
© 2024 European Mathematical Society
Published by EMS Press and licensed under a CC BY 4.0 license

J. Eur. Math. Soc. 27, 4399–4468 (2025) DOI 10.4171/JEMS/1454

Jürg Fröhlich · Antti Knowles · Benjamin Schlein · Vedran Sohinger

The Euclidean �4
2

theory as a limit of an interacting Bose
gas

Received January 21, 2022; revised November 21, 2022

Abstract. We prove that the complex Euclidean field theory with local quartic self-interaction
in two dimensions arises as a limit of an interacting Bose gas at positive temperature, when
the density of the gas becomes large and the range of the interaction becomes small. The field
theory is supported on distributions of negative regularity, which requires a renormalization by
divergent mass and energy counterterms. We obtain convergence of the relative partition function
and uniform convergence of the renormalized reduced density matrices. The proof is based on
three main ingredients: (a) a quantitative analysis of the infinite-dimensional saddle point argu-
ment for the functional integral introduced by Fröhlich et al. (2022) using continuity properties of
Brownian paths, (b) a Nelson-type estimate for a general nonlocal field theory in two dimensions,
and (c) repeated Gaussian integration by parts in field space to obtain uniform control on the
renormalized correlation functions. As a byproduct of our proof, in two and three dimensions we
also extend the results on the mean-field limit by Fröhlich et al. (2022) and Lewin et al. (2021)
to unbounded interaction potentials satisfying the optimal integrability conditions proposed by
Bourgain (1997).
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1. Introduction

1.1. Overview of Euclidean field theory

A Euclidean field theory of a scalar field on a domain ƒ � Rd is specified by a formal
probability measure on a space of fields1 � W ƒ! RK given by

�.d�/ D
1

c
e�S.�/D�; (1.1)

where D� D
Q
x2ƒ d�.x/ is the formal uniform measure on the space of fields, and S

is the action. The latter is typically the integral over ƒ of a local function of the field �
and its gradient. One of the simplest field theories with nontrivial interaction is the K-
component Euclidean �4

d
theory, whose action is given by

S.�/ ..D �
Z
ƒ

dx �.x/ � .� C�=2/�.x/C
�

2

Z
ƒ

dx j�.x/j4; (1.2)

where � is a constant, � is a coupling constant, � is the Laplacian on ƒ with appropriate
boundary conditions, and j�j denotes the Euclidean norm on RK .

Euclidean field theories originally arose in high-energy physics in d D 4 space-time
dimensions, through an analytic continuation of the time variable of the quantum field �,
which replaces the Minkowski space-time metric with a Euclidean one [61, 71]. Subse-
quently, Euclidean field theories have proven of great importance in statistical mechanics
in d 6 3 dimensions, in particular through their connection with the theory of phase
transitions and critical phenomena. The works [74, 75] recognized the analogy between
Euclidean field theories and classical statistical mechanics, which was followed by a
purely probabilistic formulation of Euclidean field theories in [63,64]. The rigorous study
of field theories of the form (1.1) has been a major topic in mathematical physics since
the late sixties; see e.g. [43, 72] as well as the more recent [47] for reviews.

Euclidean field theories also play a central role in the theory of stochastic nonlinear
partial differential equations. Formally, (1.1) is the stationary measure of the stochastic
nonlinear heat equation

@t� D �
1
2
rS.�/C � D .� C�=2/� � �j�j2� C �

with space-time white noise �, which can be regarded as the Langevin equation for a time-
dependent field � with potential given by the action S in (1.2). Constructing measures of
the form (1.1) by exhibiting them as stationary measures of stochastic nonlinear partial
differential equations is the goal of stochastic quantization developed in [26, 52, 62, 66].
See for instance [23, 45, 46, 51] for recent developments.

1Rigorously, the space of fields is the Schwartz distribution space � 0.ƒ;RK/.
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In addition, Euclidean field theories are of great importance in the probabilistic
Cauchy theory of nonlinear dispersive equations. For K D 2 and identifying R2 � C,
the measure (1.1) is formally invariant under the nonlinear Schrödinger (NLS) equation

i@t� D 1
2
rS.�/ D �.� C�=2/� C �j�j2�: (1.3)

Gibbs measures (1.1) for the NLS (1.3) have proven a powerful tool for constructing
almost sure global solutions with random initial data of low regularity. One considers the
flow of the NLS (1.3) with random initial data distributed according to (1.1). The invari-
ance of the measure (1.1) under the NLS flow (in low dimensions) serves as a substitute for
energy conservation, which is not available owing to the low regularity of the solutions.
See for instance the seminal works [10–14,52] as well as [15,18–21,25,39,40,58–60,76]
and references given there for later developments.

The main difficulty in all of the works cited above is that, in dimensions larger than 1,
under the measure (1.1) the field � is almost surely a distribution of negative regularity,
and hence the interaction term

V.�/ ..D
�

2

Z
ƒ

dx j�.x/j4

in (1.2) is ill-defined. This is an ultraviolet problem: a divergence for large wave vectors
(i.e. spatial frequencies) producing small-scale singularities in the field. As the dimension
d D 1; 2; 3 increases, the difficulty of making sense of the measure in (1.1) increases
significantly.

To outline the rigorous construction of the measure in (1.1), we introduce an (RK-
valued) Gaussian free field on ƒ whose law P is the Gaussian measure on the space of
fields with mean zero and covariance .2� ��/�1, where � > 0 is some positive constant.
Then we write

�.d�/ D
1

�
e�V.�/ P .d�/ (1.4)

for some normalization constant � > 0. For d D 1, the right-hand side of (1.4) makes
sense as is, since, under P , the field � is almost surely a continuous function and hence
V.�/ is almost surely nonnegative and finite. This provides a simple construction of (1.1)
for d D 1 and � D �� . See e.g. [72] for a careful treatment.

For d > 1, the simple approach just sketched no longer works, since � is almost
surely of negative regularity, and the interaction term V.�/ has to be renormalized by
subtracting suitably chosen infinite counterterms. The most elementary renormalization
is Wick ordering of V.�/ with respect to the Gaussian measure P , denoted by W � W (see
Appendix A). After Wick ordering, the interaction term becomes

V.�/ D
�

2

Z
ƒ

dx W j�.x/j4 W

D
�

2

Z
ƒ

dx
�
j�.x/j4 �

4C 2K

K
EŒj�.x/j2�j�.x/j2 C

K C 2

K
EŒj�.x/j2�2

�
; (1.5)
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where E denotes expectation with respect to P . The second and third terms on the right-
hand side of (1.5) are infinite counterterms, which may be regarded as mass and energy
renormalizations, respectively. Hence, for d > 1, the constant � in (1.2) is formally �1.
To make rigorous sense of (1.5) in dimension d D 2, one has to mollify � by convolving
it with an approximate delta function, and then show that as the mollifier is removed, the
right-hand side of (1.5) converges in L2.P / (see Section 2.1 below for more details). It is
not hard to show that for d D 2 the renormalization on the right-hand side of (1.5) yields a
well-defined interaction term V.�/2L2.P /. However, owing to the mass renormalization
in (1.5), after Wick ordering, V.�/ is unbounded from below, and the integrability of
e�V.�/ with respect to P represents a nontrivial problem, which was successfully solved
in the landmark work of Nelson [63, 64].

For d D 3, it is easy to see that, even after Wick ordering, V.�/ almost surely does
not exist in L2.P /. Further, a simple expansion of the exponential e�V.�/ in the two-point
correlation function, 1

�

R
�i .x/�j .y/e�V.�/P .d�/, yields a divergent term already at sec-

ond order, associated with the so-called sunset diagram of quantum field theory. Hence,
a further mass renormalization of V.�/ is required, which results in a measure � that is
mutually singular with respect to the free-field Gaussian measure P . The mathematically
rigorous construction of the Euclidean �43 theory, first achieved in the seminal work of
Glimm and Jaffe [42], is one of the major successes of the constructive field theory pro-
gramme started in the sixties. By now, several different constructions of this theory have
been developed, based on, first, phase cell expansions [27, 42, 43, 67], then on renormal-
ization group methods [8,16,37], later on correlation inequalities [17], and, most recently,
on paracontrolled calculus [22, 44], as well as variational methods [5].

For d > 4, it is expected, and indeed proven in some cases, that the �4
d

theory is trivial:
any renormalization of V.�/ resulting in a well-defined measure � yields a (generalized
free-field) Gaussian measure. For d > 5, this triviality was proven in [2,29]. Recently, the
triviality of �44 for K D 1 was established in [3].

1.2. The �42 theory as a limit of a Bose gas

In this paper, we establish for the first time a relationship beween a local Euclidean field
theory in dimension larger than 1 and an interacting quantum gas. We show that the com-
plex Euclidean �42 theory describes the limiting behaviour of an interacting Bose gas at
positive temperature. The limiting regime is a high-density limit in a box2 of fixed size,
where the range of the interaction is much smaller than the diameter of the box. This result
provides a rigorous derivation of the �42 theory starting from a realistic model of statisti-
cal mechanics. Viewed differently, we introduce a new regularization of the �42 theory in
terms of an interacting Bose gas, in addition to the commonly used smooth mollifiers or
lattice approximations.

2For conciseness, in this paper we assume that ƒ is the unit torus, although the actual shape of
ƒ and the boundary conditions are not essential for our proof; see Remark 2.3 below.
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To explain our result more precisely, we recall that a quantum system of n spinless
nonrelativistic bosons of mass m in ƒ is described by the Hamiltonian

Hn
..D �

nX
iD1

�i

2m
C
g

2

nX
i;jD1

v.xi � xj /

acting on the space Hn of square-integrable wave functions that are symmetric in their
arguments x1; : : : ; xn and supported in ƒn. Here �i is the Laplacian in the variable xi ,
g is a coupling constant, and v is a repulsive (i.e. with nonnegative Fourier transform)
two-body interaction potential. We consider a system in the grand canonical ensemble at
positive temperature, characterized by the density matrix

1

Z

M
n2N

e�ˇ.Hn��n/ (1.6)

acting on Fock space F D
L
n2N Hn, where ˇ <1 is the inverse temperature, � is the

chemical potential, and Z is a normalization factor. We refer to e.g. [7,57] for reviews on
interacting Bose gases.

The limiting regime of this paper is obtained by introducing two parameters, �; " > 0,
where � D ˇ=m D

p
ˇg, and the potential v is taken to be an approximate delta

function of range ". We suppose that �; " ! 0 under the technical constraint " >
exp.�.log��1/1=2�c/ for some constant c > 0. We show that there exists a suitable renor-
malization of the chemical potential � � �"� such that the reduced density matrices of the
quantum state (1.6) converge to the correlation functions of the field theory (1.1), (1.2).

Previously, this result was obtained for d D 1 in [31, 53, 55], where, as explained in
Section 1.1, no renormalization is required. In higher dimensions d D 2; 3, the mean-field
limit was investigated in [31–33, 54, 56, 73], where the parameter " was fixed as � ! 0.
The resulting limiting field theory differs from �4

d
in that the interaction term V.�/ is

nonlocal, given by a convolution with a bounded two-body interaction potential v. This
nonlocal interaction term is considerably less singular than the local one of �42 theory.
The stronger singularity of V.�/ requires additional renormalization as compared to the
nonlocal potential. This makes the local problem significantly more difficult than the non-
local one. In particular, the renormalized interaction term V.�/ is unbounded from below,
whereas in the nonlocal regime it is almost surely nonnegative.

The above lower bound on the range of the interaction " is technical in nature (see
Remark 2.5 below for a more detailed discussion on its origin). We expect that it can be
improved, but at the cost of a considerably more complicated argument. In this paper we
wish to emphasize that, using relatively simple methods, one can establish a connection
between local Euclidean field theories and interacting quantum gases. We leave quantita-
tive improvements of such results to future work.

Using our methods, we also extend the results on the mean-field limit for a nonlocal
interaction term V.�/ in [33, 56] from bounded two-body interaction potentials, v, to
unbounded ones. Our integrability assumptions on the function v are optimal, as given
in [13]. We refer to Section 5.3 below for details.
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1.3. Outlook

The close relationship between Euclidean field theory and interacting Bose gases estab-
lished in this paper leads to a web of conjectures concerning properties of �4

d
theories

inspired by results on Bose gases and, conversely and perhaps more interestingly, proper-
ties of interacting Bose gases inspired by known results on �4

d
theories. In the following,

we outline some of these conjectures.
We remark that an analysis very similar to the one in this paper yields an analogous

relationship between the �42 theory with N complex components (that is, with K D 2N
real components) and an interacting Bose gas with N species of identical Bosons; see
Remark 2.4 below.

(1) It is known (see [4, 9, 38]) that systems of nonrelativisitic quantum particles moving
in d -dimensional Euclidean space and interacting through delta function potentials
are equivalent to systems of free (i.e. noninteracting) particles, provided that d > 4.
Given the connection between interacting Bose gases and �4

d
theories exhibited in

this paper, this suggests that the latter theories are equivalent to free (i.e. Gaussian)
field theories in dimensions d > 4, for a field � with an arbitrary number of complex
components.

(2) In d D 3 dimensions, �4
d

theories withN complex components are known to undergo
a phase transition accompanied by spontaneous O.2N/-symmetry breaking and the
emergence of Goldstone bosons [34] (see also [30], as well as [36] for recent results
on related lattice models with disorder). Given our results for d D 2, as well as analo-
gous results for d D 3 to appear in a future paper, the existence of a phase transition in
the Euclidean field theory strongly suggests that translation-invariant Bose gases with
repulsive two-body interactions in three dimensions exhibit Bose–Einstein condensa-
tion accompanied by the appearance of massless quasi-particles with approximately
relativistic dispersion at small wave vectors.

In two dimensions, the Mermin–Wagner theorem implies that such phase transi-
tions do not exist, and the O.2N/-symmetry remains unbroken for arbitrary values
of the coupling constant �. A similar result is expected to hold for two-dimensional
interacting Bose gases (and easy to see for ideal Bose gases).

(3) The one-component complex �4
d

theory in dimension d D 2 is expected to exhibit a
Berezinskii–Kosterlitz–Thouless transition. This is rigorously known for the classical
XY -model on a square lattice, which is the limiting theory of lattice �42 theory, as �
tends to1, with � D 2�; see [30,35]. In view of the results proven in this paper, this
suggests that two-dimensional Bose gases of one species of particles might exhibit
a transition to a low-temperature phase where reduced density matrices exhibit slow
decay, analogous to the Berezinskii–Kosterlitz–Thouless transition.

In contrast, for a two-dimensional �4
d

theory with two or more complex compo-
nents, with an O.2N/-symmetry, it is expected that connected correlations exhibit
exponential decay for arbitrary values of the coupling constant �; see [68]. This sug-
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gests that two-dimensional Bose gases of several species of identical particles exhibit
rapidly decaying correlations at all temperatures and densities.

(4) For �4
d

theories with N complex components, there exists a systematic 1=N -expan-
sion; see [49, 50] and [78, Chapter 30]. The model obtained in the limit, as N !1,
is the spherical model, which is exactly solved. It is tempting to extend the method
of the 1=N -expansion to Bose gases of N species of identical particles interact-
ing through two-body interactions of strength O.1=N/. The model obtained in the
limit, as N ! 1, appears to be equivalent to an ideal Bose gas, but with a renor-
malized chemical potential. In attempting to prove Bose–Einstein condensation for
translation-invariant interacting Bose gases, therefore, it seems judicious to begin by
studying Bose gases with a large number of species of identical particles. The con-
nection between Bose–Einstein condensation and phase transitions in classical field
theory has been discussed in e.g. [6, 48].

2. Setup and results

2.1. Classical field theory

In this subsection we define the Euclidean field theory and its correlation functions. We
note that the measure � from (1.1) can be formally viewed as the thermal equilibrium
measure of a classical field theory with Hamilton function given by S.�/ from (1.2). We
work on the d -dimensional torus ƒ ..D Œ�1=2; 1=2/d . We use the Euclidean norm j�j for
elements of ƒ regarded as a subset of Rd . We use the shorthand

R
dx .�/ ..D

R
ƒ

dx .�/
to denote integration over ƒ with respect to Lebesgue measure. We abbreviate H ..D
L2.ƒIC/ and denote by h� ; �i the inner product of the space H , which is by definition
linear in the second argument. On H we use the standard Laplacian � with periodic
boundary conditions.

The classical free field � is by definition the complex-valued Gaussian field with
covariance .� � �=2/�1, where � > 0 is a constant. Explicitly, the free field may be
constructed as follows. We use the spectral decomposition � ��=2 D

P
k2Zd �kuku

�
k

,
with eigenvalues �k > 0 and normalized eigenfunctions uk 2 H (see also (4.5) below).
Let X D .Xk/k2Zd be a family of independent standard complex Gaussian random vari-
ables,3 whose law and associated expectation are denoted by P and E, respectively. The
classical free field is then given by

� D
X
k2Zd

Xk
p
�k
uk ;

3We recall that Z is a standard complex Gaussian if it is Gaussian and satisfies EZ D 0,
EZ2 D 0, and EjZ2j D 1, or, equivalently, if it has law ��1e�jzj

2
dz on C, where dz denotes

Lebesgue measure.
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which is easily seen to converge4 in L2.P / of the L2-Sobolev space H 1�d=2�c for any
c > 0.

In order to define the interacting theory, it is necessary to regularize the field � by
convolving it with a smooth mollifier. To that end, choose a nonnegative function # W
Rd ! RC of rapid decay satisfying #.0/D 1, and for 0 < N <1 define the regularized
field

�N
..D

X
k2Zd

Xk
p
�k

p
#.k=N/ uk ; (2.1)

which is almost surely a smooth function on ƒ. We define the regularized interaction

VN
..D

1

2

Z
dx W j�N .x/j4 W;

where W � W denotes Wick ordering with respect to the Gaussian measure P (see Appendix
A.1). Explicitly,

W j�N .x/j
4
W D j�N .x/j

4
� 4EŒj�N .x/j

2� j�N .x/j
2
C 2EŒj�N .x/j

2�2:

Here, the deterministic factor EŒj�N .x/j2� D
P
k2Zd #.k=N/=�k diverges as N !1

for d > 1.
For d D 2, using Wick’s theorem, it is easy to see that VN converges as N !1 in

L2.P / to a random variable, denoted by V , which does not depend on the choice of # . See
e.g. [31, Lemma 1.5] for details. The interacting field theory is given as the probability
measure

1

�
e�V dP ; � ..D EŒe�V �: (2.2)

By the well-known Nelson bounds [63, 64] mentioned in Section 1.1, e�V is integrable
with respect to P .

We characterize the interacting field theory through its correlation functions, defined
as follows. For p 2 N and x; zx 2 ƒp , we define the p-point correlation function as

.
p/x;zx
..D

1

�
EŒ N�.zx1/ � � � N�.zxp/ �.x1/ � � ��.xp/e�V �; (2.3)

which is the 2pth moment of the field � under the probability measure (2.2). This mea-
sure is sub-Gaussian, and is hence determined by its moments .
p/p2N� . (Note that any
moment containing a different number of N�s and �s vanishes by invariance of the measure
(2.2) under the gauge transformation � 7! ˛�, where j˛j D 1.)

As explained in [33, Section 1.5], the correlation function 
p is divergent on the diago-
nal, even for the free field. Hence, for instance, it cannot be used to analyse the distribution

4In fact, an application of Wick’s rule shows that the convergence holds in Lm for any m <1.
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of the mass density j�.x/j2. As in [33, Section 1.5], we remedy this by introducing the
Wick-ordered p-point correlation function

.y
p/x;zx
..D

1

�
EŒW N�.zx1/ � � � N�.zxp/ �.x1/ � � ��.xp/ W e�V �; (2.4)

which has a regular behaviour on the diagonal. The Wick-ordered correlation function
(2.4) can be expressed explicitly in terms of the correlation functions (2.3) and the corre-
lation functions of the free field; see (2.20) below.

2.2. Quantum many-body system

In this subsection we define the quantum many-body system and its reduced density matri-
ces. For n 2 N, we denote by Pn the orthogonal projection onto the symmetric subspace
of H˝n; explicitly, for ‰n 2 H˝n,

Pn‰n.x1; : : : ; xn/
..D

1

nŠ

X
�2Sn

‰n.x�.1/; : : : ; x�.n//; (2.5)

where Sn is the group of permutations of ¹1; : : : ; nº. For n 2 N�, we define the n-particle
space as Hn

..D PnH˝n. We define Fock space as the Hilbert space F � F .H / ..DL
n2N Hn. We denote by TrF .X/ the trace of an operator X acting on F . For f 2 H

we define the bosonic annihilation and creation operators a.f / and a�.f / on F through
their action on a dense set of vectors ‰ D .‰n/n2N 2 F as

.a.f /‰/n.x1; : : : ; xn/ D
p
nC 1

Z
dx Nf .x/‰nC1.x; x1; : : : ; xn/; (2.6)

.a�.f /‰/n.x1; : : : ; xn/ D
1
p
n

nX
iD1

f .xi /‰n�1.x1; : : : ; xi�1; xiC1; : : : ; xn/: (2.7)

The operators a.f / and a�.f / are unbounded closed operators on F , and are each other’s
adjoints. They satisfy the canonical commutation relations

Œa.f /; a�.g/� D hf ; gi 1; Œa.f /; a.g/� D Œa�.f /; a�.g/� D 0; (2.8)

where ŒX; Y � ..D XY � YX denotes the commutator. We regard a and a� as operator-
valued distributions and use the notations

a.f / D

Z
dx Nf .x/a.x/; a�.f / D

Z
dx f .x/a�.x/: (2.9)

The distribution kernels a�.x/ and a.x/ satisfy the canonical commutation relations

Œa.x/; a�.zx/� D ı.x � zx/; Œa.x/; a.zx/� D Œa�.x/; a�.zx/� D 0: (2.10)

For � > 0, we define the free quantum Hamiltonian H .0/ � H
.0/
� through

H .0/ ..D �
Z

dx a�.x/..� ��=2/a/.x/: (2.11)
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To describe the interaction potential of the Bose gas, we choose v W Rd ! R to be
an even, smooth, compactly supported function of positive type5 whose integral is equal
to 1. For " > 0 we define the rescaled interaction potential on ƒ as

v".x/ D
X
n2Zd

1

"d
v

�
x � n

"

�
: (2.12)

For "; � > 0 we define the interacting quantum Hamiltonian H � H "
� through

H ..DH .0/
C
�2

2

Z
dx dzx a�.x/a.x/v".x � zx/a�.zx/a.zx/� �˛"�

Z
dx a�.x/a.x/C �"� ;

(2.13)

where ˛"� and �"� are real renormalization parameters that we shall define shortly in (2.16)
below.

