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Abstract. We consider Fokker–Planck type differential operators associated with general Langevin
processes admitting a Gibbs stationary distribution. Under assumptions ensuring suitable resolvent
estimates, we prove Eyring–Kramers formulas for the bottom of the spectrum of these operat-
ors in the low temperature regime. Our approach is based on the construction of sharp Gaussian
quasimodes and avoids supersymmetry or PT-symmetry assumptions.
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1. Introduction

1.1. Motivations

Let P be the real semiclassical second order differential operator

P D �h div ı A ı hr C 1
2
.b � hr C h div ı b/C c; (1.1)

where the matrix fieldA, the vector field b and the function c depend smoothly on x 2Rd ,
and h > 0 is a small parameter. We assume that the matrix field A is pointwise symmetric
and positive semidefinite and the function c is nonnegative. In stochastic analysis, such
operators arise naturally as the generators of time homogeneous Langevin processes

dXt D �.Xt /C
p
2h�.Xt / dBt ; (1.2)

where .Bt / denotes the Brownian motion on Rd , the vector field � is the drift coeffi-
cient, the matrix field � is the diffusion coefficient and the parameter h is proportional
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to the temperature of the system. Given any test function ', the expectation u.t; x/ D
E.'.Xt / jX0 D x/ solves the Fokker–Planck equation´

@tuCLu D 0;

ujtD0 D ';
(1.3)

where

L D �h

dX
i;jD1

ai;j @xi @xj �

dX
kD1

�k@xk ;

with A D .ai;j / D �� t . Up to the multiplicative factor h, this operator has the form (1.1)
for some suitable b and c. Denoting by L� the formal L2.dx/ adjoint of L, (1.3) is
equivalent to saying that the probability density %.t; �/ of the process .Xt / is a solution of
the adjoint equation

@t% D L�%:

Among many examples of such operators, let us mention two cases of particular interest.
Taking � D �rf for some smooth function f on Rd and � D IdRd , the generator L

of the overdamped Langevin process

dXt D �rf .Xt /C
p
2h dBt (1.4)

can be written as
L D LKS D �h�Crf � r; (1.5)

which is sometimes called the Kramers–Smoluchowski operator. Depending on the field
of research, this operator is also known as the weighted Laplacian or Bakry–Émery Lapla-
cian and is unitarily equivalent to the Witten Laplacian.

Another famous example is given by the case where � W R2d ! R2d is the projection
onto the subspace 0˚ Rd , �.x; v/ D .0; v/, and � W R2d ! R2d , defined by �.x; v/ D
.v;�rxV � v/, is related to the energy function f .x; v/ D 1

2
jvj2 C V.x/ depending on

a smooth potential V on Rd . The associated Langevin equation reads´
dxt D vt dt;

dvt D �rxV.xt / dt � vt dt C
p
2h dBt ;

(1.6)

where .Bt / is the Brownian motion on Rd . The associated generator is the Kramers–
Fokker–Planck operator

L D LKFP D �v � rx CrxV � rv C v � rv � h�v; (1.7)

where �v is the Laplace operator in the v variable only.
The study of the operators LKS and LKFP has been the subject of many works in the

last decades. It is particularly motivated by its applications to computational physics. The
above processes are indeed ergodic with respect to their Gibbs measure and can thus be
used to sample this distribution. We refer to [22] for details on these topics.
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From a theoretical point of view, the study of the qualitative properties (well-posed-
ness, asymptotic behavior) as well as of the quantitative properties (precise spectral
asymptotics) of the Fokker–Planck equation (1.3) has recently seen a major progress on
the impulse of microlocal techniques. When the matrix field A is positive definite, the
operator P is elliptic and standard tools apply to prove general properties on the operator
P (maximal accretivity, compactness of the resolvent). WhenA is not invertible, the oper-
ator P is not elliptic anymore (it is sometimes called a degenerate diffusion) and advances
have recently been made using hypoelliptic methods in the spirit of Hörmander. For
the Kramers–Fokker–Planck operator LKFP, exponential convergence to equilibrium was
proved in [26] and explicit rate of decay in the nonsemiclassical setting was given in [16].
More generally, hypocoercive methods developed for various kinetic models provide now
robust tools to prove return to equilibrium and spectral gap estimates (see [27] for an
overview).

In the semiclassical setting h! 0, computing sharp spectral asymptotics for the low-
lying spectrum of P is a classical problem having a long history. In the elliptic self-adjoint
case, i.e. when A is uniformly positive definite and b D 0, the low-lying eigenvalues of P
are localized near the absolute minimum value of the zeroth order part of P , that is, the
minimum value of the function c. Moreover, the harmonic and WKB approximations ofP
near the absolute minima of c yield spectral expansions in powers of h of the low-lying
eigenvalues of P (see [7, Chapters 3 and 4] for a detailed study in the case of Schrödinger
operators).

However, in certain situations, these expansions are identical, and thus do not permit
one to discriminate between these low-lying eigenvalues. This is for instance the case
for Witten Laplacians associated with a confining Morse function f (in this case, the
corresponding function c also depends on h), for which we know from the early works
of Witten [28] and Helffer–Sjöstrand [10] that P admits exponentially small eigenvalues
(that is, of order O.e�C=h/ for some C > 0, and hence indistinguishable on the basis of
their expansions in powers of h), in one-to-one correspondence with the minima of f ,
and that the rest of the spectrum is above "�h for some "� > 0.

Up to a unitary conjugation, the Witten Laplacian is nothing other than the Kramers–
Smoluchowski operator (1.5) and its small eigenvalues govern the time of return to equi-
librium for the overdamped Langevin process (1.4). The computation of these eigenvalues
is a historical problem which goes back at least to Eyring [8] and Kramers [18]. In
the early 2000s, sharp asymptotics of these small eigenvalues were obtained by Bovier–
Eckhoff–Gayrard–Klein [4] and Helffer–Klein–Nier [9]. Known as Eyring–Kramers for-
mulas, such spectral asymptotics were also obtained recently in [20] in elliptic non-self-
adjoint settings, associated with nonreversible overdamped Langevin processes general-
izing (1.4). Concerning the transition times of these processes, Eyring–Kramers formulas
have been established in both reversible and nonreversible settings in [3] and [2, 19, 21]
respectively under similar assumptions. We also refer to [1] for a nice introduction to
these topics.

In the nonelliptic case, major progress in the analysis of the operator P was made by
Hérau, Hitrik and Sjöstrand in a series of works. In [13], the authors proved resolvent
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estimates and established harmonic approximation of the spectrum under dynamical
assumptions on the symbol of the operator P . In [14], they applied these results to oper-
ators satisfying additional symmetries (supersymmetry and PT-symmetry). Under these
assumptions, the operator P admits a natural Gibbs stationary distribution e�f=h and the
authors proved spectral Eyring–Kramers formulas in this setting, where the small eigen-
values govern the time of return to equilibrium for the Langevin process (1.6).

Though they are satisfied by many interesting examples (like Kramers–Fokker–Planck
operators), the assumptions of supersymmetry and PT-symmetry do not look necessary to
prove sharp spectral asymptotics, as shown in [20]. The aim of the present paper is to
prove spectral Eyring–Kramers formulas for general operators P satisfying the assump-
tions of [13] and admitting an explicit Gibbs stationary distribution, but without the
additional symmetry assumptions of [14].

1.2. Framework and results

Let P D P.x;h@x ; h/ be a semiclassical second order differential operator on Rd , d � 1,
with smooth real coefficients,

P D �

dX
i;jD1

h@xi ı ai;j .x; h/ ı h@xj

C
1

2

dX
jD1

.bj .x; h/ ı h@xj C h@xj ı bj .x; h//C c.x; h/; (1.8)

where the real functions ai;j , bj , and c depend smoothly on x 2 Rd , ai;j D aj;i for all
i; j D 1; : : : ; d , and h 2 �0; 1� denotes the semiclassical parameter. We suppose that the
coefficients of P satisfy the following growth condition at infinity:

8j˛j � 0; @˛xai;j .x; h/ D O.1/;

8j˛j � 1; @˛xbj .x; h/ D O.1/;

8j˛j � 2; @˛xc.x; h/ D O.1/;

(1.9)

uniformly with respect to h, where the O.1/’s may depend on ˛. We assume moreover
that the above coefficients admit classical expansions ai;j .x; h/ �

P
k2N hkaki;j .x/,

bj .x; h/ �
P
k2N h

kbkj .x/ and c.x; h/ �
P
k2N h

kck.x/ in the sense that

@˛x

�
e.x; h/ �

X
0�k�K

ek.x/hk
�
D O.hKC1/ (1.10)

for all ˛ 2Nd ,K 2N and e 2 ¹ai;j ; bj ; cº. This yields classical expansions for the matrix
fieldA.x;h/D .ai;j .x;h//i;j �

P
k h

kAk.x/ and the vector field b.x;h/�
P
k h

kbk.x/.
Considering symbols which have a classical expansion allows us to deal with, e.g., Witten
Laplacians and Kramers–Fokker–Planck operators, which naturally have subprincipal
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terms. Finally, we also assume partial positivity of the symbols of the operator P : for
all x 2 Rd and h 2 �0; 1�,

c0.x/ � 0 and A.x; h/ D .ai;j .x; h//i;j is positive semidefinite. (1.11)

Such operators were studied in detail in [13], where the authors establish resolvent estim-
ates together with spectral asymptotics. In particular, the graph closure of the operator P
initially defined on the Schwartz space �.Rd /, still denoted by P , is maximal quasi-
accretive (more precisely, P CCh is maximal accretive for some C > 0) and has domain

D.P / D ¹u 2 L2.Rd /I Pu 2 L2.Rd /º; (1.12)

by [13, Proposition 3.1 and Corollary 3.2]. The same properties also hold for the
adjoint P � mutatis mutandis. Throughout the paper, we assume (1.8)–(1.11) without
explicit mention.

Let us introduce the symbol p.x; �; h/ of P in the semiclassical Weyl quantization. It
satisfies

p.x; �; h/ D � � A.x; h/� C ib.x; h/ � � C c.x; h/C
h2

4

dX
i;jD1

@xi @xj ai;j .x; h/; (1.13)

where, throughout the paper, x � y denotes the usual scalar product of x and y in Rd (in
order to facilitate the reading, we will also sometimes use the notation hx;yi D x � y). The
symbol admits a classical expansion p.x;�;h/�

P
k h

kpk.x;�/ and the principal symbol
p0 is given by p0 D p02 C ip

0
1 C p

0
0 with p02.x; �/ D � � A

0.x/�, p01.x; �/ D b
0.x/ � �

and p00.x/ D c
0.x/. In order to lighten the notation, we will drop the superscript 0 when

it is unambiguous. Consider the symbol

zp.x; �/ D p00.x/C
p02.x; �/

h�i2
; (1.14)

where h�i2 D 1 C j�j2. Thanks to (1.11), one has p00 ; p
0
2 � 0 and hence zp � 0. Given

T > 0, let us define the symbol h zpiT by

h zpiT D
1

2T

Z T

�T

zp ı e
tH
p0
1 dt; (1.15)

whereHp0
1
D @�p

0
1 � @x � @xp

0
1 � @� denotes the Hamilton vector field associated with the

symbol p01 . The critical set associated with p is defined by

C D ¹.x; 0/ 2 T �Rd I b0.x/ D 0 and c0.x/ D 0º: (1.16)

As in [13], we suppose that the set C is finite, C D ¹�1; : : : ; �N º, and for some fixed
T > 0 (see [13, (4.21) and (4.23)]) there exists a constant C > 0 such that

h zpiT .�/ �
1

C
j� � �j j

2 for all � near any �j ; (Harmo)
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and, for any neighborhood U of �xC ,

9C > 0; 8x 2Rd nU; meas
²
t 2 Œ�T;T �I c0

�
exp.tb0 � r/.x/

�
�
1

C

³
�
1

C
: (Hypo)

Assumption (Harmo) may look difficult to check in applications, but Corollary 2.4 and
Remark 2.5 provide a concrete criterion to verify it. Observe also that (Hypo) holds true
for instance when c0 is uniformly positive outside each neighborhood of �xC . Note that
it is not necessary to assume (4.22) of [13] here since this is a consequence of (Harmo)
and (Hypo), as explained in [13, p. 223].

Under these assumptions, Hérau, Hitrik and Sjöstrand obtained spectral information
that we sum up below. For this purpose, we introduce the fundamental matrix Fp0 of
the symbol p0 at a critical point � 2 C (see (1.16)) as the linearization of the Hamilton
field Hp0 at �. Its eigenvalues are of the form ˙��;`, 1 � ` � d , with Im ��;` > 0. We
use the notation etr.p; �/ D �i dX

`D1

��;` C 2c
1.�x�/:

The following results from [13, Proposition 7.2, Theorems 8.3, 8.4].

Theorem 1 (Hérau–Hitrik–Sjöstrand). Assume that (Harmo) and (Hypo) hold true. For
any B > 0, there exists C > 0 such that for h small enough, the operator P has no
spectrum in

¹z 2 CI Re z < Bh and jIm zj > Chº:

Moreover, for any B > 0, there exists ˛ > 0 such that, for h small enough, the spectrum
of P in D.0;Bh/ is discrete and made up of eigenvalues .with multiplicity/ of the form

��;k.h/ D h.�
0
�;k CO.h˛//;

where the .�0
�;k
/�2C ; k2N are all the possible numbers of the form

�0�;k D
1

i

dX
`D1

��;k;`��;` C
1

2
etr.p; �/ with ��;k;` 2 N:

Finally, for every B > 0, there exists C > 0 such that

k.P � z/�1k � C=h (1.17)

for all h small enough and z 2 C such that Re z < Bh and dist.z; �.P // � h=B .

In addition, they showed that the remainder terms O.h˛/ have a classical expansion
in fractional powers of h. It is assumed in [13] that the coefficients ai;j ; bj ; c of the
operator P (see (1.8)) do not depend on h, but a direct adaptation to our setting (using in
particular (1.10)) gives Theorem 1. It turns out that in many situations, some leading coef-
ficients �0

�;k
vanish and one aims at having a more accurate description of the spectrum.

This is the case for instance for Witten Laplacians or Kramers–Fokker–Planck operators,
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which both admit an invariant distribution. In the present paper, we consider the situation
where the operator P satisfies the assumptions of Theorem 1 and there exists a smooth
function f W Rd ! R such that

e�f=h 2 L2.Rd /; lim
jxj!C1

f .x/ D C1; (Confin)

with
P.e�f=h/ D 0 and P �.e�f=h/ D 0; (Gibbs)

in the sense of distributions. In particular, (1.12) shows that e�f=h 2 D.P / \D.P �/.
Moreover, we will assume that

f is a Morse function with a finite number of critical points. (Morse)

We denote by U the set of critical points of the Morse function f and by U.j / the set of
its critical points of index j D 0; : : : ; d (that is, the set of those critical points u such that
Hessf .u/ has signature .d � j; j /). Moreover, we denote by n0 WD ]U.0/ the number of
local minimum points of f , by H.x/ WD Hess f .x/ the Hessian matrix of f at x 2 Rd ,
and we call the elements of U.1/ saddle points.

For j 2 ¹0; 1; 2º, let us denote by Pj the j th order part of the operator P D P2 C
P1 C P0 with P2 D �h div ı A ı hr formally self-adjoint, P1 D 1

2
.b � hr C h div ı b/

formally anti-adjoint, and P0 D c formally self-adjoint. It then follows from (Gibbs) that
P1.e

�f=h/ D 0 and .P2 C P0/.e�f=h/ D 0. Using the classical expansions of the coef-
ficients and looking at the terms of order 0 in the expansion, we obtain the following
eikonal equations: for all x 2 Rd ,

hA0.x/rf .x/;rf .x/iRd D c
0.x/; (1.18)

hb0.x/;rf .x/iRd D 0: (1.19)

The first consequence of these identities is the following lemma whose proof is postponed
to the next section.

Lemma 1.1. If (Gibbs) and (Morse) hold true, then U� ¹0º � C . If in addition (Harmo)
is satisfied, then C D U � ¹0º.

Using this lemma, we obtain our first localization result for the spectrum of P . Its
proof will also be given in the next section. Note that the eigenvalues are counted accord-
ing to their algebraic multiplicities throughout the paper.

Proposition 1.2. Assume the hypotheses of Theorem 1, (Gibbs) and (Morse). There
exist h0; "� > 0 such that, for every h 2 �0; h0�, P has exactly n0 eigenvalues in
¹z 2 CI Re z < "�hº. Moreover, these eigenvalues are of order O.h1C˛/, where ˛ > 0 is
given by Theorem 1.

