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Abstract. We compute asymptotic formulas for the transition densities p.nI x; y/ of finite range
isotropic random walks on affine buildings. We also describe the asymptotic behavior of the corre-
sponding Green functions.
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1. Introduction

Solving the heat equation led to develop at least two fundamental tools in modern math-
ematics, namely the Fourier transform and the heat kernel. Harmonic analysis, i.e., the
mathematical study of the Fourier transform, is one of the main tools of this paper, while
the heat kernel is its main object of study. The latter can be constructed in the context
of Riemannian geometry, see, e.g., [7], leading to a deep interplay between the analytic
behavior of the heat kernel and the geometric properties of the considered manifold. The
better understood the ambient manifold, the more precise the information on the heat ker-
nel is expected. This paper is dedicated to studying the kernels on some singular spaces,
called affine buildings, in tight connection with Lie theory, more precisely with non-
Archimedean Lie groups [9]. The probabilistic viewpoint is systematically considered
since it is particularly well adapted to these singular spaces with strong symmetry prop-
erties. Some related results on associated Green functions are also derived. The latter has
a deep connection with potential theory, see, e.g., [13].

In order to better motivate our study, let us first consider the case of Riemannian
symmetric spaces of non-compact type, called symmetric spaces for short, since affine
buildings are the non-Archimedean counterparts to the latter manifolds; both situations
are complementary pieces at the heart of Lie theory [17, 35]. On a symmetric space, the
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heat kernel ht for the heat semigroup et�, where � is the Laplace–Beltrami operator, is
a basic and well-studied object. Estimates as well as asymptotic of ht play a fundamental
rôle in studying geometry of the underlying space. Initial studies of ht were carried out
by Sawyer [31–33] and Anker [2, 3]. In [4], Anker and Ji proved sharp estimates on the
kernel ht .x/ whenever jxj is smaller than some constant multiple of 1C t . Global esti-
mates were subsequently found by Anker and Ostellari [5]. These results have important
applications. One is to determine the behavior of the Green function which is the analytic
input needed to describe the Martin boundary [14, 15]. In [15], Guivarc’h, Ji and Taylor
used results obtained in [4] to construct the Martin compactification of symmetric spaces.

Apart from strong topological differences, real and non-Archimedean simple Lie
groups share many combinatorial and geometric properties. From the geometric point
of view, they both act, with strong transitivity properties, on contractible spaces carrying
nice non-positively curved complete distances. In the real case, these are of course the
symmetric spaces. The corresponding spaces for groups over totally disconnected local
fields are Bruhat–Tits buildings. Bruhat–Tits buildings, or more generally affine buildings
when no group is assumed to act transitively on them, are unions of Euclidean tilings,
called apartments, playing the rôle of maximal flats in symmetric spaces. Apartments
contain Weyl cones, also called sectors, in which, thanks to a polar decomposition of the
group, the behavior of the heat kernel is suitably described.

To get a deeper and more precise understanding of symmetric spaces, many authors
have studied the corresponding problems on appropriate graphs. In this context, Guiv-
arc’h, Ji and Taylor emphasize the importance of extending all the compactification pro-
cedures to Bruhat–Tits buildings associated with reductive groups over p-adic fields. The
group-theoretic part of this program has been carried out by Guivarc’h and Rémy in [16].
A basic important problem raised in [15] is to describe the asymptotic behavior of the
Green function of a finite range isotropic random walk on a Bruhat–Tits building. One
way to understand the Green function is to obtain the asymptotic formula for the corre-
sponding heat kernel which in this context is the nth iteration p.nI �; �/ of the transition
operator given by the transition density p (see Section 4.1 for definitions).

In the present paper, we obtain the uniform asymptotic formula for the heat kernel
p.nI �; �/, giving a definitive answer to the question posed in [15]. The heart of the matter
is a detailed description of the off-diagonal behavior of p.nI x; y/. We achieve this for
all affine buildings in particular those with small or possibly trivial automorphism group.
There has been considerable work done giving on-diagonal estimates, i.e., for p.nI x; x/
(see [12, 27] for instance). However, let us emphasize that one needs to understand the
off-diagonal part of the heat kernel p.nI x; y/ for the Green function asymptotic. More-
over, the off-diagonal estimates cannot be deduced from the on-diagonal results. We are
able to establish the asymptotic formula for p.nI x; y/, uniformly in a region asymptoti-
cally approaching the building-theoretic analog of Cramér’s zone which we denote by M.
The main result of the paper is Theorem 4.1, see also Corollary 4.10 for its weaker ver-
sion which is good enough for most applications. The asymptotic behavior of the Green
function is described in Theorems 4.13 and 4.14. The Martin compactification of affine
buildings is the subject of the forthcoming paper [28].
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Random walks on affine buildings have been studied for over thirty years. In 1978,
Sawyer [34] obtained the asymptotic of p.nI x; x/ for homogeneous trees, i.e., affine
buildings of type zA1. This is called local limit theorem. The result was extended to zAr
by Tolli [36], Lindlbauer and Voit [20] and Cartwright and Woess [12]. Lastly, local limit
theorems for all affine buildings were proved by Parkinson [27].

Local limit theorems describe the behavior of p.nI x; y/ for fixed x and y. However,
in many applications it is desired to know the uniform asymptotic behavior in a large
spacetime regime. For affine buildings, it was previously studied in two cases only. For
homogeneous trees, uniform asymptotic were found by Lalley [18, 19]. For affine build-
ings of higher rank, the first results were obtained by Anker, Schapira and the author
in [6], where for each building of type zAr , a distinguished averaging operator was studied.
We obtain sharp upper and lower bounds on p.nI x; y/. In this paper, we treat all affine
buildings.

To be more precise, we need to introduce some notation. Let ˆ be the type of the
building, that is ˆ is the affine root system in a, where a is the Euclidean space on which
apartments are modeled, and let ˆCC denote the set of indivisible positive roots in ˆ.
ByW0 we denote the corresponding (spherical) Weyl group. Given a transition function p
of the isotropic finite range random walk on good vertices VP of the building, we define
the corresponding averaging operator acting on functions on VP as

Af .x/ D
X
y2VP

p.x; y/f .y/:

Then the Gelfand–Fourier transform of A, denoted by yA, is a W0-invariant exponen-
tial polynomial expressed as a combination of Macdonald spherical function P! . The
Cramér’s zone M is the interior of the convex hull in a of the support of yA. For ı 2M,
we set

�.ı/ D max¹hx; ıi � log �.x/ W x 2 aº;

where � D %�1 yA and % is the spectral radius of the random walk. We also need a quadratic
form on a given by B0.u; u/ D D2

u log �.0/. Let us recall that each apartment of affine
building contains as a discrete subspace the coweight lattice of the root system ˆ0, so the
statement below completely describes the process in the building.

Theorem A. Let .!n W n 2 N/ be a sequence of co-weights such that the sphere centered
at o and radius !n is contained in the support of p.nI o; � /. Suppose that

lim
n!1

hın; ˛i D 0 for all ˛ 2 ˆ;

where ın D n�1!n. Then for any sequence of good vertices .xn W n 2 N/ such that the
Weyl distance between o and xn equals !n, we have

p.nI o; xn/ D n
�r=2�jˆCCjP!n.0/%

ne�n�.ın/.C0 CO.jınj/CO.n�1//:

The constant C0 is absolute.
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Theorem A is the direct consequence of a more general Theorem 4.1 which con-
tains the detailed description of the asymptotic behavior of p.nIx; y/. We emphasize that
the main difficulties lay in the asymptotic analysis along the walls of the Weyl chamber
when ın approaches the boundary of M. Using Theorem 4.1, we study the asymptotic
behavior of the Green function G� for � 2 .0; %�1�. In particular, at the bottom of the
spectrum, we obtain the following asymptotic formula for the Green function G%�1 , see
Theorem 4.14. For the detailed study of the Green function above the bottom of the spec-
trum, see Theorem 4.13.

Theorem B. For all x 2 VP such that the Weyl distance between o and x equals !,
we have

G%�1.o; x/ D P!.0/.B
�1
0 .!; !//�r=2�jˆ

CCjC1.D0 C o.1//;

as j!j tends to infinity. The constant D0 is absolute.

This paper is analytic in its nature as far as the tools of the proofs are concerned. How-
ever, there are strong connections with Lie combinatorics associated to parametrization of
representations. This is a well-known phenomenon in the field, illustrated for instance by
the case of the Fourier transform on non-Archimedean Lie groups. The starting point in
spherical harmonic analysis is to exhibit a suitable Gelfand pair: this was done by Satake
in the 60’s who also showed a combinatorial parametrization of the spherical functions
providing the desired Fourier transform [30]. The exact computation of the latter functions
was achieved by Macdonald, leading to an explicit description of the involved Plancherel
measure [21]. The situation is so well understood now that it can be made completely geo-
metric, i.e., without any use of group action. The importance of the geometric approach
is important since not every affine building corresponds to a group of p-adic type. For
exotic buildings of type zA2, Cartwright and Młotkowski [11] proposed a construction of
the spherical Fourier transform using the geometric and combinatorial properties of the
building. This approach was extended by Cartwright [10] to buildings of type zAr and by
Parkinson [26] to all affine buildings.

Let us now give a brief sketch of the proof of Theorem 4.1. As usual, an application of
the spherical Fourier transform results in an oscillatory integral. Thanks to some geomet-
ric properties of the support of the spherical Fourier transform of p, see Theorem 2.2, the
integral can be localized to ¹� 2 a W j� j � "º. Therefore, the proof reduces to establishing
the asymptotic behavior, as n approaches infinity, of

Fn.x/ D

Z
j� j�"

en'.x;�/
d�

c.x C i�/
;

uniformly with respect to x 2 cl aC, where aC is the Weyl chamber of the underlying
root system, and c is the non-Archimedean counterpart of Harish-Chandra c-function.
The function ' is related to �, for the definition we refer to (4.7). This paper relies on
the study of oscillatory integrals in a uniform manner, and its core is contained in The-
orem 4.4, where the asymptotic behavior of Fn along the walls is investigated. We use
a variant of the steepest descent method. However, there is an interplay between the time n
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and the distance of x to the walls. Therefore, to identify the leading terms we need to uti-
lize combinatorics of subroot systems. In fact, if x lies on a certain wall of aC, then the
function '.x; �/ retain symmetries in the directions orthogonal to that wall. Close to the
wall, we take advantage of this by expanding Fn into power series and using combina-
torial methods we identify remaining cancellations. In [6], a key combinatorial formula
available for a distinguished averaging operator allowed to avoid the difficult analysis of
cancellations.

1.1. Organization of the paper

In Section 2.1, we present the definition of a function s which underpins all estimates
for p.nI �; �/. We next prove two auxiliary lemmas: one analytic and one combinatorial.
In Section 3, the definitions of root systems and affine buildings are recalled, and a number
of spherical-analytic facts used across the paper are collected. The main theorem is stated
and proved in Section 4.2. As an application, the asymptotic behavior of the corresponding
Green function is found (Theorems 4.13 and 4.14).

We use the convention that C;C 0; c; c0; : : : stand for a generic positive constant whose
value can change from line to line.

2. Combinatorial and analytic preliminaries

This section contains most of the preliminaries necessary to the technical arguments used
in this paper. This explains why it is varied in nature. The first subsection is dedicated
to convex combinations of exponentials in Euclidean spaces; they appear naturally in
the study of random walks in spaces governed by Lie-theoretic data. The optimization
problem leads to defining a function providing asymptotic directions of random walks.
The second subsection is dedicated to multiple derivation while the last one contains
a variation of the marriage lemma useful later to handle root system combinatorics.

2.1. Convex combinations of exponentials and the function s

Let a be an r-dimensional real vector space with an inner product h�; �i. By aC we denote
its complexification. We fix a finite set of vectors V � a and a set of positive constants
¹cv W v 2 Vº satisfying

P
v2V cv D 1. Let �W aC ! C be a function given by the for-

mula

�.z/ D
X
v2V

cve
hz;vi:

The motivation to study the function � comes from random walks. It is ultimately con-
nected to the Gelfand–Fourier transform of the corresponding averaging operator, see
Section 4.1 for details.



B. Trojan 4654

For x 2 a, by Bx we denote a quadratic form Bx.u; u/ D D
2
u log �.x/, where Du is

the derivative along a vector u, i.e.,

Duf .x/ D
d
dt
f .x C tu/

ˇ̌̌
tD0
:

Since

Du log �.x/ D
X
v2V

cve
hx;vi

�.x/
hu; vi

and

Du

�cvehx;vi
�.x/

�
D
cve
hx;vi

�.x/
hu; vi �

X
v02V

cve
hx;vi

�.x/
�
cv0e

hx;v0i

�.x/
hu; v0i;

we may write

Bx.u; u/ D
1

2

X
v;v02V

cve
hx;vi

�.x/
�
cv0e

hx;v0i

�.x/
hu; v � v0i

2
: (2.1)

Let M be the interior of the convex hull of V . We assume that M is not empty. For the
sake of completeness, we provide the proof of the following well-known theorem.

Theorem 2.1. For every ı 2M, a function f .ı; �/W a! R defined by

f .ı; x/ D hx; ıi � log �.x/

attains its maximum at the unique point s 2 a satisfying r log �.s/ D ı.

Proof. Without loss of generality, we may assume that r�.0/ D 0. Indeed, otherwise we
will consider

z�.z/ D e�hz;v0i�.z/ D
X
v2 zV

cvCv0e
hz;vi;

where v0 Dr�.0/, and zV D V � v0. Then zM, the interior of the convex hull of zV , equals
M � v0. For zı D ı � v0, we have

zf .zı; x/ D hx; ı � v0i � log z�.x/ D hx; ıi � log �.x/ D f .ı; x/:

We conclude that if s is the unique maximum of a 3 x 7! zf .zı; x/, then it is also the
unique maximum of a 3 x 7! f .ı; x/. Because

r log z�.x/ D r log �.x/ � v0;

we get r log �.s/ D zı � v0 D ı, proving the claim.
Fix ı 2M. Sincer�.0/D 0, by Taylor’s theorem we have f .ı;x/D hx; ıiCO.jxj2/

as jxj approaches zero. Moreover, for any x; u 2 a,

D2
uf .ı; x/ D �Bx.u; u/;

thus the function a 3 x 7! f .ı; x/ is strictly concave.
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Let us observe that
0 D r�.0/ D

X
v2V

cv � v 2 cl M:

Since M is not empty, the set V cannot be contained in an affine hyperplane, thus, 0 2M.
Now, ı 2M implies that there are v1; : : : ; vr 2 @M \ V such that ı belongs to the

convex hull of ¹0; v1; : : : ; vrº, i.e., there are t0; t1; : : : ; tr 2 Œ0; 1� satisfying

ı D t0 � 0C

rX
jD1

tj � vj D

rX
jD1

tj � vj :

Because ı 62 @M, we must have t0 > 0, thus
Pr
jD1 tj < 1. Hence,

rX
jD1

tj log �.x/ �
rX

jD1

tj .log cvj C hx; vj i/ D
rX

jD1

tj log cvj C hx; ıi;

and we get

f .ı; x/ D hx; ıi � log �.x/ �
� rX
jD1

tj � 1

�
log �.x/ �

rX
jD1

tj log cvj : (2.2)

Because
lim
jxj!1

log �.x/ D C1;

estimate (2.2) implies that
lim
jxj!1

f .ı; x/ D �1;

and the proof is finished.

In this paper, for a given ı 2M, we denote by s 2 a the unique solution to

ı D r log �.s/ D
X
v2V

cve
hs;vi

�.s/
� v: (2.3)

Let �WM! R be defined by

�.ı/ D max¹hx; ıi � log �.x/ W x 2 aº;

thus, by Theorem 2.1,
�.ı/ D hı; si � log �.s/:

By (2.3), for any u 2 a,
hı; ui D Du log �.s/:

Hence, for u; u0 2 a,

hu; u0i D Du.Du0 log �.s// D
dX
jD1

DjDu0 log �.s/Dusj D Bs.Dus; u0/;
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i.e., Dus D B�1s u. Therefore, we can calculate

r�.ı/ D s C

dX
jD1

ıjrsj �

dX
jD1

Dj log �.s/rsj D s;

thus,
D2
u�.ı/ D Du.hu; si/ D B

�1
s .u; u/:

In particular, � is a convex function on M. Let ı0 D r log �.0/. By Taylor’s theorem,
we have

�.ı/ D
1

2
B�10 .ı � ı0; ı � ı0/CO.jı � ı0j

3/ (2.4)

as ı approaches ı0. We claim that1 for all ı 2M,

�.ı/ � B�10 .ı � ı0; ı � ı0/: (2.5)

Since � is convex and satisfies (2.4), it is enough to show that � is bounded from above.
Given ı 2M, let v0 2 V be any vector satisfying

hs; v0i D max¹hs; vi W v 2 Vº:

Because

hs; ıi � hs; v0i D
X
v2V

cve
hs;vi

�.s/
hs; v � v0i � 0;

we get
�.ı/ D hs; ıi � log �.s/ � hs; ıi � log.cv0e

hs;v0i/ � � log cv0 ;

proving (2.5).
In general, there is no explicit formula for the function �. By the implicit function

theorem, the function s is real-analytic on M. In particular, s is bounded on any compact
subset of M. From the other side, jsj approaches infinity when ı tends to @M. To see this,
let us denote by F a facet of M such that ı approaches @M \ F . Let u be an outward
unit normal vector to M at F . Then for each v0 2 F \ V and v00 2 V n F , we have

hv0 � ı; ui D
X
v2V

cve
hs;vi

�.s/
hv0 � v; ui

D

X
v2VnF

cve
hs;vi

�.s/
hv0 � v; ui �

cv00e
hs;v00i

�.s/
hv0 � v00; ui:

Therefore, for any v 2 V n F ,

lim
ı!@M\F

ehs;vi

�.s/
D 0: (2.6)

The next theorem provides a control over the speed of convergence in (2.6).