Using (2.13), the quantum grand canonical density matrix from (1.6) can be expressed
as the operator

(1.6) D e�H=Z; Z ..D TrF .e�H /;

where Z is the grand canonical partition function. Analogously, the free grand canonical
partition function is

Z.0/ ..D TrF .e�H
.0/

/:

We shall also use the relative partition function

Z ..D Z=Z.0/: (2.14)

In order to define the renormalization parameters ˛"� and �"� , we introduce the Green
function G of the free field �, i.e. the integral kernel of the operator .� ��=2/�1. Since
� ��=2 is invariant under translations, we can write Gx;y D G.x � y/. Explicitly, in the
sense of distributions,

G.x � y/ D EŒ�.x/ N�.y/�:

The Green function G exhibits a logarithmic singularity at the origin (see Lemma B.1
below). Moreover, we denote by

%�
..D � TrF

�
a�.0/a.0/

e�H
.0/

Z.0/

�
(2.15)

the expected rescaled particle density in the free quantum state. Then we set

˛"�
..D %� C �"; �"�

..D 1
2
%2� C �

"%� �E
"; (2.16)

where
�" ..D

Z
dx v".x/G.x/; E" ..D

1

2

Z
dx v".x/G.x/2: (2.17)

5This means that the Fourier transform of v is a positive measure. Note that we do not assume
that v is pointwise nonnegative.
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The parameter ˛"� describes a renormalization of the chemical potential, and �"� corre-
sponds to an energy renormalization. As "; � ! 0, the renormalization of the chemical
potential behaves as ˛"� ! C1. We remark that, using the quantities (2.15) and (2.17),
we can rewrite the Hamiltonian (2.13) in the form

H D H .0/
C
1

2

Z
dx dzx

�
�a�.x/a.x/ � %�

�
v".x � zx/

�
�a�.zx/a.zx/ � %�

�
� �"

Z
dx
�
�a�.x/a.x/ � %�

�
�E": (2.18)

Next, we define the p-particle reduced density matrix as

.�p/x;zx
..D TrF

�
a�.zx1/ � � � a

�.zxp/a.x1/ � � � a.xp/
e�H

Z

�
: (2.19)

As with the correlation function (2.3) and its Wick-ordered version (2.4), we would like to
replace (2.19) with its Wick-ordered version. To that end, we regard the expressions (2.3)
and (2.4) as integral kernels of operators acting on Hp , and observe that (see [33, Lemma
A.4])

y
p D

pX
kD0

�
p

k

�2
.�1/p�kPp.
k ˝ 


.0/

p�k
/Pp; (2.20)

where 
 .0/m denotes the m-point correlation function from (2.3) with V D 0. In analogy
with (2.20), we therefore define the Wick-ordered p-particle reduced density matrix as

.y�p/x;zx
..D

pX
kD0

�
p

k

�2
.�1/p�kPp.�k ˝ �

.0/

p�k
/Pp; (2.21)

where �.0/m denotes the m-particle reduced density matrix of the free grand canonical
density matrix e�H

.0/
=Z.0/. (For an interpretation of (2.21) as a result of Wick ordering

(2.19) with respect to the free field in the functional integral representation of quantum
many-body theory, we refer the reader to the discussion in [33, Section 1.7]).

2.3. Results

We may now state our main result.

Theorem 2.1. Suppose that d D 2 and " � ".�/ satisfies

" > exp
�
�.log ��1/1=2�c

�
(2.22)

for some constant c > 0. Then as "; � ! 0 we have the convergence of the partition
function

Z! � (2.23)

and of the Wick-ordered correlation functions

�p y�p
C
�! y
p (2.24)
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for all p 2 N, where
C
�! denotes convergence in the space of continuous functions on

ƒp �ƒp with respect to the supremum norm.

We refer to [33, Section 1.5] for an in-depth discussion of applications of Theorem 2.1.
In particular, Theorem 2.1 yields the following result for unrenormalized correlation func-
tions.

Corollary 2.2. Under the assumptions of Theorem 2.1,

�p�p
Lr

��! 
p

for all p 2 N and r <1, where
Lr

��! denotes convergence in the Lr .ƒp �ƒp/-norm.

Another application of Theorem 2.1 is the convergence of the joint distribution of the
Wick-ordered quantum particle densities a�.x/a.x/ to those of the Wick-ordered mass
densities j�.x/j2; see [33, Theorem 1.4].

Remark 2.3. In this paper we set ƒ to be the unit torus for definiteness, but our methods
extend without complications to more general domains and boundary conditions. In par-
ticular, they also apply to the full space R2 with one-body Hamiltonian ��=2C U.x/,
where the particles are confined by a suitable external potential U W R2 ! R satisfying
U.x/> bjxj� for some b > 0 and � > 2. We refer to [33, Sections 1.6 and 7] and [56, Sec-
tion 3.2] for an in-depth discussion of the analogous extension for the mean-field scaling.
The corresponding counterterm problem, which relates the bare and renormalized exter-
nal potentials, was formulated and solved in [31] for the mean-field scaling. It, along with
the arguments of [31, Section 5], can be adapted to the local scaling of the current paper;
we omit further details.

Remark 2.4. The proof of Theorem 2.1 can be extended to establish the convergence
of the interacting Bose gas of N species of identical Bosons to the �42 theory with N
complex components. (Theorem 2.1 corresponds toN D 1.) More precisely, we introduce
the species index i D 1; : : : ; N , and augment the creation and annihilation operators to
a�i .x/; ai .x/ satisfying the canonical commutation relations

Œai .x/; a
�
j .zx/� D ıij ı.x � zx/; Œai .x/; aj .zx/� D Œa

�
i .x/; a

�
j .zx/� D 0; (2.25)

which generalize (2.10). The Hamiltonian from (2.11) and (2.13) is generalized to

H .0/ ..D �
NX
iD1

Z
dx a�i .x/..� ��=2/ai /.x/

and

H ..D H .0/
C
�2

2

NX
iD1

Z
dx dzx a�i .x/ai .x/v

".x � zx/a�i .zx/ai .zx/

� �˛"�

NX
iD1

Z
dx a�i .x/ai .x/C �

"
� :
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Then we find that the reduced density matrices of the N -species quantum Bose gas con-
verge to the correlation functions of �42 theory with N complex components, in the sense
of Theorem 2.1.

Remark 2.5. We conclude this section with a discussion on the technical condition (2.22)
on the range " of the interaction potential. It is instructive to compare the right-hand side
of (2.22) to the typical inter-particle distance, which we claim is of order

` D �1=2.log ��1/�1=2: (2.26)

To show (2.26), it suffices to show that the expected number of particles, given by Tr.�1/,
is of order ��1 log ��1. By Theorem 2.1 and the definition (2.21), we find Tr.�1/ D
Tr.�.0/1 /CO.��1/. Hence, it suffices to show that Tr.�.0/1 / is of order ��1 log��1, which
follows using the Wick theorem for quasi-free quantum states (see e.g. [33, Remark 1.5
and Lemma 2.9]), since Tr.�.0/1 / D Tr. 1

e�.���=2/�1
/ � ��1 log ��1, as claimed.

Comparing (2.26) and the right-hand side of (2.22), we conclude that the range of the
interaction "may vanish much faster than any power of .log `�1/�1 but much slower than
any power of `. As stated in Section 1.2, we expect that it can be improved, but at the cost
of a considerably more complicated argument. We leave such quantitative improvements
to future work, focusing here on the first result of this kind while aiming for a relatively
simple proof.

The origin of condition (2.22) in our proof arises from controlling oscillatory inte-
grals. It can be traced to the functional Fourier representation from Lemmas 5.6 and 5.7
below. There, the partition function is expressed in terms of an integral over a Gaussian
field, where the integrand includes a phase with a diverging prefactor. To compensate this
rapidly oscillating phase and obtain a quantity of order 1, the integral is multiplied by the
large factor

e.�
"/2=2CE" ;

(see (5.15)) which is propagated throughout the estimates of Section 5, for example in
Lemma 5.9. This large factor needs to be compensated by powers of � which arise from
our error estimates, leading to the lower bound on " in terms of �.

3. Structure of the proof

The rest of this paper is devoted to the proof of Theorem 2.1. We begin with a short section
that lays out the general strategy. We use c;C to denote generic positive constants, which
may change from one expression to the next, and may depend on fixed parameters. We
write x . y or x D O.y/ to mean x 6 Cy. If C depends on a parameter ˛, we write
x .˛ y, x 6 C˛y, or x D O˛.y/. We abbreviate Œn� D ¹1; : : : ; nº.

We shall need two different interacting field theories approximating (2.2), obtained by
replacing the interaction V with regularized variants, denoted byW " and V ", respectively.
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They are defined by

W " ..D
1

2

Z
dx dzx W j�.x/j2 Wv".x � zx/ W j�.zx/j2 W � �"

Z
dx W j�.x/j2 W �E"; (3.1)

V " ..D
1

2

Z
dx dzx v".x � zx/ W j�.x/j2 j�.zx/j2 W: (3.2)

The rigorous construction of the random variablesW "; V " proceeds exactly like that of V
explained in Section 2.1: one introduces truncated versions W "

N ; V
"
N defined in terms

of the truncated free field �N (see e.g. (4.7) below), and proves using Wick’s theorem
that as N !1 they converge in L2.P / to their respective limits W "; V ". Throughout
the following, we shall make use of such constructions of Wick-ordered functions of the
free field without further comment. The integrability of e�W

"
and e�V

"
is established in

Section 4 below.
To emphasize the dependence of the quantities (2.2) and (2.4) on the interaction V , we

sometimes include the interaction V in our notation as a superscript, writing �V and y
Vp ,
respectively.

The proof consists of two main steps.

Step 1. We compare Z and �p y�p with �W
"

and y
W
"

p , respectively, in the limit �; "! 0

under condition (2.22).

Step 2. We compare �W
"

and y
W
"

p with �V and y
Vp , respectively, in the limit "! 0. This
step is done by passing via the further intermediate interaction V ".

Step 1 relies on a quantitative analysis of the infinite-dimensional saddle point argu-
ment for the functional integral introduced in [33].

Step 2 relies on three main ingredients. First, we show integrability of e�V
"
, uniformly

in ". Second, we use the fact that V " �W " is small inL2.P / and it lies in the second poly-
nomial chaos (see Section A.2 below), which allows us to deduce integrability of e�W

"

by expansion in V " �W " and hypercontractive moment bounds. Third, to obtain uniform
control on the Wick-ordered correlation functions, we use Gaussian integration by parts,
analogous to Malliavin calculus, to derive a representation of the correlation functions in
terms of expectations of derivatives of the interaction potential.

The results of these two steps are summarized in the following two propositions.

Proposition 3.1. Suppose that d D 2 and that �; "! 0 under the constraint (2.22). Then
Z � �W

"
! 0. Moreover, for all p 2 N�,

�p y�p � y
W "

p




C
! 0: (3.3)

Proposition 3.2. Suppose that d D 2 and " ! 0. Then �W
"
! �V . Moreover, for all

p 2 N�, 

y
W "

p � y
Vp



C
! 0: (3.4)

We remark that Proposition 3.1 holds also for d D 3, with the same proof, provided
that condition (2.22) is suitably adjusted. We refer to Section 5 for more details and for
the proof.
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4. Proof of Proposition 3.2

In this section we prove Proposition 3.2. We set d D 2 throughout.

4.1. L2-estimates

In this subsection we derive L2-estimates for the differences V " � V and V " �W ".

Lemma 4.1. We have kV " �W "kL2.P/ ! 0 as "! 0.

Proof. A straightforward calculation using (A.2) below yields

V " D
1

2

Z
dx dzx W j�.x/j2 W v".x � zx/ W j�.zx/j2 W

�

Z
dx dzx v".x � zx/G.x � zx/ N�.x/�.zx/CE"

D
1

2

Z
dx dzx W j�.x/j2 W v".x � zx/ W j�.zx/j2 W

�

Z
dx dzx v".x � zx/G.x � zx/ W N�.x/�.zx/ W �E"

D W "
�

Z
dx dzx v".x � zx/G.x � zx/

�
W N�.x/�.zx/ W � W j�.x/j2 W

�
: (4.1)

By Lemma A.1 below (see also Example A.2), we find

kV " �W "
k
2
L2.P/ D

Z
dx dzx dy dzy v".x � zx/v".y � zy/G.zx � x/G.zy � y/

�
�
G.x � zy/ �G.x � y/

��
G.zx � y/ �G.x � y/

�
: (4.2)

We emphasize the crucial double cancellation on the second line of (4.2), which will
ensure convergence of the right-hand side, even though the first line of the right-hand side
on its own is divergent as "! 0. From Lemma B.1 below, we find

jG.x � zy/ �G.x � y/j . jy � zyj C
ˇ̌̌̌
log
jx � zyj

jx � yj

ˇ̌̌̌
(4.3)

and similarly for jG.zx � y/ � G.x � y/j. Switching to new integration variables h D
.zx � x/=", k D .y � zy/=", and z D x � y, we obtain

kV " �W "
k
2
L2.P/

.
Z

dh dk dz v.h/v.k/G."h/G."k/
�
"jhj C

ˇ̌̌̌
log
jz C "hj

jzj

ˇ̌̌̌��
"jkj C

ˇ̌̌̌
log
jz C "kj

jzj

ˇ̌̌̌�
We multiply out the two parentheses on the right-hand side and treat each of the four
terms separately. The term arising from "jhj"jkj is easily estimated by O˛."2˛/ for any
˛ 2 .0; 1/, using G.x/jxj .˛ jxj˛ , by Lemma B.1.
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For the other three terms containing the logarithmic factor, we useˇ̌̌̌
log
jx C yj

jxj

ˇ̌̌̌
.

´ ˇ̌
log jx C yj

ˇ̌
C
ˇ̌
log jxj

ˇ̌
if jxj 6 2jyj;

jyj=jxj if jxj > 2jyj;
(4.4)

We estimate the mixed terms, for any ˛ 2 Œ0; 1/, asZ
dh dk dz v.h/v.k/G."h/G."k/ "jkj

ˇ̌̌̌
log
jz C "hj

jzj

ˇ̌̌̌
.
Z

dk v.k/G."k/"jkj
Z

dh v.h/G."h/

�

Z
dz
��ˇ̌

log jz C "hj
ˇ̌
C
ˇ̌
log jzj

ˇ̌�
1jzj62"jhj C

"jhj

jzj
1jzj>2"jhj

�
.˛

Z
dk v.k/G."k/"jkj

Z
dh v.h/G."h/."2˛jhj2˛ C "jhj/ .˛ "2˛:

Finally, we estimate, for any ˛0 < ˛ < 1,Z
dh dk dz v.h/v.k/G."h/G."k/

ˇ̌̌̌
log
jz C "hj

jzj

ˇ̌̌̌ ˇ̌̌̌
log
jz C "kj

jzj

ˇ̌̌̌
.
Z

dh dk v.h/v.k/G."h/G."k/

�

Z
dz
��ˇ̌

log jz C "hj
ˇ̌
C
ˇ̌
log jzj

ˇ̌�
1jzj62"jhj C

"jhj

jzj
1jzj>2"jhj

�
�

��ˇ̌
log jz C "kj

ˇ̌
C
ˇ̌
log jzj

ˇ̌�
1jzj62"jkj C

"jkj

jzj
1jzj>2"jkj

�
.˛

Z
dh dk v.h/v.k/G."h/G."k/

�
Œ".jhj ^ jkj/�2˛ C 2 ."jhj/˛ "jkj C ."jhj/˛."jkj/˛

�
.
Z

dh dk v.h/v.k/G."h/G."k/ ."jhj/˛."jkj/˛ .˛0 "2˛
0

;

where in the second step we have used the estimatesZ
dz
�ˇ̌

log jz C "hj
ˇ̌2
C
ˇ̌
log jzj

ˇ̌2�1jzj62"jhj1jzj62"jkj .˛ Œ".jhj ^ jkj/�2˛;Z
dz

ˇ̌
log jz C "hj

ˇ̌
C
ˇ̌
log jzj

ˇ̌
jzj

1jzj62"jhj .˛ ."jhj/˛

and "jhj=jzj 6 ."jhj=jzj/˛ for jzj > 2"jhj. We conclude that kV " �W "kL2.P/ .˛ "˛ for
any ˛ 2 .0; 1/.

Lemma 4.2. We have kV " � V kL2.P/ ! 0 as "! 0.

Proof. Clearly,

V " � V D
1

2

Z
dx dzx

�
v".x � zx/ � ı.x � zx/

�
W j�.x/j2 j�.zx/j2 W
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Using Lemma A.1 below (see also Example A.2) we therefore find

E.V " � V /2 D
1

2

Z
dx dzx dy dzy .v".x � zx/ � ı.x � zx// .v".y � zy/ � ı.y � zy//

�G.x � y/G.zx � zy/ .G.x � y/G.zx � zy/CG.zx � y/G.x � zy//:

The right-hand side splits into two terms. We only consider the first one; the analysis of
the second one is analogous. With the change of variables zx � x D h, zy � y D k, and
z D x � y, the first term reads

1

2

Z
dz dh dk

�
v".h/ � ı.h/

��
v".k/ � ı.k/

�
G.z/2G.z C h � k/2

D
1

2

Z
dz G.z/2

Z
dh dk v".h/v".k/

�
�
G.z C h � k/2 �G.z � k/2 �G.z C h/2 CG.z/2

�
:

We now estimate the first two terms and the last two terms separately. (A more careful
second order analysis could be done to take into account a further cancellation between
all four terms, yielding a bound "2˛ for any ˛ < 1 instead of ", but we shall not need it.)
The sum of the first two terms on the right-hand side is estimated by

1

2

Z
dzG.z/2

Z
dh dk v".h/v".k/jG.z C h � k/2 �G.z � k/2j

.
1

2

Z
dh dk v".h/v".k/

Z
dz G.z/2

�
G.zCh�k/CG.z�k/

��
jhjC

ˇ̌̌̌
log
jzCh�kj

jz�kj

ˇ̌̌̌�
.
1

2

Z
dh dk v".h/v".k/

Z
dz G.z/2

�
G.z C h � k/CG.z � k/

�
�

�
jhj C

�ˇ̌
log jz C h � kj

ˇ̌
C
ˇ̌
log jz � kj

ˇ̌�
1jz�kj62jhj C

jhj

jz � kj
1jz�kj>2jhj

�
;

where in the second step we have used estimate (4.3), and in the third, estimate (4.4). Since
on the support of the integral over h we have jhj . ", we may perform integration over z,
followed by integration over h and k, to deduce that the above expression is bounded
by O."/. Here we also use the fact that G has a logarithmic singularity at the origin, as
established in Lemma B.1 below and the fact that



log jxj 1jxj."



Lp

.p " for p 2 .1; 2/,
combined with Hölder’s inequality. This concludes the proof.

4.2. Integrability of e�V
"

In this subsection we establish the integrability of e�V
"
, uniformly in ". This is an adap-

tation of Nelson’s argument [64] (see also [47] for a recent pedagogical account) to a
nonlocal interaction.

Proposition 4.3. There is a constant c > 0 such that for all " > 0 and t > 1 we have

P .e�V
"

> t/ . exp.�ec
p

log t /:

The same estimate holds for V " replaced with V .
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In particular, e�V
"

is uniformly integrable in " > 0.
The rest of this subsection is devoted to the proof of Proposition 4.3. We start by

noting that � ��=2 has eigenfunctions uk 2 H and eigenvalues �k indexed by k 2 Zd

and given by
�k D � C 2�

2
jkj2; uk D e2� ik�x : (4.5)

We shall use the truncated field �N from (2.1) with a suitable truncation # , which is
smooth in Fourier space. To that end, we fix � to be a smooth, nonnegative, rotation
invariant function, that has integral 1 and is supported in the unit ball. We suppose that its
Fourier transform

#.�/ ..D F�.�/ ..D
Z

R2
dx e�2� i��x�.x/ (4.6)

is nonnegative and radially nonincreasing (this can always be achieved by taking � as a
convolution of two nonnegative functions).

We define the truncated version of V " from (3.2) through

V "N
..D

1

2

Z
dx dzx v".x � zx/ W j�N .x/j2 j�N .zx/j2 W; (4.7)

which converges in L2.P / to V " as N !1.
Next, let .Yk/k2Zd be a family of i.i.d. standard complex Gaussian random variables,

which is independent of the family .Xk/k2Zd . For 0 < N 6 M 61 we define the field

 N;M
..D

X
k2Zd

Yk
p
�k

p
#.k=M/ � #.k=N/ uk :

By construction, �N and  N;M are independent. For M < 1, they are almost surely
smooth on ƒ. We define the truncated Green function

GN
..D G � �N ; �N .x/

..D
X
n2Zd

N 2�.N.x C n//; (4.8)

and find by Poisson summation that, for N 6 M ,

EŒ�N .x/ N�N .y/� D
X
k2Zd

1

�k
e2� ik�.x�y/#.k=N/ D GN .x � y/; (4.9)

EŒ N;M .x/ N N;M .y/� D
X
k2Zd

1

�k
e2� ik�.x�y/�#.k=M/ � #.k=N/

�
D GM .x � y/ �GN .x � y/: (4.10)

By independence of �N and  N;M , we therefore find that for any N 6 M we have the
decomposition into low and high frequencies

�N C  N;M
d
D �M ; (4.11)

and in particular setting M D1 we get

�N C  N;1
d
D �:

Here d
D denotes equality in law.
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By (4.11) we have, for any N 6 M ,

V "M
d
D
1

2

Z
dx dzx v".x � zx/ W j�N .x/C  N;M .x/j2 j�N .zx/C  N;M .zx/j2 W:

For any N 6 M we therefore have

V "M
d
D

X
a;za;b;zb2¹0;1º

V "N;M .a; za; b;
zb/;

where

V "N;M .a; za; b;
zb/ ..D

1

2

Z
dx dzx v".x � zx/

� W�N .x/
1�a�N .zx/

1�za N�N .x/
1�b N�N .zx/

1�zb

�  N;M .x/
a N;M .zx/

za N N;M .x/
b N N;M .zx/

zb
W : (4.12)

Hence, for N 6 M we have

V "M � V
"
N D

X
a;za;b;zb2¹0;1º

1
aCzaCbCzb>0

V "N;M .a; za; b;
zb/: (4.13)

Lemma 4.4. There is a constant C depending on v such that almost surely

V "N > �C.logN/2 for all " > 0.