The aim of this paper is to give sharp asymptotics of these n0 small eigenvalues of P .
For this purpose, we recall the general labeling of minimum points introduced in [9] and
generalized in [14]. The presentation below originates from [20,24], where extra material
can be found. The main ingredient is the notion of separating saddle point which is defined
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as follows. Note that, for a saddle point s 2 U.1/ of f and r > 0 small enough, the set

¹x 2 D.s; r/I f .x/ < f .s/º

has exactly two connected components Cj .s; r/, j D 1; 2. Observe that this set is empty
when s 2 U.0/ and connected when s 2 Rd n .U.0/ [U.1/). The following definition
comes from [14, Definition 4.1].

Definition 1.3. We say that s 2 U.1/ is a separating saddle point of f if, for every r > 0
small enough, C1.s; r/ and C2.s; r/ are contained in two different connected components
of ¹x 2 Rd I f .x/ < f .s/º. We will denote by V .1/ the set of these points.

We say that � 2 R is a separating saddle value of f if � D f .s/ for some s 2 V .1/.
We say that E � Rd is a critical component of f if there exists � 2 f .V .1// such that

E is a connected component of ¹f < �º and @E \ V .1/ ¤ ;.

Let us now describe the labeling procedure of [14]. Assume that f .x/! C1 when
jxj ! C1 and that f satisfies (Morse). The set f .V .1// is then finite. We denote by
�2 > �3 > � � � > �N its elements and, for convenience, we also introduce a fictive infinite
saddle value �1 D C1. Starting from �1, we will recursively associate to each �i a finite
family .mi;j /j of local minimum points and a finite family .Ei;j /j of critical components:

� Let X�1 D ¹x 2 Rd I f .x/ < �1 D C1º D Rd . We let m1;1 be any global minimum
point of f (not necessarily unique) and E1;1 D Rd . In the following, we will write
m D m1;1.

� Next, we consider X�2 D ¹x 2 Rd I f .x/ < �2º. It is the union of finitely many con-
nected components. Exactly one of these components contains m1;1 and the other
components are denoted by E2;1; : : : ; E2;N2 . They are all critical and, in each com-
ponent E2;j , we pick up a point m2;j which is a global minimum point of fjE2;j .

� Suppose now that the families .mk;j /j and .Ek;j /j have been constructed until rank
k D i � 1. The setX�i D ¹x 2Rd I f .x/ < �iº has again finitely many connected com-
ponents and we label Ei;j , j D 1; : : : ; Ni , those of them that do not contain any mk;`

with k < i . They are all critical and, in each Ei;j , we pick up a point mi;j which is a
global minimum of point fjEi;j .

At the end of this procedure, all the minimum points have been labeled (see Fig. 1.1).
We now recall some useful constructions of [20, 24]. Throughout, we denote by s1 a

fictive saddle point such that f .s1/ D �1 D C1 and, for any set A, P .A/ denotes the
power set of A. From the above labeling, we define two mappings

E W U.0/
! P .Rd / and j W U.0/

! P .V .1/
[ ¹s1º/

as follows: for every i 2 ¹1; : : : ; N º and j 2 ¹1; : : : ; Niº,

E.mi;j / WD Ei;j ; (1.20)

and
j.m/ WD ¹s1º and j.mi;j / WD @Ei;j \ V .1/ for i � 2: (1.21)
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In particular, E.m/ D Rd and, for all i 2 ¹1; : : : ; N º and j 2 ¹1; : : : ; Niº, one has ; ¤
j.mi;j / � ¹f D �iº. We then define the mappings

� W U.0/
! f .V .1// [ ¹�1º and S W U.0/

! �0;C1�;

by
8m 2 U.0/; �.m/ WD f .j.m// and S.m/ WD �.m/ � f .m/; (1.22)

where, with a slight abuse of notation, we have identified the set f .j.m// with its unique
element. Note that S.m/ D C1 if and only if m D m.

j.m3;1/ E.m3;1/

m3;1

m2;1

m D m1;1

m4;1

j.m2;1/E.m2;1/

j.m4;1/ E.m4;1/

f

Fig. 1.1. An example of the labeling procedure.

We are now in a position to introduce our last assumption. In addition to (Gibbs),
(Confin), and (Morse), we assume the following:

? for any m 2 U.0/; m is the unique global minimum point of fjE.m/;

? for all m ¤ m0 in U.0/; j.m/ \ j.m0/ D ;:
(Gener)

In particular, (Gener) implies that f attains its global minimum only at m 2 U.0/. This
assumption is a generalization of [14, Assumption 5.1], which was already used in [20].
In Section 6, we discuss how to remove this hypothesis and deal with the general case, in
the spirit of [24].

In order to state our main result, we need the following lemma which is proved in
Section 2. Throughout the paper, we denote C˙ D ¹z 2 CI ˙Re z > 0º, and M t is the
transpose of any matrix M .

Lemma 1.4. Assume (Harmo), (Gibbs), and (Morse), and let k 2 ¹0; : : : ;dº. Let u 2U.k/

be a critical point of f of index k. Denote B.u/ D db0.u/ and recall that H.u/ is the
Hessian matrix of f at u. Then

(i) the matrix ƒ.u/ WD 2H.u/A0.u/C B t .u/ admits exactly k eigenvalues in C� and
d � k eigenvalues in CC,

(ii) if k D 1, its unique eigenvalue �.u/ in C� is real .and thus �.u/ < 0/.
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We can now state our main result.

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied. Assume also that
(Gibbs), (Confin), (Morse) and (Gener) hold true. Let "� be given by Proposition 1.2.
There exists h0 >0 such that, for all h2 �0;h0�, counting the eigenvalues with multiplicity,
one has

�.P / \ ¹Re z < "�hº D ¹�.m; h/I m 2 U.0/
º;

where �.m;h/D 0 and, for all m¤m, �.m;h/ satisfies the Eyring–Kramers type formula

�.m; h/ D z.m/he�2S.m/=ha.h/; (1.23)

where a.h/ 2 C admits a classical expansion a.h/ � 1C
P
j�1 ajh

j with every aj real.
Here, S W U.0/ ! �0;C1� is defined in (1.22) and, for every m 2 U.0/ n ¹mº,

z.m/ D
.det Hessf .m//1=2

2�

� X
s2j.m/

j�.s/j
jdet Hessf .s/j1=2

�
; (1.24)

where j W U.0/ ! P .V .1/ [ ¹s1º/ is defined in (1.21) and �.s/ is given by Lemma 1.4.

Let us make some comments on the above result. In [14], the authors studied the case
where the operator satisfies some supersymmetry property. More precisely, they assumed
the existence of a smooth matrix-valued function G.x/ such that P D �f;G , where

�f;G D d
�
f ıG.x/ ı df ; (1.25)

and df denotes the semiclassical Hodge derivative twisted “à la Witten”: df D e�f=h ı
hd ı ef=h for some smooth function f . Under suitable assumptions on f and G,
�f;G satisfies the general hypotheses of Theorem 1. Moreover, one has obviously
�f;G.e

�f=h/ D ��
f;G
.e�f=h/ D 0. Assuming additionally that f is a Morse function,

the authors proved that the smallest eigenvalues of �f;G are exponentially small with
respect to h, and established Eyring–Kramers type formulas under suitable topolo-
gical assumptions (see [14, Theorem 5.10, Proposition 6.7 and (6.71)]). In their paper,
the supersymmetry assumption is fundamental since, combined with the PT-symmetry
property, it permits following the strategy used by Helffer–Klein–Nier [9] in the super-
symmetric framework of Witten Laplacians. More recently, the last two authors [20]
studied the case of nonreversible diffusions

P D �f C b � df ; (1.26)

where �f D �h2� C jrf j2 � h�f denotes the Witten Laplacian and b is a vector
field satisfying div b D 0 and b � rf D 0. In this setting, which is not supersymmetric in
general, the authors built accurate quasimodes and used them to prove Eyring–Kramers
asymptotics.

The interest of the approach developed in the present paper is in dealing simultan-
eously with all these models without assuming additional symmetry. In particular, The-
orem 2 applies to both (1.25) and (1.26). Moreover, in Appendix B we give examples
of operators P satisfying our assumption but which do not enjoy a nice supersymmetric
structure (1.25). Compared to the results of [14], our approach also has the advantage of
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giving formulas which are completely explicit in terms of the coefficients of the operator
and of the function f . Moreover, compared to the result of [20], we obtain a full asymp-
totic expansion of the prefactor z.m/a.h/. The proof relies on the resolvent estimates of
[13] and on the construction of accurate quasimodes near the saddle points of f . These
constructions, inspired by [3,6,20], are the main novelty of this paper. To be more precise,
we generalize the use of Gaussian cut-off functions introduced in [20] by using geometric
constructions, which lead to complete asymptotic expansions.

Theorem 2 permits us to determine the long time behavior of the solutions of the
evolution equation associated with P ,´

h@tuC Pu D 0;

ujtD0 D u0:
(1.27)

Under our assumptions, P is better than maximal quasi-accretive. More precisely, we
have the following.

Remark 1.5. If (Gibbs) holds true, then P is maximal accretive. Indeed, the same com-
putation as the one leading to (5.2) below shows that

8u 2 C10 .R
d /; Re hPu; ui D h2he�f=hAr.ef=hu/; e�f=hr.ef=hu/i � 0:

Therefore the Cauchy problem (1.27) has, for every u0 2L2.Rd /, a unique weak solution
in C 0.Œ0;C1ŒIL2.Rd //, denoted by u.t/ D e�tP=hu0. Modulo conjugation by e�f=h,
(1.27) is the Fokker–Planck equation (1.3) in the case of the general Langevin pro-
cess (1.2).

We first state the spectral expansion of the propagator.

Corollary 1.6. In the setting of Theorem 2, there exist C; h0; " > 0 such that, for all
h 2 �0; h0� and u0 2 L2.Rd /, there exists .u�;n/�;n � L2.Rd / such that the solution u.t/
of (1.27) satisfies

8t � 0;





u.t/ � X
�2¹�.m;h/Im2U.0/º

0�n�mult.�/�1

u�;nt
ne��t=h





 � Ce�"tku0k: (1.28)

Moreover, for all N 2 N, there exist CN ; h0 > 0 such that, for all h 2 �0; h0� and u0 2
L2.Rd /, the solution u.t/ of (1.27) satisfies

8t � 0;





u.t/� he�f=h; u0i
ke�f=hk2

e�f=h




�CN e�t min

m¤m
Re.�.m;h//.1�hN /=h

ku0k: (1.29)

The double sum appearing in (1.28) is nothing but e�tP=h…h, where …h denotes
the spectral projector of P associated with its n0 exponentially small eigenvalues. In
particular, when the �.m; h/ are pairwise distinct, (1.28) reads

u.t/ D
X

m2U.0/

…m.u0/e
��.m;h/t=h

CO.e�"t /ku0k; (1.30)

where…m is the rank-one spectral projector of P associated with the eigenvalue �.m; h/.
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Estimate (1.29) implies that u0;0 D …mu0 D ke
�f=hk�2he�f=h; u0ie

�f=h and
mult.0/ D 1, where …m is the (orthogonal) spectral projector of P associated with the
eigenvalue 0 with the corresponding eigenspace e�f=hC. Equation (1.29) is a return-to-
equilibrium formula generalizing [20, Theorem 1.11]. We see that the spectral gap (that
is, minm¤m Re.�.m; h//) indeed gives the rate of convergence to the equilibrium state
modulo O.h1/. In addition, when there exists precisely one m? 2 U.0/ n ¹mº such that

�.m?; h/ D min
m¤m

Re.�.m; h//.1CO.h1//;

the eigenvalue �.m?; h/ is simple and real and minm¤m Re.�.m; h//.1 � hN / can be
replaced by �.m?; h/ in (1.29).

One can also show the metastable behavior of the solutions of (1.27).

Corollary 1.7 (Metastability). In the setting of Theorem 2, let S1 < � � � < SK D C1

denote the increasing sequence of the S.m/’s defined in (1.22) and let…�
k

be the spectral
projector of P associated with its eigenvalues of modulus less than e�2Sk=h. For two
positive functions g˙.h/ such that g�.h/ D O.h1/ and g�1C .h/ D o.jlnhj

�1/, we define

tC0 D gC.h/ and 81 � k � K; t˙k D g˙.h/e
2Sk=h

.in particular, t�K D C1/. Then, for every h small enough, the solution u.t/ of (1.27)
satisfies

8tC
k�1
� t � t�k ; u.t/ D …�

k
u0 CO.h1/ku0k; (1.31)

uniformly with respect to t , 1 � k � K and u0 2 L2.Rd /.

In other words, e�tP=h �…�
k

in the time interval ŒtC
k�1

; t�
k
�, whereas transitions occur

around the times tk D e2Sk=h. In this result, one can take for instance g�.h/ D e�ı=h

with ı > 0, and gC.h/D jlnhj2. Note that…�j …
�

k
D…�max.j;k/,…

�

1 D…h is the spectral
projector of P associated with its n0 exponentially small eigenvalues, and …�K D …m is
the orthogonal projector on e�f=hC. The proofs of Corollaries 1.6 and 1.7 are given at
the end of Section 5.

We conclude this introduction by applying Theorem 2 to a generalization of the
Kramers–Fokker–Planck operator defined in (1.7). For two smooth functions V.x/
and W.v/ and a friction coefficient 
 > 0, the generator associated with the SDE´

dxt D @vW.vt / dt;

dvt D �@xV.xt / dt � 
@vW.vt / dt C
p
2
h dBt ;

(1.32)

is given by
L D �@vW � @x C @xV � @v C 
@vW � @v � 
h�v: (1.33)

This is an example of a Hamiltonian SDE discussed in [22, Section 2.2.3]. Defining
Mh.x; v/ WD e

�.V.x/CW.v//=h, we have

L.1/ D 0 and L�.Mh/ D 0:
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Hence, P WDM�1=2
h

hL�M
1=2

h
satisfies

P.e�f=h/ D 0 and P �.e�f=h/ D 0;

where f .x; v/ WD .V .x/CW.v//=2. Moreover, an immediate computation shows that

P D @vW � h@x � @xV � h@v C 
�W=2; (1.34)

where �W=2 D .�h@v C @vW=2/ ı .h@v C @vW=2/ is the Witten Laplacian in the vari-
able v associated with the function W.v/=2. Thus, P has the form (1.8) with

A.x; v/ D

�
0 0

0 
 Id

�
; b.x; v/ D

�
@vW.v/

�@xV.x/

�
; c.x; v/ D




4
jrvW j

2
� h




2
�W:

Of course, f satisfies (Morse) if and only if V and W do. In that case, Corollary 2.4,
Remark 2.5 and

B WD db0 D

�
0 HessvW

�Hessx V 0

�
show that (Harmo) is satisfied. Under some additional growth assumptions on V and W
at infinity, one can verify that (Confin) and (Hypo) hold true. At a critical point u, the
matrix ƒ.u/ of Lemma 1.4 is given by

ƒ.u/ D
�

0 �Hessx V
HessvW 
 HessvW

�
:

The setting of (1.7) corresponds to W.v/ D v2=2. In that case, the saddle points of f are
of the form s D .x; 0/, where x is a saddle point of V , and the unique eigenvalue of ƒ.s/
with negative real part is

�.s/ D 1
2
.
 �

p

2 � 4�1/; (1.35)

where �1 is the unique negative eigenvalue of Hessx V.x/. This yields an explicit expres-
sion of the prefactor z.m/ in (1.24) and we observe that it has the same form as the one
obtained in [14, (6.67)]. Observe also that j�.s/j < j�1j if and only if 
 > 1C �1. Thus,
the rate of convergence to the equilibrium for the Langevin process (1.6) (whose gener-
ator is the Kramers–Fokker–Planck operator, see (1.7)) is smaller than for the overdamped
Langevin process (1.4) (generated by the Witten Laplacian, see the lines above (1.5))
if and only if this condition holds. Note that this discussion is more generally valid if
W admits a unique critical point at v D v with Hessv W.v/ D Id. In particular, it is easy
to choose W such that P is not PT-symmetric, which provides a setting covered by The-
orem 2 but which cannot be treated using [14].

More sophisticated Langevin equations have been considered in the literature, as the
generalized Langevin equation in [25] (see also references therein). Our results enable
one to compute in the low temperature regime the low-lying eigenvalues of the different
generators treated in [25].

