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A hyperdeterminant on fermionic Fock space

Frédéric Holweck and Luke Oeding

Abstract. Twenty years ago, Cayley’s hyperdeterminant, the degree four invariant of the poly-

nomial ring C[C? @ C? ® (Cz]SLZ(C)XS, was popularized in modern physics as it separates
genuine entanglement classes in the three-qubit Hilbert space and is connected to entropy for-
mulas for special solutions of black holes. In this note, we compute the analogous invariant on
the fermionic Fock space for N = 8, i.e., spin particles with four different locations, and show
how this invariant projects to other well-known invariants in quantum information. We also give
combinatorial interpretations of these formulas.

1. Introduction

Arthur Cayley in 1845 [6] established several notions of hyperdeterminants as pos-
sible analogs of the classical determinant but for hypermatrices. The most popular
hyperdeterminant (see [9]), denoted by HDet, arises by generalizing the concept of
singular matrix to hypermatrix. Let A = (a;jx )i, j kefo,1} be a real/complex 2 x 2 x 2
tensor. The 2 x 2 x 2 hyperdeterminant is

_ 2 2 2 2 2 2 2 2
HDet222(A4) = agoo@i11 + 45104701 + 90019110 + 40119700
+ 4(“0000011611010110 + 610010010611000111)
— 2(a000@001a110a111 + @000401041014111 + 000401141004 111

+ a001401021014110 + @001401141004110 + @010201141004101)-

There is a combinatorial picture associated with this polynomial [5]. Consider the
cube of Figure 1 labeled by the entries of the 2 x 2 x 2 tensor A; the three groups of
HDet;55,(A) monomials are deduced from the diagonals, parallelograms, and tetrahe-
dra inside the cube.

This polynomial gained a lot of attention in the quantum information literature in
the early 2000’s when Miyake [21] showed that this invariant is useful to distinguish
the different types of genuine three-qubit entanglement. In the STU model, extremal
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Figure 1. Monomials of Cayley’s hyperdeterminant from a combinatorial perspective: the four
diagonals (red) of the cube provide the first four monomials of degree 4 of type a; ; KA5% (where
bar denotes the bit-complement), the six parallelograms (green) provide the six monomials of
type a;jkazrdair jrk diygr (Where ijk and i’ j’k’ have one-bit difference), and the two tetra-

hedra (blue) give the two monomials of type a;;xa; 7547 ; k47 -

back hole solutions with 4 electric and 4 magnetic charges have an entropy formula
that is the square root of Cayley’s hyperdeterminant [7]. This surprising analogy was
the beginning of several works on the black holes/qubits correspondence [3,4, 15, 16,
18]. From an algebraic geometry perspective, HDet = 0 is the equation of the dual
variety XV of the Segre embedding of three copies of P! in P7, i.e.,

X =Seg(P' xP! x P!) c P(C?* ® C* ® C?).

Recall that if X C P(V) is a projective algebraic variety, i.e., the zero set of a collec-
tion of homogeneous polynomials, then

XY ={H € P(V*),3x € Xmoom. Tx X C H}. (L.1)

In other words, the dual variety of X is the variety (in the dual projective space) of
tangent hyperplanes, i.e., hyperplanes that intersect X tangentially. The bar in equa-
tion (1.1) refers to the Zariski closure, i.e., the minimal set defined by polynomial
equations that contains the set. When XV is a hypersurface, its defining equation,
Ay, is called the X -discriminant [9]. When

X = Seg(P? x P2 x ... x P9y c P(C T @ C2Fl g ... CUHY)

and d; < Zj# d;, then the X -discriminant is always a hypersurface called the hyper-
determinant of format

(di+ 1) x(d2+1)x---x(dy +1)
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and denoted by HDety, 41,4, +1
minant of format 2 x 2 x 2.

,,,,, d,+1- Cayley’s hyperdeterminant is the hyperdeter-
In this paper, we consider the analog of Cayley’s hyperdeterminant in the ¥+
component of the fermionic Fock spaces #>y, i.e.,

= NV=PNANVve@PNVv=stos

k even k odd

where V' is an N -dimensional single-particle space. We use techniques established by
the authors in [13] to compute it on a generic element of # T in the case where the
single particle state of the Fock space is 8-dimensional, spin %—particle in 4 different
locations, i.e.,

V=C¥= _C* @ C* .
N—— N——
locations Spin

We show that this polynomial contains copies of the Cayley analog for 4 fermions
with 8-single particle states, the 4-qubit hyperdeterminant, and the 4-bosonic qubit
discriminant.

The paper is organized as follows. In Section 2, we recall the principle of the
Spin(2N) action on the fermionic Fock space ¥, and why this action is the natu-
ral generalization of the SLOCC group on multiqubit Hilbert space. This allows us
to connect entanglement classification in fermionic Fock space and classification of
spinors as explained in [17,23]. In Section 3, we compute the equation of the dual
variety of Xgpin(16) C P(F *) on a generic element of # . Our computation is based
on techniques of [13] and the realization of the exceptional Lie algebra as a Z,-graded
algebra eg = s0(16) @ F *. This polynomial of degree 240 in 8 variables has a nice
combinatorial presentation as planes of a finite geometric cube space. It contains 8
copies of the degree 120 polynomial in 7 variables that measures entanglement in
H = /\4(C 8 and several copies of the four-qubit hyperdeterminant. These combinato-
rial pictures are provided in Section 4. Section 5 is dedicated to concluding remarks.