Proof. Abbreviate S D 1 C
R

R2 dx jv.x/j. Using the explicit form (A.2) of the Wick
power in (4.7) as well as (4.9), we find

V "N D
1

2

Z
dx dzx v".x � zx/

�
j�N .x/j

2
j�N .zx/j

2
�GN .0/j�N .x/j

2
�GN .0/j�N .zx/j

2

� 2ReGN .x � zx/�N .x/ N�N .zx/CGN .0/2 CGN .x � zx/2
�

D
1

2

Z
dx dzx v".x � zx/

��
j�N .x/j

2
� SGN .0/

��
j�N .zx/j

2
� SGN .0/

�
C .S � 1/GN .0/

�
j�N .x/j

2
C j�N .zx/j

2
�
� 2ReGN .x � zx/�N .x/ N�N .zx/

� .S2 � 1/GN .0/
2
CGN .x � zx/

2
�

> .S � 1/GN .0/

Z
dx j�N .x/j2

� Re
Z

dx dzx v".x � zx/GN .x � zx/�N .x/ N�N .zx/ �
S2

2
GN .0/

2;

where in the last step we have used the fact that v (and hence also v") is of positive type
with integral 1. Using jGN .x/j 6 GN .0/ by (4.9) and Cauchy–Schwarz combined with
Young’s inequality, we findˇ̌̌̌Z

dx dzx v".x � zx/GN .x � zx/�N .x/ N�N .zx/
ˇ̌̌̌

6 .S � 1/GN .0/

Z
dx j�N .x/j2;

and the claim follows from Lemma B.3.
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Next, we derive an estimate for the L2-norm of V "M � V
"
N .

Lemma 4.5. For any fixed ı > 0 and for any 0 < N 6 M <1 we have

kV "M � V
"
N kL2.P/ . N�1Cı

Proof. By (4.13) and Minkowski’s inequality, it suffices to estimate

R ..D EŒjV "N;M .a; za; b;
zb/j2� D E

�
V "N;M .a; za; b;

zb/ V "N;M .a; za; b;
zb/
�

(4.14)

for any fixed a; za; b; zb 2 ¹0; 1º satisfying aC zaC b C zb > 0.
Using Lemma B.3 below we find the boundsGN .x/. p.x/ and jGM .x/�GN .x/j.

q.x/, where

p.x/ ..D 1C
ˇ̌
log jxj

ˇ̌
; q.x/ � qN .x/

..D
�
1C jlog.N jxj/j

�
^

1

N 2jxj2
:

Note that q.x/ . p.x/. Using Wick’s theorem, Lemma A.1, and Young’s inequality, we
find

R .
Z

dx dzx dy dzy jv".x � zx/j jv".y � zy/jq.x � y/p.x � y/p.zx � zy/2

C

Z
dx dzx dy dzy jv".x � zx/j jv".y � zy/jq.x � y/p.zx � zy/p.x � zy/p.zx � y/

. sup
y2ƒ

Z
dx q.x/p.x � y/3 C

Z
dx dzx q.x/p.zx/3

. sup
y2ƒ

Z
dx q.x/p.x � y/3

. sup
y2ƒ

�Z
jxj6C=N

dx
�
1C

ˇ̌
log jxj

ˇ̌�4
C

1

N 2

Z
jxj>C=N

dx
�
1C

ˇ̌
log jx � yj

ˇ̌�3 1

jxj2

�
.ı N�2Cı

for any ı > 0, where in the third step we have used
R

dzx p.zx/3 . 1 6 p.x/3, and in the
last step we have used Hölder’s inequality.

Proof of Proposition 4.3. For any N > 1 we have, by Lemma 4.4,

P .e�V
"

> t/ D P .V " � V "N < � log t � V "N / 6 P
�
V " � V "N < �.log t � C.logN/2/

�
:

Now choose N > 1 such that

log t � C.logN/2 D 1;

which is always possible for t large enough.
Next, we find that V "M (or more precisely its real and imaginary parts) is in the 4th

polynomial chaos (see Section A.2), by using Lemma A.3 and the easy fact that V "M is
orthogonal to the nth chaos for n ¤ 4, which is a consequence of Wick’s theorem in
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Lemma A.1. Hence, from Remark A.5 and Lemma 4.5 we deduce that for any 0 < N 6
M <1 and p 2 2N we have

kV "M � V
"
N kLp.P/ .

p2

N 2=3
: (4.15)

Since V "N ! V " in L2.P / as N !1, by Lemma A.4 we find that (4.15) holds also for
M D1 (i.e. replacing V "M with V "). Hence from Chebyshev’s inequality, for any p 2 2N
we get

P .e�V
"

> t/ 6 EŒjV " � V "N j
p� 6

�
Cp2

N 2=3

�p
6
�
p2
p
N

�p
6 .p2e�c

p
log t /p;

for large enough t (and hence N ). Choosing p to be the largest element of 2N smaller
than ec=2

p
log t�1=2 yields the claim for V ".

Finally, the claim for V easily follows from the one for V " and Lemma 4.2.

4.3. Convergence of the partition function

The first claim of Proposition 3.2, the convergence �W
"
! �V , follows immediately from

the following result.

Lemma 4.6. For any 1 6 p <1 we have ke�V � e�W
"
kLp.P/ ! 0 as "! 0.

Proof. We begin by estimating ke�W
"
kLp.P/ by comparing it to ke�V

"
kLp.P/ and recall-

ing Proposition 4.3. To that end, we note that V " �W " is in the second polynomial chaos
by (4.1) (more precisely, by Lemma A.1, V " �W " is orthogonal to the nth polynomial
chaos for n ¤ 2 and the claim hence follows from Lemma A.3). Hence, by the hypercon-
tractive bound from Lemma A.4 we obtain

keV
"�W "

� 1kLp.P/ 6
X
k>1

1

kŠ
k.V " �W "/kkLp.P/ D

X
k>1

1

kŠ
kV " �W "

k
k
Lpk.P/

.
X
k>1

1

kŠ
.pk/kkV " �W "

k
k
L2.P/ 6

X
k>1

.CpkV " �W "
kL2.P//

k

for some constant C > 0, by Stirling’s approximation for kŠ. Using Lemma 4.1 and
Proposition 4.3, we conclude that for small enough " (depending on p), ke�W

"
kLp.P/

is uniformly bounded in ". The claim now follows by writing

e�V � e�W
"


Lp.P/

6
Z 1

0

dt k.V �W "/e�tW
"�.1�t/V

kLp.P/;

applying Hölder’s inequality to the right-hand side, and combining Lemmas 4.1 and 4.2
with Lemma A.4 and the observation that V � W " lies in the span of the polynomial
chaoses up to order four.
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4.4. Convergence of correlation functions

In this subsection we prove the second claim of Proposition 3.2, the convergence of the
correlation functions in (3.4). In order to obtain the uniform convergence of the Wick-
ordered correlation functions .y
W

"

p /x;zx to .y
Vp /x;zx, we use a representation obtained by
repeated Gaussian integration by parts. To that end, we shall introduce a differential oper-
ator, denoted by LN;x , such that

LN;x N�.y/ D GN .x � y/ (4.16)

and hence, formally,

LN;x D

Z
dyGN .x � y/

ı

ı N�.y/
: (4.17)

Our argument may be viewed as an instance of Malliavin calculus, with LN;x playing the
role of the Malliavin derivative.

We choose the regularizing function # to have compact support. Recall (see (2.1))
that the underlying probability space consists of elements X D .Xk/k2Zd with Xk 2 C.
Define T to be the space of random variables of the form f .X/, where f is smooth in
the sense that all of its partial derivatives exist. We denote by @Xk and @ NXk the usual
holomorphic and antiholomorphic partial derivatives in the complex variable Xk . On the
space T we define the first order differential operators

LN;x
..D

X
k2Zd

1
p
�k

p
#.k=N/ uk.x/@ NXk ;

NLN;x
..D

X
k2Zd

1
p
�k

p
#.k=N/ Nuk.x/@Xk :

where x 2 ƒ and 0 < N <1. Here we recall the definitions (4.5). Note that, owing to
our choice of # , each sum is finite. That this definition indeed satisfies (4.16) is verified
in Lemma 4.8 below.

We record a few simple properties of LN;x . The first property is Gaussian integration
by parts for the operator LN;x .

Lemma 4.7. Let f .X/ 2 T \ L1.P /. Then

EŒLN;xf .X/� D EŒ�N .x/f .X/�; EŒ NLN;xf .X/� D EŒ N�N .x/f .X/�:

Proof. We only prove the first identity. We use the fact that if Z is a standard complex
Gaussian random variable, then EŒZf .Z/� D EŒ@ NZf .Z/�, as can be seen by integration
by parts. Thus, since each Xk is a standard complex Gaussian random variable indepen-
dent of the others, we get

EŒLN;xf .X/� D
X
k2Zd

1
p
�k

p
#.k=N/ uk.x/EŒ@ NXkf .X/�

D

X
k2Zd

1
p
�k

p
#.k=N/ uk.x/EŒXkf .X/�

D EŒ�N .x/f .X/�:
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The second property that we verify is condition (4.16).

Lemma 4.8. For x; y 2 ƒ, we have

LN;x �.y/ D 0; LN;x N�.y/ D GN .x � y/

in the sense of distributions in the variable y. Similar identities hold for NLN;x .

Proof. We only prove the second identity. We compute

LN;x N�.y/ D
X
k2Zd

1
p
�k
#.k=N/uk.x/

1
p
�k
Nuk.y/ D GN .x � y/;

where the last step follows from (4.9).

We may now prove the representation of (2.4) underlying our proof. We denote the
regularized Wick-ordered correlation function by

.y
VN;p/x;zx
..D

1

�V
EŒe�V W N�N .zx1/ � � � N�N .zxp/ �N .x1/ � � ��N .xp/ W�:

Lemma 4.9. We have

.y
VN;p/x;zx D
1

�V
EŒ NLN;zx1 � � � NLN;zxpLN;x1 � � �LN;xpe�V �:

The same holds for V replaced with W ".

Proof. Using the recursive characterization of Wick ordering from (A.3), we find

E
h
e�V W

Y
i2Œp�

N�N .zxi /
Y
i2Œp�

�N .xi / W
i
D E

h
e�V W

Y
i2Œp�

N�N .zxi /
Y

i2Œp�1�

�N .xi / W�N .xp/
i

�

X
j2Œp�

GN .zxj � xp/E
h
e�V W

Y
i2Œp�n¹j º

N�N .zxi /
Y

i2Œp�1�

�N .xi / W
i
:

Here we have used (4.9) and EŒ�N .x/�N .y/� D 0. Using Lemmas 4.7 and 4.8 as well as
the Leibniz rule for the operator LN;x , we write the first term on the right-hand side as

E
h
LN;xp

�
e�V W

Y
i2Œp�

N�N .zxi /
Y

i2Œp�1�

�N .xi / W
�i

D E
h
LN;xp .e

�V / W
Y
i2Œp�

N�N .zxi /
Y

i2Œp�1�

�N .xi / W
i

C

X
j2Œp�

GN .zxj � xp/E
h
e�V W

Y
i2Œp�n¹j º

N�N .zxi /
Y

i2Œp�1�

�N .xi / W
i
:

We conclude that

E
h
e�V W

Y
i2Œp�

N�N .zxi /
Y
i2Œp�

�N .xi / W
i
D E

h
LN;xp .e

�V / W
Y
i2Œp�

N�N .zxi /
Y

i2Œp�1�

�N .xi / W
i
:

Repeating this argument 2p times yields the claim.
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The following result is the main analytical tool behind the proof of (3.4).

Lemma 4.10. Let ` > 0 and z D .z1; : : : ; z`/ 2 ƒ`. Abbreviate

LN;z
..D L#

N;z1
� � �L#

N;z`
;

where each L# stands for either L or NL. Then the following hold for any r > 1:

(i) supN supzkLN;zV kLr .P/ <1.

(ii) As "! 0 we have supN supz kLN;zW
" � LN;zV kLr .P/ ! 0.

(iii) As M;N !1 we have supz k.LN;z � LM;z/V kLr .P/ ! 0.

(iv) For any " > 0, as M;N !1 we have supzk.LN;z � LM;z/W "kLr .P/ ! 0.

Before proving Lemma 4.10, we use it to conclude the proof of (3.4), and hence also
of Proposition 3.2.

Proof of (3.4). We begin by showing that .y
VN;p/N>0 is a Cauchy sequence in k�kC , and
hence it converges to a limit that is by definition y
Vp . In the notation of Lemma 4.10, we
deduce from Lemma 4.9 that

�V


y
VN;p � y
VM;p

C D sup

z
jEŒ.LN;z �LM;z/e�V �j; (4.18)

where we abbreviate z D .x; zx/ 2 ƒ2p and choose the supercripts # in the definition of
LN;z appropriately. Applying the chain rule and the Leibniz rule to the 2p derivatives in
LN;z and LM;z, we estimate the right-hand side by a finite number of terms of the form

sup
z1;:::;zk

E
ˇ̌̌� kY
iD1

.LN;ziV / �

kY
iD1

.LM;ziV /
�

e�V
ˇ̌̌
; (4.19)

where k 6 2p and, for all i D 1; : : : ; k, zi 2 ƒ`i for some `i 6 4. Using the identityQ
i ai �

Q
i bi D

P
i .ai � bi /

Q
j<i aj

Q
j>i bj , we estimate (4.19) by

kX
iD1

sup
z1;:::;zk

E
ˇ̌̌
.LN;ziV �LM;ziV /

Y
j<i

.LN;zj V /
Y
j>i

.LM;zj V /e
�V
ˇ̌̌
: (4.20)

Applying Hölder’s inequality, we conclude using Lemma 4.10 (i, iii), as well as Propo-
sition 4.3, that (4.18) converges to 0 as M;N !1. We conclude that .y
VN;p/N>0 is a
Cauchy sequence in k�kC .

The same argument with V replaced with W ", using Lemma 4.10 (iv), shows that,
for any " > 0, y
W

"

N;p converges in k�kC to y
W
"

p . Here, we also use the observation that
supN supz kLN;zW

"kLr .P/ <1, which follows from Lemma 4.10 (i, ii).
Now writing

k�W
"

y
W
"

p � �V y
Vp kC

6 k�W "

y
W
"

p � �W
"

y
W
"

N;pkC C k�
W "

y
W
"

N;p � �
V
y
VN;pkC C k�

V
y
VN;p � �

V
y
Vp kC ;
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we conclude, using lim"!0 �
W "
D �V by Lemma 4.6, that the convergence (3.4) holds

provided that
lim
"!0

sup
N

k�W
"

y
W
"

N;p � �
V
y
VN;pkC D 0: (4.21)

To prove (4.21), we write, using Lemma 4.9,

k�W
"

y
W
"

N;p � �
V
y
VN;pkC D sup

z
jEŒLN;z.e�W

"

� eV /�j:

Similarly to (4.18)–(4.19), we estimate the right-hand side by a sum of terms of the form

sup
z1;:::;zk

E
ˇ̌̌ kY
iD1

.LN;ziW
"/e�W

"

�

kY
iD1

.LN;ziV /e
�V
ˇ̌̌
;

which converges to 0 as "! 0, uniformly in N , by telescoping (analogously to (4.20)),
Hölder’s inequality, as well as Lemma 4.10 (i, ii) and Proposition 4.6. This concludes the
proof.

Proof of Lemma 4.10. Since all quantities appearing inside the Lr .P /-norms in Lemma
4.10 are superpositions of random variables in polynomial chaoses of order at most four
(see Section A.2), from the hypercontractivity estimate of Remark A.5 we find that it
suffices to consider r D 2.

The proof of (i) is similar to that of (ii), and we omit it. To prove (ii), we proceed by
telescoping via V ", writing

W "
� V D .W "

� V "/C .V " � V /:

Thus, we have to differentiate the random variables

W "
� V " D

Z
dx dzx v".x � zx/G.x � zx/

�
W N�.x/�.zx/ W � W j�.x/j2 W

�
;

V " � V D
1

2

Z
dx dzx

�
v".x � zx/ � ı.x � zx/

�
W j�.x/j2 j�.zx/j2 W

by LN;v.
The zeroth order derivatives, ` D 0, were estimated in Lemmas 4.1 and 4.2. For the

higher order derivatives, let us start with W " � V ". For the first order derivative, from
(A.4) and Lemma 4.8, we find

LN;z.W
"
� V "/ D

Z
dx dzx v".x � zx/G.x � zx/GN .z � x/ .�.zx/ � �.x//;

so that Lemma A.1 (see also Example A.2) yields

kLN;z.W
"
� V "/k2

L2.P/

D

Z
dx dzx dy dzy v".x � zx/G.x � zx/GN .z � x/v".y � zy/G.y � zy/GN .z � y/

�
�
G.x � y/CG.zx � zy/ �G.x � zy/ �G.zx � y/

�
:
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The right-hand side is estimated similarly to the proof of Lemma 4.1, uniformly in N and
z 2 ƒ, using the fact that GN is uniformly bounded in L2.ƒ/, and the bound

jG.x � y/CG.zx � zy/ �G.x � zy/ �G.zx � y/j

6 jG.x � y/ �G.x � zy/j C jG.zx � zy/ �G.zx � y/j:

For the second order derivative, we obtain

NLN;zzLN;z.W
"
� V "/

D

Z
dx dzx v".x � zx/G.x � zx/GN .z � x/

�
GN .zz � zx/ �GN .zz � x/

�
;

which can again be estimated as in the proof of Lemma 4.1, uniformly inN and z; zz 2 ƒ.
This concludes the estimate of kLN;zW " � LN;zV "kL2.P/.

To estimate kLN;zV " � LN;zV kL2.P/, we compute, using (A.4) and Lemma 4.8,

LN;z.V
"
� V / D

Z
dx dzx

�
v".x � zx/ � ı.x � zx/

�
GN .z � x/ W�.x/ j�.zx/j

2
W;

so that Lemma A.1 (see also Example A.2) yields

kLN;z.V
"
� V /k2

L2.P/

D

Z
dx dzx dy dzy .v".x � zx/� ı.x � zx//.v".y � zy/� ı.y � zy//GN .z � x/GN .z � y/

�
�
G.x � y/G.zx � zy/2 CG.x � zy/G.zx � y/G.zx � zy/

�
:

The right-hand side is estimated as in the proof of Lemma 4.2, uniformly inN and z 2ƒ.
The higher order derivatives are estimated analogously. This concludes the proof of (ii).

The proofs of (iii) and (iv) are similar, and we focus on (iii). For the first order deriva-
tive, we find

.LN;z � LM;z/V D

Z
dx
�
GN .x � z/ �GM .x � z/

�
W�.x/j�.x/j2 W;

so that Lemma A.1 (see also Example A.2) yields

k.LN;z � LM;z/V k
2
L2.P/

D 2

Z
dx dy

�
GN .x � z/ �GM .x � z/

� �
GN .y � z/ �GM .y � z/

�
G.x � y/3:

Telescoping GN � GM D .GN � G/ � .GM � G/ and using Lemma B.1 and Hölder’s
inequality, we conclude that

k.LN;z � LM;z/V kL2.P/

.
�Z

dx jGN .x/ �G.x/j3
�1=3

C

�Z
dx jGM .x/ �G.x/j3

�1=3
:
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Using (B.2) and splitting the integration domain into jxj6 1=N and jxj> 1=N , we easily
deduce that the right-hand side vanishes as N;M !1. The higher order derivatives are
estimated in exactly the same way. This concludes the proof.

5. Proof of Proposition 3.1

We study the rate of convergence of the relative partition function and the correlation
functions in the mean-field limit, while keeping track of the parameter ". This amounts to
a quantitative analysis of the infinite-dimensional saddle point argument for the functional
integral introduced in [33]. Note that, without the �" and E" correction terms in (2.18),
(3.1), and with "D 1, this convergence was obtained in a qualitative way in [33, Section 5].
The main ingredients that enable a quantitative analysis are: (a) the Lipschitz continuity of
the interaction potential v", with Lipschitz constant depending on " (see Lemma 5.5 (ii)
below), and (b) quantitative Lp-Hölder continuity properties of Brownian motion (see
Lemma 5.4 (ii)). As a result, we can find a suitable choice of " as a function of � such that
we get the wanted convergence as � ! 0; see (5.1). Our methods work for d D 2; 3, and
hence all results of this section are stated for both dimensions.

We now state the explicit lower bound on " � ".�/. Namely, throughout we assume
that

".�/ &

´
exp

�
�.log ��1/.1�a/=2

�
if d D 2;

.log ��1/�.1�a/=2 if d D 3;
(5.1)

for some a 2 .0; 1/. Let us define � W RC ! R by

�.t/ ..D

´
log t�1 if d D 2;

t�1 if d D 3:
(5.2)

By (2.12), (2.17), (5.2), Lemma B.1 (when d D 2), and Remark B.2 (when d D 3), we
note that6

j�"j .�;v �."/; jE"j .� �."/2: (5.3)

Furthermore, by (5.2) and (5.1), it follows that for all C; b > 0, we have

lim
�!0

eC�."/
2

�b D 0: (5.4)

We now state the main results which, in light of (5.4), imply Proposition 3.1.

Proposition 5.1. There exists C1 > 0 depending on �; v such thatˇ̌
Z � �W

" ˇ̌ .�;v

´
eC1�."/

2
�1=4 if d D 2;

eC1�."/
2
�1=4 log ��1 if d D 3:

In statements of results, we use the notation b� to mean that the statement holds for
b � c for any constant c > 0.

6Throughout, we do not emphasize the dependence of the implied constants on d D 2; 3.
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Proposition 5.2. For p 2 N, we define

�.d; p/ ..D

´
1

4pC4
if d D 2;

1
12pC8

� if d D 3:
(5.5)

There exists C2 > 0 depending on �; v such that

�p y�p � y
W "

p




C

.p;�;v eC2�."/
2

��.d;p/:

Remark 5.3. We note that, in order to obtain Propositions 5.1 and 5.2 above, and hence
Proposition 3.1, we only need to use the bounds from Lemma 5.5 below. In light of this
observation, we can consider more general v, which are not smooth. We always assume
that v WRd !R is even,L1 with integral 1, and of positive type. Since v is not smooth, we
need to consider suitable regularizations v� of v. For a motivation and detailed description
of the regularization, we refer the reader to [33, Sections 3.1 and 4.1]. A summary is also
given in the study of the nonlocal problem in Section 5.3 below.

In the first generalization, we consider v Lipschitz and compactly supported. Then the
result of Lemma 5.5 holds for v"� (given by (2.12) with v replaced by v�), uniformly in �.
This follows immediately from the proof of Lemma 5.5 below.

In the second generalization, we assume that v is differentiable and that uniformly in
" 2 .0; 1/, we have

sup
x2ƒ

X
n2Zd

ˇ̌̌̌
v

�
x � n

"

�ˇ̌̌̌
C sup
x2ƒ

X
n2Zd

ˇ̌̌̌
rv

�
x � n

"

�ˇ̌̌̌
. 1: (5.6)

Let us note that (5.6) holds if we assume that there exists a > d such that for all x 2 Rd ,

jv.x/j C jrv.x/j .
1

.1C jxj/a
:

In particular, under the latter conditions, we do not need to assume that v is compactly
supported.

