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Abstract. Let ˛ be an irrational number of sufficiently high type and supposeP˛.z/D e2� i˛zC z2

has a Siegel disk �˛ centered at the origin. We prove that the boundary of �˛ is a Jordan curve,
and that it contains the critical point �e2� i˛=2 if and only if ˛ is a Herman number.
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1. Introduction

Let f be a non-linear holomorphic function with f .0/ D 0 and f 0.0/ D e2� i˛ , where
0 < ˛ < 1 is an irrational number. We say that f is locally linearizable at the fixed point
0 if there exists a holomorphic function defined near 0 which conjugates f to the rigid
rotation R˛.z/ D e2� i˛z. The maximal region in which f is conjugate to R˛ is a simply
connected domain called the Siegel disk of f centered at 0.

The existence of the Siegel disk of f is dependent on the arithmetic condition of
˛ 2 .0; 1/ nQ. Let

Œ0I a1; a2; : : :� WD
1

a1 C
1

a2 C
1

: : :

be the continued fraction expansion of ˛. The rational numbers pn=qn WD Œ0Ia1; : : : ; an�,
n > 1, are the convergents of ˛, where pn and qn are coprime positive integers. If ˛
belongs to the Brjuno class

B WD
°
˛ D Œ0I a1; a2; : : :� 2 .0; 1/ nQ W

1X
nD1

q�1n log qnC1 < C1
±
;

then any holomorphic germ f with f .0/ D 0 and f 0.0/ D e2� i˛ is locally linearizable
at 0 and hence f has a Siegel disk centered at the origin [5, 47]. Yoccoz proved that the
Brjuno condition is also necessary for the local linearization of the quadratic polynomial

P˛.z/ WD e
2� i˛z C z2 W C ! C

at the origin [53].

1.1. Topology and obstructions of Siegel disk boundaries

The dynamics in the Siegel disks is simple and one mainly considers the properties of the
boundaries. In the 1980s, Douady and Sullivan asked the following question (see [20,41]):

Question. Is the boundary of a Siegel disk a Jordan curve?

This question is still open, even for quadratic polynomials. However, much progress
has been made on this problem for various families of functions under certain conditions.
An irrational number ˛D Œ0Ia1; a2; : : :� is said to be of bounded type if supn>1 an <C1.
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Douady–Herman, Zakeri, Yampolsky–Zakeri, Shishikura and Zhang, respectively, proved
that the boundaries of bounded type Siegel disks of quadratic polynomials, cubic polyno-
mials, some quadratic rational maps, all polynomials and all rational maps with degree at
least 2 are quasi-circles (hence are Jordan curves) (see [21,29,46,49,55,58]). This is also
true for some transcendental entire functions (see [15, 18, 23, 31, 50, 56, 57, 61]).

An important breakthrough was made by Petersen and Zakeri [36] in 2004. They
proved that for almost all irrational numbers ˛, the boundary of the Siegel disk of the
quadratic polynomial P˛ is a Jordan curve. We refer to these irrational numbers as PZ
type, i.e., log an D O.

p
n/ as n!1, where an is the n-th digit of the continued frac-

tion expansion of ˛. Recently, Zhang [60] generalized this result to all polynomials and
obtained the same result for the sine family [59].

Suppose the closure of the Siegel disk of f is compactly contained in the domain
of definition of f . One may wonder what phenomena near the boundary of a Siegel
disk prevent f from having a larger linearization domain. Obviously, the presence of
periodic cycles near the boundary is one of the reasons since no Siegel disk can contain
periodic points except the center itself. It was proved by Avila and Cheraghi [2] that under
some condition on ˛ every neighborhood of the Siegel disk of P˛ contains infinitely
many cycles, which is similar to the small cycle property that prevents linearization (see
[34, 52]).

On the other hand, no Siegel disk can contain a critical point. Hence the second ques-
tion on the Siegel disk boundary is: Does the boundary of a Siegel disk always contain a
critical point? The answer is no; Ghys and Herman gave the first examples of polynomials
having a Siegel disk whose boundary does not contain a critical point (see [21, 24, 28]).

The results on the regularity1 of the boundaries of the Siegel disks mentioned above
(for bounded type or PZ type rotation numbers) often also include the statement that the
boundaries of those Siegel disks pass through at least one critical point. In particular,
for the bounded type rotation numbers, Graczyk and Świątek [25] proved a very gen-
eral result: if an analytic function has a Siegel disk properly contained in the domain of
holomorphy and the rotation number is of bounded type, then the boundary of the corre-
sponding Siegel disk contains a critical point.

Herman [26] was one of the pioneers who studied analytic diffeomorphisms of circles.
He introduced the following subset of irrational numbers.

Definition (Herman numbers). Let H be the set of irrational numbers ˛ such that every
orientation-preserving analytic circle diffeomorphism of rotation number ˛ is analytically
conjugate to a rigid rotation.

Herman [26] proved that the set H is non-empty and contains a subset of Diophantine
numbers. Yoccoz [54] proved that H contains all Diophantine numbers (and hence con-
tains all bounded type and PZ type numbers), and also gave an arithmetic characterization
of the numbers in H .

1The word “regularity” here means the topological and geometric properties of the boundaries
of the Siegel disks. See [6].
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Suppose f is an analytic function which has a Siegel disk properly contained in the
domain of holomorphy. Ghys [24] proved that if the rotation number belongs to H and
the boundary of the Siegel disk is a Jordan curve, then f has a critical point in the
boundary of the Siegel disk. Later, Herman [27] generalized this result by dropping the
topological condition on the Siegel disk boundary but requiring that the restriction of f
to the Siegel disk boundary is injective (see also [35]). In particular, he proved that if a
unicritical polynomial has a Siegel disk whose rotation number is in H , then the bound-
ary of the Siegel disk contains a critical point. Recently, Chéritat and Roesch [19] and
Benini and Fagella [4] generalized this result to (respectively) the polynomials with two
critical values and a special class of transcendental entire functions with two singular
values.

For polynomials, Rogers [43] proved that if the Siegel disk� is fixed and the rotation
number is in H , then @� either contains a critical point or is an indecomposable contin-
uum. For the exponential map E� .z/D e2� i� .ez � 1/, it was proved by Herman [27] that
ifE� has a bounded Siegel disk�� , thenE� is injective on @�� . Hence�� is unbounded
when � 2 H since E� has no critical points. Conversely, Herman, Baker and Rippon
asked: if �� is unbounded, is necessarily the singular value �e2� i� contained in @��?
Rippon [40] showed that this is true for almost all � and the question was fully answered
positively by Rempe [38] and independently by Buff and Fagella (unpublished). More-
over, Rempe [39] also studied the Herman type Siegel disks of some other transcendental
entire functions.

1.2. The statement of the main result

The proofs of the regularity results for bounded type and PZ type Siegel disks stated pre-
viously are all based on surgery, either quasiconformal or trans-quasiconformal. In these
proofs, some pre-models, and usually a single Blaschke product or a family of Blaschke
products, are needed. By surgery, the regularity and the existence of critical points on the
boundaries of Siegel disks were proved at the same time.

In this paper, without using surgeries we shall prove that the Siegel disks of some
holomorphic maps are Jordan domains and that Herman type rotation number is also
necessary for the existence of critical points on the Siegel disk boundaries. To this end,
we have to restrict the rotation numbers to a special class since we use the near-parabolic
renormalization scheme.

In [30], a renormalization operator R and a compact class F that is invariant under R

were introduced. All the maps in F have a special covering structure. They have a neutral
fixed point at the origin and a unique simple critical point in their domains of definition.
The renormalization operator assigns to a given map of F a new map in F that is obtained
by considering the return map to a sector landing at the origin. As a return map, one iterate
of Rf corresponds to many iterates of f 2 F . To study very large iterates of f near 0,
one hopes to repeat this process infinitely many times. However, to iterate R infinitely
many times, the scheme requires the rotation number ˛, where f 0.0/ D e2� i˛ , to be of



The high type quadratic Siegel disks are Jordan domains 4505

high type, that is, to belong to

HTN WD ¹˛ D Œ0I a1; a2; : : :� 2 .0; 1/ nQ W an > N for all n > 1º

for some large2 N 2 N. In this paper we prove the following main result.

Main Theorem. Let ˛ be an irrational number of sufficiently high type and suppose
P˛.z/ D e

2� i˛z C z2 has a Siegel disk �˛ centered at the origin. Then the boundary of
�˛ is a Jordan curve. Moreover, the boundary contains the critical point �e2� i˛=2 if and
only if ˛ is a Herman number.

Note that HTN has measure zero if N > 2. However, all the usual types of irrational
numbers have non-empty intersections with HTN : bounded type, PZ type, Herman type,
Brjuno type etc. In particular, HTN contains some irrational numbers such that the Siegel
disk boundary of P˛ has the regularity studied in [1, 6] and the self-similarity studied
in [32]. Rogers [42] proved that the boundary of any bounded irreducible Siegel disk �
is either tame: the conformal map from � to the unit disk has a continuous extension
to @�, or wild: @� is an indecomposable continuum. Recently, Chéritat [16] constructed
a holomorphic germ such that the corresponding Siegel disk is compactly contained in
the domain of definition but the boundary is not locally connected. Our main theorem
indicates that the boundaries of quadratic Siegel disks should be tame.

As we have seen, in order to guarantee the existence of critical points on the bound-
aries of Siegel disks, the Herman condition (i.e., the rotation number is of Herman type)
appears usually as a requirement of sufficiency in most of the literature. As far as we
know, the necessity only appears in [8], where it is proved that the Herman condition is
equivalent to the existence of a critical point on the boundary of the Siegel disks of a
family of toy models.

In fact, besides the quadratic polynomials, the proof of the Main Theorem in this
paper is also valid for all the maps in Inou–Shishikura’s invariant class. Hence the Main
Theorem is also true for some rational maps and transcendental entire functions. We point
out that it was proved in [3, 48] that the bounded type Siegel disks of the maps in Inou–
Shishikura’s class are quasi-disks if the rotation number is of sufficiently high type.

By constructing topological models of the post-critical sets of the maps in Inou–
Shishikura’s class for all high type numbers, Cheraghi [11] gave an alternative proof of
the Main Theorem independently. Our proofs are different: we analyze the dynamics and
carry out the computations in the renormalization tower directly.

Recently, Dudko and Lyubich [22] made significant progress on the quadratic Siegel
polynomials P˛ . They proved that the restriction of P˛ to the boundary of the Siegel
disk �˛ of P˛ is injective, which implies that @�˛ is not the whole Julia set of P˛ (actu-
ally they proved a more general result for all ˛ 2 R nQ).

2The precise value of N is not known, but it is likely to be at least 20. It is conjectured that a
variation of the invariant class and renormalization may be defined for N D 1.
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1.3. Strategy of the proof

Let f0 be the normalized quadratic polynomial or a map in Inou–Shishikura’s class (see
Section 2.1) satisfying f0.0/ D 0 and f 00.0/ D e

2� i˛ , where ˛ is of Brjuno-type and of
sufficiently high type. For n > 0, let fnC1 D Rfn be the sequence of maps generated
by the near-parabolic renormalization operator R. For each n > 0, we use Pn to denote
the perturbed petal of fn, and ˆn for the corresponding perturbed Fatou coordinate (see
definitions in Section 2.2).

In order to prove that the boundary of the Siegel disk of f0 is a Jordan curve, we
construct a sequence .
n0 W Œ0; 1�! C/n2N of continuous curves in the perturbed Fatou
coordinate plane of f0 by using a renormalization tower. Each 
n0 is obtained from 
0n
(in the perturbed Fatou coordinate plane of fn) by going up through the renormalization
tower, i.e., by lifting and then spreading around. In Lemma 3.2 we show that the inner
radius of the Siegel disk �n of fn is estimated by the Brjuno sum up to a multiplicative
constant. Then we choose the suitable height of 
0n such that ˆ�1n .


0
n / is contained in the

Siegel disk �n of fn. Consequently, ˆ�10 .

n
0 / with n 2 N are curves in the Siegel disk

of f0.
The key ingredient is Proposition 4.5: the sequence .
n0 W Œ0; 1�! C/n2N of contin-

uous curves converges uniformly to a limit 
1 W Œ0; 1�! C, which is also a continuous
curve. For the proof, we use a family of “straight” curves �0n to encode the difference
between 
0n and 
1n in the Fatou coordinate plane of fn. The diameters of the �0n are
discussed in Step 2 of the proof. The diameters of the lifts of �0n are estimated by two
kinds of contraction: one is uniform contraction with respect to the hyperbolic metrics in
subdomains of the renormalization tower (see Lemma 4.7) and the other is “Brjuno-type
arithmetic” – estimates from Section 2.4 (see also Lemma 4.8). In conclusion, the oscilla-
tions of the curves .
n0 W Œ0; 1�! C/n2N are bounded in terms of the Brjuno sum, i.e., the
curves form an equicontinuous family. Because of contraction by going up the renormal-
ization tower, the sequence ˆ�10 .


n
0 / converges exponentially fast towards the boundary

of �0 (see Proposition 4.9).
For the second part of the Main Theorem which concerns the Herman condition, we

construct a Jordan arc �0 in the non-escaping set of f0 which connects the unique critical
value cv to the origin, where 
0 WD ˆ0.�0/ is contained in a half-infinite strip 0 with
finite width. The existence of �0 is proved in Lemma 5.3 and the proof is also based
on contraction via going up the renormalization tower. To apply the contraction property
successfully, the shape of ˆ�10 .0/ has to be controlled; this is Lemma 5.1 whose proof is
given in the Appendix. The construction of �0 guarantees that �n D Exp ıˆn�1.�n�1/
is also a Jordan arc connecting cv to the origin and 
n D ˆn.�n/ is contained in 0 for all
n > 1.

We study the homeomorphism s˛n WD ˆn ı Exp W 
n�1 ! 
n from the simple curve
in one level of the renormalization to another. Lemmas 5.4 and 5.5 estimate the dynamics
of the s˛n in terms of the Brjuno sum. Based on the sequence .s˛n/n2N , we define a new
class zHN of irrational numbers which is a subset of Brjuno numbers, where N is a large
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number. After comparing the properties of s˛n and Yoccoz’s arithmetic characterization
of H , we prove that zHN is exactly equal to the set of high type Herman numbers (see
Lemmas 6.4 and 6.6). On the other hand, we prove that the boundary of the Siegel disk of
f0 contains the critical value cv if and only if ˛ 2 zHN (see Proposition 5.7). This implies
the second part of the Main Theorem.

1.4. Some observations

There are several applications of Inou–Shishikura’s invariant class. The first remarkable
application is that of Buff and Chéritat [7] who used it as one of the main tools to prove
the existence of Julia sets of quadratic polynomials with positive area. Recently, Cheraghi
and his collaborators have found several other important applications. In [9,10], Cheraghi
developed several elaborate analytic techniques based on Inou–Shishikura’s results. The
tools in [9, 10] have led to part of the recent major progress on the dynamics of quadratic
polynomials. For example, Feigenbaum Julia sets with positive area (different from the
examples in [7]) were found in [3], the Marmi–Moussa–Yoccoz conjecture for rotation
numbers of high type was proved in [12], the local connectivity of the Mandelbrot set at
some infinitely satellite renormalizable points was proved in [14], some statistical prop-
erties of the quadratic polynomials were depicted in [2], and the topological structure and
the Hausdorff dimension of high type irrationally indifferent attractors were characterized
in [11] and [13] respectively.

Recently, Chéritat [17] generalized the near-parabolic renormalization theory to the
unicritical families of any finite degrees. See also [51] for the corresponding theory of
local degree 3. Hence there is a hope to generalize the Main Theorem in this paper to all
unicritical polynomials.

Notations. We use N D ¹0; 1; 2; : : : º and NC D ¹1; 2; : : : º. The Riemann sphere and the
unit disk are denoted by bC D C [ ¹1º and D D ¹z 2 C W jzj < 1º respectively. A round
disk in C is denoted by D.a; r/ D ¹z 2 C W jz � aj < rº and D.a; r/ is its closure. If
x 2 R is non-negative, we use bxc to denote its integer part.

For X � C and ı > 0, let Bı.X/ WD
S
z2X D.z; ı/ be the ı-neighborhood of X . For

a 2 C and X � C, we denote aX WD ¹az W z 2 Xº and X ˙ a WD ¹z ˙ a W z 2 Xº. Let
A;B � C. We say that A is compactly contained in B , and write A b B , if the closure
of A is compact and contained in the interior int.B/ of B . We use diam.X/ to denote the
Euclidean diameter of a set X � C and len.
/ for the Euclidean length of a rectifiable
curve 
 � C.

2. Near-parabolic renormalization scheme

In this section, we summarize some results in [2,7,10,30] which will be used in this paper.
Parts of the relevant theories can also be found in [44, 45].
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U

−1

−1

B

U

U ′

U

0
−1

Fig. 1. The domains U (the gray part), U 0 (the white region bounded by the blue curves; see (2.5)
for the definition) and their successive zooms near �1. The outer boundary of U 0 looks like a circle
with radius about 35 and the rightmost point of U is about 32:2. The widths of these pictures are
72, 0:6 and 0:0075 respectively. It can be seen clearly that xU \ .�1;�1� D ; and U b U 0.

2.1. Inou–Shishikura’s class

Let P.z/ WD z.1 C z/2 be a cubic polynomial with a parabolic fixed point at 0 with
multiplier 1. Then P has a critical point cpP WD �1=3 which is mapped to the critical
value cvP WD �4=27. It also has another critical point �1 which is mapped to 0. Consider
the ellipse

E WD

²
x C yi 2 C W

�
x C 0:18

1:24

�2
C

�
y

1:04

�2
6 1

³
(2.1)

and define3

U WD  1.bC nE/; where  1.z/ WD �
4z

.1C z/2
: (2.2)

The domain U is symmetric about the real axis, contains the parabolic fixed point 0 and
the critical point cpP , but xU \ .�1;�1� D ; (see [30, Section 5.A] and Figure 1).

For a given function f , we denote its domain of definition by Uf . Following [30,
Section 4], we define a class of maps4

I�0 WD

²
f D P ı '�1 W Uf ! C

ˇ̌̌̌
0 2 Uf open in C; ' W U ! Uf
conformal; '.0/ D 0 and '0.0/ D 1

³
:

3The domain U is denoted by V in [30].
4The definition of I�0 is based on the class F1 of [30]. There the conformal map ' in the

definition of I�0 is required to have a quasiconformal extension to C. This condition is used by
Inou and Shishikura to prove the uniform contraction of the near-parabolic renormalization operator
under the Teichmüller metric. We modify the definition here since we will not use this property in
this paper.
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Each map in this class has a parabolic fixed point at 0, a unique critical point at cpf WD
'.�1=3/ 2 Uf and a unique critical value at cv WD �4=27, which is independent of f .

For ˛ 2 R, we define

I�˛ WD ¹f .z/ D f0.e
2� i˛z/ W e�2� i˛ Uf0 ! C j f0 2 I�0º:

For convenience, we normalize the quadratic polynomials to

Q˛.z/ D e
2� i˛z C

27

16
e4� i˛z2

so that all Q˛ have the same critical value �4=27 as maps in I�˛ . In particular, Q˛ D
Q0 ıR˛ , where R˛.z/ D e2� i˛z. We mention that Q˛ is not in the class I�˛ .

Theorem 2.1 (Leau–Fatou [33, Section 10] and Inou–Shishikura [30]). For all f 2
I�0 [ ¹Q0º, there exist simply connected domains Pattr;f , Prep;f � Uf and univalent
maps ˆattr;f W Pattr;f ! C, ˆrep;f W Prep;f ! C such that

(a) Pattr;f and Prep;f are bounded by piecewise analytic curves and are compactly con-
tained in Uf , cpf 2 @Pattr;f and @Pattr;f \ @Prep;f D ¹0º;

(b) the image ˆattr;f .Pattr;f / is a right half-plane and ˆrep;f .Prep;f / is a left half-plane;

(c) ˆattr;f .f .z// D ˆattr;f .z/C 1 for z 2 Pattr;f and ˆ�1rep;f .�/ D f .ˆ
�1
rep;f .� � 1// for

� 2 ˆrep;f .Prep;f /.