2. Entanglement in fermionic Fock space

Here, we recall how the fermionic Fock space of a 2n-single particle state Hilbert
space can be seen as a Hilbert space with an SLOCC action given by the spin group
Spin(2n, C) [17,23].

Let ## = CV denote a Hilbert space for N single-particle states with N = 2n,
and denote by ¥ = /\"# the fermionic Fock space obtained from J#. We equip #
with a canonical basis {e;}, and we denote by {e”} the basis of the dual space #*.
Consider the vector space V = J @ J#*, where vectors are elements x = v + « with
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v € J and o € H*. Let us equip V with the quadratic form g = ( I?V I{)V ) which
makes K and J* orthogonal complementary subspaces in V. For all x € V, one
defines an operator acting on ¥ = A*J as follows: consider the operators é; and &7

corresponding to the exterior and interior products, i.e.,
ér: ¥ > F ¢l F ¥

fH‘/EeI/\f, fH\/Eeij.

Then, to x = vle; + aye’ € V (summation over repeated indices) one can associate
the operator @, = v!é; + ayé” that acts on . The operators & and é” are, respec-
tively, known as creation and annihilation operators and will be denoted from now on
by pr and ny. Let |0) denote a unit vector of C = /\OJ€ defined by the property that
ny|0) =0,J =1,..., N. The state |0) is known as the vacuum and corresponds to
a state without any excitations. Then, an arbitrary state of ¥ can be expressed as

N N
W) =D > YT i Ph-PI 10}, .1)
m=01,..., In=1

where w;’l’ ’’’’’ 1, are skew-symmetric tensors. In the second quantization picture, it
translates the idea that quantum states may be obtained from the vacuum by excita-
tions.

Note that the creation and annihilation operators, py and n j, satisfy the Canonical
Anticommutation Relations (CAR), which are

{pr.ps} =0, {np,ng}=0, {pr,ns}=28,

where {-, -} is the standard anti-commutator. From the CAR, one can define a product
on V such that xy = z for x, y,z € 'V, where z is such that 00, = ;. One can
easily check that given x € 'V one has

X2 = Q(x, 1)1,

where Q is the quadratic form on V defined by g. This shows that V with this product
is the Clifford algebra €(V, Q). This algebra acts on ¥ by sending x +> Oy.
Recall that the existence of g allows us to define the Lie algebra

s0('V, Q) = s0(2N, C)

as the set of matrices s € My x2n (C) such that

A B
= (C _tA), 22)



A hyperdeterminant on fermionic Fock space 771

where B and C satisfy B =—'B and C = —'C. In other words, s is a skew-symmetric
matrix, i.e.,

2
so(V.0) = \ V.
The Lie algebra so('V, Q) can be embedded into €(V, Q) via

/\zv — €(V, Q),
2.3)

1
XAy Z[x,y].

This embedding defines a representation of so(V, Q) acting on ¥ . Indeed, equa-
tion (2.3) maps s (from equation (2.2)) to the operator O, where

1
O5 = —ZAij[pi,nj]-i-Bijpipj + Cijn;n;. 2.4)
24
The action of equation (2.4) preserves the parity of the number of creations and

annihilators needed to describe |¥) from the vacuum equation (2.1); i.e., one has a
decomposition of ¥ in two irreducible representations,

Fn=FN & Fy.

Here, ¥ AJ,F (resp., ¥) denotes the fermionic states obtained by applying an even
(resp., odd) number of creation operators to the vacuum.

The action of so(V, Q) on ¥ A*,—’ is known in the mathematics literature as the spin
representation [8]. The Lie group with Lie algebra so('V, Q) acting on ¥ ﬁ is the spin
group, Spin(2N, C), i.e., the double covering of SO(2N, C). The Spin group has a
unique closed orbit on P (& A“,—L) known in representation theory as the highest-weight
orbit or the variety of pure spinors (i.e., obtained from |0) by the action of the spin
group). In this setting, it is natural to consider as separable fermionic Fock states [23]
the ones obtained from the vacuum by reversible operations of the SLOCC group
Spin(2n, C), i.e.,

Xsep = P(Spin(2n, C) - [0)) C P(F¥).