5.1. The partition function

In this subsection, we prove Proposition 5.1. Before proceeding with the proof, we make
several observations and review the functional integral representation from [33]. See
also [41]. We first recall some basic notions for Brownian paths. Given 0 6 z� < � , we
denote by��;z� the space of continuous paths ! W Œz�; ��!ƒ. Given zx 2ƒ and 0 6 z� < � ,
P �;z�
zx
.d!/ denotes the law on ��;z� of standard Brownian motion with periodic boundary

conditions onƒ that equals zx at time z� . Given x; zx 2ƒ and 0 6 z� < � , P �;z�
x;zx
.d!/ denotes

the law of the Brownian bridge��;z� with periodic boundary conditions onƒ that equals zx
at time z� and x at time � . For t > 0, we write the heat kernel on ƒ as

 t .x/ ..D et�=2.x/ D
X
n2Zd

1

.2�t/d=2
e�
jx�nj2

2t :
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For x; zx 2 ƒ and 0 6 z� < � , we define the positive measure

W �;z�
x;zx
.d!/ ..D  ��z� .x � zx/P �;z�

x;zx
.d!/: (5.7)

Given n 2 N�, z� < t1 < � � � < tn < � , and f W ƒn ! R continuous, the measure (5.7)
satisfiesZ

W �;z�
x;zx
.d!/ f .!.t1/; : : : ; !.tn//

D

Z
dx1 � � � dxn  t1�z� .x1 � zx/ t2�t1.x2 � x1/ � � � tn�tn�1.xn � xn�1/

�  ��tn.x � xn/ f .x1; : : : ; xn/:

We note several useful estimates for the above quantities.

Lemma 5.4. The following estimates hold:

(i) There exists a constant C > 0 such that for all 0 6 z� < � , we have

sup
x;zx

Z
W �;z�
x;zx
.d!/ D sup

x;zx

 �;z� .x � zx/ 6 C

�
1C

1

.� � z�/d=2

�
:

(ii) There exists a constant C > 0 such that for all z� 6 s 6 t 6 � , we haveZ
W �;z�
x;zx
.d!/ j!.t/ � !.s/j2ƒ

6 C

�
1C

1

.� � z�/d=2

��
.t � s/C jx � zxj2ƒ

.t � s/2

.� � z�/2

�
: (5.8)

and Z
W �;z�
x;zx
.d!/ j!.t/ � !.s/jƒ

6 C

�
1C

1

.� � z�/d=2

��
.t � s/1=2 C jx � zxjƒ

t � s

� � z�

�
: (5.9)

Here jxjƒ ..D minn2Zd jx � nj denotes the periodic Euclidean norm of x 2 ƒ.

(iii) For 0 < s 6 t , we have

k t �  skL1.ƒ/ 6 d log.t=s/:

The results of Lemma 5.4 are contained in [33]. Part (i) is given in [33, Lemma 2.2].
Estimate (5.8) is proved in [33, Lemma 2.3]. Estimate (5.9) then follows from the Cauchy–
Schwarz inequality and part (i). Part (iii) follows since

k t �  skL1 6
Z t

s

du k@u ukL1 6
Z t

s

du
Z

Rd
dx
�
d

2u
C
jxj2

2u2

�
z u.x/ D d log.t=s/;
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where z u.x/ D 1

.2�u/d=2
e�
jxj2

2u is the heat kernel on Rd , as was noted in the proof of
[33, Lemma 5.18].

Let us fix a function ' 2 C1c .R/ which is even, nonnegative, of positive type, and
which satisfies '.0/ D 1. For fixed L > 0, given � > 0, we define the �-periodic function

ı�.�/
..D

1

�

X
y2Z

.F�1'/

�
� � �y

�

�
; (5.10)

where F denotes Fourier transform (see (4.6)). Here, (5.10) can be interpreted as an
approximate delta function on Œ��=2; �=2/. By construction, we haveZ �

0

d� ı�.�/ D 1; ı� > 0: (5.11)

For simplicity of notation, we suppress the dependence on " and � in the quantum
objects. We only emphasize the � dependence through a subscript when appropriate. We
write the " dependence as a superscript in the classical objects. Let us note several prop-
erties of v" that follow from (2.12).

Lemma 5.5. There exists C > 0, depending only on v, such that the following properties
hold:

(i) kv"kL1.ƒ/ 6 C="d .

(ii) We have

jv".x/ � v".y/j 6
C

"dC1
jx � yjƒ for all x; y 2 ƒ.

For � > 0, recalling (5.10), we let

.C�/
�;z�
x;zx

..D �ı�.� � z�/v".x � zx/

and define �C�.d�/ to be the real Gaussian measure with mean zero and covarianceZ
�C�.d�/ �.�; x/�.z�; zx/ D .C�/

�;z�
x;zx
: (5.12)

Since v 2 C1c .R
d /, under the law �C� , � is almost surely a smooth periodic function on

Œ0; �� �ƒ. Let us note that we can rewrite (2.18) as

H D
M
n2N

.Hn;%" � .�
"/2=2 �E"/; (5.13)

where

Hn;%
..D
�
�

nX
iD1

.� ��=2/i C
�2

2

nX
i;jD1

v".xi � xj /

�
� %�2nC

%2�2

2
(5.14)

and
%" ..D %�=� C �"=�;
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where we recall the definition (2.15) of %� . Namely, from (2.18), using notation as in
(5.14) as well as yv".0/ D 0, it follows that H acts on the nth sector of Fock space as�
�

nX
iD1

.� ��=2/i C
�2

2

nX
i;jD1

v".xi � xj /

�
� �".n� � %�/� �%�yv".0/nC

1

2
yv".0/%

2
� �E

"

D Hn;0 �

�
%�

�
C
�"

�

�
�2nC

�
%�

�
C
�"

�

�2
�2

2
�
.�"/2

2
�E";

which gives us (5.13). We denote

T " WD .�"/2=2CE": (5.15)

In particular, from (5.15) and (5.3), it follows that

jT "j .�;v �."/2: (5.16)

In Lemmas 5.6 and 5.7 below, we give the functional integral representation of the
(quantum) relative partition function (2.14) and the (classical) relative partition function
�W

"
corresponding to the interaction W " given by (3.1). In both cases, the representation

is based on the use of the Hubbard–Stratonovich transformation [33].

Lemma 5.6. The relative partition function (2.14) can be written as Z D lim�!0 Z� ,
where

Z�
..D
Z
�C�.d�/ eT

"�
i�"Œ��
� eF2.�/; (5.17)

for

F2.�/ D �
X

r2.�N/3

1jrj>0e��jrj

jrj

Z
Œ0;��3

d�
Z

dx �.�2; x2/ �.�3; x3/

�

Z
W �1Cr3;�3
x1;x3

.d!3/W �3Cr2;�2
x3;x2

.d!2/W �2Cr1;�1
x2;x1

.d!1/ ei
R

ds �.Œs�� ;!1.s//; (5.18)

which satisfies
ReF2 6 0: (5.19)

In (5.17), we write

Œ�� ..D
Z �

0

d�
Z

dx �.�; x/ (5.20)

and in (5.18), we write
Œt ��

..D .t mod �/ 2 Œ0; �/: (5.21)

Proof. The proof follows from that of [33, Proposition 3.12] by setting

f .�; x/ D

nX
iD1

ı.x � !i .�// �
%�

�
�
�"

�
: (5.22)
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Note that the only difference then is the factor eT
"

coming from the constant term (5.15) in
(5.13) and the extra term ��"=� in (5.22) above. By applying the Hubbard–Stratonovich
transformation

e�
1
2 hf;C�f i D

Z
�C�.d�/ eihf;�i;

this new term adds a factor of

e�
i�"
�

R �
0 d�

R
dx �.�;x/

D e�
i�"Œ��
�

to the integrand of the functional integral (5.17). The formula (5.18) is given in [33,
Lemma 5.4].

We now explain how to obtain the functional integral representation for the classical
partition function in our setting. We define �v".d�/ to be the real Gaussian measure with
covariance Z

�v".d�/ �.x/�.zx/ D v".x � zx/: (5.23)

Since v 2 C1c .R
d /, under the law �v" , � is almost surely a smooth periodic function

on ƒ. We have the following representation.

Lemma 5.7. We have

�W
"

D

Z
�v".d�/ eT

"�i�"h�;1i
L2 ef2.�/ (5.24)

for

f2.�/ D �

Z
Œ0;1/3

dr
e��jrj

jrj

Z
dx �.x2/�.x3/

�

Z
W r3;0
x1;x3

.d!3/W r2;0
x3;x2

.d!2/W r1;0
x2;x1

.d!1/ ei
R

ds �.!1.s//; (5.25)

which satisfies
Ref2 6 0: (5.26)

Note that in (5.24), h�; 1iL2 D
R

dx �.x/ denotes the L2 inner product.

Proof. We note that for fixed 0 < N <1, we have

W "
N WD

1

2

Z
dx dzx

�
j�N .x/j

2
� EŒj�N .x/j

2�
�
v.x � zx/

�
j�N .zx/j

2
� EŒj�N .zx/j

2�
�

� �"
Z

dx
�
j�N .x/j

2
� EŒj�N .x/j

2�
�
�E"

D
1

2

Z
dx dzx

�
j�N .x/j

2
� ¹EŒj�N .x/j

2�C �"º
�
v.x � zx/

�
�
j�N .zx/j

2
� ¹EŒj�N .zx/j

2�C �"º
�
� T ": (5.27)
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Here, we recall (5.15). The claim then follows by using (5.27) in the proof of [33, Propo-
sition 4.1]. In particular, by applying the Hubbard–Stratonovich transformation

e�
1
2 hf;v

"f i
D

Z
�v".d�/ eihf;�i

for
f .x/ D j�N .x/j

2
� EŒj�N .x/j

2�C �";

the �" terms in (5.27) add a factor of e�i�"h�;1i
L2 to the integrand of the functional integral

(5.24). Here, we also recall (5.15). Formula (5.25) is given in [33, Lemma 5.4].

Recalling (5.11), let us note the following useful result.

Lemma 5.8. If � D �.�; x/ has law �C� with covariance (5.12), then its time average

h�i.x/ ..D
1

�

Z �

0

d� �.�; x/ (5.28)

has law �v" with covariance (5.23).

We observe that
hh�i; 1iL2 D

1

�
Œ�� (5.29)

for Œ�� as in (5.20). Therefore, we can rewrite (5.24) as

�W
"

D

Z
�C�.d�/ eT

"�
i�"Œ��
� ef2.h�i/: (5.30)

We note the following result.

Lemma 5.9. Uniformly in � > 0, we haveˇ̌
Z� � �

W " ˇ̌ 6 eT
"

�Z
�C�.d�/ jF2.�/ � f2.h�i/j

2

�1=2
:

Proof. By (5.17) and (5.30), we have

Z� � �
W "

D

Z
�C�.d�/ eT

"�
i�"Œ��
� .eF2.�/ � ef2.h�i//: (5.31)

By (5.19) and (5.26) and the elementary inequality jea � ebj 6 ja � bj for a; b 2 C with
Re a;Re b 6 0, we see that for all � ,

jeF2.�/ � ef2.h�i/j 6
ˇ̌
F2.�/ � f2.h�i/

ˇ̌
: (5.32)

The claim follows from (5.31), (5.32), and the Cauchy–Schwarz inequality.

In order to simplify notation, we define the function ‚ W RC ! R by

‚.t/ ..D

´p
t if d D 2;
p
t log t�1 if d D 3:

(5.33)
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Note that the upper bound in Proposition 5.1 can then be rewritten as eC1�."/
2
‚.�/1=2,

with � given by (5.2). We prove the following two estimates, which correspond to quanti-
tative versions of [33, Lemmas 5.9 and 5.10] respectively, and in turn let us use the bound
from Lemma 5.9 to prove Proposition 5.1.

Lemma 5.10. Uniformly in � > 0, we haveˇ̌̌̌Z
�C�.d�/ F2.�/F2.�/ �

Z
�v".d�/ f2.�/f2.�/

ˇ̌̌̌
.�;v

‚.�/

"5dC1
:

Lemma 5.11. Uniformly in � > 0, we haveˇ̌̌̌Z
�C�.d�/ f2.h�i/F2.�/ �

Z
�v".d�/ f2.�/f2.�/

ˇ̌̌̌
.�;v

‚.�/

"5dC1
:

Assuming Lemmas 5.10 and 5.11 for now, we can prove the convergence rate given
in Proposition 5.1.

Proof of Proposition 5.1. This follows from Lemmas 5.6–5.11 by recalling (5.16).

The rest of this section is devoted to showing Lemmas 5.10 and 5.11. Before proceed-
ing with the proofs, we need to introduce some notation and definitions. Throughout we
use the convention that, given a path ! 2 ��;z� and a function f , we writeZ

ds f .!.s// �
Z �

z�

ds f .!.s//:

We define the following quantities that will allow us to rewrite the terms that arise.

Definition 5.12 (Classical interactions). Let x; zx 2 ƒ and ! 2 ��1;z�1 ; z! 2 ��2;z�2 be
continuous paths. We then define the point-point interaction

.V "/x;zx
..D
Z
�v".d�/ �.x/�.zx/ D v".x � zx/;

the point-path interaction

.V "/x.!/
..D
Z
�v".d�/

Z
ds �.!.s// D

Z
ds v".x � !.s//;

and the path-path interaction

V ".!; z!/ ..D
Z
�v".d�/

Z
ds �.!.s//

Z
dzs �.z!.zs// D

Z
ds
Z

dzs v".!.s/ � z!.zs//:

In what follows, we use the notation xi;0 � xi ; zxi;1 � zxi for i D 1; 2 and we write

A ..D ¹2; 3º � ¹0; 1º: (5.34)

Arguing analogously to [33, (5.8)–(5.9)], we getZ
�v".d�/ f2.�/f2.�/ D

Z
Œ0;1/3

dr
e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
I ".r;zr/; (5.35)
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where

I ".r;zr/ ..D
Z

dx
Z

dzx
Z

W r3;0
x1;x3

.d!3/W r2;0
x3;x2

.d!2/W r1;0
x2;x1

.d!1/

�W zr3;0

zx1;zx3
.dz!3/W zr2;0

zx3;zx2
.dz!2/W zr1;0

zx2;zx1
.dz!1/ e�

1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V "/xa;xb

Y
a2AnŒ…�

i
�
.V "/xa.!1/ � .V

"/xa.z!1/
�
: (5.36)

Here, we write jrj D r1C r2C r3; jzrj D zr1C zr2C zr3. Moreover, we denote by M.A/ the
set of partial pairings on the set A.

Definition 5.13 (Quantum interactions). Let .�; x/; .z�; zx/ 2 Œ0; ���ƒ and let ! 2��1;z�1

and z! 2 ��2;z�2 be continuous paths. With ı� given by (5.10), we define the point-point
interaction

.V�/
�;z�
x;zx

..D
Z
�C�.d�/ �.�; x/�.z�; zx/ D �ı�.� � z�/v

".x � zx/;

the point-path interaction

.V�/
�
x.!/

..D
Z
�C�.d�/ �.�; x/

Z �

0

dt
Z

ds ı.t � Œs��/ �.t; !.s//

D �

Z
ds ı�.� � Œs��/ v".x � !.s//;

and the path-path interaction

V�.!; z!/ ..D
Z
�C�.d�/

Z �

0

dt
Z

ds �.�; x/ ı.t � Œs��/ �.t; !.s//

�

Z �

0

dzt
Z

dzs ı.zt � Œzs��/�.zt ; z!.zs//

D �

Z
ds
Z

dzs ı�.Œs�� � Œzs��/v".!.s/ � z!.zs//:

Here, we recall (5.21).

Arguing analogously to [33, (5.17)–(5.18), (5.21)], we haveZ
�C�.d�/ F2.�/F2.�/ D

X
r2.�N/3

1jrj>0 e��jrj

jrj

X
zr2.�N/3

1jzrj>0 e��jzrj

jzrj
J.r;zr/; (5.37)

where

J.r;zr/

..D
Z
Œ0;��3

d�
Z
Œ0;��3

dz�
Z

dx
Z

dzx
Z

W �1Cr3;�3
x1;x3

.d!3/W �3Cr2;�2
x3;x2

.d!2/W �2Cr1;�1
x2;x1

.d!1/

�W z�1Czr3;z�3
zx1;zx3

.dz!3/W z�3Czr2;z�2
zx3;zx2

.dz!2/W z�2Czr1;z�1
zx2;zx1

.dz!1/ e�
1
2 .V�.!1;!1/CV�.z!1;z!1/�2V�.!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V�/
�a;�b
xa;xb

Y
a2AnŒ…�

i
�
.V�/

�a
xa
.!1/ � .V�/

�a
xa
.z!1/

�
: (5.38)
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The first step in the proof of Lemma 5.10 is to compare (5.38) with �6I ".r;zr/, which
appears in a Riemann sum of mesh size � for (5.35). We show the following quantitative
estimate.

Lemma 5.14 (Approximation of J.r;zr/). For all r;zr 2 .�N/3 with jrj; jzrj > 0, we have,
uniformly in � > 0,

J.r;zr/ D �6I ".r;zr/

CO

�
�13=2

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/6

�
: (5.39)

The second step in the proof of Lemma 5.10 consists in giving a quantitative estimate
on the error obtained by approximating the integral (5.35) with the above Riemann sum.
To this end, we prove the following estimate.

Lemma 5.15 (Quantitative Riemann sum approximation for (5.35)). Recalling (5.33), we
have, uniformly in � > 0,ˇ̌̌̌Z
Œ0;1/3

dr
e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
I ".r;zr/

� �6
X

r2.�N/3

1jrj>0e��jrj

jrj

X
zr2.�N/3

1jzrj>0e��jzrj

jzrj
I ".r;zr/

ˇ̌̌̌
.�;v

‚.�/

"5dC1
:

With the above two results, we have all of the necessary tools to prove Lemma 5.10.

Proof of Lemma 5.10. The claim follows from Lemmas 5.14 and 5.15 by using (5.35)
and (5.37).

We now give the proofs of Lemmas 5.14 and 5.15. In the proof of Lemma 5.14, we
use the following estimates that are obtained from Definition 5.13 and Lemma 5.5 (i), and
(5.11):

j.V�/
�;z�
x;zx
j 6

C�

"d
ı�.� � z�/; j.V�/

�
x.!

0/j 6
C

"d
Œ.� 0 � z� 0/C ��: (5.40)

In the second estimate in (5.40), we take !0 2 ��
0;z� 0 . We note that for paths !0; z!0 with

f .�; x/ D

Z
ds ı.� � Œs��/ı.x � !0.s// �

Z
dzs ı.� � Œzs��/ı.x � z!0.zs//

we have
V�.!

0; !0/C V�.z!
0; z!0/ � 2V�.!

0; z!0/ D hf;C�f i > 0; (5.41)

since ı� and v" are of positive type.

Proof of Lemma 5.14. We recall the definition (5.34) of the set A. For fixed �; z� 2 Œ0; ��3,
arguing analogously to [33, (5.21)], we apply a time translation in the integrand and
rewrite (5.38) as
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Œ0;��3

d�
Z
Œ0;��3

dz�
Z

dx
Z

dzx
Z

W �1Cjrj;�3Cr1Cr2
x1;x3

.d!3/W �3Cr1Cr2;�2Cr1
x3;x2

.d!2/

�W �2Cr1;�1
x2;x1

.d!1/W
z�1Cjzrj;z�3Czr1Czr2
zx1;zx3

.dz!3/W z�3Czr1Czr2;z�2Czr1
zx3;zx2

.dz!2/W z�2Czr1;z�1
zx2;zx1

.dz!1/

� e�
1
2 .V�.!1;!1/CV�.z!1;z!1/�2V�.!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V�/
�a;�b
xa;xb

Y
a2AnŒ…�

i
�
.V�/

�a
xa
.!1/ � .V�/

�a
xa
.z!1/

�
D J.r;zr/: (5.42)

In what follows, we denote by yk either the quantity k or zk. We hence consider paths y! W
Œy�1; y�1C jyrj�!ƒ obtained by concatenating y!1; y!2; y!3 occurring in (5.42). In particular,

y!1 D y!jŒy�1;y�2Cyr1�; y!2 D y!jŒy�2Cyr1;y�3Cyr1Cyr2�; y!3 D y!jŒy�3Cyr1Cyr2;y�1Cjyrj�: (5.43)

We define the following parameters for a 2 A:8̂̂<̂
:̂
t.2;0/

..D �2C r1; t.3;0/ ..D �3C r1C r2; t.2;1/ ..D z�2Czr1; t.3;1/ ..D z�3Czr1Czr2;

s.2;0/
..D �1C r1; s.3;0/ ..D �1C r1C r2; s.2;1/ ..D z�1Czr1; s.3;1/ ..D z�1Czr1Czr2;

!.2;0/ D !.3;0/
..D !; !.2;1/ D !.3;1/ ..D z!:

(5.44)

Note that the times ta in (5.44) were chosen as initial and final times of the paths y!j in
(5.43). The sa satisfy jsa � taj 6 � and are used as approximations of the ta which help
us remove the y�2; y�3 dependence.

Using (5.41), (5.43) and Lemma C.1 (i) for e�
1
2 .V�.!1;!1/CV�.z!1;z!1/�2V�.!1;z!1//

occurring in the integrand of (5.42), recalling (5.44) and integrating in the yx2; yx3 vari-
ables, we deduce from (5.42) that

J.r;zr/ D
Z
Œ0;��3

d�
Z
Œ0;��3

dz�
Z

dx1

Z
dzx1

Z
W �1Cjrj;�1
x1;x1

.d!/W z�1Cjzrj;z�1
zx1;zx1

.dz!/�
e�

1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//CO
�
j yV�.!1;!1/jCj yV�.z!1; z!1/jCj yV�.!1; z!1/j

�
CO

�
�.r1 C zr1 C �/

"d

��
�

X
…2M.A/

Y
¹a;bº2…

.V�/
�a;�b
!a.ta/;!b.tb/

Y
a2AnŒ…�

i..V�/
�a
!a.ta/

.!1/ � .V�/
�a
!a.ta/

.z!1//: (5.45)

We first estimate the contributions to (5.45) coming from the two error terms occurring
in the square brackets. We recall (C.2), (C.3), (5.43), and apply Fubini’s theorem, Lemma
5.4 (i)–(ii), and (5.11) to deduce thatZ

W �1Cjrj;�1
x1;x1

.d!/W z�1Cjzrj;z�1
zx1;zx1

.dz!/
�
j yV�.!1; !1/j C j yV�.z!1; z!1/j C j yV�.!1; z!1/j

�
6
C
p
�

"dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/2: (5.46)
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Note that here we have used estimate (5.9) when applying Lemma 5.4 (ii). Combining
(5.46) with (5.40), and using (5.11) for the dy� integration, we deduce that the first error
term in the square brackets in (5.45) gives a contribution which is

O

�
�13=2

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/6

�
: (5.47)

Here, we note that there are at most jAj D 4 factors of 1="d coming from (5.40). Likewise,
there are at most 4 additional factors of 1C jrj C jzrj. Similarly, the second error term also
gives a contribution which is bounded from above by (5.47) (note that now, we do not
need to use (5.46)). Therefore, we can write (5.45) as

J.r;zr/ D NJ .r;zr/CO
�
�13=2

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/6

�
; (5.48)

where

NJ .r;zr/ ..D
Z
Œ0;��3

d�
Z
Œ0;��3

dz�
Z

dx1

Z
dzx1

Z
W �1Cjrj;�1
x1;x1

.d!/W z�1Cjzrj;z�1
zx1;zx1

.dz!/

e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//
X

…2M.A/

Y
¹a;bº2…

.V�/
�a;�b
!a.ta/;!b.tb/

�

Y
a2AnŒ…�

i
�
.V�/

�a
!a.ta/

.!1/ � .V�/
�a
!a.ta/

.z!1/
�
: (5.49)

In order to analyse (5.49), we note the following three estimates.