1A � B means that cB � A � CB for some constants c; C > 0.



Asymptotic behavior of heat kernels and Green functions on affine buildings 4657

Theorem 2.2. There are constants � � 1 and C > 0 such that for all ı 2M and v 2 V ,
we have

ehs;vi

�.s/
� C dist.ı; @M/�;

where s D s.ı/ satisfies ı D r log �.s/.

Proof. We consider any enumeration of elements of V D ¹v1; : : : ; vN º. Define

� D ¹! 2 S r�1 W h!; vi i � h!; viC1i for i D 1; : : : ; N � 1º;

where S r�1 is the unit sphere in a centered at the origin. Since V is finite, it is enough to
prove that there are C > 0 and � � 1 such that for all x 2 a, if x

jxj
2�, then for all v 2 V ,

ehx;vi

�.x/
� C dist.ı; @M/�;

where

ı D
X
v2V

cve
hx;vi

�.x/
� v:

Without loss of generality, we may assume that � ¤ ;. Let k be the smallest index such
that points ¹v1; : : : ; vkº do not lay on the same facet of M. Let us recall that a set F is
a facet of M if there are � 2 S r�1 and c 2 R such that for all v 2 V , h�; vi � c, and

F D conv¹v 2 V W h�; vi D cº:

Since ¹v1; : : : ; vkº do not lay on the same facet of M and � is a compact set, there is
" > 0 such that for all ! 2 �, we have

h!; v1i � h!; vki C ": (2.7)

Indeed, otherwise, there are !n 2 � such that

h!n; vki � h!n; v1i � h!n; vki C
1

n
:

Since � is compact, there is !0 2 � such that h!0; v1i D h!0; vki and for each i 2
¹2; : : : ;N º, h!0; v1i � h!0; vi i. This contradicts that ¹v1; : : : ; vkº do not lay on the same
facet of M.

Let F be a facet containing ¹v1; : : : ; vk�1º determined by � 2 S r�1 and c 2 R. Let
us consider x 2 Rd such that x

jxj
2 � and

ı D
X
v2V

cve
hx;vi

�.x/
� v:

The distance from ı to a plane containing the facet F is not bigger than c � h�; ıi, thus

dist.ı; @M/ � c � h�; ıi D
X

v2VnF

cve
hx;vi

�.x/
h�; v1 � vi � 2max¹jvj W v 2 Vº �

ehx;vki

�.x/
:
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Since cv1e
hx;v1i � �.x/� ehx;v1i, we obtain ehx;vk�v1i � C dist.ı; @M/. In particular, for

1 � j � k, we have
ehx;vj i

�.x/
� C dist.ı; @M/:

If j > k, we can estimate

ehx;vj i

�.x/
� ehx;vj�v1i D .ehx;vk�v1i/hx;v1�vj i=hx;v1�vki

� C dist.ı; @M/hx;v1�vj i=hx;v1�vki

which finishes the proof since, by (2.7),

1 �
hx; v1 � vj i

hx; v1 � vki
� "�1jv1 � vj j;

thus it is enough to take

� D "�1 �max¹jv1 � vj W v 2 Vº:

2.2. Analytic lemmas about multiple derivation

For a multi-index � 2 Nr , we denote by X� a multi-set containing �.i/ copies of i .
Let …� be a set of all partitions of X� , and let ¹u1; : : : ; urº be a basis of a. For the
convenience of the reader, we recall the following.

Lemma 2.3 (Faà di Bruno’s formula). There are positive constants c� , � 2 …� , such
that for sufficiently smooth functions f WS ! T , F WT ! R, T � R, S � Rr , we have

@�F.f .s// D
X
�2…�

c�
dm

dtm

ˇ̌̌
tDf .s/

F.t/

mY
jD1

@Bj f .s/;

where � D ¹B1; : : : ; Bmº.

Let us observe that for

F.t/ D
1

2 � t
and f .s/ D

rY
jD1

1

1 � sj
;

the function F.f .s// is real-analytic in some neighborhood of s D 0, thus, there is C > 0

such that for every � 2 Nr ,X
�2…�

c�mŠ

mY
jD1

Bj Š D @
�F.f .0// � C j� jC1�Š; (2.8)

where for a multi-set B containing �.i/ copies of i , we have set

BŠ D

rY
iD1

�.i/Š:

Using Lemma 2.3, we can prove the following.



Asymptotic behavior of heat kernels and Green functions on affine buildings 4659

Lemma 2.4. Let V � Rd be a set of finite cardinality. Assume that for each v 2 V , we
are given av 2 C, and bv > 0. Then for z D x C i� 2 Cd such that

j� j � .2 �max¹jvj W v 2 Vº/�1;

we have ˇ̌̌X
v2V

bve
hz;vi

ˇ̌̌
�

1
p
2

X
v2V

bve
hx;vi: (2.9)

Moreover, there is C > 0 such that for all � 2 Nd ,ˇ̌̌̌
@�
²P

v2V ave
hz;viP

v2V bve
hz;vi

³ˇ̌̌̌
� C j� j�Š

P
v2V javje

hx;viP
v2V bve

hx;vi
: (2.10)

Proof. We start by proving (2.9). We haveˇ̌̌X
v2V

bve
hz;vi

ˇ̌̌2
D

X
v;v02V

bvbv0e
hx;vCv0i cos h�; v � v0i

�

X
v;v02V

bvbv0e
hx;vCv0i

�
1 �
h�; v � v0i

2

2

�
�
1

2

�X
v2V

bve
hx;vi

�2
because jh�; v � v0ij � 1.

For the proof of (2.10), it is enough to showˇ̌̌
@�
° 1P

v2V bve
hz;vi

±ˇ̌̌
� C j� jC1�Š

1P
v2V bve

hx;vi
: (2.11)

Indeed, sinceˇ̌̌
@˛
°X
v2V

ave
hz;vi

±ˇ̌̌
�

X
v2V

javj � jv
˛
jehx;vi � C j˛j

X
v2V

javje
hx;vi; (2.12)

by (2.11) and Leibniz’s rule we obtain (2.10). To show (2.11), we use Faà di Bruno’s
formula with F.t/ D 1

t
. By Lemma 2.3 together with estimates (2.9) and (2.12), we getˇ̌̌

@�
° 1P

v2V bve
hz;vi

±ˇ̌̌
�

X
�2…�

c�mŠ
�X
v2V

bve
hx;vi

��m�1 mY
jD1

ˇ̌̌
@Bj

°X
v2V

bve
hz;vi

±ˇ̌̌
� C j� j

1P
v2V bve

hx;vi

X
�2…�

c�mŠ

mY
jD1

Bj Š

� C j� jC1
1P

v2V bve
hx;vi

;

where in the last inequality we have used (2.8).
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2.3. Variation on the marriage lemma

The following combinatorial lemma may be known but we include its proof for complete-
ness and lack of reference. Let .C1; C2; : : : ; Cr / be a fixed sequence of subsets of a finite
set X . A multi-index 
 2 Nr is called admissible if there is .Xj W 1 � j � r/ a partial
partition of X such that Xj � Cj and jXj j D 
.j /. We set ej to be a multi-index with 1
on the j th position and 0 elsewhere.

Lemma 2.5. If 
 is admissible, then for any partial partition .Xj W 1 � j � r/ corre-
sponding to 
 , we have [

j2J


Xj D
[
j2J


Cj ;

where J
 D ¹j W 
 C ej is not admissibleº.

Proof. Givenm 2 J
 , we construct a sequence .Ij W 0 � j / as follows: I0 D ¹mº and for
i � 0,

IiC1 D ¹j W Xj \ Ck ¤ ; for some k 2 Iiº:

We notice that Ii � IiC1. Let I D lim supi�0 Ii and V D
S
j2I Xj : We claim that

V D
[
j2I

Cj :

Suppose that, contrary to the claim, there is

y 2
[
j2I

Cj \ V
c :

We first observe that y 62
Sr
jD1 Xj . Indeed, y 2 Cj \ Xj 0 for some j 2 I implies that

j 0 2 I . Also there are sequences .ji W 1 � i � n/ and .xi W 0 � i � n/ of distinct elements
such that j1 Dm, y 2 Cjn , x0 2 Xj1 , xn D y and xi 2 Cji \XjiC1 for i 2 ¹1; : : : ; n� 1º.
By setting

Yj D

´
.Xji [ ¹xiº/ n ¹xi�1º if j D ji for 2 i 2 ¹1; : : : ; nº;

Xj otherwise,

we obtain a partial partition of X corresponding to 
 such that

x0 2 Cm \

� r[
jD1

Yj

�c
which is not possible since m 2 J
 , proving the claim.

As a consequence of the claim, we have

jV j D
X
j2I


.j /:
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We next show that I D J
 . Suppose that, on the contrary, there is k 2 I \ J c
 . Then there
exists a partial partition .Yj W 0 � j � r/ corresponding to 
 such that

Ck \

� r[
jD1

Yj

�c
¤ ;: (2.13)

Since Yj � Cj and
P
j2I jYj j D

P
j2I 
.j /, we must have[
j2I

Yj D
[
j2I

Cj

which contradicts (2.13). Therefore, I � J
 and the lemma follows.

3. Affine buildings

This section presents the singular, usually higher-dimensional, spaces in which we wish
to study the behavior of the heat kernel. These spaces are called affine buildings and are
discrete analogs of Riemannian symmetric spaces. They are union of Euclidean tilings
in tight connection with the theory of root systems. They have strong symmetry proper-
ties, so that they often have a very transitive automorphism group. Still, we prefer to use
them in a purely geometric way. The last subsection illustrates this choice by presenting
the spherical harmonic analysis we need. Indeed, harmonic analysis on buildings started
in a group-theoretic context by exhibiting Gelfand pairs (see [30]) and then by comput-
ing explicitly the corresponding spherical functions (see [21, 23]), but these fundamental
works have now geometric generalizations avoiding group actions, thus allowing to con-
sider a few more cases in dimension 2.

3.1. Root systems, weights and coweigths

We start by recalling basic facts about root systems and Coxeter groups. A general refer-
ence is [8].

Let ˆ be an irreducible but not necessarily reduced finite root system in a. Let ¹˛i W
i 2 I0º, where I0 D ¹1; : : : ; rº be a fixed base of ˆ, and ˆC the corresponding set of all
positive roots. Let aC be the positive Weyl chamber, i.e.,

aC D ¹x 2 a W h˛; xi > 0 for all ˛ 2 ˆCº:

By ˛0, we denote the highest root of ˆ, that is, a root

˛0 D
X
i2I0

mi˛i ;

such that for any ˛ 2 ˆ, ˛ D
P
i2I0

ni˛i , we have ni � mi . We set m0 D 1 and I D
I0 [ ¹0º. Let

IP D ¹i 2 I W mi D 1º:
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The dual basis to ¹˛i W i 2 I0º is denoted by ¹�i W i 2 I0º. The co-weight lattice P is the
Z-span of fundamental co-weights ¹�i W i 2 I0º. A co-weight � 2 P is called dominant if
�D

P
i2I0

xi�i , where xi � 0 for all i 2 I0. Finally, the cone of all dominant co-weights
is denoted by PC.

Let Hi D ¹x 2 a W h˛i ; xi D 0º for each i 2 I0. We denote by ri the orthogonal
reflection in Hi , i.e., ri .x/ D x � h˛i ; xi˛_i for x 2 a, where for ˛ 2 ˆ we put

˛_ D
2˛

h˛; ˛i
:

By Q we denote the co-root lattice, that is, Z-span of the co-roots ¹˛_ W ˛ 2 ˆº. The
subgroup W0 of GL.a/ generated by ¹ri W i 2 I0º is the Weyl group of ˆ. Let r0 be the
orthogonal reflection in the affine hyperplane

H0 D ¹x 2 a W h˛0; xi D 1º:

Then the affine Weyl group W of ˆ is the subgroup of Aff.a/ generated by ¹ri W i 2 I º.
Finally, the extended affine Weyl group of ˆ is eW D W0 Ë P . We set

� D

rX
jD1

�j D
1

2

X
˛2ˆC

˛_:

Let M D .mij /i;j2I be a symmetric matrix with entries in Z [ ¹1º such that for
all i; j 2 I ,

mij D

´
� 2 if i ¤ j;

1 if i D j:

The Coxeter group of type M is the group W given by the presentation

hri W .rirj /
mij D 1 for all i; j 2 I i:

For a word f D i1 : : : ik in the free monoid I , we denote by rf an element of W of the
form rf D ri1 : : : rik . The length of w 2 W , denoted by `.w/, is the smallest integer k
such that there is a word f D i1 : : : ik and w D rf . We say f is reduced if `.rf / D k.

3.2. Building, thicknesses and (co)type

For the theory of affine buildings, we refer the reader to [29].
A set X equipped with a family of equivalence relations ¹�i W i 2 I º is a chamber

system, and the elements of X are called chambers. A gallery of type f D i1 : : : ik in X

is a sequence of chambers .c0; : : : ; ck/ such that for all 1 � j � k, cj�1 �ij cj and
cj�1 ¤ cj . If J � I , J -residue is a subset of X such that any two chambers can be joined
by a gallery of type f D i1 : : : ik with i1; : : : ; ik 2 J .

LetW be a Coxeter group of typeM . For each i 2 I , we define an equivalence relation
on W by declaring that w �i w0 if and only if w D w0 or w D w0ri . Then W equipped
with ¹�i W i 2 I º is a chamber system called Coxeter complex of W .
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Definition 3.1. LetW be a Coxeter group. A chamber system X is a building of typeW if

(i) for all x 2 X and i 2 I , j¹y 2 X W y �i xºj � 2,

(ii) there is a W -distance function ıWX � X! W such that if f is a reduced word, then
ı.x; y/ D rf if and only if x and y can be joined by a gallery of type f .

If W is an affine Weyl group, the building X is called affine.

Notice that if we define ıW WW �W ! W by ıW .w;w0/ D w�1w0, then ıW is a W -
distance function. Thus a Coxeter complex of W is a building of type W .

A subset A � X is called an apartment if there is a mapping  WW ! X such that
A D  .W / and for all w;w0 2 W , ı. .w/;  .w0// D ıW .w;w0/.

A building X has a geometric realization as a simplicial complex †.X/, where
a residue of type J corresponds to a simplex of dimension jI j � jJ j � 1. Let V.X/ denote
the set of vertices of †.X/. Define a mapping � W V.X/! I by declaring �.x/ D i if x
corresponds to a residue of type I n ¹iº.

For x 2X and i 2 I , let qi .x/ be equal to qi .x/D j¹y 2 X W y �i xºj � 1. We assume
that the building is regular, that is, qi .x/ is independent of x. Denote the common value
by qi , and assume local finiteness: qi <1.

To any irreducible locally finite affine building, we associate an irreducible, but not
necessary reduced, finite root system ˆ (see [26]) such that the affine Weyl group corre-
sponding to ˆ is isomorphic to W , and q�.v/ D q�.vC�/ for all � 2 P and v 2 †.W /.
Then the set of good vertices is defined by

VP D ¹v 2 V.X/ W �.v/ 2 IP º:

3.3. Spherical harmonic analysis

In this subsection, we summarize spherical harmonic analysis on affine buildings (see
[21, 26]).

Let X be an irreducible locally finite regular affine building. Given x2VP and �2PC,
let V�.x/ denote the set of all y 2 VP such that there are an apartment A containing x
and y, a type-preserving isomorphism  WA! †.W / and w 2 eW such that  .x/ D 0
and  .y/ D w�. It may be shown that jV�.x/j is independent of x. Let N� denote its
common value.