Normalization of ˆattr;f and ˆrep;f . The univalent map ˆattr;f (resp. ˆrep;f / in Theo-
rem 2.1 is called an attracting (resp. repelling/ Fatou coordinate of f and Pattr;f (resp.
Prep;f / is called an attracting (resp. repelling/ petal. The attracting Fatou coordinate
ˆattr;f can be naturally extended to the immediate attracting basin Aattr;f of 0. Specif-
ically, for z 2 Aattr;f such that f ık.z/ 2 Pattr;f with k > 0, one can define

ˆattr;f .z/ WD ˆattr;f .f
ık.z// � k:

Since ˆattr;f is unique up to an additive constant, we normalize it by ˆattr;f .cpf / D 0.
Therefore, ˆattr;f .Pattr;f / D ¹� 2 C W Re � > 0º.

Every f 2 I�0 [ ¹Q0º can be written as f .z/ D z C a2z
2 C a3z

3 C O.z4/ in a
neighborhood of 0, where a2 ¤ 0. For z in a component �f of Aattr;f \Prep;f such that
Imˆrep;f .z/!C1 as z ! 0, we have (see [45, Proposition 2.2.1])

ˆattr;f .z/ D �
1

a2z
� 
 log

�
�
1

a2z

�
C Cattr C o.1/;

ˆrep;f .z/ D �
1

a2z
� 
 log

�
�
1

a2z

�
C Crep C o.1/;

where 
 D 1 � a3=a
2
2 is the iterative residue of f and Cattr, Crep are constants. Since

ˆrep;f is also unique up to an additive constant, we normalize it by setting Crep WD Cattr,
i.e., ˆattr;f .z/ �ˆrep;f .z/! 0 as z ! 0 in �f .
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2.2. Near-parabolic renormalization

We will consider the case that a sequence of functions converges to a limiting function
and the neighborhoods of a function have to be defined.

Definition (Neighborhoods of a function). Let f W Uf !C be a given function. A neigh-
borhood of f is

N D N .f IK; "/ D
°
g W Ug ! bC ˇ̌̌

K � Ug and sup
z2K

dbC.g.z/; f .z// < "±;
where dbC denotes the spherical distance, K is a compact subset contained in Uf and
" > 0. A sequence .fn/ is said to converge to f uniformly on compact sets if for any
neighborhood N of f , there exists n0 > 0 such that fn 2 N for all n > n0.

If f 2
S
˛2Œ0;1/ I�˛ [ ¹Q˛º, we denote by f̨ the rotation number of f at the ori-

gin, i.e., the real number f̨ 2 Œ0; 1/ such that f 0.0/ D e2� i f̨ . If f̨ > 0 is small, then
besides the origin, the map f has another fixed point �f ¤ 0 near 0 in Uf , which depends
continuously on f (see [45, Section 3.2] or [7, Lemma 9, p. 707]).

Proposition 2.2 ([7, Proposition 12, p. 707]; see Figure 2). There exist k2NC and "1 >0
satisfying b1="1c � k > 1 such that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "1�, there exist
a Jordan domain Pf � Uf and a univalent map f̂ W Pf ! C such that

(a) Pf contains cv and it is bounded by two arcs joining 0 and �f ;

(b) f̂ .cv/D 1, f̂ .Pf /D ¹� 2 C W 0 < Re � < b1= f̨ c � kº with Im f̂ .z/!C1 as
z ! 0 and Im f̂ .z/! �1 as z ! �f in Pf ;

(c) if z 2 Pf and Re f̂ .z/ < b1= f̨ c � k � 1, then f .z/ 2 Pf and f̂ .f .z// D

f̂ .z/C 1;

17

 

Φf−−→

Pf
0

σf

cpf cv

Uf

· · ·

0 1 2 3 4 b 1
αf
c − k

Fig. 2. The perturbed Fatou coordinate f̂ and its domain of definition Pf . The image of Pf under
f̂ has been colored by the same colors as on the right. The blue set on the left depicts the forward

orbit of the critical point cpf .
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(d) if .fn/ is a sequence of maps in
S
˛2.0;"1�

I�˛ [ ¹Q˛º converging to a map f0 2
I�0 [ ¹Q0º, then any compact setK �Pattr;f0 is contained in Pfn for n large enough
and the sequence . f̂n/ converges toˆattr;f0 uniformly onK; moreover, any compact
set K � Prep;f0 is contained in Pfn for n large enough and the sequence . f̂n �

1= f̨n/ converges to ˆrep;f0 uniformly on K.

Proposition 2.2 was proved in [7] only for Inou–Shishikura’s class. However, when
f DQ˛ with sufficiently small ˛ > 0, the existence of the domain Pf and the coordinate
f̂ W Pf ! C satisfying the properties in the above proposition is classical (see [45]).

The map f̂ in Proposition 2.2 is called the .perturbed/ Fatou coordinate of f and Pf
is called a .perturbed/ petal.

Definition (see Figure 3). Let f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "1�, where "1 > 0 is the
constant of Proposition 2.2. Define

Cf WD ¹z 2 Pf W 1=2 6 Re f̂ .z/ 6 3=2 and �2 < Im f̂ .z/ 6 2º;

C
]

f
WD ¹z 2 Pf W 1=2 6 Re f̂ .z/ 6 3=2 and Im f̂ .z/ > 2º: (2.3)

Note that cv D �4=27 2 int Cf and 0 2 @C]
f

.

Proposition 2.3 ([10, Proposition 2.7]; see Figure 3). There exist constants "01 2 .0; "1�
and k0 2 NC such that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "01�, there exists a positive
integer kf 2 Œ1; k0� such that

(a) for all 1 6 k 6 kf , the unique connected component .C]
f
/�k of f �k.C]

f
/ that con-

tains 0 in its closure is relatively compact in Uf and f ık W .C]
f
/�k ! C

]

f
is an

isomorphism, and the unique connected component C�k
f

of f �k.Cf / that intersects

Φf−−→

Cf
C�
f

C−kf
f

(C�
f )

−kf

cpf cv

C−1
f

C−2
f

C−3
f

−2

2

0 1 
 1
αf

� − k

induced map

1

Φf (Sf )

Φf (Cf ∪ C�
f )

Sf

Fig. 3. Left: The sets Cf , C
]
f

and some of their preimages. The blue set depicts the forward orbit
of the critical point cpf . Right: The images of Cf [ C

]
f

and Sf under the perturbed Fatou coordi-
nate f̂ . This shows how the near-parabolic renormalization map is induced.
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.C
]

f
/�k is relatively compact in Uf and f ık W C�k

f
! Cf is a covering of degree 2

ramified above cv;

(b) kf is the smallest positive integer such that C
�kf
f
[ .C

]

f
/�kf� ¹z 2Pf W 0<Re f̂ .z/

< b1= f̨ c � k � 1=2º.

The same statement as Proposition 2.3 without the uniform bound of kf is proved in
[7, Proposition 13, p. 713]. For the statements corresponding to Propositions 2.2 and 2.3
with ˛ 2C (specifically, when jarg˛j< �=4 and j˛j is small), we refer to [14, Section 2].

Definition (Near-parabolic renormalization; see Figure 3). For f 2 I�˛ [ ¹Q˛º with
˛ 2 .0; "01�, define

Sf WD C
�kf
f
[ .C

]

f
/�kf ;

and consider the map
f̂ ı f

ıkf ıˆ�1f W f̂ .Sf /! C:

This map commutes with translation by 1. Hence it projects by the modified exponential
map5

Exp.�/ WD �
4

27
s.e2� i� / (2.4)

to a well-defined map Rf which is defined on a set punctured at zero, where s W z 7! z

is the complex conjugacy. One can check that Rf extends across zero and satisfies
.Rf /.0/D 0 and .Rf /0.0/D e2� i= f̨ . The map Rf is called the near-parabolic renor-
malization6 of f .

Let P.z/ D z.1C z/2 be the cubic polynomial introduced at the beginning of Sec-
tion 2.1. Define

U 0 WD P�1
�
D
�
0; 4
27
e4�

��
n ..�1;�1� [ B/; (2.5)

where B is the connected component of P�1.D.0; 4
27
e�4�// containing �1. By an

explicit calculation, one can prove that xU � U 0 (see [30, Proposition 5.2] and Figure 1).

Theorem 2.4 ([30, Main Theorem 3]). For every f D P ı '�1 2 I�˛ or f D Q˛ with
˛ 2 .0; "01�, the near-parabolic renormalization Rf is well-defined and the restriction of
Rf to a domain containing 0 can be written as P ı  �1 2 I�1=˛ . Moreover,  extends
to a univalent function on e�2� i=˛U 0.

From Theorem 2.4 we know that the near-parabolic renormalization Rf can also be
defined if the fractional part of 1=˛ is contained in .0; "01�. This implies that the near-
parabolic renormalization operator R can be applied infinitely many times to f if ˛ is of
sufficiently high type.

5Note that Exp.0/ D �4=27 is a critical value of Rf and Exp.C1i/ D 0. In some literature,
the modified exponential map is defined as � 7! � 4

27e
2� i� so that .Rf /0.0/ D e�2� i= f̨ . In order

to apply the classical continued fraction expansion conveniently, in this paper we put a complex
conjugacy s in the definition of Exp.

6This is the top near-parabolic renormalization; the bottom near-parabolic renormalization
around the fixed point �f can be defined similarly. See [30, Section 3].
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2.3. Some sets in the Fatou coordinate planes

Let f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "01�. In the Fatou coordinate plane of f , we define

zDf WD int
�

f̂ .Pf / [

bf[
jD0

. f̂ .Sf /C j /
�
; (2.6)

where bf WD kf C b1=˛c � k � 2 is the largest integer7 such that one can extend ˆ�1
f
W

f̂ .Pf /! Pf holomorphically to a domain like zDf . See Figure 4.

Φf (Sf )

Φf (Cf ∪ C�
f )

10

−2

Φf (Sf ) + bf

� 1
αf

� − k

Φ−1
f

χf
Exp

D̃f

10

−2

k1 + 2

cpf cv

σf
Pf

Fig. 4. The inverse ˆ�1
f

of the perturbed Fatou coordinate can be extended holomorphically to zDf
(colored cyan). It can be seen that the imageˆ�1

f
. zDf / wraps around 0. The holomorphic mapˆ�1

f
has an anti-holomorphic lift �f such that Exp ı �f D ˆ�1f (note that Exp is anti-holomorphic).
Some special points are also marked.

Lemma 2.5. The map ˆ�1
f
W f̂ .Pf /! Pf can be extended to a holomorphic map

ˆ�1f W
zDf ! Pf [

kf[
jD0

f ıj .Sf /

such that ˆ�1
f
.� C 1/ D f ıˆ�1

f
.�/ for all � 2 C with �; � C 1 2 zDf .

7In particular, from the proof one can see that Lemma 2.5 will not be true if bf is chosen as
kf C b1=˛c � k � 1.
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This lemma has been proved in [2, Lemma 1.8]. For completeness and to clarify some
ideas we include a sketch of the construction of ˆ�1

f
here.

Proof of Lemma 2.5. By (2.3), the definition of Sf , and Propositions 2.2 (b) and 2.3 (a),
we have f ıkf .Sf / D Cf [ C

]

f
and f ıj .Sf / is well-defined for all 0 6 j 6 bf . If

� 2 zDf n f̂ .Pf /, then there exists an integer j 2 Œ1; bf � such that � 2 f̂ .Sf / C j .
For such � we define

ˆ�1f .�/ WD f ıj .ˆ�1f .� � j //:

Note that there may exist two choices8 of j for some point �. Assume that �2 f̂ .Sf /Cj
0

for some j 0 2 Œ1;bf � and j 0¤ j . Then jj 0 � j j D 1. Without loss of generality, we assume
that j 0 D j C 1. By Proposition 2.2 (c), we haveˆ�1

f
.� C 1/D f ıˆ�1

f
.�/ for all � 2 C

with �; � C 1 2 f̂ .Pf /. Thus we have

f ıj
0

.ˆ�1f .� � j 0// D f ı.j
0�1/.ˆ�1f .� � j 0 C 1// D f ıj .ˆ�1f .� � j //:

This implies that ˆ�1
f

is well-defined in zDf and it is straightforward to check that
ˆ�1
f

is holomorphic. Finally, a completely similar calculation shows that ˆ�1
f
.� C 1/ D

f ıˆ�1
f
.�/ for all � 2 C with �; � C 1 2 zDf .

Note that Sf is contained in ¹z 2Pf W 0<Re f̂ .z/ < b1=˛c�k�1=2º and f ıbf .Sf /
D ¹z 2 Pf W b1=˛c � k � 3=2 6 Re f̂ .z/ 6 b1=˛c � k � 1=2 and Im f̂ .z/ > �2º.
According to Proposition 2.3 (b), if we consider the local rotation of f near the origin,
this implies that

bf D kf C b1=˛c � k � 2 > b1=˛c C 1; i.e., kf > kC 3: (2.7)

The modified exponential map Exp W C ! C n ¹0º defined in (2.4) is a covering
map which is anti-holomorphic. The map ˆ�1

f
W zDf ! C n ¹0º can be lifted to an anti-

holomorphic map
�f W zDf ! C

such that
Exp ı �f .�/ D ˆ�1f .�/ for all � 2 zDf :

See Figure 4. There are infinitely many choices of �f W zDf ! C. But the following result
holds.

Proposition 2.6 ([2, Proposition 1.9]). There exists k1 2NC such that for all f 2 I�˛ [

¹Q˛º with ˛ 2 .0; "01� and any choice of the lift �f , we have

sup ¹jRe.� � �0/j W �; �0 2 �f . zDf /º 6 k1:

8For example, this happens when � lies on . f̂ .Sf /C j / \ . f̂ .Sf /C j C 1/ for 1 6 j 6
bf � 1.



The high type quadratic Siegel disks are Jordan domains 4515

Proposition 2.6 was proved by applying Proposition 2.3, the pre-compactness of the
class I�˛ and a uniform bound on the total spiral of the set Pf about the origin (see
[7, Proposition 12] or [10, Proposition 2.4]).

From [30, Section 5.A] or [14, Propositions 2.6, 2.7] (the top and bottom near-
parabolic renormalizations can be defined for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "01�),
Pf is contained in the image of f . By Lemma 2.5, we have ˆ�1

f
. zDf / � f .Uf /. Since

f .Uf / � P.U
0/ D D.0; 4

27
e4�/, it follows that Im � > �2 for every � 2 �f . zDf /, where

P.z/ D z.1C z/2 and U 0 is defined in (2.5). Therefore, by Proposition 2.6, there exists
a choice of �f , denoted by �f;0, such that

�f;0. zDf / � ¹� 2 C W 1 6 Re � < k1 C 2 and Im � > �2º: (2.8)

We define

Df WD int
�

f̂ .Pf / [

kfCk0Ck1C2[
jD0

. f̂ .Sf /C j /
�
; (2.9)

where k0, k1 2 NC are as in Propositions 2.3 and 2.6 respectively. Let k 2 NC be as in
Proposition 2.2.

Lemma 2.7. For all f 2 I�˛ [ ¹Q˛º with 0 < ˛ 6 z"1 WDmin ¹"01; 1=.kC k0C k1C 4/º,
we have Df � zDf . Moreover,

Df � f̂ .Pf /[¹� 2C W 06 Re �� .b1=˛c�k/ < 2k0Ck1C3=2º;
Df � f̂ .Pf /[¹� 2C W 06 Re �� .b1=˛c�k/6 k0Ck1C3 and Im � > 0º:

(2.10)

Proof. The condition on ˛ implies that kf C k0 C k1 C 2 6 kf C b1=˛c � k � 2. Then
we have Df � zDf by definition.

Since f̂ .Sf / � ¹� 2 C W 0 < Re � < b1=˛c � k � 1=2º by Proposition 2.3 (b), for
� 2Df we have Re� < b1=˛cC kf C k0C k1 � kC 3=26 b1=˛cC 2k0C k1 � kC 3=2.
Hence (2.10) holds.

By (2.1) and (2.2), we have U � D.0; 8=9/ (see also [10, Lemma 6.1]). For any
f 2 I�˛ [ ¹Q˛º, by Koebe’s 1

4
-theorem we haveUf �D.0;2=9/. Since Exp. f̂ .Sf //�

URf n ¹0º and Rf 2 I�1=˛ , we have D.0; 2=9/ � Exp. f̂ .Sf //. Since f ıkf .Sf / D
Cf [ C

]

f
� Pf , we have Re � > b1=˛c � k for all � 2 f̂ .Sf /C kf . This implies that

¹� 2 C W �3=2 6 Re � � .b1=˛c � k/ 6 1 and Im � > � 1
2�

log 3
2
º is contained in the

interior of
Skf
jD0. f̂ .Sf /C j /. Therefore, Df n f̂ .Pf / contains ¹� 2 C W 0 6 Re � �

.b1=˛c � k/ 6 k0 C k1 C 3 and Im � > 0º.

2.4. Some quantitative estimates

Let �f ¤ 0 be another fixed point of f 2 I�˛ [ ¹Q˛º near 0 which is contained in
@Pf for small ˛ > 0 (see Figure 2). It depends continuously on f and has asymptotic
expansion

�f D �4�˛i=f 000 .0/C o.˛/ (2.11)
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as f ! f0 2 I�0 [ ¹Q0º in a fixed neighborhood of 0 (see [45, Section 3.2.1]). By
[30, Main Theorem 1 (a)], jf 000 .0/j 2 Œ3; 7� for all f0 2 I�0. By the pre-compactness
of I�0, there exists a constantD00 > 1 such that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "1�,
one has

˛=D00 6 j�f j 6 D00˛: (2.12)

For a general statement of (2.12) (i.e., for ˛ 2 C), see [14, Lemma 3.25 (1)].
Let

�f .w/ WD
�f

1 � e�2� i˛w (2.13)

be a universal covering from C to bC n ¹0; �f º with period 1=˛. Then �f .w/ ! 0 as
Imw!C1 and �f .w/! �f as Imw!�1. There exists a unique lift Ff of f under
�f such that

f ı �f .w/ D �f ı Ff .w/ with lim
Imw!C1

.Ff .w/ � w/ D 1:

The set ��1
f
.Pf / consists of countably many simply connected components. Each of them

is bounded by piecewise analytic curves going from �1i to C1i. Let zPf be the unique
component separating 0 from 1=˛. Define

Lf WD f̂ ı �f W zPf ! C: (2.14)

Then Lf is univalent and it is the Fatou coordinate of Ff since Lf .Ff .w//D Lf .w/C 1
if both w and Ff .w/ are contained in zPf .

For ˛ 2 .0; z"1� and R 2 .0;C1/, we define

‚˛.R/ WD C n
[
n2Z

D.n=˛;R/:

For C > 0, we denote aC WD Ce5� i=12 and define a piecewise analytic curve

`C WD
®
w 2 C W arg.w � aC / D 11

12
�
¯
[
®
w 2 C W arg.w � aC / D �1112�

¯
[
®
Cei�

W � 2 Œ�5�
12
; 5�
12
�
¯
:

Then `C [ .�`C C 1=˛/ divides C into three connected components.9 Let A1.C / be
the component of C n .`C [ .�`C C 1=˛// containing 1=.2˛/. The following result is a
summary of [10, Lemmas 6.4, 6.7 (2), 6.6, 6.11].

Lemma 2.8. There are constants "2 2 .0; z"1�, C0, C 00 > 0 and C 000 > 6 such that for all
f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2�,

(a) Ff is defined and univalent in‚˛.C 00/, and for all r 2 .0;1=2� and allw 2‚˛.r=˛/\
‚˛.C

0
0/,

jFf .w/ � .w C 1/j; jF
0
f .w/ � 1j < min

²
1

4
; C0

˛

r
e�2�˛ Imw

³
I

9We always assume that ˛ is so small that ‚˛.C / is connected and hence 1=.2˛/ 2 ‚˛.C /.
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(b) for all10 R 2 ŒC 000 ; 2=˛� and all w with D.w;R/ � A1 WD A1.C 00/ and Imw > �1=˛,

1

jL0
f
.w/j

6 1C
C0

R
I

(c) Lf W zPf !C has a unique univalent extension onto zPf [A1 such thatLf .Ff .w//D
Lf .w/C 1 if both w and Ff .w/ belong to zPf [ A1;

(d) for any r > 0 there is Kr > 1 depending only on r such that11

K�1r 6 j.L�1f /0.�/j 6 Kr for all � 2 f̂ .Pf / nD.0; r/:

Lemma 2.9 and Proposition 2.10 below are useful in the estimates of the locations of
the points under ˆ�1

f
and �f .

