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Lineup polytopes of products of simplices

Federico Castillo and Jean-Philippe Labbé

Abstract. Consider a real point configuration A of size n and an integer r � n. The vertices
of the r-lineup polytope of A correspond to the possible orderings of the top r points of the
configuration obtained by maximizing a linear functional. The motivation behind the study of
lineup polytopes comes from the representability problem in quantum chemistry. In that con-
text, the relevant point configurations are the vertices of hypersimplices and the integer points
contained in an inflated regular simplex. The central problem consists in providing an inequal-
ity representation of lineup polytopes as efficiently as possible. In this article, we adapt the
developed techniques to the quantum information theory setup. The appropriate point configu-
rations become the vertices of products of simplices. A particular case is that of lineup polytopes
of cubes, which form a type B analog of hypersimplices, where the symmetric group of type
A naturally acts. To obtain the inequalities, we center our attention on the combinatorics and
the symmetry of products of simplices to obtain an algorithmic solution. Along the way, we
establish relationships between lineup polytopes of products of simplices with the Gale order,
standard Young tableaux, and the resonance arrangement.

1. Introduction

The Farkas–Minkowski–Weyl theorem establishes a duality principle which is funda-
mental in discrete geometry: convex polyhedra admit two different equivalent repre-
sentations [34, Theorem 7.1]. Either they represent the set of solutions of a system
of linear inequalities (H -representation) or they are sums of a linear subspace, a
pointed cone, and a polytope (V -representation). Certain problems—for example,
asking whether a point belongs to a convex polyhedron, the so-called membership
problem—are easily solvable if one has access to its H -representation, but not if one
only has its V -representation. The reverse direction is similarly true, making the trans-
lation between representations a task of major importance which is well known to be
computationally expensive [3]. This problem is sometimes referred to as the represen-
tation conversion problem or the convex hull problem. The existence of a polynomial
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time translation algorithm appears to be unlikely as it is NP-complete for unbounded
polyhedra [19]. It remains an open problem to determine whether there is a transla-
tion algorithm that runs polynomially (on the size of input and output) for bounded
polyhedra [17, Open Problem 26.3.4]. By exploiting symmetry of polyhedra, it is
possible to obtain more efficient algorithms using the related geometric and com-
binatorial objects, such as fundamental domains and posets. Indeed, in the present
paper, we adapt a .V !H/-translation algorithm introduced in [11] and extend its use
to another family of symmetric polytopes: lineup polytopes of product of simplices.
Aside from their geometric origin, it turns out that lineup polytopes of product of sim-
plices show relations to quantum information theory [22], to the White Whale [15],
and to applications of standard Young tableaux in deconvolution in mathematical
statistics [24, 25].

Quantum marginal problem. The motivation for extending this algorithm to the
product of simplices comes from quantum information theory. Almost 20 years ago,
Klyachko used tools from representation theory to study the quantum marginal prob-
lem (QMP), details of which are provided in his unpublished manuscript [21]. His
main contribution is an H -representation of the (moment) polytope of all compatible
marginals. Each inequality in the representation has physical significance: it gives a
linear constraint on the allowable marginals that are simple to test in practice. The
more general problem of providing an H -representation of moment polytopes has
been treated by Berenstein–Sjaamar [6], Ressayre [30], and Vergne–Walter [38]. All
of these H -representations are hard to make effective in practice. In the article [11],
we lay out discrete geometric and combinatorial methods in order to circumvent the
complexity of Klyachko’s framework by relaxing the problem and computing a larger
polytope while keeping the physically relevant portion of Klyachko’s solution. The
main geometric tool introduced therein is lineup polytopes, whose H -representations
provide necessary linear inequalities that we can effectively compute.

Parallel computational tools and symmetry. There are several translating algo-
rithms between the V - andH -representations that are already implemented; see [4,12,
14,31] for some examples. Each algorithm seems to do well on certain classes of poly-
topes, but none always stands out. In the present study, we examine a particular family
and tailor our methods to that context. We start with a known normal fan and the goal
is to compute a specific refinement of it. We define lineup fans to serve as intermedi-
ate steps, obtained by successive refinements. The refinement is obtained by adding
certain hyperplanes to each full-dimensional cone of the intermediate fans. This idea
is similar to the one behind the incremental algorithms which compute convex hulls
by adding one hyperplane at a time. The refinement of a fan naturally lends itself to
parallelization; for a recent study on parallelization of general .V ! H/-algorithms,
see [5]. Another feature allowing us to speed the computations is the presence of



Lineup polytopes of products of simplices 789

symmetry. The family of polytopes at play is highly symmetric and we exploit this
fact to compute orbit representatives instead of all of them. Finally, the combinatorics
of the problem at hand provide a poset leading to the refinements needed at each
step. The resulting algorithms provide output-polynomial time procedures to provide
(symmetrically reduced) V - andH -representations of lineup polytopes of products of
simplices.

White Whale. Lineup polytopes of hypercubes (i.e., products of line segments) are
related to the resonance arrangement; see Remark 4.6. This arrangement has the
universal property that any rational hyperplane arrangement is the minor of some
large enough resonance arrangement [23]. The corresponding zonotope, known as
the White Whale, is the Minkowski sum of all 0/1 vectors of length N . There has
been interest in computing the number of vertices, but even with the latest available
method, the problem remains elusive for N > 9 [15].

Realizable tableaux. Another case appeared in disguise in earlier work. The lineup
polytope of the product of two simplices �e�1 � �f �1 of dimension .e C f � 2/
is related to the number of realizable standard Young tableaux (SYT) of rectangular
shape e � f , as observed by Klyachko in [21]. Realizable SYT are also called outer
sums and they are systematically studied by Mallows and Vanderbei [25]. They appear
also in the recent work of Black and Sanyal [7]. Contrary to the set of all SYT, which
has a closed product formula (the hook length formula [18]), there is no enumeration
formula for the realizable case. Recently, Araujo, Black, Burcroff, Gao, Krueger, and
McDonough provide some asymptotic results for realizable SYT of rectangular shape
in [2]. Therein, they prove that, with e fixed, the number of such tableaux is exponen-
tial in f , but the base of the exponential is still unknown. Our computations shed a
light on what that base may be; see Section 3.2.1.

Organization of the paper. In Section 2, we provide the preliminaries on polytopes,
their normal fans, lineup polytopes, the connection to the physical motivation and
describe important examples. In Section 3, we develop general results for lineups of
product of simplices along with the algorithmic method. In Section 4, we specialize
our tools to the particular case of products of line segments. In Section 5, we fin-
ish with some observations about the original quantum marginal problem and lineup
polytopes of cyclic polytopes.

2. Preliminaries

We adopt the following conventions: d 2 N n ¹0º, Œd � WD ¹1; 2; : : : ; dº. The cardinal-
ity of a set S is denoted by jS j. Let Rd be the d -dimensional Euclidean space with
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elementary basis ¹ei W i 2 Œd �º and inner product given by hei ;ej i D ıi;j for i; j 2 Œd �.
Whenever a vector v 2Rd is written as a tuple .v1; : : : ; vd /, the entries are expressing
the coefficients of v in the standard basis, i.e., v D

P
viei .

2.1. Polytopes and normal fans

A polyhedron is the intersection of finitely many closed half-spaces [34, Chapter 7]:

Q WD ¹x 2 Rd WMx � bº; (2.1)

where M is a matrix and b is a vector. The expression in (2.1) is a H -representation
of Q. A row of M and its corresponding entry in b give a defining inequality of Q
and represent a closed half-space containing Q. If a row of M and its corresponding
entry in b are a positive linear combination of other rows of M and their correspond-
ing entries in b, it is not necessary to define Q, and this H -representation is called
redundant.