For each � 2 PC, we define an operator A� acting on f 2 `2.VP / by

A�f .x/ D
1

N�

X
y2V�.x/

f .y/:

Then A0 D C-span¹A� W � 2 PCº is a commutative ?-subalgebra of the algebra of
bounded linear operators on `2.VP /, see [25, Theorem 5.24]. The multiplicative func-
tionals on A0 can be described in terms of Macdonald spherical functions P�, � 2 PC,
see [25, Section 6.3]. Namely, each multiplicative functional hz , z 2 aC , is a linear map
on A0 such that

hz.A�/ D P�.z/
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for all � 2 PC. Before we recall the definition of Macdonald spherical functions, let
us introduce some notation. Let ˆCC be the set of roots ˛ 2 ˆC so that 1

2
˛ … ˆC.

If ˛ 2 ˆCC, then q˛ D qi provided that ˛ 2 W0 � ˛i for some i 2 I . We define

�˛ D

8̂̂̂̂
<̂
ˆ̂̂:
1 if ˛ … ˆ;

q˛ if ˛ 2 ˆ; but 1
2
˛; 2˛ … ˆ;

q˛0 if ˛; 1
2
˛ 2 ˆ;

q˛q
�1
˛0

if ˛; 2˛ 2 ˆ:

Let �0 denote the fundamental character that is a multiplicative function on P ,

�0.�/ D
Y
˛2ˆC

� h�;˛i˛ :

If w 2 W0 has a reduced expression w D ri1ri2 � � � rik , then qw D qi1 � � � qik . If � 2 PC,
the Macdonald spherical function P� is (see [21])

P�.z/ D
�0.�/

�1=2

W0.q�1/

X
w2W0

c.w � z/ehw �z;�i;

where

c.z/ D
Y
˛2ˆC

1 � ��1˛ �
�1=2

˛=2
e�hz;˛

_i

1 � �
�1=2

˛=2
e�hz;˛

_i

D

Y
˛2ˆCC

.1 � ��12˛ �
�1=2
˛ e�hz;˛

_i=2/.1C �
�1=2
˛ e�hz;˛

_i=2/

1 � e�hz;˛
_i

;

W0.q
�1/ D

X
w2W0

q�1w :

Values of P�, where the denominator of the c-function equals zero, are obtained by taking
proper limits.

By A2 we denote the closure of A0 in the operator norm. Then A2 is C ?-algebra.
To describe the Gelfand transform as well as the Plancherel measure, we need to distin-
guish two cases.

The standard case. Assume that �˛ � 1 for all ˛ 2 ˆ. Then for each � 2 U0, where

U0 D ¹� 2 a W h�; ˛_i � � for all ˛ 2 ˆº;

the multiplicative functional hi� extends to A2 in a continuous way. Moreover, for each
A 2 A0, x 2 VP , and y 2 V�.x/, we have

.Aıx/.y/ D
� 1
2�

�rW0.q�1/
jW0j

Z
U0

hi� .A/P�.i�/
d�

jc.i�/j2
; (3.1)

where ıx.y/ is Dirac’s delta at x, see [26, Theorem 5.2 and Corollary 5.5].
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The exceptional case. Suppose that �˛ < 1 for some ˛ 2 ˆ. It is only possible when ˆ is
BCr root system and qr < q0, namely

ˆ D ¹˙ei ;˙2ei ;˙ej ˙ ek W 1 � i � r; 1 � j < k � rº;

where ¹e1; e2; : : : ; erº is the standard basis of a. We set a D
p
qrq0 and b D

q
qr
q0

. Then

c.z/ D
� rY
jD1

.1 � a�1e�zj /.1C b�1e�zj /

1 � e�2zj

�
�

� Y
1�j<k�r

.1 � q�11 e�zj�zk /.1 � q�11 e�zjCzk /

.1 � e�zj�zk /.1 � e�zjCzk /

�
:

Let v D log b � i� . For j D 1; : : : ; r , we set

Uj D
°
� 2

h
�
1

2
�;
3

2
�
ir
W �j D �v

±
:

and U0 D Œ��2 ;
3�
2
�r . For � 2 U1, we define

�1.i�/ D lim
t!0

jc.i� C tej /j2

1 � et
:

Then for each � 2U0 tU1, the multiplicative functional hi� extends to A2 in a continuous
way. Moreover, for A 2 A0, x 2 VP and y 2 V�.x/, we have

.Aıx/.y/ D
� 1
2�

�rW0.q�1/
jW0j

Z
U0

hi� .A/P�.i�/
d�

jc.i�/j2

C

� 1
2�

�r�1W0.q�1/
jW 00j

Z
U1

hi� .A/P�.i�/
d�

�1.i�/
; (3.2)

where W 00 is the Coxeter group Cr�1 and the measure d� on Uj equals

d� D
rY
kD1

k¤j

d�k

for j D 0; 1; : : : ; r , see [26, Theorem 5.7 and Corollary 5.8].

4. Asymptotics

In this section, we prove the main result of the paper, on the asymptotic behavior of the
heat kernel on affine buildings (see Theorem 4.1). This requires to recall some facts on
random walks in Section 4.1, where we also explain the relationship with Section 2.1
on convex combinations of exponentials. The longest Section 4.2 deals with the proof of
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Theorem 4.1: it is analytic in nature but requires some combinatorial arguments with Lie-
theoretic ingredients. It starts with an application of the spherical Fourier transform and
the contour deformation which results in an oscillatory integral studied by the steepest
descent method. The rest of the preliminary Section 2, i.e., analytic lemmas on multiple
derivations and a combinatorial one elaborating on the marriage lemma, is used here. Con-
siderations of root systems are used to determine the correct leading terms in the desired
asymptotics. At last, Section 4.3 is dedicated to asymptotics for the Green functions.

4.1. Random walks

In this paper, we are interested in asymptotic behavior of isotropic random walks on good
vertices VP , i.e., random walks with the transition probabilities p.x; y/ constant on

¹.x; y/ 2 VP � VP W y 2 V�.x/º

for every � 2 PC. Let A denote the corresponding operator acting on `2.VP /, namely for
f 2 `2.VP /,

Af .x/ D
X
y2VP

p.x; y/f .y/:

Then A belongs to the algebra A2 and may be expressed as

A D
X
�2PC

a�A�;

where a� � 0 and
P
�2PC a� D 1. We say that the random walk has a finite range if

a� > 0 for finitely many � 2 PC. We set p.1I x; y/ D p.x; y/, and for n � 2,

p.nI x; y/ D
X
z2Vp

p.n � 1I x; z/p.z; y/:

If o is a fixed good vertex, we write p.nI x/ D p.nI o; x/.
The random walk is irreducible if for any x; y 2 VP , there is n 2 N such that

p.nI x; y/ > 0:

Lastly, the walk is called aperiodic if for every x 2 VP ,

gcd¹n 2 N W p.nI x; x/ > 0º D 1:

We shall be concern with irreducible and aperiodic random walks having a finite range.
Then there are a finite set V � P and positive real numbers ¹cv W v 2 Vº such that

�.z/ D
X
v2V

cve
hz;vi;

where we have set
�.z/ D %�1hz.A/
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and %D h0.A/. We can use the results of Section 2.1. Recall that M � a is the interior of
the convex hull of V . The set M is not empty as it contains the convex hull of°�1

m
;�
�1

m
; : : : ;

�r

m
;�
�r

m

±
;

wherem is such that V�j .o/ � p.mI �/ for all j 2 I0. Because � isW0-invariant, we have
r�.0/ D 0. If ı 2M and w 2 W0, we can write

w � ı D w � r log �.s/ D r log �.w � s/;

where s D s.ı/. Hence, Theorem 2.1 implies that w � s.ı/ D s.w � ı/. For ˛ 2 ˆ, we set

r˛.x/ D x � h˛
_; xi˛:

Since
0 � hs; ıi � log �.s/ � hr˛s; ıi C log �.r˛s/ D hs; ˛_ih˛; ıi;

by the implicit function theorem, the mapping sWM ! a is real-analytic and s.M \
cl aC/ D cl aC. In what follows, � � 1 is the number determined in Theorem 2.2.

4.2. Heat kernels

Before stating the asymptotic formula for p.nI v/, we need to introduce some notation.
Given ; ¤ J ¨ I0, by ‰ denote the set consisting of ˛ 2 ˆ such that h˛; �j i D 0 for all
j 2 I0 n J . Then ‰ is a root system in a‰ D R-span‰. By T‰W a! a we denote the
orthogonal projection along a‰ . Let ‰C D ‰ \ˆC. For ! 2 PC and x 2 a, we set

P‰.!/ D
�0.!/

�1=2

jb‰.0/j2
� lim
�!0

1

jW0.‰/j

X
w2W0.‰/

e�hw ��;!ic‰.�w � �/

and

Q‰.x/ D
� 1
2�

�r Z
a

e�Bx.u;u/=2j�‰.u/j
2 du �

� Y
˛2ˆCn‰C

1 � �
�1=2

˛=2
e�hx;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�hx;˛

_i

�
;

where
�‰.x/ D

Y
˛2‰CC

hx; ˛_i (4.1)

and

c‰.x/ D
Y
˛2‰C

1 � ��1˛ �
�1=2

˛=2
e�hx;˛

_i

1 � �
�1=2

˛=2
e�hx;˛

_i
;

b‰.x/ D
Y

˛2‰CC

.1 � ��12˛ �
�1=2
˛ e�hx;˛

_i=2/.1C ��1=2˛ e�hx;˛
_i=2/:

If J D ;, then ‰ D ;, and

P‰.!/ D �0.!/
�1=2 and Q‰.x/ D

� 1
2�

�r Z
a

e�Bx.u;u/=2 du �
1

c.x/
:
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Theorem 4.1. Let J ¨ I0. Suppose that .!n W n 2 N/ is a sequence of co-weights such
that V!n.o/ is contained in the support of p.nI � /. We assume that ın D n�1!n satisfies

lim
n!1

n�1 dist.ın; @M/�2� D 0; (4.2a)

lim
n!1

hın; ˛i dist.ın; @M/�2� D 0 for all ˛ 2 ‰C; (4.2b)

hın; ˛i � � for all ˛ 2 ˆC n‰C (4.2c)

for some � > 0. Then for any sequence of good vertices .vn W n2N/ such that vn 2 V!n.o/,

p.nI vn/ D n
�r=2�j‰CCj%ne�n�.ın/P‰.!n/Q‰.tn/.1CEn.ın//

with
jEn.ın/j � C

X
˛2‰C[¹0º

.hın; ˛i C n
�1/ dist.ın; @M/�2�;

where
tn D .I � T‰/sn; sn D r�.ın/;

and
�.ı/ D max¹hu; ıi � log �.u/ W u 2 aº:

Proof. We consider the standard case. The necessary changes in the exceptional case
are explained in Appendix A. Let us recall that �˛ � 1 for all ˛ 2 ˆ. By the inversion
formula (3.1), we can write

p.nI vn/ D
� 1
2�

�rW0.q�1/
jW0j

Z
U0

.hi� .A//
nP!n.i�/

d�

jc.i�/j2
:

Using the definition of P! and W0-invariance of the integrand, we get

p.nI vn/ D
� 1
2�

�r
�0.!n/

�1=2%nFn.!n/;

where

Fn.!/ D

Z
U0

�.i�/ne�ih�;!i
d�

c.i�/
:

Suppose now that �0 2 U0 is such that �.i�0/ D eit for some t 2 Œ��; �/. Since �.i�0/
is a convex combination of complex numbers from the unit circle, �.i�0/ D eit if and
only if eih�0;vi D eit for all v 2 V . Therefore, if p.nI x/ > 0 for some x 2 V!.o/, then
eih�0;!i D eint . Since the random walk is irreducible and aperiodic, for all sufficiently
large n we have p.nI x/ > 0, thus

eint D eih�0;!i D ei.nC1/t

which implies that t D 0. Therefore, eih�0;!iD 1 for all ! 2PC, which entails that �0D 0.
Next, we observe that we can shift the integrand. In fact, we have the following

claim.
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Claim 4.2. For any u 2 b, where

b D
°
x 2 a W hx; ˛_i > � log �˛ �

1

2
log �˛=2 for all ˛ 2 ˆC

±
;

we have

Fn.!/ D

Z
U0

�.uC i�/ne�huCi�;!i
d�

c.uC i�/
:

Let us first observe that the integrand is 2�Q-periodic. Hence, the value of the inte-
gral stays unchanged if we replace U0 by any other fundamental domain for the action
of 2�Q on a. It will be more convenient to replace U0 by

V D ¹� D �1˛1 C � � � C �r˛r W �j 2 Œ��; ��º:

Now, it is easy to see that for any � 2 P , we haveZ
V

eih�;�ie�ih�;!i d� D
Z
V

ehuCi�;�ie�huCi�;!i d�: (4.3)

Since e�hu;˛
_i��1˛ �

�1=2

˛=2
< 1, we can write

1 � �
�1=2

˛=2
e�huCi�;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�huCi�;˛

_i
D

X
n�0

��n˛ �
�n=2

˛=2
e�nhuCi�;˛

_i
� �˛

X
n�1

��n˛ �
�n=2

˛=2
e�nhuCi�;˛

_i

D 1C .1 � �˛/
X
n˛�1

��n˛˛ �
�n˛=2

˛=2
e�n˛huCi�;˛

_i;

where the series is uniformly and absolutely convergent. Hence,

1

c.uC i�/
D

Y
˛2ˆC

�
1C .1 � �˛/

X
n˛�1

��n˛˛ �
�n˛=2

˛=2
e�n˛huCi�;˛

_i
�

D

X
˛_2Q_

c.˛_; q/ehuCi�;˛
_i:

Thus, by identity (4.3), we obtainZ
V

�.uC i�/ne�huCi�;!i
d�

c.uC i�/

D

X
˛_2Q_

c.˛_; q/
X

v1;:::;vn2V

nY
jD1

cvj

Z
V

ehuCi�;
Pn
jD1 vj ie�huCi�;!iehuCi�;˛

_i d�

D

X
˛_2Q_

c.˛_; q/
X

v1;:::;vn2V

nY
jD1

cvj

Z
V

ehi�;
Pn
jD1 vj ie�ih�;!ieih�;˛

_i d�

D

Z
V

�.i�/ne�ih�;!i
d�

c.i�/
;

proving the claim.
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Thanks to Claim 4.2, we can choose the shift u 2 b depending on !n in such a way
that the critical point of the phase function is at � D 0.

Let us notice that if p.nI vn/ > 0, then ın D n�1!n 2 cl M. Since dist.ın; @M/ > 0,
by Theorem 2.1, there is the unique sn D s.ın/ such that r log �.sn/ D ın. Hence, by
Claim 4.2, we can write

Fn.!n/ D e
�n�.ın/

Z
U0

��.sn C i�/
�.sn/

�n
e�ih�;!ni

d�
c.sn C i�/

;

where �.ı/ D hı; si � log �.s/.
Let " > 0 be small enough to satisfy (4.8) and (4.11). We set

U" D ¹� 2 a W h�; ˛_i < " for all ˛ 2 ˆº:

With a help of Theorem 2.2, we can show that the integral over U0 n U" is negligible.
To see this, we write

1 �
ˇ̌̌�.uC i�/

�.u/

ˇ̌̌2
D 1 �

X
v;v02V

cve
huCi�;vi

�.u/
�
cv0e

hu�i�;v0i

�.u/

D 2
X
v;v02V

cve
hu;vi

�.u/
�
cv0e

hu;v0i

�.u/

�
sin
D�
2
; v � v0

E�2
: (4.4)

We need to show that for each � 2 U0 n U", there is always at least one non-zero term
in (4.4). In fact, we show the following statement.