In [17], it was shown that for N = 2n fermionic, bosonic and multiqubit systems
(n-fermions with 2n-single particles states, n-bosonic qubits, and n-qubits) can be
embedded in many ways in ¥ Aj,c Under these embeddings, the Spin(2N, C) action on
F Ajf boils down to the usual SLOCC groups on the corresponding embedded Hilbert
spaces (SL(n, C), SL(2,C), SL(2, C)*™). In this respect, it is natural to look for Spin
invariant polynomials in order to separate entanglement classes in fermionic Fock
space.
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3. The hyperdeterminant on fermionic Fock space for N = 8

We now focus on the expression of the equation of the dual of X, i.e., the analog
of Cayley’s hyperdeterminant for Spin(16, C) and 378+. In [13], we showed how dual
equations of orbit closures a Lie group G acting on its Lie algebra g can be projected
to submodules by restriction. Let us recall the principle of our construction. Let g
denote a subalgebra of g acting on a module g; such that as vector spaces we have

g =go D ai. 3.1

The Lie bracket on g is compatible with the bracket on go and respects the Z, grading
at (3.1). More specifically, the action of go on g; defines the bracket

[.-]: g0 X g1 — g1,

and we can insist that it is skew commuting, and there is a consistent restriction of
the bracket of g to g1, i.e., [-,*] : g1 X g1 — @go (see [14]). Let X¢ C P(g) denote
the unique closed G-orbit, also known as the adjoint variety for the Lie group G, and
YG, C P(g1) the unique closed Go-orbit in P(g1), known as the highest-weight orbit
of the g;-module for the Lie group G¢. With these notations, in [13, Theorem 3.1], we
showed that Ygo C X N P(gy). In particular, if Ygo is a hypersurface, its defining
equation AYGO will divide the restriction to P(g;) of Ag, the defining equation of
X . When the polynomials have the same degree, one gets equality.

The result in [13, Theorem 3.1] is in fact more general and deals with Z-graded
Lie algebras. Recently, Manivel and Benedetti [20] improved our result by relating
the degree relations between the polynomials Ay, and Ay with the grading of g.

Let us consider the following realization of the exceptional Lie algebra eg:

eg = s0(16,C) @ 378+.

This Z,-branching of eg with g; = 378+ was used by Antonyan and Elashvili [2]
to obtain the orbit classification of spinors in ?Si. The bracket on so(16, C) is the
usual bracket on this Lie algebra, while the bracket [-,-] : go X g1 — g1 is defined by
equation (2.4). The bracket [-, -] : g1 X g1 — go is described in [2, equations (8) and
(9)] and essentially reflects the Jordan algebra structure.
Our strategy to find an expression of stp will be to restrict an expression of
X gg, which we need to construct. Such an expression exists on a Cartan subalgebra
of eg, i.e., a subspace of semi-simple elements of dimension 8. Recall that Cheval-
ley’s restriction theorem ensures that, for a Lie algebra g with Cartan algebra §,
then C[q]¢ ~ C[p]", where W is the Weyl group of type G. Under this restriction,
Tevelev [24] showed that when G is a simple Lie group with simply laced Dynkin
diagram that
Ag = Tlyera € C[E]W’
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where R is the set of roots of g. In other words, the restriction of the G-discriminant
of a Lie algebra to semi-simple elements of g is the product of the roots. In order
to restrict Ag to g1 = F4', one needs to identify a Cartan subalgebra of eg living
inside ?8+. Recall that a standard choice [2] for a Cartan of eg is

8
h= {Zx,-ei ® e —e,-+g®ei+8, Xi e(C}.

i=1

For this Cartan, the 240 roots of eg are
1
£x; £ xj, E(ixl 4 xp & x3 £ x4 £ x5 £ x6 £ x7 £ x3), 3.2)

with an even number of minus signs for the second type of root. A generic element of
a Cartan subalgebra ¢ such that ¢ C 378+ can be described [17] as follows:

8
= yilE), (3.3)
i=1

where we have chosen the following basis of c:

|E1) = (p1p2p3pa + pip3p3pa) 10) . |E2) = (p1p2p3ps + pipsp3ps) |0),
|E3) = (P1p3p3ps + pip2p3p4) 0) . |Es) = (p1p3p3ps + pip2r3p3) [0),
|Es) = (p1pipapi + p2p3p3p3) 0) . |Ee) = (p1pip3ps + p2p5p4pa) |0),
|E7) = (p1p1p2p3 + P2p5papi) |0) . |Es) = (1 + p1p2p3papipsp3Pi) 10) .

In order to obtain the projection of Ag to the semi-simple algebra c, one needs
to express the variables x; in terms of y;. This can be achieved by considering the
following expressions from [17]:

1
» =E(Xl+X2+X3+X4—x5—x6—x7—x8),

1
y2=E(xl+x2_x3_x4_x5_x6+x7+x8),
1
Y3=E(Xl—X2+X3—X4—X5+x6—x7+xs),
1
y4=—(Xl—Xz—X3+X4—X5+X6+X7—X3),
2 3.4
1 (3.4)
y5=E()C]—XZ—X3+X4+X5—X6—X7+)68),
1
)’6=E(Xl—X2+X3—X4+X5—X6+X7—X8),
1
y7:E(xl+x2_x3_x4+x5+x6_x7_x8)a

1
y3:E(X]+X2+X3+X4+X5+X6+X7+Xg).
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The fundamental invariants can be expressed in terms of the y;’s by inverting the
relations above, writing the set of roots R in the y-basis and forming the power sums

fa=Y ol

a€R

for d in {2, 8, 12, 14, 18, 20, 24, 30}. We did this computation in Macaulay2 [11].
Up to symmetry permuting the names of the variables and rescaling the invariant, the
monomials that occur in each are listed in the appendix.