Lemma 2.9. There exists a constantD0 > 0 such that for anyD01 > 0, there existsD1 > 0
such that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2�,

(a) D0 6 jL�1
f
.�/j 6 D1 for � 2 f̂ .Pf / \D.0;D01/;

(b) D0 6 jL�1
f
.�/ � 1=˛j 6 D1 for � 2 f̂ .Pf / \D.1=˛;D01/.

Proof. By the continuous dependence of the Fatou coordinates of the maps in I�0, the
pre-compactness of I�0 and the fact that Pf is compactly contained in the domain of
definition of f , there exists a constant R1 > 0 such that

Pf � D.0; R1/ for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2�:

By (2.12) and the formula for �f in (2.13), a direct calculation shows that there exists a
constant D0 > 0 such that the Euclidean distance satisfies dist.L�1

f
.�/;Z=˛/ > D0 for

all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2� and all � 2 f̂ .Pf /.
By Lemma 2.8 (d), there exists a constant K1 > 1 such that

K�11 6 j.L�1f /0.�/j 6 K1 (2.15)

for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2� and all � 2 f̂ .Pf / n D. From [10, Proposi-
tion 6.17], there exists a constantC1 > 0 such that for all f 2 I�˛ [ ¹Q˛ºwith ˛ 2 .0; "2�
we have

jL�1f .3=2/j < C1: (2.16)

Without loss of generality we assume thatD01 > 1. Combining (2.15) and (2.16), there
exists a constant C2 > 0 depending only on K1, C1 and D01 such that jL�1

f
.�/j < C2 for

all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "2� and all � 2 . f̂ .Pf /\D.0;D01// nD. On the other

10In [10, Lemma 6.7(2)], R is contained in Œ3:25; 1=.2˛/�. In fact the estimate of jL0
f
.w/j there

still holds if R 2 Œ3:25; C=˛� for every C > 1=2 (only the constants in the estimate have to be
modified).

11By Lemma 2.8 (c), the number xf defined in [10, equation (50)] satisfies xf > b1=˛c � k.
Hence by [10, Lemma 6.11] this part holds for all � 2 f̂ .Pf / nD.0; r/.
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hand, by Lemma 2.8 (a) and applying

L�1f .�/ D F �1f ı L�1f .� C 1/;

there exists a constant C3 > 0 such that jL�1
f
.�/j < C3 for all f 2 I�˛ [ ¹Q˛º with

˛ 2 .0; "2� and all � 2 f̂ .Pf / \D.
By Lemma 2.8 (d) and [10, Proposition 6.16], there exists a constantC4>0 depending

onD01 such that jL�1
f
.�/� 1=˛j6 C4 for all f 2 I�˛ [ ¹Q˛ºwith ˛ 2 .0; "2� and all � 2

f̂ .Pf /\D.1=˛;D01/. Then the proof is complete if we setD1 WDmax ¹C2;C3;C4º.

Proposition 2.10 ([10, Propositions 6.19 and 6.17]). There are constants "02 2 .0; "2� and
D2 > 0 such that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "02�,

(a) if � 2 Œ0; b1=˛c � k �C i Œ�3;C1/, then

jL�1f .�/ � �j 6 D2 log.1C 1=˛/I

(b) if � 2 Œ0; b1=˛c � k �C i Œ�3; 1=˛�, then

jL�1f .�/ � �j 6 D2 min ¹log.2C j�j/; log.2C j� � 1=˛j/º:

Proposition 2.10 (a) was proved in [10, Proposition 6.19] (see also [10, Proposition
6.15]). Statement (b) was proved in [10, Proposition 6.17] for � 2 Œ0; b1=˛c � k � (i.e.,
� 2 R). However, the arguments there can be applied to � 2 Œ0; b1=˛c � k �C i Œ�3; 1=˛�
completely similarly by using [10, Lemma 6.7] and Lemma 2.9. For more details on the
study of Lf and L�1

f
, see [10, Sections 6.3–6.6] and [14, Section 3.5].

Let X;Y > 0. We use X � Y to denote that X and Y are of the same order, i.e., there
exist universal positive constants C1 and C2 such that C1Y 6 X 6 C2Y . Let Df be the
set defined in (2.9).

Lemma 2.11. There exist constants "3 2 .0; "02� andD3 > 0 such that for all f 2 I�˛ [

¹Q˛º with ˛ 2 .0; "3�,

(a) if � 2 Df with Im � > 1=˛, then

jˆ�1f .�/j �
˛

e2�˛ Im �
and

ˇ̌̌̌
Im�f .�/ �

�
˛ Im � C

1

2�
log

1

˛

�ˇ̌̌̌
6 D3I

(b) if � 2 Df with Im � 2 Œ�3; 1=˛�, then

jˆ�1f .�/j � max
²

1

1C j�j
;

1

1C j� � 1=˛j

³
;ˇ̌̌̌

Im�f .�/ �
1

2�
min ¹log.1C j�j/; log.1C j� � 1=˛j/º

ˇ̌̌̌
6 D3:

Proof. By the definition of ˆ�1
f

in Lemma 2.5, if � 2 Df n f̂ .Pf /, then there exists
a positive integer j 2 Œ1; kf C k0 C k1 C 2� such that � � j 2 f̂ .Pf / and ˆ�1

f
.�/ D

f ıj .ˆ�1
f
.� � j //. By the pre-compactness of I�˛ , it is sufficient to prove the statements

in this lemma for � 2 f̂ .Pf /.
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(a) By Proposition 2.10 (a), we have

Im � �D2 log.1C 1=˛/ 6 ImL�1f .�/ 6 Im � CD2 log.1C 1=˛/:

If ˛ is small, then so is ˛ log.1C 1=˛/. Suppose � 2 Df with Im � > 1=˛. Decreasing ˛
if necessary, we assume that Im � �D2 log.1C 1=˛/ > 1=.2˛/. Denote w WD L�1

f
.�/.

Then je�2� i˛w j D je2�˛ Imw � e�2� i˛ Rew j > e� . Note that ˛ log.1C 1=˛/ is uniformly
bounded above. Since Im � > 1=˛, we have

j1 � e�2� i˛w
j � e2�˛ Imw

� e2�˛ Im � :

By (2.12)–(2.14), we have

jˆ�1f .�/j D j�f ı L
�1
f .�/j D

ˇ̌̌̌
�f

1 � e�2� i˛w

ˇ̌̌̌
�

˛

e2�˛ Im �
:

Denote y WD Im Exp�1 ıˆ�1
f
.�/. By definition we have 4

27
e�2�y � ˛=e2�˛ Im � . A direct

calculation shows that y D ˛ Im � C 1
2�

log 1
˛
C O.1/, where O.1/ is a number whose

absolute value is less than a universal constant.
(b) We divide the argument into two cases. Firstly we assume that � 2Df with Re � 2

Œ0; 1=.2˛/�. By Proposition 2.10 (b), we have

jL�1f .�/ � �j 6 D2 log.2C j�j/: (2.17)

Let D01 > 0 be the smallest constant depending only on D2 such that if j�j > D01, then
j�j > D2 log.2C j�j/C 1. If j�j > D01, and Re � 2 Œ0; 1=.2˛/� and Im � 2 Œ�3; 1=˛�, by
(2.17) we have

jL�1f .�/j � j�j C 1: (2.18)

If j�j 6 D01, and Re � 2 Œ0; 1=.2˛/� and Im � 2 Œ�3; 1=˛�, by Lemma 2.9 (a) there exists
a constant D1 > 1 depending only on D01 such that D0 6 jL�1

f
.�/j 6 D1. Therefore, we

still have (2.18).
Next we assume that Re � 2 Œ1=.2˛/; b1=˛c � k �. By Proposition 2.10 (b), we have

jL�1f .�/ � �j 6 D2 log.2C j� � 1=˛j/: (2.19)

If j� � 1=˛j > D01, then j� � 1=˛j > D2 log.2C j� � 1=˛j/C 1. If j� � 1=˛j > D01, and
Re � 2 Œ1=.2˛/; b1=˛c � k � and Im � 2 Œ�3; 1=˛�, by (2.19) we have

jL�1f .�/ � 1=˛j D j.L�1f .�/ � �/C .� � 1=˛/j � j� � 1=˛j C 1: (2.20)

If j� � 1=˛j6D01, and Re� 2 Œ1=.2˛/;b1=˛c� k � and Im� 2 Œ�3;1=˛�, by Lemma 2.9 (b)
we have D0 6 jL�1

f
.�/ � 1=˛j 6 D1. Therefore, in this case we still have (2.20).

Denotew WDL�1
f
.�/. By (2.17) and (2.19), if ˛ is small enough, then�1=46 Re.˛w/

6 5=4 and j˛wj 6 3=2. By (2.12), (2.14), (2.18) and (2.20), we have

jˆ�1f .�/j D

ˇ̌̌̌
�f

1 � e�2� i˛w

ˇ̌̌̌
� max

²
1

jwj
;

1

jw � 1=˛j

³
� max

²
1

1C j�j
;

1

1C j� � 1=˛j

³
:

Then the estimate of Im Exp�1 ıˆ�1
f
.�/ follows by a direct calculation.
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Remark. (1) There exist some overlaps between the estimates in Lemma 2.11 (a, b).
Indeed, if � 2 Df and Im � � 1=˛, then

jˆ�1f .�/j � ˛ and Im Exp�1 ıˆ�1f .�/ D
1

2�
log

1

˛
CO.1/:

(2) Lemma 2.11 illustrates how the renormalization microscope �f reshapes the
geometry of the Siegel disk at deeper scales. Specifically, part (a) is for the points deep in
the Siegel disk, while (b) is for the points close to the Siegel boundary.

The following lemma can be seen as an inverse version of Lemma 2.11.

Lemma 2.12. There exist constants D4; D5 > 1 and "03 2 .0; "3� such that for all f 2
I�˛ [ ¹Q˛º with ˛ 2 .0; "03�,

(a) if �0 2 C satisfies Im �0 > 1
2�

log 1
˛
CD4, and Exp.�0/ 2 Pf and f̂ ı Exp.�0/ 2

.0; 2�C i Œ�2;C1/, thenˇ̌̌̌
Im f̂ ı Exp.�0/ �

1

˛

�
Im �0 �

1

2�
log

1

˛

�ˇ̌̌̌
6
D5

˛
I

(b) if �0 2 C satisfies Im �0 < 1
2�

log 1
˛
CD4, and Exp.�0/ 2 Pf and f̂ ı Exp.�0/ 2

.0; 2�C i Œ�2;C1/, thenˇ̌
log
�
3C Im f̂ ı Exp.�0/

�
� 2� Im �0

ˇ̌
6 D5:

Proof. (a) Denote � D f̂ ı Exp.�0/ 2 f̂ .Pf /. By Lemma 2.11 (a), if Im � > 1=˛ we
have ˇ̌̌̌

Im � �
1

˛

�
Im �0 �

1

2�
log

1

˛

�ˇ̌̌̌
6
D3

˛
: (2.21)

Suppose Re � 2 .0; 2� and Im � 2 Œ�2; 1=˛/. By Lemma 2.11 (b), we have

Im �0 6
1

2�
log.1C j�j/CD3 <

1

2�
log
�
1

˛
C 3

�
CD3 <

1

2�
log

1

˛
CD3 C 1:

Therefore, if Im�0> 1
2�

log 1
˛
CD3C 1, then Im� > 1=˛ or Im� <�2. By the assumption

of the lemma we have Im � > 1=˛ and (2.21) holds. Then part (a) follows if we setD4 WD
D3 C 1 and D5 WD D3.

(b) Denote � D f̂ ı Exp.�0/ 2 .0; 2� C i Œ�2;C1/. By (2.21), if Im � 2 Œ1=˛;

.1C 2D3/=˛�, we have jlog 1
˛
C 2�˛ Im � � 2� Im �0j 6 2�D3 and hence

jlog.3C Im �/ � 2� Im �0j 6 jlog.3˛ C ˛ Im �/ � 2�˛ Im �j C 2�D3

6 log.4C 2D3/C 6�D3 C 2�:

By Lemma 2.11 (b), if Re� 2 .0;2� and Im� 2 .�2;1=˛/we have jlog.1C j�j/� 2� Im�0j
6 2�D3 and hence

jlog.3C Im �/ � 2� Im �0j 6 jlog.3C Im �/ � log.1C j�j/j C 2�D3
6 log 5C 2�D3:
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Set D5 D log.4C 2D3/C 6�D3 C 2� . Then if Im � < .1C 2D3/=˛ we have

jlog.3C Im �/ � 2� Im �0j 6 D5: (2.22)

Suppose Im � > .1C 2D3/=˛. By Lemma 2.11 (a), we have

Im �0 > ˛ Im � C
1

2�
log

1

˛
�D3 >

1

2�
log

1

˛
CD3 C 1:

Therefore, if Im �0 < 1
2�

log 1
˛
CD3 C 1, then Im � < .1C 2D3/=˛ and we have (2.22).

Summing the constants in parts (a) and (b), the lemma follows if we setD4 WDD3C 1
and D5 WD log.4C 2D3/C 6�D3 C 2� .

In the following, we use h0 to denote @h=@z if h is holomorphic and denote @h=@z if h
is anti-holomorphic. The following result is useful in the estimate of the Euclidean length
of curves in Fatou coordinate planes.

Proposition 2.13. There exist positive constants "4 2 .0; "03� and D02; D
0
6; D6 > 1 such

that for all f 2 I�˛ [ ¹Q˛º with ˛ 2 .0; "4�,

(a) if � 2 Df with Im � > 1=.4˛/, then

j�0f .�/ � ˛j 6 D6˛e
�2�˛ Im �

I

(b) if � 2 Df with Im � 2 Œ�2; 1=.4˛/� and r D min ¹j�j; j� � 1=˛jº > D06, then

j�0f .�/j 6
˛

1 � e�2�˛.r�D
0
2

log.2Cr//

�
1C

D6

r

�
;

where D02 and D06 are so chosen that r � 2D02 log.2C r/ > 4 if r > D06.

Proof. Part (a) is proved in [9, Proposition 3.3]. We only prove part (b). For the continuous
function

'.z/ WD j1 � e2� iz
j;

where z 2 „% WD ¹%ei� W � 2 Œ��=4; 5�=4�º with 0 < % 6 2=3, by a direct calculation12

we have
min
z2„%

'.z/ D '.%ei�=2/ D '.%i/ D 1 � e�2�%: (2.23)

Case 1. We first consider � 2 ƒ1 WD Df \ ¹� 2 C W Re � 2 .0; 1=.2˛/� and Im � 2

Œ�2; 1=.4˛/�º and denote w WD L�1
f
.�/ 2 zPf . By (2.4), (2.13), (2.14) and a straight-

forward calculation we have

�0f .�/ D .Exp�1 ıˆ�1f /0.�/ D .Exp�1 ı �f ı L�1f /0.�/

D �
˛

1 � e2� i˛w �
1

L0
f
.w/

: (2.24)

12By setting r WD 2�%, ˇ WD � ��=2 and considering the derivative of ˇ 7! .'. r2� e
i.ˇC�=2///2,

it suffices to verify that e�r cosˇ sinˇ� sin.ˇ� r sinˇ/ > 0 for any r 2 .0;4�=3� and ˇ 2 .0;3�=4�.
This can be done by considering three cases: (1) ˇ � r sinˇ 2 Œ��; 0�; (2) ˇ � r sinˇ 2 .0; �=2�
and ˇ 2 .0; �=2�; and (3) ˇ � r sinˇ 2 .0; 3�=4� and ˇ 2 .�=2; 3�=4�.
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By Proposition 2.10 (b), we have

w 2 D.�;D2 log.2C j�j//: (2.25)

Let C 000 > 6 be the constant andA1 DA1.C 00/ be the domain introduced in Lemma 2.8 (b).
Let C1 > 1 be a constant depending only on C 000 and D2 such that if j�j > C1, then

j�j � 2D2 log.2C j�j/ > 4 and D.w; C 000 / � A1: (2.26)

We assume that y"1 > 0 is so small that if ˛ 2 .0;y"1�, then ˛j�j< 3=5 andD2˛ log.2C j�j/
< 1=15 for all � 2 ƒ1. Hence

˛j�j CD2˛ log.2C j�j/ < 2=3 for all � 2 ƒ1: (2.27)

By (2.25)–(2.27), for � 2ƒ01 WDƒ1 \ ¹� 2C W j�j>C1ºwe have ˛w 2 ¹%ei� W 0<%6 2=3
and ��=4 < � < 3�=4º. According to (2.23), we have

j1 � e2� i˛w
j > 1 � e�2�˛.j� j�D2 log.2Cj� j//: (2.28)

On the other hand, by (2.26), Lemma 2.8 (b, d) and Proposition 2.10 (b), there exists a
constant C2 > 1 depending only on C1 and D2 such that if � 2 ƒ01 then

1

jL0
f
.w/j

6 1C
C2

j�j
: (2.29)

Combining (2.24), (2.28) and (2.29), if � 2 ƒ01 we have

j�0f .�/j 6
˛

1 � e�2�˛.j� j�D2 log.2Cj� j//

�
1C

C2

j�j

�
:

Case 2. Suppose � 2 ƒ2 WD Df \ ¹� 2 C W Re � > 1=.2˛/ and Im � 2 Œ�2; 1=.4˛/�º.
By the definition of Df in (2.9), there exist an integer J > 1 which is independent of f
and j0 2 N with j0 6 J such that � � j0 2 f̂ .Pf / \ ¹� W Re � > 1=.2˛/º. We denote
w WD L�1

f
.� � j0/ 2 zPf and zw WD F ıj0

f
.w/. Then

�0f .�/ D .Exp�1 ı f ıj0 ıˆ�1f /0.� � j0/

D .Exp�1 ı �f ı F
ıj0
f
ı L�1f /0.� � j0/ D �

˛

1 � e2� i˛ zw
�
.F
ıj0
f

/0.w/

L0
f
.w/

: (2.30)

By Proposition 2.10 (b), we have

w 2 D
�
� � j0;D2 log

�
2C

ˇ̌
� � j0 �

1
˛

ˇ̌��
:

Let C 000 > 6 and A1 D A1.C 00/ be as in Lemma 2.8 (b). By Lemma 2.8 (a), there exist pos-
itive constants C 01 and C 001 depending only on C 000 , D2 and J such that if j� � 1=˛j > C 01,
then

D.w; C 000 / � A1 and jF
ıj

f
.w/ � 1=˛j > C 001 j� � 1=˛j (2.31)
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for all j D 0;1; : : : ; j0. Also by Lemma 2.8 (a), there exists a constantD02 >D2 depending
only on C 000 , C 001 , D2 and J such that

zw D F
ıj0
f

.w/ 2 D
�
�;D02 log.2C j� � 1=˛j/

�
and

j.F
ıj0
f

/0.w/j 6 1C
D02

j� � 1=˛j
: (2.32)

Let C 02 > C 01 be a constant depending only on C 01 andD02 such that if j� � 1=˛j > C 02,
then

j� � 1=˛j � 2D02 log.2C j� � 1=˛j/ > 4:

Moreover, we assume that y"2 > 0 is so small that if ˛ 2 .0; y"2�, then

˛j� � 1=˛j CD02˛ log.2C j� � 1=˛j/ < 2=3 for all � 2 ƒ2:

For � 2 ƒ02 WD ƒ2 \ ¹� 2 C W j� � 1=˛j > C 02º, we have ˛ zw � 1 2 ¹%ei� W 0 < % 6 2=3

and �=4 < � < 5�=4º. By (2.23) and j1 � e2� izj D j1 � e2� i.z�1/j, we have

j1 � e2� i˛ zw
j > 1 � e�2�˛.j��1=˛j�D

0
2

log.2Cj��1=˛j//: (2.33)

Similarly, by (2.31), Lemma 2.8 (b, d) and Proposition 2.10 (b), there exists a constant
C3 > 1 depending only on C 001 , C 02 and D02 such that if � 2 ƒ02 then

1

jL0
f
.w/j

6 1C
C3

j� � 1=˛j
: (2.34)

Combining (2.30), (2.32), (2.33) and (2.34), if � 2 ƒ02 we have

j�0f .�/j 6
˛

1 � e�2�˛.j��1=˛j�D
0
2

log.2Cj��1=˛j//

�
1C

C 03
j� � 1=˛j

�
for a constant C 03 > 0 depending only on C3 and D02. The proof is complete if we set
"4 WD min ¹"03; y"1; y"2º, D

0
6 WD max ¹C1; C 02º and D6 WD max ¹C2; C 03º.