Let A D ¹v1; : : : ; vnº � Rd . We refer to A as a point configuration of size n.
The affine hull aff.A/ of A is the set of vectors

Pn
iD1 �ivi such that

Pn
iD1 �i D 1 and

�i 2Rd . The conical (or “positive”) hull cone.A/ of A is the set of vectors
Pn
iD1�ivi

such that �i � 0, defining a cone. A cone is pointed if it contains no lines. The convex
hull conv.A/ of A is the set of vectors

Pn
iD1 �ivi such that

Pn
iD1 �i D 1 and �i � 0,

defining a polytope. The elements in these sets are called affine, conical, and convex
combinations of A, respectively. We refer to the elements of minimal generating sets
(in A) of affine, conical, and convex hulls as line generators, ray generators, and
vertices. Line generators are unique up to change of affine basis and ray generators
are unique up to scaling by positive scalars.

By the Farkas–Minkowski–Weyl theorem, every polyhedron Q can be decom-
posed uniquely as the sum of an affine hull, a conical hull, and a convex hull:

Q D LC KC P; (2.2)

where L is a linear subspace (called the lineality space of Q), K is a pointed cone
(called the recession cone of Q), and P is a polytope. The expression in (2.2) is the V -
representation of Q. Thus, polytopes and cones are polyhedra: polytopes are bounded
polyhedra and cones are homogeneous polyhedra, that is, b D 0 in (2.1).

Remark 2.1. Translating between V - and H -representations of affine or linear sub-
spaces is done quite efficiently through Gauss elimination. For polytopes or pointed
cones, this process is known to be much harder and a central subject in linear opti-
mization and discrete geometry as mentioned in the introduction.
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nconeP ..p4; p5//

nconeP .p5/

nconeP ..p1; p5//

nconeP .p1/

nconeP ..p1; p2//

nconeP .p2/

nconeP ..p2; p3//

nconeP .p3/

nconeP ..p3; p4//

nconeP .p4/

nconeP .p1/ nconeP .p2/

nconeP .p3/

nconeP .p4/

nconeP .p5/

P

p1 p2

p3

p4
p5

Figure 1. A 2-dimensional polytope and its normal fan obtained by placing the normal cones of
the vertices of P at the origin.

2.1.1. Adopted technique: Exploiting duality. We restrict ourselves to the case of
polytopes with a high level of symmetry. In order to pass from a V - to a H -rep-
resentation, we use the following method. Effectively, it turns a .V !H/-translation
into a .H ! V /-translation which is easier to handle in the special cases of interest.

Let P D conv.A/ be a polytope. A linear inequality satisfied by all points x 2
P is called valid. The support function hP W Rd ! R of P is defined as hP.y/ WD
maxx2Phy; xi. Every vector y 2 Rd induces a unique valid inequality on a polytope P,
according to hy; xi � hP.y/. The polytope Py D ¹x 2 P W hy; xi D hP.y/º is refered to
as a face of P. Vertices of P are 0-dimensional faces and facets of P are codimension-1
faces. Given a face F of P, we define its open and closed normal cones:

nconeP.F/ı WD ¹y 2 Rd W Py
D Fº;

nconeP.F/ WD ¹y 2 Rd W Py
� Fº:

(2.3)

The collection N .P/ WD ¹nconeP.F/ W F a face of Pº is the normal fan of P. Here is the
keystone of the approach: the normal fan of a polytope is entirely recovered from the
normal cones of the vertices, since their faces are all the other cones in the fan as the
following example illustrates.

Example 2.2 (Normal fan of a polygon on the plane). Let

P D conv¹.0; 0/; .3; 0/; .3; 1/; .1; 2/; .0; 2/º

in R2, as illustrated in Figure 1.

To go from a V - to an H -representation, one first determines the normal cones of
the vertices, then obtain all rays, and finally get a non-redundant H -representation:
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(i) The definitions in equations (2.3) say that the normal cone of a face F con-
sists of all vectors y whose linear functional is maximized on F. Whence,
for each vertex v of P, its normal cone has the following H -representation:

nconeP.v/ D ¹y 2 Rd W hy; v � v0i � 0; for v0 2 Aº: (2.4)

(ii) Decompose the normal cone into its lineality space and its recession cone
as in (2.2), i.e., nconeP.v/ D LP.v/C KP.v/. (There is no polytope factor in
this case.) The lineality space LP.v/ is the orthogonal complement of aff.P/;
hence, it does not depend on v.

(iii) Translate the H -representation of KP.v/ to a V -representation:

KP.v/ D

´
jX
iD1

�iri W �i � 0; for i 2 Œj �

µ
for some r1; : : : ; rj 2 Rd .

(iv) Let B be the set of all ray generators ri ’s found in the previous step for all
nconeP.v/. For each r 2 B, we determine the value of hP.r/ by evaluating it
on A.

Let C be a basis of LP. We end up with the non-redundant H -representation

P D
®
x 2 Rd W hr; xi � hP.r/ for all r 2 B

hy; xi D hP.y/ for all y 2 C
¯
:

In what follows, we will see that the high level of symmetry of the studied poly-
topes confers optimal efficiency to this approach. Indeed, the exponential number of
vertices to consider is reduced to a minimum. Furthermore, the description in equa-
tion (2.4) is reduced to treating only one linear functional and vertex per orbit. The
main remaining piece is the .H ! V /-translation in the third step.

2.2. Lineup polytopes

Let A D ¹v1; : : : ; vnº � Rd and y 2 Rd . A generic vector y provides an injective
linear functional hy; �i W Rd ! R that totally orders the elements of A from maximal
to minimal value. Given such a total order and an integer r such that 1 � r � n, the
sequence ` of the first r elements in this total order is called a lineup of length r of
A [11, Definition 6.1]. Let w WD .w1; w2; : : : ; wr/ be such that 1 > w1 > w2 > � � � >
wr > 0 and

Pr
iD1wi D 1, and furthermore, let `D .v1;v2; : : : ;vr/ be an ordered list

of r vectors of A. We refer to the wi ’s as weights. The occupation vector associated
to ` with respect to w is ow.`/ WD

Pr
iD1wivi . The r-lineup polytope of A is

Lr;w.A/ WD conv¹ow.`/ W ` is an ordered r-subset of AºI
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see [11, Definition 6.1]. To a polytope P � Rd we associate the point configuration
A given by listing its vertices in some order. The next proposition summarizes the
content of [11, Theorem E]; part (3) is a slight generalization of [11, Proposition 6.18].

Proposition 2.3. Let A D ¹v1; : : : ; vnº � Rd and 1 � r � n. If w 2 Rr has strictly
decreasing coordinates, then the following statements hold.

(1) The point ow.`/ is a vertex of the lineup polytope Lr;w.A/ if and only if ` is
an r-lineup.

(2) If v` is a vertex of Lr;w with lineup ` D .v1; : : : ; vr/, then the open normal
cone of v` is the set of y 2 Rd such that

hy; v1i > hy; v2i > � � � > hy; vri

and hy; vri > hy; vi for every point v of A not contained in `.

The normal cone of v` is called the lineup cone of `.

(3) If s.y;A/ denotes the largest r values of hy;Ai ordered decreasingly, then

max
x2Lr;w.A/

hy;xi D hw; s.y;A/i:

Lineup cones are independent of the specific values of the entries of w as long
as they are strictly decreasing. Therefore, the normal fan †r.A/ is independent of
the specific choice of w and we call it the lineup fan of A. For this reason, we omit
the symbol w in our notation. Also, when r D n, we omit the symbol r and call
Ln;w.A/ D L.A/ the sweep polytope of A. These polytopes were studied by Padrol
and Philippe; see [27]. Sweep polytopes are zonotopes:

L.A/ D
X

v1;v22A

conv.v1; v2/:

Finding theH -representation of an arbitrary Minkowski sum is computationally hard
[37]. Even for the case of zonotopes, it is still an open problem find an efficient algo-
rithm; see [16, Lecture 4]. An example of a particular zonotope whoseH -computation
has received recent attention is treated in more detail below in Remark 4.6.

