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Positive del Pezzo geometry

Nick Early, Alheydis Geiger, Marta Panizzut, Bernd Sturmfels, and
Claudia He Yun

Abstract. Real, complex, and tropical algebraic geometry join forces in a new branch of math-
ematical physics called positive geometry. We develop the positive geometry of del Pezzo
surfaces and their moduli spaces, viewed as very affine varieties. Their connected components
are derived from polyhedral spaces with Weyl group symmetries. We study their canonical
forms and scattering amplitudes, and we solve the likelihood equations.

1. Introduction

It has been known for two centuries that a cubic surface contains 27 lines. If the sur-
face is obtained by blowing up six real points in P2, then the surface and its 27 lines
are real. We consider the very affine cubic surface obtained by removing the 27 lines.
That real surface has 130 connected components, namely, 10 triangles, 90 quadri-
laterals, and 30 pentagons. This appears in our Theorem 3.1. The complex surface
has Euler characteristic 90, as shown in Lemma 4.3. This is the number of solutions
to the equations known as likelihood equations in statistics and as scattering equa-
tions in physics. The tropical surface is a balanced polyhedral complex which has the
cograph of the Schläfli graph at infinity. This is the 10-regular graph with 27 vertices
that records intersections among the 27 lines; see [36].

This article studies moduli of del Pezzo surfaces through the lens of positive
geometry [2, 3]. It builds on work of Sekiguchi and Yoshida [37–39] and Hacking,
Keel, and Tevelev [25]. Positive geometry highlights the trinity of real, complex, and
tropical geometry. We saw this for the cubic surface in the previous paragraph, and
we next summarize other main results.

Let Y.3; n/ denote the moduli space of configurations of n points in general posi-
tion in the complex projective plane P2. For us, this means that no three points are
collinear and no six lie on a conic. When n� 7, the space Y.3;n/ parametrizes marked
del Pezzo surfaces of degree 9� n as the blow-up of P2 at the n points. From Y.3; 8/,
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one obtains the moduli space by requiring that the eight points are not on a cubic that
is singular at one of the points.

The Euler characteristics of Y.3; 6/ and Y.3; 7/ over C were recently computed
in [7, 8] by means of cohomological methods. We here present an alternative deriva-
tion.

Theorem 4.1. The Euler characteristic of the complex moduli space Y.3;n/ is 32 for
n D 6, and it is 3600 for n D 7. For n D 8, a numerical computation gives 4884387
as a lower bound for the Euler characteristic.

Theorem 8.1. The real moduli space Y.3; 6/ has 432 connected components, all
W.E6/ equivalent, and the closure of each is homeomorphic as a cell-complex to
a simple 4-polytope with f-vector .45; 90; 60; 15/. The real moduli space Y.3; 7/ has
60480 connected components, allW.E7/ equivalent, and the closure of each is home-
omorphic as a cell-complex to a simple 6-dimensional homology ball with f-vector
.579; 1737; 2000; 1105; 297; 34/.

These complex and real results complement those on tropical moduli spaces in
[35, 36]. For instance, it is known that the tropicalization of Y.3; 6/ is a simplicial
fan with f-vector .76; 630; 1620; 1215/. The identification of the components in Theo-
rem 8.1 and the transitive Weyl group action are due to Sekiguchi and Yoshida [37,39].
Our contribution is a combinatorial study of these objects, which we call pezzotopes.
Also new are their f-vectors. We use the term pezzotope for two objects: the W.En/-
equivalent connected components of Y.3; n/, for n D 6; 7; and in the case of Y.3; 6/,
the polytope that is homeomorphic to those components. We add the word “curvy” to
emphasize that we are referring to the components.

One motivation for studying the real moduli spaces Y.3; n/ comes from physics.
We aim to show that the pezzotopes are positive geometries in the sense of [2, 3].
This involves identifying the canonical form and the resulting scattering amplitude.
In Sections 8 and 9, we compute the scattering amplitude for the E6 pezzotope, see
equation (8.4), and a system of perfect u-equations, in the sense of [5, 27], see equa-
tion (8.3). For n D 7, see Theorem 9.4.

Figure 1 depicts theE6 pezzotope. It offers a colorful illustration of Theorems 8.1
and 8.2. Our final highlights concern the formal definition of positive geometry by
Arkani-Hamed, Bai, and Lam [3, 30], which stipulates the existence of a canonical
differential form � like (2.5). We prove this for Y.3; 6/ and conjecture it for Y.3; 7/.

Theorem 10.5. The moduli space Y.3; 6/ is a positive geometry for any of its 432
regions, each of which is a curvy E6 pezzotope.

In Theorem 10.6, we single out one of these 432 regions, denoted by YC.3; 6/ and
called the positive moduli space of del Pezzo surfaces, and we provide a parametriza-
tion for it.
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Figure 1. The real moduli space Y.3; 6/ is glued from 432 copies of a simple 4-polytope with
f D .45; 90; 60; 15/. The picture shows its edge graph. The amplitude is a rational function,
given as the sum of 45 reciprocal monomials, one for each vertex. Singularities correspond to
facets: five cubes (in color) and ten associahedra. The Weyl group W.E6/ acts on this data.

We now define concepts that are used throughout the paper, starting with a real-
ization of Y.3; n/ as a very affine variety, i.e., as a closed subvariety of an algebraic
torus. Homogeneous coordinates for the n points are the columns of a 3 � n matrix
whose 3 � 3 minors pijk are nonzero. The condition for six points to lie on a conic is
the vanishing of the Plücker binomial

q D p134p156p235p246 � p135p146p234p256: (1.1)

Two matrices represent the same configuration if and only if they differ by left mul-
tiplication with GL.3;C/ and by scaling the columns with an element in the torus
.C�/n. Therefore, by fixing a projective basis, every configuration in Y.3; n/ is rep-
resented by a unique matrix:

M D

2641 0 0 1 1 1 � � � 1

0 1 0 1 x1;1 x1;2 � � � x1;n�4

0 0 1 1 x2;1 x2;2 � � � x2;n�4

375 : (1.2)

We note that Y.3; n/ is a subset of the familiar space X.3; n/ of configurations in
linearly general position. Namely, Y.3; n/ is obtained from X.3; n/ by removing the�
n
6

�
divisors of the form q. The spaceX.3;n/ was studied in detail in [1]. Both Y.3;n/

and X.3; n/ are very affine varieties of dimension 2n � 8, by (1.2), and they have
appeared in the physics literature [17, 21].
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For n D 6 and n D 7, we also employ the parametrization used in [25, 34, 36],
where the points lie on a cuspidal cubic. After an automorphism of P2, we can thus
choose

M D

264 1 1 1 1 � � � 1

d1 d2 d3 d4 � � � dn

d31 d32 d33 d34 � � � d3n

375 : (1.3)

The 3 � 3 minors and the conic conditions factor into linear forms di � dj , di C
dj C dk , and di1 C di2 C di3 C di4 C di5 C di6 . These are the roots of type E6 and
E7. They define arrangements of 36 hyperplanes in P5 and 63 hyperplanes in P6.
The complements of these arrangements are the moduli spaces for 6 and 7 points in
general position together with a cuspidal cubic through them. Our moduli spaces are
embedded in P39 and P134 by certain monomials in these linear forms of degree 9 and
7, respectively. This yields the Yoshida variety [35, (6.2)] and the Göpel variety [34,
Section 6], on which the Weyl groups act by permuting coordinates.

This paper is structured as follows. In Section 2, we perform a case study on
Y.3; 5/. We will generalize this analysis to Y.3; 6/ and Y.3; 7/ in the rest of the paper.
In Section 3, we consider the real del Pezzo surfaces �ın , and we characterize their
polygonal regions for n D 5; 6, as summarized in Theorem 3.1. In Section 4, we pass
to the complex setting and we determine the Euler characteristics of both �ın�1 and
Y.3; n/ for n D 6; 7. Section 5 applies numerical methods for computing the Euler
characteristic. Tropical likelihood degenerations [1, Section 8] are applied to verify
theoretical results and offer new insights. In Section 6, we study the parametriza-
tions (1.3) of the del Pezzo moduli spaces via the reflection hyperplane arrangements
E6 and E7. This centers around the Yoshida variety and the Göpel variety. Section 7
connects our findings with the physics literature on scattering amplitudes.

In Sections 8 and 9, we define the pezzotopes, compute their f-vectors, and present
their perfect u-equations. The line arrangements in Figure 3 and the graphs in Fig-
ure 4 reveal remarkable structures that are of independent interest for Weyl group
combinatorics. Theorem 9.4 characterizes theE7 pezzotope, and it offers a view from
commutative algebra.

In Section 10, we derive the regions of Y.3; n/ from Grassmannians and their
tropicalizations. The chirotopes in Theorem 10.4 offer a fresh perspective on positive
Grassmannians. The residues of the canonical form � for Theorem 10.5 match the
10C 5 facets in Figure 1.

This article relies heavily on software and data. These materials are made available
in the MathRepo collection at MPI-MiS via https://mathrepo.mis.mpg.de/positive-
delPezzo.

https://mathrepo.mis.mpg.de/positivedelPezzo
https://mathrepo.mis.mpg.de/positivedelPezzo
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2. Blowing up four points

This section is a warm-up for the rest of the paper. It offers a case study of the sur-
face �4, which is obtained by blowing up P2 at four points in general position. We
present an elementary proof that �ı4 is a positive geometry in the sense of Arkani-
Hamed, Bai, and Lam [3]; i.e., each region of the real surface has a canonical differ-
ential form which satisfies the recursive axioms in [30, Section 2]. Such regions are
worldsheet associahedra [2, Figure 18].

Without loss of generality, the four points to be blown-up are .1 W 0 W 0/, .0 W 1 W 0/,
.0 W 0 W 1/, and .1 W 1 W 1/. These points span six lines. The very affine surface �ı4 is
the complement of these lines in P2. Namely, �ı4 consists of all points .1 W x W y/ such
that

xy.1 � x/.1 � y/.y � x/ 6D 0: (2.1)

The following well-known fact highlights that this example is of wide interest.

Proposition 2.1. The very affine surface defined by (2.1) plays various roles:

�ı4 D Y.3; 5/ D X.3; 5/ D X.2; 5/ DM0;5:

The surface �4 is the tropical compactification of M0;5, as seen in [31, Section 6.5].

We conclude that our del Pezzo surface �ı4 also plays the role of a moduli space
in two different ways. It is the moduli space M0;5 of five distinct labeled points on
the line P1, and it is also the moduli space Y.3; 5/ of del Pezzo surfaces of degree
four. This double casting of Y.3; 5/—it acts as a del Pezzo surface and as a moduli
space of del Pezzo surfaces—is our motivation for dedicating an entire section to this
seemingly minor actor. In the trinity of geometries, adulated in the Introduction, the
pictures for Y.3; 5/ are as follows.

• The complex surface �C has Euler characteristic 2. [1, Figure 1]

• The real surface �R consists of 12 pentagons. [24, Figure 11]

• The tropical surface �T is the cone over the Petersen graph. [36, Figure 3]

The Euler characteristic of �C is the number of critical points of the log-likelihood
function:

L D s1 log.x/C s2 log.y/C s3 log.1 � x/C s4 log.1 � y/C s5 log.y � x/: (2.2)

See [22, Section 6] and [28, Theorem 1]. The coefficients si are parameters. These
are known as Mandelstam invariants in physics, and they represent the data in alge-
braic statistics; see [41]. There are two critical points, obtained as the solutions of the
likelihood equations

s1

x
�

s3

1 � x
�

s5

y � x
D
s2

y
�

s4

1 � y
C

s5

y � x
D 0: (2.3)
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We can solve this in radicals, thanks to the quadratic formula. If the si are positive,
then each of the two bounded regions of (2.1) contains one critical point. For the
tropical setting, where the parameters si are in the valued field R¹¹"ºº, we refer to [1,
Section 7].

When interpreting our surface as M0;5, we write its points as 2 � 5 matrices

M D

"
1 1 1 1 0

0 x y 1 1

#
:

The 10 maximal minors pij of the matrix M are the linear expressions in (2.1)
and (2.3), namely,

.p12; p13; p14; p15; p23; p24; p25; p34; p35; p45/

D .x; y; 1; 1; y � x; 1 � x; 1; 1 � y; 1; 1/:

As in [2, (6.7)] and [14, (2.6)], we use five cross ratios as coordinates on M0;5:

u1 D
p25p34

p35p24
D
1 � y

1 � x
; u2 D

p13p45

p14p35
D y; u3 D

p24p15

p14p25
D 1 � x;

u4 D
p35p12

p13p25
D
x

y
; u5 D

p14p23

p13p24
D

y � x

.1 � x/y
:

Following [5, (3)], the u-coordinates satisfy the following quadratic equations:

u1u3 C u2 D u2u4 C u3 D u3u5 C u4 D u4u1 C u5 D u5u2 C u1 D 1: (2.4)

These equations give an embedding of M0;5 as a closed subvariety of the torus .C�/5.
To appreciate the beauty of the Laurent polynomial ideal in (2.4), consider its real

solutions. Among the 64D 25 possible sign patterns for .u1; u2; u3; u4; u5/, precisely
12 are realized:

.CCCCC/ .�CCCC/ .C�CCC/ .CC�CC/ .CCC�C/ .CCCC�/

.�����/ .C�C�C/ .CC�C�/ .�CC�C/ .C�CC�/ .�C�CC/

These sign vectors label the 12 regions in �R, all of which are the same up to sym-
metry. We focus on the region .CCCCC/, where the following tropical equations
are valid:

min.u1 C u3; u2/ D min.u2 C u4; u3/ D min.u3 C u5; u4/

D min.u4 C u1; u5/ D min.u5 C u2; u1/ D 0:

The solution to these equations is the cone over a pentagon. This is one of the 12
pentagons in the Petersen graph of �T . To see the pentagon classically in �R, we note
that (2.4) implies 0� u1;u2;u3;u4;u5 � 1. If ui is 0, then both neighboring variables
ui�1 and uiC1 must be 1, and the remaining two variables are nonnegative and sum
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to 1. This reveals the pentagon. In other words, the set of nonnegative solutions to (2.4)
is a curvy pentagon in .RC/5 � .C�/5.

We are now prepared to prove that this curvy pentagon is a positive geometry by
showing that the canonical form for M0;5 is the following 2-form:

� D d log
�
u2u5

u1

�
^ d log

�
u4

u3u5

�
D d log

�
y � x

1 � y

�
^ d log

�
x

1 � y

�
D

dx dy
x.x � y/.1 � y/

: (2.5)

On the line u2 D 0, we have u1 D u3 D 1 and u4 C u5 D 1. The residue of � on
that line is d log.u4=u5/ D d log.u4=.1 � u4//, which is the canonical form of the
line segment. A similar calculation works for the residues at the other four boundaries
ui D 0. Since line segments are positive geometries, we thus verify the recursive
axioms in [3, Section 2.1]. By symmetry, each curvy pentagon endows the surface
M0;5 with the structure of a positive geometry.