Remark. Proposition 2.13 will be used in the proof of Lemma 4.8. In [10, Proposition
6.18], an estimate of j�0

f
.�/j has been obtained for � 2 Œ1; 1=.2˛/� in another form.

2.5. Renormalization tower and orbit relations

In the rest of this paper, we always assume that the integer N is so large that N > 1="4,
where "4 > 0 is the constant of Proposition 2.13. Let Œ0I a1; a2; : : :� be the continued
fraction expansion of ˛ 2 HTN . Define ˛0 WD ˛, and inductively for n > 1, define the
sequence of real numbers ˛n 2 .0; 1/ as

˛n D
1

˛n�1
�

�
1

˛n�1

�
for n > 1: (2.35)
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Then each ˛n has the continued fraction expansion Œ0IanC1; anC2; : : :�. By definition, we
have ˛n 2 .0; "4� for all n 2 N.

Let ˛ 2HTN and f0 2 I�˛ [ ¹Q˛º. By Theorem 2.4, the following sequence of maps
is well-defined for all n > 0:

fnC1 WD Rfn W UfnC1 ! C:

Let Un WD Ufn be the domain of definition of fn for n > 0. Then for all n, we have

fn W Un ! C; fn.0/ D 0; f 0n.0/ D e
2� i˛n and cv D cvfn D �4=27:

For n > 0, let ˆn WD f̂n be the Fatou coordinate of fn W Un ! C defined in the
perturbed petal Pn WD Pfn and let Cn WD Cfn and C

]
n WD C

]

fn
be the corresponding sets

for fn defined in (2.3). Let kn WD kfn be the positive integer in Proposition 2.3 such that

S0n WD Sfn D C�knn [ .C]n/
�kn � ¹z 2 Pn W 0 < Reˆn.z/ < b1=˛nc � k � 1=2º:

For n> 0, let zDn WD
zDfn and Dn WDDfn be the sets defined in (2.6) and (2.9) respectively.

Note that Dn �
zDn by Lemma 2.7. According to Lemma 2.5, we have a holomorphic map

ˆ�1n W
zDn ! Un n ¹0º

such that ˆ�1n .� C 1/ D fn ı ˆ
�1
n .�/ if �, � C 1 2 zDn. We denote the lift �fn;0 in (2.8)

by �n;0. Then for n > 1 we have

�n;0. zDn/ � ¹� 2 C W 1 6 Re � < k1 C 2 and Im � > �2º � ˆn�1.Pn�1/: (2.36)

Each �n;0 is anti-holomorphic. For j 2 Z we define

�n;j WD �n;0 C j: (2.37)

In the following we are mainly interested in �n;j with 0 6 j 6 an D b1=˛n�1c.
Recall that for ı > 0, Bı.X/ is the ı-neighborhood of a set X � C with respect to the

Euclidean metric. The following lemma will be used to prove uniform contraction with
respect to the hyperbolic metrics in the domains of adjacent renormalization levels (see
Lemma 4.7).

Lemma 2.14 ([2, Lemma 2.1]). There exists a constant ı0 > 0 depending only on the
class I�0 such that for all n > 1 and 0 6 j 6 an,

Bı0.�n;j .Dn// � Dn�1:

For n > 0, recall that Pn is the perturbed petal of fn. For n > 1, we define an anti-
holomorphic map  n by

 n WD ˆ
�1
n�1 ı �n;0 ıˆn W Pn ! Pn�1: (2.38)
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Hence we have the following diagrams:

Pn�1 ˆn�1.Pn�1/
ˆ�1
n�1oo

Pn
ˆn //

 n

OO

ˆn.Pn/

�n;0

OO
Un�1 Dn�1

ˆ�1
n�1oo

Un Dn

ˆ�1noo

�n;j

OO

Each  n extends continuously to 0 2 @Pn by mapping it to 0. For n > 1, we define

‰n WD  1 ı � � � ı  n W Pn ! P0 � U0:

For n > 0 and i > 1, define the sector

S in WD  nC1 ı � � � ı  nCi .S
0
nCi / � Pn:

In particular, Sn0 � P0 for all n > 0. Define

P 0n WD ¹z 2 Pn W 0 < Reˆn.z/ < b1=˛nc � k � 1º:

Let qn be the denominator of the convergents Œ0Ia1; : : : ; an� of the continued fraction
expansion of ˛. Recall that kn D kfn is the positive integer as in Proposition 2.3. The
following lemma was proved in [10, Section 3] and parts of the results can also be found in
[7, Section 1.5.5]. The proof is based on the definition of near-parabolic renormalization.

Lemma 2.15 ([10, Lemmas 3.3, 3.4]). For every n > 1,

(a) for every z 2 P 0n, f ıann�1 ı  n.z/ D  n ı fn.z/ and f ıqn0 ı‰n.z/ D ‰n ı fn.z/;

(b) for every z 2 S0n , f ı.knanC1/n�1 ı n.z/D  n ı f
ıkn
n .z/ and f ı.knqnCqn�1/0 ı‰n.z/D

‰n ı f
ıkn
n .z/;

(c) for every m < n, fn W P 0n ! Pn and f ıknn W S0n ! Cn [ C
]
n are conjugate to some

iterates of fm on the set  mC1 ı � � � ı  n.Pn/.

In particular, the dynamics of fn is conjugate to the dynamics of f0. Specifically, the
first kn iterates of fn on S0n correspond to knqn C qn�1 iterates of f0, and the next
b1=˛nc � k � 2 iterates correspond to qn.b1=˛nc � k � 2/ iterates of f0.

For each n 2 N, by (2.7) we have

bn WD kn C b1=˛nc � k � 2 > anC1 C 1:

From the definition of zDn in (2.6) and by Lemma 2.15, the following sets are well-defined
for each n > 0:

�0n WD

bn[
jD0

f ıjn .S0n / [ ¹0º and �n0 WD

bnqnCqn�1[
jD0

f
ıj
0 .Sn0 / [ ¹0º:
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Definition (High type Brjunos). Let N be the integer fixed before. Define

BN WD

²
˛ D Œ0I a1; a2; : : :� 2 .0; 1/ nQ

ˇ̌̌̌
˛ is Brjuno and
an > N; 8n > 1

³
: (2.39)

Then BN is strictly contained in HTN .

Proposition 2.16 ([10, Propositions 3.5, 5.10 (2)]). Let f0 2 I�˛ [ ¹Q˛º with ˛ 2 HTN .
Then for all n > 0,

(a) �nC10 is compactly contained in the interior of �n0 and f0.�nC10 / � �n0;

(b) if ˛ 2 BN , then int.
T1
nD0�

n
0/ D �0, where �0 is the Siegel disk of f0.

In the rest of this paper, unless otherwise stated, for a given map f0 2 I�˛ [ ¹Q˛º

with ˛ 2HTN , we use fn to denote the map after n-th near-parabolic renormalization. We
also use Un, Pn andˆn etc. to denote respectively the domain of definition, the perturbed
petal and the Fatou coordinate etc. of fn.

3. The suitable heights

3.1. Radii of Siegel disks

The following classical distortion theorem can be found in [37, Theorem 1.6, p. 21].

Theorem 3.1 (Koebe’s distortion theorem). Suppose f W D! C is a univalent map with
f .0/ D 0 and f 0.0/ D 1. Then for each z 2 D we have

(a)
1 � jzj

.1C jzj/3
6 jf 0.z/j 6

1C jzj

.1 � jzj/3
;

(b)
jzj

.1C jzj/2
6 jf .z/j 6

jzj

.1 � jzj/2
;

(c) jargf 0.z/j 6 2 log
1C jzj

1 � jzj
.

Let ˛0 WD ˛ 2 BN and ˛n 2 .0; 1/ be the number defined inductively as in (2.35) for
n > 1. Denote ˇ�1 D 1 and ˇn WD

Qn
iD0 ˛i for n > 0. The Brjuno sum B.˛/ of ˛ in the

sense of Yoccoz is defined as

B.˛/ WD

1X
nD0

ˇn�1 log
1

˛n
D log

1

˛0
C ˛0 log

1

˛1
C ˛0˛1 log

1

˛2
C � � � : (3.1)

It is proved in [53, Section 1.5] that jB.˛/ �
P1
nD0 q

�1
n log qnC1j 6 C 0 for a universal

constant C 0 > 0.
Suppose a holomorphic map f has a Siegel disk �f centered at the origin which is

compactly contained in the domain of definition of f . The inner radius of�f is the radius
of the largest open disk centered at the origin that is contained in �f .
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Lemma 3.2. There exists a universal constantD7 > 1 such that for all f0 2 I�˛ [ ¹Q˛º

with ˛ 2BN , the inner radius of the Siegel disk of fn is cne�B.˛n/ with 1=D7 6 cn 6D7
for every n 2 N.

Proof. By the definition of near-parabolic renormalization, fn 2 I�˛n with ˛n 2 BN

for all n > 1. Then according to [5], each fn with n > 0 has a Siegel disk centered at
the origin. By the definition of Inou–Shishikura’s class and Koebe’s distortion theorem
(Theorem 3.1 (b)), fn is univalent in D.0; zc/ for a universal constant zc > 0. According
to Yoccoz [53, p. 21], the Siegel disk of fn contains a round disk D.0; C1e�B.˛n// for a
universal constant C1 > 0, where

B.˛n/ WD log
1

˛n
C

C1X
kD1

˛n � � �˛nCk�1 log
1

˛nCk
(3.2)

is the Brjuno sum of ˛n defined in (3.1). On the other hand, by [10, Theorem G], there is
a universal constant C2 > 1 such that the inner radius of the Siegel disk of fn is bounded
above by C2e�B.˛n/ for all n 2 N. The lemma follows with D7 WD max ¹C2; 1=C1º.

3.2. Definition of the heights

In the following, we use �n to denote the Siegel disk of fn for all n > 0, where f0 2
I�˛ [ ¹Q˛º with ˛ 2 BN and fn is obtained by applying the near-parabolic renormal-
ization operator.

Definition (The heights). Let M > 1. For n > 0, we define

hn WD
B.˛nC1/

2�
C
M

˛n
: (3.3)

There are many choices of the height hn. One of the candidates is B.˛nC1/

2�
CM . In

order to apply Lemma 2.11 (a) directly, we choose hn above so that hn > 1=˛n. Similar
to (2.3) (see Figure 3), we define

zC]n WD ¹z 2 Pn W 1=2 6 Reˆn.z/ 6 3=2 and Imˆn.z/ > hnº:

Let . zC]n/�kn be the component of f �knn . zC
]
n/ contained in .C]n/�kn . Recall that  n is

defined in (2.38). For n > 0 and i > 1, we denote

V 0n WD .
zC]n/
�kn � S0n and V in WD  nC1 ı � � � ı  nCi .V

0
nCi / � S

i
n:

Lemma 3.3. There exists a universal constant M1 > 1 such that if M > M1, then for all
n > 0 and i > 0, V in is compactly contained in �n.

Proof. We first prove that V 0n is compactly contained in�n for all n> 0 ifM > 1 is large
enough. By a straightforward calculation, the image of ˆn. zC

]
n/ under Exp is a punctured

rounded disk centered at the origin with radius

�n WD
4

27
e�2�hn D

4

27
e�

2�M
˛n � e�B.˛nC1/ <

1

D7
e�B.˛nC1/
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if M > M1 WD
1
2�

logD7 C 1, whereD7 > 1 is the constant of Lemma 3.2. This implies

that Exp ıˆn. zC
]
n/ is compactly contained in the Siegel disk of fnC1 if M > M1. Hence

there exists a small open neighborhood D of zC]n in Pn such that Exp ı ˆn.D/ is com-
pactly contained in the Siegel disk�nC1. By Lemma 2.15 (c), fn can be iterated infinitely
many times in D and the orbit is compactly contained in the domain of definition of fn.
Note that 0 2 xD. Therefore, D is contained in the Siegel disk of fn and zC]n b �n. Since
f
ıkn
n .V 0n / D

zC
]
n and 0 2 @V 0n , we have V 0n b �n.

For each z 2 V 0n , there exists a small open neighborhood of z on which fn can be
iterated infinitely many times. By Lemma 2.15 (b), there exists a small open neighborhood
of ‰n.z/ 2 V n0 on which f0 can also be iterated infinitely many times. Since each z 2 V 0n
has this property and 02 @V n0 , it follows that V n0 b�0. By a completely similar argument,
we have V in b �n for any i; n > 0.

Note that the forward orbit of V in is compactly contained in �n for any n; i > 0.
Moreover, the backward orbit of V in is also compactly contained in �n if the preimage
under fn is chosen in �n. In the following, we always assume that M > M1 unless
otherwise stated.

3.3. The location of the neighborhoods

For n > 0, each V 0n [ ¹0º is a closed topological triangle13 whose boundary consists of
three analytic curves. We use @lV 0n , @rV 0n and @bV 0n to denote the three smooth edges of
V 0n , where fn.@lV 0n / D @

rV 0n and @lV 0n \ @
rV 0n D ¹0º. The superscripts ‘l’, ‘r’ and ‘b’

denote ‘left’, ‘right’ and ‘bottom’, respectively. See Figure 5.

V 0
n∂lV 0

n ∂rV 0
n I0n

C̃�
n

cpfn cv

Fig. 5. In the dynamical plane of fn, the sets @lV 0n , @rV 0n and I0n are colored cyan, purple and red
respectively. The blue set is the (partial) forward orbit of the critical point cpfn . The sets V 0n and
zC
]
n D f

ıkn
n .V 0n / are colored gray.

13Here we use the fact that for any x 2 .0; b1=˛nc � k/, limy!C1 ˆ�1n .x C yi/ D 0 (see
[14, Proposition 2.4 (a)] or [10, Lemma 6.9]).
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A similar naming convention is adopted for V in and their forward images for all
n; i > 0. For example, @lV in WD  nC1 ı � � � ı  nCi .@

lV 0nCi / if i is even, while @lV in WD
 nC1 ı � � � ı  nCi .@

rV 0nCi / if i is odd (note that each  j is anti-holomorphic). For sim-
plicity, we denote

I 0n WD @
bV 0n � �n:

The ‘left’ and the ‘right’ end points of I 0n are denoted by @lI 0n and @rI 0n respectively so
that fn.@lI 0n / D @

rI 0n . A similar naming convention is adopted for I in and their forward
images for all n; i > 0. In particular, by Lemma 2.15 (a) we have f ıqn0 .@lI n0 / D @

rI n0 if
n is even and f ıqn0 .@rI n0 /D @

lI n0 if n is odd. Moreover, let @lS in and @rS in be the smooth
edges of S in containing @lV in and @rV in respectively.

Let kn D kfn > 1 be the integer of Proposition 2.3,D3 > 0 be the constant of Lemma
2.11 and Dn D Dfn be the set defined in (2.9).

Lemma 3.4 (see Figure 6). There exists a constant M2 > 1 such that if M > M2, then
for all n 2 N,

(a) diam.ˆn.I 0n // 6 2 and jIm � � hnj 6 1 for all � 2 ˆn.I 0n /;

(b) un.y/ WD ¹� 2 C W Im � D yº \ˆn.@
lS0n / is a singleton for all y > hn � 1;

(c) diam.ˇ0n/ 6 1, where ˇ0n is the arc in ˆn.@lS0n / connecting un.hn/ to ˆn.@lI 0n /.

γ0
n

u′
n un

u′′
n

u′′
n + kn

Φn(I
0
n)

hn

0 1
2


 1
αn

� − k

Φn(S
0
n) Φn(S

0
n) + kn − 1

Fig. 6. The sketch of the construction of the continuous curve 
0n (in blue) in the Fatou coordinate
plane of fn. The two red dots denote the initial and terminal points of 
0n and they have the same
image under the map ˆ�1n . In particular, ˆ�1n .
0n / is a continuous closed curve in the Siegel disk
of fn.

Proof. The proof is mainly based on applying Koebe’s distortion theorem and the defini-
tion of near-parabolic renormalization.

(a) By the definition of near-parabolic renormalization, we have

fnC1.Exp ıˆn.V 0n // D Exp ıˆn. zC]n/:
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Note that Exp ıˆn. zC
]
n/ [ ¹0º is a closed round disk with radius

�n D
4
27
e�

2�M
˛n � e�B.˛nC1/:

By Lemma 3.2, �nC1 contains the disk D.0; &n/, where

&n WD D
�1
7 e�B.˛nC1/:

Therefore,
g WD f �1nC1 W D.0; &n/! �nC1 (3.4)

is a well-defined univalent map with jg0.0/j D 1. IfM is large enough such that �n is much
smaller than &n, then by Theorem 3.1 the distortion of the circle g.@D.0; �n// relative to
@D.0; �n/ can be arbitrarily small. Part (a) is proved if we notice thatˆn.I 0n / is the closure
of a connected component of Exp�1 ı g.@D.0; �n/ n ¹�nº/.

(b) Still by the definition of near-parabolic renormalization, we have

fnC1.Exp ıˆn.@lS0n // D
�
0; 4
27
e4�

�
:

Since D.0; &n/ � �nC1, we have f �1nC1.Œ0;
4
27
e4� �/\ g.D.0; &n// D g.Œ0; &n//, where g

is defined in (3.4). On the other hand, by (3.4) and Theorem 3.1 (b), we assume that M
is so large that �n is small and g.D.0; &n// � D.0; e2� �n/. According to Theorem 3.1 (c),
we assume further that M is large so that g.Œ0; &n// \ @D.0; r/ is a singleton for any
0 < r 6 e2� �n. Therefore,

Exp ıˆn.@lS0n / \ ¹z 2 C W jzj D rº

is a singleton, where 0 < r 6 e2� �n D
4
27
e�2�.hn�1/. This proves (b).

(c) By the definition of near-parabolic renormalization, we have

Exp.un.hn// D g.Œ0; &n// \ @D.0; �n/ and Exp ıˆn.@lI 0n / D g.�n/:

Moreover, by the definition of ˇ0n we have Exp.ˇ0n/ � g.Œ0; &n//. By Theorem 3.1, the
Euclidean length of the arc Exp.ˇ0n/ with end points g.Œ0; &n//\ @D.0; �n/ and g.�n/ can
be arbitrarily small if M is large enough. This proves (c).

Let D3 > 0 be as in Lemma 2.11. In the following we always assume that M >
max ¹M2;D3 C

1
2�

log 4D7
27
C 2º unless otherwise stated. Then

yn WD
B.˛nC1/

2�
CM �D3 �

3

2
>

B.˛nC1/

2�
�

1

2�
log

27cnC1

4
: (3.5)

This implies that if Im � > yn, then � 2 Exp�1.�nC1/.