Claim 4.3. For every v0 2 V , there is � > 0 such that for all � 2 U0 nU", there is v0 2 V

satisfying ˇ̌̌
sin
D�
2
; v0 � v0

Eˇ̌̌
� �:

For the proof, we assume to the contrary that for some v0 2 V and all m 2 N, there
is �m 2 U0 n U" such that for all v 2 V ,ˇ̌̌

sin
D�m
2
; v � v0

Eˇ̌̌
�
1

m
:

By compactness of U0 n U", there is a subsequence .�mk W k 2 N/ convergent to � 0 2
U0 n U". Then for all v 2 V ,

sin
D� 0
2
; v � v0

E
D 0;

and thus j�.i� 0/j D 1, which is impossible since 0 D � 0 … U0 n U".
Before we apply Claim 4.3, we select any v0 2 V satisfying

hsn; v0i D max¹hsn; vi W v 2 Vº;

thus ehsn;v0i � �.sn/. By Claim 4.3 and (4.4), for each � 2 U0 n U", there is v0 2 V such
that

1 �
ˇ̌̌�.sn C i�/

�.sn/

ˇ̌̌2
� 2cv0

cv0e
hsn;v

0i

�.sn/
�2 � 2�2 min¹c2v W v 2 Vº �

ehsn;v
0i

�.sn/
:
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Although v0 may depend on � and n, by Theorem 2.2, there are C > 0 and � � 1 such
that for all � 2 U0 n U" and all n 2 N,

1 �
ˇ̌̌�.sn C i�/

�.sn/

ˇ̌̌2
� C dist.ın; @M/�:

Hence, ˇ̌̌�.sn C i�/
�.sn/

ˇ̌̌2
� 1 � C dist.ın; @M/� � e�C dist.ın;@M/� :

Since ˇ̌̌ 1 � �
�1=2

˛=2
e�hsnCi�;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�hsnCi�;˛

_i

ˇ̌̌
�

2

1 � ��1˛ �
�1=2

˛=2

;

we conclude thatˇ̌̌ Z
U0nU"

��.sn C i�/
�.sn/

�n
e�ih�;!ni

d�
c.sn C i�/

ˇ̌̌
� C exp¹�C 0n dist.ın; @M/�º: (4.5)

The argument above reduced the problem to studying the integral over U". Observe that,
by (2.9), the function Log � is analytic in a strip aC iB , where Log denotes the principal
value of the complex logarithm and

B D ¹� 2 a W j� j < .2 �max¹jvj W v 2 Vº/�1º:

Let Fn be a function on b defined by

Fn.x/ D

Z
U"

en'.x;�/
d�

c.x C i�/
; (4.6)

wherein
'.x; �/ D Log �.x C i�/ � Log �.x/ � ih�;r log �.x/i; (4.7)

provided that " is sufficiently small to guarantee that

U" � B: (4.8)

Hence, by (4.5),
Fn.!n/ D e

�n�.ın/.Fn.sn/CEn.ın//;

where
jEn.ın/j � C exp¹�C 0n dist.ın; @M/�º:

Therefore, our aim is to find the asymptotic behavior of .Fn.sn/ W n 2 N/. We notice
that Fn.x/ is an oscillatory integral depending on x 2 b, and its asymptotic behavior
depends on stabilizer subgroup of W0 with respect to x.

We start by proving some estimates on '. Since for any u; u0 2 a and z 2 aC iB we
have

DuDu0 Log �.z/ D
1

2

X
v;v02V

cve
hz;vi

�.z/
�
cv0e

hz;v0i

�.z/
hu; v � v0ihu0; v � v0i;
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by Lemma 2.4, there is C > 0 such that for all � 2 Nr ,

j@� .DuDu0 Log �.z//j � C j� j�Š
p
Bx.u; u/Bx.u0; u0/; (4.9)

where z D x C i� . By using the integral form for the reminder, we can write

 .x; �/ D '.x; �/ �
1

2
Bx.�; �/ D �

i

2

Z 1

0

.1 � t /2D3
� Log �.x C i� t/ dt:

In view of (4.9), there is c > 0 such that for all x 2 a and � 2 B ,

j .x; �/j � cj� jBx.�; �/: (4.10)

Therefore, by choosing

" <
�
4 � sup

°
j .a; b/j

jbjBa.b; b/
W a 2 a; b 2 B

±��1
; (4.11)

if j� j < ", then we may estimate

j .x; �/j �
1

4
Bx.�; �/: (4.12)

Hence,

<'.x; �/ � �
1

4
Bx.�; �/: (4.13)

We next observe that the function Fn is real-analytic on b. To see this, let us choose in a

coordinates xj D hx; j̨ i. By Lemma 2.4, there is C > 0 such that for all � 2 Nr and
x C i� 2 bC iU", ˇ̌̌

@�x

� 1

c.x C i�/

�ˇ̌̌
� C j�jC1�Š:

For � 2 Nr , by Lemma 2.3 together with estimates (4.9) and (4.13), we have

j@�xe
n'.x;�/

j � C j�jC1
X
�2…�

c�e
�.n=4/Bx.�;�/.nBx.�; �//

m

mY
jD1

Bj Š:

Since
e�.n=4/Bx.�;�/.nBx.�; �//

m
� 8mmŠe�.n=8/Bx.�;�/;

by (2.8), we obtain

j@�xe
n'.x;�/

j � C j�jC1e�.n=8/Bx.�;�/
X
�2…�

8mc�mŠ

mY
jD1

Bj Š

� C j�jC1�Še�.n=8/Bx.�;�/: (4.14)

Therefore,

j@�xFn.x/j � C
j� jC1�Š

Z
U"

e�.n=8/Bx.�;�/ d� � C j� jC1�Šn�r=2.detBx/�1=2;

which implies that Fn is real-analytic.
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We start with the case J ¤ ;. Our aim is to describe the asymptotic behavior of Fn.x/
close to walls. Let x0 2 @aC be such that hx0; ˛_j i D 0 for all j 2 J . By �‰ we denote the
set of all multi-indices 
 such that @
�‰ ¤ 0, where �‰ is defined in (4.1). The following
theorem is our key tool.

Theorem 4.4. There are C;C 0; R > 0 such that for all h 2 a‰ , jhj � R,

Fn.x0 C h/ D .detBx0/
�1=2�‰.B

�1
x0
�/

X

2�‰

.Bx0h/

n�r=2�j‰

CCjCj
 jA
n.x0; h/

CEn.x0; h/; (4.15)

where A
n.x0; h/ D a
 .x0/C g
 .x0; h/CE


n .x0; h/, and

ja
 .x0/j � C; jE
n .x0; h/j � Cn
�1
kB�1x0 k;

jg
 .x0; h/j � C jhj; jEn.x0; h/j � C exp¹�C 0nkB�1x0 k
�1
º:

(4.16)

The constants C , C 0 and R are independent of x0 and n.

Proof. We start by changing coordinates in a, namely for x 2 a we write

xj D

´
hx; j̨ i if j 2 J;

hx; .I � T‰/ j̨ i if j 2 I0 n J:

Therefore,

@j D

´
DT‰�j if j 2 J;

D�j if j 2 I0 n J:

Observe that for j 2 I0 n J , we have T‰�j D 0, because for any k 2 J ,

hT‰�j ; ˛ki D h�j ; ˛ki D 0:

Since for all w 2 W0 and x 2 a,

Bw �x.w � u;w � u
0/ D Dw �uDw �u0 log �.w � x/ D DuDu0 log �.x/ D Bx.u; u/;

for any ˛ 2 ‰, we have
Bx0.r˛u; r˛u

0/ D Bx0.u; u
0/:

Thus, for k 2 I0, j 2 J , j ¤ k, we have

Bx0.�k ; j̨ / D Bx0.rj�k ; rj j̨ / D �Bx0.�k ; j̨ / D 0:

Therefore, by setting

� D
1

2

X
˛2ˆCC

˛_ D

rX
jD1

�j ;

we have
Bx0 j̨ D Bx0.�j ; j̨ / j̨ D Bx0.�; j̨ / j̨ :
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Hence,
hBx0�; j̨ i D hBx0�j ; j̨ i D hBx0T‰�j ; j̨ i: (4.17)

Moreover, we have

T‰Bx0T‰�j D
X
k2J

hT‰Bx0T‰�j ; ˛kiT‰�k D hBx0�; j̨ iT‰�j : (4.18)

Without loss of generality, we may replace " by any 0 < "0 < ". Indeed, by (4.13) we
have ˇ̌̌ Z

U"nU"0

en'.x;�/
d�

c.x C i�/

ˇ̌̌
� C

Z
U"nU"0

e�.n=4/Bx.�;�/ d�:

Since the mapping a 3 x 7! Bx.�; �/ is real-analytic, by (4.9) we have

Bx.�; �/ � .1 � C jhj/Bx0.�; �/ �
1

2
Bx0.�; �/;

provided that jhj < .2C/�1. Hence,ˇ̌̌ Z
U"nU"0

en'.x;�/
d�

c.x C i�/

ˇ̌̌
� C exp

°
�
1

8
nkB�1x0 k

�1
±
:

We next define a function f on bC iU" by the formula

f .z/ D
1

c.z/�‰.z/
D

1

b.z/

� Y
˛2ˆCCn‰CC

1 � e�hz;˛
_i
�� Y

˛2‰CC

1 � e�hz;˛
_i

hz; ˛_i

�
:

Observe that each factor is real-analytic on bC iU", thus there is C > 0 such that for all
�; � 2 Nr and x C i� 2 bC iU",

j@
�

�
@�xf .x C i�/j � C

j�jCj�jC1�Š�Š: (4.19)

We are going to show that there are positive constants C and C 0 such that for any � 2 NJ ,

@�Fn.x0/ D .detBx0/
�1=2�‰.B

�1
x0
�/

X

2�‰

��

.Bx0�/

n�r=2�j‰

CCjCj
 jA
n;� .x0/

CEn;� .x0/; (4.20)

where A
n;� .x0/ D a�
 .x0/CE


n;� .x0/ and

ja�
 .x0/j � C
j� jC1�Š;

jE
n;� .x0/j � C
j� jC1�Šn�1kB�1x0 k;

jEn;� .x0/j � C
j� jC1�Š exp¹�C 0nkB�1x0 k

�1
º:

(4.21)

Recall that for two multi-indices �; 
 2 Nr , we write 
 � � if and only if 
.j / � �.j /
for all j 2 I0. Let us check that (4.20) implies (4.15). Notice that, by (4.17), for 
 2 �‰ ,

.Bx0�/

h
 D

Y
j2J

.hBx0�; j̨ ihj /

.j /
D

Y
j2J

.hBx0T‰�j ; j̨ ihj /

.j /
D .Bx0h/


 :
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Since Fn is real-analytic, for h 2 a‰ , jhj < C�1 we have

Fn.x0 C h/ D .detBx0/
�1=2�‰.B

�1
x0
�/

X

2�‰

.Bx0h/

n�r=2�j‰

CCjCj
 j

�

X
��


h��
A
n;� .x0/CEn.x0; h/:

Thus
a
 .x0/ D

1


Š
a

 .x0/; g
 .x0; h/ D

X
��


1

�Š
a�
 .x0/h

��
 ;

and

E
n .x0; h/ D
X
��


1

�Š
E
n;� .x0/h

��
 ; En.x0; h/ D
X
�2NJ

1

�Š
En;� .x0/h

� :

Estimates (4.16) clearly follow from (4.21).
For the proof of (4.20), in view of (4.14) and (4.19), we can write

@�Fn.x0/ D
X

�C�D�
�2�‰

�Š

�Š�Š

Z
U"

@�x
ˇ̌
xDx0

.en'.x;�/f .x C i�//@��‰.i�/ d�:

For �C � D � , � 2 �‰ , we set

I��n D

Z
U"

@
�

�
@�x
ˇ̌
xDx0

.en'.x;�/f .x C i�//�‰.�/ d�: (4.22)

Then by the integration by parts, one can show thatˇ̌̌ Z
U"

@�x
ˇ̌
xDx0

.en'.x;�/f .x C i�//@��‰.�/ d� � .�1/j�jI��n
ˇ̌̌

� C j� jC1�Š�Š

Z
@U"

e�.n=8/Bx0 .�;�/ dS.�/

� C j� jC1�Š�Š exp¹�C 0nkB�1x0 k
�1
º;

because for � 2 a,
kB�1x0 k

�1
h�; �i � Bx0.�; �/:

In this way, we have reduced the matter to finding the asymptotic of I��n . Let 
 denote
a maximal multi-index belonging to �‰ satisfying � � 
 � � . We claim that

I��n D .detBx0/
�1=2�‰.B

�1
x0
�/.Bx0�/


n�r=2�j‰
CCjCj
 jA��n .x0/; (4.23)

where A��n .x0/ D a��.x0/CE
��
n .x0/ and

ja��.x0/j � C
j� jC1�Š�Š; jE��n .x0/j � C

j� jC1�Š�Šn�1kB�1x0 k:

We emphasize that the degree of �‰.�/ is j‰CCj, thus the main difficulty in show-
ing (4.23) lies in finding the remaining cancellations. To do so, by Leibniz’s rule together
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with Lemma 2.3 we express the integrand in (4.22) as a linear combination of terms of
a form

nmen'.x0;�/
� mY
jD1

@
�j
�
@
�j
x '.x0; �/

�
@
�0
�
@�0x f .x0 C i�/;

where m 2 N, .�j W 0 � j � m/ and .�j W 0 � j � m/ are sequences of multi-indices
such that j�j j C j�j j � 1 for j � 1 and

� D

mX
jD0

�j ; � D

mX
jD0

�j :

Therefore, to prove (4.23) it is enough to establish the asymptotic of

In D

Z
U"

en'.x0;�/
� mY
jD0

gj .�/

�
�‰.�/ d�; (4.24)

where
g0.�/ D

1

�0Š�0Š
@
�0
�
@�0x f .x0 C i�/;

and for j 2 ¹1; : : : ; mº,

gj .�/ D
1

�j Š�j Š
@
�j
�
@
�j
x '.x0; �/:

We claim that

In D .detBx0/
�1=2�‰.B

�1
x0
�/.Bx0�/


n�r=2�j‰
CCj�mCj
 jAn.x0/; (4.25)

where An.x0/ D a.x0/CEn.x0/ and

ja.x0/j � C
j� jC1; jEn.x0/j � C

j� jC1n�1kB�1x0 k:

For the proof, we set J
 D ¹j 2 J W 
 C ej 2 �‰º. We introduce an auxiliary root
system

‡ D ¹˛ 2 ‰ W h˛; �j i D 0 if j … J
º:

This is the main idea that the root subsystem ‡ describes the remaining symmetries of
the integrand in (4.24).

For a multi-index ˇ 2 Nr , we set

ˇ0.j / D

´
ˇ.j / if j̨ 2 ‡;

0 otherwise,

and ˇ00 D ˇ � ˇ0. Let

ƒ0 D ¹1 � j � m W j�
0
j j C j�

0
j j D 0º and ƒc0 D ¹0 � j � m W j … ƒ0º:
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We construct a sequence of multi-indices . ǰ W 0 � j �m/ as follows: if j 2ƒ0, then we
take ǰ � �j , j ǰ j D min¹2; j�j jº, otherwise ǰ � 2.�

0
j C �

0
j /, j ǰ j D 2 and jˇ0j D 0.

Let ˇ D
Pm
jD0 ǰ . By maximality of 
 , we have �00 � 
 00 and 
 0 D �0 C �0, thus

ˇ � �00 C 2
 0 � 
 C 
 0: (4.26)

We set
K0 D j‡

CC
j C

X
j2ƒ0

.2 � j ǰ j/ D j‡
CC
j C 2m � jˇj:

Let us notice that if j 2ƒ0, then the function gj isW0.‡/-invariant. Indeed, by (4.7), for
all ˛ 2 ‰ and � 2 U",

'.x0; r˛�/ D '.r˛x0; r˛�/ D '.x0; �/:

Since j 2 ƒ0, if �j .k/C �j .k/ > 0, then ˛k 2 ‰ n ‡ , thus h˛; �ki D 0 for all ˛ 2 ‡ .
Hence, for all � 2 U" and ˛ 2 ‡ ,

@
�j
�
@
�j
x '.x0; r˛�/ D @

�j
�
@
�j
x '.x0; �/:

Therefore, we may write

In D
1

jW0.‡/j

Z
U"

en'.x0;�/G.�/�‰.�/ d�;

where
G.�/ D

� Y
j2ƒ0

gj .�/
� X
w2W0.‡/

.�1/`.w/
Y
j2ƒc

0

gj .w � �/:

To identify cancellations in In, we need the following two propositions.

Proposition 4.5. Let � 2 Nr , j� j � 2. If �.k/ � 1 for k 2 J , then

j@� log �.x0/j � C j� jC1�Šh˛k ; Bx0�i:

Proof. Let h.x/ D @��ek log �.x/. Suppose that for each j 2 I0 such that ej � � � ek ,
we have h�j ; T‰�ki D 0. Then h�j ; T‰�ki ¤ 0 implies that j 2 J and h.rjx/ D h.x/.
Hence,

D
j̨
h.x0/ D �Drj j̨

h.x0/ D �D j̨
h.x0/ D 0:

Therefore,

@� log �.x0/ D @kh.x0/ D
X
j2J

h�j ; T‰�kiD j̨
h.x0/ D 0:

Otherwise, there is j 2 I0 such that ej � � � ek and h�j ; T‰�ki ¤ 0. Since j 2 J ,
by (4.18),

hBx0�; j̨ ihT‰�j ; �ki D hT‰Bx0T‰�j ; �ki D h�j ; T‰Bx0T‰�ki

D hBx0�; ˛kih�j ; T‰�ki
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and so hBx0�; j̨ i D hBx0�; ˛ki. Therefore, by (4.9), we have

j@� log �.x0/j � C j� jC1�Š
q
Bx0.T‰�k ; T‰�k/Bx0.T‰�j ; T‰�j /

D C j� jC1�ŠjT‰�kj � jT‰�j j

q
hBx0�; ˛kihBx0�; j̨ i;

which finishes the proof.

