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Abstract. We answer a question of Hoyois–Jelisiejew–Nardin–Yakerson regarding framed mod-
els of motivic connective K-theory spectra over Dedekind schemes. That is, we show that the
framed suspension spectrum of the presheaf of groupoids of vector bundles (resp. non-degenerate
symmetric bilinear bundles) is the effective cover of KGL (resp. very effective cover of KO).
One consequence is that, over any scheme, we obtain a spectral sequence from Spitzweck’s motivic
cohomology to homotopy algebraic K-theory; it is strongly convergent under mild assumptions.
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1. Statement of results

Let S be a scheme. The category P†.Corfr.S// of presheaves with framed transfers
[5, §2.3] is a motivic analog of the classical category of E1-monoids. We have the framed
suspension spectrum functor

†1fr W P†.Corfr.S//! �H .S/

which was constructed in [6, Theorem 18]. By analogy with the classical situation, one
might expect that many interesting motivic spectra can be obtained as framed suspension
spectra. This is indeed the case; see [8, §1.1] for a summary.

This note concerns the following examples of the above idea. One has framed pre-
sheaves Vect;Bil2P†.Corfr.S// [8, §6], where Vect.X/ is the groupoid of vector bundles
on X and Bil.X/ is the groupoid of vector bundles with a non-degenerate symmetric
bilinear form. There exist Bott elements

ˇ 2 �2;1†
1
fr Vect and ž 2 �8;4†

1
fr Bil
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and canonical equivalences [7, Proposition 5.1], [8, Proposition 6.7]

.†1fr Vect/Œˇ�1� ' KGL and .†1fr Bil/Œ ž�1� ' KO:

Here KGL is the motivic spectrum representing homotopy algebraic K-theory, and KO
is the motivic spectrum representing homotopy hermitian K-theory.1 Again by compari-
son with the classical situation, this suggests that †1fr Vect and †1fr Bil should be motivic
analogs of connectiveK-theory spectra. Another way of producing “connective” versions
is by passing to (very) effective covers [11, 12]. It was proved in [7, 8] that these two
notions of connective motivic K-theory spectra coincide, provided that S is regular over
a field.

Our main result is to extend this comparison to more general base schemes. We denote
by HZ Spitzweck’s motivic cohomology spectrum [11] and by HW the periodic Witt
cohomology spectrum [3, Definition 4.6].

Theorem 1.1. Let S be a scheme.

(1) Suppose that f1.HZ/ D 0 2 �H .S/. The canonical map

†1fr Vect! f0KGL 2 �H .S/

is an equivalence.

(2) Suppose in addition that 1=2 2 S and HW�2 D 0 2 �H .S/. The canonical map

†1fr Bil! zf0KO 2 �H .S/

is an equivalence.

These assumptions are satisfied if S is essentially smooth over a Dedekind scheme (con-
taining 1=2 in case .2/).

Remark 1.2. That the assumptions are satisfied for Dedekind schemes is proved in [4,
Proposition B.4] for (1) and in [3, Lemma 3.8] for (2). They in fact hold for all schemes;
this will be recorded elsewhere.

Example 1.3. Bott periodicity implies formally that

fnKGL ' †2n;nf0KGL and sn.KGL/ ' †2n;nf0.KGL/=ˇ:

Theorem 1.1 (1) implies that f0.KGL/=ˇ'HZ (see Lemma 2.1). Hence in this situation,
the slice filtration for KGL yields a convergent spectral sequence, with E2-page given by
(Spitzweck’s) motivic cohomology.

Notation. We use notation for standard motivic categories and spectra as in [3, 8].

1As a notational convention for this introduction, whenever we mention KO we shall assume
that 1=2 2 S .
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2. Proofs

As a warm-up, we treat the case of KGL. Recall that the functor †1fr inverts group-
completion. The Bott element lifts to ˇW .P1;1/ ! Vectgp [7, §5]. We also have the
rank map Vectgp

! Z 2 P†.Corfr.S//. The composite

.P1;1/ ^ Vectgp ˇ
�! Vectgp

^ Vectgp m
�! Vectgp

! Z

is null-homotopic after motivic localization since Z is motivically local and truncated and
.P1;1/

mot
' S1 ^Gm.