4. The sequence of the curves is convergent

In this section, we define a sequence .
 in/n2N of continuous curves in the Fatou coordinate
planes with i 2N. The image of each 
 in underˆ�1n is a continuous closed curve contained
in the Siegel disk �n of fn. We shall prove that .
n0 /n2N converges uniformly to the
boundary of �0.
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4.1. Definition of the curves and their parametrization

Note that anC1 D b1=˛nc for each n 2 N. Recall that

un WD un.hn/ D ¹� 2 C W Im � D hnº \ˆn.@
lS0n /

is introduced in Lemma 3.4 (b). Since f ıknn .S0n / D Cn [ C
]
n, we have Re � > anC1 � k

for all � 2 ˆn.S0n /C kn. Therefore,

anC1 � k � kn < Reun < anC1 � k � 3=2: (4.1)

We denote
u0n WD anC1 � k � kn � 1=2C hni:

According to (4.1), we have Reu0n < Reun. Denote

u00n WD ˆn.@
lI 0n /:

Let ˇ0n be the arc in ˆn.@lS0n / connecting un to u00n; see Figure 6. We first give the defini-
tions of 
0n .t/ and 
1n .t/ for t 2 Œ0; 1�, and then define the curves .
 in/n2N inductively.

Definition of 
0n : The curve 
0n W Œ0; 1�! C is defined piecewise as follows:

(a0) for t 2 Œ0; 1 � kCknC1
anC1

�, define 
0n .t/ WD anC1t C
1
2
C hni;

(b0) let 
0n W Œ1 �
kCknC1
anC1

; 1 � kn
anC1

�! Œu0n; un� [ ˇ
0
n be a homeomorphism such that


0n

�
1 �

kC kn C 1
anC1

�
D u0n and 
0n

�
1 �

kn

anC1

�
D u00nI

(c0) let 
0n W Œ1 �
kn
anC1

; 1 � kn�1
anC1

�! ˆn.I
0
n / be a homeomorphism such that


0n

�
1 �

kn

anC1

�
D u00n and 
0n

�
1 �

kn � 1

anC1

�
D u00n C 1I

(d0) for t 2 Œ1 � kn�j
anC1

; 1 � kn�j�1
anC1

� with 1 6 j 6 kn � 1, define


0n .t/ WD 

0
n

�
t �

j

anC1

�
C j:

Lemma 4.1 (see Figure 6). The map 
0n W Œ0; 1�! C has the following properties:

(a) 
0n and 
0n C 1 are simple arcs in Dn;

(b) 
0n .0/ D
1
2
C hni and 
0n .1/ D u

00
n C kn;

(c) ˆ�1n .

0
n / is a continuous closed curve in �n;

(d) jIm 
0n .t/ � hnj 6 1 for all t 2 Œ0; 1�.

Proof. (a) and (b) follow from the definition of 
0n . For (c), since f ıknn .ˆ�1n .u
00
n// D

ˆ�1n .1=2C hni/, we haveˆ�1n .1=2C hni/Dˆ�1n .u
00
nC kn/ by Lemma 2.5. This implies
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that ˆ�1n .

0
n / is a continuous closed curve in �n. Part (d) is an immediate consequence

of Lemma 3.4 (a, c).

Before introducing 
1n , we define a thickened curve z
0n W Œ0; 1�! C of 
0n :

z
0n .t/ WD

´

0n
� anC1
anC1�1

t
�

if t 2
�
0; 1 � 1

anC1

�
;


0n .t/C 1 if t 2
�
1 � 1

anC1
; 1
�
:

One can see that z
0n D 
0n [ .

0
n .Œ1 �

1
anC1

; 1�/ C 1/ D 
0n [ .ˆn.I
0
n / C kn/ and z
0n W

Œ0; 1�! C is a continuous curve in Dn. Let �n;0 WD �fn;0 be the anti-holomorphic map
defined in (2.8).

Definition of 
1n : The curve 
1n W Œ0; 1�! C is defined piecewise as follows:

(a1) For t 2 Œ0; 1
anC1

�, define 
1n .t/ WD �nC1;0 ı z

0
nC1.1 � anC1t /;

(b1) For t 2 . j
anC1

; jC1
anC1

�, where 1 6 j 6 anC1 � 1, define


1n .t/ WD �nC1;j ı 

0
nC1.j C 1 � anC1t /;

where �nC1;j D �nC1;0 C j is defined in (2.37).

Let D3 > 0 be the constant of Lemma 2.11.

Lemma 4.2. The map 
1n W Œ0; 1�! C has the following properties:

(a) 
1n and 
1n C 1 are continuous curves in Dn;

(b) 
1n .0/ D �nC1;0.

0
nC1.1/C 1/ and 
1n .1/ D �nC1;0.


0
nC1.1//C anC1;

(c) ˆ�1n .

1
n .0// D ˆ

�1
n .


1
n .1// and ˆ�1n .


1
n / is a continuous closed curve in �n;

(d) there exists a constant D8 > 0 independent of n such that for all t 2 Œ0; 1�,

jRe 
0n .t/ � Re 
1n .t/j 6 D8 and
ˇ̌̌̌
Im 
1n .t/ �

B.˛nC1/

2�
�M

ˇ̌̌̌
6 D3 C

1
2
:

Proof. (a) Since �nC1;j is anti-holomorphic for all j 2 Z, we have

�nC1;j .

0
nC1.0// D �nC1;j .


0
nC1.1//C 1 D �nC1;jC1.


0
nC1.1//

for 0 6 j 6 anC1 � 2. Therefore, 
1n W Œ0; 1�! C is a continuous curve. By Lemma 2.14,

1n and 
1n C 1 are continuous curves in Dn.

(b) By the definition of 
1n , we have


1n .0/ D �nC1;0 ı z

0
nC1.1/ D �nC1;0.


0
nC1.1/C 1/

and


1n .1/ D �nC1;anC1�1.

0
nC1.0//

D �nC1;anC1�1.

0
nC1.1//C 1 D �nC1;0.


0
nC1.1//C anC1:
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(c) By Lemma 2.15 (a), we have

ˆ�1n ı �nC1;0.

0
nC1.1/C 1/ D f

ıanC1
n .ˆ�1n ı �nC1;0.


0
nC1.1///:

This implies that ˆ�1n .

1
n .0// D ˆ

�1
n .


1
n .1// by (b). Therefore, ˆ�1n .


1
n / is a continuous

closed curve in �n.
(d) By (2.36) we have

Re�nC1;j .z
0nC1/ � Œ1C j; k1 C 2C j �; j 2 Z: (4.2)

Hence for t 2 Œ0; 1 � kCknC1
anC1

�, we have

jRe 
0n .t/ � Re 
1n .t/j 6 k1 C 3=2:

For t 2 Œ1 � kCknC1
anC1

; 1 � kn
anC1

�, by (4.1) and Lemma 3.4 (c) we have

Re 
0n .t/ 2 ŒReu0n � 1=2;Reun C 1� � ŒanC1 � k � kn � 1; anC1 � k � 1=2�:

If t 2 Œ1 � kCknC1
anC1

; 1 � kn
anC1

�, then 
1n .t/ 2
Sk
iD0 �nC1;anC1�k�kn�1Ci .


0
nC1/. By (4.2)

Re 
1n .t/ 2 ŒanC1 � kn � k; anC1 � kn C k1 C 1�:

Therefore, for t 2 Œ1 � kCknC1
anC1

; 1 � kn
anC1

� we have

jRe 
0n .t/ � Re 
1n .t/j 6 max ¹kn � 1=2; kC k1 C 2º:

By Lemma 3.4 (a, c), we have

u00n 2 D.un; 1/ and ˆn.I
0
n / � D.u00n; 2/: (4.3)

For t 2 Œ1 � kn
anC1

; 1 � kn�1
anC1

�, by (4.1) and (4.3) we have

Re 
0n .t/ 2 ŒanC1 � k � kn � 3; anC1 � kC 3=2�:

On the other hand,

Re 
1n .t/ 2 ŒanC1 � kn C 1; anC1 � kn C k1 C 2�:

Since 
 in.t C
1

anC1
/D 
 in.t/C 1 for t 2 Œ1� kn

anC1
; 1� 1

anC1
�, where i D 0;1, this implies

that for all t 2 Œ1 � kn
anC1

; 1�, we have

jRe 
0n .t/ � Re 
1n .t/j 6 max ¹kn � kC 1=2; kC k1 C 5º:

Since kn 6 k0 by Proposition 2.3, this implies that jRe 
0n .t/ � Re 
1n .t/j 6 D8 WD

max ¹k0 � 1=2; kC k1 C 5º for all t 2 Œ0; 1�. Finally, the statement on Im 
1n .t/ follows
immediately from Lemmas 2.11 (a) and 4.1 (d).
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By (3.5) and Lemma 4.2 (d), for any t 2 Œ0; 1� and � 2 Exp�1.@�nC1/, we have

Im 
1n .t/ >
B.˛nC1/

2�
CM �D3 �

1

2
> 1C Im �: (4.4)

For ` D 1, we define a thickened curve z
`n W Œ0; 1�! C of 
`n by

z
`n.t/ WD

´

`n
� anC1
anC1�1

t
�

if t 2
�
0; 1 � 1

anC1

�
;


`n.t/C 1 if t 2
�
1 � 1

anC1
; 1
�
:

(4.5)

One can see that z
`n D 

`
n [ .


`
n.Œ1 �

1
anC1

; 1�/C 1/ D 
`n [ �nC1;anC1.

`�1
nC1/, and z
`n W

Œ0; 1�! C is a continuous curve in Dn.

Inductive definition of 
 in: For all n 2 N and 1 6 ` 6 i , we assume that the curves 
`n W
Œ0; 1�! C and z
`n W Œ0; 1�! C are defined and satisfy

(a`) z
`n is defined as in (4.5);

(b`) 
`n.t/ WD

´
�nC1;0 ı z


`�1
nC1.1 � anC1t / for t 2

�
0; 1
anC1

�
;

�nC1;j ı 

`�1
nC1.j C 1 � anC1t / for t 2

�
j

anC1
; jC1
anC1

�
;

where 1 6 j 6 anC1 � 1;

(c`) 
`n and 
`n C 1 are continuous curves in Dn;

(d`) 
`n.0/ D �nC1;0.

`�1
nC1.1/C 1/ and 
`n.1/ D �nC1;0.


`�1
nC1.1//C anC1;

(e`) ˆ�1n .

`
n.0// D ˆ

�1
n .


`
n.1// and ˆ�1n .


`
n/ is a continuous closed curve in �n.

Similar to the construction of 
 in, the curve 
 iC1n W Œ0; 1�! C is defined as follows:

(aiC1) for t 2 Œ0; 1
anC1

�, define 
 iC1n .t/ WD �nC1;0 ı z

i
nC1.1 � anC1t /;

(biC1) for t 2 . j
anC1

; jC1
anC1

�, where 1 6 j 6 anC1 � 1, define


 iC1n .t/ WD �nC1;j ı 

i
nC1.j C 1 � anC1t /:

Lemma 4.3. The map 
 iC1n W Œ0; 1�! C has the following properties:

(a) 
 iC1n and 
 iC1n C 1 are continuous curves in Dn;

(b) 
 iC1n .0/ D �nC1;0.

i
nC1.1/C 1/ and 
 iC1n .1/ D �nC1;0.


i
nC1.1//C anC1;

(c) ˆ�1n .

iC1
n .0// D ˆ�1n .


iC1
n .1// and ˆ�1n .


iC1
n / is a continuous closed curve in �n.

The proof of Lemma 4.3 is completely similar to that of Lemma 4.2. Moreover, one
can define the thickened curve z
`n of 
`n with ` D i C 1 as in (4.5) similarly.

By the definition of z
 in, we have the following result.

Lemma 4.4. For each t0 2 Œ0; 1�, there exist sequences .tn/n2N with tn 2 Œ0; 1� and
.jn/n>1 with 0 6 jn 6 an such that for all n > 1 and all i 2 N,

z
 iC1n�1.tn�1/ D �n;jn.z

i
n.tn//:
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4.2. The curves are convergent

Our main goal in this subsection is to prove the following.

Proposition 4.5. There exists a constant K > 0 such that for all n 2 N,

nX
iD0

sup
t2Œ0;1�

j
 i0.t/ � 

iC1
0 .t/j 6 K: (4.6)

In particular, the sequence .
n0 W Œ0;1�!C/n2N of continuous curves converges uniformly
as n!1.

In order to estimate the distance between 
 i0.t/ and 
 iC10 .t/ for t 2 Œ0; 1�, we will
combine uniform contraction with respect to the hyperbolic metrics and some quanti-
tative estimates (with respect to the Euclidean metric) obtained in Section 2.4. For any
hyperbolic domain X � C, we use �X .z/jdzj to denote the hyperbolic metric of X .
The following lemma appears in [10, Lemma 5.5] in another form. For completeness
we include a proof.

Lemma 4.6. Let X , Y be hyperbolic domains in C with diam.Re.X// 6 A0 and Bı.X/
� Y , whereA0 and ı are positive constants. Then there exists a number 0 < �< 1 depend-
ing only on A0 and ı such that for any z 2 X ,

�Y .z/ 6 � �X .z/:

Proof. For any fixed z0 2 X , we consider the holomorphic function

F.z/ WD z C
ı .z � z0/

z � z0 C 2A0 C ı
W X ! C:

Since diam.Re.X// 6 A0, it follows that jz � z0j < jz � z0C 2A0C ıj if z 2 X . Thus we
have jF.z/� zj < ı and F.X/� Y by the assumption. Applying Schwarz–Pick’s lemma
to F W X ! Y at F.z0/ D z0, we have

�Y .F.z0//jF
0.z0/j D �Y .z0/

�
1C

ı

2A0 C ı

�
6 �X .z0/:

The proof is finished by setting � WD .2A0 C ı/=.2A0 C 2ı/.

LetX be a set in C and z0 2X . We use Compz0X to denote the connected component
of X containing z0. Let Dn be the set defined in (2.9). For n 2 N, we define

D 0n WD Comp1.Dn \ ¹� 2 C W �3 < Im � < hn C 2º/;

where hn is the height defined in (3.3). Note that each D 0n is a hyperbolic domain. Let
�n.z/jdzj be the hyperbolic metric of D 0n. We use len.�/ and len�n.�/ to denote the length
of curves with respect to the Euclidean and the hyperbolic metric �n.z/jdzj respectively.
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Lemma 4.7. Let A0; ı > 0 be constants. Then there exist A > 0 and 0 < � < 1 depending
only onA0 and ı such that for any piecewise continuous curve #n in D 0n with len.#n/6A0
and Bı.#n/ � D 0n, we have

len.�1;j1 ı � � � ı �n;jn.#n// 6 A � �n

for all 0 6 ji 6 ai and 1 6 i 6 n.

Proof. Let 1 6 i 6 n and 0 6 ji 6 ai . Note that we have assumed thatM >D3 in (3.5).
By Lemma 2.11, for � 2 D 0i we have

Im�i;ji .�/ 6
B.˛i /

2�
CM CD3 C 1 <

B.˛i /

2�
C

M

˛i�1
C 1 D hi�1 C 1: (4.7)

Since ˆ�1i .Di / is contained in the image of fi , by the definition of near-parabolic renor-
malization (see also (2.8)) we have

Im�i;ji .�/ > �2 for all � 2 Di : (4.8)

By Lemma 2.14, we have Bı0.�i;ji .Di //�Di�1 for a constant ı0 depending only on the
class I�0. Without loss of generality, we assume that ı0 < 1. Combining (4.7) and (4.8),
we have

Bı0.�i;ji .D
0
i // � D 0i�1: (4.9)

Note that �i;ji W .D
0
i ; �i /! .D 0i�1; �i�1/ can be decomposed as

.D 0i ; �i /
�i;ji
���! .�i;ji .D

0
i /; Q�i /

inc.
,�! .D 0i�1; �i�1/;

where Q�i .z/jdzj is the hyperbolic metric of �i;ji .D
0
i /. According to Proposition 2.6, we

have diam.Re�i;ji .D
0
i // 6 k1. By Lemma 4.6, the inclusion map

.�i;ji .D
0
i /; Q�i /

inc.
,�! .D 0i�1; �i�1/

is uniformly contracting with respect to the hyperbolic metrics (and the contracting factor
depends only on k1 and ı0). Since �i;ji W D

0
i ! �i;ji .D

0
i / do not expand the hyperbolic

metric, it follows that �i;ji W .D
0
i ; �i /! .D 0i�1; �i�1/ is also uniformly contracting.

Since #n is a piecewise continuous curve satisfying len.#n/ 6 A0 and Bı.#n/ � D 0n,
it follows that there exists a constant A00 > 0 depending only on A0 and ı (not on n) such
that len�n.#n/ 6 A00. Define

Gn WD �1;j1 ı � � � ı �n;jn W D
0
n ! D 00:

Since �i;ji for 1 6 i 6 n is a uniform contraction with respect to the hyperbolic metrics,
there exists a constant 0 < � < 1 depending only on k1 and ı0 such that

len�0.Gn.#n// 6 A00 � �n:

Since Bı0.Gn.D
0
n// � D 00, the Euclidean metric and the hyperbolic metric �0 of D 00 are

comparable in Gn.D 0n/. Since Gn.#n/ � Gn.D 0n/ � D 00, there exists a constant A > 0

depending only on A0 and ı such that len.Gn.#n// 6 A � �n.
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Let D06 > 1 be the constant of Proposition 2.13.

Lemma 4.8. There exists K1 > 0 such that for any n > 1 and any continuous curve
�n W Œ0; 1�! Dn with �n.0/ 2 z
0n and len.�n/ 6 hn �D

0
6 � 1,

len.�n;0.�n// 6
1

2�
B.˛n/CK1:

Proof. By Proposition 2.13, we define

�1.r/ WD .1CD6e
�2�˛nr /˛n if r 2

�
1
4˛n

;C1
�
;

�2.r/ WD
˛n

1 � e�2�˛n.r�D
0
2

log.2Cr//

�
1C

D6

r

�
if r 2

�
D06;

1
4˛n

�
:

A direct calculation shows that

J 0 WD

Z hn�1

1=.4˛n/

�1.r/ dr <
1

2�
˛nB.˛nC1/CM CD6: (4.10)

We claim that there exists K 01 > 0 independent of ˛n such that

J 00 WD

Z 1=.4˛n/

D0
6

�2.r/ dr <
1

2�
log

1

˛n
CK 01: (4.11)

In fact, a direct calculation shows that J 00 D J1 CD02J2 CD6J3, where

J1 D
1

2�

Z 1=.4˛n/

D0
6

2�˛ne
2�˛nr � 2�˛nD

0
2.r C 2/

2�˛nD
0
2
�1

e2�˛nr � .r C 2/2�˛nD
0
2

dr;

J2 D

Z 1=.4˛n/

D0
6

˛n.r C 2/
2�˛nD

0
2
�1

e2�˛nr � .r C 2/2�˛nD
0
2

dr;

J3 D

Z 1=.4˛n/

D0
6

˛ne
2�˛nr

e2�˛nr � .r C 2/2�˛nD
0
2

�
1

r
dr:

We assume that ˛n is small such that 2�˛nD02 6 1=2 and 2�˛nD02 log.2C 1
4˛n

/ 6 1=2.
Since 1C t 6 et 6 1C 2t for t 2 Œ0; 1�, if D06 6 r 6 1

4˛n
we have

e2�˛nr � .r C 2/2�˛nD
0
2 > 1C 2�˛nr � .1C 4�˛nD

0
2 log.r C 2//

D 2�˛n.r � 2D
0
2 log.r C 2//; (4.12)

where r � 2D02 log.2C r/ > 4 if r > D06 (see Proposition 2.13 (b)).
By (4.12), there exist C1, C 01 > 0 independent of ˛n such that

J1 6 C1 �
1

2�
log.e2�˛nD

0
6 � .D06 C 2/

2�˛nD
0
2/ 6

1

2�
log

1

˛n
C C 01:

For J2, since the integralZ C1
D0
6

1

r � 2D02 log.2C r/
�

1

.r C 2/1=2
dr
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is convergent, there exists a constant C2 > 0 independent of ˛n such that J2 6 C2. Sim-
ilarly, there exists a constant C3 > 1 independent of ˛n such that J3 6 C3. Hence (4.11)
follows if we set K 01 WD C

0
1 C C2D

0
2 C C3D6.

