer N , where �1 � �2 �
� � � � �` > 0 and N D �1 C �2 C � � � C �`. We use the notation � ` N or N D j�j to
indicate that � is a partition of N . The Young diagram of a shape (or partition) � is an
arrangement of boxes in ` left-aligned rows, with �i boxes in the i th row. The hook
of a box x in the Young diagram is defined as the set of boxes that are directly to the
right or directly below x, including x itself. The hook length of a box x, denoted by
hx , is the number of boxes in its hook. Below is an example of a Young diagram of
shape .5; 3; 1/ with the hook lengths for each box indicated within the box.

7 5 4 2 1
4 2 1
1

A standard Young tableau or an SYT of shape � is a filling of a Young diagram of
shape � with the numbers 1; 2; : : : ;N , whereN D j�j, such that the numbers increase
strictly down a column and across a row. The following is an example of a standard
Young tableau of shape .5; 3; 1/.

1 2 5 6 9
3 7 8
4

The number of standard Young tableaux of a given shape � can be counted using the
following result, which is known as the hook length formula.

Theorem 2.10 ([14]). Let � ` n be an integer partition. The number of standard
Young tableaux of a shape � is given by

f� D
NŠ

…x2�hx
;

where the product is over all the boxes in the Young diagram of � and hx is the hook
length of a box x.

Example 2.11. For � D .a; b/, the number of standard Young tableaux of shape � is
given by

f.a;b/ D
.aC b/Š.a � b C 1/

.aC 1/ŠbŠ
D
a � b C 1

aC 1

�
aC b

a

�
: (2.9)

Similarly, for � D .a; b; c/, we have

f.a;b;c/ D
.aC b C c/Š.a � c C 2/.a � b C 1/.b � c C 1/

.aC 2/Š.b C 1/ŠcŠ

D
.a � c C 2/.a � b C 1/.b � c C 1/

.aC 2/.aC 1/.b C 1/

�
aC b C c

a; b; c

�
: (2.10)
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Remark 2.12. It is straightforward to verify from (2.9) that f.a;b/ satisfies an inter-
esting recurrence relation given by

f.a;b/ D f.a�1;b/ C f.a;b�1/:

Lemma 2.13. Let mD .m1; : : : ;mn/, and letCi Dm1C � � � Cmi . The set of continu-
ous multiline queues of type m that have no wrapping under the bully path projection
is in bijection with standard Young tableaux of shape �, where

�i D Cn�iC1 D m1 C � � � Cmn�iC1:

Proof. Consider Q, a continuous multiline queue of type m. The largest integer in
Q is given by the sum N D C1 C � � � C Cn. For 1 � i � n; 1 � j � Ci , let Qi;j be
distinct integers from 1 to N . Then, we have

Q D

Q1;1 : : : Q1;C1

Q2;1 : : : : : : Q2;C2

:::

Qn;1 : : : : : : : : : Qn;Cn
:

If we assume that there is no wrapping from the first row to the second row in Q,
then it follows thatQ1;C1�j <Q2;C2�j for all 0 � j � C1 � 1. Similarly, since there
is no wrapping from the second row to the third row in Q, Q2;C2�j < Q3;C3�j for
all 0 � j � C2 � 1, and so on. This, along with the increasing property of the rows,
gives us

Q1;1 < � � � < Q1;C1�j < � � � < Q1;C1

^ ^ � � � ^

Q2;1 < � � � < � � � < Q2;C2�j < � � � < Q2;C2

^ ^ ^

:::

Qn;1 < � � � < � � � < � � � < Qn;Cn�j < � � � < Qn;Cn
:

Hence, Q is in bijection with a standard Young tableau Y of shape .Cn; : : : ; C1/ and
the bijection is given by Yi;j D N �Qn�iC1;C.n�iC1/�jC1 C 1. Thus, the number of
continuous multiline queues of type m with no wrapping is given by f.Cn;:::;C1/.

Definition 2.14. Given two partitions �; � such that � � � (containment order, that
is, �i � �i for all i ), the skew shape �=� is a Young diagram that is obtained by
subtracting the Young diagram of shape � from that of �. See Figure 5.

Definition 2.15. A standard Young tableau of a skew shape �=� is a filling of the
skew shape by positive integers that are strictly increasing in rows and columns.
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Figure 5. Skew shapes .4; 3; 2; 1/=.2; 1/ and .5; 3; 2/=.2/, respectively.

Example 2.16. The following are a few of the many standard Young tableaux of the
skew shape .4; 3; 2; 1/=.2; 1/.

1 4

2 3

5 6

7

1 2

5 7

3 6

4

2 3

1 7

4 6

5

Let f.�=�/ denote the number of SYTs of a skew shape �=�. This number is
counted by the following formula.

Theorem 2.17 ([18, Corollary 7.16.3]). Let j�=�j D n be the number of boxes in the
skew shape �=� that has ` parts. Then,

f.�=�/ D nŠ det
�

1

.�i � �j � i C j /Š

�`
i;jD1

: (2.11)

Note that we take 0Š D 1 and kŠ D 0 for any k < 0 as a convention.

Example 2.18. Let �=� D .6; 4/=.3/. Then, n D j�=�j D 7 and ` D 2. We have

f.�=�/ D 7Š

ˇ̌̌̌
ˇ 1
.6�3�1C1/Š

1
.6�0�1C2/Š

1
.4�3�2C1/Š

1
.4�0�2C2/Š

ˇ̌̌̌
ˇ D 34:

2.4. The continuous two-species TASEP

In this section, we study the continuous TASEP with two species of particles. Due
to the simplicity of its structure, the stationary distribution of the continuous two-
species TASEP can be calculated completely. This analysis lets us demonstrate the
technique of encoding the placement of a continuous multiline queue as a standard
Young tableau for a simpler case. We use similar encodings frequently in later sec-
tions.

We use continuous multiline queues of type .s; t/ to find certain two-point cor-
relations in continuous two-species TASEP. Let �s;t denote the set of continuous
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multiline queues of type .s; t/, where each Q 2 �s;t consists of s integers in the first
row and s C t integers in the second. For i 2 ¹1; 2º, let ıi .s; t/ be the number of
continuous multiline queues in �s;t with the largest integer 2s C t in the second row
such that the projected word has i in the first position.