We compute the scattering amplitude of M0;5 following [20, (2.12)]. To integrate
�, we write HL for the Hessian of the function (2.2), and we sum det.H�1L /x�2.x �

y/�2.1 � y/�2 over the two solutions of (2.3). The result is the amplitude

1

s1s4
C

1

s4.s3 C s4 C s5/
C

1

.s3 C s4 C s5/s5
C

1

s5.s1 C s2 C s5/
C

1

.s1 C s2 C s5/s1
:

(2.6)
Our discussion illustrates the aim of this article: extending the study of �C , �R,

�T to del Pezzo surfaces of degree 9� n and their moduli spaces Y.3; n/ for larger n.

3. Polygons

In this section, we examine polygonal decompositions of real del Pezzo surfaces. We
denote the blow-up of P2 at n general real points, as described in the introduction,
by the del Pezzo surface �n. The anticanonical divisor of such a surface is very ample
for n � 6. Its sections are cubics that vanish at the n points in P2, and these give
an embedding of �n into P9�n. With this notation, �6 is a cubic surface in P3. The
surface �5 lives in P4, where it is an intersection of two quadrics. For n D 4; 5; 6, the
surface contains 10, 16, 27 straight lines. For n D 7, the anticanonical map is 2-to-
1 from �7 onto P2. Its branch locus is a quartic curve Q. There are 56 exceptional
curves on �7, and these are mapped onto the 28 bitangents of Q.

The very affine surfaces �ın result from removing the 10, 16, 27, 56 lines from �n.
The lines are denoted as in [36]. We write Fij for the line in RP2 spanned by the
points i and j , and Ei for the exceptional divisor over the point i . For n � 6, let GI
be the unique conic through the five points labeled by ¹1; 2; : : : ; nº n I . For nD 7, we
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denote by Hi the unique cubic that passes through all seven points and has a node at
point i .

We will study the connected components of �ın , here called polygons, with focus
on their shapes and numbers. Each polygon is bounded by a subset of the lines. The
face vector f D .v; e; p/ records the number v of vertices, the number e of edges,
and the number p of polygons in this polygonal subdivision of �n. The subdivision
for n D 4 consists of 12 pentagons, and it has

f D .15; 30; 12/:

We summarize the situation in the following theorem. Here, a del Pezzo surface is
called general if every point is contained in at most two lines.

Theorem 3.1. The subdivision of any general real del Pezzo surface �n has 36, 130,
806 polygons for n D 5; 6; 7. For n D 5, it has 20 quadrilaterals and 16 pentagons,
and the f-vector is .40; 80; 36/. Each line is incident to 5 quadrilaterals and 5 pen-
tagons. For n D 6, there are 10 triangles, 90 quadrilaterals, and 30 pentagons, and
the f-vector is .135; 270; 130/. Twelve of the 27 lines on �6 are disjoint from the tri-
angles, and these form a Schläfli double-six. Each of the other 15 lines is incident to
2 triangles, 12 quadrilaterals, and 6 pentagons.

Proof. Consider a polygonal subdivision of a closed surface, with v vertices, e edges,
and p polygons. The Euler characteristic of the surface satisfies

� D v � e C p:

If the surface is �n, i.e., the blow-up of RP2 at n general points, then � D 1� n. The
number of .�1/-curves on �n is 10, 16, 27, 56 for nD 4; 5; 6; 7. We call these “lines”,
in spite of RP1 being a circle.

Each line is incident to the same number of other lines, and that number is 3, 5,
10, 28. For n � 6, the intersection of two lines on �n is either empty or a single point.
For nD 7, however, each line meets one of the lines twice, and it meets 27 other lines
at one point.

It follows that the number of edges in the subdivision is the product of the number
of lines and the number of incident lines. We hence find that e equals 30, 80, 270,
1624. The number of vertices is half the number of edges; i.e., v D e=2 equals 15, 40,
135, 812. From this data, we compute the number p of polygons in each case with the
formula

p D
e

2
C �:

Therefore, the number of polygons equals p D 12; 36; 130; 806 for n D 4; 5; 6; 7.
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Figure 2. Subdivision of the del Pezzo surface �5 into 20 quadrilaterals (dark) and 16 pentagons
(light). Each blown-up point is replaced by a decagon with opposite sides identified.

To get more refined information, we discuss each case separately. For n D 4, this
was done in Section 2 where we referred to the work of Devadoss [24] on M0;n

over R. For n D 5, we offer Figure 2. After a projective transformation, we may
assume that the five points are in convex position, so the conic G that passes through
these points is an ellipse. The arrangement of ten lines F12; F13; : : : ; F45 and the
conic G divides RP2 into 36 regions, and we color them by light gray and dark
gray in the checkerboard pattern shown in Figure 2. The blow-up replaces the point
i by a projective line Ei , which in the figure is obtained from a decagon by double-
covering. Arrows with the same color are identified, and they create new edges in the
gray regions. Considering these new colorful edges, each of the 16 light gray regions
is a pentagon, and each of the 20 dark gray regions is a quadrilateral.

We now turn to n D 6. Rather than pointing to a picture, we leave the job to a
computer. The input is a random element in Y.3; 6/, that is, a random configuration of
six points in RP2. We identify the regions in RP2 created by removing the 15 lines
F12; F13; : : : ; F56 and the six conics G1, G2, G3, G4, G5, G6. For each region that is
incident to a point i , we identify the 10 new colorful edges created by the circle Ei .
The output of the computation is a list of tuples of lines, each delineating one of the
130 polygons. An explicit list is shown in Example 3.2. From this data, we can read
off interesting properties. Recall that the cubic surface �6 has 36 double-sixes. We
found that there is a unique double-six that is disjoint from the 10 triangular regions.
This is identified in the data below.
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Example 3.2. Fix the cubic surface �6 obtained from P2 by blowing up the six
points in

M D

264 �2 24 16 27 14 1

�25 3 28 13 5 7

�26 �4 1 �14 9 6

375 :
The resulting subdivision of �6 has the ten triangles

E4F24G2; E4F34G3; E5F15G1; E5F25G2; E6F16G1;

E6F36G3; F14F25F36; F14F26F35; F15F26F34; F16F24F35:

The 90 quadrilaterals are

E1E5G3G4; E1E5G3G6; E1E6F16G5; E1E6G2G4; E1E6G2G5; E1E6G3G4;

E1F12F14F36; E1F12F14G1; E1F12F15F36; E1F13F14G1; E1F13F16F25;

E1F15F36G6; E1F16F25G5; E2E4G1G5; E2E4G1G6; E2E4G3G6;

E2E5F25G4; E2E5G1G6; E2E5G3G4; E2E5G3G6; E2F12F25F34;

E2F12F26F34; E2F12F26G2; E2F15F23F24; E2F15F24G5; E2F23F26G2;

E2F25F34G4; E3E4G1G5; E3E4G1G6; E3E4G2G5; E3F24F36G4;

E4F14F23F45; E3F13F24F36; E3F13F35G3; E3F16F23F34; E3F16F23F35;

E3F16F34G6; E3F23F35G3; E3E6G2G4; E3E6G2G5; E4F14F23F46;

E4F14F45G4; E4F14F46G4; E4F24F45G4; E4F34F46G4; E5F12F35F45;

E5F12F35F56; E5F12F45G2; E5F15F56G5; E5F35F45G5; E5F35F56G5;

E6F13F26F46; E6F13F26F56; E6F13F56G1; E6F26F46G6; E6F26F56G6;

E6F36F46G6; F12F14F56G1; F12F15F36F46; F12F25F34F46; F12F26F35F45;

F12F26F45G2; F13F14F26F56; F13F14F56G1; F13F16F24F45; F13F16F25F45;

F13F24F36F45; F13F25F36F45; F13F35F46G3; F14F23F35F46; F14F25F46G4;

F15F23F24F56; F15F23F34F56; F15F24F56G5; F15F26F46G6; F15F36F46G6;

F16F23F34F56; F16F25F45G5; F16F34F56G6; F23F26F45G2; F23F35F46G3;

F24F35F56G5; F24F36F45G4; F25F34F46G4; E3F24G2G4; E2F34G3G4;

E2F15G1G5; E1F25G2G5; E3F16G1G6; E1F36G3G6:

Finally, the 30 pentagons are

E1E5F12F15G1; E1E5F15G1G6; E1E5F25G2G4; E1E6F13F16G1;

E1F13F14F25F36; E2E4F23F24G2; E2E4F24G2G5; E2E5F12F25G2;

E2F15F23F26F34; E3E4F23F34G3; E3E4F34G3G6; E3E6F13F36G3;

E3E6F16G1G5; E3E6F36G3G4; E3F13F16F24F35; E4F23F24F45G2;
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E4F23F34F46G3; E5F12F15F56G1; E5F25F45G2G5; E6F13F36F46G3;

E6F16F56G1G6; F12F14F25F36F46; F12F14F26F35F56; F12F15F26F34F46;

F13F14F26F35F46; F14F23F26F35F45; F14F25F36F45G4; F15F26F34F56G6;

F16F23F24F35F56; F16F24F35F45G5:

We note that the following 12 symbols do not appear among the triangles:

E1 E2 E3 F45 F46 F56

F23 F13 F12 G6 G5 G4
!

5 4 6 5 5 5

7 6 6 4 4 3

These 12 lines form a double-six. On the right we list the numbers of pentagons
bounded by each line. Each of the other 15 lines bounds 2 triangles, 12 quadrilaterals,
and 6 pentagons.

Remark 3.3. The Weyl group W.En/ acts on our data for n D 6; 7. Each group is
generated by permuting the labels 1; 2; : : : ; n of E�, F��, G��, H� plus one additional
involution that represents the Cremona transformation of P2 centered at the triangle
E1E2E3. For n D 6, this Cremona involution equals

.E1F23/.E2F13/.E3F12/.G4F56/.G5F46/.G6F45/:

For n D 7, it is

.E1F23/.E2F13/.E3F12/.G12H3/.G13H2/.G23H1/.F45G67/.F46G57/.F47G56/

� .F56G47/.F57G46/.F67G45/:

Remark 3.4. Each triangle on the cubic surface �6 shares its three edges with pen-
tagons, and its vertices are adjacent to quadrilaterals. For instance, in the list above, the
triangle E4F24G2 shares its edges with the pentagons E2E4F23F24G2, E2E4F24 �
G2G5, E4F23F24F45G2. Its vertices are adjacent to the quadrilaterals E3E4G2G5,
E3F24G2G4, E4F24F45G4. If we move around in the moduli space Y.3; 6/, then
the triangle gets inverted when passing through an Eckardt divisor. This inversion
replaces the pentagons with quadrilaterals and vice versa. In particular, the numbers
10, 90, and 30 of triangles, quadrilaterals, and pentagons remain the same when we
cross the Eckardt divisor within a connected component of Y.3; 6/.

Example 3.5 (Clebsch cubic). A prominent surface is the Clebsch cubic, with 10
Eckhardt points. It is obtained by blowing up P2 at the vertices of a regular pentagon
and its midpoint. Its subdivision consists of 120 quadrilaterals. Nearby in Y.3; 6/,
as the Eckhardt points become triangles, their three adjacent quadrilaterals become
pentagons.
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To find the subdivisions of �6 and �7, we fix ternary forms for all exceptional
curves apart from the Ei . We then compute the stratification of R3 that is given by
signs C or � of these ternary forms. Each region in R3 is labeled by a sign vector
of length 21 or length 49, respectively, for n D 6; 7. For the cubic surface .n D 6/,
this computation yields 260 sign vectors. Each of them labels a unique connected
component in R3. The quotient map from R3 to P2 thus creates 130 polygons. The
only remaining task is to weave in the exceptional curves Ei . This is done by hand,
using a careful local analysis.

We now turn to the case nD 7. New phenomena arise because seven cubic curves
are needed for subdividing P2. The polygonal subdivision of the surface �7 is cre-
ated by the 7 exceptional divisors Ei , the 21 lines Fij , the 21 conics Gij , and the
7 cubics Hj . While removal of a single Fij leaves P2 connected and removal of
Gij creates two connected components, it is important to note that removal of Hi
divides P2 into three connected components. The analogous computation in R3 as
above for n D 6 now yields 1596 distinct sign vectors. This is less than the number
1612D 2 � 806, which is expected from Theorem 3.1. We believe that this discrepancy
arises from the tripartition of P2 by nodal cubics. This deserves further study.

4. Euler characteristic

We now turn to the complex geometry of very affine varieties. The Euler character-
istic is the key invariant. For statisticians, it yields the maximum likelihood (ML)
degree [22]. For physicists, it counts the master integrals of a Feynman diagram [10,
Section 3].

The Euler characteristic of the configuration spaceX.3; n/ equals 26,1272,188112
for n D 6; 7; 8. This result is shown in [21] via soft limits and in [1] via stratified
fibrations. In what follows, we determine the analogous numbers for moduli of del
Pezzo surfaces, via the method of stratified fibrations. After the completion of this
work, we learned that the same results had been proven in [7, 8] via cohomological
methods. We know from Section 2 that

Y.3; 5/ D X.3; 5/

has Euler characteristic 2.

Theorem 4.1. The Euler characteristic of Y.3; n/ equals 32, 3600 for n D 6; 7. The
Euler characteristic of Y.3; 8/ is bounded below by 4884387.

In this section, we offer formal proofs for n D 6; 7. These build on [1, Section 2].
The case n D 8 will be treated in Section 5. For a detailed explanation, see Experi-
ment 5.2.
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Remark 4.2. Olof Bergvall has computed the Euler characteristic of Y.3; 8/ to be
4884480 via a finite-field method. This computation and its proof will appear in his
upcoming paper.

We begin by calculating the Euler characteristics of very affine del Pezzo surfaces.

Lemma 4.3. The general surfaces �ı5 and �ı6 have Euler characteristic 16 and 90,
respectively. If the cubic surface has ` Eckhardt points, then its Euler characteristic
drops to 90 � `.

Proof. The complex projective plane CP2 has Euler characteristic � D 3. That num-
ber increases by 1 whenever we blow up one point. Hence, the compact surface �n

has � D 3C n. We pass to �ın by inclusion-exclusion. The Riemann sphere CP1 has
� D 2, so we subtract 2 for each line, and we add 1 for each intersection point of two
lines. For n D 5, we remove 16 lines and we add in 40 points, so we get

� D 8 � 16 � 2C 40 D 16:

For n D 6, we remove 27 lines and we add in 135 points, so we get

� D 9 � 27 � 2C 135 D 90:

We subtract 1 for each Eckhardt point, i.e., each point where three lines meet.

Proof of Theorem 4.1. We consider the map �n W Y.3; n/ ! Y.3; n � 1/ given by
deleting the last point. For n � 6, this map is a fibration, with each fiber isomor-
phic to �ın�1. Euler characteristic is multiplicative under fibrations. We know from
Lemma 4.3 that �ı5 has � D 16. This implies that the Euler characteristic of Y.3; 6/ is
equal to 16 � 2 D 32.