Lemma 2.1. The induced map

.†1fr Vect/=ˇ ! †1fr Z ' HZ

is an equivalence.

Proof. The equivalence †1fr Z ' HZ is proved in [6, Theorem 21]. Since all terms are
stable under base change [8, proof of Lemma 7.5], [6, Lemma 16], we may assume
that S D Spec.Z/. Using [4, Proposition B.3], we further reduce to the case where S
is the spectrum of a perfect field. In this case, †1fr Vect ' f0KGL and so .†1fr Vect/=ˇ '
s0KGL ' HZ (see, e.g., [1, Proposition 2.7]).

Proof of Theorem 1.1 (1). Note first that if U � S is an open subscheme, and any of the
assumptions of Theorem 1.1 holds for S , it also holds for U . On the other hand, if one of
the conclusions holds for all U in an open cover, it holds for S . It follows that we may
assume that S is qcqs (quasicompact quasiseparated), e.g., affine.

Since f1.HZ/ D 0, we find (using Lemma 2.1) that

ˇW †1fr Vect! †�2;�1†1fr Vect

induces an equivalence on fi for i � 0. It follows that in the directed system

†1fr Vect
ˇ
�! †�2;�1†1fr Vect

ˇ
�! †�4;�2†1fr Vect

ˇ
�! � � � ;

all maps induce an equivalence on f0. Since the colimit is KGL, f0 commutes with co-
limits (here we use that X is qcqs, via [4, Proposition A.3 (2)]) and †1fr Vect is effective
(like any framed suspension spectrum), the result follows.

The proof for KO is an elaboration on these ideas. From now on, we assume that
1=2 2 S . Recall from [3, Definition 2.6 and Lemma 2.7] the motivic spectrum

kM ' .HZ=2/=� 2 �H .S/:

For the time being, assume S is a Dedekind scheme. Taking framed loops, we obtain

kM1 WD �
1
fr †

1;1kM 2 P†.Corfr.S//:
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Lemma 2.2. Let S be a Dedekind scheme, 1=2 2 S .

(1) We have kM1 ' aNis��0Gm=2, where Gm 2 P†.Corfr.S// denotes the sheaf O� with
its usual structure of transfers [9, Example 2.4].

(2) If f WS 0!S is a morphism of Dedekind schemes, then f �kM1
mot
' kM1 2P†.Corfr.S 0//.

(3) The canonical map †1fr k
M
1 ! †1;1kM 2 �H .S/ is an equivalence.

For this and some of the following arguments, it will be helpful to recall that we have
an embedding of �pcfr.S/gp into the stable category of spectral presheaves on Corfr.S/.
In particular, many fiber sequences in �pcfr.S/ are cofiber sequences.

Proof. (1) It is clear by construction since H 1
Ket.X; �2/ ' O�.X/=2 for affine X .

(2) By (1), we have a cofiber sequence †�2 ! aNisGm=2! kM1 2 P†.Corfr.S//.
Since pullback of framed presheaves preserves cofiber sequences and commutes with
forgetting transfers up to motivic equivalence [6, Lemma 16], we reduce to the same
assertion about Gm, �2, viewed as presheaves without transfers. Since they are repre-
sentable, the assertion is clear.

(3) Using [4, Proposition B.3], (2) and [3, Theorem 4.4], we may assume that S is
the spectrum of a perfect field. In this case, †1fr �

1
fr '

zf0 [5, Theorem 3.5.14 (i)], so we
need only prove that †1;1kM1 is very effective. But this is clear since we have the cofiber
sequence †1;0HZ=2

�
�! †1;1HZ=2! †1;1kM1 and HZ=2 is very effective.

Construction 2.3. The assignment V 7! .V ˚ V �; 'V / sending a vector bundle to its
associated (hyperbolic) symmetric bilinear bundle upgrades to a morphism

Vect! Bil 2 P†.Corfr.S//BC2 ;

where Vect carries the C2-action coming from passing to dual bundles, and Bil carries the
trivial C2-action.

Proof. Since the presheaves are 1-truncated, all the required coherence data can be written
down by hand.