The multispecies TASEP satisfies rotational symmetry (see [10, Proposition 2.1]).
By Lemma 2.8, the stationary probability of a word ! is the same as that of the
word !0, which is obtained by rotating ! one position to the right. Consequently,
any particle occupying the first position when the largest integer is in the second
row has a uniform distribution. Given that there are s occurrences of label 1 and t
occurrences of label 2, the stationary probability that the first site is occupied by 1
(respectively, 2) is given by s

sCt
(respectively, t

sCt
). Furthermore, there are

�
2sCt�1

s

�
continuous multiline queues in �s;t with the integer 2s C t occurring in the second
row. We have

ı1.s; t/ D
s

s C t

�
2s C t � 1

s

�
; (2.12)

ı2.s; t/ D
t

s C t

�
2s C t � 1

s

�
: (2.13)

Remark 2.19. Note that the number of placements in �s;t with 2s C t in the second
row such that the projected word has i in the kth position is the same for any k 2
Œs C t � due to rotational symmetry.

Similarly, let ıi;j .s; t/ count the number of continuous multiline queues of type
.s; t/ that have the largest integer 2s C t in the second row such that the projected
word has i in the first position and j in the second position. Based on the definitions of
these quantities and using Remark 2.19, we have the following system of independent
equations for fixed s and t :

ı1;1 C ı1;2 D ı1; (2.14)

ı1;1 C ı2;1 D ı1; (2.15)

ı1;2 C ı2;2 D ı2: (2.16)

Therefore, finding ıi;j for any i; j 2 ¹1; 2º solves the system of equations. In par-
ticular, let i D j D 2. Consider an arbitrary continuous multiline queue Q with the
following configuration such that � D B.Q/:

a1 a2 : : : as

b1 b2 : : : : : : bsCt�1 2s C t:

� D 2 2 : : : : : : : : : : : :

Since �1D�2D 2, neither b1 nor b2 is bullied by any ak inQ. Therefore, a1>b2.
By the increasing property of the rows, we also have b2 > b1, which forces b1 D 1
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and b2 D 2. Furthermore, there is no wrapping from the first row to the second row,
since �1 ¤ 1. This implies that the integers in Q greater than b1 and b2 satisfy the
following inequalities:

a1 < � � � < as�1 < as

^ � � � ^ ^

b3 < � � � < btC1 < � � � < bsCt�1 < 2s C t:

Such configurations are in bijection with standard Young tableaux of shape .s C t �
2; s/ by Lemma 2.13. Therefore, using equation (2.9), we get

ı2;2.s; t/ D f.sCt�2;s/ D
t � 1

2s C t � 1

�
2s C t � 1

s

�
: (2.17)

Using (2.12)–(2.17), we can solve for all the remaining ıi;j as follows:

ı1;2.s; t/ D ı2;1.s; t/ D
t C 1

2s C t � 1

�
2s C t � 1

s � 1

�
;

ı1;1.s; t/ D 2

�
2s C t � 2

s � 2

�
:

3. Correlations for the case i > j

In this section, we prove Theorem 1.1 using the tools developed in Section 2. Let
ms;t D .s; t; n � s � t /, and let Ss;t be the set of all continuous multiline queues
Q of type ms;t that satisfy !1 D 3, !2 D 2, and Q3;n D N D n C 2s C t , where
! D B.Q/. The set Ss;t consists of the continuous multiline queues which have the
following configuration, where ai , bi , and ci are distinct integers from the set ŒN �:

a1 a2 : : : : : : as

b1 b2 : : : bk : : : bsCt

c1 c2 : : : : : : : : : : : : cn D N:

! D 3 2 : : : : : : : : : : : : : : :

Lemma 3.1. Let Q be a continuous multiline queue of type ms;t . Then, Q 2 Ss;t if
and only if the following conditions hold:

(1) if a1 ! bk , then bk > c2,

(2) c1 D 1 and b1 D 2,

(3) there is no wrapping from either of the two rows.

Proof. Let Q 2 Ss;t and suppose that a1 ! bk . If bk < c2, then bk bullies either
c1 or c2, and we get !1 D 1 or !2 D 1. Hence, condition (1) holds. If there is any
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wrapping from the second row to the third row, then we have !1 D 1 or 2, which is a
contradiction.

Furthermore, !2 D 2 implies that b1! c2 and b1 is not bullied by any ai . There-
fore, c1 < b1 < c2 and b1 < a1, and hence, c1 D 1 and b1 D 2. Thus, condition (2)
holds.

If there is any wrapping from the first row to the second row, then we have ai! b1

for some i , which is a contradiction, thus proving the remaining half of the condi-
tion (3). It is straightforward to verify that the three conditions imply !1 D 3, !2 D 2,
and cn D N .

From (2.6), recall that T >1 .s; t/ = P¹!1D 3;!2D 2;Q3;nDN º. We first compute
T >.s; t/ D T >1 .s; t/ and then substitute it into (2.8) to solve for ci;j .n/ for the case
i > j . Let �s;t denote the cardinality of the set Ss;t . Then,

�s;t D

�
nC 2s C t

n; s C t; s

�
T >.s; t/: (3.1)

Proof of Theorem 1.1. Let Q 2 Ss;t . We have c1 D 1, b1 D 2, and cn D N , and we
have to find the number of ways the remaining elements of Q can be assigned values
from the set ¹3; : : : ; N � 1º complying with the three conditions of Lemma 3.1.

Any b` that is bullied by some am is larger than c2. Thus, there are at least s
integers in the second row that are larger than c2. Therefore, c2 2 ¹3;4; : : : ; sC t C 2º
as there can be at most s integers in the first row and at most t integers in the second
row that are less than c2. Let c2 D i , and let a1! bk . Then, c2 < bk and bk�1 < a1 <
bk . So, all the numbers from 3 to i � 1 are assigned, in order, to b2 < � � � < bk�1 <
a1 < � � � < ai�k�1. Therefore, 0 � i � k � 1 � s, that is, i � s � 1 � k � i � 1. Also,
since k � 1 is the number of integers in the second row that are smaller than c2, it is
bounded by 1 and t . Hence, 2 � k � t C 1.