We now turn to nD 7. The map �7 is not a fibration but only a stratified fibration.
This is analogous to [1, Section 5], and we apply the same technique. Namely, we
identify all strata in Y.3; 6/ and the fiber over each stratum, we compute the Euler
characteristic for each piece, we analyze the poset structure of the stratification, and
we use [1, Lemma 2.3].

The stratification of Y.3; 6/ is given by the labels of Eckardt points on the cubic
surface, i.e., triples of concurrent lines. In the blow-up picture, we see two types of
Eckardt points.

• The 15 triples of lines Fij , Fkl , Fmn, which we denote by .ij /.kl/.mn/.

• The 30 triples EiFijGj , where line Fij is tangent to conic Gj at the point i in P2.

These 45 triples specify the tritangent planes of the general cubic surface. The Weyl
groupW.E6/ acts transitively on the 45 triples. By [9], Table 1 summarizes the possi-
ble configurations of Eckardt points. They also show the poset structure on the strata.
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EckPts Representative Configuration Strata

1 .16/.25/.34/ 45

2 .16/.25/.34/, .15/.26/.34/ 270

3 .16/.25/.34/, .15/.24/.36/, .14/.26/.35/ 240

4 .16/.25/.34/, .15/.24/.36/, .14/.26/.35/, .15/.26/.34/ 720

6
.16/.25/.34/, .15/.26/.34/, .12/.35/.46/,

540
.12/.36/.45/, .13/.24/.56/, .14/.23/.56/

9
.16/.25/.34/, .14/.26/.35/, .15/.24/.36/,

40
Q13, Q46, Q32, Q65, Q21, Q54

10
.16/.25/.34/, .15/.24/.36/, .14/.26/.35/, .15/.26/.34/,

216
Q14, Q16, Q24, Q36, Q25, Q35

18

.14/.25/.36/, .14/.26/.35/, .15/.24/.36/, .15/.26/.34/,

40
.16/.24/.35/, .16/.25/.34/,

Q12, Q13, Q21, Q23, Q31, Q32,

Q45, Q46, Q54, Q56, Q64, Q65

Table 1. All 2111 strata in Y.3; 6/, grouped by number of Eckardt points. Data from [9,
Lemma 10] were verified in Julia using OSCAR. Column 3 lists the number of strata per type.

Table 1 is the del Pezzo variant of [1, Table 3]. We will compute �.Y.3; 7// by
using [1, Lemma 2.3], which we rewrite just like in [1, (16)]. In our setting, this takes
the form

�.Y.3; 7// D �.Y.3; 6// � �.FY.3;6// �
X
S2S

�.S/ � �.S/; (4.1)

where S is the poset of 2111 strata, and

�.S/ D
X

S 02S;S 0�S

�.S; S 0/ � .�.FY.3;6// � �.FS 0//:

By Lemma 4.3, the generic fiber FY.3;6/ has � D 90, so the product on the left is
32 � 90 D 2880.

To prove Theorem 4.1, we must show that
P
S2S �.S/ � �.S/D�720. By analyz-

ing the poset of strata, we find that the analog of [1, Theorem 5.4] holds in our case:
�.T / D 1 for the top stratum with one Eckardt point, and �.S/ D 0 for all lower-
dimensional strata S . There are 45 top strata T . They are all isomorphic. It remains
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to show that �.T / D �720=45 D �16. Consider the map �6 W T ! Y.3; 5/ which
deletes point 6.

We stratify Y.3; 5/ as follows.

(1) Type a. General position.

(2) Type b1. The three points 12 \ 34, 14 \ 23, and 5 are collinear.

(3) Type b2. The three points 12 \ 34, 13 \ 24, and 5 are collinear.

(4) Type c. Setting S D 12 \ 34, the line 5S is tangent to the conic through the
five points.

The poset structure is simple: b1, b2, and c are pairwise disjoint and contained in a.
For the fiber to have Eckardt point .12/.34/.56/, point 6 must be on the line 5S but
retain general linear and quadratic position with the five points. We see that the fiber
over a is Fa D P1 n ¹7 pointsº and hence �.Fa/ D �5. Similarly, for u 2 ¹b1; b2; cº,
we have Fu D P1 n ¹6 pointsº and hence �.Fu/ D �4. For the strata in Y.3; 5/ D
M0;5, we find �.a/ D 2 and �.u/ D �2 for u 2 ¹b1; b2; cº. Using [1, Lemma 2.3]
again, we conclude that �.T / D 2 � .�5/ � 3 � .�2/ � 1 � .�5 � .�4// D �16.

We now examine the set-theoretic difference between X.3; n/ and Y.3; n/. For
n D 6, this difference consists of configurations of six points in P2 in general linear
position but lying on a conic. This is isomorphic to M0;6, which is reflected in the
Euler characteristics:

�.X.3; 6/ n Y.3; 6//D �.X.3; 6//� �.Y.3; 6//D 26� 32D �6D �.M0;6/: (4.2)

For n D 7, the situation is more complicated. The boundary of Y.3; 7/ in X.3; 7/
consists of seven isomorphic strata a1; : : : ; a7, where ai is the locus where the points
¹1; 2; : : : ; 7º n ¹iº are on a conic. Their pairwise intersection is the stratum b 'M0;7,
where all points are on a conic. We have �.b/ D 24. The following result is found by
a stratified fibration. We omit the proof, which is analogous to but lengthier than the
proof of Theorem 4.1.

Proposition 4.4. The Euler characteristic �.a7/ D �312.

The n D 7 analog to (4.2) is the following identity among Euler characteristics:

�.X.3; 7/ n Y.3; 7// D 1272 � 3600 D 7 � .�312/ � 6 � 24

D

7X
iD1

�.ai / � 6�.b/: (4.3)

In this section, we explored the complex geometry of some very affine varieties
of interest. We showed how their Euler characteristics can be derived by means of
inclusion-exclusion.
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5. Numerical experiments

We now turn to the numerical solution of likelihood equations. See (2.3) for a tiny
example. In this section, each item is labeled as Experiment to highlight the exper-
imental nature of our investigation. Our computation yields a lower bound for the
Euler characteristic for Y.3; 8/.

A complex variety X is very affine if it is a closed subvariety of an algebraic
torus .C�/m. The log-likelihood function on X is the logarithm of a monomial with
unknown exponents:

log
�
z
s1
1 z

s2
2 � � � z

sm
m

�
D s1 log.z1/C s2 log.z2/C � � � C sm log.zm/: (5.1)

We are interested in the critical points of the multivalued function (5.1) on X . These
points are algebraic functions of the parameters s1; s2; : : : ; sm. Their number is the
signed Euler characteristic j�.X/j, by [28]. In algebraic statistics, this is known as the
ML degree of X .

Very affine varieties arising in physics are usually presented in the parametric form

X D
®
x 2 Cn

W f1.x/ � f2.x/ � � � fm.x/ 6D 0
¯
;

where f1;f2; : : : ;fm are irreducible polynomials in n variables, and we set zi D fi .x/
in (5.1). Our task is to solve the following system of n equations in n unknowns:

mX
iD1

sif
�1
i

@fi

@xj
D 0 for j D 1; 2; : : : ; n: (5.2)

The left-hand side is a rational function. A tiny example with two solutions was seen
in (2.3). As explained in [41], it is essential not to clear denominators. For our compu-
tations, we used the numerical software HomotopyContinuation.jl [13]. Systems
with j�j � 10000 are easy to solve.

Experiment 5.1. The ML degree of Y.3;7/ is 3600. To verify this numerically, we set

M D

2641 0 0 1 1 1 1

0 1 0 1 x1 x2 x3

0 0 1 1 x4 x5 x6

375 : (5.3)

Here, n D 6 and m D 28 C 7 D 35. The polynomials fi .x/ come in two groups.
First, there are 28 non-constant 3 � 3 minors of M . And, second, there are the seven
conic conditions. This gives six equations (5.2) in six variables xj that depend on 35
parameters si . It takes HomotopyContinuation.jl around 200 seconds to compute
3600 distinct complex solutions.
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The main contribution of this section is the lower bound on the ML degree of
Y.3; 8/.

Experiment 5.2 (Proof and discussion for Theorem 4.1). The computation of the
number 4884387 is the highlight of this section. This is analogous to Experiment 5.1,
but it is now much harder.We will explain what was done. It starts with the parametriza-
tion

M 0 D

2641 0 0 1 1 1 1 1

0 1 0 1 x1 x2 x3 x4

0 0 1 1 x5 x6 x7 x8

375 :
The torus, in which the very affine variety Y.3; 8/ lives, is defined by the complement
of the vanishing of the polynomials fi . These are given by the 48 non-constant 3 � 3-
minors of M 0 and the 28 conditions that no six points lie on a conic. The resulting
system consists of eight rational function equations in eight variables, and it depends
on 76 parameters si .

We ran the software HomotopyContiunation.jl on this system of eight equa-
tions, using the method of monodromy loops, as explained in [41]. Our first seri-
ous experiment with this system ran 1708.32 hours on a 2x 12-Core Intel Xeon
E5-2680 v3 at 2.5 GHz with 512 GB RAM. The computation needed over 74.55 GB.
We obtained 4884318 distinct complex solutions. The problematic length of the com-
putation is due to the sheer size. For each generated loop in the iteration, there are
about 4 million that need to be tracked and checked against the existing list of solu-
tions. We verified that the number achieved by our computations is in the correct order
of magnitude using the estimation method of Hauenstein and Sherman [26].

At that point, we got in touch with Sascha Timme, who is the main developer
of the software HomotopyContinuation.jl. Sascha kindly took over the compu-
tations, and he even used them to improve his implementation of the certification
method in [12]. With this new implementation, he established a guarantee that there
are 4884387 distinct non-singular solutions. The system is large and fairly ill-condi-
tioned, so it is not surprising that it is missing 93 solutions compared to the number
found in Olof Bergvall’s forthcoming work. Sascha performed his computations with
version 2.9.0 of HomotopyContiunation.jl on a MacBook Pro with the M1 Pro
Chip and 32 GB of RAM. The computations used all 10 threads. The total computa-
tion time was around 40 hours. The final count of 4884387 was already reached after
running the monodromy loops for 16 hours. Just the certification of the solutions can
now be performed in less than 30 minutes, using the new improvements for [12]. All
the materials for these computations are made available at our MathRepo page.

To gain additional insight into the structures behind Theorem 4.1, we turned to
tropical geometry. We applied the technique in [1, Section 8] to compute the tropical
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critical points of the soft limit degeneration of the log-likelihood function. We discov-
ered identifications as in [1, Table 4] of tropical critical points with stratification data.

To explain our findings, we start with the log-likelihood function for n D 6:

L D
X

1�i<j<k�6

sijk � log.pijk/C t � log.q/: (5.4)

The pijk are the 3 � 3 minors of the matrix M in (5.3), and q is the condition for the
points to lie on a conic, shown explicitly in (1.1). The coefficients sijk and t in (5.4)
are random real numbers. We know from Theorem 4.1 that L has 32 critical points
.x1; x2; x3; x4/ 2 C4.

We now multiply some of the coefficients by a small positive parameter ". The
solutions depend on ". Each coordinate Oxi can be represented by a Puiseux series
in ", and ditto for the resulting quantities Opijk and Oq. The valuations of . Op; Oq/ are the
tropical critical points.

A numerical method for computing tropical critical points and their multiplicities
was presented in [1, Algorithm 1], along with an implementation using

HomotopyContinuation.jl:

We adapted this code to find tropical critical points on Y.3; n/ for n D 6 and n D 7.

Experiment 5.3 (Soft limits for nD 6). We multiply all coefficients sij6 and t with ".
The zero vector is the unique tropical critical point of multiplicity 32 D 2 � 16, cor-
responding to the fibration Y.3; 6/! Y.3; 5/. By contrast, suppose only t gets mul-
tiplied by ". We obtain two tropical critical points, with multiplicities 26 and 6. The
first group gives the solutions in X.3; 6/. The second group gives solutions in M0;6,
with configurations on a conic.

Experiment 5.4 (Soft limits for n D 7). The 28 minors pijk have parameters sijk ,
and the seven conic conditions have parameters ti1;:::;i6 . All parameters having last
index k D i6 D 7 are multiplied by ". This gives 46 tropical critical points. One of
them has all coordinates zero. It has multiplicity 2880 D 90 � 32 and corresponds to
the generic fiber of the map Y.3; 7/! Y.3; 6/. The other 45 tropical critical points
can be sorted into two classes of 15 and 30 each. Each of them has multiplicity 16.
They correspond to the 45 ways of obtaining Eckardt points on a cubic surface. The
resulting formula mirrors the structure of (4.1):

�.Y.3; 7// D 3600 D 32 � 90C 45 � 16:

This is the del Pezzo analog to the formula �.X.3; 7//D 1272D 26 � 42C 15 � 12 for
the stratified fibration X.3; 7/! X.3; 6/. This formula was found in [21] and it was
verified in [1, Table 4].
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In a second experiment, we multiply the seven coefficients t for the conics by ".
We observe

�.Y.3; 7// D 3600 D 1272C 7 � 312C 144:

The tropical multiplicities reveal the boundary of Y.3; 7/ inside X.3; 7/, as in (4.3).

In conclusion, the numerical computation of tropical critical points can yield con-
siderable insight into the geometry of very affine varieties. Experiments 5.3 and 5.4
document this for del Pezzo moduli, and they suggest that tropical likelihood infer-
ence deserves further study.

6. Weyl groups, roots, and their ML degrees

The symmetric group acts on the configuration space X.3; n/ by permuting the n
points. Our del Pezzo moduli spaces Y.3; n/ are more symmetric than that, because
they admit an action of the Weyl group W.En/. We will make this very explicit for
n D 6; 7.

The hyperplane arrangements of type E6 and E7 are defined by the linear forms
seen from the matrix (1.3). Reflections at these hyperplanes generate the Weyl groups
W.E6/ andW.E7/, which act on the key players in this paper. Their orders are 51840
and 2903040. By Remark 3.3, each group is generated by one Cremona involution in
addition to the symmetric group that swaps labels. Using d1; : : : ; dn for coordinates
on Y.3;n/ following [34,36] and [35, Section 6], we express the Cremona involutions
c6 and c7 as the following matrices:

c6 D
1

3

266666664

1 0 �1 1 1 �2

1 3 2 1 1 1

�2 0 �1 �2 �2 �2

1 0 �1 1 �2 1

1 0 �1 �2 1 1

�2 0 �1 1 1 1

377777775 ;

c7 D
1

3

26666666664

1 0 �1 1 1 �2 0

1 3 2 1 1 1 0

�2 0 �1 �2 �2 �2 0

1 0 �1 1 �2 1 0

1 0 �1 �2 1 1 0

�2 0 �1 1 1 1 0

1 0 2 1 1 1 3

37777777775
:

(6.1)
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The matrix c7 is obtained from the 7 � 7 matrix in equation (4-3) on [34, p. 337],
namely, by the change of coordinates in equation (4-4) on [34, p. 338]. The matrix c6
is obtained from c7 by deleting the last row and last column.