(i) We have

e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//

D e�
1
2 .V

".!jI1 ;!jI1 /CV".z!jzI1
;z!jzI1

/�2V".!jI1 ;z!jzI1
//
CO

�
�

"d
.1C r1 C zr1/

�
;

(5.50)

where I1 D Œ�1; �1 C r1� and zI1 D Œz�1; z�1 C zr1�.

(ii) For all a; b 2 A, we haveZ �

0

d�a

Z �

0

d�b .V�/
�a;�b
!a.ta/;!b.tb/

D �2 .V "/!a.sa/;!b.sb/

CO

�
�

"dC1

Z �

0

d�a

Z �

0

d�b ı�.�a��b/
�
j!a.ta/�!a.sa/jƒCj!b.tb/�!b.sb/jƒ

��
:

(5.51)

(iii) For all a 2 A, we haveZ �

0

d�a .V�/
�a
!a.ta/

.y!1/ D � .V
"/!a.sa/.y!jŒy�1;y�1Cyr1�/

CO

�
yr1

"dC1

Z �

0

d�a j!a.ta/ � !a.sa/jƒ

�
CO

�
�2

"d

�
: (5.52)
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In order to show (i), we note that for paths !0; z!0 and

f .x/ D

Z
ds ı.x � !.s// �

Z
dzs ı.x � !0.zs//;

we obtain

V ".!0; !0/C V ".z!0; z!0/ � 2V ".!0; z!0/ D

Z
dx dy f .x/v".x � y/f .y/ > 0; (5.53)

since v" is of positive type.
Claim (i) then follows by using Definition 5.12, (5.53), and Lemma C.1 (ii). In order

to prove claim (ii), we use Definition 5.13, (5.44) and (5.11) to rewrite the left-hand side
of (5.51) as

�2 v".!a.sa/ � !b.sb//

C �

Z �

0

d�a

Z �

0

d�b ı�.�a � �b/Œv".!a.ta/ � !b.tb// � v".!a.sa/ � !b.sb//�;

which by Lemma 5.5 (ii) is of the form given by the right-hand side of (5.51). In order to
prove claim (iii), we first recall (5.43) and use jy�1 � y�2j 6 �, Definition 5.13, (5.11), and
Lemma 5.5 (i) to rewrite the left-hand side of (5.52) as

�

Z �

0

d�a

Z y�1Cyr1
y�1

ds ı�.�a � Œs��/v".!a.sa/ � y!.s//

C�

Z �

0

d�a

Z y�1Cyr1
y�1

ds ı�.�a� Œs��/Œv".!a.ta/� y!.s//�v".!a.sa/� y!.s//�CO
�
�2

"d

�
:

(5.54)

The last error term in (5.54) comes from replacing y�2 C yr2 by y�1 C yr1 in the upper limit
of the s integral. For the first term, we use (5.11) to integrate in �a. For the second term,
we use Lemma 5.5 (ii) followed by (5.11) to integrate in s. It follows that (5.54) is of the
form given by the right-hand side of (5.52).

We recall (5.36), (5.43), (5.44). Then, we use estimates (i)–(iii) above together with
a telescoping argument in (5.49), and argue analogously to the proof of (5.48) to deduce
that

NJ .r;zr/D �6I ".r;zr/CO
�
�13=2

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1CjrjC jzrj/6

�
: (5.55)

We now deduce (5.39) from (5.48) and (5.55).

In the proof of Lemma 5.15, we use the following estimates that follow from Defini-
tion 5.12 and Lemma 5.5 (i):

j.V "/x;zxj 6
C

"d
; j.V "/x.!/j 6

C.�1 � z�1/

"d
: (5.56)
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Proof of Lemma 5.15. We recall (5.36) and note that for r;zr 2 Œ0;1/3 � Œ0;1/3, we have

jI ".r;zr/j 6
C

"4d

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/4; (5.57)

by using (5.56), (5.53), and Lemma 5.4 (i).
Let C0 > 0 be given. Recalling (5.33), we first prove the following two estimates:ˇ̌̌̌Z
Œ0;1/3

dr
e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
I ".r;zr/ 1min.rj ;zrj /6C0�

ˇ̌̌̌
.C0;�;v

p
�

"4d
; (5.58)ˇ̌̌̌

�6
X

r2.�N/3

1jrj>0e��jrj

jrj

X
zr2.�N/3

1jzrj>0e��jzrj

jzrj
I ".r;zr/ 1min.rj ;zrj /6C0�

ˇ̌̌̌
.C0;�;v

‚.�/

"4d
:

(5.59)

By using (5.57) and symmetry, we note that (5.58) follows from7Z
Œ0;1/3

dr 1r36C0�

e��jrj=2

jrj1Cd=2
.C0;� �

2�d=2: (5.60)

The estimate (5.60) follows by using spherical coordinates and considering the contribu-
tions C0�=r > 1 and C0�=r < 1 separately. We omit the details.

By using (5.57) and symmetry, we deduce that (5.59) follows from

�3
X
r32�N

1r3>0
e��r3

r
1Cd=2
3

C �3
X

r2.�N/3

1r36C0�

1j.r1;r2/j>0e��jrj

jrj1Cd=2
.C0;� ‚.�/: (5.61)

The first term on the left-hand side of (5.61) is

6 �3�d=2
X
r32�N

1r3>0
e��r3

r3
.� �2�d=2 log ��1 . ‚.�/

by considering Riemann sums in one dimension. The second term on the left-hand side
of (5.61) is

.C0 �
3
X

r2.�N/2

1jrj>0e��jrj

jrj1Cd=2
.�
p
�;

where the latter inequality follows by considering Riemann sums in two dimensions.
Here, we use the convention that for r D .r1; r2/ 2 .�N/2, we take jrj D r1 C r2. We
deduce (5.61), and (5.59) then follows.

We henceforth fix C0 > 0 large and consider r;zr 2 Œ0;1/3, ˛; z̨ 2 R3 with

jri j; jzri j > C0�; j˛i j; jz̨i j 6 �: (5.62)

7We observe that this is a slightly stronger bound than what we need when d D 2. The bound
(5.58) is sufficient for the rest of the argument. An analogous observation holds for the bound (5.59).
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Under the assumption (5.62), we show that

jI ".rC ˛;zrC z̨/� I ".r;zr/j D O
� p

�

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/5

�
CO

�
�

"4d
1

r3

�
1C

1

.r1C r2/d=2

��
1C

1

jzrjd=2

�
.1CjrjC jzrj/4

�
CO

�
�

"4d

�
1C

1

jrjd=2

�
1

zr3

�
1C

1

.zr1Czr2/d=2

�
.1CjrjC jzrj/4

�
DW E1.r;zr/: (5.63)

By using (5.57), (5.62), and the notation in (5.63) we have by a direct calculation that

e��jrC˛j

jrC ˛j
e��jzrCz̨j

jzrC z̨j
I ".rC ˛;zrC z̨/ �

e��jrj

jrj
e��jzrj

jzrj
I ".r;zr/

D O

�
e��jrj

jrj
e��jzrj

jzrj
E1.r;zr/

�
CO�

�
�

"4d

�
1C

1

jrj.dC3/=2

��
1C

1

jzrj.dC3/=2

�
.1C jrj C jzrj/4 e��.jrjCjzrj/

�
DW E2.r;zr/: (5.64)

In order to obtain the second error term in (5.64), we note that, by (5.62), we have8

e��jyrCy̨j

jyrC y̨j
�

e��jyrj

jyrj
D O�

�
e��jyrj �
jyrj

C
e��jyrj �1=2

jyrj3=2

�
: (5.65)

We then deduce the lemma by using (5.58), (5.59), (5.62), (5.63), (5.64), and con-
sidering Riemann sums for (5.35). Indeed, for all .s; zs/ 2 Œ0;1/3 � Œ0;1/3, we take
.r;zr/ 2 .�N/3 � .�N/3 such that yrj D bysj c� , where

bsc�
..D max ¹u 2 �N W u 6 sº: (5.66)

Then we automatically have jyrj � ysj j 6 � for all j D 1; 2; 3. We then use (5.63), (5.64)
with yrC y̨ � ys and we reduce the claim to showing

�6
X

r;zr2.�N/3\ŒC0�;1/3

E2.r;zr/ . ‚.�/;

which follows from (5.63)–(5.64). Let us note that when estimating the contributions from
the last two error terms in (5.63), we useX
r32.�N/\ŒC0�;1/

�

r3
e��r3=2 .� log ��1; (5.67)

X
r2.�N/2\ŒC0�;1/2

�2
�
1C

1

jrj1Cd=2

�
e��jrj=2 .C0;� log ��1 1dD2 C ��1=21dD3; (5.68)

8In order to obtain the second error term in (5.65), we interpolate between the estimatesˇ̌̌̌
1

jyrC y̨j
�
1

jyrj

ˇ̌̌̌
.

1

jyrj
and

ˇ̌̌̌
1

jyrC y̨j
�
1

jyrj

ˇ̌̌̌
.

�

jyrj2
:
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which follow by considering Riemann sums in one and two dimensions respectively. Here,
the term on the left-hand side of (5.68) comes from estimating 1

j.r1;r2;r3/j
.1C 1

.r1Cr2/d=2
/

. 1C 1

.r1Cr2/1Cd=2
. Finally, let us note that when d D 3, we have .d C 3/=2 D 3 and

therefore the second error term in (5.64) yields the logarithmic factor in the error term.
Similarly, in light of (5.67)–(5.68), the same is true for the last two error terms in (5.63).
This requires the necessary modification in (5.33) when d D 3.

The rest of the proof is devoted to showing (5.63). Let r;zr;˛; z̨ be as in (5.62). Recall-
ing (5.36) and using an appropriate time translation of the paths,9 we can write

I ".rC ˛;zrC z̨/ DZ
dx
Z

dzx
Z

W jrjCj˛j;r1Cr2C˛1C˛2
x1;x3

.d!3/W r1Cr2C˛1C˛2;r1C˛1
x3;x2

.d!2/W r1C˛1;0
x2;x1

.d!1/

�W jzrjCjz̨j;zr1Czr2Cz̨1Cz̨2
zx1;zx3

.dz!3/W zr1Czr2Cz̨1Cz̨2;zr1Cz̨1
zx3;zx2

.dz!2/W zr1Cz̨1;0

zx2;zx1
.dz!1/

� e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//
X

…2M.A/

Y
¹a;bº2…

.V "/xa;xb

�

Y
a2AnŒ…�

i
�
.V "/xa.!1/ � .V

"/xa.z!1/
�
: (5.69)

Note that, by (5.62), we indeed have jzrj C jz̨j > zr1 C zr2 C z̨1 C z̨2 and jzrj C jz̨j >
zr1 C zr2 C z̨1 C z̨2, hence the above expression is well-defined.

We now show that

(5.69) D NI ".rC ˛;zrC z̨/

CO

�
�

"4d
1

r3

�
1C

1

.r1 C r2/d=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/4

�
CO

�
�

"4d

�
1C

1

jrjd=2

�
1

zr3

�
1C

1

.zr1 C zr2/d=2

�
.1C jrj C jzrj/4

�
; (5.70)

where

NI ".rC ˛;zrC z̨/

..D
Z

dx
Z

dzx
Z

W jrj;r1Cr2C˛1C˛2
x1;x3

.d!3/W r1Cr2C˛1C˛2;r1C˛1
x3;x2

.d!2/W r1C˛1;0
x2;x1

.d!1/

�W jzrj;zr1Czr2Cz̨1Cz̨2
zx1;zx3

.dz!3/W zr1Czr2Cz̨1Cz̨2;zr1Cz̨1
zx3;zx2

.dz!2/W zr1Cz̨1;0

zx2;zx1
.dz!1/

� e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//
X

…2M.A/

Y
¹a;bº2…

.V "/xa;xb

�

Y
a2AnŒ…�

i
�
.V "/xa.!1/ � .V

"/xa.z!1/
�

(5.71)

9The time-translation is analogous to that used to in order to rewrite (5.38) as (5.42) above.
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is obtained by modifying (5.69) to replace the final time of !3 and z!3 by jrj and jzrj
respectively.10

In order to deduce the estimate (5.70), let us first consider the case z̨ D 0. We note that
neither of the integrands in (5.69), (5.71) depends on !3. Using (5.53), (5.56), integrating
in x2; zx1; zx2; zx3 and recalling Lemma 5.4 (i) as well as (5.62), we deduce that

j NI ".rC ˛;zr/ � I ".rC ˛;zr/j

.d;v
1

"4d

Z
dx1 dx3 j r3C˛3�˛1�˛2.x1 � x3/ �  r3�˛1�˛2.x1 � x3/j

�

�
1C

1

.r1 C r2/d=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/4

.d;v
j˛3j

"4d
1

r3

�
1C

1

.r1 C r2/d=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/4:

For the last inequality, we have used Lemma 5.4 (iii) and (5.62). We hence deduce (5.70)
when z̨ D 0. The general claim of (5.70) follows by a telescoping argument.

We now show that j NI ".rC ˛;zrC z̨/ � I ".r;zr/j is bounded by the first error term on
the right-hand side of (5.63). In order to do this, we rewrite NI ".rC ˛;zrC z̨/ by arguing
as in the proof of Lemma 5.14. Similarly to (5.43), consider loops y! W Œ0; jyrj�! ƒ which
are obtained by concatenating y!1; y!2; y!3. In particular,

y!1 D y!jŒ0;yr1Cy̨1�; y!2 D y!jŒyr1Cy̨1;yr1Cyr2Cy̨1Cy̨2�; y!3 D y!jŒyr1Cyr2Cy̨1Cy̨2;jyrjCjy̨j�:

(5.72)
Given a 2 A, we define the following quantities, similarly to (5.44):8̂̂̂̂

<̂
ˆ̂̂:
t.2;0/

..D r1 C ˛1; t.3;0/
..D r1 C r2 C ˛1 C ˛2;

t.2;1/
..D zr1 C z̨1; t.3;1/

..D zr1 C zr2 C z̨1 C z̨2;

s.2;0/
..D r1; s.3;0/

..D r1 C r2; s.2;1/
..D zr1; s.3;1/

..D zr1 C zr2;

!.2;0/ D !.3;0/
..D !; !.2;1/ D !.3;1/

..D z!:

(5.73)

Note that, in (5.73), the sa are the approximations of the ta which have been decoupled
from the variables y̨j . By construction, we have !a.ta/ D xa and jsa � taj . � for all
a 2 A.

Therefore, integrating in yx2; yx3, we get

NI ".rC ˛;zrC z̨/

D

Z
dx1

Z
dzx1

Z
W jrj;0
x1;x1

.d!/W jzrj;0
zx1;zx1

.dz!/ e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V "/!a.ta/;!b.tb/
Y

a2AnŒ…�

i
�
.V "/!a.ta/.!1/ � .V

"/!a.ta/.z!1/
�
:

(5.74)

10 NI ".rC ˛;zrC z̨/ can easily be written as a function of .r;zr/. This notation is more convenient
for the purposes of our argument.
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We set ˛ D z̨ D 0 in (5.69) and recall (5.72)–(5.73) to write

I ".r;zr/D
Z

dx1

Z
dzx1

Z
W jrj;0
x1;x1

.d!/W jzrj;0
zx1;zx1

.dz!/e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V "/!a.sa/;!b.sb/
Y

a2AnŒ…�

i
�
.V "/!a.sa/.!1/ � .V

"/!a.sa/.z!1/
�
:

(5.75)

In order to compare (5.74) and (5.75), we note the following three estimates, which hold
uniformly in � > 0.

(i) We have

e�
1
2 .V

".!1;!1/CV".z!1;z!1/�2V".!1;z!1//

D e�
1
2 .V

".!jŒ0;r1�;!Œ0;r1�/CV".z!Œ0;zr1�;z!Œ0;zr1�/�2V".!Œ0;r1�;z!Œ0;zr1�//

CO

�
�

"d
.1C r1 C zr1/

�
:

(ii) For all a; b 2 A, we have

j.V "/!a.ta/;!b.tb/ � .V
"/!a.sa/;!b.sb/j

6
C

"dC1

�
j!a.ta/ � !a.sa/jƒ C j!b.tb/ � !b.sb/jƒ

�
:

(iii) For all a 2 A, we haveˇ̌
.V "/!a.ta/.y!1/ � .V

"/!a.sa/.y!1/
ˇ̌

6
C

"dC1
yr1 j!a.ta/ � !a.sa/jƒ:

Claim (i) follows by arguing as for (5.50). Claim (ii) follows by using Definition 5.12 and
Lemma 5.5 (ii). Claim (iii) is shown analogously.

Starting from the identities (5.74), (5.75), using (5.56), estimates (i)–(iii) above, and
recalling Lemma 5.4 (i)–(ii), we deduce that

j NI ".rC ˛;zrC z̨/� I ".r;zr/j DO
� p

�

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/5

�
:

(5.76)

Note that here we have again used estimate (5.9) when applying Lemma 5.4 (ii). Combin-
ing (5.69)–(5.70) and (5.76), we obtain (5.63) and the lemma follows.

In order to prove Lemma 5.11, we need to make some minor modifications. Arguing
analogously to [33, (5.31)–(5.33)], we haveZ
�C�.d�/ f2.h�i/F2.�/ D

1

�3

X
r2.�N/3

1jrj>0e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
zJ ".r;zr/; (5.77)
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where

zJ ".r;zr/

..D
Z
Œ0;��3

d�
Z
Œ0;��3

dz�
Z

dx
Z

dzx
Z

W �1Cr3;�3
x1;x3

.d!3/W �3Cr2;�2
x3;x2

.d!2/W �2Cr1;�1
x2;x1

.d!1/

�W zr3;0

zx1;zx3
.dz!3/W zr2;0

zx3;zx2
.dz!2/W zr1;0

zx2;zx1
.dz!1/ e�

1
2 .V�.!1;!1/CV".z!1;z!1/�2V".!1;z!1//

�

X
…2M.A/

Y
¹a;bº2…

.V�/
�a;�b
xa;xb

Y
a2AnŒ…�

i
�
.V�/

�a
xa
.!1/ � .V

"/xa.z!1/
�
: (5.78)

The following analogues of Lemmas 5.14 and 5.15 hold.

Lemma 5.16. For all r 2 .�N/3 and zr 2 Œ0;1/3 with jrj; jzrj > 0, we have, uniformly in
� > 0,

J.r;zr/ D �6I ".r;zr/CO
�
�13=2

"5dC1

�
1C

1

jrjd=2

��
1C

1

jzrjd=2

�
.1C jrj C jzrj/6

�
:

Lemma 5.17. Recalling (5.33), we have, uniformly in � > 0,ˇ̌̌̌Z
Œ0;1/3

dr
e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
I ".r;zr/

� �3
X

r2.�N/3

1jrj>0e��jrj

jrj

Z
Œ0;1/3

dzr
e��jzrj

jzrj
I ".r;zr/

ˇ̌̌̌
.�;v

‚.�/

"5dC1
:

The proofs of Lemmas 5.16 and 5.17 are very similar to those of Lemmas 5.14 and
5.15; see Appendix C.

Proof of Lemma 5.16. The proof is analogous to that of Lemma 5.14 given above. The
only difference is that for y!1 D z!1, we replace (5.52) by the estimate

.V "/!a.ta/.z!1/D .V
"/!a.sa/.z!jŒz�1;z�1Czr1�/CO

�
zr1

"dC1
j!a.ta/�!a.sa/jƒ

�
CO

�
�

"d

�
;

which follows from Lemma 5.5 (i)–(ii) and (5.43)–(5.44).

Proof of Lemma 5.17. The result follows directly from the proof of Lemma 5.15.

Proof of Lemma 5.11. The claim follows from Lemmas 5.16 and 5.17 by using (5.35)
and (5.77).

5.2. Correlation functions

We note the following analogues of Lemmas 5.6 and 5.7 that give us functional integral
representations for (2.21) and (2.20) respectively.
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Lemma 5.18. For all p 2 N, we have y�p;�
C
�! y�p as �! 0, where y�p satisfies

�p y�p;� D
pŠ

Z"�
PpQp;� (5.79)

for

.Qp;�/x;zx
..D
Z
�C�.d�/ eT

"�
i�"Œ��
� eF2.�/

�

pY
iD1

�
�
X

ri2�N�

e��ri
Z

W ri ;0

xi ;zxi
.d!i /

�
ei
R ri
0

dt �.Œt�� ;!i .t// � 1
��
: (5.80)

Here, F2 is given as in (5.18). Moreover, we recall that Pp denotes the projection given by

(2.5) and
C
�! convergence in the space of continuous functions on ƒp �ƒp with respect

to the supremum norm.

Proof. We obtain (5.79)–(5.80) by arguing analogously to [33, (5.36)–(5.37)]. The only
difference is that, in the � integral, we have to add the extra factor of eT

"�i�"Œ��=� due to
the "-dependent corrections in (2.18). This change is justified by arguing analogously to
the proof of Proposition 5.6.

Lemma 5.19. For all p 2 N, we have

y
W
"

p D
pŠ

�W
" Ppq

"
p (5.81)

for

.q"p/x;zx
..D
Z
�v".d�/ eT

"�i�"h�;1i
L2 ef2.�/

�

pY
iD1

�Z 1
0

dri e��ri
Z

W ri ;0

xi ;zxi
.d!i /

�
ei
R ri
0

dt �.!i .t// � 1
��
: (5.82)

Here, f2 is given as in (5.25).

Proof. We obtain (5.81)–(5.82) analogously to [33, (5.38)]. The only difference is that, in
the � integral, we have to add the extra factor of eT

"�i�"h�;1i
L2 due to the second and third

terms in (3.1). This change is justified by arguing analogously to the proof of Proposi-
tion 5.7. Moreover, since v" is already assumed to be smooth, there is no need to regularize
it with the parameter �, which was used in [33].

Recalling (5.2), we now compare the quantities (5.80) and (5.82).