The ways in which the remaining elements can be assigned values are in bijection
with standard Young tableaux of shape �i;k D .n � 2; s C t � k C 1; s � i C k C 1/
by Lemma 2.13, since there is no wrapping between any of the rows. We also have
j�j D N � i . This gives us

�s;t D

sCtC2X
iD3

min¹i�1;tC1ºX
kDmax¹2;i�s�1º

f�i;k
; (3.2)

where f� is the number of standard Young tableaux of shape �. By the hook length
formula for a 3-row partition (2.10), we have

f�i;k
D
.n � s C i � k � 1/.n � s � t C k � 2/.t C i � 2k C 1/

n.n � 1/.s C t � k C 2/

�

�
nC 2s C t � i

n � 2; s C t � k C 1; s C k � i C 1

�
:
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Using N for nC 2s C t and expanding the multinomial coefficient, we have

f�i;k
D
.n � s C i � k � 1/.n � s � t C k � 2/.t C i � 2k C 1/.N � i/Š

nŠ.s C t � k C 2/Š.s � i C k C 1/Š

D
.n � s C i � k � 1/.n � s � t C k � 2/.t C i � 2k C 1/.N � i C 3/Š

nŠ.s C t � k C 2/Š.s � i C k C 1/Š.N � i C 3/.N � i C 2/.N � i C 1/
;

f�i;k
D
.n � s C i � k � 1/.n � s � t C k � 2/.t C i � 2k C 1/

.N � i C 3/.N � i C 2/.N � i C 1/

�

�
N � i C 3

n; s C t � k C 2; s C k � i C 1

�
:

Substituting this formula into (3.2) and changing k to k0D k � 2 and i to j D i � 3
while plugging in N D nC 2s C t , we get

�s;t D

sCt�1X
jD0

min¹j;t�1ºX
k0Dmax¹j�s;0º

.n � s C j � k0/.n � s � t C k0/.t C j � 2k0/

.nC2sCt�j /.nC2sCt�j�1/.nC2sCt�j�2/

�

�
nC 2s C t � j

n; s C t � k0; s � j C k0

�
: (3.3)

Note that when j � s and k0 � j � s, the multinomial coefficient in (3.3) becomes 0.
Therefore, the index k0 can equivalently be summed over the range 0 to min¹j; t � 1º.
Substituting v for s C t � j � 1 and u for s � j C k0 into (3.3), we get

�s;t D

sCt�1X
vD0

min¹s;vºX
uDv�tC1

.n�u/.nCu�s�v�1/.sCvC1�2u/

.nCsCvC1/.nCsCv/.nCsCv�1/

�
nC s C v C 1

n; sCvC1�u; u

�

D

sCt�1X
vD0

min¹s;vºX
uDv�tC1

.nC s C v � 2/Š

nŠ.s C v C 1/Š
�s;t ; (3.4)

where

�s;t D .n � u/.nC u � s � v � 1/.s C v C 1 � 2u/

�
s C v C 1

u

�
:

We expand the expression of �s;t to write it as a sum of two parts as follows:

�s;t D .n
2
� n.s C v C 1/C u.s C v C 1 � 2u//

�

�
.s C v C 1 � u/

�
s C v C 1

u

�
� u

�
v C s C 1

u

��
D .n2 � n.s C v C 1//.s C v C 1/

��
s C v

u

�
�

�
s C v

u � 1

��
C .s C v C 1/.s C v/.s C v � 1/

��
s C v � 2

u � 1

�
�

�
s C v � 2

u � 2

��
:
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Plugging �s;t into (3.4), we have a telescoping sum which computes easily to give

�s;t D

sCt�1X
vD0

.nCsCv�2/Š

nŠ.sCvC1/Š
.n2�n.sCvC1//.sCvC1/

��
sCv

s

�
�

�
sCv

v � t

��
C

sCt�1X
vD0

.nC s C v � 2/Š

nŠ.s C v C 1/Š
.s C v C 1/.s C v/.s C v � 1/

�

��
s C v � 2

s � 1

�
�

�
s C v � 2

v � t � 1

��
D

sCt�1X
vD0

�
nC s C v

s C v

�
n2 � n.s C v C 1/

.nC s C v/.nC s C v � 1/

��
s C v

s

�
�

�
s C v

v � t

��
C

sCt�1X
vD0

�
nC s C v � 2

s C v � 2

���
s C v � 2

s � 1

�
�

�
s C v � 2

v � t � 1

��
:

This simplifies to

�s;t D

�
nC2sCt
n;sCt;s

�
nC2sCt

�
nt.s C t /

.nCs/.nCsCt /

�
�1C

s

n
C
.nCs/.n2Cnt�t�s.sCt /�1/

.nCs�1/.sCt /.nCsCt�1/

�
:

(3.5)
By substituting �s;t D

�
nC2sCt
n;sCt;s

�
T >.s; t/ from (3.1), we get

.nC 2s C t /T >.s; t/ D
�nt.s C t /

.nC s/.nC s C t /
C

st.s C t /

.nC s/.nC s C t /

C
nt.n2 C nt � t � s.s C t / � 1/

.nC s � 1/.nC s C t /.nC s C t � 1/
: (3.6)

Let i < n. Denote the terms on the right-hand side of (3.6) by A.s; t/, B.s; t/, and
C.s; t/, respectively. We first compute A WD A.j � 1; i � j / � A.j; i � j � 1/ �

A.j � 1; i � j C 1/C A.j; i � j /:

A D
n.i � 1/

nC i � 1

�
j � i

nC j � 1
C
i � j � 1

nC j

�
�

ni

nC i

�
j � i � 1

nC j � 1
C
i � j

nC j

�
D

n

2
�
nCj
2

� :
If we define B and C similarly as A using the inclusion-exclusion formula, we get
BD n

2.nCj
2 /
�

n

2.nCi
2 /

and CD �n

2.nCi
2 /

. Since ci;j .n/DACBC C, by (2.8), we have

ci;j .n/ D
n�
nCj
2

� � n�
nCi
2

� :
Note that when sC t D n, T >.s; t/D 0 by definition. When j < i D n, (2.8) becomes

ci;j .n/ D .nC i C j � 2/ T
>.j � 1; i � j / � .nC i C j � 1/ T >.j; i � j � 1/:
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Let A0 D A.j � 1;n� j /�A.j;n� j � 1/ and define B0 and C0 similarly. Simplify-
ing the equations resulting from substituting the expressions for A.s; t/, B.s; t/, and
C.s; t/, we get

cn;j .n/ D A0 CB0 C C0

D
�1

2n � 1
�

�2n.n � 1/

.nC j � 1/.nC j /
C

2n.n � 1/

.nC j � 1/.nC j � 2/

D
n.j C 1/�
nCj
2

� � n.j � 1/�
nCj�1
2

� � n�
2n
2

� ;
thereby proving Theorem 1.1.