Lemma 2.4. Let S be a Dedekind scheme containing 1=2.

(1) The map .Vectgp/hC2
! Bilgp induces an isomorphism on aNis�i for i D 1; 2.

(2) The homotopy orbits spectral sequence yields aNis�0.Vectgp/hC2
' Z, an exact se-

quence 0! kM1 ! aNis�1.Vectgp/hC2
! Z=2! 0 and a map aNis�2.Vectgp/hC2

!

Z=2, all as presheaves with framed transfers.

Proof. (1) This follows from the cofiber sequence KhC2
! GW! L [10, Theorem 7.6]

using that aNis�iL D 0 unless i � 0 .mod 4/.
(2) The homotopy orbit spectral sequence just arises from the Postnikov filtration

of Vectgp and the formation of homotopy orbits and hence is compatible with transfers.
Its E2 page takes the form

Hi .C2; aNis�jVectgp/) aNis�iCj .Vectgp/hC2
:
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The form of the differentials of the spectral sequence implies that Hi .C2; aNis�jVectgp/

consists of permanent cycles for i � 1, and survive to E1 for .i; j /D .0; 0/ and .i; j /D
.1; 1/. One has aNis�0Vectgp

D Z with the trivial action and aNis�1Vectgp
D Gm [13,

Lemma III.1.4] with the inversion action. This already yields the first assertion. A straight-
forward computation shows that

H�.C2;Z/ D Z; Z=2; 0; Z=2; : : :

and
H�.C2;Gm/ D k

M
1 ; �2; k

M
1 ; : : :

Since H2.C2;Z/ D 0, no differential can hit the .i; j / D .0; 1/ spot either, yielding the
second assertion. Moreover, this implies that H1.C2;Gm/ D �2 is the bottom of the fil-
tration of �2. It follows that there is a map aNis�2.Vectgp/hC2

! A, where A is a quotient
of �2. To prove that A D �2, it suffices to check this on sections over a field, in which
case we can use the hermitian motivic spectral sequence of [2].

We have aNis�0Bilgp
' GW . Thus we can form the following filtration of Bilgp refin-

ing the Postnikov filtration

Bilgp
 F1Bilgp

 F2Bilgp
 F3Bilgp

 F4Bilgp
2 P†.Corfr.S//

with subquotients given Nisnevich-locally by

GW ; †Z=2; †kM1 ; †
2Z=2: (2.1)

Recall also the framed presheaf Alt 2P†.Corfr.S// sending a scheme to the groupoid
of vector bundles with a non-degenerate alternating form. Tensoring with the canonical
alternating (virtual) form H.1/� h on HP1 (where H.1/ is the tautological rank 2 alter-
nating form on HP1, and h is the standard alternating form on a trivial vector bundle of
rank 2) yields maps

�1W HP1 ^ Altgp
! Bilgp and �2W HP1 ^ Bilgp

! Altgp:

By construction, we have ž D �1�2 (recall that HP1
mot
' S4;2).

Lemma 2.5. Let S be a Dedekind scheme, 1=2 2 S .

(1) The composite HP1 ^ Altgp �1
�! Bilgp

! Bilgp=F4Bilgp is motivically null. The in-
duced map †1fr cof.�1/! †1fr Bilgp=F4Bilgp is an equivalence.

(2) The composite HP1 ^ Bilgp �2
�! Altgp rk=2

���! Z is motivically null. The induced map
†1fr cof.�2/! †1fr Z is an equivalence.

Proof. (1) Write C for the cofiber computed in the category of spectral presheaves on
Corfr.S/. Then C admits a finite filtration, with subquotients corresponding to those
in (2.1). Since each of those is the infinite loop space of a motivic spectrum, it fol-
lows that C is in fact motivically local. Consequently, C corresponds to Bilgp=F4Bilgp
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under the embedding into spectral presheaves. These contortions tell us that there are
fiber sequences

FiC1Bilgp=F4Bilgp
! FiBilgp=F4Bilgp

! FiBilgp=FiC1Bilgp

for i < 4. Hence to prove that the composite is null, it suffices to prove that there are no
maps from †4;2Altgp into the motivic localizations of the subquotients of the filtration
given in (2.1). These motivic localizations are GW , LNisK.Z=2; 1/, LNisK.k