Lemma 5.20. There exists c3 > 0 depending on �; v such that the following results hold
for all p 2 N:

(i) We have

kQp;�kC 6 Cp�;vec3�."/
2

�
1

"d

�p=2
:
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(ii) For �.d; p/ as in (5.5), we have, uniformly in � > 0,

kQp;� � q
"
pkC 6 Cp�;vec3�."/

2

��
1

"d

�p=2
C

�
1

"5dC1

�1=2�
��.d;p/: (5.83)

Furthermore, we show the following lower bound on the classical and quantum rela-
tive partition functions.

Lemma 5.21 (Lower bound on the relative partition function). The following estimates
hold for some constant c4 > 0 depending on �:

(i) �W
" > expŒ�c4�."/2�.

(ii) Z > expŒ�c4�."/2�.

We prove Lemmas 5.20 and 5.21 in Appendix C. Using Lemmas 5.20 and 5.21, we
now prove Proposition 5.2.

Proof of Proposition 5.2. By Lemmas 5.6, 5.18, and 5.19 it suffices to estimate

lim
�!0





Qp;�Z�
�
q"p

�W
"






C

6
ˇ̌
Z � �W

" ˇ̌
Z �W

" lim
�!0
kQp;�kC C

1

�W
" lim
�!0
kQp;� � q

"
pkC : (5.84)

The claim now follows from (5.84) by using Proposition 5.1, Lemma 5.20 (i) and Lemma
5.21 to estimate the first term, and Lemma 5.20 (ii) combined with Lemma 5.21 (i) to
estimate the second term. Throughout we recall (5.1), and we obtain the claim if we take
C2 > C1 C c3 C 2c4.

5.3. The mean-field limit for unbounded nonlocal interactions in dimensions d D 2; 3

We conclude this section by using the techniques developed above to extend the mean-
field limit of [33, 56], with nonlocal interaction, from bounded interaction potentials to
unbounded interaction potentials. Our assumptions on the potential are the same as in the
seminal work [13]. Previously, the mean-field limit with unbounded interaction potentials
was considered in [73], however with a modified, regularized, quantum many-body state
instead of the grand canonical state (1.6). We remark that the results in [13] are originally
stated in a setting that does not assume any positivity of the interaction, and hence require
a truncation in the Wick-ordered mass of the field. However, when the setting is restricted
to positive (defocusing) interactions, the truncation can be removed.

Assumption 5.22. In the classical setting, we consider v 2 Lq.ƒ/ which is even, real-
valued, and of positive type, such that´

q > 1 if d D 2;

q > 3 if d D 3:
(5.85)

Note that, in terms of Lq integrability, (5.85) is the optimal range for q. We refer the
reader to [13] and [73, Section 1.4] for a further discussion. In particular, for d D 2 we
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can take v to be the Coulomb potential. For q as in (5.85), one verifies that G 2 L2q
0

.ƒ/

(where q0 denotes the Hölder conjugate of q) by writing G as a Fourier series and using
Sobolev embedding.

With v as above, we study the interacting field theory (2.2), where now

V D
1

2

Z
dx dy W j�.x/j2 W v.x � y/ W j�.y/j2 W: (5.86)

The interaction V is rigorously defined by using a frequency truncation, as in Section 2.1.
We refer the reader to [73, Lemma 1.4] for a precise summary. We also make the appro-
priate modifications in the definition of the correlation functions.

Similarly to (5.10), we consider  2 C1c .R
d / even, nonnegative and satisfying  .0/

D 1 and for " > 0, we define ı" W ƒ! C by

ı";ƒ.x/
..D

1

"d

X
y2Zd

.F�1 /

�
x � y

"

�
; (5.87)

where F denotes Fourier transform (see (4.6)). With notation as in (5.87) and v as in
Assumption 5.22, we now write

v" ..D v � ı";ƒ 2 C1.ƒ/: (5.88)

From (5.88), we deduce that

kv"kLq D kvkLq ; v"
Lq

��! v: (5.89)

When working in the quantum setting, we hence set �" D 0 and E" D 0 in (2.18). In
this section, instead of (5.1), we take

".�/ &
1

log ��1
: (5.90)

Theorem 5.23. Let d 6 3. With V as in (5.86), v as in Assumption 5.22, and " > 0 as in
(5.90), we have the following results as "; � ! 0:

(i) Z! �V .

(ii) �p y�p
C
�! y
Vp .

Proof. We first prove (i). If v 2 Lq.ƒ/, we use (5.88) and Young’s inequality, to deduce
that for " > 0 sufficiently small, we have

kv"kL1.ƒ/ . ;q;v "�d=q; krv"kL1.ƒ/ . ;q;v "�d=q�1: (5.91)

Furthermore, v" is of positive type and has compactly supported Fourier transform. We
use the functional integral setup as before and start from appropriate analogues of Lemmas
5.6 and 5.7. Using (5.91) instead of Lemma 5.5, and arguing as for Lemmas 5.9–5.11, we
deduce that for " > 0 sufficiently small and all � > 0, we haveˇ̌

Z � �V
" ˇ̌ .

�
‚.�/

"5d=qC1

�1=2
; (5.92)



The Euclidean �42 theory as a limit of an interacting Bose gas 4447

where V " denotes the interaction as in (5.86) with v replaced by v", and ‚.�/ is as
in (5.33). By (5.90), this is an acceptable upper bound and we reduce the claim to showing
that

lim
"!0

�V
"

D �V : (5.93)

Using the assumption that v; v" are of positive type and the Cauchy–Schwarz inequality,
we obtain

j�" � �j 6 kV " � V kL2.P/: (5.94)

We now show that
kV " � V kL2.P/ . kv" � vkLq : (5.95)

By (5.89), we see that (5.95) indeed implies (5.93).
By using Fubini’s theorem followed by Wick’s theorem, we can rewrite the right-hand

side of (5.94) as
1

2

�Z
dx dzx dy dzy F ".x; zx; y; zy/

�1=2
; (5.96)

where

F ".x; zx; y; zy/

..D
X

…2MWick
c .B/

Y
¹i;j º2…

G.xi � xj /
�
v".x � y/ � v.x � y/

��
v".zx � zy/ � v.zx � zy/

�
:

(5.97)

In (5.97), we let B ..D ¹1; 2º � ¹1; 2º � ¹C;�º. Furthermore, we use the variables x.1;1;˙/
� x; x.2;1;˙/ � zx; x.1;2;˙/ � y; x.2;2;˙/ � zy and denote by MWick

c .B/ the set of all
complete pairings … of B where ¹.a; b;C/; .a; b;�/º … … for all a; b 2 ¹1; 2º.

We note that each integration variable in (5.96) appears exactly once as part of the
argument of v" � v and exactly twice as part of an argument of a Green function. We
can therefore apply Hölder’s inequality and deduce (5.95). Here, we use the fact that,
uniformly in c; d 2 ƒ,Z

dx jw.x/j.1CG.x � c//.1CG.x � d// 6 kwkLq .1C kGk2L2q0 / . kwkLq ; (5.98)

with w D v" � v, since G 2 L2q
0

.ƒ/. When applying (5.98), we recall (5.89).
We now prove (ii). With notation defined analogously to (5.79)–(5.82), we use (5.91)

and argue as in the proof of Lemma 5.20 to deduce that for all " > 0 and uniformly in
� > 0,

kQp;�kC 6 Cp�;v

�
1

"d=q

�p=2
;

kQp;� � q
"
pkC 6 Cp�;v

��
1

"d=q

�p=2
C

�
1

"5d=qC1

�1=2�
��.d;p/;

(5.99)

with �.d; p/ given as in (5.5). Similarly, arguing as in the proof of Lemma 5.21, using
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Wick’s theorem we find that for all " > 0,

�V
" & 1; Z > exp

�
�c

�
1C

��.
p
�/

"d=q

��
; (5.100)

with � as in (5.2). In order to obtain (5.100) we have used (5.98). Using (5.99)–(5.100),
arguing as in the proof of Proposition 5.2, and recalling (5.90), we deduce that

�p y�p � y
V "p 



C
. �˛ (5.101)

for 0 < ˛ < �.d; p/. Hence, we reduce to showing

lim
"!0
ky
V

"

p � y
Vp kC D 0: (5.102)

By (5.95), we have ke�V
"
� e�V kL2.P/ ! 0 as "! 0. Therefore, we obtain (5.102) if

we prove bounds analogous to those in Lemma 4.10 (with W " replaced by V "). More
precisely, we note that the following claims hold, with V as in (5.86) and V " as in (5.86)
with v replaced by v" and notation as in Lemma 4.10:

(i) supN supz kLN;zV kLr .P/ <1.

(ii) As "! 0 we have supN supz kLN;zV
" � LN;zV kLr .P/ ! 0.

(iii) As M;N !1 we have supz k.LN;z � LM;z/V kLr .P/ ! 0.

(iv) For any " > 0, as M;N !1 we have supz k.LN;z � LM;z/V "kLr .P/ ! 0.

We first show (ii). For fixed 0 < N <1 and z 2 ƒ, we note that by Lemma 4.8,

LN;z.V
"
� V / D

Z
dx dzx

�
v".x � zx/ � v.x � zx/

�
GN .z � x/�.x/ W j�.zx/j

2
W

and hence by Lemma A.1,

kLN;z.V
"
� V /k2

L2.P/

D

Z
dx dzx dy dzy Œv".x � zx/� v.x � zx/�Œv".y � zy/� v.y � zy/�GN .z � x/GN .z � y/

� ŒG.x � y/G.zx � zy/2CG.x � zx/G.zx � zy/G.y � zy/CG.x � zy/G.zx � zy/G.y � zx/�:

(5.103)

Analogously to (5.96), each integration variable in (5.103) appears exactly once as part of
the argument of v" � v and exactly twice as part of the argument ofG orGN . We then use
Hölder’s inequality as in (5.98) where some of the factors of G can be replaced by GN
and note that kGN kL2q0 6 kGkL2q0 <1, which holds by (4.8) and Young’s inequality.
Putting everything together, we get

(5.103) . kv" � vk2Lq ;

which is an acceptable bound by (5.89). The other terms for (ii) are treated similarly.
We omit the details. The proof of (i) is analogous, except that now we apply Hölder’s
inequality similarly to (5.98) with w D v.
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We now show (iii). We first compute

.LN;z � LM;z/V D

Z
dx dzx v.x � zx/.GN .x � z/ �GM .x � z//�.x/W j�.zx/j2 W:

Hence, by Lemma A.1, we have

k.LN;z �LM;z/V k
2
L2.P/ D

Z
dx dzx dy dzy v.x � zx/v.y � zy/ ŒGN .z � x/�GM .z � x/�

� ŒGN .z � y/ �GM .z � y/�ŒG.x � y/G.zx � zy/
2
CG.x � zx/G.zx � zy/G.y � zy/

CG.x � zy/G.zx � zy/G.y � zx/� (5.104)

Since each integration variable occurs exactly once as part of an argument of v and exactly
twice as a part of an argument ofG orGN �GM , we can use Hölder’s inequality as earlier
to deduce that

(5.104) . kvk2LqkGN �GMk
2

L2q
0 .1C kGk

3

L2q
0 /;

which is an acceptable upper bound by using (B.2) as in the proof of Lemma 4.10 (iii).
The higher order derivatives are estimated in the same way. The proof of (iv) is analo-
gous, except that we now apply Hölder’s inequality similarly to (5.98) with w D v" and
recall (5.89). We hence obtain (5.102).

Remark 5.24. We note that if we relax the topology of convergence in (5.102) (and
hence in Theorem 5.23 (ii)) to the weak operator topology, we can obtain the result by
using the first bound in (5.100), and the Cauchy–Schwarz inequality, similarly to (5.94).
This applies to the case .d; q/ D 1 as well. We refer the reader to the proof of [33, Propo-
sition 4.4] for details.

Remark 5.25. One can also consider v 2 L1.ƒ/ which is even, real-valued, and of posi-
tive type with suitable decay on its Fourier coefficients (see [13, (16)–(17)]). For d D 3,
the assumption in [13] is that yv.k/ 6 C=hki2Cı for some ı > 0, which is covered by
Theorem 5.23 above by the Hausdorff–Young inequality (in the classical setting, the
decay assumption was recently relaxed in [24]). For d D 2, the assumption in [13] is
that yv.k/ 6 C=hkiı for some ı > 0. Note that this corresponds to the endpoint admis-
sible regime in the terminology of [73, Definition 1.2 and Section 4], except that we do
not assume pointwise nonnegativity of v. Here, it is possible to prove convergence of the
partition function (and consequently the convergence of the correlation functions in the
weak operator topology as in Remark 5.24 above). We present the details in Appendix C.

Appendix A. Wick ordering and hypercontractive moment bounds

In this appendix we recall some standard facts about Wick ordering and hypercontractive
estimates. We refer e.g. to [65] for a comprehensive account. For the convenience of the
reader, we keep this appendix self-contained.
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A.1. Wick ordering

Let � D .�1; : : : ; �n/ be a real11 Gaussian vector with mean zero. We define the Wick
ordering of the monomial �1 � � � �n through

W�1 � � � �n W D
@n

@�1 � � � @�n

e���

EŒe��� �

ˇ̌̌̌
�D0

: (A.1)

The expectation is equal to
EŒe��� � D e

1
2��C�;

where
Cij

..D EŒ�i�j �

is the covariance matrix of �. Computing the derivatives explicitly, we hence find

W�1 � � � �n W D
X

…2M.Œn�/

Y
i2Œn�nŒ…�

�i
Y
¹i;j º2…

.�EŒ�i�j �/; (A.2)

where we defined Œn� ..D ¹1; : : : ; nº, and M.Œn�/ is the set of partial pairings of the set Œn�
(i.e. a set of disjoint unordered pairs of elements of Œn�) with Œ…� ..D

S
¹i;j º2…¹i; j º. Since

both sides of (A.2) are linear in �1; : : : ; �n, we can extend (A.2) to a complex Gaussian
vector .�1; : : : ; �n/.

By splitting the summation in (A.2) over… satisfying n … Œ…� and n 2 Œ…�, we obtain
the recursion

W�1 � � � �n W D W�1 � � � �n�1 W �n �

n�1X
iD1

EŒ�i�n� W�1 � � � �i�1�iC1 � � � �n�1 W: (A.3)

Moreover, from the definition (A.1) we find that Wick ordering commutes with differen-
tiation, since

@

@�1
W�1 � � � �n W D

@n

@�1 � � � @�n

�1e���

EŒe��� �

ˇ̌̌̌
�D0

D
@n�1

@�2 � � � @�n

e
Pn
iD2 �i �i

EŒe
Pn
iD2 �i �i �

ˇ̌̌̌
�D0

D W�2 � � � �n W:

(A.4)
Note that the variables �1; : : : ; �n are treated as independent for the differentiation,
although they need not be stochastically independent. For instance, (A.4) implies that
d

d� W�
n W D Wn�n�1 W .

The following is a generalization of Wick’s rule to moments of Wick-ordered mono-
mials.

Lemma A.1. Let � D .�1; : : : ; �n/ be a complex Gaussian vector with mean zero. Let Q
be a partition of Œn�. Then

E
hY
q2Q

W

Y
i2q

�i W
i
D

X
…2Mc.Œn�;Q/

Y
¹i;j º2…

EŒ�i�j �;

where Mc.Œn�;Q/ is the set of complete pairings … of the set Œn� such that no pair ¹i; j º
in … satisfies i; j 2 q for some q 2 Q.

11When dealing with complex vectors, we split them into their real and imaginary parts.
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Proof. By linearity, we may assume that .�1; : : : ; �n/ is real. From the definition (A.1) we
find Y

q2Q

W

Y
i2q

�i W D
@n

@�1 � � � @�n
e���

Y
q2Q

exp
�
�
1

2

X
i;j2q

Cij�i�j

�ˇ̌̌̌
�D0

;

so that taking the expectation yields

E
hY
q2Q

W

Y
i2q

�i W
i
D

@n

@�1 � � � @�n
exp

�
1

2

X
i;j2Œn�

C
Q
ij �i�j

�ˇ̌̌̌
�D0

;

where C
Q
ij

..D .1 �
P
q2Q 1i;j2q/Cij . The claim now follows by differentiation.

Example A.2. If Q has two blocks, then Lemma A.1 takes on the following form. If
.�1; : : : ; �n; �1; : : : ; �n/ is a complex Gaussian vector with mean zero, then

EŒW�1 � � � �n W W�1 � � � �n W� D
X
�2Sn

nY
iD1

EŒ�i��.i/�:

A.2. Hypercontractive moment bounds

Let .H ; h� ; �i/ be a separable real Hilbert space, and let .�.f //f 2H be the abstract Gaus-
sian process indexed by H . For an explicit definition, let .ek/k2N be an orthonormal
basis of H , and let�DRN be equipped with the product sigma-algebra F and the prob-
ability measure P , which is an infinite product of standard Gaussians. With the notation
! D .!k/k2N 2 �, we define

�.f / ..D
X
k2N

!khek ; f i;

which converges in L2.�;F ;P /. Moreover, since EŒ�.f /�.g/� D hf ; gi, the map � W
H ! L2.�;F ;P / is an isometry.

For n 2 N we define the nth polynomial chaos, denoted by Bn, as the closure of the
subspace of L2.�;F ;P / spanned by random variables of the form

W�.f1/ � � ��.fn/ W; f1; : : : ; fn 2 H :

Lemma A.3. We have
L2.�;F ;P / D

M
n2N

Bn:

Proof. The orthogonality of the spaces .Bn/n2N is easy to deduce from the definition of
Wick ordering. It remains to show that L2.�;F ;P / �

L
n2N Bn.

For K 2 N, let HK D Span.ek W k 6 K/ � H . Let B
.K/
n be the subspace

of L2.�; F ; P / spanned by random variables of the form W�.f1/ � � ��.fn/ W with
f1; : : : ; fn 2 HK . Let FK be the sigma-algebra generated by .�.f / W f 2 HK/. Note
that B

.K/
n � L2.�;FK ;P /. We now claim that

L2.�;FK ;P / D
M
n2N

B.K/
n : (A.5)
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To see this, it suffices to show that if � 2 L2.�;FK ; P / satisfies EŒ��� D 0 for every
� 2 B

.K/
n and every n 2 N then � D 0. We can write � D f .�.e1/; : : : ; �.eK// for some

measurable function f WRK !R, which is square integrable with respect to the standard
Gaussian measure on RK , which we denote by �K . By assumption,

R
�K.dx/f .x/P.x/

D 0 for all polynomials P on RK . Since �K has Gaussian tails, we easily deduce that
f D 0.

To deduce the claim from (A.5), we choose � 2 L2.�;F ;P / and set �K ..D EŒ�jFK �
so that .�K/K2N is a martingale. By Doob’s martingale convergence theorem (see e.g.
[77, Chapter 12]), we have �K ! � in L2, which concludes the proof.

Next, we state and prove a hypercontractive moment bound. Such an estimate is usu-
ally derived as a consequence of the hypercontractive property of the Ornstein–Uhlenbeck
semigroup associated with �. Here we give an elementary and very simple argument, rely-
ing only on Lemma A.1 and the Cauchy–Schwarz inequality.

Lemma A.4. Let n 2 N and � 2 Bn. Then for any p 2 2N� and some universal con-
stant C , we have

EŒ�p� 6 Cpnp=2 .EŒ�2�/p=2:

Proof. Let
� D

X
k1;:::;kn2N

ak1���kn W�.ek1/ � � ��.ekn/ W;

where ak1���kn is symmetric under permutations. By Lemma A.1 (see also Example A.2)
we have

EŒ�2� D nŠ
X

k1;:::;kn

a2k1���kn : (A.6)

To estimate the pth moment, it is convenient to introduce the index sets I D Œp�� Œn� and
Ii D ¹iº � Œn� for i 2 Œp�. For anyA� I we use the notation kA D .kij W .i; j / 2A/ 2NA

for the summation variables indexed by the set A. In this notation we can write � DP
kIi
akIi
W
Qn
jD1 �.ekij / W for each i 2 Œn�, and hence we get, using Lemma A.1,

EŒ�p� D
X
kI

pY
iD1

akIi
E
h pY
iD1

W

nY
jD1

�.ekij / W
i
D

X
…

X
kI

pY
iD1

akIi

Y
¹.i;j /;.i 0;j 0/º2…

1kijDki0j 0 ;

(A.7)

where the summation ranges over all complete pairings … of Œp� � Œn� such that for all
¹.i; j /; .i 0; j 0/º 2 … we have i ¤ i 0.

The idea is to fix … and to sum over the variables kij in pairs connected by the
delta function on the right-hand side of (A.7), by using a simple repeated application of
Cauchy–Schwarz. To that end, we introduce an inductive summation of the edges of …
one by one; the order of summation is immaterial. After summing out a number of edges,
we obtain a partial pairing † � …, whose blocks contain those summation variables that
have not yet been summed out. We refer to Figure A.1 for an illustration. For the example
… of Figure A.1, the complete estimate can be explicitly written out:
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k;l;m;u;v;w

aklmakluavwuavwm

6
X

l;m;u;v;w

�X
k

a2klm

�1=2�X
k

a2klu

�1=2
avwuavwm

6
X
l;m;u;v

�X
k

a2klm

�1=2�X
k

a2klu

�1=2�X
w

a2vwu

�1=2�X
w

a2vwm

�1=2
6
X
l;u;v

�X
k;m

a2klm

�1=2�X
k

a2klu

�1=2�X
w

a2vwu

�1=2�X
m;w

a2vwm

�1=2
6
X
u;v

�X
k;l;m

a2klm

�1=2�X
k;l

a2klu

�1=2�X
w

a2vwu

�1=2�X
m;w

a2vwm

�1=2
6
X
v

�X
k;l;m

a2klm

�1=2�X
k;l;u

a2klu

�1=2�X
u;w

a2vwu

�1=2�X
m;w

a2vwm

�1=2
6
�X
k;l;m

a2klm

�1=2�X
k;l;u

a2klu

�1=2�X
u;v;w

a2vwu

�1=2� X
m;v;w

a2vwm

�1=2
:

The estimate has six steps, corresponding to the six edges to be summed out. The third
step corresponds to the step illustrated in the right half of Figure A.1.

… † [ ¹eº †

e

.i; j /

.i 0; j 0/

�!

Fig. A.1. An illustration of the inductive algorithm for successively summing out edges of the pair-
ing …. Here p D 4 and n D 3. The pairing … is illustrated in the figure on the left-hand side. The
four grey blocks correspond to the four factors akI1 ; : : : ; akI4 , and each vertex .i; j / 2 Œp� � Œn�
corresponds to a summation variable kij . Note that each edge connects vertices from different grey
blocks, as is required by Lemma A.1. A partial pairing † � … is represented in the figure on the
right-hand side, where the edges of† are drawn using solid lines. The dashed lines, incident to ver-
tices corresponding to the summation variables kInŒ†�, have been summed out at this point. This
summation contributed a factor

Qp
iD1.