The rest of this paper is organized as follows. In Section 2, we derive algebraic and
geometric results from our assumptions. This leads to the proofs of Lemmas 1.1 and 1.4,
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and of the rough localization of the spectrum of P stated in Proposition 1.2. Section 3 is
devoted to the construction of new Ansätze of the eigenmodes of P near the saddle points
of f . These Ansätze are then used in Section 4 to construct global quasimodes. After-
wards, in Section 5, we prove our main results, Theorem 2 and Corollaries 1.6 and 1.7.
The aim of Section 6 is then to show that Theorem 2 can be generalized to an arbitrary
Morse function f , that is, without assuming (Gener). A vague statement is given in The-
orem 3, while precise ones are Theorems 5 and 6. Let us also recall here that we are not
working with symmetry assumptions such as supersymmetry or PT-symmetry. This pre-
vents us from concluding as in [9] (and in many other later works such as, e.g., [14, 24])
after reduction of the problem to the computation of the eigenvalues of a square matrix
of size n0. To handle this computation, we then make crucial use of the Schur comple-
ment method, as in [20], and refine [20, Theorem A.4] in Theorem 4. We believe that
Theorem 4 is of independent interest and may be used in other contexts.

2. Preliminary results

In this section, we prove some preparatory geometric results and use them to show the
rough localization of the spectrum of P stated in Proposition 1.2. For a critical point u
of f , we use the abbreviations

A0 D A0.u/; B D db0.u/; H D Hessf .u/:

2.1. Analysis of the critical set

The aim of this section is to prove Lemma 1.1 and to discuss the assumptions of Sec-
tion 1.2. We start with a microlocal observation.

Lemma 2.1. (i) Assume (Harmo) and let .u; 0/ 2 C . Then

the real symmetric matrix
Z T

�T

e�tBA0e�tB
t

dt is positive definite: (2.1)

(ii) If (2.1) holds true, then ker.A0/ \ ker.B t � z/ D ¹0º for every z 2 C.

Proof. Since the Hamilton vector field Hp0
1

at .u; �/ equals .0;�B t�/ when � 2 Rd , it

follows that, for every � 2 Rd (see (1.14) and (1.15)),

h zpiT .u; �/ D
1

2T

Z T

�T

zp.u; e�tB
t

�/ dt D
1

2T

Z T

�T

p02.u; e
�tBt �/

he�tB
t
�i2

dt

�
1

2T

Z T

�T

hA0e�tB
t

�; e�tB
t

�i dt; (2.2)

where we have used .u; 0/ 2 C and thus c.u/ D 0 to obtain the second equality. Since
(Harmo) implies h zpiT .u; �/ � 1

C
j�j2 for some constant C > 0 and every � small enough,

part (i) of Lemma 2.1 is then an immediate consequence of (2.2).



Eyring–Kramers law for Fokker–Planck type differential operators 4361

To prove the second part of Lemma 2.1, let � 2 Cd belong to ker.A0/ \ ker.B t � z/
for some z 2C. Then e�tB

t
�D e�tz�, and thus � 2 ker.

R T
�T
e�tBA0e�tB

t
dt/D ¹0º.

For a not necessarily Morse function f (that is, without assuming (Morse)), U

(resp. zU) denotes the set of critical (resp. nondegenerate critical) points of f .

Lemma 2.2. (i) If (Gibbs) holds true, then

zU � ¹0º � C : (2.3)

(ii) If (Gibbs) and (2.1) hold true, then

C � U � ¹0º: (2.4)

Proof. Suppose that u 2 zU and assume without loss of generality that u D 0. Thanks to
(1.18), we have c0.0/ D 0. Moreover, near the origin,

rf .x/ D Hx CO.x2/ and b0.x/ D b0.0/CO.x/;

which, combined with (1.19), yields

8x 2 Rd ; hb0.0/;Hxi D 0;

and thus Hb0.0/ D 0. Since u D 0 is assumed to be nondegenerate, H is invertible and
hence b0.0/ D 0. This proves (2.3).

We now show (2.4). Let .u; 0/ 2 C and assume without loss of generality that u D 0.
Then b0.0/D 0 and c0.0/D 0. Denoting � WD rf .0/, it follows from (1.18) that hA0�;�i
D 0. Since A0 is positive semidefinite, this implies A0� D 0. On the other hand, (1.19)
yields

8x 2 Rd ; 0 D hb0.0/C Bx CO.x2/; �CO.x/i D hBx CO.x2/; �CO.x/i;

and hence B t� D 0. It follows that � 2 ker.A0/ \ ker.B t / and so � D 0 thanks to
Lemma 2.1 (ii). This completes the proof of (2.4).

Proof of Lemma 1.1. We can deduce Lemma 1.1 from Lemma 2.2. Indeed, the sets zU
and U coincide when f is a Morse function. Then Lemma 2.2 (i) provides the first
statement of Lemma 1.1. On the other hand, (Harmo) and (Gibbs) imply (2.1) from
Lemma 2.1 (i) and hence (2.4). Thus, Lemma 2.2 gives C D U � ¹0º in that case, fin-
ishing the proof of Lemma 1.1.

Lemma 2.3. Assume (Gibbs) and let u 2 U with b.u/ D 0. Then the matrix B tH is
antisymmetric. If moreover the critical point u is nondegenerate .i.e. u 2 zU/, the matrix
J WD H�1B t is also antisymmetric.

Proof. As before, we assume for simplicity that uD 0. Performing a Taylor expansion of
the identity b.x/ � rf .x/ D 0 (see (1.19)), we deduce Bx �Hx D 0 for every x 2 Rd .
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Therefore, x � B tHx D 0 for every x 2 Rd , which implies that the matrix zJ D B tH is
antisymmetric.

Moreover, if in addition H is invertible, then J D H�1B t D H�1 zJH�1 is antisym-
metric since H is symmetric.

Corollary 2.4. Assume (Gibbs). Then condition (Harmo) is satisfied if and only if, for
every .u; 0/ 2 C ,

H is invertible and the symmetric matrix
Z T

�T

e�tBA0e�tB
t

dt is positive definite.

Remark 2.5. Mimicking the Kalman criterion for controllability of finite-dimensional
systems (see [5, Theorem 1.16]), one can show that

R T
�T
e�tBA0e�tB

t
dt is positive def-

inite if and only if

d�1
ă

nD0

Im.BnA0/ D Rd or
d�1\
nD0

ker.A0.B t /n/ D ¹0º:

Proof of Corollary 2.4. We first prove a formula for h zpiT near .u; 0/ 2 C with u 2 U.
Without loss of generality, we can assume that u D 0. Denoting .x; �/ by �, (1.14) and
(1.18) yield, near .0; 0/,

zp.�/ D p02.x; �/C c
0.x/CO.�3/

D A0� � � C A0Hx �Hx CO.�3/:

On the other hand, since 0 D .0; 0/ is a critical point of Hp0
1
, we have d exp.tHp0

1
/.0/ D

exp.tFp0
1
/, where Fp0

1
is the linearization ofHp0

1
at 0. Using p01.x; �/ D Bx � � CO.�3/,

we obtain Fp0
1
.x; �/ D .Bx;�B t�/. Consequently, near .0; 0/,

h zpiT .�/ D
1

2T

Z T

�T

�
hA0HetBx;HetBxi C hA0e�tB

t

�; e�tB
t

�i CO.�3/
�
dt

D
1

2T

Z T

�T

�
hA0HetBx;HetBxi C hA0e�tB

t

�; e�tB
t

�i
�
dt CO.�3/;

from (1.15). Since moreover B tH is antisymmetric according to Lemma 2.3, we have
HB D �B tH and hence HetB D e�tB

t
H . This leads to

h zpiT .�/ D
1

2T

Z T

�T

�
hA0e�tB

t

Hx; e�tB
t

Hxi C hA0e�tB
t

�; e�tB
t

�i
�
dt CO.�3/:

(2.5)

Let us now prove the corollary and consider .u; 0/ 2 C . If (Harmo) holds, Lem-
mas 2.1 (i) and 2.2 (ii) imply that u 2 U. Then, we can apply (2.5), which, combined
with (Harmo), shows that the matrices

H

�Z T

�T

e�tBA0e�tB
t

dt

�
H and

Z T

�T

e�tBA0e�tB
t

dt are positive definite:
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This is equivalent to

H is invertible and the symmetric matrix
Z T

�T

e�tBA0e�tB
t

dt is positive definite;

(2.6)

proving the direct implication of Corollary 2.4. On the other hand, if (2.6) holds true,
then (2.1) holds true and Lemma 2.2 (ii) gives u 2U. Then (2.5) and (2.6) imply (Harmo),
proving the converse implication.

2.2. The spectrum of the matrix ƒ

The aim of this section is to provide information on the spectrum of the matrix ƒ D
2HA0 C B t and to prove Lemma 1.4. We start with the following result, where J D
H�1B t is antisymmetric according to Lemma 2.3.

Lemma 2.6. Assume (Harmo), (Gibbs) and (Morse). For any u 2 U and r 2 Œ0; 1�, the
matrix

ƒr WD H
�
r.2A0 C J /C .1 � r/ Id

�
has no eigenvalue on the imaginary axis ¹Re z D 0º.

Proof. Suppose that there exists v 2 Cd such that ƒrv D zv with Re z D 0. Then, using
hv;H�1viCd 2 R, we get

Re hƒrv;H�1viCd D Re.zhv;H�1viCd / D 0: (2.7)

On the other hand,

Re hƒrv;H�1viCd D 2r Re hA0v; viCd C r Re hJv; viCd C .1 � r/Re hv; viCd

D 2rhA0v; viCd C .1 � r/kvk
2: (2.8)

For r 2 Œ0; 1Œ, (2.7) and (2.8) imply v D 0 and the lemma follows in that case. Assume
now that r D 1. Relations (2.7) and (2.8) yield hA0v; vi D 0 and so A0v D 0 since A0

is positive semidefinite. Thus, the eigenvalue equation ƒv D zv reads B tv D zv. Hence,
v 2 ker.A0/\ ker.B t � z/ and thus v D 0 according to Lemma 2.1, which completes the
proof in the case r D 1.

We now give the proof of Lemma 1.4. Let k 2 ¹0; : : : ; dº and let u 2U.k/. For r D 0,
ƒ0 D H has exactly k eigenvalues in ¹Re z < 0º since u is a critical point of index k.
As the eigenvalues of ƒr are continuous with respect to r and cannot cross the imaginary
axis from Lemma 2.6,ƒ1 Dƒ has exactly k eigenvalues in ¹Re z < 0º and no eigenvalue
on the imaginary axis. This proves (i) of the lemma.

Suppose now that k D 1 and let �.u/ denote the unique eigenvalue ofƒ in ¹Rez < 0º.
Sinceƒ is a real matrix, its set of eigenvalues is stable by complex conjugation and hence
�.u/ 2 R. This proves (ii).
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2.3. Rough localization of the spectrum

In this section, we prove Proposition 1.2. The arguments are close to those of [14, Section
2.2.2]. Thanks to Lemma 1.1, one has C DU� ¹0º and hence it suffices to show that, for
any � D .u; 0/ 2 U � ¹0º, the numbers �0�;0 of Theorem 1 have the following property:´

�0�;0 D 0 for all u 2 U.0/;

Re�0�;0 > 0 for all u 2 U.k/; k � 1;
(2.9)

where we recall that�0�;0D
1
2
etr.p;�/withetr.p;�/D�iPd

`D1��;`C 2c
1.u/, and˙��;`,

` 2 ¹1; : : : ; dº, denote the eigenvalues of the fundamental matrix Fp0 of p0 at � D .u; 0/
with the convention Im��;` > 0 (see the paragraph above Theorem 1). From now on, we
take u 2 U.k/, k � 0, and we suppose again that u D 0 in order to lighten the notation.
Thanks to (1.18), near .0; 0/ one has

p0.x; �/ D hA0.x/�; �i C ib0.x/ � � C c0.x/

D hA0.x/�; �i C ib0.x/ � � C hA0.x/rf .x/;rf .x/i

D hA0�; �i C iBx � � C hA0Hx;Hxi CO..x; �/3/:

Then

Fp0 D

�
iB 2A0

�2HA0H �iB t

�
: (2.10)

Using the identity B tH D �HB which follows from Lemma 2.3, a direct computation
shows that L˙ D ¹.X;˙iHX/I X 2 Cd º are vector spaces stable under Fp0 , that the
map Fp0 restricted to L˙ acts like

F˙ D i.˙2A
0H C B/;

and that C2d D LC˚L� sinceH is invertible. In particular, �.Fp0/D �.FC/[ �.F�/.
It follows moreover from Lemma 1.4 that FC D i.2HA0 C B t /t has k eigenvalues
�C1 ; : : : ; �

C

k
in ¹Imz < 0º and d � k eigenvalues �C

kC1
; : : : ; �C

d
in ¹Imz > 0º. In addition,

using again B tH D �HB , we get

F� D i.�2A
0H C B/ D iH�1.�2HA0 CHBH�1/H

D �H�1i.2HA0 C B t /H D �H�1.FC/
tH:

Hence, �.F�/ D ��.FC/, which proves that

�.Fp0/\ ¹Imz > 0º D ¹��
C
1 ; : : : ;��

C

k
º [ ¹�C

kC1
; : : : ;�C

d
º D ¹��;1; : : : ;��;d º: (2.11)

On the other hand, let us recall that (Gibbs) implies .�h div ı A ı hr C c/.e�f=h/ D 0
(see the lines above (1.18)). Using the classical expansions of the coefficients and looking
at the terms of order 1 then shows that

2c1.u/ D �2
dX

j;`D1

A0j;`.u/@xj @x`f .u/ D � tr.2A0H/:
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Since tr.B/ D tr.�H�1B tH/ D � tr.B t / D � tr.B/ D 0 thanks to B tH D �HB , we
get

2c1.u/ D � tr.2A0H C B/ D i tr.FC/: (2.12)

Combining (2.11) and (2.12) yields

etr.p; �/ D �i dX
`D1

��;` C 2c
1.u/ D i

kX
jD1

�Cj � i

dX
jDkC1

�Cj C i

dX
jD1

�Cj D 2i

kX
jD1

�Cj :

By definition, this last quantity vanishes when k D 0 and has a positive real part when
k � 1. This proves (2.9).

3. Quasimodal constructions near the saddle points

In this part, we assume the hypotheses of Theorem 1, (Gibbs) and (Morse).

3.1. A first step in the construction of quasimodes

Given s 2 U.1/, we look for an approximate solution to the equation Pu D 0 in a neigh-
borhood V of s of the form

u.x/ D v.x; h/e�f .x/=h

with a function v of the form

v.x; h/ D

Z `.x;h/

0

�.s=�/e�s
2=.2h/ ds; (3.1)

where the function `.x; h/ 2 C1.V / has a classical expansion `.x; h/ �
P
j�0 h

j
j̀ .x/

in C1.V /with `0 6� 0. Here, � denotes a fixed smooth even function equal to 1 on Œ�1;1�
and supported in Œ�2; 2�, and � > 0 is a small parameter which will be fixed later. The
object of this section is to construct the function `.

Lemma 3.1. One has

P.ve�f=h/ D .w C r/e�.fC`
2=2/=h;

where
w D h

�
2Ar` � rf C .Ar` � r`/`C b � r`

�
� h2 div.Ar`/;

the function r and all its derivatives are .locally/ bounded, uniformly with respect to h,
and supp.r/ � ¹j`j � �º. Here, we recall that all the functions above depend on x and h.
Moreover, w admits a classical expansion w �

P
j�1 h

jwj with

w1 D 2A
0
rf � r`0 C .A

0
r`0 � r`0/`0 C b

0
� r`0;
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and, for all j � 1,

wjC1 D 2A
0
rf � r j̀ C .A

0
r`0 � r`0/ j̀ C 2.A

0
r`0 � r j̀ /`0

C b0 � r j̀ CRj .x; @
˛`k/;

where Rj is a polynomial in @˛`k , j˛j � 2, and k 2 ¹0; : : : ; j � 1º, with smooth coeffi-
cients.