Without loss of generality we assume that r 7! r �D02 log.2 C r/ is increasing on
ŒD06;C1/. Then �1.r/ and �2.r/ are decreasing on Œ 1

4˛n
;C1/ and ŒD06;

1
4˛n

� respec-
tively. Denote

�.r/ WD

´
�1.r/ if r 2

�
1
4˛n

;C1
�
;

max
®
�2.r/; �1

�
1
4˛n

�¯
if r 2

�
D06;

1
4˛n

�
:

(4.13)

Then �.r/ is (maybe not strictly) decreasing on ŒD06;C1/. By Lemma 4.1 (d), we
have jIm �n.0/ � hnj 6 1. Since len.�n/ 6 hn � D

0
6 � 1, we have �n \ .D.0; D06/ [

D.1=˛n;D06// D ;. By (4.10) and (4.11) we have

len.�n;0.�n// 6
Z hn�1

D0
6

�.r/ dr 6 J 0 C

�
J 00 C

�
1

4˛n
�D06

�
�1

�
1

4˛n

��
< J 0 C J 00 C

1

4
.D6 C 1/ <

1

2�
B.˛n/CK1; (4.14)

where K1 WDM C 3
2
D6 CK

0
1. The proof is complete.

Proof of Proposition 4.5. Note that 
n0 .t/D z

n
0 .
a1�1
a1

t / for all t 2 Œ0; 1� and all n 2 N. In
order to prove (4.6), it suffices to prove that there exist K > 0 and a sequence .yi /i>0 of
non-negative numbers such that for any n 2 N, any 0 6 i 6 n and any t0 2 Œ0; 1�,

jz
 i0.t0/ � z

iC1
0 .t0/j 6 yi and

nX
iD0

yi 6 K: (4.15)

We divide the argument into several steps.

Step 1. Basic settings. For any t0 2 Œ0; 1�, by Lemma 4.4 there exist sequences .tn/n2N

with tn 2 Œ0; 1� and .jn/n>1 with 0 6 jn 6 an such that for all n > 1 and all i 2 N,

z
 iC1n�1.tn�1/ D �n;jn.z

i
n.tn//: (4.16)

For n 2 N, let
�0n W Œ0; 1�! Œz
0n .tn/; z


1
n .tn/�

be the segment with �0n.0/D z

0
n .tn/ and �0n.1/D z


1
n .tn/ (we assume that the parametriza-

tion of �0n on Œ0; 1� is linear).
By the definition of D 0n and Lemma 2.7, the set D 0n contains

¹� 2 C W 0 < Re � 6 b1=˛nc � kC k0 C k1 C 3 and 0 6 Im � < hn C 2º:

By Lemma 3.4 (a, c), (4.1) and Lemma 4.1 (d), we have

z
0n � ¹� 2 C W 1=2 6 Re � 6 b1=˛nc � kC kn C 3=2 and �1 6 Im � � hn 6 1º:
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In (3.5) we assume thatM >D3 C
1
2�

log 4D7
27
C 2 > D3 C

3
2

(sinceD7 > 1). Hence by
(4.2) and Lemma 4.2 (d), we have

z
1n � ¹� 2 C W 1 6 Re � 6 b1=˛nc C k1 C 3 and 1 6 Im � 6 hn C 1º: (4.17)

Note that kn 6 k0 (see Proposition 2.3). Hence B1=2.�0n/ � D 0n for all n 2 N. For ` > 1,
we define the Jordan arc �`n W Œ0; 1�! C as

�`n.s/ WD �nC1;jnC1 ı � � � ı �nC`;jnC`.�
0
nC`.s// for s 2 Œ0; 1�: (4.18)

By (4.16) and (4.18), the following curve is continuous:

�`n WD �
0
n [ �

1
n [ � � � [ �

`
n D �

0
n [ �nC1;jnC1.�

`�1
nC1/

D �0n [ �nC1;jnC1.�
0
nC1 [ � � � [ �

`�1
nC1/:

Denote �0n WD �
0
n . According to (4.9), for any n > 0 and ` > 0 we have

Bı.�
`
n/ � D 0n; where ı WD min ¹ı0; 1=4º:

A parametrization of �`n W Œ0; 1�! C is given by

�`n.s/ WD �
j
n ..`C 1/s � j /

for s 2 Œ j
`C1

; jC1
`C1

� and 0 6 j 6 ` (note that �jn .1/ D �
jC1
n .0/ for every 0 6 j 6 ` � 1).

By definition, jz
 i0.t0/ � z

iC1
0 .t0/j 6 len.� i0/ for all i 2 N. Therefore, to obtain (4.15), it

suffices to prove that there exist K > 0 and non-negative numbers .yi /i>0 such that for
any n 2 N and any 0 6 i 6 n,

len.� i0/ 6 yi and
nX
iD0

yi 6 K: (4.19)

Step 2. Decompositions of the curves. Note that we have assumed that M > D3 C 3=2

(see (3.5)). By (4.5), it follows that Lemma 4.2 (d) holds also for z
0n and z
1n . By Lem-
ma 4.1 (d) and a direct calculation, we have

len.�0n/ D len.�0n/ D jz

0
n .tn/ � z


1
n .tn/j

6 hn C 1 �
B.˛nC1/

2�
�M CD3 C

1

2
CD8 < hn �

B.˛nC1/

2�
CD8: (4.20)

Hence �0n D �
0
n W Œ0; 1�!C can be written as the union of two continuous curves �0

n;.0/
WD

�0n.Œ0; sn�/ and �0
n;.1/
WD �0n.Œsn; 1�/ for some sn 2 .0; 1/ (the choice of sn is not unique),

such that

len.�0n;.0// 6 hn �D
0
6 � 1 and len.�0n;.1// 6 D06 CD8 C 1: (4.21)

SinceBı.�0n/�D 0n, there exists a constantK 02 >0 depending only on ı andD06CD8C 1
such that

len�n.�
0
n;.1// 6 K 02; (4.22)

where �n.z/jdzj is the hyperbolic metric of D 0n.
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LetK1 > 0 be the constant of Lemma 4.8. There exists a constantK2 >K 02 depending
only on A0 WD K1 C D

0
6 C D8 C 1 and ı such that for any n 2 N and any piecewise

continuous curve � 0 in D 0n with Bı.� 0/ � D 0n and len.� 0/ 6 K1 CD
0
6 CD8 C 1,

len�n.�
0/ 6 K2: (4.23)

Let � 2 .0; 1/ be as in Lemma 4.7 depending only on A0 and ı.
Suppose n > 1. By Lemma 4.8 and (4.21), Lemma 4.7 and (4.22), �1n�1 is the union

of two continuous curves �n;jn.�
0
n;.0/

/ and �n;jn.�
0
n;.1/

/, where

len.�n;jn.�
0
n;.0/// 6 1

2�
B.˛n/CK1;

len�n�1.�n;jn.�
0
n;.1/// 6 K 02� < K2�: (4.24)

Therefore, by (4.20) we have

len.�0n�1 [ �n;jn.�
0
n;.0///

6
�
hn�1 �

B.˛n/

2�
CD8

�
C

�
B.˛n/

2�
CK1

�
D hn�1 CD8 CK1: (4.25)

This implies that �0n�1 [ �n;jn.�
0
n;.0/

/ D �0n�1 [ �
1
n�1.Œ0; sn�/ D �

1
n�1.Œ0;

1Csn
2
�/ can be

written as the union of two continuous curves �1
n�1;.0/

WD �1n�1.Œ0; sn�1�/ and �1
n�1;.1/

WD

�1n�1.Œsn�1;
1Csn
2
�/ for some sn�1 2 .0; 1Csn2 /, where

len.�1n�1;.0// 6 hn�1 �D
0
6 � 1;

len.�1n�1;.1// 6 A0 D K1 CD
0
6 CD8 C 1: (4.26)

Since Bı.�1n�1/ � D 0n�1, by (4.23) we have len�n�1.�
1
n�1;.1/

/ 6 K2.

Denote �1
n�1;.2/

WD �1n�1.Œ
1Csn
2
; 1�/D �n;jn.�

0
n;.1/

/, s.1/n�1 WD sn�1 and s.2/n�1 WD
1Csn
2

.
Then the continuous curve

�1n�1 D �
0
n�1 [ �

1
n�1 D �

1
n�1;.0/ [ �

1
n�1;.1/ [ �

1
n�1;.2/

satisfies

� �1
n�1;.0/

D �1n�1.Œ0; s
.1/
n�1�/, �

1
n�1;.1/

D �1n�1.Œs
.1/
n�1; s

.2/
n�1�/, �

1
n�1;.2/

D �1n�1.Œs
.2/
n�1, 1�/;

� len.�1
n�1;.0/

/ 6 hn�1 �D
0
6 � 1, len�n�1.�

1
n�1;.1/

/ 6 K2, len�n�1.�
1
n�1;.2/

/ 6 K2�.

Step 3. Inductive procedure. Suppose there exists 1 6 i 6 n � 1 such that �in�i DSi
`D0 �

`
n�i D

SiC1
kD0 �

i
n�i;.k/

with Bı.�in�i / � D 0n�i has the following properties:

� �i
n�i;.k/

D �in�i .Œs
.k/
n�i ; s

.kC1/
n�i �/ for all 0 6 k 6 i C 1 with some 0 D s

.0/
n�i < s

.1/
n�i <

� � � < s
.iC1/
n�i < s

.iC2/
n�i D 1;

� len.�i
n�i;.0/

/6 hn�i �D06 � 1 and len�n�i .�
i
n�i;.k/

/6K2�k�1 for every 16 k 6 i C 1.
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By a similar argument to (4.24)–(4.26), there exist 0 D s
.0/
n�i�1 < s

.1/
n�i�1 < � � � <

s
.iC2/
n�i�1 < s

.iC3/
n�i�1 D 1 such that the continuous curve

�iC1n�i�1 D

iC1[
`D0

�`n�i�1 D

iC2[
kD0

�iC1
n�i�1;.k/

with Bı.�iC1n�i�1/ � D 0n�i�1 has the following properties:

� �iC1
n�i�1;.k/

D �iC1n�i�1.Œs
.k/
n�i�1; s

.kC1/
n�i�1�/ for every 0 6 k 6 i C 2;

� len.�iC1
n�i�1;.0/

/6 hn�i�1 �D
0
6 � 1 and len�n�i�1.�

iC1
n�i�1;.k/

/6K2�
k�1 for every 16

k 6 i C 2.

Inductively (as i increases), there exist 0 D s.0/0 < s
.1/
0 < � � � < s

.nC1/
0 < s

.nC2/
0 D 1

such that the continuous curve �n0 D
Sn
`D0 �

`
0 D

SnC1
kD0 �

n
0;.k/

with Bı.�n0/ � D 00 has the
following properties:

� �n
0;.k/
D �n0.Œs

.k/
0 ; s

.kC1/
0 �/ for every 0 6 k 6 nC 1;

� len.�n
0;.0/

/ 6 h0 �D
0
6 � 1 and len�0.�

n
0;.k/

/ 6 K2�
k�1 for every 1 6 k 6 nC 1.

Step 4. The conclusion. Since Bı.�n0/ � D 00, the Euclidean metric and the hyperbolic
metric �0 of D 00 are comparable in a small neighborhood of �n0 . Hence there exists a
constant C > 0 depending only on ı such that

nC1X
kD1

len.�n0;.k// 6 C

nC1X
kD1

len�0.�
n
0;.k// 6

CK2

1 � �
:

Therefore, for all n > 0 we have

len.�n0/ D
nX
iD0

len.� i0/ D
nC1X
kD0

len.�n0;.k// 6 K WD h0 �D
0
6 � 1C

CK2

1 � �
:

By (4.13), (4.14) and the estimates similar to (4.24) and (4.25) in the above inductive
procedure, it follows that for any n > 0, there exists a sequence .y.n/i /niD0 of non-negative
numbers independent of .tn/n2N such that for any 0 6 i 6 n, we have

len.� i0/ 6 y
.n/
i and

nX
iD0

y
.n/
i 6 K:

Then (4.19) holds if we set yi WD infn2N y
.n/
i .

The estimate (4.6) implies that the sequence .z
n/n2N of continuous curves converges
uniformly on Œ0; 1�. Since 
n0 .t/ D z


n
0 .
a1�1
a1

t / for all t 2 Œ0; 1� and n 2 N, this implies
that .
n0 /n2N converges uniformly on Œ0; 1�.

Remark. If ˛ is of bounded type, or if there exists a universal constant C > 0 such that
B.˛nC1/ > C=˛n for all n 2 N, then .
n0 /n2N converges exponentially fast as n!1.
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4.3. The Siegel disks are Jordan domains

By Proposition 4.5, the sequence .
n0 /n>0 of continuous curves has a limit:


10 .t/ WD lim
n!1


n0 .t/ for t 2 Œ0; 1�:

Proposition 4.9. The limit ˆ�10 .

1
0 / is the boundary of the Siegel disk of f0.

Proof. For �0 2 
nC10 , there exists �n 2 z
1n �
SanC1
jnC1D0

�nC1;jnC1.z

0
nC1/ such that

�0 D �1;j1 ı � � � ı �n;jn.�n/

for some sequence .j1; : : : ; jn/, where 0 6 ji 6 ai and 1 6 i 6 n. By Lemma 4.2 (d) and
(2.8), we haveˇ̌̌̌
Im �n �

1

2�
B.˛nC1/ �M

ˇ̌̌̌
6 D3 C

1

2
and 1 6 Re �n 6 anC1 C k1 C 2: (4.27)

By Proposition 2.16 (b), each Siegel disk �n is compactly contained in the domain of
definition of fn. For each n 2 N, ˆ�1n is defined in Dn (see Lemma 2.5). We denote

�0n WD ¹� 2 Dn W ˆ
�1
n .�/ 2 �nº:

By the definition of Dn, we haveˆ�1n .�
0
n/D�n and Exp.�0n/D�nC1. By Lemma 3.2,

the inner radius of the Siegel disk of fnC1 is cnC1e�B.˛nC1/, where cnC1 2 ŒD�17 ; D7�

and D7 > 1 is a universal constant. According to the definition of the near-parabolic
renormalization fnC1 D Rfn, there exists a point �0n 2 @�

0
n \ Exp�1.@�nC1/ such that

jRe.�n � �0n/j 6
1

2
and Im �0n D

1

2�
B.˛nC1/ �

1

2�
log

27cnC1

4
: (4.28)

Let Œ�n; �0n� be the closed segment connecting �n to �0n. By (4.4), we have Œ�n; �0n/
��0n. By Lemmas 2.7, 2.14 and (4.17), we haveBı.Œ�n; �0n�/�D 0n for ıDmin ¹ı0; 1=4º.
Combining (4.27) and (4.28), there exists a constant A0 > 0 independent of n such that
j�0n � �nj 6 A0. According to Lemma 4.7, there exist constants A > 0 and 0 < � < 1

independent of n such that

len.�1;j1 ı � � � ı �n;jn.Œ�n; �
0
n�// 6 A � �n

whenever 06 ji 6 ai and 16 i 6 n. Denote �00 WD�1;j1 ı � � � ı�n;jn.�
0
n/. Then j�0 � �00j6

A � �n. Since �00 2 @�
0
0, this implies that

dist.�0; @�00/ 6 A � �n: (4.29)

For any t0 2 Œ0; 1� and n > 1, we choose �0 D �
.n/
0 WD 
nC10 .t0/. By (4.29) we have


10 .t0/ 2 @�
0
0. By the arbitrariness of t0 2 Œ0; 1�, it follows that 
10 � @�

0
0. Therefore we

have ˆ�10 .

1
0 / � @�0.

By Lemma 4.3 (c), ˆ�10 .

n
0 / is a continuous closed curve for all n > 0. Since 
n0

converges uniformly to the limit 
10 on Œ0; 1� as n!1, it follows that ˆ�10 .

1
0 / is a

continuous closed curve which separates�0 from each component of U0 n�0, where U0
is the domain of definition of f0. In particular, ˆ�10 .


1
0 / D @�0.
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Proof of the first part of the Main Theorem. Suppose f0 2 I�˛ [ ¹Q˛º, where ˛ 2 BN

withN sufficiently large. By Proposition 4.9, the boundary @�0Dˆ�10 .

1
0 / of the Siegel

disk of f0 is connected and locally connected. On the other hand, �0 is compactly con-
tained in the domain of definition of f0 by Proposition 2.16 (b). By the definition of �0,
there exists a conformal map � W D ! �0 such that f0 ı �.w/ D �.e2� i˛w/. According
to the Carathéodory theorem, the map � can be extended continuously to � W D ! �0.

For each � 2 Œ0; 2�/, let 
� WD ¹�.rei� / W 0 6 r 6 1º be the internal ray of �0. Sup-
pose there are two different rays 
�1 and 
�2 landing at a common point on @�0, i.e.,
�.ei�1/ D �.ei�2/. Then 
�1 [ 
�2 is a Jordan curve contained in �0. By the maximum
modulus principle, ¹f ın0 ºn2N forms a normal family in the bounded domainD�1;�2 which
is bounded by 
�1 [ 
�2 . This implies that D�1;�2 is contained in the Fatou set and hence
contained in �0. However, by Riesz brothers’ theorem, � must be a constant. This is a
contradiction and so each point in @�0 is the landing point of exactly one internal ray.
Hence @�0 is a Jordan curve.

5. A Jordan arc and a new class of irrationals

In this section, we first define a Jordan arc � connecting the origin to the critical value
cvD�4=27 in the domain of definition of f 2 I�˛ [ ¹Q˛º with ˛ 2 HTN . In particular,
this arc is contained in Pf . Then we define a new class of irrational numbers based on the
mapping relations between different levels of renormalization.

5.1. A Jordan arc corresponding to ˛ 2 HTN

Let f 2 I�˛ [ ¹Q˛º with ˛ 2 HTN , where N > 1="4 as in Section 2.5. We define a
half-infinite strip

0 WD ¹� 2 C W 1=4 < Re � < 7=4 and Im � > �2º (5.1)

and a topological triangle

Qf WD ¹z 2 Pf W f̂ .z/ 2 0º:

Lemma 5.1. There exists "04 2 .0; "4� such that for all f 2 I�˛ with ˛ 2 .0; "04�,

xQf n ¹0º � D
�
0; 4
27
e3�

�
n
�
0; 4
27
e3�

�
: (5.2)

We postpone the proof of Lemma 5.1 to Appendix A. The inclusion relation (5.2) is
proved for the maps in I�0 first and then a continuity argument is used.

For f0 2 I�˛ [ ¹Q˛º with ˛ 2 HTN , let fn WD Rfn�1 be the maps defined by the
renormalization operator inductively, where n > 1. In the following, we always assume
that N > 1="04 and denote Qn WD Qfn . Recall that for X � C and ı > 0, we denote
Bı.X/ WD

S
z2X D.z; ı/.
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Corollary 5.2. For each n > 1, there exists a unique anti-holomorphic inverse branch of
the modified exponential map Exp:

Log W Qn ! ˆn�1.Qn�1/ D 0;

such that Log.� 4
27
/D 1. Moreover,B1=4.Log. xQn n ¹0º//�0 andˆ�1n�1 ıLog W xQn n ¹0º

! Qn�1 is well-defined.

Proof. Since Exp takes the value�4=27 at each integer, it follows that Exp has an inverse
branch Log defined on xQn n ¹0º such that Log.�4=27/ D 1 since xQn n ¹0º is simply
connected and avoids the origin. By Lemma 5.1, we have Re Log. xQn n ¹0º/� .1=2; 3=2/

and Im Log. xQn n ¹0º/ > �3=2. Therefore, B1=4.Log. xQn n ¹0º// is contained in 0 and
ˆ�1n�1 ı Log W xQn n ¹0º ! Qn�1 is well-defined.

Define a half-infinite strip

00 WD ¹� 2 C W 1=2 < Re � < 3=2 and Im � > �7=4º � 0 (5.3)

and a topological triangle, for every n > 0,

Q0n WD ¹z 2 Pn W ˆn.z/ 2 00º:

Definition (see Figure 7). Let K0 WD Q00. For each n > 1, define

Kn WD ˆ
�1
0 ı Log ı � � � ıˆ�1n�1 ı Log.Q0n/:

By Corollary 5.2,KnC1 �Kn for all n> 0, the critical value cvD�4=27 is in the interior
of Kn and 0 2 @Kn. Define

� WD
\
n>0

Kn: (5.4)

Lemma 5.3. The set � [ ¹0º is a Jordan arc connecting cv D �4=27 to 0.