P
kIi nŒ†�

a2kIi
/1=2, which depends on the remaining sum-

mation variables kŒ†� that correspond to the vertices incident to the edges of …. The middle figure
corresponds to the partial pairing † [ ¹eº with an edge e 2 … n † given by e D ¹.i; j /; .i 0; j 0/º.
The induction step underlying the argument, going from†[ ¹eº to †, is the summation of a single
edge e, which amounts to summing over the variables kij D ki 0;j 0; and using Cauchy–Schwarz.
For this, it is crucial that i ¤ i 0, i.e. e connects vertices in different grey blocks.
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To describe the general procedure more formally, we denote, for any partial pairing
† � …,

V….†/
..D
X
kŒ†�

pY
iD1

� X
kIi nŒ†�

a2kIi

�1=2 Y
¹.i;j /;.i 0;j 0/º2†

1kijDki0j 0 ; (A.8)

where Œ†� ..D
S
�2† � . This expression has three crucial properties. First, by (A.7),

EŒ�p� D
X
…

V….…/: (A.9)

Second, by the definition (A.8),

V….;/ D
� X
k1;:::;kn

a2k1���kn

�p=2
: (A.10)

Third, for any partial pairing † � … and any edge e 2 … n†,

V….† [ ¹eº/ 6 V….†/: (A.11)

To show (A.11), we suppose that e D ¹.i; j /; .i 0; j 0/º with i ¤ i 0 (see Figure A.1), and
estimate the sum over ke D .kij ; ki 0j 0/ in the expression (A.8) for V….† [ ¹eº/ as

X
ke

� X
kIi nŒ†[¹eº�

a2kIi

�1=2� X
kIi0 nŒ†[¹eº�

a2kIi0

�1=2
1kijDki0j 0

6
� X

kIi nŒ†�

a2kIi

�1=2� X
kIi0 nŒ†�

a2kIi0

�1=2
;

by Cauchy–Schwarz and the fact that the summation variable kij D ki 0j 0 appears exactly
once in each factor.

From (A.9)–(A.11), we conclude that

EŒ�p� 6
X
…

� X
k1;:::;kn

a2k1���kn

�p=2
: (A.12)

Since the number of pairings… is bounded by .np/Š

.np=2/Š2np=2
, we conclude from (A.12) and

(A.6) that

EŒ�p� 6
.np/Š

.np=2/Š2np=2
1

.nŠ/p=2
.EŒ�2�/p=2 6 Cpnp=2.EŒ�2�/p=2;

by Stirling’s approximation. This concludes the proof.

Remark A.5. If � is complex-valued such that Re � and Im � both belong to Bn, then by
Minkowski’s inequality we deduce from Lemma A.4 that for any p 2 2N� we have

EŒj�jp� 6 Cpnp=2.EŒj�j2�/p=2:
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Appendix B. Basic estimates for the Green function

In this appendix we prove some basic analytic properties of the Green function G on
the torus. All of these results are well known, and we collect and prove them here for
the reader’s convenience. The following lemma is similar to e.g. [69, Lemma 5.4] or
[1, Section III.3].

Lemma B.1. Let d D 2. There exists zG 2 C1.ƒ n ¹0º/ such that

G.x/ D �
1

�
log jxj C zG.x/;

as well as j zG.x/j C jr zG.x/j . 1 and jr2 zG.x/j . 1C
ˇ̌
log jxj

ˇ̌
.

Proof. Let g� denote the Green function of the operator � ��=2 on R2, which for � > 0
has Fourier transform

yg�.�/ D

Z
dx g�.x/e�2� i��x

D
1

� C 2�2j�j2
:

Moreover, g0.x/ D 1
�

log jxj�1. Let 0 < r 6 1=4, and choose ' 2 Œ0; 1� to be a smooth
compactly supported function equal to 1 in the ball of radius r around the origin and zero
outside the ball of radius 2r around the origin.

First we note that .1 � '/g� 2 C1.ƒ/. This is a manifestation of elliptic regularity
(see for instance [28, Theorem 8.6.1]), which can be seen directly by applying the operator
.� ��=2/k to .1 � '/g� , using the Leibniz rule, and then estimating the decay of yg� for
large enough k using the a priori bound jyg�.�/j 6 1=�.

Using h to denote some generic smooth function which may change from one expres-
sion to the next, we therefore find that

.� ��=2/'.g� � g0/ D ��'g0 C h:

We conclude that

'g� D 'g0 � �g� � .'g0/C h D 'g0 � �.'g�/ � .'g0/C h:

By plugging this equation into itself, we conclude that

'g� � 'g0 C �.'g0/ � .'g0/ 2 C
2.ƒ/;

since .'g�/ � .'g0/ � .'g0/ 2 C 2.ƒ/ because its Fourier transform decays as j�j�6 for
j�j ! 1.

It is elementary that zg ..D �.'g0/ � .'g0/ satisfies jzg.x/j C jrzg.x/j. 1 and jr2zg.x/j
. 1C

ˇ̌
log jxj

ˇ̌
for jxj 6 1. The claim now follows from the observation that

G.x/ D
X
n2Zd

g�.x C n/;

by Poisson summation.
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Remark B.2. An analogue of the result of Lemma B.1 holds in three dimensions, with
the same proof. Namely, if G denotes the Green function of the operator � ��=2 on ƒ
for d D 3, then

G.x/ D
1

4�jxj
C zG.x/;

where j zG.x/j . 1.

Lemma B.3. Let d D 2. The truncated Green function from (4.8) satisfies the bounds

jGN .x/j .
�
1C

ˇ̌
log jxj

ˇ̌�
^ logN (B.1)

and
jGN .x/ �G.x/j .

�
1C jlog.N jxj/j

�
^

1

N 2jxj2
: (B.2)

Proof. The bound (B.1) follows easily from Lemma B.1 and the definition (4.8), by con-
sidering the cases jxj > 2=N and jxj 6 2=N separately.

To prove (B.2), we write

GN .x/ �G.x/ D

Z
dy .G.x C y/ �G.x//�N .y/: (B.3)

For jxj 6 1=8, we deduce from Lemma B.1 that

jGN .x/ �G.x/j .
ˇ̌̌̌Z

dy . zG.x C y/ � zG.x//�N .y/
ˇ̌̌̌

C

ˇ̌̌̌Z
R2

dy
�

log
ˇ̌̌̌
x C

y

N

ˇ̌̌̌2
� log jxj2

�
�.y/

ˇ̌̌̌
: (B.4)

If jxj 6 8=N then we estimate the right-hand side of (B.4) by

C C 2

Z
R2

dy
ˇ̌̌̌
log

ˇ̌̌̌
x

jxj
C

y

N jxj

ˇ̌̌̌ˇ̌̌̌
�.y/ . 1C

ˇ̌̌̌
log

1

N jxj

ˇ̌̌̌
:

If 8=N < jxj 6 1=8 we estimate the right-hand side of (B.4) as

1C
ˇ̌
log jxj

ˇ̌
N 2

C

ˇ̌̌̌Z
R2

dy log
�
1C 2

x � y

N jxj2
C
jyj2

N 2jxj2

�
�.y/

ˇ̌̌̌
.

1

N 2jxj2
;

by Taylor expansion and the fact that � is an even function. Similarly, for jxj > 1=8 we
easily deduce from Lemma B.1, a Taylor expansion and the evenness of � that the right-
hand side of (B.3) is bounded by 1=N 2. This concludes the proof.

Appendix C. Proofs of auxiliary claims from Section 5

Throughout this appendix, we recall that " satisfies (5.1). Before proceeding to the proof
of Lemma 5.14, we note a quantitative analogue of [33, Lemma 5.12] concerning path-
path interactions.
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Lemma C.1. For continuous paths ! 2��1;z�1 ; z! 2��2;z�2 , the following properties hold:

(i) We have, uniformly in � > 0,

V�.!; z!/ D V ".!; z!/C yV�.!; z!/CO

�
�

"d
.�1 � z�1/

�
; (C.1)

where yV�.!; z!/ satisfies

ˇ̌
yV�.!; z!/

ˇ̌
6

C

"dC1

Z
ds

NX
iD1

Z
Ii

dzs
Z
Ii

dys j z!.zs/ � z!.ys/jƒ ı�.Œs�� � Œys��/ (C.2)

for N ..D d �2�z�2
�
e and

Ii
..D

´
Œz�2 C .i � 1/�; z�2 C i�� for 1 6 i 6 N � 1;

Œz�2 C .N � 1/�; �2� for i D N:
(C.3)

(ii) Consider continuous paths !0 2 ��
0
1
;z� 0
1 ; z!0 2 ��

0
2
;z� 0
2 that agree with the paths !; z!

respectively on the intersection of their domains. Suppose that j�j � � 0j j 6 � and
jz�j � z�

0
j j 6 � for j D 1; 2. Then

V ".!; z!/ D V ".!0; z!0/CO

�
�

"d
.�1 � z�1/C

�

"d
.�2 � z�2/C

�2

"d

�
:

Proof of Lemma C.1. Let us first show (i). By using Definition 5.12, (5.11), and (C.3) we
write

V�.!; z!/ D

Z
ds

NX
iD1

Z
Ii

dzs
Z
yIi

dys v".!.s/ � z!.ys//ı�.Œs�� � Œys��/; (C.4)

where yIi WD Œz�2 C .i � 1/�; z�2 C i�� for 1 6 i 6 N . By Lemma 5.5 (i), it follows thatZ
ds
Z
IN

dzs
Z
IN nyIN

dys v".!.s/ � z!.ys//ı�.Œs�� � Œys��/ D O
�
�

"d
.�1 � z�1/

�
: (C.5)

For (C.5), we have also used (5.11) to deduce that

0 6
Z
yIN nIN

dys ı�;�.Œs�� � Œys��/ 6 1:

Combining (C.4) and (C.4), it follows that

V�.!; z!/ D

Z
ds

NX
iD1

Z
Ii

dzs
Z
Ii

dys v".!.s/ � z!.ys//ı�.Œs�� � Œys��/CO
�
�

"d
.�1 � z�1/

�
:

(C.6)
From (C.6) and Definition 5.13, we obtain (C.1) with

yV�.!; z!/ ..D
Z

ds
NX
iD1

Z
Ii

dzs
Z
Ii

dys Œv".!.s/� z!.ys//� v"
�
!.s/� z!.zs/

�
�ı�.Œs�� � Œys��/:

(C.7)



J. Fröhlich, A. Knowles, B. Schlein, V. Sohinger 4458

By using Lemma 5.5 (ii), we find that (C.7) satisfies (C.2). Claim (ii) follows from Defi-
nition 5.12 by using Lemma 5.5 (i).

We now give the proofs of Lemmas 5.20 and 5.21, which are used in the analysis of
the rate of convergence for correlation functions.

Proof of Lemma 5.20. In order to prove (i), we rewrite (5.80) as

.Qp;�/x;zx D �
p

X
r2.�N�/p

e��jrj Yx;zx.r/; (C.8)

where

Yx;zx.r/ ..D
Z
�C�.d�/ eT

"�
i�"Œ��
� eF2.�/

pY
iD1

�Z
W ri ;0

xi ;zxi
.d!i /

�
ei
R ri
0

dt �.Œt�� ;!i .t// � 1
��
:

(C.9)

Here we recall the definition of T " in (5.15) and the definition of F2 in (5.18). By arguing
analogously to [33, (5.41)], we deduce that

jYx;zx.r/j 6 C
p

d
eT

"

kv"k
p=2
L1

pY
iD1

.ri C r
1�d=2
i / 6 C

p

d;v
eT

"

�
1

"d

�p=2 pY
iD1

.ri C r
1�d=2
i /;

(C.10)

where in the second inequality we have used Lemma 5.5 (i). Substituting (C.10) into (C.8),
considering Riemann sums, and recalling (5.16), we deduce claim (i).

We now prove claim (ii). Analogously to (C.8), we rewrite (5.82) as

.q"p/x;zx D

Z
Œ0;1/p

dr e��jrj y"x;zx.r; r/; (C.11)

where for r; s 2 Œ0;1/p with s 6 r (meaning that si 6 ri for all i ), we define

y"x;zx.r; s/
..D
Z
�v".d�/ eT

"�i�"h�;1i
L2 ef2.�/

pY
iD1

�Z
W ri ;0

xi ;zxi
.d!i /

�
ei
R si
0

dt �.!i .t// � 1
��
:

(C.12)

Here, we recall the definition of f2 in (5.25). Similarly to [33, Section 5.2], we now divide
the proof into the following three steps.

Step 1. We truncate the variables ri occurring in (C.8), (C.11) to lie in some interval
Œı; 1=ı� for ı > 0 small.

Step 2. In the expression obtained by using the above truncation in q"p given by (5.82),

we compare the integral
R 1=ı
ı

dri .� � � / with the corresponding Riemann sum

�
X

ri2�N�

1ı6ri61=ı.� � � /:

Step 3. We replace � by h�i given by (5.28) in the functional integral and compare the
resulting approximations of q"p and Q"

p .
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We now carry out the details of each of the steps above. At every stage, we keep
explicit track of the error terms.

Step 1. Denoting Œa; b�� ..D Œa; b� \ �Z, we observe the following estimate.ˇ̌̌
.Qp;�/x;zx � �

p
X

r2Œı;1=ı�p�

e��jrjYx;zx.r/
ˇ̌̌
C

ˇ̌̌̌
.q"p/x;zx �

Z
Œı;1=ı�p

dr e��jrj y"x;zx.r; r/
ˇ̌̌̌

6 Cp�;veT
"

"�dp=2ı2�d=2: (C.13)

The estimate for the first term on the left-hand side of (C.13) follows from (C.8) and
(C.10) by considering Riemann sums. Similarly, the estimate for the second term on the
left-hand side of (C.13) follows from (C.11) and from the observation that y"x;zx.r/ satisfies
the same bound as in (C.10) by an analogous proof. We omit the details.

Step 2. We show that for ı D ı.�/ sufficiently small (for the precise bound, see (C.20)
below), the following estimate holds:ˇ̌̌̌Z
Œı;1=ı�p

dr e��jrjy"x;zx.r; r/ � �
p

X
r2Œı;1=ı�p�

e��jrjy"x;zx.r; r/
ˇ̌̌̌

6 Cp�;veT
"

"�d=2ı�dp=2
p
� C C dp eT

"

ı�dp=2�.d�1/ �: (C.14)

By arguing analogously to the proof of [33, Lemma 5.17], we find that for all r 2 Œı; 1=ı�p�
and for all s 2 .0;1/p with s 6 r we have

jy"x;zx.r; r/ � y
"
x;zx.r; s/j 6 C

p

d;v
eT

"

"�d=2ı�dp=2 max
i
.ri � si /: (C.15)

We note that the ı dependence in (C.15) is obtained from Lemma 5.4 (i). Furthermore, the
" dependence is obtained from Lemma 5.5 (i).

By arguing analogously to the proof of [33, Lemma 5.18], we deduce that

je��jrjy"x;zx.r; s/ � e��jzrjy"x;zx.zr; s/j 6 Cp� eT
"

ı�dp=2
�

mini .ri � si /
; (C.16)

provided that r;zr 2 Œı; 1=ı�p are such that jr � zrj 6 � and s 2 .0;1/p satisfies

s 6 r; s 6 zr; min
i
si > ı=2; 1 > min

i
.ri � si / > 2�: (C.17)

We now explain how (C.15) and (C.16) imply (C.14) for a suitable choice of ı. We
recall (5.66) and write brc� ..D .bric�/

p
iD1. By using (5.26) and Lemma 5.4 (i) in (C.12),

we deduce that for all r 2 Œı; 1=ı�p and s 2 .0;1/p with s 6 r,

jy"x;zx.r; s/j 6 C
p

d
eT

"

ı�dp=2: (C.18)

Using (C.18), we getˇ̌̌̌
�p

X
r2Œı;1=ı�p�

e��jrjy"x;zx.r; r/ �
Z
Œı;1=ı�p

dr e��jbrc� j y"x;zx.brc� ; brc�/
ˇ̌̌̌

6 C
p

d
eT

"

ı�dp=2�.d�1/ �: (C.19)
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We henceforth assume
ı � �a; a 2 .0; 1=2/: (C.20)

For fixed r 2 Œı; 1=ı�p , and � sufficiently small, we define s � s.r/ 2 .0;1/p by si ..D
ri �
p
�. Note that si > 0 for small � by (C.20). By (C.15), we haveˇ̌̌̌Z
Œı;1=ı�p

dr e��jrjy"x;zx.r; r/ �
Z
Œı;1=ı�p

dr e��jrjy"x;zx.r; s.r//
ˇ̌̌̌

6 Cp�;v eT
"

"�d=2ı�dp=2
p
� (C.21)

and ˇ̌̌̌Z
Œı;1=ı�p

dr e��jbrc� jy"x;zx.brc� ; brc�/ �
Z
Œı;1=ı�p

dr e��jbrc� jy"x;zx.brc� ; s.r//
ˇ̌̌̌

6 Cp�;veT
"

"�d=2ı�dp=2
p
�: (C.22)

In (C.22), we have used jbric� � si j .
p
�. By (C.16), we haveˇ̌̌̌Z

Œı;1=ı�p
dr e��jrjy"x;zx.r; s.r// �

Z
Œı;1=ı�p

dr e��jbrc� jy"x;zx.brc� ; s.r//
ˇ̌̌̌

6 Cp� eT
"

"�d=2ı�dp=2
p
�: (C.23)

Here, we have used the fact that for small �, s.r/ satisfies (C.17) with zr D brc� . We now
deduce (C.14) from (C.19), (C.21), (C.22), and (C.23).

Step 3. Let us define

I" ..D �p
X

r2Œı;1=ı�p�

e��jrjy"x;zx.r; r/; (C.24)

J ..D �p
X

r2Œı;1=ı�p�

e��jrjYx;zx.r/: (C.25)

Recalling (5.33), we show that

jI" � Jj 6 Cp�;veT
"

"�5dC1=2ı�dp=2‚.�/1=2: (C.26)

To do so, we first recall (C.12), Lemma 5.8, and (5.29), and compare (C.24) with

zI ..D �p
X

r2Œı;1=ı�p�

e��jrj
Z
�C�.d�/ eT

"�
i�"Œ��
� eF2.�/

�

pY
iD1

�Z
W ri ;0

xi ;zxi
.d!i /

�
ei
R ri
0

dt h�i.!i .t// � 1
��
: (C.27)

In other words, (C.27) is obtained by replacing the factor by ef2.h�i/ by eF2.�/ in the �
integral representation of (C.24). Using (5.19), (5.26), the Cauchy–Schwarz inequality,
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Lemmas 5.10–5.11, and Lemma 5.4 (i), we deduce thatˇ̌
I" � zI

ˇ̌
6 Cp�;veT

"

"�5dC1=2ı�dp=2‚.�/1=2: (C.28)

We now compare (C.25) and (C.27). By (5.19) and the Cauchy–Schwarz inequality, we
have

jzI � J j 6 eT
"

�p
X

r2Œı;1=ı�p�

e��jrj
pY
iD1

Z
W ri ;0

xi ;zxi
.d!i /

�

�Z
�C�.d�/

ˇ̌̌ pY
iD1

�
ei
R ri
0

dt h�i.!i .t//�1
�
�

pY
iD1

�
ei
R ri
0

dt �.Œt�� ;!i .t//�1
�ˇ̌̌2�1=2

: (C.29)

By arguing analogously to the proof of [33, Lemma 5.20], we find that for fixed 16 i 6 p,Z
�C�.d�/

ˇ̌
ei
R ri
0

dt h�i.!i .t// � ei
R ri
0

dt �.Œt�� ;!i .t//
ˇ̌2

6
C

�

X
s;zs2Œ0;ri /�

Z �

0

du1 du2 dzu1 dzu2 ı�.u1 � zu1/

�
�
v".!i .s C u1/ � !i .zs C zu1// � v

".!i .s C u2/ � !i .zs C zu2//
�
; (C.30)

where Œa; b/� ..D Œa; b � ��� . Using Lemma 5.5 (ii) and ı� > 0, it follows that

(C.30) 6
C

"dC1�

X
s;zs2Œ0;ri /�

Z �

0

du1 du2 dzu1 dzu2 ı�.u1 � zu1/

� Œj!i .s C u1/ � !i .s C u2/jƒ C j!i .zs C zu1/ � !i .zs C zu2/jƒ�: (C.31)

We now use (C.31) and a telescoping argument in (C.29). In particular, by using the
Cauchy–Schwarz inequality in W ri ;0

xi ;zxi
.d!i /, applying Lemma 5.4 (i)–(ii) and (5.11), we

deduce that
j zI � Jj 6 Cp�;veT

"

"�
dC1
2 ı�dp=2

p
�: (C.32)

Above we have applied (5.8) when using Lemma 5.4 (ii). We hence deduce (C.26) from
(C.28) and (C.32). Here, we also recall (5.33).

We combine (C.13), (C.14), (C.26), and optimize in ı, keeping (C.20) in mind. We
hence take ı � �

1
4pC4 when d D 2 and ı � �

1
6pC4

� when d D 3. Note that ı then indeed
satisfies (C.20). Putting everything together, and recalling (5.16), we obtain (5.83), with
�.d; p/ as in (5.5), which concludes the proof of claim (ii).

Proof of Lemma 5.21. We first prove (i). We recall (3.1). From Jensen’s inequality we get

�W
"

D EŒe�W
"

� > e�EŒW ".�/�: (C.33)

We note that

E

�Z
dx W j�.x/j2 W

�
D 0: (C.34)
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Furthermore, by using Wick’s theorem and arguing analogously to [31, Section 3.1], we
have

E

�Z
dx dzx W j�.x/j2 Wv".x � zx/ W j�.zx/j2 W

�
D

Z
dx dzx v".x � zx/G.x � zx/G.zx � x/:

By using the fact that G is even, followed by (2.12) and Lemma 5.5 (i), the above expres-
sion is in absolute value

6
Z

dx jv".x/jG.x/2 .v
1

"d

Z
jxj."

dx G.x/2: (C.35)

Using Lemma B.1 when d D 2 and Remark B.2 when d D 3, a direct calculation shows
that

(C.35) .�;v �."/2: (C.36)

Here, we recall (5.2). Claim (i) now follows by recalling (3.1) and substituting (C.34) and
(C.36) into (C.33).

We now show (ii). We show that for ˛ 2 .0; 1 � d=4/, we have

Z > exp
�
�c

�
�."/2 C

�˛

"d

��
(C.37)

for some c > 0 depending on �. Note that (C.37) implies claim (i), since by (5.1)–(5.2),
we have �."/2 &˛;d �˛="d .