Proof. Throughout the proof, we write �.�/ instead of �.�=�/. Recall that P D P2 C

P1CP0 with P0 D c, P1 D 1
2
.b � hr C hdiv ı b/ and P2 D�hdiv ıA ı hr. Of course,

ŒP0; v� D 0: (3.2)

Using (3.1), one gets

ŒP1; v� D h.b � r`/�.`/e
�`2=.2h/

D h..b � r`/C r1/e
�`2=.2h/; (3.3)

with r1 D .b � r`/.�.`/� 1/. In particular, r1 and all its derivatives are (locally) bounded,
uniformly with respect to h, and supp.r1/ � ¹j`j � �º. On the other hand, since the mat-
rix A is symmetric, for any smooth function  one has

P2.v / D �h div.Ahr.v // D  P2v C vP2 � 2Ahrv � hr :

Using again (3.1), this yields

ŒP2; v� D e
�`2=.2h/

�
�2h�.`/Ar` � hr � h2 div

�
�.`/Ar`

�
C h`�.`/Ar` � r`

�
;

and hence

ŒP2; v�.e
�f=h/ D

�
h�.`/.2Ar` � rf C `Ar` � r`/ � h2 div.�.`/Ar`/

�
e�.fC`

2=2/=h

D
�
h.2Ar` � rf C `Ar` � r`/ � h2 div.Ar`/C r2

�
e�.fC`

2=2/=h

with r2 D h.�.`/ � 1/.2Ar` � rf C `Ar` � r`/ � h2 div..�.`/ � 1/Ar`/. In partic-
ular, r2 and all its derivatives are (locally) bounded, uniformly with respect to h, and
supp.r2/ � ¹j`j � �º. Combining this identity with (3.2) and (3.3), and using the relation
P.ve�f=h/D ŒP; v�.e�f=h/ implied by (Gibbs), we obtain the first part of the statement.
Moreover, since the coefficients of P and the function ` have classical expansions, so
does w. Plugging the expansions of A, b, c, and ` into the expression of w and identify-
ing the powers of h, we obtain the formulas for the wj .

In order to construct accurate quasimodes, we have to find smooth functions j̀ , j � 0,
with `0 6� 0 and such that the above wjC1 vanish. The equation on `0 is

2A0rf � r`0 C .A
0
r`0 � r`0/`0 C b

0
� r`0 D 0; (3.4)

and the equations on the j̀ , j � 1, are

2A0rf � r j̀ C .A
0
r`0 � r`0/ j̀ C 2.A

0
r`0 � r j̀ /`0 C b

0
� r j̀ D �Rj : (3.5)

By analogy with the usual WKB method, we call (3.4) the eikonal equation and (3.5) the
transport equations.
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3.2. Resolution of the eikonal equation (3.4)

Consider the complexified symbol

q.x; �/ D �p0.x; i�/ D � � A0.x/� C b0.x/ � � � c0.x/ 2 R; (3.6)

and let, for some saddle point s 2 U.1/, ƒC (resp. ƒ�) be the stable outgoing (resp.
incoming) manifold of the Hq flow passing through �s D .s; 0/ 2 C . It is proved in
[13, Lemma 8.1] that ƒ˙ are Lagrangian manifolds which project nicely on the x-space.
Hence, there exist smooth functions �˙ defined in a neighborhood of �s such that �˙.s/
D 0 and, near �s,

ƒ˙ D ¹.x; �/ 2 T
�Rd I � D r�˙.x/º:

Moreover, ƒ˙ � ¹.x; �/ 2 T �Rd I q.x; �/ D q.�s/ D 0º and, according to [13, Propos-
ition 8.2], ˙Hess �˙.s/ > 0. Summing up, the following properties of the functions �˙
will be used:

�˙.s/ D 0; r�˙.s/ D 0; ˙Hess�˙.s/ > 0: (3.7)

Lemma 3.2. There exists a neighborhood V of s and a smooth function `s;0 2 C
1.V /

such that

8x 2 V; �C.x/ D f .x/ � f .s/C
`2s;0.x/

2
:

Moreover, r`s;0.s/ ¤ 0.

Proof. This lemma comes from an observation of [13, (11.20)] and we follow this
approach. Let ƒf D ¹.x; rf .x//º � T �Rd denote the Lagrangian manifold asso-
ciated with the phase function f . The eikonal equations (1.18) and (1.19) imply
q.x;rf .x// D 0 and so ƒf is stable by the Hq flow. In particular, the tangent space
T�sƒf at �s is stable by Fq , the linearization of Hq at �s. Moreover, a direct computation
and (2.10) show that

Fq D

�
B 2A0

2HA0H �B t

�
D �i

�
1 0

0 �i

�
Fp0

�
1 0

0 �i

��
:

In particular, the discussion below (2.10) implies that Fq has no eigenvalue on the
imaginary axis. Let k˙ be the number of eigenvalues of Fq restricted to T�sƒf with
positive/negative real part. Then kC C k� D d .

LetK˙ be the stable outgoing/incoming submanifold ofƒf given by the Hamiltonian
vector field Hq restricted to ƒf . Then K˙ has dimension k˙ and K˙ projects nicely on
the x-space

K˙ D ƒ˙ \ƒf and T�sK˙ D T�sƒ˙ \ T�sƒf : (3.8)

On account of r�˙ D rf on �x.K˙/, we get

8x 2 �x.K˙/; �˙.x/ D f .x/ � f .s/: (3.9)

Since s is a saddle point of f , its Hessian has signature .d � 1; 1/. Thus, (3.7) and (3.9)
imply that kC D d � 1 and k� D 1. Eventually, using (3.9) again, we have on Ts�x.K�/

Hess.�C � f / D Hess�C � Hess�� > 0:
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Thus, in a neighborhood of s, g WD �C � f C f .s/ is a nonnegative function which
vanishes to order 2 on �x.KC/.

Let us now construct a square root of g. After a local change of coordinates
x 7! .y; z/ 2 Rd�1 �R mapping s to 0, we can assume that �x.KC/ D ¹.y; z/I z D 0º.
Near 0, g.y; 0/ D 0 from (3.9), @zg.y; 0/ D 0 from (3.8), and @2z;zg.y; 0/ > 0 from the
last sentence of the previous paragraph. Thus, the Taylor formula gives

g.y; z/ D z2
Z 1

0

.1 � t /@2z;zg.y; tz/ dt;

which leads to

�C D f � f .s/C
`2s;0

2
with `s;0.y; z/ D z

�
2

Z 1

0

.1 � t /@2z;zg.y; tz/ dt

�1=2
:

Since the quantity under the square root is positive when evaluated at z D 0, `s;0 is a
smooth function in the vicinity of s and r`s;0.s/ ¤ 0.

Lemma 3.3. Let s 2 U.1/. The function `s;0 defined by Lemma 3.2 solves (3.4) in a
neighborhood of s. Moreover, �.s/ WD r`s;0.s/ is an eigenvector of the matrix ƒ.s/ D
2H.s/A0.s/C B t .s/ associated with the negative eigenvalue �.s/. Finally,

�.s/ D �A0.s/�.s/ � �.s/; (3.10)

and
det Hess

�
f C 1

2
`2s;0

�
.s/ D � detH.s/: (3.11)

In particular, A0.s/�.s/ � �.s/ > 0.

Proof. We drop the index s and write `0 instead of `s;0. By definition, �C is a solution of
the eikonal equation

A0r�C � r�C C b
0
� r�C � c

0
D 0: (3.12)

Since �C D f � f .s/C 1
2
`20, this implies

A0rf � rf C 2`0A
0
rf � r`0 C `

2
0A

0
r`0 � r`0 C b

0
� rf C `0b

0
� r`0 � c

0
D 0:

Since f is also a solution of (3.12) by (1.18) and (1.19), it follows that

2`0A
0
rf � r`0 C `

2
0A

0
r`0 � r`0 C `0b

0
� r`0 D 0;

which gives (3.4) by dividing by `0 (this is allowed since r`0.s/ ¤ 0 implies `0 ¤ 0 a.e.
around s). Moreover, the Taylor expansion of (3.4) at s gives, for every x around s,

2A0.s/H.s/.x � s/ � �.s/C .A0.s/�.s/ � �.s//.�.s/ � .x � s//C db0.s/.x � s/ � �.s/D 0;

or equivalently

.x � s/ �
��
2H.s/A0.s/C B t .s/C A0.s/�.s/ � �.s/

�
�.s/

�
D 0:
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It follows that �
2H.s/A0.s/C B t .s/C A0.s/�.s/ � �.s/

�
�.s/ D 0; (3.13)

which shows that �.s/ is an eigenvector of ƒ.s/ D 2H.s/A0.s/C B t .s/ associated with
the eigenvalue �A0.s/�.s/ � �.s/. Since A0.s/ is positive semidefinite, this eigenvalue is
nonpositive. Then Lemma 1.4 implies that �A0.s/�.s/ � �.s/ D �.s/ < 0.

It remains to prove (3.11). We drop the dependence on s in the following when it is
unambiguous. By definition of `0, one has

Hess
�
f C 1

2
`20
�
.s/ D H C…�;

where …�x WD hx; �i�. Hence, (3.11) is equivalent to

det.IdCH�1…�/ D �1: (3.14)

We first observe that �? is stable by E WD IdCH�1…� , and Ej�? D Id. On the other
hand,

hE�; �i D k�k2.1C hH�1�; �i/: (3.15)

ButH.2A0C J /�Dƒ�D �� with J DH�1B t gives h.2A0C J /�; �i D �hH�1�; �i.
Since J is antisymmetric by Lemma 2.3 and thanks to (3.10), this implies

hH�1�; �i D
2

�
hA0�; �i D �2:

Plugging this identity into (3.15), we get hE�;�i D �k�k2. Choosing a basis .e2; : : : ; ed /
of �? and computing the matrix of E in the basis .�; e2; : : : ; ed /, the above discussion
implies (3.14).

3.3. Resolution of the transport equations (3.5)

Lemma 3.4. There exists an open neighborhood V of s and some smooth functions
`s;j 2 C

1.V / such that `s;j solves (3.5) for all j � 1.

Proof. Since, for all j � 1, Rj only depends on the `s;k with 0 � k � j � 1, we can
solve the equations (3.5) by induction. It thus suffices to show that there exists an open
neighborhood V of s such that, for any smooth function f , there exists u 2 C1.V /
satisfying

Lu D f; (3.16)

where L is the transport operator defined by

Lu D 2A0rf � ruC .A0r`s;0 � r`s;0/uC 2`s;0.A
0
r`s;0 � ru/C b

0
� ru: (3.17)

Assume for simplicity that s D 0. We first look for a formal solution in powers of x.
Given m 2 N, we denote by Pm

hom the set of homogeneous polynomials of degree m and
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we write f .x/ '
P
m2N fm with fm 2 Pm

hom. We recall that r`s;0.s/ D �.s/ is an eigen-
vector of ƒ.s/ D 2H.s/A0.s/C B t .s/ associated with its sole negative eigenvalue �.s/
(see Lemma 1.4). Then L decomposes into

L D L0 CL>;

where L>.p/ D O.xmC1/ for all p 2 Pm
hom and L0 W P

m
hom ! Pm

hom is given by

L0 D 2A
0.s/H.s/x � r C A0.s/�.s/ � �.s/C 2h�.s/; xiA0.s/�.s/ � r C B.s/x � r;

which we can rewrite, since �.s/ D �A0.s/�.s/ � �.s/ by Lemma 3.3, as

L0 D
�
2A0.s/H.s/C B.s/C 2A0.s/…�

�
x � r � �.s/; (3.18)

where…�y WD hy; �.s/i�.s/. We shall prove that L0 is invertible on Pm
hom for anym � 0.

Let us denote ‡ D 2A0.s/H.s/C B.s/C 2A0.s/…� D ƒ
t .s/C 2A0.s/…� . One has

‡ t�.s/ D ƒ.s/�.s/C 2…�A
0.s/�.s/ D �.s/�.s/C 2hA0.s/�.s/; �.s/i�.s/

D ��.s/�.s/:

Choosing some vectors e2; : : : ; ed such that B D .�.s/; e2; : : : ; ed / is a basis of Cd and
the matrix M of ƒ.s/ in the basis B is upper triangular, it follows that the matrix M 0

of ‡ t in B is also upper triangular, with the same diagonal entries as M , except that the
first diagonal entry �.s/ is replaced by ��.s/ (actually, only the first lines of M and M 0

differ). Since �.s/ is the only eigenvalue of ƒ.s/ with nonpositive real part, the spectrum
of ‡ t is contained in ¹Re z > 0º. Thanks to Lemma A.1 in the appendix, this implies that
the spectrum of ‡x � r W Pm

hom ! Pm
hom is contained in ¹Re z > 0º for every m > 0 and

hence L0 D ‡x � r � �.s/ is invertible on Pm
hom for every m � 0 (note that L0 D ��.s/

on P 0
hom). Using this property, we can solve the transport equation LuD f by the method

of [7, Chapter 3]. We recall briefly the successive steps. We first find a formal solution zu
to the equation

Lzu D zf ; (3.19)

where zf denotes the formal power expansion of f : zf '
P
k
zfk with zfk 2 P k

hom. We
look for zu of the form zu '

P
k zuk with zuk 2 P k

hom. Since L0 is invertible, there exists
zu0 2 P 0

hom solving L0zu0 D zf0. Then we choose zu1 2 P 1
hom solving

L0zu1 D zf1 C r1;

where r1 denotes the homogeneous part of degree 1 of�L>.zu0/. Iterating this procedure,
we obtain a formal solution to (3.19). Using this formal solution and a Borel procedure,
we construct a smooth function xu such that xu and zu have the same Taylor expansion at
the origin. As a consequence, Lxu D f C O.x1/. The last step consists in showing that
for every g D O.x1/, there exists a solution v D O.x1/ to Lv D g. This can be done
by using the method of characteristics and the fact that the spectrum of ‡ is contained in
¹Rez > 0º; we refer to [7, proof of Proposition 3.5] for details. Then, taking xu1 satisfying
Lxu1 D f � Lxu D O.x1/, we find that u WD xuC xu1 is a true solution of (3.16) and
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[7, Proposition 3.5] shows that the neighborhood V of s where u is defined can be chosen
independently of f .

Using the preceding result and a Borel procedure, we get the following.

Proposition 3.5. For any s 2 U.1/, there exists a smooth function x 7! `s.x; h/ defined
in a neighborhood Vs of s such that

(i) `s admits a classical expansion `s �
P
k h

k`s;k ,

(ii) .2Ar`s � rf C .Ar`s � r`s/`sC b � r`s/� hdiv.Ar`s/D O.h1/, uniformly with
respect to x in Vs,

(iii) `s;0.x/ D .x � s/ � �.s/CO.jx � sj2/.

Note that the function x 7! �`s.x; h/ also satisfies Proposition 3.5. More precisely,
(i) and (ii) hold without modification, while �.s/ has to be replaced by��.s/D�r`s;0.s/
in (iii). At this point, we do not specify which function (`s or �`s) will be used later.

4. Global construction of quasimodes

In this section, which is an adaptation of [20, Section 4A], we assume the hypotheses of
Theorem 1, (Gibbs), (Confin), and (Morse). We refer the reader to the notation following
Definition 1.3 and introduce some additional topological objects. Given m 2U.0/ n ¹mº,
one has �.m/ D �i for some i � 2. Moreover, since �i�1 > �i , there exists a unique
connected component of ¹f < �i�1º that contains m (observe that this component is not
necessarily critical). We denote that component by E�.m/, and by

E� W U
.0/
n ¹mº ! P .Rd / (4.1)

the corresponding map. It follows from [24, Remark 2.2] that, for any m 2 U.0/ n ¹mº,
there exists a unique bm 2 E�.m/ \ U.0/ such that �.bm/ > �.m/. In particular,
m 2 E�.m/ � E.bm/, and thus

8m 2 U.0/
n ¹mº; f .bm/ � f .m/: (4.2)

m3;1

m2;1 m4;1

f

E�.m4;1/

bE.m4;1/ E.m4;1/

m1;1 D bm4;1
Fig. 4.1. The geometric setting associated to m4;1.
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We denote by bE.m/ the connected component of ¹f < �.m/º containing bm. ThenbE.m/ � E�.m/ and bE.m/ is a critical component (see Definition 1.3). We denote bybE W U.0/ n ¹mº ! C and bm W U.0/ n ¹mº ! U.0/ the corresponding maps (see Fig. 4.1).
Fix m 2 U.0/ n ¹mº. For every s 2 j.m/, one has f .s/ D �.m/. For any �; ı > 0, we

define

Bs;�;ı WD ¹f � �.m/C ıº \
®
x 2 Rd I j�.s/ � .x � s/j � �

¯
;

Cs;�;ı WD the connected component of Bs;�;ı containing s; (4.3)

where �.s/ has been defined in Lemma 3.3. We recall that �.s/ is an eigenvector of the
matrix ƒ.s/ D 2H.s/A0.s/ C B t .s/ associated with its only negative eigenvalue �.s/,
which has multiplicity 1 (see Lemma 1.4). Moreover, from (3.10) we get the normalization
condition A0.s/�.s/ � �.s/D��.s/. Observe that this condition is not the same as in [20],
where k�.s/k D 1 is imposed. Let us also define

Em;�;ı WD
�
E�.m/ \ ¹f < �.m/C ıº

�
n

[
s2j.m/

Cs;�;ı ; (4.4)

where E�.m/ is defined by (4.1).
According to the geometry of the Morse function f around @E.m/ and to the lemmas

of Section 3.2, we have the following result.