However, the general definition with r < jAj D n allows us to partially compute
the normal fan of the sweep polytope using recursion. Indeed, we have

N .conv.A// D †1.A/ � †2.A/ � � � � � †n.A/ D N .L.A//; (2.5)

where † � †0 denotes that †0 is a refinement of †.

Remark 2.4. Equation (2.5) delivers partial information on the whole sweep poly-
tope without fully computing it. This feature is interesting on its own right as it is
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possible to obtain relevant information (a non-redundant and partial facet-defining
H -representation) for a potentially large polytope without having to wait for the trans-
lation algorithm to complete.

2.3. Connections with physics

We describe the physical context related to the study of lineup polytopes of products
of simplices. We start with the simplest instance of the Quantum Marginal Problem
(for a general account of it see [33]). Let H1, H2 be two finite-dimensional Hilbert
spaces. There is a linear map called the partial trace between End.H1 ˝H2/ and
End.H1/ uniquely determined by mapping

�1 ˝ �2 7! trace.�2/�1

whenever �1; �2 are linear operators on H1 and H2, respectively. Using the partial
trace, we associate to an operator � 2 End.H1 ˝ H2/ its marginals �.1/ and �.2/,
which are the partial traces of � with respect to H1 and H2, respectively. Further-
more, if we assume that � is a density operator (that is, if all its eigenvalues are real, in
the interval Œ0; 1�, and they add up to 1), then its two marginals �.i/ are density oper-
ators too. In this context, the quantum marginal problem is to determine the triples
.w;w.1/;w.2// such that there exists an operator � such that

w D spec.�/ and w.i/ D spec.�.i// for i D 1; 2:

The setup naturally generalizes to the tensor product of N � 2 Hilbert spaces
each of dimension d : we seek to relate the spectrum of a density operator on the
tensor space with the spectra of its N marginals. This space parametrizes the states
of a system of N distinguishable particles, called qudits, if we want to refer to the
dimension d . We will give special attention to the case d D 2 because it corresponds
to systems of qubits relevant in quantum information. This instance of the Quantum
Marginal Problem was solved by Klyachko and Altunbulak; see [1,22]. For any vector
x 2 Rd , we define x# as the vector consisting of the absolute values of the entries of
x in weakly decreasing order. The set

ƒ.d;N;w/ WD

²
.v1; : : : ; vN / 2

NY
iD1

Rd j 9 � with spec.�/ D w and

spec.�.i//# D vi ; for all i 2 ŒN �
³

(2.6)

of spectra of the marginals arising from operators with a fixed spectrum w# is a poly-
tope. Polytopality is a consequence of general results about moment polytopes [20].
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Klyachko described a finite set of defining inequalities in [22, Theorem 4.2.1] and [1,
Example 2]. His solution has two steps:

(1) (Discrete geometry) Find all edges of certain polyhedral cones called cubicles.

(2) (Schubert calculus) For each edge, consider all permutations satisfying certain
cohomological conditions that can be phrased in terms of Schubert polynomi-
als.

Each pair (edge, permutation) produces a defining inequality for the polytope
ƒ.d; N;w/ [1, (13)]. Both steps are theoretical triumphs; however, in practice, they
retain a high computational complexity. Our motivation for the present paper is to
efficiently compute the first part of the solution.

The polytope ƒ.d; N;w/ is not a lineup polytope; however, it is closely related
to L.…d;N /, the lineup polytope of the product of N simplices of dimension d � 1.
There is a region which we call the test cone (equation (3.1)) for which the support
functions of both polytopes agree. This means that we can get some of the defining
inequalities ofƒ.d;N;w/ by means of computing L.…d;N /. The polytopeƒ.d;N;w/
is always contained in L.…d;N /, and as an approximation, one can consider L.…d;N /

intersected with the test cone. See the flower diagram of [11, Figure 6].

2.4. Examples

Example 2.5 (Œn;m�-grid). Let A D ¹1; 2; : : : ; nº � ¹1; 2; : : : ; mº � R2 and set r D
mn. The number of r-lineups, or sweeps, is equal to the number of vertices of the
sweep polytope of A. Since this is a polygon, the number of vertices is equal to the
number of edges and this corresponds to uncoarsenable rankings. In this context, a
ranking is uncoarsenable as long as the corresponding functional puts two points in
a tie. By symmetry, we can assume without loss of generality that .1; 1/ comes first
in the ranking. So, we must count the number of line segments with one endpoint in
¹.1; 1/; : : : ; .n; 1/º, the other in ¹.1; 1/; : : : ; .1; m/º, up to parallel translations. By
counting the slopes in lowest fractional terms, we find that the number of parallel
classes is

nX
iD1

�.i;m/C 2 D

mX
iD1

�.i; n/C 2;

where
�.a; b/ D j¹k 2 Œb� W gcd.k; a/ D 1ºj:

The C2 comes from the segments parallel to the axes. Considering symmetry, we
have

4

 
nX
iD1

�.i;m/

!
C 2
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Figure 2. Eight line segments between the points in both axes, but two of them are parallel, so
they correspond to the same ranking.

uncoarsenable rankings, and thus also the same number of sweeps. If we assume that
n > m, we can bound

nX
iD1

�.i;m/ D

mX
iD1

�.i;m/C

nX
iDmC1

�.i;m/ < m2 C

nX
iD1

'.i/;

where '.i/ D �.i; i/ is Euler’s totient function. For the latter sum, we have that

nX
iD1

'.i/ D
1

2

 
1C

nX
iD1

�.i/

�
n

i

�2!
D

3

�2
n2 CO

�
n.logn/

2
3 .log logn/

4
3

�
;

see [39], which leads to a bound of 4m2 C 12n2=�2 for the number of uncoarsenable
rankings, which is much smaller than .nm/Š. For example, when .m; n/ D .4; 3/, the
sweep polytope is the convex hull of 12Š D 479 001 600 points. However, we obtain
only 38 sweeps so that the resulting sweep polygon has 38 vertices, and thus 38 edges,
see Figure 2.

Example 2.6. Let P be the prism over the two-dimensional triangle

T D conv¹.0; 0; 0/; .0; 1; 0/; .0; 0; 1/º

andwD .6; 5; 4; 3; 2; 1/=21. The lineup polytope L6;w.P/ of P is depicted in Figure 3.
The size of this example is quite small and the naive approach is efficient enough
to provide its description in SageMath. Its f -vector is .60; 90; 32/; it has 12 square
facets, 14 hexagonal facets, and 6 octagonal facets. There is a correspondence between
facets and cocircuits of the point configurations; see, e.g., [27, Section 1.1] for further
details on this correspondence.

Example 2.7 (Standard simplex). Let A D ¹e1; : : : ; ed º be the canonical basis of
Rd . The convex hull conv.A/ is the standard simplex of dimension .d � 1/ and it is
denoted by �d�1. The sweep polytope Ld;w.A/ in this case is equal to

conv¹w�.1/; w�.2/; : : : ; w�.d/ j � 2 Sd º;

known as a permutohedron; see [29].
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Figure 3. The lineup polytope of the prism over a triangle with weights .6; 5; 4; 3; 2; 1/=21.