We recall (2.18) and (2.11), and set W ..D H " � H .0/. By using the Peierls–
Bogolyubov inequality (see [70, Section 2.5]) in (2.14), we have

Z > exp
�

TrF

�
�W

e�H
.0/

TrF .e�H
.0/
/

��
D expŒ�%.0/� .W/�; (C.38)

where for a closed operator A on F , we define

%.0/� .A/ ..D
TrF .A e�H

.0/
/

TrF .e�H
.0/
/
:

Since %.0/� Œ
R

dx .�a�.x/a.x/ � %�/� D 0; we get

%.0/� .W/D
1

2
%.0/�

�Z
dx dzx

�
�a�.x/a�.x/�%�

�
v".x� zx/

�
�a�.zx/a.zx/�%�

��
; (C.39)

By using the quantum Wick theorem (see [31, Lemma B1]) and using [31, Lemma 2.10],
the right-hand side of (C.39) is

�

Z
dx dzx GŒ��.x � zx/ŒGŒ��.zx � x/C �ı.zx � x/�v".x � zx/; (C.40)

where the quantum Green function GŒ�� is given by

GŒ��.x/
..D

X
k2Zd

�

e�k� � 1
uk ; (C.41)
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with notation as in (4.5). From (C.41), we see that GŒ�� is even and therefore by Lemma
5.5 (i), we have

j(C.40)j .
Z

dx jv".x/jGŒ��.x/2 C
�

"d
GŒ��.0/: (C.42)

We now bound each of the two terms on the right-hand side of (C.42) separately. For the
first term, we note that for ˛ 2 .0; 1 � d=4/, G D

P
k2Zd

1
�k

e2� ik�x 2 L2.ƒ/ satisfies

kGŒ�� �GkL2 .� �˛: (C.43)

In order to obtain (C.43), we note that for all ı 2 Œ0; 1�,ˇ̌̌̌
�

e�k� � 1
�
1

�k

ˇ̌̌̌
6 �1�ı

1

�ı
k

: (C.44)

Using Plancherel’s theorem and taking ı > d=4 in (C.44), we deduce (C.43). We now use
Hölder’s inequality, Lemma 5.5 (i), (C.43), and recall (C.35)–(C.36) to deduce that the
first term on the right-hand side of (C.42) is

.�
Z

dx jv".x/jG.x/2 C
�˛

"d
.�;v �."/2 C

�˛

"d
: (C.45)

From (C.41), by considering the terms with �k 6 1=� and �k > 1=� separately, we deduce
that the second term on the right-hand side of (C.42) is

.�
��.
p
�/

"d
.˛

�˛

"d
; (C.46)

since ˛ < 1=2. Estimate (C.37) now follows from (C.42), (C.45), and (C.46).

We now give the details of the proof of the claim from Remark 5.25.

Proof of claim from Remark 5.25. The claim follows if, instead of (5.95), we show

kV " � V kL2.P/ .v kv" � vk1=2H�1Cı=2 : (C.47)

Let us note that the x dependence in (5.97) is of the form

Œv".x � y/ � v.x � y/�G.x � xa/G.x � xb/

for some distinct a; b 2 B n ¹.1; 1;˙/º. We consider the different possibilities for xa
and xb .

Case 1: xa D xb D zx. This case is easy because the variables .x; zx/ and .y; zy/ decouple.
In particular, the contribution to (5.96) is

.
ˇ̌̌̌Z

dx dzx Œv".x � zx/ � v.x � zx/�G.x � zx/2
ˇ̌̌̌

. kv" � vkH�1Cı=2kGk2H�1Cı=4 . kv" � vkH�1Cı=2 : (C.48)

In order to prove (C.48), we have used duality, and the bilinear estimate given in [73,
Lemma 4.2], which implies that kG2kH�1Cı=2 .ı kGk2H�1Cı=4 <1.
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Case 2: xa D xb ¤ zx. We can assume without loss of generality that xa D y. The inte-
grand that we then consider is

Œv".x � zx/ � v.x � zx/�G.x � y/2Œv".y � zy/ � v.y � zy/�G.zx � zy/2:

We first integrate in x and use an estimate analogous to (C.48). We then integrate in zx
and use G 2 L2.ƒ/. Finally, we integrate in y; zy and recall (5.88) to deduce that the
contribution to (5.96) is . kv" � vk1=2

H�1Cı=2
kvk

1=2

L1
.

Case 3: xa D zx; xb ¤ zx or xa ¤ zx; xb D zx. We can assume without loss of generality
that xb D y. Then, we consider the integrand

Œv".x � zx/ � v.x � zx/�G.x � zx/G.x � y/Œv".y � zy/ � v.y � zy/�G.zx � zy/G.y � zy/:

We first fix x; zy and integrate in zx and y, using estimates analogous to (C.48). We then
integrate in x; zy to deduce that the contribution to (5.96) is . kv" � vkH�1Cı=2 .

Case 4: xa ¤ xb; xa ¤ zx; xb ¤ zx. This case is similar to Case 2 and we get the same
upper bound by an analogous argument. We hence deduce (C.47).
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[37] Gawędzki, K., Kupiainen, A.: Asymptotic freedom beyond perturbation theory. In:
Phénomènes critiques, systèmes aléatoires, théories de jauge, Parts I, II (Les Houches, 1984),
North-Holland, Amsterdam, 185–292 (1986) Zbl 0706.47039 MR 0880526

[38] Geı̆ler, V. A., Margulis, V. A., Chuchaev, I. I.: Zero-range potentials and Carleman operators.
Sibirsk. Mat. Zh. 36, 828–841, ii (1995) (in Russian) Zbl 0899.47021 MR 1367250

[39] Genovese, G., Lucà, R., Valeri, D.: Gibbs measures associated to the integrals of motion of
the periodic derivative nonlinear Schrödinger equation. Selecta Math. (N.S.) 22, 1663–1702
(2016) Zbl 1350.35181 MR 3518561

[40] Genovese, G., Lucà, R., Valeri, D.: Invariant measures for the periodic derivative nonlinear
Schrödinger equation. Math. Ann. 374, 1075–1138 (2019) Zbl 1420.35354 MR 3985108

[41] Ginibre, J.: Some applications of functional integration in statistical mechanics. In: Mécanique
statistique et théorie quantique des champs, Les Houches, 327–427 (1971)

[42] Glimm, J., Jaffe, A.: Positivity of the �43 Hamiltonian. Fortschr. Physik 21, 327–376 (1973)
MR 0408581

[43] Glimm, J., Jaffe, A.: Quantum physics. Springer, New York (1981) Zbl 0461.46051
MR 0628000

[44] Gubinelli, M., Hofmanová, M.: A PDE construction of the Euclidean �43 quantum field theory.
Comm. Math. Phys. 384, 1–75 (2021) Zbl 1514.81190 MR 4252872

[45] Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs.
Forum Math. Pi 3, article no. e6, 75 pp. (2015) Zbl 1333.60149 MR 3406823

[46] Hairer, M.: A theory of regularity structures. Invent. Math. 198, 269–504 (2014)
Zbl 1332.60093 MR 3274562

[47] Hairer, M.: Advanced stochastic analysis (2016). https://www.hairer.org/Course.pdf, visited
on 16 April 2024

https://doi.org/10.1088/0305-4470/15/10/011
https://zbmath.org/?q=an:0496.60060
https://mathscinet.ams.org/mathscinet-getitem?mr=0684578
https://doi.org/10.1016/0003-4916(76)90223-2
https://doi.org/10.1016/0003-4916(76)90223-2
https://mathscinet.ams.org/mathscinet-getitem?mr=0416337
https://zbmath.org/?q=an:0971.46024
https://mathscinet.ams.org/mathscinet-getitem?mr=1721032
https://doi.org/10.1016/0550-3213(82)90088-8
https://doi.org/10.1016/0550-3213(82)90088-8
https://mathscinet.ams.org/mathscinet-getitem?mr=0643591
https://doi.org/10.1007/978-1-4899-6762-6
https://mathscinet.ams.org/mathscinet-getitem?mr=0733467
https://doi.org/10.1007/s00220-017-2994-7
https://doi.org/10.1007/s00220-017-2994-7
https://zbmath.org/?q=an:1381.81177
https://mathscinet.ams.org/mathscinet-getitem?mr=3719544
https://doi.org/10.1016/j.aim.2019.06.029
https://doi.org/10.1016/j.aim.2019.06.029
https://zbmath.org/?q=an:1421.82022
https://mathscinet.ams.org/mathscinet-getitem?mr=3979014
https://doi.org/10.1090/jams/987
https://doi.org/10.1090/jams/987
https://zbmath.org/?q=an:1504.35477
https://mathscinet.ams.org/mathscinet-getitem?mr=4467306
https://doi.org/10.1007/bf01608557
https://doi.org/10.1007/bf01608557
https://mathscinet.ams.org/mathscinet-getitem?mr=0421531
https://doi.org/10.1007/bf01208273
https://doi.org/10.1007/bf01208273
https://mathscinet.ams.org/mathscinet-getitem?mr=0634447
https://doi.org/10.1063/5.0087024
https://zbmath.org/?q=an:1509.82068
https://mathscinet.ams.org/mathscinet-getitem?mr=4482035
https://zbmath.org/?q=an:0706.47039
https://mathscinet.ams.org/mathscinet-getitem?mr=0880526
https://doi.org/10.1007/BF02107328
https://zbmath.org/?q=an:0899.47021
https://mathscinet.ams.org/mathscinet-getitem?mr=1367250
https://doi.org/10.1007/s00029-016-0225-2
https://doi.org/10.1007/s00029-016-0225-2
https://zbmath.org/?q=an:1350.35181
https://mathscinet.ams.org/mathscinet-getitem?mr=3518561
https://doi.org/10.1007/s00208-018-1754-0
https://doi.org/10.1007/s00208-018-1754-0
https://zbmath.org/?q=an:1420.35354
https://mathscinet.ams.org/mathscinet-getitem?mr=3985108
https://doi.org/10.1002/prop.19730210702
https://mathscinet.ams.org/mathscinet-getitem?mr=0408581
https://zbmath.org/?q=an:0461.46051
https://mathscinet.ams.org/mathscinet-getitem?mr=0628000
https://doi.org/10.1007/s00220-021-04022-0
https://zbmath.org/?q=an:1514.81190
https://mathscinet.ams.org/mathscinet-getitem?mr=4252872
https://doi.org/10.1017/fmp.2015.2
https://zbmath.org/?q=an:1333.60149
https://mathscinet.ams.org/mathscinet-getitem?mr=3406823
https://doi.org/10.1007/s00222-014-0505-4
https://zbmath.org/?q=an:1332.60093
https://mathscinet.ams.org/mathscinet-getitem?mr=3274562
https://www.hairer.org/Course.pdf


The Euclidean �42 theory as a limit of an interacting Bose gas 4467

[48] Holzmann, M., Baym, G.: Condensate density and superfluid mass density of a dilute Bose–
Einstein condensate near the condensation transition. Phys. Rev. Lett. 90, article no. 040402,
4 pp. (2003)

[49] Itzykson, C., Drouffe, J.-M.: Statistical field theory. Vol. 1. Cambridge Monogr. Math. Phys.,
Cambridge University Press, Cambridge (1989) Zbl 0825.81002 MR 1175176

[50] Itzykson, C., Drouffe, J.-M.: Statistical field theory. Vol. 2. Cambridge Monogr. Math. Phys.,
Cambridge University Press, Cambridge (1989) Zbl 0825.81001 MR 1175177

[51] Kupiainen, A.: Renormalization group and stochastic PDEs. Ann. Henri Poincaré 17, 497–535
(2016) Zbl 1347.81063 MR 3459120

[52] Lebowitz, J. L., Rose, H. A., Speer, E. R.: Statistical mechanics of the nonlinear Schrödinger
equation. J. Statist. Phys. 50, 657–687 (1988) Zbl 0925.35142 MR 0939505

[53] Lewin, M., Nam, P. T., Rougerie, N.: Derivation of nonlinear Gibbs measures from many-body
quantum mechanics. J. École Polytech. Math. 2, 65–115 (2015) Zbl 1322.81082
MR 3366672

[54] Lewin, M., Nam, P. T., Rougerie, N.: Classical field theory limit of 2D many-body quantum
Gibbs states. arXiv:1810.08370 (2018) Zbl 1467.82008

[55] Lewin, M., Nam, P. T., Rougerie, N.: Gibbs measures based on 1d (an)harmonic oscillators as
mean-field limits. J. Math. Phys. 59, article no. 041901, 17 pp. (2018) Zbl 1392.82023
MR 3787331

[56] Lewin, M., Nam, P. T., Rougerie, N.: Classical field theory limit of many-body quantum Gibbs
states in 2D and 3D. Invent. Math. 224, 315–444 (2021) Zbl 1467.82008 MR 4243017

[57] Lieb, E. H., Seiringer, R., Solovej, J. P., Yngvason, J.: The mathematics of the Bose gas and
its condensation. Oberwolfach Semin. 34, Birkhäuser, Basel (2005) Zbl 1104.82012
MR 2143817

[58] McKean, H. P., Vaninsky, K. L.: Cubic Schrödinger: the petit canonical ensemble in action-
angle variables. Comm. Pure Appl. Math. 50, 593–622 (1997) Zbl 0883.35032
MR 1447055

[59] Nahmod, A. R., Oh, T., Rey-Bellet, L., Staffilani, G.: Invariant weighted Wiener measures
and almost sure global well-posedness for the periodic derivative NLS. J. Eur. Math. Soc. 14,
1275–1330 (2012) Zbl 1251.35151 MR 2928851

[60] Nahmod, A. R., Rey-Bellet, L., Sheffield, S., Staffilani, G.: Absolute continuity of Brownian
bridges under certain gauge transformations. Math. Res. Lett. 18, 875–887 (2011)
Zbl 1250.60018 MR 2875861

[61] Nakano, T.: Quantum field theory in terms of Euclidean parameters. Progr. Theoret. Phys. 21,
241–259 (1959) Zbl 0088.22003 MR 0101779

[62] Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev.
150, 1079–1085 (1966)

[63] Nelson, E.: Probability theory and Euclidean field theory. In: Constructive quantum field
theory, Lecture Notes in Phys. 25, Springer, 94–124 (1973) Zbl 0367.60108

[64] Nelson, E.: The free Markoff field. J. Funct. Anal. 12, 211–227 (1973) Zbl 0273.60079
MR 0343816

[65] Nualart, D.: The Malliavin calculus and related topics. Probab. Appl. (N.Y.), Springer, New
York (1995) Zbl 0837.60050 MR 1344217

[66] Parisi, G., Wu, Y. S.: Perturbation theory without gauge fixing. Sci. Sinica 24, 483–496 (1981)
Zbl 1480.81051 MR 0626795

[67] Park, Y. M.: Convergence of lattice approximations and infinite volume limit in the .��4 �
��2 � ��/3 field theory. J. Math. Phys. 18, 354–366 (1977) MR 0432062

[68] Polyakov, A.: Interaction of Goldstone particles in two dimensions. Applications to ferromag-
nets and massive Yang–Mills fields. Phys. Lett. B 59, 79–81 (1975)

[69] Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy func-
tionals. Comm. Pure Appl. Math. 69, 519–605 (2016) Zbl 1338.82043 MR 3455593

https://doi.org/10.1103/PhysRevLett.90.040402
https://doi.org/10.1103/PhysRevLett.90.040402
https://doi.org/10.1017/CBO9780511622786.003
https://zbmath.org/?q=an:0825.81002
https://mathscinet.ams.org/mathscinet-getitem?mr=1175176
https://doi.org/10.1017/CBO9780511622786.003
https://zbmath.org/?q=an:0825.81001
https://mathscinet.ams.org/mathscinet-getitem?mr=1175177
https://doi.org/10.1007/s00023-015-0408-y
https://zbmath.org/?q=an:1347.81063
https://mathscinet.ams.org/mathscinet-getitem?mr=3459120
https://doi.org/10.1007/BF01026495
https://doi.org/10.1007/BF01026495
https://zbmath.org/?q=an:0925.35142
https://mathscinet.ams.org/mathscinet-getitem?mr=0939505
https://doi.org/10.5802/jep.18
https://doi.org/10.5802/jep.18
https://zbmath.org/?q=an:1322.81082
https://mathscinet.ams.org/mathscinet-getitem?mr=3366672
https://arxiv.org/abs/1810.08370
https://zbmath.org/?q=an:1467.82008
https://doi.org/10.1063/1.5026963
https://doi.org/10.1063/1.5026963
https://zbmath.org/?q=an:1392.82023
https://mathscinet.ams.org/mathscinet-getitem?mr=3787331
https://doi.org/10.1007/s00222-020-01010-4
https://doi.org/10.1007/s00222-020-01010-4
https://zbmath.org/?q=an:1467.82008
https://mathscinet.ams.org/mathscinet-getitem?mr=4243017
https://zbmath.org/?q=an:1104.82012
https://mathscinet.ams.org/mathscinet-getitem?mr=2143817
https://doi.org/10.1002/(SICI)1097-0312(199707)50:7<593::AID-CPA1>3.3.CO;2-A
https://doi.org/10.1002/(SICI)1097-0312(199707)50:7<593::AID-CPA1>3.3.CO;2-A
https://zbmath.org/?q=an:0883.35032
https://mathscinet.ams.org/mathscinet-getitem?mr=1447055
https://doi.org/10.4171/JEMS/333
https://doi.org/10.4171/JEMS/333
https://zbmath.org/?q=an:1251.35151
https://mathscinet.ams.org/mathscinet-getitem?mr=2928851
https://doi.org/10.4310/MRL.2011.v18.n5.a6
https://doi.org/10.4310/MRL.2011.v18.n5.a6
https://zbmath.org/?q=an:1250.60018
https://mathscinet.ams.org/mathscinet-getitem?mr=2875861
https://doi.org/10.1143/PTP.21.241
https://zbmath.org/?q=an:0088.22003
https://mathscinet.ams.org/mathscinet-getitem?mr=0101779
https://doi.org/10.1103/physrev.150.1079
https://doi.org/10.1007/bfb0113084
https://zbmath.org/?q=an:0367.60108
https://doi.org/10.1016/0022-1236(73)90025-6
https://zbmath.org/?q=an:0273.60079
https://mathscinet.ams.org/mathscinet-getitem?mr=0343816
https://doi.org/10.1007/978-1-4757-2437-0
https://zbmath.org/?q=an:0837.60050
https://mathscinet.ams.org/mathscinet-getitem?mr=1344217
https://zbmath.org/?q=an:1480.81051
https://mathscinet.ams.org/mathscinet-getitem?mr=0626795
https://doi.org/10.1063/1.523277
https://doi.org/10.1063/1.523277
https://mathscinet.ams.org/mathscinet-getitem?mr=0432062
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1002/cpa.21570
https://doi.org/10.1002/cpa.21570
https://zbmath.org/?q=an:1338.82043
https://mathscinet.ams.org/mathscinet-getitem?mr=3455593


J. Fröhlich, A. Knowles, B. Schlein, V. Sohinger 4468

[70] Ruelle, D.: Statistical mechanics. World Scientific Publishing, River Edge, NJ; Imperial Col-
lege Press, London (1999) Zbl 1016.82500 MR 1747792

[71] Schwinger, J.: On the Euclidean structure of relativistic field theory. Proc. Nat. Acad. Sci.
USA 44, 956–965 (1958) Zbl 0082.42502 MR 0097250

[72] Simon, B.: The P.�/2 Euclidean (quantum) field theory. Princeton Series in Physics, Prince-
ton University Press, Princeton, NJ (1974) Zbl 1175.81146 MR 0489552

[73] Sohinger, V.: A microscopic derivation of Gibbs measures for nonlinear Schrödinger equations
with unbounded interaction potentials. Int. Math. Res. Notices 2022, 14964–15063
Zbl 1501.35379 MR 4490946

[74] Symanzik, K.: Euclidean quantum field theory. I. Equations for a scalar model. J. Math. Phys.
7, 510–525 (1966) MR 0187686

[75] Symanzik, K.: Euclidean quantum field theory. In: Local quantum theory, Academic Press
(1969)

[76] Thomann, L., Tzvetkov, N.: Gibbs measure for the periodic derivative nonlinear Schrödinger
equation. Nonlinearity 23, 2771–2791 (2010) Zbl 1204.35154 MR 2727169

[77] Williams, D.: Probability with martingales. Cambridge Math. Textbooks, Cambridge Univer-
sity Press, Cambridge (1991) Zbl 0722.60001 MR 1155402

[78] Zinn-Justin, J.: Quantum field theory and critical phenomena. 5th ed., Internat. Ser. Monogr.
Phys. 171, Clarendon Press, Oxford University Press (2021) Zbl 1461.81002 MR 1079938

https://doi.org/10.1142/4090
https://zbmath.org/?q=an:1016.82500
https://mathscinet.ams.org/mathscinet-getitem?mr=1747792
https://doi.org/10.1073/pnas.44.9.956
https://zbmath.org/?q=an:0082.42502
https://mathscinet.ams.org/mathscinet-getitem?mr=0097250
https://zbmath.org/?q=an:1175.81146
https://mathscinet.ams.org/mathscinet-getitem?mr=0489552
https://doi.org/10.1093/imrn/rnab132
https://doi.org/10.1093/imrn/rnab132
https://zbmath.org/?q=an:1501.35379
https://mathscinet.ams.org/mathscinet-getitem?mr=4490946
https://doi.org/10.1063/1.1704960
https://mathscinet.ams.org/mathscinet-getitem?mr=0187686
https://doi.org/10.1088/0951-7715/23/11/003
https://doi.org/10.1088/0951-7715/23/11/003
https://zbmath.org/?q=an:1204.35154
https://mathscinet.ams.org/mathscinet-getitem?mr=2727169
https://doi.org/10.1017/CBO9780511813658
https://zbmath.org/?q=an:0722.60001
https://mathscinet.ams.org/mathscinet-getitem?mr=1155402
https://zbmath.org/?q=an:1461.81002
https://mathscinet.ams.org/mathscinet-getitem?mr=1079938

	1. Introduction
	1.1. Overview of Euclidean field theory
	1.2. The φ4_2 theory as a limit of a Bose gas
	1.3. Outlook

	2. Setup and results
	2.1. Classical field theory
	2.2. Quantum many-body system
	2.3. Results

	3. Structure of the proof
	4. Proof of Proposition 3.2
	4.1. L2-estimates
	4.2. Integrability of e-Vε
	4.3. Convergence of the partition function
	4.4. Convergence of correlation functions

	5. Proof of Proposition 3.1
	5.1. The partition function
	5.2. Correlation functions
	5.3. The mean-field limit for unbounded nonlocal interactions in dimensions d=2,3

	A. Wick ordering and hypercontractive moment bounds
	A.1. Wick ordering
	A.2. Hypercontractive moment bounds

	B. Basic estimates for the Green function
	C. Proofs of auxiliary claims from Section 5
	References