4. Correlations for the case i < j : Preliminary analysis

Let ms;t D .s; t; n� s � t / and N D nC 2s C t . Let Ps;t be the set of all continuous
multiline queues Q of type ms;t that satisfy !1 D 2, !2 D 3, and Q3;n D N , where
! D B.Q/. Let �s;t be the cardinality of set Ps;t . Recall that, to find the correlation
function ci;j .n/ for i < j , we need to calculate the probability function T <.s; t/ D
P¹!1 D 2; !2 D 3; Q3;n D N º and then substitute it into (2.7). First, consider the
following continuous multiline queue:

a1 a2 � � � as

b1 b2 � � � � � � bsCt

c1 c2 � � � � � � � � � cn�1 N:

x y � � � � � � � � � � � � � � �

Define nx;y.s; t; n/ as the number of continuous multiline queues of type ms;t , with
N in the last row, that project to a word with x and y in the first and the second place,
respectively, as above, where x; y 2 ¹1; 2; 3º. Note that �s;t D n2;3.s; t; n/. Also, let
nz.s; t; n/ be the number of continuous multiline queues of type ms;t with N in the
last row that project to a word with z in the first place. By similar arguments as in
Remark 2.19, nz also gives the number of continuous multiline queues that project
to a word with z in the second place, due to the rotational symmetry of multispecies
TASEP. Therefore, we have

n1;3 C n2;3 C n3;3 D n3 (4.1)

for fixed s, t , and n. Using Lemma 2.8 again, we have

n3.s; t; n/ D
n � s � t

N

�
nC 2s C t

n; s; s C t

�
; (4.2)
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s\ t 1 2 3
1 9 14 14
2 126 140 0
3 770 0 0

s\ t 1 2 3 4
1 14 28 42 42
2 280 462 504 0
3 2772 3276 0 0
4 15288 0 0 0

Table 1. Data for n1;3.s; t; n/ for n D 5; 6.

since there are n � s � t particles that are labelled 3. We compute n3;3.s; t; n/ in the
following lemma.

Lemma 4.1. We have n3;3.s; t/ D
�
N�1
s

�
f.n�2;sCt/.

Proof. Let Q be a continuous multiline queue of type ms;t that is counted by the
function n3;3.s; t; n/ such that

Q D

a1 a2 � � � as

b1 b2 � � � � � � bsCt

c1 c2 � � � � � � � � � cn�1 N

3 3 � � � � � � � � � � � � � � � :

Here, neither c1 nor c2 is bullied by any element in the second row. This implies that
b1 > c2, and there is no wrapping from the second to the third row. It follows that
there are no restrictions on the ai , and hence, their values can be chosen from the set
¹1; 2; : : : ; N � 1º in

�
N�1
s

�
ways. c1 and c2 take the smallest two integers available

after fixing ai ’s. Since there are no wrappings from the second to the third row, the
configurations formed by the remaining variables are in bijection with standard Young
tableaux of shape .n � 2; s C t / by Lemma 2.13. Therefore, they are f.n�2;sCt/ in
number.

Remark 4.2. The argument in the proof of Lemma 4.1 can be adapted to give an
alternative expression for n3.s; t; n/, namely,

n3.s; t; n/ D

�
N � 1

s

�
f.n�1;sCt/;

which is equivalent to the previously derived formula in (4.2).

Thus, given (4.1), it suffices to find n1;3 for our analysis, as this allows us to isolate
n2;3.s; t; n/D �s;t by subtraction. The values of n1;3.s; t; n/ for different s and t when
n D 5; 6 are shown in Table 1.

By studying the values for n1;3 for different s, t , and n, we formulate the following
expression for n1;3, which we prove in Section 5.1.
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Proposition 4.3. For s; t � 1 and n > s C t , we have

n1;3.s; t; n/ D

�
N � 1

s � 1

�
f.n�1;sCt/:

Proof of Theorem 1.2. From straightforward calculations using equations (4.1), (4.2),
Lemma 4.1, and Proposition 4.3, we have

n2;3.s; t; n/ D
1

N

�
nC 2s C t

n; s; s C t

��
nC t�
nCsCt
sCt

�f.n�1;sCt/ � nC s C t�
nCsCt
sCt

� f.n�2;sCt/�:
Since n2;3.s; t; n/ D �s;t D

�
nC2sCt
n;s;sCt

�
T <.s; t/, we have

.nC 2s C t /T <.s; t/ D
nC t�
nCsCt
sCt

�f.n�1;sCt/ � nC s C t�
nCsCt
sCt

� f.n�2;sCt/: (4.3)

The proof is completed by substituting (4.3) into (2.7). First, let i C 1 < j . Denote
the terms on the right-hand side of (4.3) by C.s; t/ and D.s; t/, respectively. We first
compute C WD C.i � 1; j � i/�C.i; j � i � 1/�C.i � 1; j � i C 1/CC.i; j � i/:

C D
f.n�1;j�1/�
nCj�1
j�1

� .nCj�i�n�jCiC1/ � f.n�1;j /�
nCj
j

� .nC j � i � n � j C i � 1/
D

n�
nCj
2

� :
If we similarly define

D WD D.i � 1; j � i/ �D.i; j � i � 1/ �D.i � 1; j � i C 1/CD.i; j � i/;

we get D D 0. Since ci;j .n/ D CCD by (2.7), we have ci;j .n/ D n

.nCj
2 /

.