Proof. The general idea is to use uniform contraction with respect to the hyperbolic met-
rics to prove that � [ ¹0º is locally connected and then prove that it must be a Jordan arc.
Let us give the details.

Step 1: We first define two continuous curves 
00;˙ W Œ0;C1/! 0 by


00;˙.t/ WD

´
1˙ 1

2
C
�
t � 11

4

�
i if t 2 Œ1;C1/;

1˙ t
2
�
7
4

i if t 2 Œ0; 1/:

Then 
00;C and 
00;� have the same initial point 
00;˙.0/ D 1�
7
4

i and 
00;C [ 

0
0;� D @0

0,
where 00 is defined in (5.3). For ˛ 2 .0; 1/, we define

'˛.t/ WD

8̂̂<̂
:̂
1

˛

�
t �

1

2�
log

1

˛
C 1

�
if t >

1

2�
log

1

˛
;

e2�t if t <
1

2�
log

1

˛
:

(5.5)
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0
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0

K1

cv

0

Γ

Log

Fig. 7. A sketch of the renormalization microscope between levels 0 and 1. The sets � , 00, Q0n, Kn
with n D 0; 1 and some special points are marked.

It is easy to see that '˛ is continuous on R and strictly increasing. For n > 1, we define
'n WD '˛n . Then 'n ı � � � ı '1.t/!C1 as n!1 for all t 2 R.

In the following, we define two sequences .
0n;˙/n>0 of continuous curves induc-
tively. For n > 1, suppose 
0n�1;˙ W Œ0;C1/! @00 has been defined. We define 
0n;˙ W
Œ0;C1/! @00 as


0n;˙.t/ WD

´
1˙ 1

2
C
�
'n.Im 
0n�1;˙.t// � e

�7�=2
�
7
4

�
i if t 2

�
1;C1

�
;

1˙ t
2
�
7
4

i if t 2 Œ0; 1/:
(5.6)

Note that 
0n;C.1/ D
3
2
�
7
4

i and 
0n;�.1/ D
1
2
�
7
4

i. Then both 
0n;C W Œ0;C1/! @00

and 
0n;� W Œ0;C1/! @00 are continuous injections with the same initial point 
0n;˙.0/D
1 � 7

4
i. Moreover, 
0n;C [ 


0
n;� D @0

0.
For all t 2 Œ0;C1/, n > 1 and 1 6 i 6 n, by Corollary 5.2 the following curves are

well-defined:


 in�i;˙.t/ WD

´
Log ıˆ�1n�iC1 ı � � � ı Log ıˆ�1n .


0
n;˙.t// if i is even;

Log ıˆ�1n�iC1 ı � � � ı Log ıˆ�1n .

0
n;�.t// if i is odd:

In particular, 
 in�i;˙ � 00 for every 0 6 i 6 n. Define

� in�i;˙.t/ WD ˆ
�1
n�i .


i
n�i;˙.t// for t 2 Œ0;C1/:
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Then � in�i;C [ ¹0º and � in�i;� [ ¹0º are Jordan arcs, and � in�i;C [ �
i
n�i;� [ ¹0º is a

Jordan curve.14 In particular, we have �n0;C [ �
n
0;� [ ¹0º D @Kn and two sequences of

continuous curves 
n0;˙ W Œ0;C1/! 00, where n 2 N. In the following we prove that

n0;˙ and �n0;˙ converge uniformly on Œ0;C1/ as n!1.

Step 2: We first estimate the distance between 
0n�1;˙.t/ and 
1n�1;˙.t/ for all n > 1 and
t 2 Œ0;C1/. Let tn 2 .1;C1/ be the unique parameter such that

Im 
0n;˙.tn/ D 'n.Im 
0n�1;˙.tn// � e
�7�=2

� 7=4 D 1=˛n:

Then 1
2�

log 1
˛n
< Im 
0n�1;˙.tn/ <

1
2�

log 1
˛n
C 2˛n. By definition, we have

j
0n�1;˙.t/ � 

1
n�1;˙.t/j D j


0
n�1;˙.t/ � Log ıˆ�1n .


0
n;�.t//j

6 1C jIm 
0n�1;˙.t/ � Im Log ıˆ�1n .

0
n;�.t//j:

If t > tn, then Im 
0n;˙.t/ > 1=˛n. By (5.5), (5.6) and Lemma 2.11 (a),

jIm 
0n�1;˙.t/ � Im Log ıˆ�1n .

0
n;�.t//j

6 D3 C

ˇ̌̌̌
Im 
0n�1;˙.t/ � ˛n Im 
0n;�.t/ �

1

2�
log

1

˛n

ˇ̌̌̌
6 D3 C 1C ˛n.e

�7�=2
C 7=4/ < D3 C 2:

If t < tn, then Im
0n;˙.t/ < 1=˛n. By (5.5), (5.6) and Lemma 2.11 (b), there exist universal
constants C1, C2 > 1 such that

jIm 
0n�1;˙.t/ � Im Log ıˆ�1n .

0
n;�.t//j

6 D3 C

ˇ̌̌̌
Im 
0n�1;˙.t/ �

1

2�
log.1C j
0n;�.t/j/

ˇ̌̌̌
6 D3 C C1 C

ˇ̌̌̌
Im 
0n�1;˙.t/ �

1

2�
log.1C jIm 
0n;�.t/j/

ˇ̌̌̌
6 D3 C C1 C C2:

Therefore, for all n > 1 and t 2 Œ0;C1/,

j
0n�1;˙.t/ � 

1
n�1;˙.t/j 6 D3 C C1 C C2 C 1: (5.7)

Step 3: Let �0.�/jd�j and �n.z/jdzj be the hyperbolic metrics of 0 and Qn respectively.
Note that 
0n�1;˙, 
1n�1;˙ � 00 and B1=4.00/ � 0. By (5.7), there exists C3 > 0 such that
the hyperbolic distance between 
0n�1;˙ and 
1n�1;˙ satisfies

dist�0.

0
n�1;˙.t/; 


1
n�1;˙.t// 6 C3 for any n > 1 and t 2 Œ0;C1/:

14As before, we use the fact that limIm �!C1ˆ
�1
n�i .�/ D 0, where � 2 ˆn�i .Pn�i /.
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According to Corollary 5.2, each map Log ıˆ�1i W .0; �0/! .0; �0/ for 1 6 i 6 n can
be decomposed as

Log ıˆ�1i W .0; �0/
ˆ�1
i
���! .Qi ; �i /

Log
��! .Log.Qi /; Q�i /

inc.
,�! .B1=4.Log.Qi //; O�i /

inc.
,�! .0; �0/;

where Q�i and O�i are hyperbolic metrics of Log.Qi / and B1=4.Log.Qi // respectively.
Since diam.Re.Log.Qi /// 6 1, by Lemma 4.6 the inclusion map

.Log.Qi /; Q�i /
inc.
,�! .B1=4.Log.Qi //; O�i /

is uniformly contracting with respect to their hyperbolic metrics. Since ˆ�1i , Log and the
second inclusion map do not expand the hyperbolic metrics, it follows that Log ı ˆ�1i W
.0; �0/! .0; �0/ is uniformly contracting.

By the definition of 
n0;˙, there exists a constant 0 < � < 1 such that

dist�0.

n�1
0;˙ .t/; 


n
0;˙.t// 6 C3 � �

n�1 for n > 1 and t 2 Œ0;C1/:

This implies that the hyperbolic distance between �n�10;˙ .t/ and �n0;˙.t/ in Q0 D ˆ
�1
0 .0/

satisfies

dist�0.�
n�1
0;˙ .t/; �

n
0;˙.t// 6 C3 � �

n�1 for n > 1 and t 2 Œ0;C1/:

Let LQ0 WD B1.Q0/ and L�0.z/jdzj be the hyperbolic metric of LQ0. Then the Euclidean and
hyperbolic metrics (with respect to L�0) are comparable on Q0. According to Schwarz–
Pick’s lemma, we have L�0.z/ < �0.z/ for all z 2 Q0. Therefore, there exists a constant
C4 > 0 such that the distance in the Euclidean metric satisfies

j�n�10;˙ .t/ � �
n
0;˙.t/j 6 C4 � �

n�1 for n > 1 and t 2 Œ0;C1/:

Therefore, the following convergence is uniform for t 2 Œ0;C1/:

�10;˙.t/ WD lim
n!1

�n0;˙.t/:

Note that 120 and Log ıˆ�1n .1/D 1. Since Log ıˆ�1i W .0;�0/! .0;�0/ is uniformly
contracting for all 1 6 i 6 n, we have

lim
n!1

�n0;˙.0/ D lim
n!1

ˆ�10 ı Log ıˆ�11 ı � � � ı Log ıˆ�1n
�
1 � 7

4
i
�

D ˆ�10 .1/ D �
4
27
:

Since 
0n�1;˙ � 00 and B1=4.00/ � 0, there exists a constant C 03 > 0 such that

dist�0.

0
n�1;C.t/; 


0
n�1;�.t// 6 C 03 for any n > 1 and t 2 Œ0;C1/:

By a similar argument, we have

�10;C.t/ D �
1
0;�.t/ for t 2 Œ0;C1/:

Note that � is the intersection of the nested sequence .Kn/n>0, where Kn is the bounded
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component of C n .�n0;C [ �
n
0;� [ ¹0º/ for all n > 0. Therefore, � D �10;C D �

1
0;� and

� [ ¹0º is a Jordan arc connecting �4=27 to 0.

5.2. Dynamical behavior of the points on the arcs

Let �0 WD id. For each n > 1, we denote

�n WD Exp ıˆn�1 ı � � � ı Exp ıˆ0:

Let � be the Jordan arc defined in (5.4). By the proof of Lemma 5.3, �n can be defined
on �0 WD � since

�n WD �n.�0/ � Q0n D ˆ
�1
n .0

0/ for n > 1:

Since the restriction of Exp ıˆn�1 to �n�1 is a homeomorphism, each �n [ ¹0º is also a
Jordan arc connecting �4=27 to 0 in the dynamical plane of fn. For each n > 1, the map
�n W �0! �n can be extended homeomorphically to �n W �0 [ ¹0º ! �n [ ¹0º such that
�n.�

4
27
/ D � 4

27
and �n.0/ D 0. Moreover,


n WD ˆn.�n/ (5.8)

is an unbounded arc in 00 with initial point 1.

Definition. For n > 1, we define

s˛n WD ˆn ı Exp W 
n�1 ! 
n: (5.9)

Then s˛n is a homeomorphism with s˛n.1/ D 1.

In the following, we assume that ˛ D ˛0 2 BN , where BN is the set of high type
Brjuno numbers defined in (2.39). Let B.˛n/ be the Brjuno sum defined in (3.2).

Definition. For n > 0, we define

zB.˛n/ WD
B.˛n/

2�
CM;

where M > 1 is a constant which will be determined in a moment.

Lemma 5.4. There exists a constantM0 > 1 such that ifM >M0, then for all n > 1 and
� 2 
n�1 with Im � > zB.˛n/, we have Im s˛n.�/ > zB.˛nC1/.

Proof. Let D4 > 0 be the constant of Lemma 2.12. If M > D4, then

zB.˛n/ D
B.˛n/

2�
CM >

1

2�
log

1

˛n
CD4:

By Lemma 2.12 (a), if M > 2D5 and Im � > zB.˛n/, then

Im s˛n.�/ >
1

˛n

�
Im � �

1

2�
log

1

˛n
�D5

�
>

1

˛n

�
zB.˛n/ �

1

2�
log

1

˛n
�D5

�
D zB.˛nC1/C

1

˛n
..1 � ˛n/M �D5/ > zB.˛nC1/:

Then the lemma follows by setting M0 WD max ¹D4; 2D5º.
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Since ˛ 2 BN , every f0 2 I�˛ [ ¹Q˛º has a Siegel disk �0 centered at the origin.
Let D7 > 1 be the universal constant of Lemma 3.2. In the following we fix

M > max
²
M0;

1

2�
log

27D7

4

³
: (5.10)

Let �0 [ ¹0º be the Jordan arc connecting the critical value cvD � 4
27

to 0 corresponding
to f0 (see Lemma 5.3). For a given point z0 2 �0, let .�n/n>0 be the sequence defined by

�0 WD ˆ0.z0/ 2 
0 and �n WD s˛n.�n�1/ 2 
n for n > 1:

Lemma 5.5. If z0 2 �0 \ �0, then there exists n0 > 0 such that Im �n > zB.˛nC1/ for
all n > n0.

Proof. Let z0 2 �0 \�0. By Lemma 3.2, for every n 2 N, the inner radius of the Siegel
disk of fn is cne�B.˛n/, where cn 2 Œ1=D7;D7�. Let 0 be the half-infinite strip defined in
(5.1). By the definition of the near-parabolic renormalization fnC1 D Rfn, there exists
z�n 2 00 such that Exp.z�n/ 2 @�nC1 and (see (4.28))

Im z�n D
1

2�
B.˛nC1/ �

1

2�
log

27cnC1

4
: (5.11)

Assume there exists a subsequence .nj /j>1 such that

Im �nj <
zB.˛njC1/ D

1

2�
B.˛njC1/CM:

If Im �nj 6 Im z�nj , there exists �0nj 2 ˆnj .@�nj \Pnj /\00 with Im �0nj D Im �nj such
that

j�nj � �
0
nj
j 6 1: (5.12)

If Im �nj > Im z�nj , we have

1

2�
B.˛njC1/ �

1

2�
log

27cnjC1

4
< Im �nj <

1

2�
B.˛njC1/CM

and hence

j�nj �
z�nj j

2 6 1C

�
M C

1

2�
log

27D7

4

�2
: (5.13)

By (5.12) and (5.13), for each �nj with j > 1, one can find a point (�0nj or z�nj ) in

ˆnj .@�nj \ Pnj / \ 00 such that the hyperbolic distance with respect to �0 between
them are uniformly bounded above. By a similar argument to Proposition 4.9 based on
Lemma 4.6, we conclude that �0 2ˆ0.@�0 \P0/\00 and z0 2 @�0, which violates our
assumption that z0 2 �0. Therefore, there exists n0 > 0 such that Im �n > zB.˛nC1/ for
all n > n0.

Lemma 5.6. �0\ @�0 is a singleton. In particular, �0n¹cvº��0 if and only if cv2 @�0.
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Proof. Since �0 [ ¹0º is a Jodan arc connecting cvD� 4
27

to 0, there exists a homeomor-
phism ˇ W Œ0; 1�! �0 [ ¹0º such that ˇ.0/ D cv and ˇ.1/ D 0. Assume that �0 \ @�0 is
not a singleton. Then there exist 0 6 t1 < t2 < 1 such that

� ˇ.ti / 2 @�0 for i D 1; 2;

� ˇ.Œ0; t1�/ \�0 D ; and ˇ..t2; 1�/ � �0.

Let � 00 WD ˇ.Œt1; t2�/ be a subarc of �0. Then we have the following two cases.
(1) Assume � 00 � @�0. There exists z0 2 � 00 such that f ıqn0 .z0/ 2 �

0
0 for some large

integer n since the restriction of f0 to @�0 is conjugate to the rigid rotation. Denote
� 0n WD Exp ıˆn�1 ı � � � ı Exp ıˆ0.� 00/. Then � 0n is a Jordan arc contained in �n � Q0n.
By Lemma 2.15 (a), � 0n and hence �n contains a point zn and fn.zn/, which is impossible.

(2) Assume � 00 6� @�0. Sinceˆn.�n/� 00, it follows that fn.�n/ is well-defined and
contained in Pn. Thus by Lemma 2.15, �0 (and hence � 00) can be iterated infinitely many
times by f0. LetW ¤�0 be any bounded component of C n .@�0 [� 00/. Since @�0 [� 00
andW can be iterated infinitely many times by f0, it follows from the maximum modulus
principle that W is contained in the Fatou set of f0. Since @W \ @�0 contains a subarc
of @�0, it follows that W is contained in �0, which is a contradiction. This finishes the
proof that �0 \ @�0 is a singleton.

From �0 n ¹cvº � �0 we obtain cv 2 @�0 immediately. If cv 2 @�0, since �0 is a
Jordan arc and �0 \ @�0 is a singleton, we conclude that �0 n ¹cvº � �0.

5.3. A new class of irrational numbers

For n > 1, let s˛n W 
n�1 ! 
n be the homeomorphism defined in (5.9). In the following,
we use �˛ (resp. 
˛) to denote �0 (resp. 
0 D ˆ0.�0/) when we want to emphasize the
dependence on ˛ D ˛0 2 HTN .

Definition. Let zHN be a subset of BN defined as

zHN WD

²
˛ 2 BN

ˇ̌̌̌
8� 2 
˛ n ¹1º; 9n > 1 such that
Im s˛n ı � � � ı s˛1.�/ > zB.˛nC1/

³
:

In the next section we show that zHN is independent of the choice of f0 2 I�˛ [ ¹Q˛º

by proving that zHN coincides with the set of high type Herman numbers.

Proposition 5.7. The critical value cv D � 4
27

is in @�0 if and only if ˛ 2 zHN .

Proof. For each � 2 
˛ n ¹1º and n > 1, we denote

�n WD s˛n ı � � � ı s˛1.�/:

Suppose ˛ 2 zHN . Then there exists n > 1 such that Im �n > zB.˛nC1/. By (5.11) and
the choice of M in (5.10), we have ˆ�1n .�n/ 2 �n and hence ˆ�10 .�/ 2 �0. Therefore,
�˛ n ¹cvº D ˆ�10 .
˛ n ¹1º/ is contained in �0 and cv 2 @�0.

Conversely, suppose ˛ 2 BN and cv 2 @�0. By Lemma 5.6, we have ˆ�10 .�/ 2
�0 \ �˛ . According to Lemma 5.5, there exists an integer n > 1 such that
Im �n > zB.˛nC1/. This implies that ˛ 2 zHN .
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6. Optimality of the Herman condition

The Herman condition is not easy to verify in general. Yoccoz gave this condition an
arithmetic characterization so that one can check easily whether an irrational number is
of Herman type. In this section, we first recall Yoccoz’s characterization and then prove
that under the high type condition, an irrational number is of Herman type if and only if
it belongs to the set zHN defined in Section 5.3.

6.1. Yoccoz’s characterization of H

For ˛ 2 .0; 1/ and x 2 R, define

r˛.x/ WD

8̂̂<̂
:̂
1

˛

�
x � log

1

˛
C 1

�
if x > log

1

˛
;

ex if x < log
1

˛
:

The map r˛ is of classC 1 on R and satisfies r˛.log 1
˛
/D r 0˛.log 1

˛
/D 1

˛
and xC 16 r˛.x/

6 ex for all x 2 R, and r 0˛.x/ > 1 for all x > 0.
For an irrational number ˛ 2 .0; 1/, we use .˛n/n>0 to denote the sequence of irra-

tionals defined as in (2.35). Let B.˛/ be the Brjuno sum of ˛ (see (3.1)). A Brjuno number
˛ is a Herman number (or belongs to Herman type) if every orientation-preserving ana-
lytic circle diffeomorphism of rotation number ˛ is analytically conjugate to a rigid
rotation. Let H be the set of all Herman numbers.

Theorem 6.1 ([54, Section 2.5]). The Herman condition has the following arithmetic
characterization:

H D ¹˛ 2 B W 8m > 0; 9n > m such that r˛n�1 ı � � � ı r˛m.0/ > B.˛n/º:

6.2. Two conditions are equivalent

In this subsection, we prove that the set of Herman numbers is equal to zHN defined in
Section 5.3 under the high type condition.

Lemma 6.2 ([54, Lemma 4.9]). Let ˛ be irrational and x > 0. Then ˛ 62H if and only if
there exist m and an infinite set I D I.m; x; ˛/ � N such that, for all k 2 I ,

r˛mCk�1 ı � � � ı r˛m.x/ < log 1
˛mCk

:

Let D4 and D5 > 1 be the constants of Lemma 2.12.