The expression of the roots at (3.2) after the substitution from the inverse of
(3.4) has every root paired with its negative. As such, the restriction A gg|c, which
is the expression of the HDetgpin(16,c) Of 5‘78+ because both polynomials have degree
240 [20], on semi-simple elements (equation (3.3)) becomes the following (after re-
scaling):

HDetspin(16,0) (W) = (¥8¥7V6Y5Y43y2)1
(¥s—Y6—y7—8)(¥s—Y6e—y7+¥8)(¥s— Y6+ y7—¥8)(¥s— Y6+ y7+¥s)
(¥5+y6—y7—y8)(¥5+y6—y7+y8)(¥5s+ Y6+ y7—y8)(¥5s+ Y6+ Y7+ s)
(y3=ya—y7=y8)(y3—ya—y7+y8) (y3—ya+y7—y8)(y3—ya+y7+s)
(¥3—ya—y5—y6)(¥y3—ya—y5+y6)(y3—ya+y5—ye)(y3—ya+ys+Ye)
(y3+ya—y7—=y8)(y3+ya—y7+y8)(y3+ya+y7—y8)(y3+ya+y7+ys)
(y3+y4—y5s—6)(y3+ya—ys+y6)(y3+ya+ys—ye)(y3+ya+ys+e)
(y2—ya—y6—y8)(y2—ya—y6+8)(¥2—ya+y6—s)(y2—Ya+ Y6+ s)
(y2=ya=ys=y1)(y2=ya—ys+y7)(V2—ya+ys—y7)(y2—ya+ys+y7)
(y2+ya—y6—ys)(y2+ya—ye+ys)(y2+ya+y6—ys)(y2+ya+ye+s)
(V24 ya—ys—y1)(V2+ya—ys+y7)(y2+ya+ys—y1)(y2+ya+ys+y7)
(y2=y3—=Y6—y7)(¥2—y3—Y6+y7)(¥2—y3+y6—y7) (V2= Y3+ Y6+ ¥7)
(y2—=y3—=y5—y8)(y2—y3—y5+y8)(y2—y3+y5—ys)(y2—y3+ys+s)
(y2+y3=y6—y7)(V2+y3—ye+y7) (V2 +y3+y6—y7) (V2 +y3+ye+y7)
(y2+y3—y5—y8)(y2+y3—ys5+y8) (V2 +y3+ys—ys8)(y2+y3+ys+s)
(V1=ya=Y6e—y1)V1=ya—ye+y7) (V1 —ya+y6—y71)(V1—ya+ye+y7)
(V1—=ya—y5—y8)(¥y1—ya—y5+y8)(y1—ya+ys—ys)(y1—ya+ys+ys)
V1+ya—ye—y1)(V1+ya—ye+y1)(V1+ya+ye—y1)(y1+ya+ys+y7)
(V1+ya—y5—y8)(¥1+ya—ys+ys) (V1 +ya+ys—ys)(y1+ya+ys+ys)
(V1—=y3—=Y6—y8)(¥1—y3—Yye+ys8)(¥y1—y3+y6—ys)(y1—y3+ Y6+ s)
(1=y3=ys=y1)1—y3—ys+y7)1—y3+ys—y7)(V1—y3+ys+y7)
V1+y3—=y6—y8)V1+y3—ye+ys)(yi+y3+y6—ys)(y1+y3+ye+ys)
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1+y3=ys=y2)1+y3=ys+y7) 1 +y3+ys—y7)1+y3+ys+y7)
1=y2=y7=y8) (V1= y2—y7+y8) Y1—y2+y7—y8) (y1—Yy2+y7+ys)
V1=y2=y5=y6)(¥1—y2—y5+y6) (V1 —Y2+y5—Y6) (V1= Y2+ Y5+ V)
1=y2=y3=ya)(V1—y2—y3+tya) V1—y2+y3—ya) V1= Y2+ y3+y4)
1+y2=y7=y8) Y1+ y2=y7+y8) V1 +y2+y7=y8) W1+ Y2+ Y7+ s)
(V1+y2=y5—y6)(¥1+y2—ys5+ye) (V1 +y2+y5—y6) (Y1 + Y2+ ys+Ye)
1 +y2=y3=y0)(V1+y2—y3+ya)V1+y2+y3—ya)(y1+y2+y3 +y4))2-

3.5)
We can restrict this polynomial to /\4J€ = /\4(C8 C Fs. Indeed, considering the
seven-dimensional Cartan subalgebra spanned by |E;), ..., |E7), the projection of

HDetspin(16,c) is obtained by dividing by y3, simplifying, and then setting yg = 0 in
equation (3.5). One obtains