Note that T <.s; 0/ D 0 by definition. Therefore, when i C 1 D j , (2.7) becomes

cj�1;j .n/ D .nC 2j � 3/ T
<.j � 2; 1/ � .nC 2j � 2/T <.j � 2; 2/

C .nC 2j � 1/ T <.j � 1; 1/:

Let C0 D C.j � 2; 1/� C.j � 2; 2/C C.j � 1; 1/ and define D0 similarly. Then,

C0 D
nC 1�
nCj�1
j�1

�f.n�1;j�1/ � nC 2�
nCj
j

�f.n�1;j / C nC 1�
nCj
j

�f.n�1;j /;
D0 D �

nC j � 1�
nCj�1
j�1

� f.n�2;j�1/:
Thus, cj�1;j .n/ D C0 CD0 D ni

.nCi
2 /
C

n

.nCj
2 /
; completing the proof.
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5. Proof of Theorem 1.2 and resolution of the Aas–Linusson conjecture

5.1. Direct proof of Proposition 4.3

To compute n1;3.s; t;n/, we count the number of continuous multiline queues with the
following configuration. Recall that N D nC 2s C t while ai ; bi , and ci are distinct
integers from the set ŒN �:

a1 a2 � � � as

b1 b2 � � � � � � bsCt

c1 c2 � � � � � � � � � cn�1 N:

! D 1 3 � � � � � � � � � � � � � � �

Since !2 D 3, c2 cannot be bullied by any bi . Therefore, there can be at most one
wrapping from the second to the third row. These configurations can be classified into
the following two distinct types.

(1) There is no wrapping from the second row.

(2) Only bsCt wraps around and bullies c1.

Let us denote the number of the continuous multiline queues from the two cases by
˛1;3.s; t; n/ and ˇ1;3.s; t; n/, respectively. We will enumerate them separately. Then,
we have

n1;3.s; t; n/ D ˛1;3.s; t; n/C ˇ1;3.s; t; n/: (5.1)

Proposition 5.1. A continuous multiline queue of type ms;t , where there is no wrap-
ping from the second row, projects to a word ! with !1 D 1 and !2 D 3 if and only
if

(1) there exists 1 � i � s such that ai ! b1 ! c1, and

(2) b2 > c2.

Proof. LetQ be a continuous multiline queue with no wrapping from the second row,
satisfying (1) and (2), and let ! be the projected word of Q. The reverse implication
is straightforward. We proceed to prove the forward implication. Note that b2 < c2

implies that c2 is bullied by either b1 or b2, resulting in !2 < 3, which is a contradic-
tion. Therefore, b2 > c2.

Since there is no wrapping from the second to the third row, !1 D 1 can only
occur when there exist ai and bj such that ai ! bj ! c1 for some i , meaning that
bj < c1. Then, bj < c1 < c2 < b2 implies that j D 1.

Theorem 5.2. Let ˛1;3.s; t; n/ denote the number of continuous multiline queues of
type ms;t , with N in the last row, where there is no wrapping from the second row,
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and the projected word ! satisfies !1 D 1 and !2 D 3. Then,

˛1;3.s; t/ D

��
N � 2

s � 1

�
�

�
N � 2

s � 3

��
f.n�1;sCt/:

Proof. Let the continuous multiline queues counted by ˛1;3.s; t; n/ exhibit the fol-
lowing configuration:

a1 a2 � � � as

b1 b2 � � � � � � bsCt

c1 c2 � � � � � � � � � cn�1 N:

! D 1 3 � � � � � � � � � � � � � � �

Let us first assume that a1 < b1. Coupled with b1 < c1 from the proof of Pro-
position 5.1, this implies that a1 D 1 and a1 ! b1 ! c1, which gives !1 D 1. The
remaining ai ’s take increasing values between 2 and N � 1 in

�
N�2
s�1

�
ways. Addition-

ally, we have c1 < c2 < b2. Thus, b1; c1, and c2 are assigned the three smallest values
after eliminating those selected by the ai ’s. Since there is no wrapping from either of
the rows, these configurations are in bijection with standard Young tableaux of shape

� D .n � 2; s C t � 1/

(see Lemma 2.13). This gives us
�
N�2
s�1

�
f.n�2;sCt�1/ continuous multiline queues that

contribute to ˛1;3.s; t; n/ for the case a1 < b1.

Now, let us assume that a1 > b1. Then, there exists an ai such that ai
W
�! b1 by

Proposition 5.1 (1). The inequalities b1 < c1 and b1 < a1 imply that b1 D 1. We first
focus on finding the number of continuous multiline queues where the only constraints
are b1 D 1, cn D N , and c2 < b2, with no wrapping from the second row to the
third row. For these, b1 ! c1, and we get !1 2 ¹1; 2º and !2 D 3. Observe that
the ai ’s can take any value other than 1 and N . Then, c1 and c2 are assigned the
smallest two values after eliminating 1 and the integers selected by the ai ’s. Also, the
configurations formed by the remaining bi ’s and ci ’s satisfy the following inequalities:

b2 < : : : < bsCt�j < : : : < bsCt

^ � � � ^ � � � ^

c3 < : : : < : : : < cn�j < : : : < cn;

and hence, they can be arranged in f.n�2;sCt�1/ ways. The required number is given
by
�
N�2
s

�
f.n�2;sCt�1/. To eliminate the continuous multiline queues where !1 D 2

and !2 D 3, we need to subtract the number of continuous multiline queues where
b1D 1, b2 < c2 with no wrapping in any row, from the number

�
N�2
s

�
f.n�2;sCt�1/. To

do that, let c2 D k C 2 for some k � s. Then, there are k values of ai that are smaller
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than c2, and there are k C 1 ways to assign values to c1; a1; : : : ; ak . The remaining
elements of the continuous multiline queue satisfy the following inequalities:

akC1 < akC2 < � � � < as

^ ^ � � � ^

b2 < � � � < bt�k�1 < bt�k < � � � < bsCt

^ : : : ^ ^ � � � ^

c3 < � � � � � � � � � � � � � � � < cn:

Such configurations are in bijection with standard Young tableaux of shape �k D
.n� 2; s C t � 1; s � k/, which are f.n�2;sCt�1;s�k/ in number. Thus, the number of
continuous multiline queues contributing to ˛1;3.s; t; n/, where a1 > b1, is given by�

N � 2

s

�
f.n�2;sCt�1/ �

sX
kD0

.k C 1/f.n�2;sCt�1;s�k/:

Adding this to
�
N�2
s�1

�
f.n�2;sCt�1/ for the case a1 < b1, we get

˛1;3.s; t; n/ D

�
N � 2

s � 1

�
f.n�2;sCt�1/ C

�
N � 2

s

�
f.n�2;sCt�1/

�
f.n�2;sCt�1/

n.s C t /

sX
kD0

.kC1/.tCk/.n�sCk/

�
N�k�3

s � k

�
: (5.2)

Summing .k C 1/.t C k/.n � s C k/
�
N�k�3
s�k

�
over k D 0 to s, we get

.N � 1/Š

sŠ.nCsCtC1/Š
.s..nC 2/2t C 2n.nC 2/C t2 � t3 � 4/ � s2..nC 2t C 1/t � 6/

� s3.t C 2/C nt.nC t /.nC t C 1//: (5.3)

Let the large expression inside the parentheses in (5.3) be denoted by .�/. Simplifying
the right-hand side of (5.2), we have

˛1;3.s; t; n/ D

�
1 �

.�/

n.s C t /.nC s C t /.nC s C t C 1/

��
N � 1

s

�
f.n�2;sCt�1/

D
s.nC t C 2/.nC s C t � 1/.nC s C t � 2/

n.s C t /.nC s C t /.nC s C t C 1/

�
N � 1

s

�
f.n�2;sCt�1/

D
s.nC t C 2/

.nC s C t /.nC s C t C 1/

�
N � 1

s

�
f.n�1;sCt/

D

��
N � 2

s � 1

�
�

�
N � 2

s � 3

��
f.n�1;sCt/:
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s\ t 0 1 2
2 9 14 14
3 140 154 0
4 924 0 0

s\ t 0 1 2 3
2 14 28 42 42
3 280 504 546 0
4 3276 3822 0 0
5 19110 0 0 0

Table 2. Data for ˇ1;3.s; t; n/ for n D 5; 6.

Proposition 5.3. A continuous multiline queue of type ms;t with N in the last row
such that there is exactly one wrapping from the second row projects to a word ! with
!1 D 1 and !2 D 3 if and only if

(1) there exists i < s such that ai ! bsCt�1! cn and aiC1! bsCt
W
�! c1, and

(2) b1 > c2.

Proof. LetQ be a continuous multiline queue of type ms;t withN in the last row and
exactly one wrapping from the second row. Let ! DB.Q/ be the projected word such
that !1 D 1 and !2 D 3. If b1 < c2 in Q, then c2 is bullied by at least one bi (either
by b1 or by the only wrapping), which results in !2 < 3, a contradiction. Therefore,
b1 > c2.

Then, !1 D 1 implies that c1 is bullied via wrapping. Let j and v be integers such

that aj ! bv
W
�! c1. If v < s C t , then there exists w > v such that bw

W
�! c2, once

again leading to a contradiction. Therefore, we conclude that v D s C t .

Next, since aj ! bsCt
W
�! c1, there exist integers i < j and u < s C t such that

ai ! bu ! cn;

giving !n D 1. Otherwise, bsCt bullies cn D N , and there is no wrapping from the
second to the third row. Since bu ! cn, the entries buC1; buC2; : : : ; bsCt all wrap
around to the third row. But since there can be only one wrapping, we must have
uC 1 D s C t . Additionally, because ai ! bsCt�1, ak wraps around to the second
row for all k > i C 1, thereby proving that j D i C 1. The reverse implications can
be easily verified.

Recall that the number of continuous multiline queues satisfying Proposition 5.3
is represented by ˇ1;3. The values of ˇ1;3.s; t; n/ for different s and t for n D 5; 6 are
shown in Table 2.

Observing the data in Table 2, we formulate the following expression for ˇ13.

Proposition 5.4. We have ˇ1;3.s; t; n/ D
�
N�1
s�2

�
f.n�1;sCt/.
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Remark 5.5. It is interesting to note that, despite its seemingly simple formula-
tion, the techniques we used to prove the earlier cases do not work here, as there
is no straightforward bijection available to prove Proposition 5.4. For now, we inde-
pendently prove Proposition 4.3 using the properties of continuous multiline queues
counted by ˇ1;3. We will return to computing ˇ1;3 using alternative methods at the
end of this section.

We first prove that ˇ1;3.s; t; n/ satisfies a simple recurrence.

Lemma 5.6. For s; t � 2 and s C t < n, we have

ˇ1;3.s; t; n/ D ˇ1;3.s � 1; t C 1; n/C ˇ1;3.s; t � 1; n/C ˇ1;3.s; t; n � 1/: (5.4)

Proof. Consider a continuous multiline queue Q that satisfies the conditions from
Proposition 5.3. Let c2 D k C 2 for some k � s. Then, Q has the following configur-
ation:

a1 a2 � � � ak � � � as

b1 b2 � � � bk � � � � � � bsCt

c1 k C 2 � � � � � � � � � � � � � � � cn�1 N:

1 3 � � � � � � � � � � � � � � � � � � 1

Since b1 > c2, there are only
�
kC1
k

�
D k C 1 ways to assign values to c1; a1; : : : ; ak

from the set Œk C 1�. Thus, for each u � k; au ! bu. Given that the rows are strictly
increasing, exactly one of the following cases is true.

(1) akC1 D k C 3. In this case, akC1 bullies bkC1, so it does not bully bsCt�1
or bsCt . Deleting akC1 and subtracting 1 from all values greater than k C 3
do not affect the bully paths that include bsCt�1 or bsCt . In the new projected
word, there is one less 1 and one more 2. Therefore, there are
ˇ1;3.s � 1; t C 1; n/ such continuous multiline queues.

(2) b1 D k C 3. Since b1 bullies c3, deleting b1 and subtracting 1 from all values
greater than k C 3 in the continuous multiline queue do not affect the bully
paths that include bsCt�1 or bsCt . In the new projected word, there is one
less 2 and one more 3. Therefore, there are ˇ1;3.s; t � 1; n/ such continuous
multiline queues.