Definition. For ˛ 2 .0; 1/ and y 2 R, we define

s˛.y/ WD

8̂̂<̂
:̂
1

˛

�
y �

1

2�
log

1

˛
CD5

�
if y >

1

2�
log

1

˛
CD4;

eD5 e2�y if y <
1

2�
log

1

˛
CD4:

(6.1)
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Let 
˛ D 
˛0 be the unbounded arc defined in (5.8) and s˛n WDˆn ıExp W 
n�1! 
n
the map defined in (5.9). By Lemma 2.12 and the definition of s˛ , we have the following
immediate result.

Lemma 6.3. For each ˛ 2 BN and � 2 
˛ , we have

Im s˛.�/ 6 s˛.Im �/:

Define HN WD H \BN .

Lemma 6.4. We have zHN � HN .

Proof. Assume by contradiction that ˛ 2 zHN nHN . Define

C0 WD 8�e
D5C2�D4 : (6.2)

By Lemma 6.2, for the number 2C0, there exist m > 1 and an infinite subset I D
I.m; 2C0; ˛/ of N such that for all k 2 I , we have

r˛mCk�1 ı � � � ı r˛m.2C0/ < log
1

˛mCk
: (6.3)

Denote xm�1 WD 2C0 and ym�1 WD 1. For k > 1, we define

xmCk�1 WD r˛mCk�1 ı � � � ı r˛m.2C0/ and ymCk�1 WD s˛mCk�1 ı � � � ı s˛m.1/;

where s˛n is the map defined in (6.1). We claim that

xmCk�1 > 2�ymCk�1 C C0 for all k > 0: (6.4)

Assume temporarily that (6.4) holds. Since 
˛ is an arc starting at 1 and finally going
up to infinity, there exists � 2 
˛m�1 such that Im � D 1. For k > 1, we denote

�mCk�1 WD s˛mCk�1 ı � � � ı s˛m.�/;

where each s˛n is defined in (5.9). By Lemma 6.3, we have ymCk�1 > Im �mCk�1 for all
k > 1.

Since ˛ 2 zHN , by the definition of zHN and Lemma 5.4 there exists an integer k0 > 1

such that for all k > k0,

ymCk�1 > Im �mCk�1 > zB.˛mCk/ D
B.˛mCk/

2�
CM >

1

2�
log

1

˛mCk
CM:

On the other hand, since ˛ 62 HN , by (6.3) there exists k 2 I with k > k0 such
that xmCk�1 < log 1

˛mCk
. This is a contradiction since by (6.4) we have xmCk�1 >

2�ymCk�1 C C0 > log 1
˛mCk

. Hence it suffices to prove (6.4).
Obviously, (6.4) is true when k D 0 since C0 > 2� . Suppose xmCk�1 >

2�ymCk�1 C C0 for some k > 0. It suffices to obtain xmCk > 2�ymCk C C0. The argu-
ment is divided into three cases.
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Case I: Suppose xmCk�1 < log 1
˛mCk

and ymCk�1 < 1
2�

log 1
˛mCk

CD4. By (6.2), we

have C0 > 2.D5 C log.2�// and hence eyCC0 > eyCD5Clog.2�/ C C0 for any y > 1.
Therefore,

xmCk D e
xmCk�1 > e2�ymCk�1CC0 > e2�ymCk�1CD5Clog.2�/

C C0

D 2� s˛mCk .ymCk�1/C C0 D 2�ymCk C C0:

Case II: Suppose xmCk�1 > log 1
˛mCk

and ymCk�1 > 1
2�

log 1
˛mCk

CD4. Then

xmCk D
1

˛mCk

�
xmCk�1 � log

1

˛mCk
C 1

�
>

2�

˛mCk

�
ymCk�1 �

1

2�
log

1

˛mCk
CD5

�
C

1

˛mCk
.C0 C 1 � 2�D5/

> 2�ymCk C 2.C0 C 1 � 2�D5/ > 2�ymCk C C0:

Case III: Suppose xmCk�1 > log 1
˛mCk

and ymCk�1 < 1
2�

log 1
˛mCk

CD4. We consider
the following two subcases:

Subcase (i): Suppose 2�ymCk�1 < log 1
˛mCk

�
C0
4

. Note that

xmCk D
1

˛mCk

�
xmCk�1 � log

1

˛mCk
C 1

�
>

1

˛mCk
:

Since xm�1 D 2C0, we have xmCk > max
®
2C0;

1
˛mCk

¯
. By (6.2), we have C0 > 4D5 C

4 log.4�/ and hence 2�eD5�C0=4 < 1=2. Then

xmCk > max
²
2C0;

1

˛mCk

³
>
2�eD5�C0=4

˛mCk
C C0

> 2�eD5e2�ymCk�1 C C0 D 2�ymCk C C0:

Subcase (ii): Suppose log 1
˛mCk

�
C0
4

6 2�ymCk�1 < log 1
˛mCk

C 2�D4. Then

˛mCk.xmCk � .2�ymCk C C0//

D xmCk�1 � log 1
˛mCk

C 1 � ˛mCk.2�e
D5e2�ymCk�1 C C0/

> 2�ymCk�1 C C0 C 1 � log 1
˛mCk

� 2�˛mCke
D5e2�ymCk�1 � C0˛mCk : (6.5)

For ˛ 2 .0; 1=2�, we consider the following continuous function:

h.t/ WD t C C0 C 1 � log 1
˛
� 2�˛eD5et � C0˛ for t 2 R:

Then h0.t/ D 1� 2�˛eD5et . Hence h is increasing on .�1; log 1
˛
�D5 � log.2�/� and

decreasing on Œlog 1
˛
�D5 � log.2�/;C1/. By (6.2) and a direct calculation, we have

h
�
log 1

˛
� C0=4

�
D .3=4 � ˛/C0 C 1 � 2�e

D5�C0=4 > 0;

h
�
log 1

˛
C 2�D4

�
D .1 � ˛/C0 C 2�D4 C 1 � 2�e

D5C2�D4 > 0: (6.6)

By (6.5) and (6.6), we have xmCk > 2�ymCk C C0. This finishes the proof of (6.4), and
so the lemma holds.
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Let D3 > 0 be the constant of Lemma 2.11.

Definition. For ˛ 2 .0; 1/ and y 2 R, we define

s˛.y/ WD

8̂̂<̂
:̂
1

˛

�
y �

1

2�
log

1

˛
�D3

�
if y >

1

2�
log

1

˛
CD3 C 1;

e�D5 e2�y � 3 if y <
1

2�
log

1

˛
CD3 C 1:

(6.7)

Lemma 6.5. For each ˛ 2 BN and � 2 
˛ , we have

s˛.Im �/ 6 Im s˛.�/:

Proof. It follows from the proof of Lemma 2.12 thatD4 DD3C 1. Moreover, we choose
D5 D D3 in the proof of Lemma 2.12 (a). Then the assertion follows immediately from
Lemma 2.12 and the definition of s˛ .

Lemma 6.6. We have HN �
zHN .

Proof. The proof is similar to that of Lemma 6.4. Suppose ˛ 2 HN n
zHN by contradic-

tion. Since ˛ 62 zHN , by the definition of zHN there exist a point � 2 
˛ n ¹1º and an infinite
sequence .nk/k2N such that

Im �nk <
zB.˛nkC1/; (6.8)

where
�n WD s˛n ı � � � ı s˛1.�/ for all n 2 N:

By uniform contraction with respect to the hyperbolic metric as in the proof of Proposition
4.9 and Lemma 5.3 there exists an integer m > 1 such that

�m�1 2 
m�1 and Im �m�1 > 2C0;

where C0 > 2M is a large number and M > 1 is as in the definition of zB.˛n/. Then by
(6.8) there exists an infinite subset I 0 D I 0.m; �; ˛/ of N such that for all k 2 I 0,

Im �mCk�1 < zB.˛mCk/: (6.9)

Since ˛ 2 HN , by Theorem 6.1 there exists k0 D k0.m/ > 1 such that r˛mCk0�1 ı
� � � ı r˛m.0/ > B.˛mCk0/. A direct calculation shows that for all k > k0,

r˛mCk�1 ı � � � ı r˛m.0/ > B.˛mCk/: (6.10)

Denote xm�1 WD 0 and ym�1 WD 2C0. For k > 1, we define

xmCk�1 WD r˛mCk�1 ı � � � ı r˛m.0/ and ymCk�1 WD s˛mCk�1 ı � � � ı s˛m.2C0/;

where s˛n is the map defined in (6.7). We claim that if C0 is large enough, then

2�ymCk�1 > xmCk�1 C C0 for all k > 0: (6.11)
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Assume temporarily that (6.11) holds. By Lemma 6.5, we have ymCk�1 6 Im �mCk�1
for all k > 1. By (6.9), there exists an integer k 2 I 0 with k > k0 such that

ymCk�1 6 Im �mCk�1 < zB.˛mCk/ D
B.˛mCk/

2�
CM:

On the other hand, by (6.10), we have xmCk�1 > B.˛mCk/. However, by (6.11) we have
xmCk�1 6 2�ymCk�1 � C0 < B.˛mCk/, which is a contradiction. Hence it suffices to
prove (6.11).

Obviously, (6.11) is true when k D 0. Suppose 2�ymCk�1 > xmCk�1 C C0 for some
k > 0. Then one can divide the argument into three cases as in Lemma 6.4 to obtain
2�ymCk > xmCk C C0. We omit the details since the rest of the proof is completely the
same.

Remark. In fact, if ˛ 2HN , then according to [24,27], the boundary of the Siegel disk of
each f 2 I�˛ [ ¹Q˛º contains the unique critical value � 4

27
. This implies that ˛ 2 zHN

by Proposition 5.7. Therefore in this way we also obtain HN �
zHN .

Proof of the second part of the Main Theorem. Let ˛ 2 HTN be an irrational number of
sufficiently high type. By Lemmas 6.4 and 6.6, ˛ 2 HN if and only if ˛ 2 zHN . By
Proposition 5.7, ˛ 2 zHN if and only if cv D f .cpf / 2 @�f , where �f is the Siegel disk
of f 2 I�˛ [ ¹Q˛º and cpf is the unique critical point of f . Therefore, ˛ 2 HN if and
only if cpf 2 @�f .

Appendix A. Some calculations in Fatou coordinate planes

In this appendix we give the proof of Lemma 5.1 based on some estimates of [30]. Let
0 < ˛ < 1=2. Define

Y WD

²
w D x C yi 2 C W �

1

2�˛

�
arccos

p
3

2e2�˛y
�
�

6

�
< x <

2

3˛
and y > 1

³
and R WD 4

27
e3� (see Figure 8).

Lemma A.1. There exists "0 > 0 such that for all f 2 I�˛ with ˛ 2 .0; "0�,

�f .Y / � D.0; R/ n Œ0; R/;

where �f W C ! bC n ¹0; �f º is the universal covering defined in (2.13).

Proof. By a direct calculation, we have

¹e�2� i˛w
W w 2 Y º D

²
� 2 C W j�j > e2�˛ and �

4�

3
< arg � < arccos

p
3

2j�j
�
�

6

³
D C n

�
D.0; e2�˛/ [

²
� 2 C W

�

3
6 arg

�
� �

1 �
p
3i

2

�
6
2�

3

³�
:
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Y

2
3α− 1

6α 0

1

0 1 e2πα

ξ

e−2πiαw

w

π/6

π
6

Fig. 8. The domain Y and its image under w 7! e�2� i˛w .

Since 4�˛=.3R/ < e2�˛ � 1, we have (see Figure 8)

e�2� i˛w
2 C n

�
D

�
1;
4�˛

3R

�
[

²
� 2 C W

�

3
6 arg.� � 1/ 6

2�

3

³�
:

This implies that

1

1 � e�2� i˛w 2 D

�
0;
3R

4�˛

�
n

²
� 2 C W

�

3
6 arg � 6

2�

3

³
: (A.1)

Note that arcsin x 6 �
3
x for 0 6 x 6 1=2. By [30, Main Theorem 1 (a)], we have

jf 000 .0/ � 4:91j 6 1:14 for all f0 2 I�0. Hence jargf 000 .0/j < arcsin 1
3

6 �
9

and

�
4� i˛
f 000 .0/

2

²
z 2 C W

4�˛

7
< jzj <

8�˛

7
and

25�

18
< arg z <

29�

18

³
:

By (2.11) and the pre-compactness of I�˛ , there exists a small "0 > 0 such that for all
f 2 I�˛ with ˛ 2 .0; "0�,

�f 2

²
z 2 C W

�˛

2
< jzj <

4�˛

3
and

4�

3
< arg z <

5�

3

³
: (A.2)

By (A.1) and (A.2) we have

�f .w/ D
�f

1 � e�2� i˛w 2 D.0; R/ n Œ0; R/:

The proof is complete.

For each C > 1, we define a subset of 0 (see (5.1)) by

01.C / WD ¹� 2 C W 1=4 < Re � < 7=4 and Im � > C º: (A.3)
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Lemma A.2. There exist C > 1 and "00 > 0 such that for all f 2 I�˛ with ˛ 2 .0; "00�,
we have

L�1f .01.C // � Y;

where Lf W zPf ! C is the univalent map defined in (2.14).

Proof. Let D2 > 0 be as in Proposition 2.10. For y > 0, we define

'1.y/ WD log
�
2C

p
y2 C .7=4/2

�
:

There exists a constant C > 0 depending only on D2 such that if y > C , then

y � 2D2'1.y/ > 1 (A.4)

and
y

2�

�
arccos

p
3

2e2�
�
�

6

�
�D2'1.y/ > 0: (A.5)

Let 0 < ˛ 6 1=C . By Proposition 2.10, we have L�1
f
.01.C // � X1 [X2 [X3, where

X1 D ¹x C yi W �D2 log.1C 1=˛/ 6 x 6 D2 log.1C 1=˛/C 7=4 and y > 1=˛º;

X2 D ¹x C yi W �D2'1.y/ 6 x 6 D2'1.y/C 7=4 and y 2 ŒC; 1=˛�º;

X3 D ¹x C yi W �D2'1.C / 6 x 6 D2'1.C /C 7=4 and y 2 ŒC �D2'1.C /; C �º:

For y > 0, we define a continuous function

�.y/ WD
1

2�˛

�
arccos

p
3

2e2�˛y
�
�

6

�
:

Note that ˛ log.1 C 1=˛/ is uniformly bounded above for 0 < ˛ < 1. There exists a
constant �1 > 0 depending only on D2 such that if ˛ 2 .0; �1�, then for y > 1=˛,

�.y/ �D2 log
�
1C

1

˛

�
>

1

2�˛

�
arccos

p
3

2e2�
�
�

6

�
�D2 log

�
1C

1

˛

�
> 0:

For y 2 ŒC; 1=˛�, we denote t D 2�˛y 2 Œ2�˛C; 2��. Then

�.y/ �D2'1.y/ D y .t/ �D2'1.y/;

where

 .t/ WD
1

t

�
arccos

p
3

2et
�
�

6

�
: (A.6)

A direct calculation15 shows that  .t/ is decreasing on .0; 2��. By (A.5) we have

�.y/ �D2'1.y/ >
y

2�

�
arccos

p
3

2e2�
�
�

6

�
�D2'1.y/ > 0:

15Note that  .t/D 1
t

R t
0 .
4
3e
2s � 1/�1=2 ds can be seen as the average of the integral of z .s/D

.43e
2s � 1/�1=2 in the interval .0; t/. Since s 7! z .s/ is strictly decreasing in .0;C1/, so is

t 7!  .t/.



M. Shishikura, F. Yang 4558

Finally, let y 2 ŒC �D2'1.C /;C � and still denote t D 2�˛y. A direct calculation shows
that limt!0C  .t/ D

p
3, where  is defined in (A.6). By (A.4), there exists a constant

�2 > 0 depending only onD2 such that if ˛ 2 .0; �2�, then for y 2 ŒC �D2'1.C /;C � we
have

�.y/ �D2'1.C / > y �D2'1.C / > .C �D2'1.C // �D2'1.C / > 1:

Let �3 > 0 be a constant depending only on D2 such that D2'1. 1˛ /C
7
4
< 2

3˛
for all

˛ 2 .0; �3�. The proof is finished by setting "00 WD min ¹1=C; �1; �2; �3º.

Proof of Lemma 5.1. For f0 2 I�0, one can define Cf0 and C
]

f0
as in (2.3) similarly

(replacing Pf and f̂ there by Pattr;f0 and ˆattr;f0 ). We first show that (5.2) holds for
f0 2 I�0 and then use an argument of continuity.

The Main Theorem 1 in [30] was proved by transferring the parabolic fixed point 0 of
f0 2 I�0 to1, and a class corresponding to I�0 was defined (see [30, Section 5.A]):

I�
Q
0 WD

²
F D Q ı '�1

ˇ̌̌̌
' W bC nE ! bC n ¹0º is univalent;
'.1/ D1 and '0.1/ D 1

³
;

whereE is the ellipse defined in (2.1) andQ.z/D z.1C 1=z/6=.1� 1=z/4 is a parabolic
map. Each map in this class has a parabolic fixed point at1, a critical point at cpF WD
'.5C 2

p
6/ and a critical value at cvQ D 27 which is independent of F .

By [30, Lemma 5.14 (a)], P andQ are related byQD  �10 ıP ı 1, where  1.z/D
�4z=.1C z/2 is defined in (2.2) and  0.z/ D �4=z. By [30, Proposition 5.3 (c)], there
exists a one-to-one correspondence between I�0 and I�

Q
0 . For F 2 I�

Q
0 , one has natural

definitions of the attracting petal Pattr;F , repelling petal Prep;F , attracting Fatou coordi-
nate ˆattr;F and repelling Fatou coordinate ˆrep;F etc. based on the definitions relating to
f0 2 I�0 in Section 2.1. For example, the attracting Fatou coordinate of F is defined as
ˆattr;F .z/ D ˆattr;f0 ı  0.z/.

For f0 2 I�0, we define a topological triangle

Qf0 WD ¹z 2 Pattr;f0 W ˆattr;f0.z/ 2 0º:

In order to prove (5.2), it is convenient to work in the corresponding dynamical plane of
F D  �10 ı f0 ı  0 2 I�

Q
0 . Define

D0;F WD ¹z 2 Pattr;F W 0 < Reˆattr;F .z/ < 1 and Imˆattr;F .z/ > �2º

and D1;F WD F.D0;F /. By [30, Proposition 5.7 (e)], for z 2 xD0;F we have

jzj > 0:05 > 27e�3� and z 62 R�:

By [30, Proposition 5.6 (b)], for z 2 xD1;F we have

jzj > 25p
3

sin �
3
D

25
2
> 27e�3� and z 62 R�:

Let R D 4
27
e3� . We have

xD0;F [ xD1;F �  
�1
0 .D.0; R/ n Œ0; R// D C n

�
D.0; 27e�3�/ [R�

�
: (A.7)
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By the definition of Qf0 , we have

 �10 .Qf0/ D ¹z 2 Pattr;F W 1=4 < Reˆattr;F .z/ < 7=4 and Imˆattr;F .z/ > �2º:

Therefore, by (A.7) we have  �10 . xQf0 n ¹0º/ �
xD0;F [ xD1;F . This implies that

xQf0 n ¹0º � D.0; R/ n Œ0; R/ for all f0 2 I�0: (A.8)

Let C > 1 be the constant of Lemma A.2 and 01 D 01.C / be defined in (A.3). By
Lemmas A.1 and A.2, for every f 2 I�˛ with 0 < ˛ 6 min ¹"0; "00º we have

ˆ�1f .01/ D �f ı L
�1
f .01/ � D.0; R/ n Œ0; R/:

Define

02 WD 0 n 01 D ¹� 2 C W 1=4 6 Re � 6 7=4 and �2 6 Im � 6 C º:

By (A.8), the continuity of the Fatou coordinates in Proposition 2.2 (d) (see also [45,
Proposition 3.2.2]) and the pre-compactness of I�0, there exists a constant 0 < "04 6
min ¹"0; "00º such that for all f 2 I�˛ with ˛ 2 .0; "04�, we have ˆ�1

f
.02/ � D.0; R/ n

Œ0; R/ and hence xQf n ¹0º D ˆ�1f .0/ � D.0; R/ n Œ0; R/.
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