The matrix in (1.3) gives a parametrization of Y.3; 6/ and Y.3; 7/, respectively.
A natural idea is to explore the log-likelihood function (5.4) after plugging in this
parametrization. For n D 6, the resulting function in d -coordinates equalsX

1�i<j�6

sij � log.di � di /C
X

1�i<j<k�6

tijk � log.di C dj C dk/

C v � log.d1 C d2 C d3 C d4 C d5 C d6/: (6.2)

If the coefficients sij , tijk , v are random real numbers, then this function has no crit-
ical points. We need to assume that these 36 coefficients sum to zero. Under that
hypothesis, (6.2) is the logarithm of a rational function on the projective space P5,
and the number of critical points is the Euler characteristic of the complement of the
E6 hyperplane arrangement in P5, which we denote by A.E6/. Similarly, we write
A.E7/ for the complement of the 63 hyperplanes in P6. These complements are very
affine varieties of dimension 5 and 6, respectively.

Proposition 6.1. The ML degrees of A.E6/ and A.E7/ are equal to 5040 and 368640.

Proof. The characteristic polynomials of the two hyperplane arrangements are

pE6
.t/ D .t � 1/.t � 4/.t � 5/.t � 7/.t � 8/.t � 11/;

pE7
.t/ D .t � 1/.t � 5/.t � 7/.t � 9/.t � 11/.t � 13/.t � 17/:

The zeros of these polynomials are the exponents of the Coxeter groups W.E6/ and
W.E7/. If we pass to affine space by declaring one of the hyperplanes to be at infinity,
then the ML degree is the number of bounded regions in the arrangement. This number
is computed by evaluating the reduced characteristic polynomial pEn

.t/=.t � 1/ at
t D 1. In our two cases,

j�.A.E6//j D 3 � 4 � 6 � 7 � 10 D 5040;

j�.A.E7//j D 4 � 6 � 8 � 10 � 12 � 16 D 368640:
(6.3)

We verified both ML degrees by solving the likelihood equations, as in Section 5.

We next examine the two morphisms of very affine varieties that are given by
(1.3):

A.E6/! Y.3; 6/ and A.E7/! Y.3; 7/: (6.4)

One might naively think that these maps are fibrations. But this is not the case. The
fiber of the first map is the parabolic curve, which can be realized as the intersection of
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the cubic surface with the quartic surface defined by its Hessian [23, Section 3]. This
curve is generally smooth, but it is singular for special points in Y.3; 6/. For instance,
the parabolic curve of the Fermat cubic x30 C x

3
1 C x

3
2 C x

3
3 is reducible and it has 18

singular points, while for the Clebsch cubic x30 C x
3
1 C x

3
2 C x

3
3 � .x0 C x1 C x2 C

x3/
3, it is irreducible with 10 singular points.
The failure of the maps in (6.4) to be fibrations explains the fact that the ML

degrees in (6.3) are not divisible by those in Theorem 4.1. To reach the desired divis-
ibility, we need additional linear constraints on the coefficients sij , tijk , v in (6.2).
These constraints arise from representing our moduli spaces Y.3; 6/ and Y.3; 7/ in
high-dimensional projective spaces. This goes back to Coble in 1928. We now review
the relevant material from [23, 34, 35].

The Yoshida variety Yı is the image of A.E6/ under the map P5 ! P39 that
is given by the subroot systems of type A�32 . Its 40 coordinates are the 30 products
p125p126p134p234p356p456 and the 10 products like p123p456q, up to relabeling,
where pijk denotes 3 � 3 minors of (1.3). After dividing by

Q
1�i<j�6.di � dj /,

each coordinate is a product of 9 roots of E6. We write M6 for the 36 � 40 incidence
matrix where the rows are labeled by the roots and the columns are labeled by the
Yoshida coordinates. This matrix has entries in ¹0; 1º, with nine 1’s in each column.
By [35, Theorem 6.1], the rank of the matrix M6 equals 16.

The Göpel variety G ı is the image of A.E7/ under the map P5 ! P134 that
is given by the 135 subroot systems of type A�71 . Its coordinates are the 30 Fano
configurations p124p235p346p457p156p267p137 and the 105 Pascal configurations
p127p347p567q, up to relabeling. After dividing by

Q
1�i<j�7.di � dj /, each coor-

dinate is a product of 7 roots of E7. We write M7 for the 63 � 135 incidence matrix
where the rows are labeled by roots and the columns are labeled by Göpel coordinates.
This matrix has entries in ¹0;1º, with seven 1’s in each column. By [34, Theorem 6.1],
the rank of the matrix M7 equals 36. See [34, Theorem 6.2] for the homogeneous
prime ideal in 135 variables that defines the Göpel variety.

Remark 6.2. The two varieties above are our moduli spaces: Yı D Y.3; 6/ and G ı D

Y.3; 7/. See [36, Lemma 3.1] for details on the tropical varieties corresponding to
A.E7/, A.E6/, Yı, G ı.

The virtue of the Yoshida and Göpel varieties is that our Weyl groups act by signed
permutations on the coordinates of Yı in P39 and of G ı in P134. These are simply the
permutations of the subroot systemsA�32 inE6 andA�71 inE7. Explicitly, we permute
labels and apply the Cremona matrices in (6.1) to products of linear forms in d1, d2,
d3, d4, d5, d6, d7.

We now state the linear constraints on the 36, 63 coefficients sij , tijk , v in (6.2):
these coefficient vectors must lie in the column space of the matrix M6, M7, respec-
tively. This hypothesis ensures that (6.2) is well defined as a multivalued function on
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Yı D Y.3; 6/ and G ı D Y.3; 7/. Geometrically, we are considering the total spaces
of the map A.E6/! Yı and A.E7/! G ı. We call these total spaces the Yoshida
parametrization and the Göpel parametrization.

The numerical methods from Section 5 reveal the critical points of the log-likeli-
hood function (6.2) where the coefficients are taken at random from these column
spaces. The numbers of these critical points are the ML degrees of the parametriza-
tions (6.4).

Experiment 6.3. The ML degree of the Yoshida parametrization equals 2880 D 90 �
32, and the ML degree of the Göpel parametrization equals 86400 D 24 � 3600.

The factor 24 is the size of the generic fiber of A.E7/! G ı. In other words, it is
the number of cuspidal cubics through seven given points in P2; see [34, Section 4].
The number 90 in the first product is more mysterious to us. It should be the Euler
characteristic of the parabolic curve [23] after the removal of a collection of special
points.

7. Intermezzo from physics

Our point of departure is the Koba–Nielsen string integral [29], which we write as

�.s/ D "n�3
Z

M
C

0;n

1

p12p23 � � �pn1

Y
1�i<j�n

p
"�sij
ij dp: (7.1)

Here, M0;n is the .n� 3/-dimensional moduli space of n labeled points on the line P1.
This is the quotient of the open Grassmannian Gr.2; n/ı modulo the torus action by
.C�/n. We write p12; p13; : : : ; pn�1;n for the Plücker coordinates on Gr.2; n/ı. The
positive Grassmannian GrC.2; n/ consists of real points whose Plücker coordinates
are positive. Its quotient modulo .RC/n is the positive geometry MC0;n, to be identified
with the orthant Rn�3>0 . See [30, Section 3.5].

The physically meaningful quantities in (7.1) are the exponents sij . These are
known as Mandelstam invariants. Using the spinor-helicity formalism, we write

sij D det.Ki CKj /;

where K1; K2; : : : ; Kn are 2 � 2 matrices of rank 1; i.e., we have points on the light-
cone in R3;1. The Ki are momenta of n massless particles in a scattering process, so
they sum to zero. The moduli space MC0;n is the open string worldsheet [2].

Momentum conservation
Pn
iD1Ki D 0 translates into the relations

Pn
iD1 sij D 0

for all j , where sjj D 0. These ensure that the integrand in (7.1) is well defined
on M0;n. To evaluate the integral (7.1), one uses local coordinates .0; z2; z3; : : : ; zn�2;
1;1/ so that pij D �zi C zj . We have MC0;n ' Rn�3>0 by assuming 0 < z2 < � � � <
zn�2 < 1.
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While �.s/ is a transcendental function, its limit mn for "! 0 is a rational func-
tion. Cachazo, He, and Yuan [20] computed it by summing over critical points of the
scattering potential. For n D 4, this is the derivation from (2.3) to (2.6) in Section 2.
For n D 6, we find

m6 D
1

s12s34s56
C

1

s12s56s123
C

1

s23s56s123
C

1

s23s56s234
C

1

s34s56s234

C
1

s16s23s45
C

1

s12s34s345
C

1

s12s45s123
C

1

s12s45s345
C

1

s16s23s234

C
1

s16s34s234
C

1

s16s34s345
C

1

s16s45s345
C

1

s23s45s123
: (7.2)

This is the biadjoint scalar amplitude [17,20]. Here, we abbreviate sijk D sij C sik C
sjk . The 14 summands in the amplitude (7.2) correspond to the planar trivalent trees
with six labeled leaves, and hence to the vertices of the associahedron in R3. Sum-
ming the expressions (7.2) over all 60 cyclic orderings of the set ¹1; : : : ;6º, one obtains
the cubic scalar amplitude.

We now pass from M0;n to the moduli space X.3; n/ D Gr.3; n/ı=.C�/n of n
points in general position in P2. The Plücker coordinates on Gr.3; n/ are denoted
by pijk . We write sijk for the Mandelstam invariants in CEGM theory [17]. In the
physical setting, they are sijk D det.Ki C Kj C Kk/, where K1; : : : ; Kn are 3 � 3
matrices of rank 1 whose sum has rank 1. As the analog to (7.1), Arkani-Hamed, He,
and Lam [4, (6.11)] introduced the stringy integral

 .s/ D "2n�8
Z
XC.3;n/

!3;n
Y

1�i<j<k�n

p
"�sijk

ijk
: (7.3)

In the integrand, we see the canonical form of X.3; n/, given in [4, (6.8)], as

!3;n D
d3�nC

volSL.3/ �GL.1/n
1

p123p234 � � �pn12
:

Here, .p123p234 � � �pn12/�1 is the 3-Parke–Taylor factor. The limit "! 0 is a rational
function in the unknowns s of degree

8 � 2n D � dim.X.3; n//:

This is called the CEGM amplitude. It was computed from the scattering potential on
X.3; n/ by Cachazo, Early, Guevara, and Mizera in [17]. Note that the integrand (7.3)
is a well-defined rational function on the configuration spaceXC.3;n/ because matrix
kinematics requires

Pn
j;kD1 sijk D 0 for all i .

The role of the tree space in (7.2) is played by the tropicalization of XC.3; n/,
a polyhedral space with very rich combinatorics. To see the connection with (7.2),
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we now fix n D 6, and we multiply the integrand in (7.3) by a factor representing
the conic condition q in (1.1). This replaces the Parke–Taylor factor by the following
rational function in Plücker coordinates, which is found in [16, Section 6]:

1

p123p234p345p456p156p126

�
p123p156p246p345

p126p135p234p456
� 1

��1
D

p135

p123p345p156q
;

(7.4)
The CEGM amplitude in this paper is an integral over Y.3;6/with the integrand (7.4).
Thus, we replace the configuration space X.3; 6/ by the del Pezzo moduli space
Y.3; 6/. The analog to (7.4) for n D 7 involves two conic factors. Here, the num-
ber two is the codimension of the stratum b 'M0;7 inside Y.3; 7/, seen in the end of
Section 4.

The resulting CEGM amplitudes are rational functions, to be computed in Sec-
tion 9. They are highly symmetric, reflecting the Weyl group combinatorics in Sec-
tion 6. As in [20], the computation rests on summing over the critical points of the
scattering potential L, which is shown in (5.4). The relevant numerical algebraic
geometry is explained in Section 5.

The integrand on the right-hand side (7.4) appeared prominently in the develop-
ments that led to the amplituhedron. We found it explicitly in the 2010 article [33],
which was inspired “by Witten’s proposal that theN k�2MHV superamplitude should
be the integral of an open string current algebra correlator over the space of degree
k � 1 curves in supertwistor space P3j4”. By Cauchy’s residue theorem, the sum of
the four residues in p135=.p123p345p156q/ is equal to zero. Nandan, Volovich, and
Wen [33] rewrite this identity of residues as follows:

¹123º C ¹345º C ¹156º D �¹qº: (7.5)

The right-hand side points to positive del Pezzo geometry. The left-hand side is the
BCFW triangulation of the amplituhedron A6;1;4, which is the image of a linear map

GrC.1; 6/! Gr.1; 5/:

To be precise, A6;1;4 is a cyclic 4-polytope with 6 vertices, by the identification of
cyclic polytopes with totally positive matrices. Our polytope has precisely two tri-
angulations, each into three 4-simplices. The left-hand side of (7.5) is one of these
triangulations.

In Section 2, we explained the positive geometry structure on the moduli space
Y.3; n/ for n D 5, by identifying this very affine surface with M0;5. The resulting
amplitude, shown in (2.6), is a smaller version of that in (7.2). A key role was played
by the u-equations in (2.4). Such u-equations define very affine varieties known as
binary geometries, seen recently in [5, 27] at the interface of particle physics and
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geometric combinatorics. Given any simple d -polytopeP withm facets, we introduce
one variable ui for each facet. The u-equations are

ui C
Y
j

u
ˇij

j D 1 for i D 1; 2; : : : ; m; (7.6)

where j runs over all facets of P that are disjoint from facet i and the ˇij are posi-
tive integers. If there exist ˇij such that the variety V defined by (7.6) has dimension
d and admits a stratification that induces a combinatorial isomorphism to P , then V
is a binary geometry. If this happens with ˇij D 1 for all i , j , then the u-equations
are perfect. The existence of binary geometries is rare, as explained in [5], where this
was connected to cluster algebras. He, Li, Raman, and Zhang [27] study the scenarios
when P is a generalized permutohedron.

For n D 5; 6, the regions of a del Pezzo surface are perfect binary geometries
because they are triangles, quadrilaterals, and pentagons; see Theorem 3.1. By [5,
Section VII], this would no longer hold if m-gons with m � 6 appeared. In Sec-
tions 8 and 9, we introduce u-variables for the moduli spaces Y.3; 6/ and Y.3; 7/, and
we argue that these define perfect binary geometries. It is important to note that our
approach does not use cluster algebra structures on Grassmannians. For instance, the
cluster algebra structure on Gr.3; 6/ is built on the root systemD4, while Y.3; 6/ rests
on the root system E6. We are hopeful that the new perfect binary geometries from
del Pezzo surfaces will lead to new discoveries in physics.

8. Combinatorics of Pezzotopes

We now turn to the real geometry of the very affine varieties Y.3; 6/ and Y.3; 7/. Our
aim is to characterize the moduli spaces of del Pezzo surfaces over the real numbers.
This involves combinatorics and representation theory, which is the main theme in
this section, as well as geometry and commutative algebra, which will occupy us in
Section 9. Here is a key result.