Lemma 4.1. For any m 2 U.0/ n ¹mº and s 2 j.m/, there exists a neighborhood V of s
such that

8x 2 V n ¹sº; x � s 2 �.s/? H) f .x/ > f .s/:

It follows that, for �0; ı0 > 0 sufficiently small and every � 2 �0; �0� and ı 2 �0; ı0�, there
exists a connected component of Em;3�;3ı containing U.0/ \ E.m/ and disjoint from
U.0/ \ .E�.m/ n E.m//. We will denote by ECm;3�;3ı this component and by E�m;3�;3ı
its complement in Em;3�;3ı .

Remark 4.2. The above set E�m;3�;3ı contains bm but is not connected in general. How-
ever, when m satisfies j.m/ \ j.m0/ D ; for every m0 2 U.0/ n ¹mº, one has, owing to
[20, Remark 1.7 and Section 4A], j.m/ D @bE.m/\ @E.m/. In that case, the set E�m;3�;3ı
is connected.

Proof of Lemma 4.1. Without loss of generality, we can assume that s D 0 and f .s/ D 0.
Thanks to Lemma 3.2 and Proposition 3.5, one has

�C.x/ D f .x/C
`2s;0.x/

2
D f .x/C

hx; �.s/i2

2
CO.x3/;

near s D 0. This implies that, for all x 2 �.s/?, we have

f .x/ D �C.x/CO.x3/:

Since Hess�C.s/ is positive definite by (3.7), the conclusion follows.



Eyring–Kramers law for Fokker–Planck type differential operators 4373

bms

sC �1.s/?

E.m/

@bE.m/

@bE.m/
bE.m/

ECm;�;ı @E.m/

@E.m/

¹f D f .s/º

E�m;�;ı

Cs;�;ı

m

sC �.s/?

Fig. 4.2. Representation of the Morse function f near a point s 2 j.m/ \ @ yE.m/ when the latter
set is nonempty. Here, �1.s/ denotes an eigenvector of Hessf .s/ associated with its negative eigen-
value.

Let us now define, for h > 0 and �0; ı0 > 0 small enough, the function vm;h on the
sublevel set E�.m/\ ¹f < �.m/C 3ı0º (see (4.1)) as follows. On the disjoint open sets
ECm;3�0;3ı0

and E�m;3�0;3ı0 introduced in Lemma 4.1, we set

vm;h.x/ WD

´
C1 for x 2 ECm;3�0;3ı0 ;

�1 for x 2 E�m;3�0;3ı0 :
(4.5)

In addition, for every s 2 j.m/ and x 2 Cs;3�0;3ı0 (see (4.3)), we set

vm;h.x/ WD C
�1
s;h

Z `s.x;h/

0

�.r=�0/e
�r2=.2h/ dr; (4.6)

where the function `s is given by Proposition 3.5, and its sign (see the discussion below
Proposition 3.5) is chosen so that there exists a neighborhood V of s such that E.m/\ V
is included in the half-plane ¹�.s/ � .x � s/ > 0º (see Lemma 4.1, Figs. 4.2 and 4.3),
� 2 C1.RI Œ0; 1�/ is even and satisfies � D 1 on Œ�1; 1�, �.r/ D 0 for jr j � 2, and

Cs;h WD
1

2

Z C1
�1

�.r=�0/e
�r2=.2h/ dr:

In particular,

9
 > 0; C�1s;h D

r
2

�h
.1CO.e�
=h//: (4.7)

Note also that, for every �0 > 0 and then for ı0 > 0 small enough, thanks to Proposi-
tion 3.5 and to the definitions (4.5) and (4.6), and since the sets ECm;3�0;3ı0 , E�m;3�0;3ı0
and Cs;3�0;3ı0 , s 2 j.m/, are mutually disjoint (see Lemma 4.1), vm;h is well defined and
is C1 on E�.m/ \ ¹f < �.m/C 3ı0º for h > 0 small enough.
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O.�0/

�.s/

s
vm;h D �1vm;h D 1

supp.�m/

¹V D �.m/º

Fig. 4.3. The support of the function vm;h

Consider now a smooth function �m such that

�m.x/ WD

´
1 for x 2

®
f � �.m/C 3

2
ı0
¯
\E�.m/;

0 for x 2 Rd n
�®
f < �.m/C 7

4
ı0
¯
\E�.m/

�
:

(4.8)

The function �mvm;h belongs to C1c .R
d I Œ�1; 1�/ and

supp.�mvm;h/ � E�.m/ \ ¹f < �.m/C 2ı0º:

Definition 4.3. For �0 > 0 and then for ı0; h > 0 small enough, define´
 m;h.x/ WD e

�
f.x/�f.m/

h ;

 m;h.x/ WD �m.x/.vm;h.x/C 1/e
�
f.x/�f.m/

h for m 2 U.0/ n ¹mº:
(4.9)

We then define, for any m 2 U.0/, the quasimode 'm;h by

'm;h WD
 m;h

k m;hkL2
:

Note that, for every �0; ı0, we have h > 0 so that the above definition makes sense,
P'm;h D 0 and, for every m 2 U.0/ n ¹mº, the quasimodes  m;h and 'm;h belong to
C1c .R

d IRC/ with supports included in E�.m/ \ ¹f < �.m/ C 2ı0º. We have more
precisely the following lemma resulting from the previous construction.

Lemma 4.4. For every m 2 U.0/ and " > 0, there exists �0 > 0 and then ı0 > 0 small
enough such that, for every h > 0 small enough,

(i) supp. m;h/ � E.m/CD.0; "/,
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(ii) when m ¤ m, there exists a neighborhood V�0;ı0 of E.m/ such that

V�0;ı0 n
[

s2j.m/

Cs;3�0;3ı0 � ¹�mvm;h D 1º;

(iii) when m ¤ m,

8x 2 supp.r.�m.vm C 1///;
�
f .x/ < �.m/C 3

2
ı0 ) x 2

[
s2j.m/

Cs;3�0;3ı0

�
:

Let moreover m0 � U.0/ with m ¤ m0. For every �0 > 0 and then ı0 > 0, one has, for
h > 0 small enough,

(iv) if �.m/ D �.m0/ and j.m/ \ j.m0/ D ;, then supp. m;h/ \ supp. m0;h/ D ;,

(v) if �.m/ > �.m0/, then either

? supp. m;h/ \ supp. m0;h/ D ;, or

?  m;h D 2e
�.f �f .m//=h on supp. m0;h/.

Proof. Points (i)–(iii) follow from the construction of the quasimodes 'm;h in Definition
4.3 for m 2 U.0/: see indeed (4.5), (4.6) and (4.8). Let us now prove the last two points.

If �.m/ D �.m0/ and m ¤ m0, note first that m and m0 differ from m since �.m/ D
C1 if and only if m D m. Moreover, �.m/ D �.m0/ and m ¤ m0 imply E.m/\E.m0/
D ;. Indeed, E.m/ \ E.m0/ ¤ ; would imply that E.m/ and E.m0/ are the same con-
nected component of ¹f < � .m/ D � .m0/º, in contradiction with the construction of E.
When in addition j.m/ \ j.m0/ D ;, we have

E.m/ \E.m0/ D @E.m/ \ @E.m0/ D j.m/ \ j.m0/ D ;:

Combined with Lemma 4.4 (i) with " > 0 sufficiently small, this implies supp. m;h/ \

supp. m0;h/ D ;.
If � .m/ > �.m0/ and m0 … E.m/, we have E.m/\E.m0/D ;, and again, according

to (i), supp. m;h/ \ supp. m0;h/ D ; for every �0 > 0 and then ı0 > 0 small enough.
Lastly, if � .m/> �.m0/ and m0 2E.m/, thenE.m0/�E�.m0/�E.m/ and so, according
to (ii),  m;h D 2e�.f �f .m//=h on supp. m0;h/ for every �0 > 0 and then ı0 > 0 small
enough.

5. Proof of the main results

We will use the following notation. For two families aD .ah/h2�0;h0� and bD .bh/h2�0;h0�
of numbers, we write a 2 Ecl.b/ if there exists a family .ch/h2�0;h0� such that, for every
h 2 �0; h0�,

ah D bhch and ch admits a classical expansion ch �
X
j�0

cjh
j with c0 D 1:

We also write Du D jdet Hess.f /.u/j1=2 for any u 2 U.
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5.1. Computation of interaction coefficients

Proposition 5.1. Under the assumptions of Theorem 2 but with only the first part of
(Gener), we have the following estimates for every �0 > 0 and then ı0 > 0 small enough:
there exists C > 0 such that, for all m;m0 2 U.0/ and for h > 0 small enough,

.i/ h'm;h; 'm0;hi D ım;m0 CO.e�C=h/;

.ii/ hP'm;h; 'm;hi 2 Ecl

�
he�2S.m/=h

X
s2j.m/

j�.s/j
2�

Dm

Ds

�
;

.iii/ kP'm;hk
2
D O.h1/hP'm;h; 'm;hi;

.iv/ kP �'m;hk
2
D O.h/hP'm;h; 'm;hi:

The statements of this proposition are very close to those of [20, Propositions 4.4
to 4.6]. The difference is that we have a classical expansion in (ii) and the multiplicative
error in (iii) is of order O.h1/ instead of O.h2/. This is due to the fact that our quasimodal
constructions are sharper.

Remark 5.2. When, in comparison with the assumptions of Proposition 5.1, the first part
of (Gener) is not satisfied, items (iii) and (iv) of Proposition 5.1 still hold, while item (ii)
becomes

hP'm;h; 'm;hi 2 Ecl

�
he�2S.m/=h

X
s2j.m/

j�.s/j
2�

.
P

m02argminE.m/ f
D�1m0 /

�1

Ds

�
:

However, the quasi-orthonormality of the family .'m;h/m2U.0/ stated in (i) is not satisfied
anymore when the first part of (Gener) does not hold. Indeed, if m ¤ m0 2 U.0/ satisfy
f .m/ D f .m0/ and m0 2 E.m/, then �.m/ > �.m0/ and it follows from Lemma 4.4 (v)
that  m;h D 2e�.f �f .m

0//=h on supp. m0;h/. Arguments similar to those in the proof
below show that there exists c 2 �0; 1Œ such that h'm;h; 'm0;hi � c when h! 0C.

Proof of Proposition 5.1. The proof follows the proofs of [20, Propositions 4.4 to 4.6]
very closely. We just sketch it briefly and drop the index h in order to lighten the notation.

First, we recall that, for any m 2 U.0/, 'm D  m=k mk with  m given by (4.9).
Moreover, according to the first part of (Gener), f uniquely attains its absolute min-
imum on E.m/ at m, and hence on supp. m/ for every �0; ı0 > 0 small enough (see
Lemma 4.4 (i)). By the standard Laplace method, we then easily get, for any m 2 U.0/,

k mk 2 Ecl
�
2.�h/d=4D�1=2m

�
: (5.1)

Let us now prove (i). First, by definition, we have h'm; 'mi D 1 for every m 2 U.0/.
Moreover, for every m ¤ m0 2 U.0/, we are in one of the following three cases.

(a) The case where �.m/ D �.m0/ and j.m/ \ j.m0/ D ;. We then deduce from Lem-
ma 4.4 (iv) that supp. m/ \ supp. m0/ D ; and so h'm; 'm0i D 0.
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(b) The case where �.m/ D �.m0/ and j.m/ \ j.m0/ ¤ ; (note that this does not occur
when the second part of (Gener) is satisfied). Then E.m/ \ E.m0/ D j.m/ \ j.m0/
¤ ; and we deduce from the construction of the 'm, m 2 U.0/, that 'm'm0 is sup-
ported in

S
s2j.m/\j.m0/ Cs;3�0;3ı0 (see indeed (4.5), (4.6), (4.8) and Definition 4.3).

Since j mj � 2e
�.f �f .m/=h/, it follows that

jh'm; 'm0ij �
X

s2j.m/\j.m0/

4

k mk k m0k
he�.f �f .m//=h; e�.f �f .m

0//=h
iL2.Cs;3�0;3ı0 /

:

Using (5.1) and f .j.m// D f .j.m0// > max.f .m/; f .m0//, the last relation implies
(i) for �0 > 0 and then ı0 > 0 small enough.

(c) The case where up to switching m and m0, �.m/ > �.m0/. Here, according to Lem-
ma 4.4 (v), either supp. m/\ supp. m0/D ;, in which case h'm; 'm0i D 0, or  m D

2e�.f �f .m//=h on supp. m0/, in which case, since f � f .m0/ on supp. m0/, the
Cauchy–Schwarz inequality gives

h'm; 'm0i D
2

k mk
he�.f �f .m//=h; 'm0iL2.supp. m0 //

D
1

k mk
O.e�.f .m

0/�f .m//=h/:

Relation (i) follows easily, using (5.1) and the relation f .m0/ > f .m/ implied by the
first part of (Gener).

In order to prove the remaining points (ii) to (iv) of Proposition 5.1, let us write
 m D zvm z m with zvm D �m.1C vm/ and z m D e�.f �f .m//=h. Using this notation and
the decomposition P D P2 C P1 C P0 with P0 D c, P1 D 1

2
.b � hr C h div ı b/, and

P2 D �h div ı A ı hr, we get

hP m;  mi D h.P2 C P0/ m;  mi D hAhr.zvm z m/; hr.zvm z m/i C hP0 m;  mi

D h2hzvmAr z m; zvmr z mi C h
2
h z mArzvm; z mrzvmi

C 2h2h z mArzvm; zvmr z mi C hP0 m;  mi

D �h2hdiv.zv2mAr z m/; z mi C h
2
h z mArzvm; z mrzvmi

C 2h2h z mArzvm; zvmr z mi C hP0 m;  mi

D hzv2mP2
z m; z mi C h

2
h z mArzvm; z mrzvmi C hzv

2
mP0
z m; z mi;

and since .P2 C P0/. z m/ D 0, this implies

hP m;  mi D h
2
h z mArzvm; z mrzvmi: (5.2)

Since f � f .m/ > S.m/C ı0 on supp.r�m/ (see (4.8)), it follows that

hP m;  mi D h
2

Z
�2mArvm � rvme

�2.f �f .m//=hdx CO.e�2.S.m/Cı0/=h/:

On the other hand, thanks to (4.6), on
S

s2j.m/ Cs;3�0;3ı0 we have

rvm D
X

s2j.m/

1

Cs;h
�.`s=�0/e

�`2s =.2h/r`s; (5.3)
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which yields, since rvm D 0 on ECm;3�0;3ı0 [E
�
m;3�0;3ı0

by (4.5),

hP m;  mi D h
2
X

s2j.m/

1

C 2s;h

Z
Cs;3�0;3ı0

�2m�.`s=�0/
2Ar`s � r`se

�2.fC`2s =2�f .m//=h dx

CO.e�2.S.m/Cı0/=h/:

The first term of the right hand side can now be computed as in [20, proof of Proposi-
tion 4.5], the only difference being that here A and `s depend on h and admit a classical
expansion with respect to h. More precisely, since

f C
`2s
2
� f .m/ D f C

`2s;0

2
� f .m/C `s;0`s;1hCO.h2/;

where, according to Lemma 3.2 and to (3.7), the function f C
`2s;0
2

satisfies�
f C

`2s;0

2

�
.s/ D f .s/ D �.m/; r

�
f C

`2s;0

2

�
.s/ D 0; Hess

�
f C 1

2
`2s;0

�
.s/ > 0;

(5.4)

we can apply the Laplace method with the phase function�2.f C `2s;0=2� f .m//. Using
`s;0.s/ D 0 and (4.7), this yields

hP m;  mi 2 Ecl

�
2h=�.�h/d=2

X
s2j.m/

.A0r`s;0 � r`s;0/.s/

�
�
det Hess

�
f C 1

2
`2s;0

�
.s/
��1=2

e�2S.m/=h
�
:

Moreover, thanks to Lemma 3.3,

.A0r`s;0 � r`s;0/.s/ D j�.s/j and det Hess
�
f C 1

2
`2s;0

�
.s/ D jdet Hess.f /.s/j;

and hence

hP m;  mi 2 Ecl

�
2h

�
.�h/d=2e�2S.m/=h

X
s2j.m/

j�.s/jD�1s

�
: (5.5)

Combining (5.5) with (5.1) proves (ii).
Let us now prove (iii). Since P.e�f=h/ D 0, one has

P m D P.�m.vm C 1/e
�.f �f .m//=h/

D ŒP; �m�.vm C 1/e
�.f �f .m//=h

C �mP.vme
�.f �f .m//=h/;

and since f � f .m/ > S.m/C ı0 on supp.r�m/ and on supp.1 � �m/ \ supp.�m/, this
implies

kP mk
2
D k�mP.vme

�.f �f .m//=h/k2 CO.e�2.S.m/Cı0/=h/

D kP.vme
�.f �f .m//=h/k2

L2.supp.�m//
CO.e�2.S.m/Cı0/=h/: (5.6)
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On the other hand, on supp.�m/, P.vme
�.f �f .m//=h/ is supported in

S
s2j.m/ Cs;3�0;3ı0

by (4.5) and, on any Cs;3�0;3ı0 , one has (see (4.6))

P.vme
�.f �f .m//=h/ D C�1s;h .w C r/e

�.f �f .m/C`2s =2/=h;

where w and r are given by Lemma 3.1. Since f C `2s =2 D f C `
2
s;0=2C O.h/ and the

Hessian of f C `2s;0=2 at s is positive definite (see (5.4)), and r is supported away from s,
one has, for some ı > 0,

kre�.f �f .m/C`
2
s =2/=hk

2
L2.Cs;3�0;3ı0 /

D O.e�2.S.m/Cı/=h/ D O.h1/hP m;  mi;

where we have used (5.5) to obtain the last equality. Moreover, thanks to Proposition 3.5
(and to Lemma 3.1), one also has

kwe�.f �f .m/C`
2
s =2/=hk

2
L2.Cs;3�0;3ı0 /

D O.h1/e�2S.m/=h D O.h1/hP m;  mi:

These two estimates and (5.6) show that kP mk
2 D O.h1/hP m;  mi, which

proves (iii).
The proof of (iv) is similar and left to the reader.