M
1 ; 1/ and

LNisK.Z=2; 2/ (since they are motivically equivalent to the subquotients, and motivically
local because they are infinite loop spaces of the motivic spectra H zZ, †kM , †2;1kM ,
†2kM ). It suffices to prove that �4;2 of these subquotients vanishes, which is clear.
Next we claim that †1fr Bilgp=F4Bilgp is stable under base change (among Dedekind
schemes containing 1=2). Indeed, the defining fiber sequences of F4Bilgp are also cofiber
sequences, and so †1fr Bilgp=F4Bilgp is obtained by iterated extension from spectra stable
under base change (see Lemma 2.2 (2) for kM1 , [8, proof of Lemma 7.5] for Bil and Alt,
and [6, Lemma 16] for Z=2). To prove that the induced map is an equivalence, we thus
reduce as before to S D Spec.k/, where k is a perfect field of characteristic 6D 2. In this
case, the result is a straightforward consequence of the hermitian motivic filtration of [2].

(2) The proof is essentially the same as for (1), but easier.

We now arrive at the main result.

Theorem 2.6. Let S be a scheme containing 1=2 such that

f1.HZ/ D 0 D HW�2 2 �H .S/:

The canonical maps

†1fr Bil! zf0KO and †1fr Alt! zf0†
4;2KO

are equivalences.

Proof. As before, we may assume that S is qcqs.
We know that KO is the colimit of

†1fr Bil
�2
�! †�4;�2†1fr Alt

�1
�! †�8;�4Bil

�2
�! � � � :

It is hence enough to prove that

�1W †
�8n;�4n†1fr Bil! †�8n�4;�4n�2†1fr Alt

induces an equivalence on zf0 for every n � 0, and similarly for �2. (Here we use that S
is qcqs, so that zf0 preserves filtered colimits.) Given a cofiber sequence A! B ! C ,
in order to prove that zf0A ' zf0B , it suffices to show that Map.X; C / D � for every
X 2 �H .S/veff, i.e., that C 2 �H .S/veff?.

Over ZŒ1=2�, the cofiber of �1 has a finite filtration, with subquotients

†�4;�2†1fr GW ; †
�3;�2†1fr Z=2; †�3;�2†1fr k

M
1 ; †

�2;�2†1fr Z=2;
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and the cofiber of �2 is †�4;�2†1fr Z. Using [6, Corollary 22], [8, Theorem 7.3] and
Lemma 2.2 (3), we can identify the list of cofibers as

†�4;�2H zZ; †�3;�2HZ=2; †�2;�1kM ; †�2;�2HZ=2; †�4;�2HZ:

These spectra are stable under arbitrary base change (essentially by definition), and hence
for arbitrary S the cofibers of �1, �2 are obtained as finite extensions, with cofibers in the
above list. To conclude the proof, it will thus suffice to show that all spectra in the above
list are in �H .S/veff?.

Note that ifE 2 �H .S/, thenE 2 �H .S/veff? if and only if�1E '�. In particular,
this holds if f0E D 0. This holds for †m;nHZ as soon as n < 0, by assumption. Hence
it also holds for †m;nHZ=2 in the same case (f0 being a stable functor) and for

†m;nkM ' cof.†m;n�1HZ=2
�
�! †m;nHZ=2/:

The only spectrum left in our list is †�4;�2H zZ. Using [3, Definition 4.1], we see now
that �1†�4;�2H zZ ' �1†�4;�2KW , so we may treat the latter spectrum. We have
KW =�' kM [3, Lemma 3.9], whence �W†�4�n;�2�nKW !†�5�n;�3�nKW induces an
equivalence on�1. Since�1 commutes with filtered colimits, we see that†�4;�2KW 2
�H .S/veff? if and only if †�4;�2KW Œ��1� 2 �H .S/veff?. This latter spectrum is the
same as †�2HW [3, Lemma 3.9], and

zf0.†
�2HW/ ' zf0..†

�2HW/�0/ ' zf0.†
�2.HW�2// D 0

by assumption.
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