(3) c3 D k C 3. Finally, in this case, c3 is not bullied by any bu because b1 > c3,
and there is exactly one wrapping from the second to the third row. Deleting
c3 and subtracting 1 from all values greater than k C 3 do not affect any bully
path, and the length of the resulting projected is reduced by one. There are
ˇ1;3.s; t; n � 1/ such continuous multiline queues.

Therefore, ˇ1;3.s; t; n/ is obtained by adding the numbers in each of the above cases.
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We can now verify the equation

˛1;3.s; t; n/ D ˛1;3.s � 1; t C 1; n/C ˛1;3.s; t � 1; n/C ˛1;3.s; t; n � 1/

for s; t � 2 and n > s C t by plugging in the value of ˛1;3.s; t; n/ from Theorem 5.2.
This along with Lemma 5.6 gives the recurrence relation

n1;3.s; t; n/ D n1;3.s � 1; t C 1; n/C n1;3.s; t � 1; n/C n1;3.s; t; n � 1/

for s; t � 2 and n > s C t . Let P.s; t; n/ denote the product
�
N�1
s�1

�
fn�1;sCt from

Proposition 4.3. We have

P.s; t; n/ D P.s � 1; t C 1; n/C P.s; t � 1; n/C P.s; t; n � 1/;

using Pascal’s rule and the hook length recurrence relation

f.a;b/ D f.a�1;b/ C f.a;b�1/;

where a� b >1 (see Remark 2.12). As a result,P.s; t;n/ satisfies the same recurrence
relation as n1;3.s; t; n/. Additionally, n1;3.s; t; s C t / D 0 because there is no 3 in the
projected word. By (5.1), we also have

n1;3.1; t; n/ D ˛1;3.1; t; n/C 0 D f.n�1;tC1/

because ˇ1;3.1; t; n/ D 0 for all t and n. This holds because, by Proposition 5.3 (1),
we need s > 1 to ensure exactly one wrapping from the second to the third row.
Thus, proving the initial condition n1;3.s; 1; n/ D P.s; 1; n/ completes the proof of
Proposition 4.3. To this end, we have the following result.

Proposition 5.7. For s; n such that 1 < s C 1 < n, we have

n1;3.s; 1; n/ D

�
nC 2s

s � 1

�
f.n�1;sC1/:

Proof. Recall that ms;t D .s; t; n � s � t /, and that nx;y.s; t; n/ counts the number
of continuous multiline queues Q of type ms;t , with N in the last row, such that Q
projects to a word !, where !1 D x and !2 D y:

Q D

a1 a2 � � � as

b1 b2 � � � � � � bsCt

c1 c2 � � � � � � � � � cn�1 N:

x y � � � � � � � � � !n�1 !n

Let �x;y be the probability that a particle labelled x is immediately followed by a
particle labelled y in the continuous TASEP of type ms;t . Then, by Lemma 2.9,

�x;y D
nC 2s C t�
nC2sCt
s;sCt;n

� nx;y :
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x\y 1 2 3
1 �1;1 �1;2 �1;3

2 �2;1 �2;2 �2;3

3 �3;1 �3;2 �3;3

Table 3. The table contains the correlations of two adjacent particles in �s;t . The table is
divided into four parts, and entries of the yellow, green, red, and blue sections contribute to the
correlations "1;1, "1;2, "2;1, and "2;2, respectively, in �s .

Consider Q0, a continuous multiline queue of type mu D .u; n � u/, such that the
largest integer

N 0 D nC u

is in the last row. Recall from Section 2.4 that ıc;d .u; n � u/ counts the number of
continuous multiline queues Q0 with N 0 in the last row such that Q0 projects to a
word !0, where !01 D c and !02 D d :

Q0 D

a1 a2 � � � au

b1 b2 � � � � � � bn�1 N 0:

c d � � � � � � !0n�1 !0n

From (2.17), we have that ı2;2.u; n� u/D f.n�2;u/. Let "c;d .n/ denote the probabil-
ity that a particle labelled c is immediately followed by one labelled d in a continuous
two-species TASEP of type mu. Then, again by Lemma 2.9,

"c;d .n/ D
nC u�
nCu
u;n

� ıc;d .u; n � u/:
We can define a lumping from the continuous three-species TASEP of type ms;t to
a continuous two-species TASEP as follows. Let �s;t and �s be the set of labelled
words on a ring of types ms;t and ms D .s; n � s/, respectively. Let f W �s;t ! �s

be a map defined as follows:

f .!1; : : : ; !n/ D .f .!1/; : : : ; f .!n//;

where

f .i/ D

´
1 if i D 1;

2 if i D 2; 3:

By lumping the Markov process, we have

"2;2 D ¹�2;2 C �3;2 C �2;3 C �3;3º (see Table 3):
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That is,

nC s�
nCs
s

� ı2;2 D nC 2s C t�
nC2sCt
n;s;sCt

� ¹n2;2 C n3;2 C n2;3 C n3;3º: (5.5)

Let t D 1. Then, n2;2 D 0 because there is only one particle with label 2 in the con-
tinuous three-species TASEP of type ms;1. Note that

n3;2.s; t; n/ D �s;t

from Section 3. Thus, substituting t D 1 into (3.5), we obtain

nC 2s C 1�
nC2sC1
n;s;sC1

� n3;2.s; 1; n/ D .n � s � 1/.n � s C 1/

.nC s � 1/.nC s C 1/
: (5.6)

We also have

¹n1;3 C n2;3 C n3;3º.s; 1; n/ D
n � s � 1

nC 2s C 1

�
nC 2s C 1

n; s; s C 1

�
; (5.7)

by substituting t D 1 into (4.1). Solving (5.7) for n1;3 using (5.5) and (5.6) gives

n1;3.s; 1; n/ D
s.n � s � 1/

.nC s C 1/.nC 2s C 1/

�
nC 2s C 1

n; s; s C 1

�
D

�
nC 2s

s � 1

�
f.n�1;sC1/;

thereby proving the result.

Now, we can also prove Proposition 5.4 directly using Proposition 4.3 and The-
orem 5.2 as follows.