_ 274
HDetSpin(lG,C)|/\4C8(\p) =Q°T", (3.6)
with

Q = y1Y6Y5Y4y3Y2Y1(y3—Ya—y5—y6)(y3—Ya—Yy5+Y6)(¥3—ya+Y5—Ye)
(y3—ya+ys+y6)(y3+ya—ys—ye)(y3 + ya—ys + ye)
(y3+ya+y5s—y6)(y3+ya+ys+ ye)(y2a—ya—ys—y7)
(V2=ya—ys+yD)(2—ya+ys—y1)(y2—ya+ys+y7)
2+ ya—ys —y1)(y2+ya—ys +y1) (V2 + ya+ ys — y7)
2+ ya+ys+y7)02—y3—y6—y1)(y2—y3—ys + y7)
(2—=y3+ Y6 —yD)(V2—y3+ Y6+ y1) (V2 + y3— Y6 — ¥7)
2+ y3=y6e+yD)(2+y3+y6—y1)(2+y3+ ye + y7)
(1= ya—Y6 —y7)1 — ya— Y6 + y71)(¥1 — ya + Y6 — y7)
(V1 —Yat Y6+ y)1 +ya—ye —y1) (V1 + ya—ye + y7)
1+ ya+y6—y7)1 + ya+ys + y7) (V1 —y3 — ¥s — y7)
D1—=y3=ys+yDO1—y3+ys—y)1—ys+ys+y7)
D1+ y3=y5s=y)1+y3—ys +y1) 1+ y3+ ys—y7)
1+ y3+ys+y)1—y2—ys—y6)(y1 — Y2 —ys5 + Ye)
1=y2+y5—y6)(y1 — Y2+ ¥5 + ¥6)(¥1 — Y2 — y3 — ya)
1—=y2=y3+ )1 —y2+y3—ya) (1 —y2+y3+ya)
1+ y2—y5—y6)(y1 + y2—¥5s + y6) (V1 + y2 + 5 — Y6)
1+ y2+y5s+ye)1 +y2—y3—ya) (1 +y2— y3+ ya)
1+ y2+y3—ya)1+y2+y3+ ya)
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and

T'=(s—y6—y1) (s — Y6+ y1)(¥s + y6 — ¥y71)(¥5 + Y6 + ¥7)
r3=ya=yD) 3 —ya+y) (s +ya—y7)(y3+ ya + y7)
(y2—=v4—y6)(y2 = ya+ y6)(y2 + ya — y6)(y2 + ya + Ye)
(y2=y3—=ys) (2= y3+ ys)(y2 + y3 —ys)(y2 + y3 + ys)
1 =ya—=ys) 1 —ya+ )1 + ya—ys)(V1 + ya + ys)
(1 =y3=ye)(¥1 = y3+ ye) (V1 + y3 — y6)(¥y1 + y3 + Ye)
1 =y2=yD)1 —y2+ ¥y 1 +y2—y1)(y1 + y2 + y7)-

The factor Q of degree 63 in the expression of HDet in equation (3.6)

spin(16.C)| \*c3
corresponds to the expression AE7\ /\4C ¢ as computed in [13] from the grading e7 =
slg @ /\4(C8 [1,22]. This last polynomial is the restriction to semi-simple elements
of the dual equation of the Grassmannian of four-planes in C2. In the quantum infor-
mation literature, it would be the analog of Cayley’s hyperdeterminant for 4 fermions
with 8 single-particles states, and as such is interesting to study fermionic entangle-
ment. In [13], we also showed how this equation projects to the hyperdeterminant
of format 2 x 2 x 2 x 2. The second factor, which has degree 28 and is named 7 in
equation (3.6), is by construction another SLg(C) invariant polynomial for the module

NCs.

4. A combinatorial interpretation

The invariant polynomials HDetgin(16,c) and HDet described on semi-

spin(16,0)[ \*Cs
simple elements have nice combinatorial interpretations. Consider the cube (Z,)3
with vertices

yl :(05070)1 y2:(07150)y y3:(110»0)a y4:(171a0)9
y5:(0’07 1)’ y6=(0’1’1)7 J’7=(1,071)’ )’8=(1,1,1)

The cube (Z,)3 comprises 8 points, 28 lines, and 14 planes. The planes are repre-
sented in Figure 2. They are planes in the sense that their defining equation is linear.
For instance, the tetrahedron plane of Figure 2 is given in the (21, z», z3) coordinates
of (Z5)? by the equation

zZ1 + 22+ 23 =0.

For one set of four variables y;,, yi,, Yis, iy, corresponding to a plane of (Z)3, one
defines 8 linear forms y;, & y;, & yi; £ yi, with iy < iy < i3 < i4. The 14 planes of
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Vi —————— )8 Vi ——— 8
II'
/
V3 Ya V3 Y4
Vs Ye Vs Ye
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/
/
/
/
¥y —m—m@mWM—— )2 V¥ —mMm 2

Figure 2. Planes of the cube (Z5)3: 6 planes as the “regular” faces, 6 planes through the “oppo-
site edges”, and 2 “tetrahedron” planes.

the cube (Z,)3 generate the 8 x 14 = 112 linear forms of equation (3.5) that involve
4 variables. Including the linear forms yy, ..., yg, one gets the product of 120 linear
forms (every linear form being squared to make a degree 240 polynomial). Thus, we
get the following expression of the formula of equation (3.5) parametrized by vertices
and planes of (Z3)?:

2
HDetspin(16,c)(¥) = ( [T » I1 iy £yi, £yis £ J’i4)) :

yi-vertices (¥ .Viy,Viy»Viy)-planes

with the convention that i; < iy < i3 < ig4.