Example 2.8 (Product of two segments, or the Œ�1; 1�-square). The polytope �1 �
�1 is a square in R2 �R2 D R4 with vertices

¹.1; 0I 1; 0/; .1; 0I 0; 1/; .0; 1I 1; 0/; .0; 1I 0; 1/º:

To lower the dimension of the ambient space, we map


 W R2 �R2 ! R2; .x11; x12I x21; x22/ 7! .x11 � x12; x21 � x22/:

Under this projection, the polytope �1 ��1 maps to the square Œ�1; 1� � Œ�1; 1� in
R2. The 24 occupation vectors are illustrated in Figure 4 along with their convex hull.
In the figure, the points 14 and 23 are not necessarily in that order along the x-axis.
The order depends on the choice of vector w. To obtain Figure 4, one could take
1
10
.7; 2; 1; 0/. See Example 5.1 for more details.
The convex hull is the polyhedron consisting of all points .x1; x2/ 2R2 satisfying

the following linear inequalities:

�w1 � w2 C w3 C w4 � x1 � w1 C w2 � w3 � w4;

�w1 � w2 C w3 C w4 � x2 � w1 C w2 � w3 � w4;

�2w1 C 2w4 � x1 C x2 � 2w1 � 2w4;

�2w1 C 2w4 � x1 � x2 � 2w1 � 2w4:

(2.7)

Recall from Section 2.3 that, for any vector x 2 Rd , we define x# as the vector
consisting of the absolute values of the entries of x in weakly decreasing order. Using
that notation, the H -representation of the sweep polytope L.�2/ of the square �2 D
Œ�1; 1� � Œ�1; 1� given in equation (2.7) can be rewritten as

L.�2/ D
²
x 2 R2 W

 
1 0

1 1

!
x# �

 
1 1 �1 �1

2 0 0 �2

!
w

³
:
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(0, 0)

13 1214

12

13
14

2434 23

34

24
23

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

Figure 4. The 24 possible points are illustrated. The pair of numbers along the axis are shortcuts
giving the indices of the w’s that are positive, while the others are negative. For instance, the
pair 14 represents the number w1 � w2 � w3 C w4.

Example 2.9 (Product of three segments, or the Œ�1; 1�-cube). Let us now consider
the sweep polytope of .�1/3, the product of three line segments. The case of general
hypercubes is treated in detail later in Section 4. As in the previous example, we
map .�1/3 to R3 by taking the difference on each factor. The image is the cube
�3 D Œ�1; 1�3 � R3. This cube has 8 vertices, so if one computes the convex hull,
8Š D 40320 points need to be considered, of which only 96 form the convex hull; see
Figure 5. Algorithms 3.4 and 3.6 determine directly these 96 vertices. The f -vector
of this 8-lineup polytope is .96; 144; 50/; it has 24 square facets, 8 hexagonal facets,
and 18 octagonal facets.

Using the #-notation, we can write the H -representation as

L.�3/ D

8̂̂̂<̂
ˆ̂:x 2 R3 W

0BBB@
1 0 0

1 1 0

1 1 1

2 1 1

1CCCAx# �
0BBB@
1 1 1 1 �1 �1 �1 �1

2 2 0 0 0 0 �2 �2

3 1 1 1 �1 �1 �1 �3

4 2 2 0 0 �2 �2 �4

1CCCAw
9>>>=>>>; :

2.5. Certifying that a vector spans a ray

In general, a vector y 2 Rd may not induce a total order on A as there may be ties.
Instead, the linear functional hy; �i induces an ordered set partition

� D .S1; : : : ; Sk�1; Sk/
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Figure 5. The convex hull of all 40320 occupation vectors arising from all permutations of the
vertices of the cube Œ�1; 1�3.

of Œn� as follows.

• For each i D 1; : : : ; k � 1, the set Si consists of labels of points where the func-
tional achieves the i -th largest value.

• We have jS1 [ � � � [ Sk�2j < r and jS1 [ � � � [ Sk�1j � r .

• The last set Sk consists of everything else.

We call such an ordered set partition induced by some y an r-ranking. Faces of the
r-lineup polytope Lr.A/ are in bijection with r-rankings. We describe some linear
programs that verify whether a given vector y induces an uncoarsenable r-ranking or
not. For ease of notation, we focus on the case where r is maximal (and we drop the
“r-” from the name), but the propositions below can be readily adapted to the general
setup.

Proposition 2.10. Let A D ¹v1; : : : ; vnº � Rd , and let � D .S1; S2; : : : ; Sk/ be an
ordered set partition of Œn�. Fix ¹i1; : : : ; ikº � Œn� with ij 2 Sj for j D 1; : : : ; k. For
each integer t 2 Œk � 1�, consider the linear program given by

maximize ˛t ;

subject to hy; va � vbi D 0 whenever a; b 2 Sk;
hy; vij C1

� vij i D j̨ for j D 1; : : : ; k � 1;
.˛;y/ 2 Rk�1�0 �Rd :

The ordered set partition � is a ranking if and only if the k � 1 linear programs above
each has a positive solution.
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Proof. If � is a ranking, then there exists a vector y 2 Rd whose inner products
on consecutive blocks strictly increase. This implies that there exist positive gaps
˛1; : : : ; ˛k�1, proving the first direction.

Assume that the k � 1 linear programs have non-zero solutions .˛1; : : : ;˛k�1/. As
the origin satisfies the inequalities, the linear programs are feasible and the solutions
satisfy ˛i � 0 for i 2 Œk � 1�. A positive solution ˛t > 0 implies that the ranking
induced by the corresponding yt is a coarsening of � with St and StC1 in different
blocks. Therefore, the vector

y D
X
t

yt

induces the common refinement of the induced ranking, which is equal to � by con-
struction.

Since the face lattice of an r-lineup polytope is isomorphic to the poset of r-
rankings ordered by coarsening, the facets correspond to the r-rankings that cannot
be coarsened by any other r-ranking. We call such rankings geometrically uncoarsen-
able.

Proposition 2.11. Let A D ¹v1; : : : ; vnº � Rd be a point configuration and

� D .S1; S2; : : : ; Sk/

a ranking. Fix ¹i1; : : : ; ikº � Œn� with ij 2 Sj for j D 1; : : : ; k. For each integer
t 2 Œk � 1�, consider the linear program given by

maximize ˛1 C � � � C ˛k�1;

subject to hy; va � vbi D 0 whenever a; b 2 Sk;
hy; vij C1

� vij i D j̨ for j D 1; : : : ; k � 1;
˛t D 0;

.˛;y/ 2 Rk�1�0 �Rd :

The ranking � is geometrically uncoarsenable if and only if zero is the solution to
every k � 1 linear program above.

Proof. Assume that the t -th linear program has a positive solution. Then, there exists
a vector yt whose induced ranking is a coarsening of � such that (1) the points with
indices in St and StC1 are together in the same block, and (2) it has at least two blocks
(since ˛t > 0). Therefore, � is geometrically coarsenable.

If � has a nontrivial coarsening R given by some vector y , the coarsening must
(1) contain at least two blocks and (2) merge two consecutive blocks of � . Therefore,
y provides a positive solution ˛ to a integer program for some t 2 Œk � 1�.
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As described in [28], combinatorial interpretations will be understood as #P prob-
lems. Here, we prove that, given a n point configuration A and an ordered set partition
� of Œn�, the problem of determining whether � corresponds to a facet of Lr;w.A/ is
in NP.

Corollary 2.12. The problem of counting the number of facets of the lineup polytope
L.A/ is in #P.

Proof. Propositions 2.10 and 2.11 give a method to certify that an ordered set partition
with k parts is realizable and uncoarsenable. This is done with 2k � 2 linear programs,
each of which has n equalities, at most k inequalities and d C k � 1 variables. Since
each linear program can be solved in polynomial time [34, Theorem 13.4], the con-
clusion follows.

3. General products of simplices

In this section, we study the lineup polytopes of product of simplices without any
restrictions on their dimensions or their numbers. In the following section, we con-
sider the case of products of segments. To ease the exposition, we treat the case where
all simplices have the same dimension but everything extends to the general case.

3.1. Combinatorial algorithms

We first define an important poset that helps us navigate sweeps. For a standard refer-
ence on posets, see [36, Chapter 3].

Definition 3.1. Let i be the total order on the set ¹0; 1; 2; : : : ; iº. Given integers d;N ,
let P.d C 1; N / WD d � � � � � d be the Cartesian product of N copies of d . The N -
dimensional Young lattice J.P.d;N // consists of the lower-order ideals of P.d;N /.