In the next proposition, we use our variant of marriage lemma, see Lemma 2.5.

Proposition 4.6. We have

�‡ .�/ � �‰.Bx0�/ D .Bx0�/

 00�‰.�/ � �‡ .Bx0�/:

Proof. Let X D ‰CC and Ci D ¹˛ 2 ‰CC W h˛; �i i > 0º. Then 
 2 �‰ is admissible
(see Section 2.3). We choose any partial partition .Xj W j 2 J / corresponding to 
 .

For any u 2 a and ˛ 2 ‰CC, we have

hBx0˛; ui D �hBx0r˛˛; ui D �hBx0˛; ui C h˛; uihBx0˛; ˛
_
i;

thus
hBx0˛; ui

h˛; ui
D
hBx0˛; ˛i

h˛; ˛i
;

provided that h˛; ui ¤ 0. Therefore, for ˛ 2 Xj ,

hBx0˛; �i

h˛; �i
D
hBx0˛; ˛i

h˛; ˛i
D
hBx0˛; T‰�j i

h˛; T‰�j i
;

which together with (4.18) implies that

hBx0˛; �i D hBx0�; j̨ ih˛; �i:

Hence, by Lemma 2.5, we obtainY
˛2‰CCn‡CC

h˛;Bx0�i D
Y

j W j̨2‰
CCn‡CC

Y
˛2Xj

h˛;Bx0�i

D .Bx0�/

 00

Y
j W j̨2‰

CCn‡CC

Y
˛2Xj

h˛; �i

D .Bx0�/

 00

Y
˛2‰CCn‡CC

h˛; �i:

We are now in the position to prove (4.25). Since the function G is real-analytic,
we can expand G.�/ about � D 0 into convergent power series. We are going to estimate
Dk
�
G.0/ for k 2 N. Let .kj W j 2 ƒ0/ and let k0 2 N be such that

k0 C
X
j2ƒ0

kj D k:



Asymptotic behavior of heat kernels and Green functions on affine buildings 4679

We first consider j 2ƒ0. Observe that kj C j�j j � 2, otherwise, by (4.7),Dkj
�
gj .0/D 0.

We claim that,

jD
kj
�
gj .0/j � C

kjCj�j jCj�j jC1kj Š.B
1=2
x0
�/ ǰ jB1=2x0

� j2�j ǰ jj� jkj�2Cj ǰ j: (4.27)

For the proof, we need to consider three cases:

Case 1: j�j j D 0. Then j ǰ j D 0 and kj � 2. By (4.9), we get

jD
kj
�
gj .0/j � C

kjCj�j jC1kj ŠBx0.�; �/j� j
kj�2 D C kjCj�j jC1kj ŠjB

1=2
x0
� j2j� jkj�2:

Case 2: j�j j D 1. Let ǰ D ep for p 2 J . Since kj � 1, by (4.9) and (4.18), we obtain

jD
kj
�
gj .0/j � C

kjCj�j jCj�j jC1kj Š

q
Bx0.�; �/Bx0.T‰�p; T‰�p/j� j

kj�1

� C kjCj�j jCj�j jC1kj ŠjB
1=2
x0
� jhB1=2x0

�; p̨ij� j
kj�1:

Case 3: j�j j � 2. Let ǰ D ep C eq for p; q 2 J . Then we conclude that

jD
kj
�
gj .0/j � C

kjCj�j jCj�j jC1kj Š

q
Bx0.T‰�p; T‰�p/Bx0.T‰�q; T‰�q/j� j

kj

� C kjCj�j jCj�j jC1kj ŠhB
1=2
x0
�; p̨ihB

1=2
x0
�; ˛qij� j

kj :

Let us next consider a sequence .�j W j 2 ƒc0/ of multi-indices from Nr such that

k0 D
X
j2ƒc

0

j�j j: (4.28)

We may assume that X
w2W0.‡/

.�1/`.w/
Y
j2ƒc

0

.w � �/�j ¤ 0; (4.29)

in particular, k0 � j‡CCj. Since the left-hand side of (4.29) is anti-invariant under the
action of W0.‡/, it is divisible by �‡ .�/. Moreover,

�‡ .�/ D �‡ .B
�1=2
x0

�/�‡ .B
1=2
x0
�/;

thus we obtainˇ̌̌ X
w2W0.‡/

.�1/`.w/
Y
j2ƒc

0

.w � �/�j
ˇ̌̌
� C�‡ .B

�1=2
x0

�/jB1=2x0
� jj‡

CCj:

If j 2 ƒc0, j � 1, then by Proposition 4.5, we have

j@�j gj .0/j � C
j�j jCj�j jCj�j jC1�j Š.B

1=2
x0
�/ ǰ ;

which is also correct for j D 0 because jˇ0j D 0. Therefore,ˇ̌̌� X
w2W0.‡/

.�1/`.w/
Y
j2ƒc

0

.w � �/�j
� Y
j2ƒc

0

@�j gj .0/
ˇ̌̌

� C�‡ .B
�1=2
x0

�/jB1=2x0
� jj‡

CCj
j� jk0�j‡

CCj
Y
j2ƒc

0

C j�j jCj�j jCj�j jC1�j Š.B
1=2
x0
�/ ǰ :
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By summing up over .�j W j 2 ƒc0/ satisfying (4.28), we arrive atˇ̌̌ X
w2W0.‡/

.�1/`.w/D
k0
w ��

� Y
j2ƒc

0

gj .�/
�
�D0

ˇ̌̌
� C k0k0Š�‡ .B

�1=2
x0

�/jB1=2x0
� jj‡

CCj
j� jk0�j‡

CCj
Y
j2ƒc

0

C j�j jCj�j jC1.B1=2x0
�/ ǰ :

Finally, the above estimate together with (4.27) imply that for k � K0, we have

jDk
�G.0/j � C

j� jCkC1kŠ�‡ .B
�1=2
x0

�/.B1=2x0
�/ˇ jB1=2x0

� jK0 j� jk�K0 ; (4.30)

and Dk
�
G.0/ D 0 if k < K0. By taking " < C�1, for j� j � " and K � K0, we conclude

thatˇ̌̌ X
k�K

Dk
�
G.0/

kŠ

ˇ̌̌
� C j� jCKC1�‡ .B

�1=2
x0

�/.B1=2x0
�/ˇkB�1x0 k

.K�K0/=2jB1=2x0
� jK : (4.31)

In particular, for j� j � ",

jG.�/j � C j� jCK0C1�‡ .B
�1=2
x0

�/.B1=2x0
�/ˇ jB1=2x0

� jK0 : (4.32)

We are now ready to prove (4.25). We first treat the case when K0 C j‰CCj 2 2Z. Let us
write

en .x0;�/G.�/ D .en .x0;�/ � 1 � n .x0; �//G.�/C n .x0; �/
�
G.�/ �

D
K0
�
G.0/

K0Š

�
C

�
G.�/ �

D
K0
�
G.0/

K0Š
�
D
K0C1

�
G.0/

.K0 C 1/Š

�
C n

�
 .x0; �/ �

D3
�
 .x0; 0/

3Š

�DK0
�
G.0/

K0Š

C n
�D3

�
 .x0; 0/

3Š
�
D
K0
�
G.0/

K0Š

�
C
D
K0C1

�
G.0/

.K0 C 1/Š
C
D
K0
�
G.0/

K0Š
;

and split In into seven corresponding integrals denoted by I1; : : : ; I7, respectively.
Since for a 2 C,

jea � 1 � aj �
jaj2

2
ejaj;

by (4.10) and (4.12), we can estimate

jen .x0;�/ � 1 � n .x0; �/j �
1

2
e.n=4/Bx.�;�/.n .x0; �//

2

� Ce.n=4/Bx.�;�/n2kB�1x0 k � jB
1=2
x0
� j6:

In view of Proposition 4.6,

�‡ .B
�1=2
x0

�/ � �‰.�/ D �‡ .B
�1=2
x0

�/ � �‰.B
�1=2
x0

�/ � �‰.B
1=2
x0
�/

D
�‡ .�/

�‰.�/
.B1=2x0

�/

00

�‰.B
�1
x0
�/ � �‰.B

1=2
x0
�/;
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therefore, by (4.32) we get

jI1j � C
j� jCK0C1�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n2kB�1x0 k

�

Z
a

e�.n=2/Bx0 .�;�/jB1=2x0
� jK0Cj‰

CCjC6 d�

� C j� jCK0C1.detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2n�1kB�1x0 k:

For the second integrand, we use (4.10) and (4.31) to estimateˇ̌̌
n .x0; �/

�
G.�/ �

D
K0
�
G.0/

K0Š

�ˇ̌̌
� C j� jCK0C1�‡ .B

�1=2
x0

�/.B1=2x0
�/ˇnkB�1x0 k � jB

1=2
x0
� jK0C4;

thus

jI2j � C
j� jCK0C1�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

nkB�1x0 k

�

Z
a

e�.n=2/Bx0 .�;�/jB1=2x0
� jK0Cj‰

CCjC4 d�

� C j� jCK0C1.detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2n�1kB�1x0 k:

By (4.31), the third integrand is bounded byˇ̌̌
G.�/ �

D
K0
�
G.0/

K0Š
�
D
K0C1

�
G.0/

.K0 C 1/Š

ˇ̌̌
� C j� jCK0C1�‡ .B

�1=2
x0

�/.B1=2x0
�/ˇkB�1x0 k � jB

1=2
x0
� jK0C2;

hence,

jI3j � C
j� jCK0C1�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

kB�1x0 k

�

Z
a

e�.n=2/Bx0 .�;�/jB1=2x0
� jK0Cj‰

CCjC2 d�

� C j� jCK0C1.detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2n�1kB�1x0 k:

For the fourth integrand, we observe that by (4.9),ˇ̌̌
 .x0; �/ �

D3
�
 .x0; �/

3Š

ˇ̌̌
D
1

3Š

ˇ̌̌̌ Z 1

0

.1 � t /3D4
� Log �.x0 C i� t/ dt

ˇ̌̌̌
� C j� j2Bx0.�; �/:

Therefore, by (4.30), we obtainˇ̌̌
n
�
 .x0; �/ �

D3
�
 .x0; 0/

3Š

�DK0
�
G.0/

K0Š

ˇ̌̌
� C j� jCK0C1�‡ .B

�1=2
x0

�/.B1=2x0
�/ˇnkB�1x0 k � jB

1=2
x0
� jK0C4;
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and the corresponding integral is again bounded by

C j� jCK0C1.detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2n�1kB�1x0 k:

The fifth and sixth integrals equal zero because the integrands are odd functions as 3C
K0 C j‰

CCj and 1CK0 C j‰CCj are odd integers. Finally, by (4.30), we haveˇ̌̌ Z
a

e�.n=2/Bx0 .�;�/
D
K0
�
G.0/

K0Š
�‰.�/ d� � I7

ˇ̌̌
� C j� jCK0C1�‰.B

�1=2
x0

/.B1=2x0
�/ˇC


00

Z
U c"

e�.n=2/Bx0 .�;�/jB1=2x0
� jK0Cj‰

CCj d�

� C j� jCK0C1.detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2

� exp¹�C 0nkB�1x0 k
�1
º:

By the change of variables, we obtainZ
a

e�.n=2/Bx0 .�;�/
D
K0
�
G.0/

K0Š
�‰.�/ d�

D n�.K0Cj‰
CCjCr/=2

Z
a

e�Bx0 .u;u/=2
D
K0
u G.0/

K0Š
�‰.u/ du;

hence, by (4.30), we getˇ̌̌ Z
a

e�Bx0 .u;u/=2
D
K0
u G.0/

K0Š
�‰.u/ du

ˇ̌̌
� C j� jCK0C1.detBx0/

�1=2�‰.B
�1
x0
�/.B1=2x0

�/ˇC

00

:

Therefore, we conclude that

In D .detBx0/
�1=2�‰.B

�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2An.x0/: (4.33)

What is left is to compare the exponents. In view of (4.26), ˇ C 
 00 � 2
 , and by Propo-
sition 4.6, j
 00j C j‡CCj D j‰CCj. Therefore,

K0 C j‰
CC
j � 2m D j‡CCj � jˇj C j‰CCj D 2j‰CCj � jˇj � j
 00j;

giving 2.j‰CCj � j
 j/ in the case when ˇ C 
 00 D 2
 . If ˇ C 
 00 � 2
 , then

.B1=2x0
�/ˇC


00

n�.k0Cj‰
CCjCr/=2

� .Bx0�/

n�r=2�j‰

CCj�mCj
 j.n�1kB�1x0 k/
.jˇ jCj
 00j/=2�j
 j;

which concludes the proof of (4.25) when K0 C j‰CCj 2 2Z.
If K0 C j‰CCj … 2Z, we write

en .x0;�/G.�/ D .en .x0;�/ � 1/G.�/C
�
G.�/ �

D
K0
�
G.0/

K0Š

�
C
D
K0
�
G.0/

K0Š
:
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By a reasoning analogous to the previous case, one can show that

jInj � C
j� jCK0C1.detBx0/

�1=2�‰.B
�1
x0
�/.B1=2x0

�/ˇC

00

n�.K0Cj‰
CCjCr/=2

� n�1=2kB�1x0 k
1=2: (4.34)

Since jˇj C j
 00j D j‰CCj C 2m � K0 62 2Z, by (4.26) we get jˇj C j
 00j < 2j
 j.
Thus

.B1=2x0
�/ˇC


00

� .Bx0�/


kB�1x0 k

1=2:

Finally, (4.33) together with (4.34) imply (4.25) and the proof of Theorem 4.4 is com-
pleted.

In the generic case, that is, when J D ;, to determine the asymptotic behavior of Fn,
we can use the same reasoning as we have applied in Theorem 4.4 to study In for m D 0,
� D � D 0, and

g0.�/ D
1

c.x0 C i�/
;

resulting in the following corollary.

Corollary 4.7. If J D ;, then there is C > 0 such that

Fn.x0/ D .detBx0/
�1=2n�r=2.a0.x0/CEn.x0//;

where
ja0.x0/j � C; jEn.x0/j � Cn

�1
kB�1x0 k:

The constant C is independent of x0 and n.

Based on Theorem 4.4 and Corollary 4.7, we can finish the proof of the theorem.
Indeed, by taking hn D sn � tn, we get

Fn.sn/ D .detBtn/
�1=2�‰.B

�1
tn
�/

X

2�‰

.Btnhn/

n�r=2�j‰

CCjCj
 jA
n.tn; hn/

CEn.tn; hn/; (4.35)

where A
n.tn; hn/ D a
 .tn/C g
 .tn; hn/CE


n .tn; hn/, and

ja
 .tn/j � C; jg
 .tn; hn/j � C jhnj;

jE
n .tn; hn/j � Cn
�1
kB�1tn k; jEn.tn; hn/j � C exp¹�C 0nkB�1tn k

�1
º:

Now, our task is to estimate jhnj and kB�1tn k in terms of ın. By (2.1) and Theorem 2.2,
we have

B0.u; u/ � Btn.u; u/ � C dist.ın; @M/2�B0.u; u/:

Hence, we get

kB�1tn k D .min¹Btn.u; u/ W juj D 1º/
�1
� C dist.ın; @M/�2�; (4.36)
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and
rŠ detB0 � detBtn � C dist.ın; @M/2r�:

To control jhnj, we estimate hsn; ˛_i for ˛ 2 ‰C. By W0-invariance and Theorem 2.1,
we have

hsn; ˛
_
i D �hr˛sn; ˛

_
i D �hs.ın � hın; ˛i˛

_/; ˛_i:

By the triangle inequality, for any t 2 Œ0; 1� we have

dist.ın � thın; ˛i˛_; @M/ � dist.ın; @M/ � j˛_jhın; ˛i �
1

2
dist.ın; @M/;

provided that n is large enough because, by (4.2a) and (4.2b),

lim
n!1

hın; ˛i dist.ın; @M/�1 D 0:

Hence, by (4.36), we can estimate

2hsn; ˛
_
i D hsn; ˛

_
i � hs.ın � hın; ˛i˛

_/; ˛_i

� hın; ˛i sup
0�t�1

hB�1s.ın�thın;˛i˛_/˛
_; ˛_i � C hın; ˛i dist.ın; @M/�2�;

which gives
jhnj � C

X
˛2‰C

hın; ˛i dist.ın; @M/�2�: (4.37)

Lastly, since
n dist.ın; @M/� D n1=2.n dist.ın; @M/2�/1=2;

we obtain

exp¹�C 0n dist.ın; @M/�º

� C 0.detBtn/
�1=2�‰.B

�1
tn
�/n�r=2�j‰

CCj�1 dist.ın; @M/�2�: (4.38)

The argument above allows us to control the approximation in (4.35) in terms of ın.
We next claim the following.