Theorem 8.1. The real moduli space Y.3; 6/ has 432 connected components, all
W.E6/ equivalent. The closure of each component is homeomorphic as a cell-complex
to a simple 4-polytope with f-vector .45; 90; 60; 15/. The real moduli space Y.3; 7/
has 60480 connected components, allW.E7/ equivalent, the closure of each is home-
omorphic as a cell-complex to a simple 6-dimensional homology ball with f-vector
.579; 1737; 2000; 1105; 297; 34/.

By an abuse of terminology, we use the term pezzotope for the connected compo-
nents and the polytope (in the case of Y.3; 6/) in this theorem. In the E7 case, we do
not yet know a realization of the component as a convex polytope, but we expect it to
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be. Further justification is provided in Theorem 9.4, where a computation in commu-
tative algebra is used to show that the boundary of this region in Y.3; 7/ is a homology
sphere of dimension 5.

We now embark on our combinatorial journey to the E6 pezzotope and the E7
pezzotope. The proof of Theorem 8.1 will be concluded in Section 9. A key point is
that the Weyl groups act transitively on the regions. This result is due to Sekiguchi and
Yoshida [37–39]. Our exposition follows that given by Hacking, Keel, and Tevelev
in [25, Section 8]. Our contributions include the f-vectors and the convex realization
of the E6 pezzotope. Also, the number 60480 of regions appears to be new: we did
not find it in the sources listed above.

We describe the simplicial complexes that are dual to the boundaries of the pez-
zotopes. Let G .En/ denote the respective edge graph, with 15 vertices for n D 6 and
with 34 vertices for nD 7. Each sphere is a flag simplicial complex; i.e., its simplices
are the cliques in the graph. To present the combinatorics of the pezzotopes, it suffices
to give the graphs G .En/.

We begin with n D 6. The 15 vertices of G .E6/ are denoted by u1; u2; : : : ; u15.
They are root subsystems that are described by the colorful Petersen graph in Fig-
ure 4a. Each vertex label ijk refers to the root di C dj C dk . The roots di � dj are
denoted by pairs ij . The first ten vertices are root subsystems A1. They correspond to
the vertex labels:

u1 W 125; u2 W 126; u3 W 134; u4 W 136; u5 W 145;

u6 W 234; u7 W 235; u8 W 246; u9 W 356; u10 W 456:
(8.1)

These variables correspond to the ten triangles formed by the arrangement of six lines
shown in Figure 3a. This correspondence was given by Sekiguchi in [38, Figure III].

The other five vertices of G .E6/ are root subsystems A�32 , one for each color class
of edges in Figure 4a. The three edges in a color class are the factors A2, with three
roots ij , ikl , jkl :

u11 W ¹12; 134; 234; 56; 125; 126; 34; 356; 456º;

u12 W ¹13; 125; 235; 46; 134; 136; 25; 246; 456º;

u13 W ¹14; 126; 246; 35; 134; 145; 26; 235; 356º;

u14 W ¹15; 136; 356; 24; 125; 145; 36; 234; 246º;

u15 W ¹16; 145; 456; 23; 126; 136; 45; 234; 235º:

(8.2)

The 15 edges of the Petersen graph are partitioned into five triples. Each triple is
pairwise disjoint in the graph, and its underlined labels are also disjoint. See [39,
Figure 2].

The graph G .E6/ has 60 edges, which come in two groups, namely, 30 edges
of type ¹A1; A1º and 30 edges of type ¹A1; A�32 º. Those of type ¹A1; A1º are the
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1
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4
5

6

u1

u2

u3

u4

u5u6

u7

u8

u9

u10

(a) The variables u1; u2; : : : ; u10 forE6 are the triangles in this line arrangement.

1

2
3

4 5

6

7

u1

u2

u3

u4
u5

u6

u7

u8

u9

u10

(b) These seven lines form 10 triangles corresponding to the 10 vertices of the tetradiagram in Figure 4b.

Figure 3. The triangles in these line arrangements are the vertex labels in Figure 4.

non-edges in the Petersen graph. For instance, ¹u1; u3º is an edge of G .E6/ because
u1 W 125 and u3 W 134 are not adjacent in the Petersen graph. The edges of type
¹A1; A

�3
2 º arise from the 30 D 5 � 3 � 2 inclusions of a root ijk in a system A�32 .

For instance, ¹u1; u14º is such an edge because u1 W 125 is among the nine roots in
u14. We find that G .E6/ has 90 cliques of size three and 45 cliques of size four, and
no larger cliques, which yields the first f-vector in Theorem 8.1.

We now offer two presentations of our pezzotope in the physics setting discussed
in Section 7. The first is a variety as in (7.6). The second is an amplitude as in (7.2).
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246
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145
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356
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(a)

237

124 457

157

126

134

456367

235

135

234

137

356

146

245

236

467

567

347

136

267 156

246

127

125

257

345

147

(b)

Figure 4. Two graphs that reveal the combinatorics of the pezzotopes for nD 6 (left) and nD 7
(right). These diagrams are color-enhanced reproductions of those in [25, Figure 3].

Theorem 8.2. The following u-equations define a perfect binary geometry (cf. [5]):

u1 C u2u5u7u13u15

D u2 C u1u4u8u12u14 D u3 C u4u5u6u14u15

D u4 C u2u3u9u11u13 D u5 C u1u3u10u11u12

D u6 C u3u7u8u12u13 D u7 C u1u6u9u11u14

D u8 C u2u6u10u11u15 D u9 C u4u7u10u12u15

D u10 C u5u8u9u13u14 D u11 C u4u5u7u8u12u13u14u15

D u12 C u2u5u6u9u11u13u14u15 D u13 C u1u4u6u10u11u12u14u15

D u14 C u2u3u7u10u11u12u13u15 D u15 C u1u3u8u9u11u12u13u14 D 1: (8.3)

The solution set in R15�0 is combinatorially isomorphic to the E6 pezzotope. The
facets given by setting u1; u2; : : : ; u10 to 0 are associahedra, and the facets for
u11; u12; : : : ; u15 are cubes. The E6 amplitude AE6

is the following sum over 45
terms, one for each vertex of the pezzotope:

1

s1s3s8s9
C

1

s1s3s8s12
C

1

s1s3s9s11
C

1

s1s3s10s11
C

1

s1s3s10s12
C

1

s1s4s6s10

C
1

s1s4s6s14
C

1

s1s4s8s12
C

1

s1s4s8s14
C

1

s1s4s10s12
C

1

s1s6s9s11
C

1

s1s6s9s14
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C
1

s1s6s10s11
C

1

s1s8s9s14
C

1

s2s3s7s10
C

1

s2s3s7s13
C

1

s2s3s9s11
C

1

s2s3s9s13

C
1

s2s3s10s11
C

1

s2s5s6s9
C

1

s2s5s6s15
C

1

s2s5s7s13
C

1

s2s5s7s15
C

1

s2s5s9s13

C
1

s2s6s9s11
C

1

s2s6s10s11
C

1

s2s6s10s15
C

1

s2s7s10s15
C

1

s3s7s8s12

C
1

s3s7s8s13
C

1

s3s7s10s12
C

1

s3s8s9s13
C

1

s4s5s6s14
C

1

s4s5s6s15
C

1

s4s5s7s8

C
1

s4s5s7s15
C

1

s4s5s8s14
C

1

s4s6s10s15
C

1

s4s7s8s12
C

1

s4s7s10s12

C
1

s4s7s10s15
C

1

s5s6s9s14
C

1

s5s7s8s13
C

1

s5s8s9s13
C

1

s5s8s9s14
: (8.4)

The same data (u-equations and CEGM amplitude) for the E7 pezzotope are dis-
played in Theorem 9.4. However, we do not yet know that they define a perfect binary
geometry.

Proof. Each equation in (8.3) has a variable ui and a monomial that is the product
over all uj not adjacent to ui in the graph G .E6/. One checks computationally that
the ideal generated by (8.3) is prime, and its variety in C15 has dimension 4 and
degree 192. The variety in R15�0 admits a stratification that induces a combinatorial
isomorphism to the pezzotope E6. For example, the stratum obtained by restricting
to u1 D 0 is a curvy associahedron. Restricting further to u3 D 0 reveals a curvy
pentagonal face (cf. Section 2) of that associahedron.

We find the CEGM amplitude by summing (7.4) over all 32 critical points of (5.4):

32X
c2Crit.L/

1

det.ˆ/

�
p135

p123p345p561q

�2 ˇ̌̌̌
c

: (8.5)

Here, ˆ is the toric Hessian of the scattering potential L, and the coefficients sijk; t
in (5.4) are replaced by s1; s2; : : : ; s15 using the rule in Remark 9.3. Then, (8.5) is a
rational function in s1; s2; : : : ; s15. We show by numerical evaluations that this rational
function equals (8.4).

The derivation for nD 7 is analogous, using the data below. See Theorem 9.4.

We now turn to n D 7. The graph G .E7/ has 34 vertices: ten of type A1, twelve
of type A2, nine of type A�23 , and three of type A7. The first ten are the labels in
Figure 4b:

u1 W 124; u2 W 126; u3 W 134; u4 W 135; u5 W 157;

u6 W 235; u7 W 237; u8 W 367; u9 W 456; u10 W 457:
(8.6)
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The 12 vertices A2 correspond to the pairs from (8.6) that are connected by an edge:

u11 W ¹12; 135; 235º; u12 W ¹14; 157; 457º; u13 W ¹23; 124; 134º;
u14 W ¹26; 237; 367º; u15 W ¹37; 135; 157º; u16 W ¹45; 134; 135º;
u17 W ¹46; 124; 126º; u18 W ¹57; 235; 237º; u19 W ¹67; 456; 457º;
u20 W ¹1; 237; 456º; u21 W ¹3; 126; 457º; u22 W ¹5; 124; 367º:

(8.7)

In the last row, i is the root �di C
P7
jD1 dj . Each subsystem A�23 has 12 roots.

These nine vertices of G .E7/ come in two types. The first six come from pairs of
trivalent nodes:

u23 W ¹124; 367; 5; 347; 46; 126; 135; 235; 12; 257; 37; 157º;

u24 W ¹124; 134; 23; 136; 46; 126; 237; 235; 57; 467; 1; 456º;

u25 W ¹124; 134; 23; 267; 5; 367; 457; 157; 14; 156; 67; 456º;

u26 W ¹135; 157; 37; 147; 45; 134; 237; 456; 1; 245; 26; 367º;

u27 W ¹135; 235; 12; 234; 45; 134; 457; 456; 67; 127; 3; 126º;

u28 W ¹237; 235; 57; 356; 26; 367; 457; 157; 14; 246; 3; 126º:

(8.8)

We note that label 167 in [25, Figure 5] is incorrect. We corrected it to 156 in u25
above. The other three vertices of type A�23 come from pairs of antipodal bivalent
nodes:

u29 W ¹126; 124; 46; 567; 3; 457; 235; 135; 12; 137; 57; 237º;

u30 W ¹134; 124; 23; 125; 45; 135; 456; 237; 1; 236; 67; 457º;

u31 W ¹157; 135; 37; 345; 14; 457; 367; 124; 5; 146; 26; 237º:

(8.9)

Finally, the graph G .E7/ has three vertices corresponding to root subsystems of type
A7:

u32 W ¹126; 124; 134; 135; 235; 237; 456; 457; 567; 46; 136; 23; 125; 45; 234;

12; 137; 57; 467; 1; 236; 67; 127; 3; 13; 56; 2; 47º;

u33 W ¹126; 457; 157; 135; 235; 237; 367; 124; 567; 3; 246; 14; 345; 37; 257;

12; 137; 57; 356; 26; 146; 5; 347; 46; 35; 24; 7; 16º;

u34 W ¹134; 135; 157; 457; 237; 456; 367; 124; 125; 45; 147; 37; 345; 14; 156;

67; 236; 1; 245; 26; 146; 5; 267; 23; 15; 36; 4; 27º:

(8.10)

The first eight roots in each A7 form a cycle of length 8 in Figure 4b.
The graph G .E7/ has 297 edges, to be divided into several groups. There are 33

edges of type ¹A1;A1º, corresponding to non-edges in Figure 4b. The 24 edges of type
¹A2; A2º arise from the inclusion of the pair of root systems in a common A�23 , but
not in a common A3. The edges ¹A1; A2º come in two groups: 24 from the inclusion
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of a root system ijk in A2 and 60 from the pair not being contained in a common
A�23 . There are 6 pairs of type ¹A1; A�23 º not contained in a common A7 and such
that any A2 containing A1 is disjoint from A�23 . Finally, we have five more groups
of edges ¹A1; A�23 º, ¹A1; A7º, ¹A2; A

�2
3 º, ¹A2; A7º, and ¹A�23 ; A7º, respectively, of

size 54, 24, 36, 24, and 12, from the inclusion of the corresponding pairs. The clique
complex of G .E7/ yields the second f-vector presented in Theorem 8.1.

9. Geometry of Pezzotopes

In Section 8, we offered a detailed combinatorial description of the two pezzotopes.
We now return to the geometry of the moduli spaces they represent, starting with the
algebraic expressions in Theorem 8.2. As always, our guiding principle is the trinity
of real, complex, and tropical shapes in algebraic geometry. This section also harbors
the proof of Theorem 8.1.

Theorem 8.2 gave an embedding of Y.3; 6/ as a very affine variety in .C�/15. The
next result gives a parametric representation of our moduli space in that realization.