5.2. Proof of Theorem 2

Until the end of this section, the local minimum points m1; : : : ;mn0 of f are labeled so
that .S.mj //n0jD1 is nondecreasing (see (1.22)). That is,

for all j 2 ¹1; : : : ; n0 � 1º; S.mjC1/ � S.mj / and Smn0 D C1: (5.7)

For j 2 ¹1; : : : ; n0º, we will also denote for brevity

Sj WD S.mj /; 'j WD 'mj ;h;
z�j WD hP'j ; 'j i: (5.8)

From Proposition 5.1, one knows that, for all j 2 ¹1; : : : ; n0º,

z�j 2 Ecl

�
he�2Sj =h

X
s2j.mj /

j�.s/j
2�

Dmj

Ds

�
(5.9)

and, for j; k 2 ¹1; : : : ; n0º,

h'j ; 'ki D ıj;k CO.e�C=h/; kP'j k D O
�
h1

q
z�j
�
; kP �'j k D O

�
h1=2

q
z�j
�
:

(5.10)

Using in addition Lemma 4.4 (iv, v) together with the second part of (Gener) (see [20,
proof of Lemma 4.7] for details), we also have

hP'j ; 'ki D ıj;kz�j : (5.11)



J.-F. Bony, D. Le Peutrec, L. Michel 4380

We then introduce the spectral projector

…h D
1

2i�

Z
@D.0;"�h=2/

.z � P /�1 dz; (5.12)

with "� given by Proposition 1.2. Working as in [20, proof of Lemma 4.9], one deduces
from the last two estimates of (5.10) and from the resolvent estimate (1.17) of Theorem 1
that

.1 �…h/'j D O
�
h1

q
z�j
�

and .1 �…�h/'j D O
�
h�1=2

q
z�j
�
: (5.13)

The estimates (5.10), (5.11), and (5.13) easily imply the following proposition, whose
proof is the same as the proof of [20, Proposition 4.10].

Proposition 5.3. For every j 2 ¹1; : : : ; n0º and h > 0 small enough, define vj WD…h'j .
Then there exists c > 0 such that, for all j; k 2 ¹1; : : : ; n0º,

hvj ; vki D ıj;k CO.e�c=h/; (5.14)

hPvj ; vki D ıj;kz�j CO
�
h1

q
z�j z�k

�
: (5.15)

In particular, it follows from (5.14) that for every h > 0 small enough, .v1; : : : ; vn0/ is a
basis of Ran…h.

The end of the proof of Theorem 2 follows line for line [20, proof of Theorem 1.9,
pp. 39–42]. First, we orthonormalize the basis .vn0�jC1/

n0
jD1 to a basis .en0�jC1/

n0
jD1 by

the Gram–Schmidt process. Thanks to (5.14), we obtain an orthonormal basis of Ran…h

such that, for every j 2 ¹1; : : : ; n0º,

en0�jC1 D vn0�jC1 CO.e�C=h/

(see [20, Lemma 4.11]). We then show, using (5.15) and the above labeling of the basis
.en0�jC1/

n0
jD1 starting from en0 , that, for all j; k 2 ¹1; : : : ; n0º,

hPen0�jC1; en0�kC1i D ıj;k
z�n0�jC1 CO

�
h1

q
z�n0�jC1

z�n0�kC1
�

(5.16)

(see [20, Proposition 4.12]). We can then compute the eigenvalues of the matrix Mh of
PjRan…h in this basis, using the so-called graded structure of Mh (see [20, pp. 41–42 and
Theorem A.4] or Theorem 4 of the next section). Since z�j (or more precisely e2Sj =hz�j ,
see (5.9)) admits a classical expansion, and thanks to the h1 multiplicative errors in
(5.16), we obtain the announced result.

5.3. Proof of Corollaries 1.6 and 1.7

Recall that …h, the spectral projector of P associated with the n0 exponentially small
eigenvalues ofP , has been defined in (5.12). Since @D.0;"�h=2/ is at a distance of order h
from the spectrum of P (see Proposition 1.2), (1.17) implies that there exists C > 0 such
that, for every h small enough,

k…hk � C: (5.17)
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Then the estimates (1.17) and (5.17) imply that .P � z/�1.1 � …h/ is of order h�1

in ¹Re z < 2"�h=3º nD.0; "�h=2/. Since this operator-valued function is holomorphic
in ¹Re z < 2"�h=3º, the maximum principle yields

k.P � z/�1.1 �…h/k � Ch
�1 (5.18)

for Re z < 2"�h=3 and h small enough.
The solution of (1.27) can be written as

u.t/ D e�tP=hu0 D e
�tP=h…hu0 C e

�tP=h.1 �…h/u0: (5.19)

Let Q W Im.1 �…h/ ! Im.1 �…h/ be the operator P restricted to the Hilbert space
Im.1 �…h/. Since P is maximal accretive, so is Q and thus ke�tQ=hk � 1. Moreover,
(5.18) shows that k.Q � z/�1k � Ch�1 for Re z < 2"�h=3. To estimate the last term in
(5.19), we use a Gearhart–Prüss type inequality with an explicit bound. More precisely,
[12, Theorem 1.4] (see [11, Proposition 2.1] for more details) gives, for some C > 0 and
all t � 0,

ke�tQ=hk �

�
1C 2

"�h

2
sup

Re zD"�h=2
k.Q � z/�1k

�
e�t

"�h
2 =h

� Ce�t"�=2:

Combined with (5.17), this implies the existence of C > 0 such that, for all t � 0,

ke�tP=h.1 �…h/u0k � Ce
�"t
ku0k; (5.20)

where " D "�=2. On the other hand, P restricted to Im…h is a matrix of size n0 whose
eigenvalues are the �.m; h/’s. Then (5.19), (5.20), and the usual formula for the exponen-
tial of a matrix applied to e�tP=h…hu0 provide (1.28). Moreover, using (5.20) instead of
the argument of [20, p. 43], the proof of (1.29) is similar to the one of [20, Theorem 1.11],
except we have here to apply Theorem 4 instead of [20, Theorem A.4], and we omit the
details. Summing up, we have just shown Corollary 1.6.

Let us now prove Corollary 1.7. For R > 1, we define the balls

8k 2 ¹1; : : : ; K � 1º; Dk D D
�
.RCR�1/he�2Sk=h; Rhe�2Sk=h

�
;

and DK D D.0; R�1he�2SK�1=h/. For R fixed large enough and every h small enough,
each exponentially small eigenvalue of P belongs to exactly one of the disjoint sets Dk
from Theorem 2. Moreover, @Dk is at distance of order he�2Sk=h (resp. he�2SK�1=h)
from the spectrum of P for k 2 ¹1; : : : ; K � 1º (resp. k D K). Using (6.18) to estimate
the resolvent of P on the image of…h and (5.18) to control the contribution on the image
of 1 �…h, we get

8z 2 @Dk ; k.P � z/
�1
k �

´
Ch�1e2Sk=h for k 2 ¹1; : : : ; K � 1º;

Ch�1e2SK�1=h for k D K:
(5.21)

In particular, the spectral projector associated with the eigenvalues of order he�2Sk=h,

z…k D
1

2i�

Z
@Dk

.z � P /�1dz; (5.22)

is well defined and satisfies k z…kk � C .
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We can now decompose

e�tP=h…h D

X
1�k�K

e�tP=h z…k : (5.23)

For k 2 ¹1; : : : ; K � 1º and 0 � t � t�
k

, (5.21) and t�
k
e�2Sk=h D O.h1/ imply

e�tP=h z…k D
1

2i�

Z
@Dk

e�tz=h.z � P /�1dz

D
1

2i�

Z
@Dk

.z � P /�1dz C
1

2i�

Z
@Dk

.e�tz=h � 1/.z � P /�1dz

D z…k C

Z
@Dk

O.t jzj=h/k.P � z/�1k dz

D z…k CO.the�2Sk=h=h/

D z…k CO.h1/: (5.24)

On the contrary, for tC
k
� t , (5.21) and e�t

C

k
e�2Sk=h=R

D O.h1/ give

e�tP=h z…k D
1

2i�

Z
@Dk

e�tz=h.z � P /�1dz

D O

�Z
@Dk

e�t Re z=h
k.P � z/�1k dz

�
D O.e�tR

�1he�2Sk=h=h/

Z
@Dk

k.P � z/�1k dz

D O.h1/: (5.25)

Lastly, e�tP=h z…K D z…K since z…K is the rank 1 spectral projector associated with the
eigenvalue 0. On the other hand, since e�"t

C

0 D O.h1/, (5.20) becomes

ke�tP=h.1 �…h/k D O.h1/ (5.26)

for t � tC0 . Summing up, Corollary 1.7 is a direct consequence of formulas (5.19) and
(5.23) together with the relation …�

k
D
P
k�j�K

z…j and the estimates (5.24)–(5.26).

6. Generalization

In this part, we briefly explain how one can drop the assumption (Gener) and treat the gen-
eral case in the spirit of [24]. This requires introducing some additional material of [24].

Definition 6.1. Let m 2U.0/ n ¹mº. We say that m is of type I when f .bm/ < f .m/, and
of type II when f .bm/ D f .m/. We will also denote

U.0/;I
WD ¹m 2 U.0/

n ¹mºI m is of type Iº;

U.0/;II
WD ¹m 2 U.0/

n ¹mºI m is of type IIº:

We have clearly the following disjoint union U.0/ n ¹mº D U.0/;I tU.0/;II .
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Given � 2 †, let �� WD ¹E.m/I m 2 ��1.�/º [ ¹bE.m/I m 2 ��1.�/ \U.0/;II º.

Definition 6.2. We define an equivalence relation R on U.0/ by mRm0 if and only if´
�.m/ D �.m0/ D �;
9!1; : : : ; !K 2 �� ; m 2 !1; m0 2 !K ; and 8k D 1; : : : ; K � 1; !k \ !kC1 ¤ ;:

We denote by Cl.m/ the equivalence class of m for the relation R. Observe that
Cl.m/ D ¹mº since m is the only m 2 U.0/ such that �.m/ D C1. Let A denote the
(finite) set of equivalence classes for R and, for ˛ 2A, let U

.0/
˛ be the set of the elements

of the class ˛. Then evidently

U.0/
D

G
˛2A

U.0/
˛ D ¹mº t

G
˛2An¹Cl.m/º

U.0/
˛ :

In the theorem below, we sum up in a rather vague way the description of the small
eigenvalues of P . Precise statements are given in Theorems 5 and 6.

Theorem 3. Suppose that the assumptions of Theorem 1 are satisfied and that (Gibbs),
(Confin), and (Morse) hold true. Let "� be given by Proposition 1.2. Then, for h > 0 small
enough, there exists a bijection, taking into account multiplicities,

ˇ W ¹0º [
[

˛2An¹Cl.m/º

p[
jD1

he�2Sj =h�.M˛;j /! �.P / \ ¹Re z < "�hº;

with ˇ.z/ D z C O.h1jzj/, for some symmetric positive definite matrices M˛;j having
a classical expansion in powers of h with explicit invertible leading term and for some
labeling .Sj /

p
jD1 of S.U.0/ n ¹mº/.

Here, the set he�2Sj =h�.M˛;j / is empty whenever Sj …S.U
.0/
˛ /. The general strategy

to prove Theorem 3 (leading to an explicit expression for the matricesM˛;j ) is to combine
the quasimodal constructions near the saddle points developed in the preceding section
together with the topological classification of the saddle points introduced in [24]. In that
work, the construction of the quasimode 'm depends on the fact that m is of type I or II.
In order to lighten the presentation, we assume from now on that every point m is of type
I and we will prove Theorem 3 under this assumption, i.e. when U.0/;II D ;. In that case,
the leading term ofM˛;j is given in Theorem 6 below, which makes explicit the statement
of Theorem 3 when U.0/;II D ;. The reader may check that the construction below can
be adapted to the case of type II points as in [24].

Remark 6.3. Note that U.0/;II D; if and only if f .bm/ < f .m/ for every m2U.0/ n ¹mº
(see Definition 6.1). It follows that U.0/;II D ; if and only if the first part of (Gener)
is satisfied. Indeed, if m is the unique global minimum of fjE.m/ for every m 2 U.0/,
then, for every m 2 U.0/ n ¹mº, the relation m 2 E.bm/ implies f .bm/ < f .m/. Con-
versely, by contraposition, assume the existence of m ¤ m0 2U.0/ such that m0 2 E.m/
and f .m0/ D f .m/. Then �.m/ > �.m0/ and thus cm0 2 E.m/, which implies f .m/ �
f .cm0/ � f .m0/ (see (4.2)), and then f .m0/ D f .cm0/, i.e. m0 2 U.0/;II ¤ ;.
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In particular, the statement of Proposition 5.1 is valid when U.0/;II D ;. This will be
used later.

6.1. Quasimodal constructions for type I minima

Let . m/m2U.0/ denote the family of quasimodes of Definition 4.3. We recall that when
m ¤ m,

 m.x/ D �m.x/.vm.x/C 1/e
�.f .x/�f .m//=h;

with �m and vm defined by (4.5), (4.6), and (4.8) (here and throughout we drop the sub-
script h to lighten the notation). In particular, near any point s 2 j.m/,

vm.x/ D C
�1
s;h

Z `s.x;h/

0

�.r=�0/e
�r2=.2h/ dr;

where `s is the function defined by Proposition 3.5 such that there exists a neighborhood
V of s such that E.m/\ V � ¹�.s/ � .x � s/ > 0º (see the lines below (4.6)). This choice
of sign depends of course on m and in order to avoid any confusion, we shall denote
by `s;m the function `s above.

Lemma 6.4. Let m ¤ m0 2 U.0/ satisfy j.m/ \ j.m0/ ¤ ; and take s 2 j.m/ \ j.m0/.
Then the functions `s;m and `s;m0 can be chosen so that `s;m0 D �`s;m near s.

Proof. Note that the function `s;n only makes sense when n 2 ¹m;m0º. We assume that
`s;m is given by Proposition 3.5 with the sign condition for m below (4.6). As explained
at the end of Section 3.3, �`s;m also satisfies Proposition 3.5 with the opposite sign con-
dition. Thus, this function satisfies the sign condition for m0 and can be chosen as the
function `s;m0 .