By setting N D 2 in Definition 3.1, we get that J.P.d; N // is the usual Young
lattice on Young diagrams contained in a d � d box, where boxes are indexed starting
from 0 to d � 1. This shift in indices is for practical purposes when d D 2, having
the indices 0 and 1 makes certain computations easier. Let �d�1 be the .d � 1/-
dimensional regular simplex whose vertices are the canonical basis vectors of Rd .
Define …d;N � Rd�N as the Cartesian product �d�1 � � � � ��d�1 of N copies of
�d�1. The vertices of …d;N are in natural bijection with the elements of the poset
P.d;N /. Let S D .s1; : : : ; sN / 2 P.d;N /; we denote by

�.S/ D .es1C1; : : : ; esNC1/ 2 .R
d /N
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the vertex of …d;N associated with the element S . In order to obtain the lineup poly-
tope of …d;N , we use symmetry.

Letm>0 be a natural number. We denote by Sm the group of bijections on the set
Œm�. The group Sd oSN acts naturally on Rd�N and it fixes the polytope …d;N and
thus its normal fan. Thanks to these symmetries, we may, without loss of generality,
recover all normal vectors by considering only the set of linear functionals in the test
cone Td;N in Rd�N , whose coordinates are all positive and increase in each factor.
More precisely,

Td;N WD
®
x 2 Rd�N j 0 � x1;j � � � � � xd;j for j 2 ŒN �

¯
: (3.1)

Due to the convention of ordering decreasingly the values to obtain a lineup, we
momentarily need to consider upper-order ideals, for the following proposition to fit
properly later. Upper order ideals in finite posets are in natural correspondence with
lower order ideals.

Proposition 3.2. Let `D .v1; : : : ;vr/ be an r-lineup of the vertices of…d;N induced
by a linear functional y 2 Td;N . The corresponding elements of the poset P.d; N /
form a upper-order ideal.

Proof. For any v 2 …d;N , the defining linear inequalities of the test cone in equa-
tion (3.1) imply that all upper (in the poset) elements must have a larger value, hence
coming earlier in the lineup.

Since any initial segment of a lineup is itself a lineup, then Proposition 3.2 gives
us more refined information. An r-lineup of …d;N is a saturated chain of ideals of
length r in the poset J.P.d; N //. However, the opposite is not true; see [11, Sec-
tion 9.3] for some examples that may be extended here and also [25, Introduction].
Nonetheless, we use this correspondence to generate all potential lineups for which
we may recursively verify whether they are realizable or not using a set of inequalities
in the test cone. The set of vectors y that yield a certain lineup turns out to be the set of
certificates of feasibility of LPs that Mallows and Vanderbei used to obtain so-called
realizable Young tableaux. Recursively constructing the certificates provides an effi-
cient method to enumerate the realizable Young tableaux instead of performing an LP
for each Young tableau; see Section 3.2.1. In [11], the potential lineups are refered to
as shifted ideals and the realizable ones to the stricter notion of threshold ideals. To
be correct, we should be referring to them as “saturated chains of length r exhausting
a shifted or threshold ideal”, but that is rather wasteful.

We define Lr
d;N

the normal fan of the lineup polytope Lr;w.…d;N /, and as usual,
we drop r from the notation when it is maximal. Instead of computing the complete
normal fan, we compute its intersection with the test cone. This process induces a fan
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supported on the test cone that we call the test fan of Lr;w.…d;N / and denote it by
T r
d;N

. By restricting equation (2.5) to the test cone, we obtain the sequence

Td;N D T 1
d;N � T 2

d;N � � � � � Td;N :

When r D 1, T 1
d;N

is simply the whole cone Td;N and all of its faces.

Proposition 3.3. Let � be a ray of T r
d;N

. The vector � is a ray of Ld;N , the fan of the
sweep polytope L.…d;N /. However, � is not necessarily a ray of Lr

d;N
.

Proof. Since we are refining the fan at each step, it means that � is a ray of Td;N . In
the sweep polytope L.…d;N /, the interior of every lineup cone is either contained in
the test cone Td;N or disjoint from it. Indeed, a sweep induced by an element not in
the test cone is necessarily different from one induced by a test element. This means
that the normal fan of the sweep polytope intersected with the test cone, i.e., its test
fan, is simply the set of the lineup cones contained in the test cone; there are no new
cones generated by the intersection with Td;N . It follows that � is a ray of Ld;N , as
sought.

The algorithm described below is an adjusted version of [11, Algorithm F]. It
yields all r-lineups of products of simplices. More precisely, we compute the lineup
cones, as we need a certificate that an ordered list of r points is indeed a lineup. To
obtain the lineup cones, we restrict the computation to their intersection with the test
cone to consider each orbit exactly once and use recursion on r . The set of candidates
to append to an r-lineup is taken from Proposition 3.2.

Algorithm 3.4 (Recursively construct lineups). Let r , d , N be positive integers such
that 1 � r � dN . The following procedure computes all r-lineups cones of the poly-
tope …d;N that intersect the interior of the test cone Td;N .

Base case, r D 1. If the vector y is in the test cone, then there is only one possibility:
the normal cone of the vertex ed � � � � � ed intersected with the test cone is equal to
the complete cone Td;N whose H -representation is given in equation (3.1).

Inductive step, r > 1. Having all r-lineups together with their normal cones in Td;N ,
we proceed to obtain the .r C 1/-lineups. For each r-lineup `with cone K, the possible
candidates for being in position r C 1 are limited by the partial order on J.P.d;N //.
Say there are candidates C � J.P.d;N //; then, S 2 C is allowed to be the next one
if and only if the cone

K \

´
y 2

NY
jD1

Rd W hy;�.S/i � hy;�.S 0/i; for all S 0 2 C n ¹Sº

µ
(3.2)
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has the same dimension as that of K. If so, then .`; S/ is an .r C 1/-lineup and equa-
tion (3.2) describes its corresponding normal cone. Otherwise, we discard it.

Given d and N as inputs, Algorithm 3.4 provides the V -representation of the
sweep polytopes L.…d;N / recursively through the parameter r . Equivalently, it com-
putes the complete list of r-lineups together with certificates of their existence (actu-
ally the set of all certificates which is the lineup fan). The running time of Algorithm
is output-polynomial (i.e., polynomial with respect to the size of the input and output)
since the dimension of the polyhedron in equation (3.2) can be determined in poly-
nomial time; see [34, Corollary 14.1g and the subsequent discussion]. The precise
upper bound on the space used by Algorithm 3.4 is not known; below we give the
obvious upper bound by bounding the size of C with respect to d and N . It would be
interesting to determine a sharp upper bound on the size of C , given d , N , and r .

Question 3.5. What is the maximal number of facets of an r-lineup cone of the lineup
fan of a product of N simplices of dimension d � 1?

If we want to have the rays of the fan (i.e., to get the H -representation of the
sweep polytope) and minimize the space used by the algorithm, it is better to make
the H -representation in equation (3.2) irredundant. This can be done in polynomial
time with respect to the number of inequalities and dimension; see, e.g., [13].

That being done, i.e., once Algorithm 3.4 is done, we may apply a .H ! V /-
translation on each lineup cone and collect all (potential) generating rays of the lineup
fan. This can be done inO..jKj C jC j/d`/ time, where jKj is the number of irredun-
dant inequalities used to represent K, jC j is the number of candidates, and ` is the
number of lineups found; see [4]. Finally, we may apply Algorithm 3.6, which certifies
that a ray obtained by intersecting with the test cone is indeed a ray in the complete
fan. As we use an LP to do so, having the V -representation of the sweep polytope
along with the H -representations of the lineup cones as inputs, the verification below
provides a polynomial running time algorithm to obtain the H -representation of the
sweep polytope as output.

Algorithm 3.6 (Reduction step to obtain facets). Algorithm 3.4 returns a list of cones
with an H -representation given by equation (3.2). With this output, we can produce
facet-defining inequalities for the lineup polytope by proceeding as follows. For each
cone K, we do the following.

(1) Translate the cone into a V -representation to obtain its extremal rays.

(2) For each ray, we do the following.

(a) Compute the induced ranking induced by it.

(b) Use the linear program in Proposition 2.11 to check whether the ranking
is uncoarsenable.
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(c) If uncoarsenable, then the ray generates a facet-defining inequality. Else,
discard; it is the product of intersecting a lineup cone with the test cone.