Proposition 9.1. The variety of the u-equations in (8.3) has the parametrization

u1D
�q

p126p135p234p456
; u2D

p134p156p235p246

p135p146p234p256
; u3D

p134p356

p135p346
;

u4D
p136p145

p135p146
; u5D

p125p136p246p345

p126p135p245p346
; u6D

p136p235

p135p236
;

u7D
p123p145p246p356

p124p135p236p456
; u8D

p125p356

p135p256
; u9D

p125p134

p124p135
;

u10D
p145p235

p135p245
; u11D

p135p234

p134p235
; u12D

p135p456

p145p356
;

u13D
p124p135p256p346

p125p134p246p356
; u14D

p126p135

p125p136
; u15D

p135p146p236p245

p136p145p235p246
:

Replacing the Plücker coordinates pijk with the 3 � 3 minors of (1.3), we obtain

u1 D .d6 � d3/.d2 � d5/.d1 � d4/.d1 C d2 C d3 C d4 C d5 C d6/=..d4 C d5

C d6/.d2 C d3 C d4/.d1 C d3 C d5/.d1 C d2 C d6//;

u2 D .d1 C d3 C d4/.d1 C d5 C d6/.d2 C d3 C d5/.d2 C d4 C d6/=..d2 C d5

C d6/.d2 C d3 C d4/.d1 C d4 C d6/.d1 C d3 C d5//;

u3 D .d1 � d4/.d1 C d3 C d4/.d5 � d6/.d3 C d5 C d6/=..d4 � d6/.d3 C d4

C d6/.d1 � d5/.d1 C d3 C d5//;

u4 D .d3 � d6/.d1 C d3 C d6/.d4 � d5/.d1 C d4 C d5/=..d4 � d6/.d1 C d4

C d6/.d3 � d5/.d1 C d3 C d5//;
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u5 D .d1 C d2 C d5/.d1 C d3 C d6/.d2 C d4 C d6/.d3 C d4 C d5/=..d3 C d4

C d6/.d2 C d4 C d5/.d1 C d3 C d5/.d1 C d2 C d6//;

u6 D .d1 � d6/.d1 C d3 C d6/.d2 � d5/.d2 C d3 C d5/=..d2 � d6/.d2 C d3

C d6/.d1 � d5/.d1 C d3 C d5//;

u7 D .d1 C d2 C d3/.d1 C d4 C d5/.d2 C d4 C d6/.d3 C d5 C d6/=..d4 C d5

C d6/.d2 C d3 C d6/.d1 C d3 C d5/.d1 C d2 C d4//;

u8 D .d1 � d2/.d1 C d2 C d5/.d3 � d6/.d3 C d5 C d6/=..d2 � d6/.d2 C d5

C d6/.d1 � d3/.d1 C d3 C d5//;

u9 D .d2 � d5/.d1 C d2 C d5/.d3 � d4/.d1 C d3 C d4/=..d3 � d5/.d1 C d3

C d5/.d2 � d4/.d1 C d2 C d4//;

u10 D .d1 � d4/.d1 C d4 C d5/.d2 � d3/.d2 C d3 C d5/=..d2 � d4/.d2 C d4

C d5/.d1 � d3/.d1 C d3 C d5//;

u11 D .d1 � d5/.d1 C d3 C d5/.d2 � d4/.d2 C d3 C d4/=..d2 � d5/.d2 C d3

C d5/.d1 � d4/.d1 C d3 C d4//;

u12 D .d1 � d3/.d1 C d3 C d5/.d4 � d6/.d4 C d5 C d6/=..d3 � d6/.d3 C d5

C d6/.d1 � d4/.d1 C d4 C d5//;

u13 D .d1 C d2 C d4/.d1 C d3 C d5/.d2 C d5 C d6/.d3 C d4 C d6/=..d3 C d5

C d6/.d2 C d4 C d6/.d1 C d3 C d4/.d1 C d2 C d5//;

u14 D .d2 � d6/.d1 C d2 C d6/.d3 � d5/.d1 C d3 C d5/=..d3 � d6/.d1 C d3

C d6/.d2 � d5/.d1 C d2 C d5//;

u15 D .d1 C d3 C d5/.d1 C d4 C d6/.d2 C d3 C d6/.d2 C d4 C d5/=..d2 C d4

C d6/.d2 C d3 C d5/.d1 C d4 C d5/.d1 C d3 C d6//:

Proof. The proof is by computation. One checks that the above expressions for u1; : : : ;
u15 satisfy the 15 equations in (8.3). Further, their Jacobian matrix has rank 4, so they
parametrize an irreducible 4-dimensional variety in .C�/15. This variety is Y.3; 6/ by
Theorem 8.2.

Question 9.2. We wrote each ui as a ratio of products of four roots of E6. Such
expressions were studied by Hacking, Keel, and Tevelev [25, Theorem 8.7], who
called them D4-units. They derive D4-units also for E7. How do we use their results
for parametrizing the inclusion Y.3; 7/� .C�/34 given by the u-equations in (9.4) for
the E7 pezzotope?

We now turn to the CEGM amplitudes arising from del Pezzo moduli. For E6,
the expression as a rational function in s1; : : : ; s15 was displayed in (8.4). For E7,
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the formula is analogous but much larger, with 579 summands of degree �6 in 34
unknowns s1; : : : ; s34. Our readers may rapidly generate it with the Macaulay2 code
that is shown in Theorem 9.4.

The unknowns in (8.4) are the parameters in the log-likelihood function L on
Y.3; 6/. However, now, we use embedding of Y.3; 6/ into .C�/15 via the u-equations
(8.3):

L D s1 � log.u1/C s2 � log.u2/C � � � C s15 � log.u15/: (9.1)

We are interested in the critical points of (9.1) on the variety defined by the 15 equa-
tions in (8.3). From a maximum likelihood perspective, we now face a constrained
optimization problem. We already know (from Theorem 4.1) that this problem has 32
complex critical points, but it is very hard to find these using Lagrange multipliers in
the unconstrained formulation. It is easier to compute the 32 critical points of (9.1)
with the unconstrained formulation that is obtained from the parametrization in Propo-
sition 9.1. That computation is equivalent to the one in local coordinates in (5.4) and
also to the one via lifting to A.E6/ given in (6.2). We next present the transformation
which makes these correspondences completely explicit.

Remark 9.3. If we substitute the Plücker parametrization from Proposition 9.1 into
(9.1), then we obtain the expression for L in (5.4). Each Mandelstam invariant sijk
is given as an integer linear combination of s1; : : : ; s15. Explicitly, we obtain the
formulas

s123 D s7; s124 D �s7 C s9 C s13;

s125 D s5 C s8 C s9 � s13 � s14; : : : ; s456 D �s1 � s7 C s12; t D s1:

These 21 linear forms in 15 unknowns s1; : : : ; s6 satisfy six independent linear con-
straints. These must be satisfied when using (5.4) in Plücker coordinates. For instance,

s125 C s135 C s145 C s156 C s235 C s245 C s256 C s345 C s356 C s456 C 2t D 0:

Similarly, if we substitute theD4-units from Proposition 9.1 into (9.1), then we obtain
the expression in (6.2), along with the linear constraints its coefficients sij , tijk , v must
satisfy. Recall that these had been expressed by the matrix M6 in Experiment 6.3.
Everything in this remark extends directly to the case n D 7, but all expressions are
larger.

We now complete the thread started at the beginning of the previous section.

Proof and discussion of Theorem 8.1. The relevant structures of the real moduli spaces
were discovered by Sekiguchi and Yoshida [37–39]. They discussed the facets of the
pezzotopes, but they did not give a list of faces. Also, Sekiguchi states the n D 7

result without proof. Their work was extended by Hacking, Keel, and Tevelev [25],
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whose description we relied on in Section 8. We computed the number of connected
components (432, resp., 60480) as the order ofW.En/, modulo center, divided by the
order of the automorphism group (S5, resp., S4) of the labeled diagrams in Figure 4.
The fact that the Weyl groupW.En/ acts transitively on the connected components of
Y.3; n/ can be found in [39, Theorem 2] for n D 6 and in [37, Theorem 1] for n D 7.

We also derived the pezzotopes from data in [34, 35]. The Yoshida variety Y

lives in P39, and the Göpel variety G lives in P134, namely, in the dense tori, by
Remark 6.2. The Weyl groups act by permuting coordinates. Their tropicalizations
were computed in [36, Lemma 3.1]. Namely, trop.Y/ is a 4-dimensional fan with 76
rays and 1275 maximal cones, while trop.G / is a 6-dimensional fan with 1065 rays
and 547155 maximal cones. The fibers of the surjection trop.G /! trop.Y/ are the
tropical cubic surfaces that appear in [36, Section 5].

We explored the positive tropical varieties of Y and G . Generators for their ideals
are listed in [34,35]. These furnish necessary conditions for membership in tropC.Y/
and tropC.G / as follows: if a point w is in the positive tropical variety, then

8 generators f D fC � f� with f�; fC 2 R�0Œx1; : : : ; xm� W

trop.f�/.w/ D trop.fC/.w/: (9.2)

We also know the tropical linear spaces trop.A.E6// and trop.A.E7//, which map
to trop.Y/ and trop.G / via the horizontal maps in [36, (3.1)]. These are the linear
maps given by the matrices M6 2 ¹0; 1º

36�40 and M7 2 ¹0; 1º
63�135 which we con-

structed in Section 6. For nD 6;7, we computed the images of the rays of trop.A.En//
under the map Mn. Applying the criterion (9.2) to these images, we found 15 and
34 rays expected to live in tropC.Y/ and tropC.G /, respectively. To identify higher-
dimensional cones, we applied the criterion to positive linear combinations of these
rays. The f-vector of the output agrees with that stated in Theorem 8.1. These and fur-
ther computational checks provide overwhelming evidence that the positive tropical
varieties tropC.Y/ and tropC.G / are simplicial fans which are dual to our pezzotopes.

Let us be even more explicit for n D 6. Our input is the data after [35, Theo-
rem 6.1]. The fan trop.A.E6// has 36 rays of type A1 and 120 rays of type A2. The
former map to 36 distinct rays in N40. The latter map to 40 distinct rays in N40. Each
fiber in this 3-to-1 map corresponds to a color class in a Petersen graph like the one
in Figure 4. For the membership criterion (9.2), we used the 270 four-term linear rela-
tions that cut out the 9-dimensional linear space in [35, Theorem 6.1]. The binomials
are automatically satisfied because our 76 rays lie in the row space of M6. Of the 36
rays of type A1, ten passed the criterion. Of the 40 rays of type A2, five passed. Up to
the W.E6/-action, these correspond to the root subsystems in (8.1) and (8.2). Among
the

�
15
2

�
D 105 cones spanned by two rays, precisely 60 passed the necessary criterion

to be contained in tropC.Y/, and similarly for triples and quadruples.
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Two other methods for independent verification of Theorem 8.1 will be presented
in Section 10. Their input is the familiar data for the tropical Grassmannian [31,
Section 4.3]. They rely on modifications (Experiment 10.2) and chirotopes (Theo-
rem 10.4).

It remains to show that our simplicial fans are normal fans of convex polytopes.
This turned out to be more difficult than we had anticipated, and the issue is unre-
solved for n D 7. For n D 6, we obtained help from Moritz Firsching who found the
following realization of the dual pezzotope:26664

4 �4 2 2 �4 �4 0 2 �4 2 �1 4 �2 0 �2

0 �4 �4 2 4 2 �4 2 2 �4 �1 �1 0 4 0

0 0 4 �4 0 �4 0 4 4 �4 0 0 4 0 �4

0 0 0 4 3 �4 4 4 �4 0 �3 3 1 0 1

37775 :
(9.3)

One checks by direct computation that the convex hull of the 15 columns is a sim-
plicial polytope with f-vector .15; 60; 90; 45/, and the 45 facets are precisely the 45
summands in (8.4); this polytope is dual to the E6 pezzotope. We refer to Theo-
rem 10.6 and Corollary 10.7 for the geometric realization of the E6 pezzotope, as
computed directly from a parametrization of one of the connected components of
Y.3; 6/.

For n D 7, we need a 6 � 34 matrix with the analogous property, but we do not
have it. We did verify that our simplicial complex on 34 vertices and 579 facets is a
homology 5-sphere, so the term curvy 6-polytope is appropriate for its dual. Ideally,
the polytopality of the pezzotopes should follow from general facts about positive
tropical varieties, or from an argument about perfect binary geometries. But this is
still missing.

We now take a closer look at the E7 pezzotope. The following result mirrors The-
orem 8.2. However, the algebraic content is weaker. We believe that the u-equations
below define a perfect binary geometry, but we currently have no proof. In particular,
we conjecture that the 34 equations define a 6-dimensional subvariety of .C�/34. This
is an excellent challenge for the next generation in algebraic geometry software.

Theorem 9.4. The E7 pezzotope is characterized combinatorially by the 34 u-equa-
tions

u1 C u2u21u22u23u24u28u3u30u32

D u2 C u1u19u20u25u26u27u29u31u33u8

D u3 C u1u11u13u14u16u18u25u33u4u6 D u4 C u12u17u19u21u29u3u5u7u8

D u5 C u13u20u26u28u30u31u32u4u6u9

D u6 C u10u12u14u17u19u21u22u24u25u26u27u28u29u3u34u5u8
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D u7 C u10u14u22u24u25u26u27u28u34u4

D u8 C u11u13u14u16u18u2u21u22u23u24u25u28u30u32u33u4u6

D u9 C u11u14u16u19u21u22u23u24u25u27u29u33u5

D u10 C u15u16u23u29u30u31u33u6u7

D u11 C u15u17u22u26u27u28u29u3u30u31u34u8u9

D u12 C u14u15u16u22u23u24u25u26u27u28u29u30u31u33u34u4u6

D u13 C u14u15u16u17u19u21u22u23u24u25u26u27u28u29u3u30u31u33u34u5u8

D u14 C u12u13u17u19u20u21u26u28u29u3u30u31u32u6u7u8u9

D u15 C u10u11u12u13u19u20u21u24u25u32

D u16 C u10u12u13u17u19u20u21u22u24u25u26u27u28u29u3u30u31u32u34u8u9

D u17 C u11u13u14u16u19u20u21u22u23u24u25u26u27u28u29u30u31u32u33u4u6

D u18 C u19u20u21u22u23u24u25u26u27u28u29u3u30u31u32u33u8

D u19 C u13u14u15u16u17u18u2u22u26u28u30u31u32u34u4u6u9

D u20 C u14u15u16u17u18u2u22u34u5

D u21 C u1u13u14u15u16u17u18u22u25u26u27u28u29u30u31u33u34u4u6u8u9

D u22 C u1u11u12u13u16u17u18u19u20u21u25u26u29u30u31u32u33u6u7u8u9

D u23 C u1u10u12u13u17u18u26u34u8u9

D u24 C u1u12u13u15u16u17u18u26u29u30u31u33u34u6u7u8u9

D u25 C u12u13u15u16u17u18u2u21u22u26u28u29u3u30u31u32u34u6u7u8u9

D u26 C u11u12u13u14u16u17u18u19u2u21u22u23u24u25u29u30u32u33u5u6u7

D u27 C u11u12u13u16u17u18u2u21u30u32u6u7u9

D u28 C u1u11u12u13u14u16u17u18u19u21u25u29u33u5u6u7u8

D u29 C u10u11u12u13u14u16u17u18u2u21u22u24u25u26u28u30u32u34u4u6u9

D u30 C u1u10u11u12u13u14u16u17u18u19u21u22u24u25u26u27u29u33u34u5u8

D u31 C u10u11u12u13u14u16u17u18u19u2u21u22u24u25u32u34u5

D u32 C u1u14u15u16u17u18u19u22u25u26u27u29u31u33u34u5u8

D u33 C u10u12u13u17u18u2u21u22u24u26u28u3u30u32u34u8u9

D u34 C u11u12u13u16u19u20u21u23u24u25u29u30u31u32u33u6u7 D 1: (9.4)

The amplitude can be computed from the Stanley–Reisner ideal and its Alexander
dual:

R = QQ[s1,s10,s11,s12,s13,s14,s15,s16,s17,s18,s19,s2,s20,s21,s22,s23,
s24,s25,s26,s27,s28,s29,s3,s30,s31,s32,s33,s34,s4,s5,s6,s7,s8,s9];
M = monomialIdeal(s1*s2,s1*s21,s1*s22,s1*s23,s1*s24,s1*s28,s1*s3,s1*s30,s1*s32,s10*s15,
s10*s16,s10*s23,s10*s29,s10*s30,s10*s31,s10*s33,s11*s15,s11*s17,s11*s22,s11*s26,
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s11*s27,s11*s28,s11*s29,s11*s30,s11*s31,s11*s34,s12*s14,s12*s15,s12*s16,s12*s22,
s12*s23,s12*s24,s12*s25,s12*s26,s12*s27,s12*s28,s12*s29,s12*s30,s12*s31,s12*s33,
s12*s34,s13*s14,s13*s15,s13*s16,s13*s17,s13*s19,s13*s21,s13*s22,s13*s23,s13*s24,
s13*s25,s13*s26,s13*s27,s13*s28,s13*s29,s13*s30,s13*s31,s13*s33,s13*s34,s14*s17,
s14*s19,s14*s20,s14*s21,s14*s26,s14*s28,s14*s29,s14*s30,s14*s31,s14*s32,s15*s19,
s15*s20,s15*s21,s15*s24,s15*s25,s15*s32,s16*s17,s16*s19,s16*s20,s16*s21,s16*s22,
s16*s24,s16*s25,s16*s26,s16*s27,s16*s28,s16*s29,s16*s30,s16*s31,s16*s32,s16*s34,
s17*s19,s17*s20,s17*s21,s17*s22,s17*s23,s17*s24,s17*s25,s17*s26,s17*s27,s17*s28,
s17*s29,s17*s30,s17*s31,s17*s32,s17*s33,s18*s19,s18*s20,s18*s21,s18*s22,s18*s23,
s18*s24,s18*s25,s18*s26,s18*s27,s18*s28,s18*s29,s18*s30,s18*s31,s18*s32,s18*s33,
s19*s22,s19*s26,s19*s28,s19*s30,s19*s31,s19*s32,s19*s34,s2*s19,s2*s20,s2*s25,s2*s26,
s2*s27,s2*s29,s2*s31,s2*s33,s2*s8,s20*s22,s20*s34,s21*s22,s21*s25,s21*s26,s21*s27,
s21*s28,s21*s29,s21*s30,s21*s31,s21*s33,s21*s34,s22*s25,s22*s26,s22*s29,s22*s30,
s22*s31,s22*s32,s22*s33,s23*s26,s23*s34,s24*s26,s24*s29,s24*s30,s24*s31,s24*s33,
s24*s34,s25*s26,s25*s28,s25*s29,s25*s30,s25*s31,s25*s32,s25*s34,s26*s29,s26*s30,
s26*s32,s26*s33,s27*s30,s27*s32,s28*s29,s28*s33,s29*s30,s29*s32,s29*s34,s3*s11,
s3*s13,s3*s14,s3*s16,s3*s18,s3*s25,s3*s33,s3*s4,s3*s6,s30*s33,s30*s34,s31*s32,
s31*s34,s32*s33,s32*s34,s33*s34,s4*s12,s4*s17,s4*s19,s4*s21,s4*s29,s4*s5,s4*s7,
s4*s8,s5*s13,s5*s20,s5*s26,s5*s28,s5*s30,s5*s31,s5*s32,s5*s6,s5*s9,s6*s10,s6*s12,
s6*s14,s6*s17,s6*s19,s6*s21,s6*s22,s6*s24,s6*s25,s6*s26,s6*s27,s6*s28,s6*s29,s6*s34,
s6*s8,s7*s10,s7*s14,s7*s22,s7*s24,s7*s25,s7*s26,s7*s27,s7*s28,s7*s34,s8*s11,s8*s13,
s8*s14,s8*s16,s8*s18,s8*s21,s8*s22,s8*s23,s8*s24,s8*s25,s8*s28,s8*s30,s8*s32,s8*s33,
s9*s11,s9*s14,s9*s16,s9*s19,s9*s21,s9*s22,s9*s23,s9*s24,s9*s25,s9*s27,s9*s29,s9*s33);
dim M, degree M, betti mingens M
AmplitudeNumerator = sum first entries gens dual M
AmplitudeDenominator = product gens R
betti res dual M

The dual Betti sequence 579 1737 2000 1105 297 34 1 verifies the Gorenstein
property, so the simplicial complex dual to the E7 pezzotope is indeed a homology
sphere of dimension 5.

Proof and discussion. We consider the graph G .E7/ whose 34 vertices were derived
in (8.6), (8.7), (8.8), (8.9), and (8.10) from root subsystems in of E7. Theorem 8.1
says that we also know the 297 edges of G .E7/. An explicit list is made using the
techniques discussed in the proof.

In Theorem 9.4, we focus on the complementary set of 264 D
�
34
2

�
� 297 non-

edges of the graph G .E7/. Following (7.6), each u-equation has the form

ui C
Y
j

u
ˇij

j D 1;

where the product is over all indices j such that ¹i; j º is a non-edge. We also know
from Theorem 8.1 that the simplicial complex dual to the E7 pezzotope is the clique
complex of G .E7/. Therefore, the polynomial system (9.4) is a combinatorial encod-
ing of both graph and E7 pezzotope.

Now, we change variable names from ui to si , and we apply methods from com-
binatorial commutative algebra [32] to show that our pezzotope deserves to be called
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a “curvy polytope”. The ideal M is the Stanley–Reisner ideal of the clique complex:
it is generated by 264 quadratic monomials, one for each of the non-edges. The
commands dim(M) and degree(M) verify that the Stanley–Reisner ring has Krull
dimension 6 and degree 579, which is the number of facets.

In the next line, the command dual M computes the ideal that is Alexander dual
to M. See [32, Chapter 5] for a textbook introduction to Alexander duality. The com-
mand betti res dual M computes the minimal free resolution of the Alexander
dual. We find that the resolution is linear, and the Betti numbers are the face num-
bers in Theorem 8.1. In fact, this output is precisely the minimal cellular resolution
discussed in [32, Example 5.57]. By the Eagon–Reiner theorem [32, Theorem 5.56],
we conclude that M is Cohen–Macaulay. The final Betti number 1 proves that M is a
Gorenstein ideal, by [32, Theorem 5.61]. By Hochster’s criterion, we conclude that
our simplicial complex is a homology sphere of dimension 5. In conclusion, the E7
pezzotope passes all homological tests for being a 6-dimensional polytope.

We now turn to the CEGM amplitude for Y.3; 7/. We carried out the n D 7 com-
putation analogous to (5.4), but now the sum is over the 3600 critical points found
in Experiment 5.1. The computation is analogous to (8.5), but it is now much harder.
The numerical output supports our conclusion that the structure agrees with that of
the amplitudes in (7.2) and (8.4); namely, the CEGM amplitude for Y.3; 7/ equals the
sum of the reciprocals of 579 squarefree monomials of degree 6, one for each facet
of the simplicial complex encoded by the ideal M. The Alexander dual ideal dual M
is generated by 579 squarefree monomials of degree 28, namely, the complements of
facets. We denote their sum by AmplitudeNumerator. We divide this numerator by
AmplitudeDenominator D s1s2 � � � s34 to get the CEGM amplitude.

Remark 9.5. From the u-equations in (9.4), we can read off all facets of the E7
pezzotope. These 34 simple 5-polytopes come in five distinct combinatorial types, as
follows.

• Three facets u9, u11, u27 are associahedra, with f-vector .132; 330; 300; 120; 20/.

• Twelve facets u6, u8, u12, u14, u18, u19, u24, u28, u31, u32, u33, u34 is the prod-
uct of a 4-dimensional associahedron and a line segment, with f-vector .84; 210;
196; 84; 16/.

• Nine facets u13, u16, u17, u21, u22, u25, u26, u29, u30 is the product of two
pentagons and one line segment, with f-vector .50; 125; 120; 55; 12/.

• Six facets u2, u3, u5, u7, u15, u23 are polytopes with f-vector .158;395; 358;142;
23/.

• Four facets u1, u4, u10, u20 are polytopes with f-vector .168; 420; 380; 150; 24/.

Thus, the first three types are products of associahedra, but the last two types are not.
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10. Grassmannians, positive geometries, and beyond

In this final section, we return to the physics context of our work, namely, the axiomat-
ic theory of positive geometries due to Arkani-Hamed, Bai, and Lam [3, 30], and
the derivation of amplitudes from Grassmannians that was launched by Cachazo and
collaborators [17, 20]. We saw first glimpses of this in Section 2, which described
these structures for the surface �ı4 D M0;5, and later in Section 7, which offered a
guide to the relevant literature in physics.

In the end of Section 2, we gave a proof that the surface �ın is a positive geometry
for n D 4. We start this section by extending that result to del Pezzo surfaces with
n � 5.

Proposition 10.1. The cubic surface �ı6 is a positive geometry for any of its 130
polygons. The degree four del Pezzo surface �ı5 is a positive geometry for any of its
16 pentagons.

Proof. For every polygon P on �ı6 , we can find six pairwise disjoint lines in �6 that
are disjoint from the closure of P in �6. This can be checked combinatorially from
the data in Example 3.2. Blowing down these six lines gives a birational map from �6

to P2 which is an isomorphism of semi-algebraic sets on the closure of the polygon
P . In other words, we transform our curvy polygon P to a convex polygon P 0 in
the real projective plane P2. Every convex polygon is a positive geometry [30, Sec-
tion 1]. By [3, Section 4], the push-forward of the blow-up map transfers the positive
geometry structure from .P2; P 0/ to .�6; P /.

The same argument works for the pentagons in �ı5 . They are disjoint from five
lines that can be blown down. We see this for the central pentagon in Figure 2.
The argument does not work for the quadrilaterals on �ı5 . This topic deserves further
study.

We now know that del Pezzo surfaces are positive geometries. Our goal is to
establish the analogous result for their moduli spaces. This requires us to identify
the canonical form, as in (2.5). This will be our focus later in the section. First, how-
ever, we turn to CEGM theory [16–19], which rests on the combinatorics of (tropical)
Grassmannians. We will now explain how the pezzotopes are derived from first princi-
ples in this theory, directly from the Grassmannians Gr.3;n/ for nD 6;7. This extends
the derivation of M0;5 from Gr.3; 5/.

Fix n D 6 and consider Gr.3; 6/ in its Plücker embedding in P19. The positive
Grassmannian GrC.3; 6/ consists of all points whose Plücker coordinates are posi-
tive. The tropical Grassmannian Trop.Gr.3; 6//, modulo lineality, is a 4-dimensional
fan with 65 rays and 1005 maximal cones; see [40] and [31, Example 4.4.10 and
Figure 5.4.1].
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Experiment 10.2. The positive tropical Grassmannian TropC.Gr.3; 6// contains the
following 14 vectors, here identified with variables in the E6 amplitude (8.4):

s2 D e156 s3 D f1234 s4 D f1236 s5 D e345
s6 D f2345 s7 D e123 s8 D f3456 s9 D f1256
s10 D f1456 s11 D e234 C e156 s12 D e123 C e456
s13 D g12;34;56 s14 D e126 C e345 s15 D g16;45;23:

In the display above, eijk are unit vectors in R20, and we set

fijkl D eijk C eijl C eikl C ejkl and gi1i2;i3i4;i5i6 D fi3i4i5i6 C ei1i5i6 C ei2i5i6 :

Unfortunately, there is a typo in the indices for the vector g12;34;56 in [31, Exam-
ple 4.4.10]. However, the indices in [40, Section 5] are correct.

We now describe an ab initio construction of the normal fan of our E6 pezzotope
that is motivated by physical considerations. The 15 rays in that fan are the 14 rays
above, plus one additional ray s1 that corresponds to the divisor

q D p123p345p156p246 � p234p456p126p135:

The construction is based on the CEGM formula, which had revealed the E6 ampli-
tude to us in the first place. We work with the positive parametrization

M D

2641 0 0 ad ad C ae C be ad C ae C be C af C bf C cf

0 1 0 �d �d � e �d � e � f

0 0 1 1 1 1

375 :
(10.1)

This maps R6>0 surjectively onto XC.3; 6/. From M , we compute the Newton poly-
tope

P D Newt
�Y
ijk

pijk � q
�
:

This simple 4-polytope has f D .62; 124; 81; 19/. We now form the tropical scatter-
ing potential

F .y/ D
X
ijk

trop.pijk/.y/ � eijk :

Here, trop.pijk/ is the tropicalization of the Plücker coordinate pijk evaluated at M .
For each of the 19 facet normals vj of P , we obtain a positive tropical Plücker vector

�j D F .vj /:

These 19 rays include the 14 rays s2; s3; : : : ; s15 above, while ray s1 arises from the
parameter t in the scattering potential L in (5.4). The 19 rays �j are characterized as
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follows. Sixteen of them are the rays of TropC.Gr.3; 6//. The other three new rays
are s11, s12 and s14. From this data, we define a rational function on the s-space R14,

A D
X

C2N.P/

Y
�j2Rays.C/

1

�j
;

where �j is now identified with a linear form in the si . The sum is over maximal cones
C in the normal fan N.P /, and the product is over all rays in C . Note that N.P / is a
simplicial fan. Next, by fixing various random integers for the Mandelstam invariants
sijk and t , we evaluate the CEGM integral in (8.5) and its cyclic shift. Here, we sum
over the 32 critical points:

A1 D

X
c2Crit.L/

1

detˆ

�
p135

p123p345p561q

�2 ˇ̌̌̌
c

and

A2 D

X
c2Crit.L/

1

detˆ

�
p246

p234p456p612q

�2 ˇ̌̌̌
c

:

One can reconstruct 15 poles in each Ai from the (rational) values of these ampli-
tudes. This is a difficult heuristic process, and it requires many evaluations, but we
succeeded.

It remains to determine the dependence of A1 and A2 on the parameter t . For this,
we evaluate the difference A1 CA2 �A. This involves nine of the original 14 poles
(together with t ). These 9 poles are exactly the poles of the biadjoint scalar amplitude:

A1 CA2 �A D m6:

From this computation, we obtained the formula (8.4), and a representation of the
pezzotope as a simplicial fan in R15, modulo lineality. One finally checks that the
numerical value of the CEGM integral coincides with the value obtained combinato-
rially.

The difficulty in Experiment 10.2 arose from the fact that the positive Grass-
mannian is divided into pieces by the conic divisors. When applying the analogous
methods to derive the E7 pezzotope from Gr.3; 7/, this difficulty is magnified.

For that reason, in what follows we present a new approach, with a different
positive Grassmannian, where that division of the positive part does not happen.
Namely, we will switch signs of some of the Plücker coordinates of Gr.3; n/ for
n D 6; 7. After that sign change, we obtain a semi-algebraic set Gr�.3; n/ which now
replaces GrC.3; n/. The image of Gr�.3; n/ in the configuration space X.3; n/ is a
connected component of Y.3; n/. The tropicalization of Gr�.3; n/ should be our fan
tropC.Y.3; n//, after a modification for n D 7.
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The letter � stands for chirotope, which is one of the encodings of an oriented
matroid [11]. In our context, � is a function

�
Œn�
3

�
!¹�1;C1º that maps triples .i;j;k/

to signs. Given any realizable chirotope �, we substitute pijk 7! �.i; j; k/ � pijk , and
we write Gr�.3; n/ for the positive Grassmannian after this sign change. The corre-
sponding tropicalization is denoted by trop.Gr�.3; n//. This was called the chirotopal
tropical Grassmannian in [18, Section 13.1]. A point w lies in trop.Gr�.3; n// if and
only if it satisfies condition (9.2) for all polynomials f in the Plücker ideal (after
the sign change). This is the real version of the Fundamental Theorem of Tropical
Geometry. We conjecture that, in our specific cases, it suffices to take f among the
quadratic Plücker relations that generate the ideal of Gr.3; n/.