Proposition 6.5. Assume that the hypotheses of Theorem 3 hold true and U.0/;II D ;.
Then the conclusions of Proposition 5.1 are satisfied. Moreover, for all m;m0 2U.0/, one
has

hP'm;'m0i 2Ecl

�
.�1/ım;m0�1he�.S.m/CS.m

0//=h
X

s2j.m/\j.m0/

j�.s/j
2�

p
DmDm0

Ds

�
: (6.1)

Finally, denoting P ] D P2 C P0, there exists ˛ > 0 such that

hP'm; 'm0i D hP
]'m; 'm0i.1CO.e�˛=h//: (6.2)

Remark 6.6. (i) Note that relation (6.1) implies that

hP'm; 'm0i D 0 (6.3)

for all m;m0 2U.0/ with j.m/\ j.m0/D;. This is in particular the case when m0 …Cl.m/
(see Definition 6.2).

(ii) When U.0/;II ¤ ;, the family .'m;h/m2U.0/ of quasimodes is not quasi-orthonor-
mal and thus does not satisfy (i) of Proposition 5.1 (see indeed Remarks 5.2 and 6.3).
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Proof of Proposition 6.5. Thanks to Remark 6.3 and U.0/;II D ;, the assumptions of
Proposition 5.1 are satisfied.

Let us now prove (6.1) and take m;m0 2 U.0/. When m0 D m, this is exactly (i) of
Proposition 5.1 and so we can assume that m0 ¤ m.

Assume moreover that j.m/ \ j.m0/ D ;. If �.m/ > �.m0/, then we have 'm D

Cm;he
�.f �f .m//=h on supp.'m0/ for some constant Cm;h. Hence P'm D 0 on supp.'m0/,

which implies hP'm; 'm0i D 0. If �.m/ < �.m0/, the same argument works since
P �.e�f=h/D 0. Assume now that �.m/D �.m0/. According to Lemma 4.4 (iv), it follows
that supp.'m/\ supp.'m0/D; and so hP'm;'m0iD 0. Summing up, if j.m/\ j.m0/D;,
we always have hP'm; 'm0i D 0, which is precisely (6.1) in that case.

Assume finally that j.m/ \ j.m0/ ¤ ; and so �.m/ D �.m0/. As in the proof of Pro-
position 5.1, we denote  m D zvm z m with zvm D �m.1 C vm/ and z m D e�.f �f .m//=h.
Using the identity z mr z m0 D z m0r z m and working as in the proof of Proposition 5.1,
we get

h.P2 C P0/ m;  m0i D h
2
h z mArzvm; z m0Arzvm0i: (6.4)

Observe now that �m D �m0 (see (4.8)) and

supp.�m.vm C 1/.vm0 C 1// �
[

s2j.m/\j.m0/

Cs;3�0;3ı0 (6.5)

by (4.5). Since `s;m0 D �`s;m (see Lemma 6.4) and hence vm0 D �vm on the support of
�m.vm C 1/.vm0 C 1/ (see (4.6)), we have

hP1 m;  m0i D hP1.�m.vm C 1/ z m/; �m.�vm C 1/ z m0i:

Since in addition P1 is formally anti-self-adjoint and P1.e�f=h/ D 0, and f � ı0 >
�.m/ D �.m0/ on the compact set supp.r�m/ (see (4.8)), we have

hP1 m;  m0i D �hP1.�mvm z m/; �mvm z m0i CO.e�.S.m/CS.m
0/C2ı0/=h/

D �e.f .m
0/�f .m//=h

hP1.�mvm z m/; �mvm z mi CO.e�.S.m/CS.m
0/C2ı0/=h/

D O.e�.S.m/CS.m
0/C2ı0/=h/: (6.6)

Combining (6.4) and (6.6), we get

hP m;  m0i D h
2
h z mArzvm; z m0rzvm0i CO.e�.S.m/CS.m

0/C2ı0/=h/: (6.7)

Using (5.3), (6.5), and f � ı0 > �.m/ D �.m0/ on supp.r�m/, this implies

hP m;  m0i D h
2

X
s2j.m/\j.m0/

1

C 2s;h

Z
Cs;3�0;3ı0

�2m�.`s;m=�0/�.`s;m0=�0/

� Ar`s;m � r`s;m0e
�.2fC`2s;m=2C`

2
s;m0=2�f .m/�f .m

0//=h
dx

CO.e�.S.m/CS.m
0/C2ı0/=h/:
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Since `s;m0 D �`s;m on Cs;3�0;3ı0 and � is even, it follows that

hP m;  m0i D h
2

X
s2j.m/\j.m0/

�1

C 2s;h

Z
�2m�.`s;m=�0/

2Ar`s;m � r`s;m

� e�.2fC`
2
s;m�f .m/�f .m0//=h dx

CO.e�.S.m/CS.m
0/C2ı0/=h/:

Since j.m/ \ j.m0/ ¤ ;, this quantity can be computed by the Laplace method as in the
proof of Proposition 5.1. We obtain

hP m;  m0i 2 Ecl

�
�2h

�
.�h/d=2e�.S.m/CS.m

0//=h
X

s2j.m/\j.m0/

j�.s/jD�1s

�
: (6.8)

Relation (6.1) follows, using also (5.1).
Finally, (6.2) follows from (6.4), (6.6), (6.7), and (6.8) when j.m/ \ j.m0/ ¤ ;, and

when j.m/ \ j.m0/ D ;, from hP'm; 'm0i D 0 D hP
]'m; 'm0i, where the last equality

can be proved as was the first one in the third paragraph, using .P2 C P0/.e�f=h/ D
.P2 C P0/

�.e�f=h/ D 0.

6.2. Graded structure of the interaction matrix

Suppose from now on that the minimum points m 2 U.0/ of f are labeled as in (5.7).
Let .zej /

n0
jD1 denote the basis of Ran…h obtained from the sequence .…h'mn0�jC1

/
n0
jD1

by the Gram–Schmidt process, and let ej D zen0�jC1 for j D 1; : : : ; n0. We recall that,
taking the "� of Proposition 1.2,

…h D
1

2i�

Z
@D.0;"�h=2/

.z � P /�1dz

denotes the spectral projector associated with the n0 eigenvalues of P of order O.h1C˛/,
˛ > 0.

Let ‡ D .�i;j /
n0�1
i;jD1 denote the matrix with coefficients

�i;j D hPei ; ej i: (6.9)

Introduce also the matrix ‡] D .�]i;j /
n0�1
i;jD1 defined by

�
]
i;j D hP

]'mi ; 'mj i D h.P2 C P0/'mi ; 'mj i: (6.10)

Note that, in these definitions, we do not consider the contribution of the vectors en0
and 'mn0 which are collinear to e�f=h and so belong to the kernels of P , P �, and P ]. If
we had added these last vectors in the definitions of ‡ and of ‡], the last line and column
of these matrices would have consisted of zeros. In particular, �.PjRan…h/D �.‡/[ ¹0º.

In order to compute the spectrum of the matrix ‡ and then the spectrum of
PjRan…h , we recall some tools from [24, Section 5B]. We denote by SC.E/ the set
of symmetric positive definite matrices on a vector space E, and by SCcl .E/ the set of
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h-depending matricesM.h/ 2 SC.E/ admitting a classical expansionM.h/ �
P
j h

jMj

with M0 2 SC.E/. We will sometimes forget E and write for short SC, SCcl .

Definition 6.7. Let ED .Ej /
p
jD1 be a sequence of finite-dimensional vector spaces, E DLp

jD1Ej , and let � D .�2; : : : ; �p/ 2 .R�C/
p�1. Let � 7!M.�/ be a map from .R�C/

p�1

into the set of matrices M.E/.

? We say that M.�/ is an .E; �/-graded symmetric matrix if there exists M 2 SC.E/

independent of � such that
M.�/ D �.�/M�.�/; (6.11)

with �.�/ D diag."1.�/ IdE1 ; : : : ; "p.�/ IdEp /, "1.�/ D 1 and "j .�/ D
Qj

kD2
�k for

j � 2.

? We say that a family of .E; �/-graded symmetric matrices Mh.�/, h 2 �0; h0�, is clas-
sical if Mh.�/ D �.�/Mh�.�/ for some matrix Mh 2 SCcl .E/.

? We say that Mh.�/ is an .E; �/-graded almost symmetric matrix if there exists
Mh 2M.E/ such that

Mh.�/ D �.�/Mh�.�/; Mh C M
�
h 2 SC.E/; Mh � M

�
h D O.h1/: (6.12)

? We say that a family of .E; �/-graded almost symmetric matrices Mh.�/, h 2 �0; h0�,
is classical if the matrix Mh in (6.12) satisfies Mh CM

�
h
2 SCcl .E/.

Throughout, we denote by GS.E; �/ (resp. GScl.E; �/) the set of (resp. classical) .E; �/-
graded symmetric matrices, and by GAS.E; �/ (resp. GAScl.E; �/) the set of (resp. clas-
sical) .E; �/-graded almost symmetric matrices.

For any M 2M.E/, we denote Ms D
1
2
.M CM �/ its real part. Obviously, the real

part of a matrix in GAS.E; �/ (resp. GAScl.E; �/) belongs to GS.E; �/ (resp. GScl.E; �/).

Let ¹S1 � � � � � Spº denote the set ¹S.mj /I j D 1; : : : ; n0 � 1º and, for all k D
1; : : : ; p, let Ek denote the vector space generated by ¹er I S.mr / D Skº. We also set
�k D e

�.Sk�Sk�1/=h for any k D 2; : : : ; p.

Proposition 6.8. Let E D .E1; : : : ; Ep/ and � D .�2; : : : ; �p/ be as above. Then

h�1e2S1=h‡] 2 GScl.E; �/ and h�1e2S1=h‡ 2 GAScl.E; �/:

Moreover,
e2S1=h‡ D e2S1=h‡] C�.�/O.h1/�.�/: (6.13)

Proof. Mimicking the proof of [20, Proposition 4.12], we get

�i;j D hP'mi ; 'mj i CO.h1hP'mi ; 'mi i
1=2
hP'mj ; 'mj i

1=2/: (6.14)

Then one deduces from Proposition 6.5 the existence of some ˛ > 0 such that

e2S1=h�i;j D e
2S1=h

�
�
]
i;j .1CO.e�˛=h//CO.h1hP'mi ; 'mi i

1=2
hP'mj ; 'mj i

1=2/
�

D e2S1=h�
]
i;j CO.e.2S1�Si�Sj /=hh1/:

This establishes (6.13).
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It just remains to show that h�1e2S1=h‡] 2 GScl.E; �/. Indeed, the fact that
h�1e2S1=h‡ 2 GAScl.E; �/ will then follow from (6.13).

Using (6.1), (6.2) and the fact that P ] is symmetric, we deduce that h�1e2S1=h‡]

is a graded matrix, say h�1e2S1=h‡] D �.�/Mh�.�/, where Mh is a symmetric matrix
having a classical expansion with leading term

.M0/i;j D .�1/
ımi ;mj �1

X
s2j.mi /\j.mj /

j�.s/j
2�

p
DmiDmj

Ds
:

In order to show that M0 is positive definite, it is sufficient to show that it has the form
M0 D L�L, where L is an injective matrix from Rn0�1 to R]V

.1/
. To this end, let us

define, for every sk 2 V .1/, G.sk/ WD ¹m 2 U.0/ n ¹mºI sk 2 j.m/º. For any sk 2 V .1/,
the set G.sk/ is nonempty. Moreover, from the structure of a Morse function near a (sep-
arating) saddle point, this set has at most two elements, and has only one element m if
and only if sk 2 @bE.m/. If there is only one minimum point mi 2 U.0/ n ¹mº in G.sk/,
we set

Lk;i D

s
j�.s/j
2�

Dmi
Dsk

:

If there are two minimum points mi ¤ mj 2 U.0/ n ¹mº in G.sk/, we define

Lk;i D

s
j�.s/j
2�

Dmi
Dsk

and Lk;j D �

s
j�.s/j
2�

Dmj

Dsk
:

We do not specify which index (i or j ) receives a “�”, since this choice is irrelevant in
what follows. The other coefficients of L are set to zero:

Lk;i D 0 whenever mi … G.sk/; i.e. whenever sk … j.mi /:

A direct computation gives M0 D L�L. Moreover, it follows from [24, Lemma 5.1]
that L is injective. Let us briefly explain the argument of [24, Lemma 5.1]. Let X D
.Xm/m2U.0/n¹mº 2 Rn0�1 be such that LX D 0. For any sk 2 V .1/ such that G.sk/ con-
tains a unique element m.sk/ 2 U.0/ n ¹mº, we have Xm.sk/ D 0. It follows from the
structure of L that Xm D 0 for every m 2 Cl.m.sk//. But, for every m 2 U.0/ n ¹mº,
there exist sk 2 V .1/ and m.sk/ 2 Cl.m/ such that G.sk/ D ¹m.sk/º. Thus Xm D 0 for
every m 2 U.0/ n ¹mº and L is injective. Summing up, M0 is positive definite and thus
h�1e2S1=h‡] 2 GScl.E; �/, which concludes the proof of Proposition 6.8.

6.3. The spectrum of GAS matrices

The results stated here are variants of those of [24, Section 5] and of [20, Appendix]. For
p 2 N�, a finite-dimensional vector space E D E1 ˚ � � � ˚ Ep , and j 2 ¹1; : : : ; pº, let
us write a general matrix M 2M.E/ in block form

M D

�
A B

C D

�
on the direct sum .E1 ˚ � � � ˚Ej�1/˚ .Ej ˚ � � � ˚Ep/: (6.15)
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If A 2 M.E1 ˚ � � � ˚ Ej�1/ is invertible, the Schur matrix of M (with respect to the
vector space E1 ˚ � � � ˚Ej�1) is the matrix on Ej ˚ � � � ˚Ep defined by

Rj .M/ D D � CA�1B;

where by convention R1.M/ D M . By the Schur complement method, M is invert-
ible if and only if Rj .M/ is invertible. Moreover, the map Rj sends SC.E/ into
SC.Ej ˚ � � � ˚ Ep/ and SCcl .E/ into SCcl .Ej ˚ � � � ˚ Ep/. We will also denote by J W

M.
Lp

kDj
Ek/! M.Ej / the restriction map to the first vector space Ej of

Lp

kDj
Ek .

More precisely, with the notation of (6.15), we will write J.M/ D A when j D 1. Of
course, the map J depends on j 2 ¹1; : : : ; pº, but we omit this dependence since the set
on which J is acting will be obvious in what follows.

Let E be a finite-dimensional vector space and Mh 2 SCcl .E/. By a standard result
of perturbation theory of symmetric matrices (see [17, Theorem 6.1 in Chapter II]), the
eigenvalues of Mh, after an appropriate labeling that we assume, have an asymptotic
expansion in powers of h with a nonzero leading term. This justifies the following defini-
tion.

Definition 6.9. ForMh 2 S
C
cl .E/, we denote by ��.Mh/ the set of asymptotic expansions

(that is, formal power series in h) of the eigenvalues of Mh. Moreover, m�.ƒ;Mh/ is
defined as the multiplicity of ƒ 2 ��.Mh/.

By an abuse of notation, if � 2 �.Mh/ has an asymptotic expansionƒ 2 ��.Mh/, we
will sometimes writem�.�;Mh/ instead ofm�.ƒ;Mh/. Roughly speaking,m�.�;Mh/

can be seen as the multiplicity modulo O.h1/ of the eigenvalue � 2 �.Mh/. Note that if
�; � 2 �.Mh/ do not have the same asymptotic expansion, there exists K0 > 0 such that
j� � �j � hK0 for h > 0 small enough.