The restriction of HDetgpin(16,c) t0 /\4(C 8 was obtained by eliminating yg in equa-
tion (3.5). Our combinatorial picture could be obtained by projecting the planes of
(Z)? to the projective space P G(2,2), where the coordinate associated to yg is con-
sidered the center. The 2-dimensional projective space over Z, is well known as the
Fano plane. The planes passing through the center will project to lines, while the
planes that do not pass through the center will correspond to affine planes in P G(2, 2).

Therefore, one can see equation (3.6) as a product of linear forms parametrized
by the vertices, affine planes, and lines in the Fano plane

2
HDetg ;16 oyt s (W) = ( 1_[ Vi l_[ (Vi) £ iy iyi3iyi4))

yi-vertices  (¥j;,¥iy,Yiz»Yi4)-planes

x ( I1 (viy &+ yi, + yi3))

(3j 55 j3)-lines

4
bl

with the convention that iy < i, <i3 <i4and j; < j» < js3. This observation reveals
an interesting connection between the Fano plane and the dual of the Grassmannian
Gr(4, 8).
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Y2
J/S\ /y7
AN
V3 Ye Ya

Figure 3. The Fano plane obtained by considering the projective space associated to the cube
(Z2)? when the point corresponding to variable yg is chosen as the center. The planes of (Z2)3
passing through yg are sent to lines and the planes that do not go through yg are mapped to the

Figure 4. The affine plane obtained by removing the projective line ysyey7.

affine plane of the Fano plane.

Furthermore, one can eliminate three more variables and restrict to a four-dimen-
sional Cartan algebra. Suppose that we remove the line ysy¢y7 of Figure 3 and we
keep the collinearity relations. One gets the affine plane depicted in Figure 4. Consid-
ering the monomials given by the lines of this affine plane, one gets the polynomial,

A1, y2,y3.y4) = [T i)™
(yi,yj)-lines,i<j

This last equation is nothing but the expression of the 2 x 2 x 2 x 2 hyperdetermi-
nant (see [19]) restricted to the semi-simple elements of equation (3.3) for y5 = y¢ =
y7 = yg = 0. For an understanding of the four-qubit entanglement classification based
on the study of A, one refers to [12], and for other algebraic geometry techniques for
this classification, see [10].

5. Conclusion

In this paper, we evaluate for a generic element of the fermionic Fock space, the ana-
log of the Cayley’s hyperdeterminant in the context of the spinor representation of
Spin(16, C). This work was motivated by considerations from quantum information
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theory as the fermionic Fock space, and its spinor representation is a framework to
describe many different multipartite Hilbert spaces and their corresponding SLOCC
actions. In this setting, algebraic invariants are interesting to compute, to distinguish
different classes of entanglement either by separating the classes when the polynomi-
als vanish or not or by measuring some amount of entanglement when we evaluate
those invariants.

It is interesting to try to express a given invariant in terms of the fundamental
invariants of the corresponding representation. It is known (see [25, p. 492, item 7])
that the ring of invariants C[% *]5n(16.C) j5 generated by 8 polynomials of degree 2,
8,12, 14, 18, 20, 24, and 30. Those polynomials can be evaluated on generic fermionic
Fock states by the same techniques as we used in this paper (see the Appendix). In
degree 240, there are 130,008 monomials in the basic invariants, so naively finding
an expression of HDetgyin(16,c) in terms of those invariants sounds quite difficult to
obtain via interpolation.

Appendix: Fundamental invariants on fermionic Fock space with
N =8

One evaluates the fundamental invariants of C[Fzt]5P"(16) on the generic semi-simple

element given by equation (3.3). To do so, we restrict to the Cartan of the spin mod-
ule, the fundamental invariants of C[eg]Z8. Those invariants can be obtained by the
Chevalley restriction theorem (see Section 3) and the observation that the power sum
expression
fa= Z ad, where R is the set of roots of Eg,
a€R

is invariant under the action of the Weyl group Eg. A set of fundamental invariants
of C[FE]3Pn(19) consists of homogeneous polynomials of degrees d = 2, 8, 12, 14,
18, 20, 24, 30 (one for each). One may obtain a set of invariants by first calculating
the expression of the polynomials f; for k = 2,8, 12, 14, 18, 20, 24, 30 in terms of
the x;’s (see equation (3.2)) and then expressing those polynomials in terms of the
yi’s, 1.e., restricting them to a Cartan subalgebra of .778i (see equation (3.4)). It turns
out that the invariant expressions obtained in this way are non-trivial and generate
the invariant ring. Moreover, the fundamental invariants restricted to the y;’s have an
additional Gg-symmetry. Respectively the invariants have 1, 7, 14, 17, 29, 38, 57, and
93 terms up to symmetry that we list as follows:

f2i vt
fs: 6061 Y%, 7196 yy3, 17990 y1y5, 35980 y1y3y3, —28560 3 y2y3y4,
— 95200 y7y3y3ys. 215880 yFy3y3y3.
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f141

fis:

J20:
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1407661 y12, 270402 y1°y2 2028015 y8ys, 3785628 y©yS,
4056030 y8y2y2, 18928140 ypdy2, 47320350 y4yy2,

— 1801800 y2y5y3y4. —21621600 y7y3y3y4, —45405360 y°y5 34,
— 151351200 y7y3y3y4. 113568840 y$y2y3y2,