Proof of Proposition 5.4. We have

ˇ1;3.s; t; n/ D n1;3.s; t; n/ � ˛1;3.s; t; n/

D

��
N � 1

s � 1

�
�

�
N � 2

s � 1

�
C

�
N � 2

s � 3

��
f.n�1;sCt/

D

�
N � 1

s � 2

�
f.n�1;sCt/:

5.2. An alternative approach via first principles

In this section, we additionally describe the developments made towards a direct proof
of Proposition 5.4 using the first principles. Recall the recurrence relation (5.4). The
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equation holds true for s; t � 2 and s C t � n. It is easy to verify that the product�
N�1
s�2

�
f.n�1;sCt/ satisfies the same recurrence relation as ˇ1;3.s; t; n/. Thus, it is suffi-

cient to show that the initial conditions are the same for both quantities. The conditions
are as follows:

ˇ1;3.1; t; n/ D 0;

ˇ1;3.s; t; s C t / D 0; (5.8)

ˇ1;3.s; 1; n/ D

�
N � 1

s � 2

�
f.n�1;sC1/:

The first two initial conditions are straightforward. We now provide a formula for ˇ1;3
for t D 1.

Lemma 5.8. We have

ˇ1;3.s; 1; n/ D

sX
`D2


`.s; n/;

where 
`.s; n/ is the number of continuous multiline queues of type ms;1 with c2 D
`; cn D N and b1 > c2 such that the projected words have 1 and 3 in the first two
places, respectively.

Proof. Consider the following continuous multiline queue Q of type ms;1 that is
counted by ˇ1;3.s; 1; n/:

Q D

a1 a2 � � � � � � as

b1 b2 � � � � � � bs bsC1

c1 c2 � � � � � � � � � � � � cn�1 N:

1 3 � � � � � � � � � � � � � � � 1

Let c2 be equal to `, which is greater than 1. According to Proposition 5.3, c2 < b1.
Therefore, the values ¹1; : : : ; ` � 1º are assigned to c1; a1; : : : ; a`�2. Since there
exists i such that ai ! bs and aiC1 ! bsC1, ` ranges from ¹2; : : : ; sº. The set of
all continuous multiline queues counted by ˇ1;3.s; 1; n/ can be divided into smaller
sets depending on the value of `. We denote the number of such continuous multiline
queues that have c2 D ` as 
`.s; n/. Summing over all possible values of `, we obtain
the required expression.

Next, we derive a formula for 
` from first principles. First, consider a skew shape
�=�, where � and � are partitions such that � � � are in containment order. Recall
from Section 2.3 that the number of standard Young tableaux of a skew shape �=� is
given by f�=�, which can be computed using (2.11).
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Theorem 5.9. For 2 � ` � s, we have


`.s; n/

D .` � 1/

s�1X
iD`�1

i�2X
jD`�2

n�sCi�1X
kD2

f.n�sCi�3;i�2;j�`C2/=.n�sCi�k�1/

�.f.nCi�k�j;s�j;s�j /=.i�jC1;i�j�1/�f.nCi�k�j�1;s�j;s�j /=.i�j;i�j�1//: (5.9)

Proof. Let c2 D `. Then, 
`.s; n/ counts the number of continuous multiline queues
Q with the following configuration:

Q D

a1 a2 � � � as

b1 b2 � � � bs bsC1

c1 ` � � � � � � � � � N;

1 3 � � � � � � � � � 1

where b1 > c2 such that c1; a1; : : : ; a`�2 2 Œ` � 1�. We can choose c1 in .` � 1/
different ways, which determines the values of a1 to a`�2. These values must satisfy
au < bu for 1 � u � ` � 2, implying that au ! bu for each u.

Since Q is of type .s; 1; n � s � 1/, there is exactly one bi that is not bullied by
any aj for some i 2 ¹` � 1; : : : ; s � 1º. For a fixed i , we can split the set of elements
of a continuous multiline queue into two sets based on their relation with bi . Let j
and k be the largest integers such that aj < bi and ck < bi , respectively. The value of
j lies between ` � 2 and i � 1 by the choice of i and j . Additionally, n � k > s � i
ensures that there is no more than one wrapping from the second to the third row
which, implying that k lies between 0 and n� sC i � 1. For the continuous multiline
queues with at most one wrapping from the second to the third row, the following
inequalities hold for fixed i , j , and k according to Proposition 5.3:

a`�1 < : : : < aj

^ � � � ^

b1 < : : : < : : : < bi�1

^ � � � ^

c3 < : : : : : : < ck

< bi <

ajC1 < : : : : : : < : : : < as

^ ^ ^

biC1 < : : : < bs < bsC1

^ ^

ckC1 < � � � < � � � cn:

These arrangements are counted by the product of hook length formulas of appro-
priate skew shapes, that is, by

f�1=�1
:f�2=�2

; (5.10)

where �1=�1 D .n � s C i � 3; i � 1; j � `/=.n � s C i � k � 1/, and �2=�2 D
.nC i � k � j; s � j; s � j /=.i � j C 1; i � j � 1/. To obtain the required number
of continuous multiline queues with exactly one wrapping from the second to the third
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row, we have to remove the continuous multiline queues with no wrapping from the
second to the third row from the above set. These multiline queues are determined by
the following inequalities:

a`�1 < � � � < aj

^ ^

b1 < � � � < � � � < bi�1

^ ^

c3 < � � � � � � < ck

< bi <

ajC1 < � � � < � � � < � � � < as

^ ^

biC1 < � � � < bs < bsC1

^ ^

ckC1 < � � � < � � � < cn:

The number of these arrangements is

f�1=�1
:f�3=�3

; (5.11)

where �3=�3 D .nC i � k � j � 1; s � j; s � j /=.i � j; i � j � 1/.
Summing the difference of two products in (5.10) and (5.11) over all possible

values of i , j , k, and multiplying the sum with ` � 1 for each choice of c1, we prove
the result.

Remark 5.10. Unfortunately, we have not been able to derive a closed-form expres-
sion for the sum on the right-hand side of (5.9). However, based on extensive numer-
ical checks, we have formulated a conjecture for 
`.s; n/.

Conjecture 5.11. We have


`.s; n/ D .` � 1/

�
nC 2s � `

s � `

�
f.n�1;sC1/:

When this conjecture is plugged into Lemma 5.8, it leads to proving the initial
condition in (5.8). Thus, it would be interesting to find a proof of the conjecture and
demonstrate that a tedious-looking triple summation could be simplified into a simple
product.
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