Conjecture 10.3. The Plücker quadrics are a positive tropical basis for Gr�.3; n/.

In the discussion around (9.2), an analogous conjecture was tacitly made for the
linear and binomial equations that generate the ideals of Y and G . We now have the
following theorem.

Theorem 10.4. Suppose that Conjecture 10.3 is true, and the analogous statement
holds for Y and G . If � is the chirotope for the arrangement of six lines in Figure 3a,
then trop.Gr�.3; 6// equals tropC.Y.3; 6//. If � is the chirotope for the seven lines in
Figure 3b, then trop.Gr�.3; 7// becomes tropC.Y.3; 7// after a modification that is
explained below. Hence, our two pezzotopes can be read off from these two chirotopal
tropical Grassmannians.

Proof and discussion. The two line arrangements were presented by Sekiguchi and
Yoshida in [39, Figure 4] and [38, (4)]. For both chirotopes �, we computed the chiro-
topal tropical Grassmannians trop.Gr�.3;n// from the quadratic Plücker relations and
we verified that it matches the data in Section 8. The correctness of this computation
rests on Conjecture 10.3. This is analogous to what was assumed for the ideals of Y

and G in the third paragraph in the proof of Theorem 8.1.
We now explain our computations, and how they imply Theorem 10.4. Let us

start with n D 6. For each of the 65 rays of trop.Gr.3; 6//, we tested whether it
lies in the chirotopal positive Grassmannian. This is the case for precisely 15 rays,
namely, the ten rays eijk , where ijk appears in (8.1) and the five rays g12;56;34,
g13;46;25, g14;35;26, g15;24;36, and g16;23;45 whose indices match (8.2). The subfan
of trop.Gr.3; 6// induced on these 15 rays is combinatorially the normal fan of the
E6 pezzotope. Next, consider n D 7. The coarsest fan structure on trop.Gr.3; 7// has
616 rays, by [31, Theorem 5.4.1]. For each ray we used criterion (9.2) to test whether
it lies in trop.Gr�.3; 7//. This is the case for precisely 31 rays. Among these are the
ten rays eijk , where ijk appears in the list (8.6). In order to match the induced subfan
with the E7 pezzotope, we had to add three additional rays: e126 C e457, e124 C e367
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and e237 C e456. Note that these six labels form a hexagon in Figure 4b. The bijec-
tion between the 34 rays we thus found and the set ¹u1; u2; : : : ; u34º appears on our
MathRepo page.

To verify the matching, we check for each pair of rays whether its sum lies in
trop.Gr�.3; 7//. This holds for 303 of the

�
34
2

�
D 561 pairs. Among these are all 297

edges of the graph G .E7/. The six extraneous pairs are s1*s23, s2*s20, s10*s15,
s13*s17, s21*s25, s26*s29, here written in the Macaulay2 notation from Theo-
rem 9.4. We remove these six non-edges, and we check that all cliques of our graph
G .E7/ do indeed give a cone in trop.Gr�.3; 7//.

The article [19] was essential for launching the current project. In fact, we first
discovered the E6 pezzotope by computing an CEGM amplitude as in [19]. For each
realizable chirotope � W

�
Œn�
3

�
! ¹�1;C1º with nD 6; 7; 8, Cachazo, Early, and Zhang

determine an integrand 	.�/, which is a rational function in Plücker coordinates pijk
of torus weight .�3; : : : ;�3/. These integrands satisfy non-trivial gluing conditions
from flipping triangles in line arrangements. When the number of triangles in a line
arrangement exceeds n, then the integrand has a non-trivial numerator, which must
satisfy gluing conditions with its triangle flip neighbors. For n D 6; 7; 8, these gluing
conditions are sufficient to uniquely determine the systems of integrands. The com-
plexity of this process is high: there are 372, 27240, 4445640 reorientation classes of
chirotopes for nD 6; 7; 8. The integrands relevant for us appear in [19, (3.26), (3.37)].
After relabeling to match the conventions in our Section 8, we have

	.�6/ D
q

p125p126p134p136p145p234p235p246p356p456
;

	.�7/ D
p123p145p357

p124p126p134p135p157p235p237p367p456p457
;

where �6 and �7 are the chirotopes in Figure 3. The denominators are the ten triangles.
These two integrands are associated to X.3; n/, not to Y.3; n/. We compute their

CEGM amplitudes by summing over critical points in X.3; n/, similar to (8.5):

m.3/n .�n/ D
X

c2Crit.L/

1

det.ˆ/
	.�n/

2
jc :

The number of summands is 26 for n D 6 and 1272 for n D 7. We find that m.3/6 .�6/

equals (8.4). However, there is a single linear relation among the 15 poles ofm.3/6 .�6/:

10X
jD1

sj D

15X
jD11

sj :

We note that, while the �-region of X.3; 6/ is unchanged when passing to Y.3; 6/,
the two compactifications are different. The story for m.3/7 .�7/ is similar: the con-
nected component is unchanged when passing to Y.3; 7/, but the compactification
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is different. In this case, the amplitude has 31 poles and 441 nonzero 6-dimensional
residues, one for each maximal cone in Trop.Gr�7

.3; 7//. From these, one derives the
579 summands of the CEGM amplitude.

We now come to the punchline: moduli of del Pezzo surfaces are positive geome-
tries. At present, we have a proof only for n D 6, but we conjecture the same for
n D 7.

While the 432 connected components of Y.3; 6/ are equivalent modulo the action
of the Weyl groupW.E6/, we now single out one of them. This is denoted by YC.3;6/
and called the positive del Pezzo moduli space. Explicitly, it is the component of
Y.3; 6/ whose points are represented by a matrix as in (1.2), where all 3 � 3 minors
and the conic condition are positive.

Theorem 10.5. The moduli space Y.3; 6/ is a positive geometry for any of its 432
regions, each of which is a curvy E6 pezzotope.

Proof. We prove that .YC.3; 6/;�/ is a positive geometry. The canonical form is

� D d log
�

u10

u5u8u9u13u14

�
^ d log

�
u9u11

u4u7u12u15

�
^ d log

�
u4u6u14u15

u3u13

�
^ d log

�
u1u4u8u12u14

u2

�
:

We applied the Weyl group action to this differential form. We found that it has pre-
cisely 432 distinct images. Hence, the symmetry group of the E6 pezzotope acts on
this form. The action is transitive on the set ¹u1; : : : ; u10º of associahedral facets and
on the set ¹u11; : : : ; u15º of cubical facets. It hence suffices to compute the residue
of � at one associahedron and at one cube, and to show that this residue matches the
canonical form for these known positive geometries in dimension 3. The action by
W.E6/ is then used to conclude the proof.

We show that these residue of � are exactly the canonical forms of the 3-dimen-
sional moduli spaces M0;6 and M0;4 �M0;4 �M0;4. The residue at ¹u1 D 0º equals

d log
�

u10

u8u9u14

�
^ d log

�
u9u11

u4u12

�
^ d log

�
u4u6u14

u3

�
: (10.2)

This coincides with the canonical form of the worldsheet associahedron, after relabel-
ing. The u-variables occurring in (10.2) satisfy the u-equations for M0;6, namely,

u10 C u8u9u14 D u11 C u4u8u12u14 D u6 C u3u8u12

D u9 C u4u10u12 D u3u10u11u12 C u14 D u8 C u6u10u11

D u4 C u3u9u11 D u12 C u6u9u11u14 D u3 C u4u6u14 D 1:
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These nine equations arise from (8.3) by setting u1D 0. They give a perfect binary ge-
ometry on MC0;6. On the other hand, the residue of � at the divisor ¹u11 D 0º is the
3-form

d log
�
u10

u9

�
^ d log

�
u6

u3

�
^ d log

�
u1

u2

�
:

This is the canonical form of the curve 3-cube M�30;4. The equations in (8.3) simplify to

u1 C u2 D u3 C u6 D u9 C u10 D 1:

We verified thatW.E6/ acts transitively on the 432 CEGM integrands (7.4), when
evaluated on the d -matrix in (1.3), by relabeling with the Cremona map in (6.1). This
completes the proof that Y.3; 6/ is a positive geometry for any of its 432 regions.

To make sure, we also performed some checks in local coordinates on Y.3; 6/.
These verify that the form � is proportional to (7.4). For instance, consider the chart

M D

264 1 1 0 1 1 0

x1 0 1 x3 1 0

x2 0 0 x4 1 1

375 :
All factors in (7.4) are non-constant. After simplifying the Jacobian matrix, we obtain
the same expression by substituting 3 � 3 minors of M into � via Proposition 9.1:

� D
.x2 � 1/d x1d x2d x3d x4

.x1 � 1/x2.x4 � 1/.x1x2x3 � x1x2x4 � x1x3x4 C x2x3x4 C x1x4 � x2x3/:
(10.3)

We are optimistic that a similar proof will work for Y.3; 7/, using the facets in
Remark 9.5. But we still lack the formula for � when n D 7. This is left for future
work.

We conclude by giving a parametrization for YC.3; 6/, which encodes the com-
pactification and E6 amplitude in a very elegant way. From it, we realize the E6
pezzotope as a polytope. This new realization is combinatorially equivalent to the
dual of the polytope presented in (9.3). We define a birational map R4 Ü X.3; 6/

that restricts to a diffeomorphism R4>0 ! YC.3; 6/. In the study of scattering ampli-
tudes, it can be very helpful to construct such a parametrization, in the context of the
CHY formula and string integrals. Such parameterizations are known and standard
for X.k; n/; see, for example, [6, 15]. But finding one is generally difficult.

Theorem 10.6. There is a birational map R4 Ü X.3; 6/ which restricts to a diffeo-
morphism .R/4>0 ! YC.3; 6/. Points in YC.3; 6/ can be represented by the matrix2664
1 0 0 1 y2C1

y2

y2y3Cy3C1

y2y3

0 1 0 �1 �
.y1C1/.y2C1/

y1y2Cy2C1
�

.y1C1/.y2y3Cy2y4y3Cy4y3Cy3Cy2y4Cy4C1/

y1y2y3Cy2y3Cy1y2y4y3Cy2y4y3Cy4y3Cy3Cy1y2y4Cy2y4Cy4C1

0 0 1 1 1 1

3775 :
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Proof. We start from the canonical form of YC.3; 6/ in the proof of Theorem 10.5:

� D d log
�

u10

u5u8u9u13u14

�
^ d log

�
u9u11

u4u7u12u15

�
^ d log

�
u4u6u14u15

u3u13

�
^ d log

�
u1u4u8u12u14

u2

�
:

Let yi denote the rational functions appearing in the canonical form:

y1 D
u10

u5u8u9u13u14
; y2 D

u9u11

u4u7u12u15
;

y3 D
u4u6u14u15

u3u13
; y4 D

u1u4u8u12u14

u2
:

We write the u-variables in terms of Plücker coordinates in Proposition 9.1 and evalu-
ate them on the parameterization (10.1) ofXC.3; 6/. The u-variables are now in terms
of a, b, c, d , e, f . Modulo the torus action, we can fix aD d D 1. Rewriting b, c, e, f
in terms of the yi and substituting them into (10.1), we see that all 3 � 3 minors pijk
and the conic condition q are positive for yj > 0. This yields the desired birational
map and its restriction.

We collect all factors appearing in the evaluation of the u-variables on MYC.3;6/:

g1 D y1 C 1; g2 D y2 C 1; g3 D y1y2 C y2 C 1; g4 D y3 C 1;

g5 D y2y3 C y3 C 1; g6 D y4 C 1; g7 D y1y2y4 C y2y4 C y4 C 1;

g8 D y2y3 C y2y4y3 C y4y3 C y3 C y2y4 C y4 C 1;

g9 D y2y3 C y2y4y3 C y4y3 C y3 C y1y2y4 C y2y4 C y4 C 1;

g10 D y2y3 C y1y2y4y3 C y2y4y3 C y4y3 C y3 C y1y2y4 C y2y4 C y4 C 1;

g11 D y1y2y3 C y2y3 C y1y2y4y3 C y2y4y3 C y4y3 C y3 C y1y2y4

C y2y4 C y4 C 1:

These irreducible polynomials furnish a Minkowski sum decomposition of the E6
pezzotope, in the sense that the face lattice of the Newton polytope of their prod-
uct is isomorphic to the poset that is encoded by the u-equations. As an additional
consistency check, we checked Corollary 10.7 using SageMath.

Corollary 10.7. The Newton polytope P of the product g1g2 � � � g11 is combinatori-
ally equivalent to the dual polytope of equation (9.3).

As in Experiment 10.2, we now form the tropical scattering potential for YC.3; 6/:

FYC.3;6/.y/ D

15X
jD1

sj � trop.uj /.y/:
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Here, trop.uj / is the tropicalization of uj evaluated at the matrix MYC.3;6/.y/. The
tropical u-variables are nonnegative for all y. This ensures the convergence of the
integral in (10.4) whenever the si are positive.

Theorem 10.8. The tropical potential FYC.3;6/.y/ provides a bijection between the
(inner) normal fan of the Newton polytope P defined in the previous corollary and
the positive tropical del Pezzo moduli space TropC.Y.3; 6//. We can compute the E6
amplitude through the global Schwinger parameterization [18]:

AE6
D

Z
R4

exp
�
�FYC.3;6/.y/

�
d y: (10.4)

Proof. The proof follows the logic of Experiment 10.2. The facet normals of P are

e4; �e4; �e3; �e2 C e3 C e4; �e1; e3;�e2; e4 � e1;

e2 � e1; e1; e2; e4 � e2; �e1 � e3; �e1 C e3 C e4; e3 � e2:

We denote these vectors by v1; : : : ; v152R4. They are dual to the rays of TropCY.3;6/
and yield the poles of the E6 amplitude, as they satisfy

trop.ui /.vj / D ıi;j

and FYC.3;6/.vj / D sj . Moreover, the general rule for Newton polytope decomposi-
tions holds here: FYC.3;6/.y/ is linear on exactly the cones in the inner normal fan of
P . As in [18], it follows that (10.4) is the sum of the Laplace transforms of the inner
normal cones to the 45 vertices of P , and so,Z

R4

exp
�
�FYC.3;6/.y/

�
d y D

X
C2N.P/

Z
.R>0/4

exp

 
�

4X
jD1

tij sij

!
d t:

The inner sum in the exponential is over the four rays si1 , si2 , si3 , si4 of the cone
C . The outer sum on the right-hand side equals the E6 amplitude AE6

in Theorem
8.2.
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