Algorithms 3.4 and 3.6 together provide a double-representation algorithm that
computes both representations simultaneously for the sweep polytopes L.…d;N /.
There are two principal families of sweep polytopes L.…d;N / that are of interest:
those obtained by fixing d and letting N !1 and fixing N and letting d !1. The
algorithm’s strengths include the following.

(i) Recursiveness: when fixing N , this procedure can be used as a basis for a
recursive algorithm to compute sequences of lineup polytopes as d ! 1 by not
recomputing a large part of the prefixes (not necessarily of hyperbox shape).

(ii) Trivial parallelization: lineups can be appended in parallel processes once can-
didates are enumerated.

(iii) Complexity: the complexity of the recursive step is obtained as follows. First,
we generate the candidates. (This can be done in at most rd steps.) The upper bound
on the number of candidates is the maximal size of an anti-chain of P.d; N /. This
general problem was considered before (even by de Moivre in 1756 in some form);
see, e.g., [8]. Therein, the authors provide exact asymptotical formulas extending
previously studied ones. For fixed d , the number of candidates is bounded by
O.dN�1=

p
N/ and for fixed N is it bounded by g.N /dN�1 C O.dN�2/, where

g.N / is a constant. The data in the article seem to indicate that g.N / is between 0
and 1 and tends to 0 as N !1. The authors provide the explicit bound for N < 5:
for N D 2, there are at most d candidates, for N D 3, there are at most 3d2=4 (d
even) and .3d2 C 1/=4 (d odd), and for N D 4, there are .2d3 C d/=3 candidates.
The upper bound on the number of candidates limits the number of new inequalities
to be added to the cone K and thus bounds the complexity of the LP used to determine
the dimension of the intersection. Coincidentally, when fixing the dimension of all but
a few simplices (which is the case for studying the product of two simplices), letting
the dimension of the others tend to infinity does not affect the upper bound on the
number of candidates (since the size of maximal anti-chains does not increase).

As an illustration, say that we are interested in fixingN D 3, and we are computing
d D 5. The lineup polytope has dimension

N.d � 1/ D 12;

and the maximal number of new inequalities to append a lineup is at most

.3d2 C 1/=4 D 19

(among 125 vertices). Therefore, as d increases, the ratio between the dimension of
the lineup polytope and the maximal number of new inequalities will grow linearly,
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Figure 6. Values on the left and their relative positions on the right.

roughly by d=4. Thus, for a fixed number of simplices, Algorithms 3.4 and 3.6 provide
(output)-polynomial time algorithms to obtain both representations.

(iv) Central symmetry: it plays a crucial role in the case of hypercubes. Indeed,
due to central symmetry, lineups only need to be computed up to half the total length
r D 2N�1.

(v) Correct partial results: interrupting at any point Algorithm 3.4 leads to a list
of cones whose rays may be certified to be facet defining inequalities of the lineup
polytope.

Remark 3.7. If we are interested in rays of the sweep fan, then asserting rays in
the last step by Proposition 3.3 is not necessary. Even though we may obtain non-
facet-defining rays for the r-lineup fans with the previous steps, all the sweep cones
are either contained test cone or have disjoint interior with the test cone, so any ray
appearing there is an actual ray of the last fan, i.e., the sweep fan.

Question 3.8. Finally, we wonder whether it is possible to characterize the family
of symmetric polytopes for which an adapted recursive procedure (for computing the
lineup polytope), such as the one above, exists. As far as we know, this procedure
works for hypersimplices, dilated simplices and products of them. Which other oper-
ations on polytopes could be done?

3.2. Examples

3.2.1. Product of two simplices. Using the test cone on the product of two simplices
�e�1 ��f �1, we restrict ourselves to linear functionals of the form .a;b/, where

0 D a1 � a2 � � � � � ae; and 0 D b1 � b2 � � � � � bf :

The values of the functional .a; b/ on the vertices of �e�1 ��f �1 are the elements
of the set ¹ai C bj W .i; j / 2 Œe�� Œf �º. We may arrange them in an e � f tableau and
replace the entries by their relative order from 1 to ab.

Example 3.9. For example, let e D 3, f D 4 and the linear functional .a; b/ D
.0; 1; 7I 0; 3; 8; 11/; then, the tableaux are given in Figure 6.
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For any given vector .a; b/, we consider the tableau of relative orders. A tableau
T is a bijective function from e � f to ¹1; : : : ; e � f º that we usually depict as a
filling of a rectangle as in Figure 6. By construction, this tableau is weakly increasing
along rows and columns. Furthermore, it has the following properties:

if T .i; j / D T .i; j C 1/ for some i 2 Œe�;

then T .i; j / D T .i; j C 1/ for all i 2 Œe�; (3.3)

if T .i; j / D T .i C 1; j / for some j 2 Œf �;

then T .i; j / D T .i C 1; j / for all i 2 Œf �: (3.4)

We call a tableau satisfying equations (3.3)–(3.4) a constrained Young tableau. If
the vector is generic, there are no ties and the associated tableau of relative orders is a
standard Young tableau or SYT for short. A tableau is called realizable if it is induced
by a sweep; the definition originates from [25].

Example 3.10. When e D 1, the product is isomorphic to �f �1. In this case, there
is only one possible SYT and it is of course realizable. It follows that for simplex any
ordering of its vertices is a sweep. Its sweep polytope is the permutohedron Perm.w/.
As long asw is strictly decreasing, the rays of its normal fan in the test cone are given
by .0; : : : ; 0„ ƒ‚ …

k

; 1; : : : ; 1„ ƒ‚ …
f �k

/ for all k 2 Œf � 1�.

The case e D 2. In this case, every standard Young tableau is realizable, as was
noted by Klyachko in [21, Example 4.1.2]. It also appears in [25, Section 2] and
in [7, Theorem 7.10] in connection with monotone-path polytopes. We prove it once
again to cover the case of rankings, not just sweeps.

Proposition 3.11. Every constrained Young tableau of size 2 � f is realizable.

Proof. We can assume that T .1; k/ < T .2; k/ for each k since if they are equal, then
by equation (3.4) the first row is equal to the second and any constrained tableau of
one row is realizable, so we can simply set aD .0; 0/ and use a b that realizes the first
row.

We set a D .0; 1/ and we define b one step an the time. Start with b1 D 0 so that
initially we have a1 C b1 D 0 and a2 C b1 D 1. Assuming that b1; : : : ; bk has been
chosen so that the induced order is given by the relative order of first k columns of
the tableau, we now choose bkC1. Let " be small enough and k � 1.

• If T .1; k C 1/ D T .1; k/, then by equation (3.3) we have T .2; k C 1/ D T .2; k/
and we set

bkC1 D 1C bk :

• Else, if T .1; k C 1/ D T .2; j / for some j � k, then we set bkC1 D 1C bj .
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• Else, T .1; kC 1/ does not appear in the first k columns. If T .1; kC 1/ < T .2; 1/,
then we set bkC1 D bk C ". In this step, we need that 0C bk C "D a1 C bkC1 <
a2 C b1 D 1C 0 D 1, which can be accomplished if " is small enough. Other-
wise, let j be the largest index such that T .2; j / < T .1; k C 1/. We set bkC1 D
max¹a2 C bj ; a1 C bkº C 1C ". This ensures that

a1 C bkC1 > max¹a2 C bj ; a1 C bkº

but also that a1 C bkC1 < a2 C bj since " > 0.

It follows that the number of sweeps is equal to the number of SYT of shape
.2; f /, which is equal to Cf , the f -th Catalan number.

Corollary 3.12. The sweep polytope L.�1 ��f �1/ has Cf orbits of vertices.

Furthermore, we can also describe the set of facets. The following proposition is
mentioned without proof in [21, Example 4.2.1].