283922100 y#y4y2y2, —504504000 y3y3y3y3,

1723681 yi*, 114695 y{%y2, 1261645y{%y5, 3784935 y3yS,

2523290 y10y2y2 18924675 ySy2y2, 35326060 ySySy2,

88315150 ySydys, —917448 y!'ysy3y,, —16819880 37 y3 34,

— 60551568 y{y3 y3ya, —201838560 y]y3y3ya, —423860976 y7 y3y3ya.
113548050 y8y2y2y2. 529890900 y®y4y2y2, 1324727250 y*ydyiy2,

— 1412869920 y2y3y3y3,

5727234733 y18, 40108185 y1°y2, 802163700 y*y3,
4866459780 y12yS, 11470940910 y10y8, 1604327400 y14y2 )2
24332298900 y12y2y2. 107062115160 y1°y8y32,

172064 113650 y¥y8y2, 267655287900 y10y4y%,
802965863700 y3ySy?, 1498869612240 ySySyS,

— 427817376 y1° y2y3y4, —14973608 160 y13y3 34,

— 116794143648 y{' y3 y3 4. —305889423840 y7y] y3ya,

— 389313812160 y{'y3y3ya. —2 141225966 880 y7 y3 y3 ya.

— 3670673086080 y{ y]y3vs. —7708 413480768 y{ y3y3 ya.
145993793400 y12y2y2y2, 1605931727400 y10y3y2y2,
4817795182200 ySySy2y2, 12044 487955500 y¥y2 ydy2,
22483044 183600 ySySy3y:, —7137419889600 y7y5y3y3,
—25694711602560 y7 y3y3y3, —53 958894365376 y7 3 v3y3,
56207 610459000 yS ydydy2,

91628415661 y2°, 199229630 y{8y2, 5080355565 y{°y3,
40 642844520 y1*yS. 132089244 690 yl2y$,
193730892212 y1991° 10160711 130 y16y2y2,
203214222600 y4y3y2, 1232832950440 yl2y8y2,
2905963383 180 y1%y8y2, 3082082376100 yl2y5y3,
13561 162454840 y{%ySy3, 21794725373 850 y3y8y3,
40683 487364520 y¥ySyS, —2390751000 y;” y2y3y4,
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— 108380712000 y13y3y3y,, —1 137997476000 y;3y5y3ya,

— 4226847768000 yi'yly3y,, —6457 684090000 y3y5y3ya,

— 3793324920000 y°y3y3y4, —29587 934376000 y{'y3y3ya,
— 77492209080 000 y;y] y3y4, —162733639068 000 y7y5 V3 ya,
— 278971 952688000 y] y] y3ys, 1219285335600 yl4y2y2y2,
18492494256 600 y12y3y3y2, 81366 974729040 y{°ySy2y2,
130768352243 100 y$ySy2y2, 203 417436822600 y Oy yty2,
610252310467800 y¥yS$y3y2, 1139137646206 560 ySySySy2,

— 98 626447920000 y{'y3y3y3, —542445463 560000 y7y5 33,
— 929906 508 960 000 y; yJ y3v3, —1952803 668 816000 y{y3y3y3,
1525630776 169500 y§ysy3 vy, 2847844 115516400 ySySy3yy,
— 4100887704 513600 y3 y3y3 3.

foa: 23456287206061 y24, 4630511892 y2y2,
178274707842 y20y%, 2258 146299332 y18,8
12339156 564207 y16y8, 32904417504 552 y 1410,
45368212013852 y12y12, 356549415684 y70y3y3,
11290731496 660 y8y4y2. 115165461 265932 y16y8y2,
493566262 568280 y 14812, 998 100 664 304 744 121032,
287913653 164830 y{°y5y3, 2303309225318 640 y*y3y3,
7485754 982285580 y12y8 34 10979107307352184 y10y10y4
13 973409300266 416 y12ySyS, 32937321 922056552 y19y5 S,
52934981 660 448030 y§$ y8y8, —67914166320 y2!y2y3y4,
— 4753991 642400 y1°y3 y3y4. —81293257085040 17 y3y3y4.
—526470617312640 y{° y] y3y4, —1535539300495200 y13y3y3y4.
—2177673917065920 y1 ' y3' y3y4. —270977523 616800 y{”y3 y3 ya.
— 3685294321 188480 y{°y3 y3ys. —18426 471605942400 y13y7y3 4.
— 39924021 812875200 y{ ' y3y3ya, —38695590372479040 y {3 y3y3y4.
— 143726478 526350720 y{ ' y] y3 ya. —219582119970 813 600 y7y3 y3 ya.
— 376426491378 537600 y; yJ y3 4, 67 744388979960 y18y3y3y2,
1727481918988 980 y{®y3 y3y3. 13819855351 911840 y{*y5y3y3.
44914529893 713480 y12y5y2y2, 65874643844 113 104 y10y10y2y2,
34549638 379779600 y 4 y4 3432, 209601 139503 996 240 y 128 y4y2,
494059828 830848280 y 108 y412 922245013817 583456 y10y8y$)2,
1482179486492 544840 y8 8,62 12284314403 961600 y!7y3y3y3,
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— 128985301241 596800 y{3y3 y3y3, —479088 261 754502400 y{ ' y7 y3y3,