Claim 4.8. There are R;C > 0 such that for all h 2 a‰ , jhj � R and ˛ 2 ‰,

jD˛ log �.x0 C h/ � Bx0.˛; x0 C h/j � C jBx0.˛; x0 C h/j � jhj:

For the proof, let us observe that log� is a real-analytic function on a. By Lemma 2.4,
there is C > 0 such that for j � 1,

D
j

h
log �.x0/ � C jC1j Šjhjj ;

where C > 0 is independent of x0. Hence, for jhj < C�1 and ˛ 2 ‰, we can write

D˛ log �.x0 C h/ D
X
k�0

1

kŠ
Dk
hD˛ log �.x0/:
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Let us consider k � 2. Then

Dk
hD˛ log �.x0/ D Dk

r˛h
Dr˛˛ log �.x0/ D �.Dh � hh; ˛_iD˛/kD˛ log �.x0/

D �DhD˛ log �.x0/

�

kX
jD1

kŠ

j Š.k � j /Š
.�1/j hh; ˛_i

j
D
k�j

h
DjC1
˛ log �.x0/:

For j 2 ¹1; : : : ; kº, by (4.9),

jD
k�j

h
DjC1
˛ log �.x0/j � C kC1.k � j /Šj ŠBx0.˛; ˛/jhj

k�j
j˛jj :

Since

hBx0˛; hi D �hr˛.Bx0˛/; hi D �hBx0˛; hi C Bx0.˛; ˛/h˛
_; hi;

we get
jDk

hD˛ log �.x0/j � C kC1kŠjBx0.˛; h/j � jhj
k�1:

Hence,
jD˛ log �.x0 C h/ �DhD˛ log �.x0/j � C jBx0.˛; h/j � jhj;

proving the claim.
With a help of Claim 4.8, for all ˛ 2 ‰,

jhın; ˛i � hBtnhn; ˛ij � C jhBtnhn; ˛ij � jhnj:

Therefore, by (4.36)–(4.38), we can write

Fn.!n/ D .detBtn/
�1=2�‰.B

�1
tn
�/n�r=2�j‰

CCje�n�.ın/
X

2�‰

!
nA


n.tn; hn/; (4.39)

where A
n.tn; hn/ D a
 .tn/CE


n .tn; hn/, and

ja
 .tn/j � C; jE


n .tn; hn/j � C

X
˛2‰CC

.hın; ˛i C n
�1/ dist.ın; @M/�2�:

Notice that

.detBtn/
�1=2�‰.B

�1
tn
�/c‰ D

Z
a

e�Btn .u;u/=2j�‰.u/j
2 du;

where
c‰ D

Z
a

e�1=2juj
2

j�‰.u/j
2 du:

Analogously, in the generic case, by Corollary 4.7, we obtain

Fn.!n/ D .detBsn/
�1=2n�r=2e�n�.ın/.a0.sn/CEn.sn//;

where
ja0.sn/j � C; jEn.sn/j � Cn

�1 dist.ın; @M/�2�:



B. Trojan 4686

The final task is to identify the function

a?‰ 3 t 7!
X

2�‰

�
a
 .t/: (4.40)

To do so, we perform analysis resembling a proof of the local limit theorem towards the
wall of aC. Fix !; � 2 PC such that h!; ˛i D 0 for all ˛ 2 ‰. There is m such that
V�.o/; V!.o/ � p.nI �/ for all n � m. By increasing m, we may assume that ı D m�1!
belongs to M. Let .!n W n � j / be a sequence of co-weights such that for .k C 1/m �
n < .k C 2/m, k 2 N [ ¹0º,

!n D k! C �:

We set ın D n�1!n, sn D s.ın/ and t D s.ı/. By (4.39), we have

lim
n!1

nr=2Cj‰
CCjen�.ın/Fn.!n/ D .detBt /�1=2�‰.B�1t �/

X

2�‰

�
a
 .t/: (4.41)

The limit (4.41) can be also computed by different method. By Claim 4.2,

Fn.!n/ D �.t/
ne�ht;!ni

Z
U

��.t C i�/
�.t/

�n
e�ih�;!ni

d�
c.t C i�/

;

thus,

Fn.!n/ D �.t/
ne�ht;!ni

� Z
U"

en'.t;�/e�ih�;!n�nıi
d�

c.t C i�/
CEn.ın/

�
; (4.42)

where
jEn.ın/j � Ce

�C 0n:

We first show that
lim
n!1

n.�.ın/ � log �.t/C ht; ıni/ D 0: (4.43)

By writing Taylor’s polynomial for log � centered at t , we get

jlog �.sn/ � log �.t/ � hsn � t ;r log �.t/ij � C jsn � t j2:

Since ı D r log �.t/, we have

jhsn � t ;r log �.t/i � hsn � t ; ınij � jsn � t j � jın � ıj:

Hence,

j�.ın/ � log �.t/C ht; ınij D jlog �.sn/ � log �.t/ � hsn � t ; ınij

� C jsn � t j
2
C jsn � t j � jın � ıj

� C 0jın � ıj
2;

which proves (4.43), because njın � ıj � j�j C 2j!j.
We next deal with the integral over U".
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Claim 4.9. We have that

lim
n!1

nr=2Cj‰
CCj

Z
U"

en'.t;�/e�ih�;!n�nıi
d�

c.t C i�/
D .2�/rQ‰.t/

G0.�/

jb‰.0/j2
;

where

G0.�/ D lim
�!0

1

jW0.‰/j

X
w2W0.‰/

e�ihw ��;�ic‰.�iw � �/:

For the proof, we consider a sequence of functions on U" defined by

fn.�/ D e
n .t;�/e�ih�;k!C.I�T‰/��nıi

c‰.i�/
c.t C i�/

�
1

j�‰.�/c‰.i�/j2
:

Note that a simple reflection rj for j 2 J , sends j̨ to � j̨ and permutes elements
in ˆC n‰C. Consequently, fn is W0.‰/-invariant. Since

1

j�‰.�/c‰.i�/j
D

Y
˛2‰CC

ˇ̌̌1 � e�ih�;˛_i
h�; ˛_i

ˇ̌̌
� j1 � ��12˛ �

�1=2
˛ e�.i=2/h�;˛

_i
j
�1

� j1C ��1=2˛ e�.i=2/h�;˛
_i
j
�1
� C

and ˇ̌̌ c‰.i�/
c.t C i�/

ˇ̌̌
D

Y
˛2ˆCn‰C

ˇ̌̌̌
1 � �

�1=2

˛=2
e�htCi�;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�htCi�;˛

_i

ˇ̌̌̌
� C;

by (4.12), for u 2 Upn" we get

jfn.n
�1=2u/j � eBt .u;u/=4:

Moreover, we have

jhn�1=2u; k! C .I � T‰/� � nıij � n
�1=2
juj.j�j C 2j!j/;

thus, by (4.10), we obtain

lim
n!1

fn.n
�1=2u/ D

1

jb‰.0/j
2
�

Y
˛2ˆCn‰C

1 � �
�1=2

˛=2
e�ht;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�ht;˛

_i
:

We now use W0.‰/-invariance of fn to writeZ
U"

en'.t;�/e�ih�;!n�nıi
d�

c.t C i�/
D

Z
U"

e�.n=2/Bt .�;�/fn.�/g.�/j�‰.�/j
2 d�;

where
g.�/ D

1

W0.‰/

X
w2W0.‰/

e�ihw ��;T‰�ic‰.�iw � �/:



B. Trojan 4688

Because the function

� 7!
X

w2W0.‰/

.�1/`.w/e�ihw ��;T‰�C�‰ib‰.�iw � �/

is an anti-invariant exponential polynomial, it is divisible by the Weyl denominator

�‰.i�/ D
Y

˛2‰CC

.eih�;˛
_i=2
� e�ih�;˛

_i=2/:

Hence, for � 2 U",

jg.�/j D
ˇ̌̌ 1

�‰.i�/

X
w2W0.‰/

.�1/`.w/e�ihw ��;T‰�C�‰ib‰.�iw � �/
ˇ̌̌
� C:

Finally, using the dominated convergence, we can evaluate the limit

lim
n!1

nr=2Cj‰
CCj

Z
U"

en'.t;�/e�ih�;!n�nıni
d�

c.t C i�/

D lim
n!1

Z
Upn"

e�Bt .u;u/=2fn.n
�1=2u/g.n�1=2u/j�‰.u/j

2 du

D .2�/rQ‰.t/
G0.�/

jb‰.0/j2
;

proving the claim.
We now apply Claim 4.9 together with (4.43) to formula (4.42) to get

lim
n!1

nr=2Cj‰
CCjen�.ın/Fn.!n/ D .2�/

rQ‰.t/
G0.�/

jb‰.0/j2
: (4.44)

In view of Theorem 4.4, function (4.40) is continuous, thus comparison (4.44) with (4.41)
gives X


2�‰

�
a
 .t/ D c‰

� Y
˛2ˆCn‰C

1 � e�ht;˛
_i

1 � q�1˛ e�ht;˛
_i

� G0.�/

jb‰.0/j2
:

Our final step is to show how to control the error term in (4.39). Let us observe that for
all x; y; u 2 a,

jDu log �.x/ �Du log �.y/j � sup
0�t�1

jBxCt.y�x/.u; x � y/j

�
p
B0.u; u/B0.x � y; x � y/ � C juj � jx � yj:

Since for ˛ 2 ˆC,

D˛ log �.sn/ D �Dr˛˛ log �.sn/ D �D˛ log �.sn � hsn; ˛_i˛/;

we obtain

2hın; ˛i D D˛ log �.sn/ �D˛ log �.sn � hsn; ˛_i˛/ � C hsn; ˛_i: (4.45)
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Therefore, (4.2c) and (4.37) imply that

htn; ˛
_
i � hsn; ˛

_
i � jhnj � C

�1� for all ˛ 2 ˆC n‰C:

In particular, there is C > 0 such that

Y
˛2ˆCn‰C

1 � �
�1=2

˛=2
e�htn;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�htn;˛

_i
� C;

and since (see [1, 6])
C�1�‰.!n C �/ � G0.!n/;

given 
 2 �‰ , we can estimate

!
n � �‰.!n C �/ � C
� Y
˛2ˆCn‰C

1 � �
�1=2

˛=2
e�htn;˛

_i

1 � ��1˛ �
�1=2

˛=2
e�htn;˛

_i

� G0.!n/
jb‰.0/j2

:

Hence,

Fn.!n/ D .2�/
rn�r=2�j‰

CCje�n�.ın/Q‰.tn/
G0.!n/

jb‰.0/j2
.1CEn.ın//;

which completes the proof of Theorem 4.1.

The asymptotic in Theorem 4.1 is uniform on a large region with respect to n and v,
but it depends on the implicit function ı 7! s.ı/. In most applications, one needs the
asymptotic of the heat kernel in the region where !nD o.n/ accompanied by global upper
estimates. For this reason we state the following corollary which is a direct consequence
of Theorem 4.1.

Corollary 4.10. Let .!n W n 2 N/ be a sequence of co-weights such that

V!n.o/ � suppp.nI � /:

We assume that ın D n�1!n satisfies

lim
n!1

hın; ˛i D 0 for all ˛ 2 ˆ:

Then for any sequence of good vertices .vn W n 2 N/ such that vn 2 V!n.o/,

p.nI vn/ D n
�r=2�jˆCCjP!n.0/%

ne�n�.ın/.C0 CO.jınj/CO.n�1//; (4.46)

where
C0 D W0.q

�1/
1

jbˆ.0/j2
� 1
2�

�r Z
a

e�B0.u;u/=2j�ˆ.u/j
2 du:

The implied constants in (4.46) are absolute.
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Remark 4.11. It is not possible to replace �.ın/ by 1
2
B�10 .ın; ın/ without introducing an

error term of a very different nature. Indeed, by (2.4),

exp¹�n�.ın/º D exp
°
�
n

2
B�10 .ın; ın/

±
exp¹O.njınj3/º:

If ın approaches @M, then njınj3 cannot be small. Note that the third power may be
replaced by higher degree whenever the random walk has vanishing moments.

Remark 4.12. It is relatively easy to obtain a global upper bounds on p.nI v/, namely,
by Claim 4.2, for any u 2 b and v 2 V!.o/, we have

p.nI v/ D
� 1
2�

�r
�0.!/

�1=2%n�.u/ne�hu;!i
Z
U

��.uC i�/
�.u/

�n
e�ih�;!i

d�
c.uC i�/

:

Thus,

p.nI v/ � C�0.!/
�1=2%n.min¹�.u/e�hu;ıi W u 2 bº/n

D C�0.!/
�1=2%ne�n�.ı/: (4.47)

4.3. Green functions

In this section, we prove the asymptotic formula for the Green function of the random
walk with the transition probability p. Let us recall that the Green function G� is defined
for � 2 .0; %�1� and x; y 2 VP by the formula

G� .x; y/ D
X
n�0

�np.nI x; y/:

We set G� .x/ D G� .o; x/.
We first treat the case � 2 .0; %�1/. Let

C D ¹x 2 a W �.x/ D .�%/�1º:

For u 2 S r�1, the unit sphere in a centered at the origin, there is the unique point su 2 C

such that
r�.su/ D jr�.su/ju:

We have the following assertion.

Theorem 4.13. Let ‰ ¨ ˆ. Suppose that u D j!j�1! for ! 2 PC satisfies

lim
j!j!1

hu; ˛i D 0 for all ˛ 2 ‰; (4.48a)

hu; ˛i � � for all ˛ 2 ˆC n‰C; (4.48b)

for some � > 0. Then for all x 2 V!.o/,

G� .x/ D j!j
�.r�1/=2�j‰CCjP‰.!/R‰.u/e

�hsu;!i.1C o.1//; (4.49)

as j!j tends to infinity, where

R‰.u/ D
p
2�jr log �.su/j.r�3/=2Cj‰

CCj.B�1su .u; u//
�1=2Q‰.su/:
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Proof. Fix u 2 S r�1 and let t0 Dmin¹t > 0 W t�1u 2Mº. For t > t0, we have t�1u 2M,
thus we may define st D s.t�1u/. Consider a function on .t0;1/ given by the formula

 u.t/ D t .log.�%/ � �.t�1u//:

A simple calculation leads to

 0u.t/ D log.�%/C log �.st / and  00u.t/ D �
1

t3
B�1st .u; u/:

Hence,  u is concave in .t0;1/. Since

lim
t!t0

�.st / D C1 and lim
t!C1

�.st / D 1;

there is the unique maximum attained at tu > t0 satisfying

0 D  0u.tu/ D log.�%/C log �.stu/:

Because r log �.stu/ D t
�1
u u, we conclude that su D stu and

j!j �  u.tu/ D �hsu; !i: (4.50)

By compactness of S r�1, there is ı > 0 such that for all u 2 S r�1,

dist.t�1u u; @M/ � 2ı:

Hence, for all t 2 Iı , where

Iı D ¹t 2 R W jt�1 � t�1u j � ıº;

we have
dist.t�1u; @M/ � ı;

which entails that the mapping Iı 3 t 7! st , and all its derivatives are bounded independent
of u 2 S r�1. Therefore, there is C > 0 such that for all t 2 Iı and u 2 S r�1,ˇ̌̌

 u.t/ �  u.tu/C
1

2t3u
B�1su .u; u/jt � tuj

2
ˇ̌̌
� C jt � tuj

3: (4.51)

Moreover,  u is concave thus there is c > 0 such that for all t > t0 and u 2 S r�1,

 u.t/ �  u.tu/ � �
1

2t3u
B�1su .u; u/jt � tuj

2 (4.52)

� �2cjt � tuj
2: (4.53)

By a straightforward computation, one can check that the function Q‰ and all its deriva-
tives are bounded on compact sets. Therefore, for all t 2 Iı and u 2 S r�1 satisfying
formula (4.48b), we can estimate

jQ‰..I � T‰/st / �Q‰.su/j � C.jst � suj C jT‰suj/

� C
�
jt�1 � t�1u j C

X
˛2‰C

hu; ˛i
�
; (4.54)
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where in the last inequality we have used (4.37). Finally, by (4.45), there is C > 0 such
that for all u 2 S r�1 satisfying (4.48b),

C�1 � Q‰.su/ � C:

We are now ready to deal with Green function G� .x/. We write

G� .x/ D
X
n2A

�np.nI x/C
X
n2B

�np.nI x/;

where
B D ¹n 2 N W jn � j!jtuj � j!j

3=5 and n � j!jt0º;

and
A D ¹n 2 N W jn � tuj!jj < j!j

3=5
º:

We can assume that
j!j � 32max¹t5u W u 2 S

r�1
º C ı�5=2:

Let us first estimate the sum over B . Since (see [1, 6])

C
� Y
˛2ˆC

q�h˛;!i=2˛

�
� P‰.!/;

by (4.47), (4.50) and (4.53), we getX
n2B

�np.nI x/ � CP‰.!/
X
n2B

ej!j� u.j!j
�1n/

� CP‰.!/e
�hsu;!ie�cj!j

1=5
X
n2Z

exp¹�cj!j � jj!j�1n � tuj2º:

In the light ofX
n2Z

exp¹�cj!j � jj!j�1n � tuj2º � 2j!j
Z

R
exp¹�cj!ju2º du � C j!j1=2;

we obtain X
n2B

�np.nI x/ � CP‰.!/e
�hsu;!ie�cj!j

1=5

j!j1=2:

To deal with the sum over A, we notice that for n 2 A,

dist.n�1!; @M/ � ı;

which justifies the application of Theorem 4.1. Hence,X
n2A

�np.nI x/ D P‰.!/
X
n2A

n�r=2�j‰
CCjQ‰..I � T‰/s.n

�1!//

� ej!j� u.j!j
�1n/.1CEn.n

�1!//;
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where
jEn.n

�1!/j � C
X

˛2‰C[¹0º

1

n
.1C h!; ˛i/:

Let us consider the following sum:

S.!/ D
X
n2A

n�r=2�j‰
CCjej!j� u.j!j

�1n/:

For n 2 A, we have ˇ̌̌!
n
�
u

tu

ˇ̌̌
D

ˇ̌̌
j!j

n
�
1

tu

ˇ̌̌
� j!j�2=5;

thus, by (4.54),ˇ̌̌X
n2A

n�r=2�j‰
CCjQ‰..I � T‰/s.n

�1!//ej!j� u.j!j
�1n/
�Q‰.su/S.!/

ˇ̌̌
� C

�
j!j�2=5 C

X
˛2‰C

hu; ˛i
�
S.!/:

Furthermore, we haveˇ̌̌X
n2A

n�r=2�j‰
CCjQ‰..I � T‰/s.n

�1!//ej!j� u.j!j
�1n/En.n

�1!/
ˇ̌̌

� C
�
j!j�1 C

X
˛2‰C[¹0º

hu; ˛i
�
S.!/;

because for n 2 A,

jEn.n
�1!/j � C

�
j!j�1 C

X
˛2‰C[¹0º

hu; ˛i
�
:

Consequently, the problem reduces to establishing the asymptotic behavior of S.!/. To do
so, let us introduce

S0.!/ D
X
n2A

exp
°1
2
j!j �  00u.tu/ � jtu � j!j

�1nj2
±
:

By (4.51) and (4.52), we haveˇ̌̌
exp¹j!j �  u.j!j�1n/º � exp

°
j!j
�
 u.tu/C

1

2
 00u.tu/ � jj!j

�1n � tuj
2
�±ˇ̌̌

� C j!j�1=5 exp
°
j!j
�
 u.tu/C

1

2
 00u.tu/ � jj!j

�1n � tuj
2
�±
:

Furthermore, by the mean value theorem, we can estimate

jn�r=2�j‰
CCj
� .tuj!j/

�r=2�j‰CCj
j � C.tuj!j/

�r=2�j‰CCj
j!j�2=5;

because j!j�1=5 � 1
2
tu.
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Hence,

jS.!/� e�hsu;!i.tuj!j/
�r=2�j‰CCjS0.!/j � C j!j

�2=5e�hsu;!i.tuj!j/
�r=2�j‰CCjS0.!/:

Lastly, we replace the sum S0.!/ by the corresponding integral, that is,

I.!/ D

Z
R

exp
°1
2
j!j �  00u.tu/ � jtu � j!j

�1t j2
±

dt D
p
2�j!j1=2.� 00u.tu//

�1=2:

For n 2 A such that n < j!jtu and n � t � min¹nC 1; j!jtuº, we haveˇ̌̌
exp

°1
2
j!j �  00u.tu/ � jtu � j!j

�1nj2
±
� exp

°1
2
j!j �  00u.tu/ � jtu � j!j

�1t j2
±ˇ̌̌

� C j!j�2=5 exp
°
12j!j �  00u.tu/ � jtu � j!j

�1t j2
±
:

Analogously, for n 2 A such that n � j!jtu and n � t � nC 1,ˇ̌̌
exp

°1
2
j!j �  00u.tu/ � jtu � j!j

�1nj2
±
� exp

°1
2
j!j �  00u.tu/ � jtu � j!j

�1t j2
±ˇ̌̌

� C j!j�2=5 exp
°1
2
j!j �  00u.tu/ � jtu � j!j

�1nj2
±
:

Hence, we deduce that

jS0.!/ � I.!/j � C j!j
�2=5I.!/:

By putting these estimates together, we obtain

S.!/ D
p
2�.tuj!j/

�.r�1/=2�j‰CCj.t�2u B�1su .u; u//
�1=2e�hsu;!i.1C o.1//;

which entails (4.49) because tu D jr log �.su/j�1.

We now turn to the case � D %�1.

Theorem 4.14. For all x 2 V!.o/,

G%�1.x/ D P!.0/.B
�1
0 .!; !//�r=2�jˆ

CCjC1.D0 C o.1//;

as j!j tends to infinity, where

D0 D 2
r=2CjˆCCj�1�

� r
2
C jˆCCj � 1

�
W0.q

�1/
1

jbˆ.0/j2
� 1
2�

�r
�

Z
a

e�B0.u;u/=2j�ˆ.u/j
2 du:

Proof. Let n0 D min¹n 2 N W n�1! 2Mº. We write

G%�1.x/ D
X
n2A

%�np.nI x/C
X
n2B

%�np.nI x/;

where A D ¹n 2 N W n � j!j7=4º and B D ¹n 2 N W j!j7=4 > n � n0º.
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We first treat the sum over B . By (4.47) and (2.5),X
n2B

%�np.nI x/ � C
X
n2B

e�2cn
�1j!j2

� Ce�2cj!j
1=4

j!j7=4 � Ce�cj!j
1=4

:

To the sum over A, we apply Corollary 4.10. To justify its use, we observe that for n 2 A,

j!j

n
� j!j�3=4:

Hence, X
n2A

%�np.nI x/ D P!.0/
X
n2A

n�r=2�jˆ
CCje�n�.n

�1!/.C0 CEn.n
�1!//;

where
jEn.n

�1!/j � Cn�1.j!j C 1/:

Since for n 2 A,
jEn.n

�1!/j � 2C j!j�3=4;

it is enough to find the asymptotic of the sumX
n2A

n�r=2�jˆ
CCje�n�.n

�1!/:

To do so, let us introduce

S0.!/ D
X
n2A

n�r=2�jˆ
CCj exp

°
�
1

2n
B�10 .!; !/

±
:

Because for n 2 A,ˇ̌̌
n�.n�1!/ �

1

2n
B�10 .!; !/

ˇ̌̌
� C
j!j3

n2
� C j!j�1=2;

we see that ˇ̌̌X
n2A

n�r=2�j‰
CCje�n�.n

�1!/
� S0.!/

ˇ̌̌
� C j!j�1=2S0.!/:

By taking n 2 A and n � t � nC 1, we can estimateˇ̌̌
exp

°
�
1

2n
B�10 .!; !/

±
� exp

°
�
1

2t
B�10 .!; !/

±ˇ̌̌
� C j!j�3=2 exp

°
�
1

2t
B�10 .!; !/

±
;

and
jn�r=2�jˆ

CCj
� t�r=2�jˆ

CCj
j � Ct�r=2�jˆ

CCj
j!j�7=4;

thus ˇ̌̌̌
S0.!/ �

Z 1
j!j�7=4

t�r=2�jˆ
CCj exp

°
�
1

2t
B�10 .!; !/

±
dt
ˇ̌̌

� C j!j�3=2
Z 1
j!j�7=4

t�r=2�jˆ
CCj exp

°
�
1

2t
B�10 .!; !/

±
dt:



B. Trojan 4696

Finally, a straightforward computation shows thatZ 1
j!j�7=4

t�r=2�jˆ
CCj exp

°
�
1

2t
B�10 .!; !/

±
dt D .B�10 .!; !//�r=2�jˆ

CCjC1.c0 C o.1//;

where
c0 D 2

r=2CjˆCCj�1�
� r
2
C jˆCCj � 1

�
;

which completes the proof.

Appendix A. Asymptotic in the exceptional case

In the appendix, we indicate the necessary changes to the proof of Theorem 4.1 in the
exceptional case, that is, when �˛ < 1 for some ˛ 2 ˆ. Then the root system ˆ is BCr
and qr < q0. In view of the inversion formula (3.2), for vn 2 V!n.o/,

p.nI vn/ D
� 1
2�

�rW0.q�1/
jW0j

Z
U0

.hi� .A//
nP!n.i�/

d�
jc.i�/j2

C

� 1
2�

�r�1W0.q�1/
jW 00j

Z
U1

.hi� .A//
nP!n.i�/

d�
�1.i�/

:

Using W0-invariance of the integrand and the definition of P!n , we can write

p.nI vn/ D �0.!n/
�1=2

� 1
2�

�r Z
U0

.hi� .A//
ne�ih�;!ni

d�
c.i�/

C �0.!n/
�1=2

� 1
2�

�r�1 rX
jD1

Z
Uj

.hi� .A//
ne�h�;!ni

d�
zcj .i�/

;

where

zcj .z1; : : : ; zj�1;�v; zjC1; : : : ; zr / D lim
zj!�v

c.z1e1 C � � � C zrer /
1C b�1e�zj

:

For u > 0, if u ¤ � log b, we denote by 
u the line segment uC i Œ��
2
; 3�
2
�, otherwise


u.t/ D � log b C

8̂̂<̂
:̂
i t if t 2 Œ��

2
; � � ��;

i� � � exp.i�.1 � t��
2�
// if t 2 .� � �; � C ��;

i t if t 2 .� C t; 3�
2
�;

where 0 < 4� < min¹� log b; �º. Let

H D ¹z 2 C W <z > min¹� log q1;� log aºº:

We set sn D s.ın/. Let j 2 ¹1; : : : ; rº and fix z1; : : : ; zj�1; zjC1; : : : ; zr 2 ¹z 2 H W
jz C vj � �º. We consider the function

H 3 zj 7! .hz.A//
ne�hz;!ni

1

c.z/
; (A.1)
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where z D .z1; : : : ; zr /. Since b < 1, mapping (A.1) is meromorphic in H with a pole
at �v. Moreover, it is 2�i -periodic. Therefore, if 0 � snIj � � log b, thenZ


0

.hz.A//
ne�hz;!ni

dzj
c.z/

D

Z

snIj

.hz.A//
ne�hz;!ni

dzj
c.z/

;

otherwiseZ

0

.hz.A//
ne�hz;!ni

dzj
c.z/

D

Z

snIj

.hz.A//
ne�hz;!ni

dzj
c.z/

� 2�i lim
zj!�v

.hz.A//
ne�hz;!ni

1C b�1e�zj

c.z/
:

Since q1 > 1, we must have q1b � 1, see [26, Lemma 5.6] for details. Therefore, the
second term in (A.1) as a function of zk is holomorphic in H for k D 1; : : : ; j � 1;

j C 1; : : : ; r . Hence, by repeated change of the contour of integration, we get

p.nI vn/ D �0.!n/
�1=2

� 1

2�i

�r Z

snI1

� � �

Z

snIr

.hz.A//
ne�hz;!ni

dz
c.z/

C �0.!n/
�1=2

� 1
2�

�r�1
�

X
j WsnIj�� logb

Z
Uj

.hysnIjCi� .A//
ne�hysnIjCi�;!ni

d�
zcj .ysnIj C i�/

; (A.2)

where ysnIj D .snI1; : : : ; snIj�1; 0; snIjC1; : : : ; snIr /.
Let us consider the first integral in (A.2). Select " satisfying (4.8) and (4.11), and let

U"D Œ�"; "�
r . Every z 2 
snI1 � � � � � 
snIr can be written as zD snC xC i� with jxj � �

and � 2 U0. Hence, if � 2 U0 n U", by (4.4) and Claim 4.3,

1 �
ˇ̌̌�.sn C x C i�/

�.sn/

ˇ̌̌2
D 2

X
v;v02V

cve
hsnCx;vi

�.sn C x/

cv0e
hsnCx;v

0i

�.sn C x/

�
sin
D�
2
; v � v0

E�2
� 2�

X
v;v02V

cve
hsnCx;vi

�.sn C x/

cv0e
hsnCx;v

0i

�.sn C x/
� C �

cv0e
hsn;v

0i

�.sn/
:

Thus, by Theorem 2.2, ˇ̌̌�.sn C x C i�/
�.sn/

ˇ̌̌2
� e�C dist.ın;@M/� ;

and so

1

i r

Z

snI1

� � �

Z

snIr

.hz.A//
ne�hz;!ni

dz
c.z/

D e�n�.ın/.Fn.sn/CEn.ın//;

where Fn is given by formula (4.6), and

jEn.ın/j � C exp¹�C 0n dist.ın; @M/�º:
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We can now repeat the reasoning from Theorem 4.1 to obtain the asymptotic behavior of
Fn.sn/. Hence, it remains to show that the second term in (A.2) is negligible, that is,ˇ̌̌ Z

Uj

.hysnIjCi� .A//
ne�hysnIjCi�;!ni

d�
zcj .ysnIj C i�/

ˇ̌̌
� C%ne�n�.ın/ exp�C 0 dist.ın; @M/� (A.3)

provided that snIj � � log b. To do so, we need the estimate on P�.z/ if z1 D v. We start
with the following theorem.

Theorem A.1. Suppose that b D
q
qr
q0
< 1. Then for each � 2 PC and uC i� 2 Cr�1,

jP�.uC i�; v/j � P�.u; 0/; (A.4)

where v D log b � i� .

Proof. Let us consider the simplest case r D 1, that is, a semi-homogeneous tree. Then
for � D k�1, k 2 N,

P�.z/ D
�0.�/

�1=2

1C q�11
.ekzc.z/C e�kzc.�z//;

where

c.z/ D
.1 � a�1e�z/.1C b�1e�z/

1 � e�2z

and a D
p
q0q1, b D

q
q1
q0

. Hence,

P�.v/ D
�0.�/

�1=2

1C q�1
.�b/k.1C a�1b�1/:

Since

P�.z/ D
�0.�/

�1=2

1C q�1

�

�e.kC1/z � e�.kC1/z
ez � e�z

C .b�1 � a�1/
ekz � e�kz

ez � e�z
C
e.k�1/z � e�.k�1/z

ez � e�z

�
;

we easily get

P�.0/ D
�0.�/

�1=2

1C q�1
k.1C b�1 � a�1/:

Thus

jP�.v/j �
�0.�/

�1=2

1C q�1
.1C a�1b�1/ � P�.0/:

For r � 2, we use the integral representation of Macdonald spherical functions. Namely,
there is a measure � on the maximal boundary� of the affine building X such that for any
x 2 V�.o/,

P�.z/ D

Z
�

�0.h.o; xI!//
1=2ehz;h.o;xI!/i�.d!/; (A.5)
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where h.o; xI!/ is the horocycle function, see [26, Section 3]. Furthermore, in view of
[22, Section 4], we can decompose � as a disjoint union

� D
G
�2�r

@T�;

where each @T� denotes the maximal boundary of a semi-homogeneous tree with param-
eters .q0; qr /. On �r , there is a probability measure �r such that

P�.z/ D

Z
�r

Z
@T�

�0.h.o; xI!//
1=2ehz;h.o;xI!/i��.d!/�r .d�/;

where �� is the probability measure on T� determined by (A.5). For a fixed � 2 �r , the
mapping

@T� 3 ! 7! Q.h.o; xI!// D

r�1X
jD1

hh.o; xI!/; ej i

is constant (see [22, Proposition 4.13]). Moreover,

@T� 3 ! 7! hh.o; xI!/; eri

is the horocycle function between the projections of o and x onto T .�/ (see [22, Proposi-
tion 4.13]). Then by the first part of the proof, we haveˇ̌̌ Z

@T�

�0;r .hh.o; xI!/; eri/
1=2.�b/hh.o;xI!/;er i��.d!/

ˇ̌̌
�

Z
@T�

�0;r .hh.o; xI!/; eri/
1=2��.d!/;

where we have set
�0;r .k/ D �

k
˛r
�2k2˛r ; k 2 Z:

Hence,

jP�.uC i�; v/j �

Z
�r

Z
@T�

�0.h.o; xI!//
1=2eh.x;0/;h.o;xI!/i��.d!/�r .d�/

D P�.u; 0/;

and the theorem follows.