Proposition 3.13. The rays of the normal fan of L.�1 ��f �1/ inside the test cone
are �

0; 0I 0; : : : ; 0„ ƒ‚ …
k

; 1; : : : ; 1„ ƒ‚ …
f �k

�
for all k 2 Œf � 1�;

�
0; 1I 0; : : : ; 0„ ƒ‚ …

p1

; 1; : : : ; 1„ ƒ‚ …
p2

; : : : ; k � 1; : : : ; k � 1„ ƒ‚ …
pk

�
for all partitions p ` f:

Proof. We can assume that a2 > a1 D 0; otherwise, we are in the situation with one
row and the first set of vectors arises from Example 3.10.

The rays in the test cone correspond to the uncoarsenable rankings which we now
describe. Let T be the induced tableau associated to a ray y . As mentioned above, we
can assume that its rows are distinct. Even more, we can assume that it does not have
two equal columns, as this case can be reduced to one with a smaller f � 1. So, each
entry appears at most twice in T .

Suppose that the number j appears only once and in the first row. Consider the
ray obtained by merging the parts j and j � 1 of y; its induced tableau coarsens T . It
follows that in an uncoarsenable ranking represented by T every element of the first
row, except for 1 appears also in the second row and this implies that T is equal to

S.n/ WD
1 2 3 � � � n

2 3 4 � � � nC 1
:

In conclusion, every uncoarsenable tableau with different rows is equal to S.n/ or to
a tableau obtained from S.n/ by duplicating columns.
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Example 3.14. By Proposition 3.13, we get that there are f C p.f C 1/ uncoarsen-
able tableau of size 2 � f , where p.n/ is the number of partitions of n. The list of
uncoarsenable tableaux of size 2 � 3 is

1 2 3
2 3 4

;
1 1 2
2 2 3

;
1 2 2
2 3 3

;
1 1 2
1 1 2

;
1 2 2
1 2 2

:

The case e � 3. The situation is more complicated as not every tableau is realizable.
Of all the 42 standard Young tableaux of size 3 � 3, exactly six are not realizable. For
example, the tableau

1 2 6
3 5 7
4 8 9

is not realizable.
Here, we have the situation for e D 3 and different values of f .

Number of columns f 1 2 3 4 5 6 7 8
Realizable SYT 1 5 36 295 2583 23580 221680 2130493

Total SYT 1 5 42 462 6006 87516 1385670 23371634

As proved in [2, Corollary 1.4], the ratio between realizable tableaux and all tableaux
tends to 0 as the number of column increases. In the following table, we record the
total number of realizable standard tableaux of size e � f that we computed using
Algorithm 3.4 implemented in SageMath. The bold entries are new contributions to
the OEIS sequence [26, A211400].

f

e 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 2 5 14 42 132 429 1430 4862 16796
3 36 295 2 583 23 580 221 680 2 130 493 20 829 605 206 452 585
4 6 660 152 933 3 533 808 81 937 118
5 8 499 376 449 879 088

For e D 2, we have the Catalan numbers which grow as O.4f =f 3=2/. For e D 3,
the least-square log-fit provides a rate of growth of � 9:2808. For e D 4, the least-
square log-fit provides a rate of growth of � 23:0874. For .3; 10/, the computations
took � 93 cpudays. For .4; 7/, the computations took � 31 cpudays. For .5; 6/, the
computations took � 199 cpudays. These computations used a basic parallel map-
reduce procedure in SageMath to only count the number of lineups. An independent
and optimized C implementation of the above algorithm for this specific problem on
tableaux was used to verify the entries of the tableau and is available on GitHub [32].
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Figure 7. Extended Gale G.N / for N D 4 and the Gale poset on 2-subsets are illustrated with
filled edges. In this figure, we depict the order from left to right as opposed to the usual bottom
to top.

3.2.2. Product of three simplices. We computed the number of lineups for the fol-
lowing cases:

Number of vertices Number of lineup orbits
2 � 2 � 2 12
2 � 2 � 3 110
2 � 3 � 3 3 792
3 � 3 � 3 566 616
3 � 3 � 4 80 638 740

The first cases are that of Example 2.9.

4. The case d � 1 D 1: Hypercubes

In the case of the products of line segments—that is of hypercubes—the associated
group of symmetries is S2 oSN which enjoys further properties. This is the hyperoc-
tahedral group or Coxeter group of type B . We can refine the test cone and the Gale
order previously defined.

Definition 4.1. The (extended) Gale order G.N / is the refinement of the Boolean
lattice 2ŒN � D 1 � � � � � 1 given by the following relation. Recall that an element S 2
1 � � � � � 1 corresponds to a subset S � ŒN �. Given two subsets

S D ¹s1; : : : ; siº and T D ¹t1; : : : ; tj º;

with elements ordered from smallest to largest, we say that S � T if and only if
jS j � jT j and si�k � tj�k for all k 2 ¹0; : : : ; i � 1º; see Figure 7 for an illustration
with n D 4.
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Remark 4.2. The poset G.N / is the poset M.n/ of minimal coset representatives
of the subgroup of usual permutations Sn within the Coxeter group of signed per-
mutations Bn; see [35, Figure 6]. When this order is restricted to subsets of a fixed
cardinality k, one recovers the traditional Gale poset on k-subsets of Œn�; see Figure 7
for an example with n D 4 and k D 2.

We also define a refinement of the test cone (see equation (3.1)) by ordering the
gaps between the vectors on each factor:

FN;2 WD
®
x 2 R2�N j 0 � x1;j � x2;j for j 2 ŒN �

and .x2;i � x1;i / � .x2;k � x1;k/ whenever i > k
¯
:

Furthermore, following Examples 2.8 and 2.9, we lower the dimension of the
ambient space by considering the differences


 W R2�N ! RN ; .x1;j ; x2;j /j2N 7! .x2;j � x1;j /j2N :

The map 
 induces a linear isomorphism between the product of simplices�N1 �
R2�N and the cube Œ�1; 1�N � RN . The image, under 
 , of the refined test cone FN;2
is the fundamental chamber:

ˆN D ¹x 2 RN W x1 � x2 � � � � � xN º:

Example 4.3. Let n D 4 and consider the sweep polytope of

�4 D Œ�1; 1�4:

As opposed to the case n D 3 shown in Example 2.9, in this case brute force leads
us nowhere, so we must rely on Algorithms 3.4 and 3.6. In this case, we obtain the
following facet inequalities:

L.�4/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

x 2 R4 W

0BBBBBBBBBBBBBBBBBBBB@

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

2 1 1 0

2 1 1 1

2 2 1 1

3 1 1 1

3 2 1 1

3 2 2 1

4 2 1 1

4 3 2 1

1CCCCCCCCCCCCCCCCCCCCA

x# �

0BBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �1 �1

2 2 2 2 0 0 0 0 0 0 0 0 �2 �2 �2 �2

3 3 1 1 1 1 1 1 �1 �1 �1 �1 �1 �1 �3 �3

4 2 2 2 2 0 0 0 0 0 0 �2 �2 �2 �2 �4

4 4 2 2 2 2 0 0 0 0 �2 �2 �2 �2 �4 �4

5 3 3 3 1 1 1 1 �1 �1 �1 �1 �3 �3 �3 �5

6 4 4 2 2 2 0 0 0 0 �2 �2 �2 �4 �4 �6

6 4 4 4 2 2 2 0 0 �2 �2 �2 �4 �4 �4 �6

7 5 5 3 3 1 1 1 �1 �1 �1 �3 �3 �5 �5 �7

8 6 4 4 2 2 2 0 0 �2 �2 �2 �4 �4 �6 �8

8 6 6 4 4 2 2 0 0 �2 �2 �4 �4 �6 �6 �8

10 8 6 4 4 2 2 0 0 �2 �2 �4 �4 �6 �8 �10

1CCCCCCCCCCCCCCCCCCCCA

w

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

.