—731940399902712000 y7y3y3y3, —1 006085349 684 455040 yi ' y3y3y3,

— 2634 985439649763200 y7y3 y3y3, —4517 117896 542451200 y] yIy3v3,

524002 848759990 600 y12y3y$y3, 2305612534543 958 640 y1°ySy3yi,

3705448716231362100 y§ySy3y3, 6916837603 631875920 y§ySySys,

— 5533469423264 502720 y7y5y3y3, —9485947582739 147520 y]y3v3v3,

12911430193 446 168384 y$y$y$y8,

96076 794555968173 y3°, 467077693875 y28y2, 29425894714 125 y2°y3,
637561052139375y2*yS, 6284530371088 125 y72y5,

32260589238252375 y29y1°, 92871393261635625 yi8y12,

156 146 408 450 881875 y1°y14, 58851789 428250 y7°y3y32,

3187805260 696 875 y?*y3y2, 58655616 796822500 y72y$y3,

483908 838573785625 y2°y5y2, 2043170651755983750 yi8y10y2,

4736441056343416875y1°y12y2, 6245856338035275000 y}4yl*y2,

146 639 041992056 250 y22y5 y4, 2258241246 677 666 250 y2°ySy3,

15323779888169878125 y18y5y4, 52100851619777585625y}°yi0y%,

94728821126 868 337500 y14y12y3, 28604389 124583772500 y}¥y5y$,

156302554859 332756875 y1°y5yS, 416 806812958220 685000 yi4y10yS,

574688181503 001247500 y}2y12y$, 669868 092254283243750 y14y8y8,
1354622142114217226250 y}2y1°y%, 1986779 141767518598 500 y}0y10y10,
— 8718783602760y y2y3y4, —1 020097 681522920 y2°y3 y3y4,

— 30602930445 687600 y23y5y3y4, —368 692447750 426800 y?' y]y3ya4,
—2150705945210823 000 y{°y3y3¥4, —6 686740 302382740600 y|’ y1'y3ya4,

—11658931809282727200 y]°y}3y3y4, —102009 768 152292000 y73y3y3ya,

—2580847134252987 600 y7' y3y3ys, —25808471342529876000 y1°yly3ya,

—122590238877016 911000 y!7y3y3ya, —303 132227 041350907200 y{°yily3ya,

— 408062613 324895452000 y{>y13y3y4, —54197789 819312739600 y1°y3y3y4,

—441324859957260879600 y!7yly3ya, —1667227248727 429989 600 y!°y3y3ya,

—3182888383934184525600,°y}' y3y4, —2858 103854961308 553600 y,°y]y]ya,

—8336136243637149948000 y13y)yTy,, —11822156854612685380800 y!'yily7lys,

—18061628527880491554000 y{'y3y3ya, 19126831564 181250 y7*y3y3y2,

879 834251952337500 y72y5y3y7, 13549447 480065997500 y2°ySy2y7,

91942679329019268 750 y{8y8y2y2, 312605109718 665513750 y1°y10y2y2,

568372926 761210025000 y!4yi2y2y2, 33873618 700164993750 y°y3y3y3,

429065836 868 756 587500 y18ySyTy32, 2344538322889991353125 y1¢y5y4y2,

6252102194373310275000 yi*y1°y3y2, 8620322722545018712500 y|2yi2y$y2,

782
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4376471536061317192500y1°ySy5y2, 18756306583 119930825000 y}*y5y5y3,
37929419979 198082335000 y{2y10ySy2, 60957996395139775181250 yi2y5y5y32,
89405061379538336932500y1°y19y8y2, —8602823780843292000y%!y3y3y3,

— 180659299397709 132000 y!°y3y3y3, —1471082866524202932000 ;" y7y3y3,
—5557424162424766 632000 y1°y3y3y3, —10609 627946 447281752000 y3yily3y3,
—3089274019700826 157200 y17y3y3y3, —20006 726 984 729 159 875200 y 1>y y3y3,
—58352953705460 049 636 000 y!3yJy3y3, —82755097 982288797665 600 yi'yllyly3,
—100033634923645799376 000 y3y]yly3, —216739542334565898 648000y} !y yly3,
— 331129856 344475 678490000 y7y5y3y3, 1072664592171891468 750 y18y5ysys,
10941178840 153292981250 y1°ySy5y4, 46890766457 799 827062500 y*y5y3ys,
94823549947995205 837500 yi2y10y4y1, 87529430721226 343850000 y14ySySys,
284470649 843985617512500 y}2y5yS$ys, 417223619771178905 685000 y1°yi°ySys,
670537960346537526993750 y°y5ySys, —42014126667931235737920y1°y3¥3y3,
—210070633339656 178689600 y}3y]y3y;, —455153038902 588387160800 y!'y3y3y3,
— 780262352404 437235132800y} y]y]y3, —1192067 482840 112442564000 y]y5yly3,
531011879708 773152690000 y}2y$y$yS, 1251670859313536717 055000 y1°y§ySyS,

2011613881039612580981250y5y8y5y8, —2043544256297335615824000y7y]yly].
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