In the next step, we improve estimate (A.4).

Theorem A.2. Suppose that b D
q
qr
q0
< 1. Then for each � 2 PC, there is c� > 0 such

that for all uC i� 2 Cr�1,

jP�.uC i�; v/j � P�.u; 0/ �
c�

P�.u; 0/
;

where v D log b � i� .
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Proof. Let us first show that

jP�1.uC i�; v/j � P�1.u; 0/ � c�1

for some c�1 > 0. Indeed, by [24, Lemma B.3.2]

P�1.z/ D
1

N�1

�
a1 C a2

rX
jD1

.ezj C e�zj /

�
;

where a1 D .q0 � 1/.1C q1 C � � � C qr�11 /, a2 D
p
q0qrq

r�1
1 . Thus

P�1.uC i�; v/ D
1

N�1

�
a1 � a2

q0 C qr
p
q0qr

C a2

r�1X
jD1

.eujCi�j C e�uj�i�j /

�
:

If
a1 � a2

q0 C qr
p
q0 C qr

� 0;

then

jP�1.uC i�; v/j �
1

N�1

�
a1 � a2

q0 C qr
p
q0qr

C a2

r�1X
jD1

.euj C e�uj /

�
D P�1.u; 0/ � 2a2 � a2

q0 C qr
p
q0qr

:

Otherwise, by [24, Theorem B.3.3],

a1 � a2
q0 C qr
p
q0 C qr

> �a1 � 2a2;

thus

jP�1.uC i�; v/j �
1

N�1

�
a2

q0 C qr
p
q0 C qr

� a1 C a2

r�1X
jD1

.euj C e�uj /

�
� P�1.u; 0/ � 2a1 � 2a2 C a2

q0 C qr
p
q0 C qr

:

Now, by the triangularity condition for Macdonald spherical functions, and estimates
(A.4) and Theorem A.1, we get

jP�.uC i�; v/j
2
�

X
�2PC

a�;�I�jP�.uC i�; v/j

�

X
�2PC

a�;�I�P�.u; 0/ � a�;�I�1c�1

D .P�.u; 0//
2
� a�;�I�1c�1 ;

which completes the proof because by [24, Lemma B.3.4], we have a�;�I�1 > 0.
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We return to proving (A.3). Since the random walk has finite range, by Theorem A.2,
we easily get

jh.v;xCi�/.A/j � h.0;x/.A/ �
c

h.0;x/.A/
:

Using W0-invariance, for any t 2 R we have

h.t;x/.A/ D
1

2

X
�2V

c�.e
the1;�i C e�the1;�i/ehx;�i �

X
�2V

c�e
hx;�i

D h.0;x/.A/:

Therefore, for � 2 Uj ,

jh.ysnIjCi�/.A/j � hsn.A/
�
1 �

c

h2sn.A/

�
;

thus, by Theorem 2.2,

jh.ysnIjCi�/.A/j
n
� .hsn.A//

n exp
�
�c

n

h2sn.A/

�
� .hsn.A//

n exp¹�C 0n dist.ın; @M/2�º:

Since
.hsn.A//

ne�hysnIj ;!ni � %ne�n�.ın/elogbhej ;!ni;

we obtain (A.3). This completes the proof of Theorem 4.4 in the exceptional case.
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Bertrand Rémy, Tim Steger, and Ryszard Szwarc for extensive discussions, comments and support.

Funding. The research was partial supported by the National Science Centre, Poland, Grant 2016/
23/B/ST1/01665.

References

[1] Anker, J.-P.: La forme exacte de l’estimation fondamentale de Harish-Chandra. C. R. Acad.
Sci. Paris Sér. I Math. 305, 371–374 (1987) Zbl 0636.22005 MR 910372

[2] Anker, J.-P.: Le noyau de la chaleur sur les espaces symétriques U.p; q/=U.p/ � U.q/. In:
Harmonic analysis (Luxembourg, 1987), Lecture Notes in Math. 1359, Springer, Berlin, 60–
82 (1988) Zbl 0669.43009 MR 974304

[3] Anker, J.-P.: Sharp estimates for some functions of the Laplacian on noncompact symmetric
spaces. Duke Math. J. 65, 257–297 (1992) Zbl 0764.43005 MR 1150587

[4] Anker, J.-P., Ji, L.: Heat kernel and Green function estimates on noncompact symmetric
spaces. Geom. Funct. Anal. 9, 1035–1091 (1999) Zbl 0942.43005 MR 1736928

[5] Anker, J.-P., Ostellari, P.: The heat kernel on noncompact symmetric spaces. In: Lie groups
and symmetric spaces, Amer. Math. Soc. Transl. Ser. 2 210, American Mathematical Society,
Providence, RI, 27–46 (2003) Zbl 1036.22005 MR 2018351

[6] Anker, J.-P., Schapira, B., Trojan, B.: Sharp estimates for distinguished random walks on affine
buildings of type zAr . Indag. Math. (2024)

[7] Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Grundlehren Text Ed.,
Springer, Berlin (2004) Zbl 1037.58015 MR 2273508

https://zbmath.org/?q=an:0636.22005
https://mathscinet.ams.org/mathscinet-getitem?mr=910372
https://doi.org/10.1007/BFb0086588
https://zbmath.org/?q=an:0669.43009
https://mathscinet.ams.org/mathscinet-getitem?mr=974304
https://doi.org/10.1215/S0012-7094-92-06511-2
https://doi.org/10.1215/S0012-7094-92-06511-2
https://zbmath.org/?q=an:0764.43005
https://mathscinet.ams.org/mathscinet-getitem?mr=1150587
https://doi.org/10.1007/s000390050107
https://doi.org/10.1007/s000390050107
https://zbmath.org/?q=an:0942.43005
https://mathscinet.ams.org/mathscinet-getitem?mr=1736928
https://doi.org/10.1090/trans2/210/03
https://zbmath.org/?q=an:1036.22005
https://mathscinet.ams.org/mathscinet-getitem?mr=2018351
https://doi.org/10.1016/j.indag.2024.06.002
https://doi.org/10.1016/j.indag.2024.06.002
https://doi.org/10.1007/978-3-642-58088-8
https://zbmath.org/?q=an:1037.58015
https://mathscinet.ams.org/mathscinet-getitem?mr=2273508


B. Trojan 4702

[8] Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6. Elem. Math. (Berlin), Springer,
Berlin (2002) Zbl 0983.17001 MR 1890629

[9] Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. Inst. Hautes Études Sci.
41, 5–251 (1972) Zbl 0254.14017 MR 327923

[10] Cartwright, D. I.: Spherical harmonic analysis on buildings of type zAn. Monatsh. Math. 133,
93–109 (2001) Zbl 1008.51019 MR 1860293

[11] Cartwright, D. I., Młotkowski, W.: Harmonic analysis for groups acting on triangle buildings.
J. Aust. Math. Soc. Ser. A 56, 345–383 (1994) Zbl 0808.51014 MR 1271526

[12] Cartwright, D. I., Woess, W.: Isotropic random walks in a building of type zAd . Math. Z. 247,
101–135 (2004) Zbl 1060.60070 MR 2054522

[13] Doob, J. L.: Classical potential theory and its probabilistic counterpart. Classics Math.,
Springer, Berlin (2001) Zbl 0990.31001 MR 1814344

[14] Guivarc’h, Y.: Compactifications of symmetric spaces and positive eigenfunctions of the
Laplacian. In: Fascicule de probabilités, Publ. Inst. Rech. Math. Rennes 1994, Université de
Rennes, Rennes, 63 (1994) Zbl 0855.58060 MR 1383326

[15] Guivarc’h, Y., Ji, L., Taylor, J. C.: Compactifications of symmetric spaces. Progr. Math. 156,
Birkhäuser, Boston, MA (1998) Zbl 1053.31006 MR 1633171

[16] Guivarc’h, Y., Rémy, B.: Group-theoretic compactification of Bruhat–Tits buildings. Ann. Sci.
École Norm. Sup. (4) 39, 871–920 (2006) Zbl 1126.20029 MR 2316977

[17] Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Pure Appl. Math. 80,
Academic Press, New York (1978) Zbl 0451.53038 MR 514561

[18] Lalley, S. P.: Saddle-point approximations and space-time Martin boundary for nearest-
neighbor random walk on a homogeneous tree. J. Theoret. Probab. 4, 701–723 (1991)
Zbl 0737.60012 MR 1132134

[19] Lalley, S. P.: Finite range random walk on free groups and homogeneous trees. Ann. Probab.
21, 2087–2130 (1993) Zbl 0804.60006 MR 1245302

[20] Lindlbauer, M., Voit, M.: Limit theorems for isotropic random walks on triangle buildings.
J. Aust. Math. Soc. 73, 301–333 (2002) Zbl 1028.60005 MR 1936256

[21] Macdonald, I. G.: Spherical functions on a group of p-adic type. Publications of the Ramanu-
jan Institute, No. 2, University of Madras, Madras (1971) Zbl 0302.43018 MR 435301

[22] Mantero, A. M., Zappa, A.: Eigenvalues of the vertex set Hecke algebra of an affine building.
In: Trends in harmonic analysis, Springer INdAM Ser. 3, Springer, Milan, 291–369 (2013)
Zbl 1291.51008 MR 3026355

[23] Matsumoto, H.: Fonctions sphériques sur un groupe semi-simple p-adique. C. R. Acad. Sci.
Paris Sér. A-B 269, 829–832 (1969) Zbl 0189.44802 MR 263977

[24] Parkinson, J.: Buildings and Hecke algebras. Ph.D. thesis, University of Sydney (2005)
[25] Parkinson, J.: Buildings and Hecke algebras. J. Algebra 297, 1–49 (2006) Zbl 1095.20003

MR 2206366
[26] Parkinson, J.: Spherical harmonic analysis on affine buildings. Math. Z. 253, 571–606 (2006)

Zbl 1171.43009 MR 2221087
[27] Parkinson, J.: Isotropic random walks on affine buildings. Ann. Inst. Fourier (Grenoble) 57,

379–419 (2007) Zbl 1177.60046 MR 2310945
[28] Rémy, B., Trojan, B.: Martin compactificaton of affine buildings. arXiv:2105.14807 (2021)
[29] Ronan, M.: Lectures on buildings. Perspect. Math. 7, Academic Press, Boston, MA (1989)

Zbl 0694.51001 MR 1005533
[30] Satake, I.: Theory of spherical functions on reductive algebraic groups over p-adic fields. Inst.

Hautes Études Sci. Publ. Math. 18, 5–69 (1963) Zbl 0122.28501 MR 195863
[31] Sawyer, P.: The heat equation on the spaces of positive definite matrices. Canad. J. Math. 44,

624–651 (1992) Zbl 0772.58057 MR 1176373

https://zbmath.org/?q=an:0983.17001
https://mathscinet.ams.org/mathscinet-getitem?mr=1890629
https://doi.org/10.1007/BF02715544
https://zbmath.org/?q=an:0254.14017
https://mathscinet.ams.org/mathscinet-getitem?mr=327923
https://doi.org/10.1007/s006050170025
https://zbmath.org/?q=an:1008.51019
https://mathscinet.ams.org/mathscinet-getitem?mr=1860293
https://doi.org/10.1017/S1446788700035540
https://zbmath.org/?q=an:0808.51014
https://mathscinet.ams.org/mathscinet-getitem?mr=1271526
https://doi.org/10.1007/s00209-003-0623-y
https://zbmath.org/?q=an:1060.60070
https://mathscinet.ams.org/mathscinet-getitem?mr=2054522
https://doi.org/10.1007/978-3-642-56573-1
https://zbmath.org/?q=an:0990.31001
https://mathscinet.ams.org/mathscinet-getitem?mr=1814344
https://zbmath.org/?q=an:0855.58060
https://mathscinet.ams.org/mathscinet-getitem?mr=1383326
https://doi.org/10.1007/978-1-4612-2452-5
https://zbmath.org/?q=an:1053.31006
https://mathscinet.ams.org/mathscinet-getitem?mr=1633171
https://doi.org/10.1016/j.ansens.2006.10.002
https://zbmath.org/?q=an:1126.20029
https://mathscinet.ams.org/mathscinet-getitem?mr=2316977
https://zbmath.org/?q=an:0451.53038
https://mathscinet.ams.org/mathscinet-getitem?mr=514561
https://doi.org/10.1007/BF01259551
https://doi.org/10.1007/BF01259551
https://zbmath.org/?q=an:0737.60012
https://mathscinet.ams.org/mathscinet-getitem?mr=1132134
https://doi.org/10.1214/aop/1176989012
https://zbmath.org/?q=an:0804.60006
https://mathscinet.ams.org/mathscinet-getitem?mr=1245302
https://doi.org/10.1017/S1446788700008995
https://zbmath.org/?q=an:1028.60005
https://mathscinet.ams.org/mathscinet-getitem?mr=1936256
https://zbmath.org/?q=an:0302.43018
https://mathscinet.ams.org/mathscinet-getitem?mr=435301
https://doi.org/10.1007/978-88-470-2853-1_12
https://zbmath.org/?q=an:1291.51008
https://mathscinet.ams.org/mathscinet-getitem?mr=3026355
https://zbmath.org/?q=an:0189.44802
https://mathscinet.ams.org/mathscinet-getitem?mr=263977
https://doi.org/10.1016/j.jalgebra.2005.08.036
https://zbmath.org/?q=an:1095.20003
https://mathscinet.ams.org/mathscinet-getitem?mr=2206366
https://doi.org/10.1007/s00209-005-0924-4
https://zbmath.org/?q=an:1171.43009
https://mathscinet.ams.org/mathscinet-getitem?mr=2221087
https://doi.org/10.5802/aif.2262
https://zbmath.org/?q=an:1177.60046
https://mathscinet.ams.org/mathscinet-getitem?mr=2310945
https://arxiv.org/abs/2105.14807
https://zbmath.org/?q=an:0694.51001
https://mathscinet.ams.org/mathscinet-getitem?mr=1005533
https://doi.org/10.1007/BF02684781
https://zbmath.org/?q=an:0122.28501
https://mathscinet.ams.org/mathscinet-getitem?mr=195863
https://doi.org/10.4153/CJM-1992-038-7
https://zbmath.org/?q=an:0772.58057
https://mathscinet.ams.org/mathscinet-getitem?mr=1176373


Asymptotic behavior of heat kernels and Green functions on affine buildings 4703

[32] Sawyer, P.: On an upper bound for the heat kernel on SU�.2n/=Sp.n/. Canad. Math. Bull. 37,
408–418 (1994) Zbl 0811.58056 MR 1289778

[33] Sawyer, P.: Estimates for the heat kernel on SL.n;R/=SO.n/. Canad. J. Math. 49, 359–372
(1997) Zbl 0889.58083 MR 1447496

[34] Sawyer, S.: Isotropic random walks in a tree. Z. Wahrsch. Verw. Gebiete 42, 279–292 (1978)
Zbl 0362.60075 MR 491493

[35] Tits, J.: Reductive groups over local fields. In: Automorphic forms, representations and L-
functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc.
Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 29–69 (1979)
Zbl 0415.20035 MR 546588

[36] Tolli, F.: A local limit theorem on certain p-adic groups and buildings. Monatsh. Math. 133,
163–173 (2001) Zbl 1005.60018 MR 1860298

https://doi.org/10.4153/CMB-1994-059-x
https://zbmath.org/?q=an:0811.58056
https://mathscinet.ams.org/mathscinet-getitem?mr=1289778
https://doi.org/10.4153/CJM-1997-018-1
https://zbmath.org/?q=an:0889.58083
https://mathscinet.ams.org/mathscinet-getitem?mr=1447496
https://doi.org/10.1007/BF00533464
https://zbmath.org/?q=an:0362.60075
https://mathscinet.ams.org/mathscinet-getitem?mr=491493
https://zbmath.org/?q=an:0415.20035
https://mathscinet.ams.org/mathscinet-getitem?mr=546588
https://doi.org/10.1007/s006050170030
https://zbmath.org/?q=an:1005.60018
https://mathscinet.ams.org/mathscinet-getitem?mr=1860298

	1. Introduction
	1.1. Organization of the paper

	2. Combinatorial and analytic preliminaries
	2.1. Convex combinations of exponentials and the function s
	2.2. Analytic lemmas about multiple derivation
	2.3. Variation on the marriage lemma

	3. Affine buildings
	3.1. Root systems, weights and coweigths
	3.2. Building, thicknesses and (co)type
	3.3. Spherical harmonic analysis

	4. Asymptotics
	4.1. Random walks
	4.2. Heat kernels
	4.3. Green functions

	A. Asymptotic in the exceptional case
	References