The length of a sweep of the set Œ�1; 1�N is 2N and the number of sweeps, even
when restricted to sweeps induced by functionals in the fundamental chamber, grows
too fast for practical purposes. However, Remark 2.4 shows that we can obtain some
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of the inequalities for the sweep polytope by considering r-lineup polytopes. Indeed,
setting r D 2, we get the inequalities in row 1 and 4, and incrementing r by 1, we
sequentially get inequalities in rows 3 (r D 3), 7 (r D 4), 2 and 6 (r D 5), 9 (r D 6),
5 (r D 7), and finally 8, 10, 11, and 12 for r D 8.

Remark 4.4. In [11], we studied the case of indistinguishable fermionic particles:
mathematically we considered a single Hilbert space H of dimension d and took its
N antisymmetric power

VN
H . Combinatorially, this led us to studying the sweep

polytope of the hypersimplex �.d; N /. For the case of N distinguishable qbits (so
d D 2), the analogous polytope is the N -dimensional cube.

Whereas in [11], we considered d as a variable that was meant to grow to infinity,
here for most applications a fixed d suffices. For practical purposes, what we need is
to analyze what happens when N grows.

Proposition 4.5. Let r � 2 andN � r � 1. Suppose that we have theH -representation

Lr.Œ�1; 1�N / D ¹x 2 RN W hy;x#i � b; .y; b/ 2 I º;

where I � ˆN �R. For M > N , we have the H -representation

Lr.Œ�1; 1�M / D ¹x 2 RM W hy 0;x#i � b0; .y; b/ 2 I º;

where y 0 is obtained from y by appendingM �N entries equal to y1 at the beginning
and b0 D b C .M �N/y1. With the exception that if y D .1; 0; : : : ; 0/, then

y 0 D .1; 0; 0; : : : ; 0/:

Proof. The set of upper ideals of length r of the poset G.N / is isomorphic to that of
G.M/ as long as N � r � 1. The isomorphism is simply adding a 0 to every set and
adding one to all elements (doing this M � N times). When running Algorithm 3.4,
we get the same steps and comparisons, with the only difference that the correspond-
ing vectors have one more entry at the start, hence the replications of the first entry
y1. To obtain the new right-hand side b0, we apply the last part of Proposition 2.3.

For example, consider the following inequality for N D 4 which is minimal for
r D 4:

.2; 2; 1; 1/x# � .6; 0; 0;�2/w;

where w D .w1; w2; w3; w4/. It is transformed into the following inequality which is
valid for N D 7 particles and r D 4:

.2; 2; 2; 2; 2; 1; 1/x# � .6; 0; 0;�2/wC 2.7 � 4/:
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Remark 4.6. The sweep polytope of Œ�1; 1�n is normally equivalent to the sweep
polytope of Œ0; 1�n. This is a zonotope obtained by Minkowski sum of the segmentsX

v1;v22Vert.Œ0;1�n/

Œ0; v1 � v2�:

The resonance arrangement is the hyperplane arrangement associated to the zono-
tope given by the Minkowski sum

P
v2Vert.Œ0;1�n/.0; v/. Dubbed the White Whale

by Billera, some recent research have focused on the computations of its vertices;
see [10,15]. Since 0 is a vertex of Œ0; 1�N , the White Whale is a Minkowski summand
of the sweep polytope of the cube. In other words, there exists a polytopeQ such that

QC
X

v2Vert.Œ0;1�n/

Œ0; v� D
X

v1;v22Vert.Œ0;1�n/

Œ0; v1 � v2�: (4.1)

With a mix of clever ideas and lots of computational power, the total number of ver-
tices of the White Whale is known only untilN D 9, see [15]. Equation (4.1) provides
some context for the hardness of computing the sweep polytope of the cube.

5. Further questions

5.1. Relationship with the quantum marginal polytope

Even though the polytope ƒ.d; N;w/ of equation (2.6) is not a sweep polytope, it
contains some of the occupation vectors coming from lineups, namely, the ones in
the positive orthant. We compare ƒ.d;N;w/ and Lr;w.…d;N / in the following small
example.

Example 5.1. Continuing Example 2.8, without loss of generality, we may restrict
the study of L.�2/ to the positive quadrant. In Example 2.8, we computed L.�2/ the
sweep polytope of the product of N D 2 simplices of dimension d � 1 with d D 2.
The inequalities obtained by Bravyi [9] for the polytope ƒ.2; 2;w/ are as follows:

0 � x1 � w1 C w2 � w3 � w4;

0 � x2 � w1 C w2 � w3 � w4;

0 � x1 C x2 � 2w1 � 2w4;

�2min¹w1 � w3; w2 � w4º � x1 � x2 � 2min¹w1 � w3; w2 � w4º:

The last two inequalities are the only ones that are not obtained by restricting L.�2/
to the positive quadrant. The comparison between †2;2;w restricted to the positive
quadrant and ƒ.2; 2;w/ is illustrated in Figure 8, where

� WD 2min¹w1 � w3; w2 � w4º:
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.0; 0/

.1234; 1234/

.12; 0/

.0; 12/

.�; 0/

.0; �/

.13; 12/

.12; 13/

.1234; 0/

.0; 1234/

Figure 8. The 6 points illustrated from Figure 4 in the positive quadrant. We highlight that the
two extra inequalities attain equality on some of these points.

In Figure 4, we assumed that w1 � w2 � w3 C w4 is larger than its negative
�w1 C w2 C w3 � w4. This is equivalent to w1 � w3 > w2 � w4, in which case
the maximum of x1 � x2 among the positive occupation vectors is

.w1 C w2 � w3 � w4/ � .w1 � w2 � w3 C w4/ D 2.w2 � w4/:

Otherwise, ifw1�w3<w2�w4, then the positive occupation vectors include .12; 23/
and .13; 23/ instead of .12; 14/ and .13; 14/ in the terminology of Figure 4. In
this case, the maximum value of x1 � x2 among the positive occupation vectors is
2.w1 � w3/. In either case, the maximum value of x1 � x2 over the positive occupa-
tion vectors matches the maximum over the whole polygonƒ.2; 2;w/! Similarly, the
same holds for the minimum.

Question 5.2. Does every facet defining inequality of the polytopeƒ.d;N;w/ achieve
its maximum over positive occupation vectors of the product of N simplices �d�1?
This would provide a closer relationship between L.�N

d�1
/ and ƒ.d;N;w/.

5.2. Combinatorial interpretations of theH -representation of sweep polytopes
of hypercubes

TheH -representation given in Example 4.3 provides some material to investigate the
following question.

Question 5.3. Is there a combinatorial interpretation for the right-hand side (and left-
hand side) of the inequalities obtained in Example 4.3 that could deliver sufficient
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conditions for an inequality to be facet defining for sweep polytopes of higher-dimen-
sional hypercubes?

5.3. Cyclic polytopes

Let S D ¹a1; : : : ; anº � R be a fixed subset of real numbers. The cyclic polytope
Cd .S/ is the convex hull of the set Cn WD ¹.1; ai ; a2i ; : : : ; a

d�1
i / W i 2 Œn�º � Rd . The

vertices of the cyclic polytope are naturally labeled by the set S . Furthermore, its face
lattice and oriented matroid depend only on n D jS j and not on the set S . A lineup
of length n, i.e., a sweep, of the cyclic polytope consists of a total order of S coming
from a linear functional p D .p0; : : : ; pd�1/ 2 Rd . The value of the dot product in a
vertex of the cyclic polytope is

.p0; p1; p2; : : : ; pd�1/ � .1; ai ; a
2
i ; : : : ; a

d�1
i / D p0 C p1ai C � � � C pd�1a

d�1
i :

In other words, we consider the polynomial p.X/D p0C p1X C � � � C pd�1Xd�1 2
RŒX� and order the elements of S according to the values p.S/. Since the vector p
is chosen arbitrarily, finding all lineups of Cn is equivalent to finding all possible
orderings of n points induced by a polynomial of degree at most d � 1.

Question 5.4. Characterize the possible number of sweeps of the d -dimensional
cyclic polytope with n-vertices. Are there closed formulas when n� d for the max-
imal and minimal numbers?
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