Theorem 4. Let Mh D �.�/Mh�.�/ 2 GAScl.E; �/ and assume that �j D �j .h/ D

O.h1/ for every j D 2; : : : ; p. Then, for h > 0 small enough,

�.Mh/ �

p[
jD1

"j .�/
2
�
�.J ıRj .M

s
h//CD.0;O.h

1//
�
; (6.16)

where we recall that M s
h
D

1
2
.Mh CM

�
h
/ denotes the real part of Mh. Moreover, for all

j D 1; : : : ; p, K > 0 large enough and � 2 �.J ıRj .M
s
h
//, one has

n.Mh;D
K
j;�/ D m�.�;J ıRj .M

s
h//; (6.17)

which does not depend on K, where n.Mh; D
K
j;�
/ is the number of eigenvalues of Mh

in DK
j;�
D D."2j �; "

2
j h
K/ counted with multiplicity. Finally, for all K > 0 large enough,

there exists C > 0 such that

8z 2 C n
[
j;�

DK
j;�; k.Mh � z/

�1
k � C dist.z; �.Mh//

�1 (6.18)

for h > 0 small enough.
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Proof. For j D 1; : : : ;p, we assume that the spectral parameter z belongs to the ring Cj D

¹z 2 CI "2j =R < jzj < R"
2
j º, where R > 1 is large enough so that

S
�2�.JıRj .M

s
h
//D

K
j;�

� Cj . We write Mh as

Mh D�.�/Mh�.�/D

�
LC 0

0 L�

��
A B

C D

��
LC 0

0 L�

�
D

�
LCALC LCBL�
L�CLC L�DL�

�
;

with LC D diag."1 IdE1 ; : : : ; "j�1 IdEj�1/ and L� D diag."j IdEj ; : : : ; "p IdEp /. For
z 2 Cj , we have E WD LCALC � z D LC.A � L

�1
C zL

�1
C /LC with kL�1C zL

�1
C k D

O."2j "
�2
j�1/ D O.�2j / D O.h1/. Since A 2 SCcl .E1 ˚ � � � ˚ Ej�1/ modulo O.h1/, the

matrix E is invertible and

E�1 D L�1C .A
�1
CO.h1//L�1C D O."�2j�1/; (6.19)

uniformly for z 2 Cj . By the Schur complement method, Mh � z is invertible if and only
if

F D L�DL� � z � L�CLCE�1LCBL� is invertible. (6.20)

In that case,

.Mh � z/
�1
D

�
E�1 C E�1LCBL�F �1L�CLCE�1 �E�1LCBL�F �1

�F �1L�CLCE�1 F �1

�
: (6.21)

From (6.19), the matrix F can be written, uniformly for z 2 Cj ,

F D L�.D � CA
�1B/L� � z CO."2j h

1/ D "2jJ.D � CA�1B/˚ 0 � z CO."2j h
1/

with J.D � CA�1B/ W Ej ! Ej and the shorthand

T ˚ 0 D

�
T 0

0 0

�
W Ej ˚ � � � ˚Ep ! Ej ˚ � � � ˚Ep:

Thus,

F D "2jJ ıRj .Mh/˚ 0 � z CO."2j h
1/

D "2jJ ıRj .M
s
h/˚ 0 � z CO."2j h

1/: (6.22)

We obtain an upper bound on the resolvent of Mh away from its expected spectrum.
Let K0 > 0 be such that j� � �j � hK0 for all �; � 2 �.J ıRj .M

s
h
// having different

asymptotic expansions and let K > K0. Define zCj D Cj n
S
�2�.JıRj .M

s
h
//D

K
j;�

. Since

J ıRj .M
s
h
/ is symmetric, we have ."2jJ ıRj .M

s
h
/ � z/�1 D O."�2j h�K/ for z 2 zCj ,

and

F D ."2jJ ıRj .M
s
h/˚ 0 � z/

�
1C ."2jJ ıRj .M

s
h/˚ 0 � z/

�1O."2j h
1/
�

D ."2jJ ıRj .M
s
h/˚ 0 � z/.1CO.h1//;

and so F is invertible and

F �1 D
�
"2jJ ıRj .M

s
h/˚ 0 � z

��1
CO."�2j h1/ D O."�2j h�K/: (6.23)
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Combining the first equality in (6.19), (6.21), (6.23) and using "k D O."`h
1/ for k > `,

we get, for z 2 zCj ,

.Mh � z/
�1
D

0@ 0 0 0

0 ."2jJ ıRj .M
s
h
/ � z/�1 0

0 0 �z�1

1ACO."�2j h1/; (6.24)

which implies that there exists C > 0 such that for z 2 zCj ,

k.Mh � z/
�1
k � C dist

�
z; "2j �.J ıRj .M

s
h//
��1

: (6.25)

We now compute the eigenvalues of Mh. For � 2 �.J ıRj .M
s
h
//, we introduce the

spectral projectors

…�D�
1

2i�

Z
@DK
j;�

.Mh � z/
�1dz and ��D�

1

2i�

Z
@D.�;hK /

.J ıRj .M
s
h/� z/

�1dz:

Since the circumference of @DK
j;�

is 2�"2j h
K , (6.24) implies

…� D

0@ 0 0 0

0 �� 0

0 0 0

1ACO.h1/:

Since E is a finite-dimensional space and the rank of a projector is an integer equal to its
trace, we deduce that

rk.…�/ D tr.…�/ D tr.��/CO.h1/ D rk.��/:

Thus, the number of eigenvalues of Mh in DK
j;�

counted with multiplicity is equal to
m�.�;J ıRj�1.M s

h
//. Since

pX
jD1

X
�2��.JıRj .M

s
h
//

m�.�;J ıRj .M
s
h// D

pX
jD1

dimEj D dimE;

relations (6.16) and (6.17) of Theorem 4 follow.
To finish the proof of Theorem 4, we have to obtain the resolvent estimate (6.18).

Since the estimate follows from (6.25) in zCj , j D 1; : : : ; p, it remains to prove it in
D1 D ¹z 2 CI R"21 � jzjº, Dj D ¹z 2 CI R"2j � jzj � "

2
j�1=Rº for 2 � j � p and

DpC1 D ¹z 2 CI jzj � "2p=Rº. We only show it in Dj when 2 � j � p, since the two
remaining situations can be treated in the same way. Mimicking the proof of (6.19), we
have E�1 D L�1C .A

�1 C O.R�1//L�1C for R large enough and z 2 Dj . Then F defined
in (6.20) satisfies, instead of (6.22),

F D "2jJ ıRj .M
s
h/˚ 0 � z CO."2jR

�1/:

Since jzj � R"2j , this implies kF �1k D O.jzj�1/ and k.Mh � z/
�1k D O.jzj�1/ from

(6.21). The last estimate gives (6.18).
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6.4. The spectrum of the interaction matrix

Combining Proposition 6.8 and Theorem 4, we obtain the following result.

Theorem 5. Suppose that the assumptions of Theorem 1 are satisfied. Assume also that
(Gibbs), (Confin), and (Morse) hold true and U.0/;II D ;. Let ‡] be defined by (6.10).
Then

�.P / \ ¹Re z < "�hº � ¹0º [
p[
jD1

e�2Sj =h
�
�.J ıRj .e

2Sj =h‡]//CD.0;O.h1//
�
:

Moreover, for all j D 1; : : : ; p, K > 0 large enough and � 2 �.J ıRj .e
2Sj =h‡]//, one

has
n.P;DK

j;�/ D m�.�;J ıRj .e
2Sj =h‡]//;

where n.P;DK
j;�
/ is the number of eigenvalues of P inDK

j;�
DD.e�2Sj =h�; e�2Sj =hhK/

counted with multiplicity.

Note here that the matrix h�1J ıRj .e
2Sj =h‡]/ belongs to SCcl , which almost gives

the statement of Theorem 3. In order to obtain an explicit version of Theorem 3, let us
use the specific structure of the matrix ‡]. We say that a matrix M is A-compatible if
Mm;m0 D 0 for all m;m0 with Cl.m/ ¤ Cl.m0/. In that case, for all ˛ 2 A n ¹Cl.m/º,M˛

denotes the matrix M restricted to the lines and columns whose label belongs to U
.0/
˛ .

Note that M is A-compatible iff M is block diagonal after a permutation of lines and
columns which gathers the labels of each element of A. Thus, if A is a square A-compat-
ible matrix,

�.A/ D
[

˛2An¹Cl.m/º

�.A˛/;

counting the eigenvalues with multiplicity. Moreover, if B; C are two A-compatible
matrices which can be multiplied, then BC is A-compatible and .BC/˛ D B˛C˛ .
The same way, if D is A-compatible and invertible, then D�1 is A-compatible and
.D�1/˛ D .D˛/

�1.
It follows from (6.2) and (6.3) that hP ]'m; 'm0i D 0 when Cl.m/¤ Cl.m0/ and hence

the matrix ‡] defined by (6.10) is A-compatible with

‡]˛ D .hP
]'m; 'm0i/m;m02U

.0/
˛

(6.26)

for all ˛ 2 A n ¹Cl.m/º. The previous paragraph shows that J ıRj .e
2Sj =h‡]/ is also

A-compatible and

.J ıRj .e
2Sj =h‡]//˛ D J ıRj .e

2Sj =h‡]˛/;

for all ˛ 2 A n ¹Cl.m/º and j D 1; : : : ; p. This implies

�
�
J ıRj .e

2Sj =h‡]/
�
D

[
˛2An¹Cl.m/º

�
�
J ıRj .e

2Sj =h‡]˛/
�
; (6.27)

counting the eigenvalues with multiplicity, and we obtain the following variant of The-
orem 5, whose formulation is close to that of [24, Theorem 5.8].
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Theorem 6. Suppose that the assumptions of Theorem 1 are satisfied. Assume also that
(Gibbs), (Confin), and (Morse) hold true and U.0/;II D ;. Let ‡]˛ be defined by (6.26).
Then

�.P /\¹Re z<"�hº�¹0º[
[

˛2An¹Cl.m/º
1�j�p

e�2Sj =h
�
�.JıRj .e

2Sj =h‡]˛//CD.0;O.h
1//

�
:

Moreover, for all ˛2A, j D1; : : : ;p,K>0 large enough and �2�.J ıRj .e
2Sj =h‡

]
˛//,

one has
n.P;DK

j;�/ D
X
ˇ2A

m�.�;J ıRj .e
2Sj =h‡

]

ˇ
//;

where n.P;DK
j;�
/ is the number of eigenvalues of P inDK

j;�
DD.e�2Sj =h�; e�2Sj =hhK/

counted with multiplicity and with the convention that m�.�;M/ D 0 if � … ��.M/.

In this result, if e�Sj =h does not appear in the graded expression of ‡]˛ , the matrix
J ıRj .e

2Sj =h‡
]
˛/ acts on the trivial vector space ¹0º and its spectrum is empty.

In order to emphasize the connection with the formulation of [24, Theorem 5.8], let
us set, with a slight abuse of notation, Rk DR2 ı � � � ıR2 (k times), with the convention
R0D Id. It then follows from Appendix C that Rj�1DRj for every j 2 ¹1; : : : ;pº. Thus,
for every j 2 ¹1; : : : ;pº, the term J ıRj .e

2Sj =h‡
]
˛/ is nothing but J ıRj�1.e2Sj =h‡

]
˛/,

which is the expression appearing in [24, Theorem 5.8].

Remark 6.10. A similar result holds true without the assumption U.0/;II D ;. This
requires constructing adapted quasimodes as in [24, Section 3] (see for example formula
.3:14/ there) with cut-off functions as above.

Appendix A. Spectrum of transport operators

We begin the appendix with a result used to solve some transport equations.

Lemma A.1. Form 2N�, let Pm
hom denote the set of complex polynomials in d variables

which are homogeneous of degreem. LetA 2Md .C/ and let LA WP
m
hom!Pm

hom be given
by

LAp D Ax � rp:

If �.A/ � ¹Re z > 0º, then �.LA/ � ¹Re z > 0º.

Proof. Assume first that A is diagonalizable and denote by �1; : : : ; �d its eigenvalues.
After a linear change of variable in Cd (leaving Pm

hom invariant), we can assume that A
is diagonal, that is, A D diag.�1; : : : ; �d /. For any 
 D .
1; : : : ; 
d / 2 Nd satisfyingPd
jD1 
j D m, we have

LAx


D LAx


1
1 � � � x


d
d
D j
 j�x
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with j
 j� WD
Pd
jD1 �j 
j . Thus, the monomials of degree m form a basis of eigenvectors

of LA on Pm
hom and the corresponding eigenvalues are j
 j�.

In the general case, we note that A 7! LA is continuous and recall that the spectrum
is a continuous function of the matrix (see [17, Theorem II.5.14]). By density of the
diagonalizable matrices in Md .C/, the above discussion shows that the eigenvalues of LA
on Pm

hom are still the j
 j�’s where �1; : : : ; �d are the eigenvalues ofA. Since Re�j > 0 for
all j implies Re j�j
 > 0 for all 
 2 Nd such that

Pd
jD1 
j > 0, the lemma follows.

Appendix B. The supersymmetric structure

We now give an example showing that the operators considered in this paper do not have
a nice supersymmetric structure. We refer the reader to Hérau, Hitrik, and Sjöstrand’s
paper [15] and to the last author’s work [23] for general discussions of supersymmetric
structure for differential operators of second order. We say that P as in (1.8) admits a
temperate supersymmetric structure if there exist a smooth d � d matrix G.x; h/ and
M > 0 such that

P D �

dX
i;jD1

.h@xi � @xif .x// ıGi;j .x; h/ ı .h@xj C @xj f .x//; (B.1)

and kG.x; h/k . h�M locally in x. Note that (B.1) implies P.e�f=h/D P �.e�f=h/D 0
and that the present definition of temperate supersymmetric structure is weaker than that
of [23].

Proposition B.1. In dimension d D 2, there exists an operator P satisfying the assump-
tions of Theorem 2 and having no temperate supersymmetric structure.

The counterexample constructed in the proof also shows that the determination of
the supersymmetric structure (that is, the matrix G) of an operator having a temperate
supersymmetric structure is an instable question. On the contrary, since all the closed
forms on Rd are exact, all the operators P satisfying the assumptions of Theorem 2 have
a supersymmetric structure which may not be temperate (see Theorem 1.2 of [15]).

Proof of Proposition B.1. First, we consider an operator P0 satisfying all the assump-
tions of Theorem 2 and having a temperate supersymmetric structure (for instance, the

�2

�1

R2



Fig. B.1. The geometric setting in the proof of Proposition B.1.
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Witten Laplacian described in (1.25)). Of course, P0 is of the form (1.8). We assume in
addition that the Morse function f is such that there exist two points �1; �2 2R2, a simple
smooth loop 
 around �1 but not �2, and C0 > 0 such that

maxfj
 < C0 < min.f .�1/; f .�2//; (B.2)

(see Fig. B.1). Let � 2C1c .R
2I Œ0;1�/ be such that �.�1/D 1 and supp.r�/ is sufficiently

close to 
 (so, in particular, �.�2/ D 0). We define P D P0 C Pper with the perturbation
operator

Pper D

2X
jD1

b
per
j .x; h/ ı h@xj C h@xj ı b

per
j .x; h/;

and the smooth and compactly supported vector field

bper.x; h/ D e2f=he�2C0=hd�� where d� D

�
@x2
�@x1

�
: (B.3)

If the support of r� is close enough to 
 , the function bper and all its derivatives are expo-
nentially small from (B.2). In particular, bper satisfies (1.9) with a null classical expansion
and Pper does not change the principal symbol of P0. Moreover, a direct computation
gives

Pper.e
�f=h/ D �.Pper/

�.e�f=h/ D ef=hh div.bpere�2f=h/ D 0: (B.4)

Thus, P (as P0/ satisfies the assumptions of Theorem 2. It remains to show that P has
no temperate supersymmetric structure. Since P0 has such a structure, it is equivalent
to show that Pper has no temperate supersymmetric structure. Towards a contradiction,
assume that Pper can be written as in (B.1) for some polynomially locally bounded matrix
G.x; h/. Since Pper D �.Pper/

�, the matrix G must be antisymmetric, say

G.x; h/ D

�
0 g.x; h/

�g.x; h/ 0

�
for some smooth function g with jg.x; h/j . h�M locally. Expanding (B.1) gives

Pper D �.hr � rf / �G.hr C rf /

D h.d�g/ � hr � hr � .Grf / � .Grf / � hr

D

�
h

2
d�g �Grf

�
� hr C hr �

�
h

2
d�g �Grf

�
:

Then G satisfies the relation

bper
D
h

2
d�g �Grf D

h

2
e2f=hd�.e�2f=hg/; (B.5)

which is similar to [23, (2.4)]. Comparing with (B.3), this equation is equivalent to

d�.e�2f=hg/ D
2

h
e�2C0=hd��:
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Since d� D 0 implies that  is constant in dimension 2, this gives

g D
2

h
e2.f �C0/=h.�C C.h// (B.6)

for some constant C.h/ 2 R. Computing g at x D �2 where � D 0, (B.2), (B.6) and
jg.�2; h/j . h�M imply that C.h/ must be exponentially small. On the other hand, com-
puting g at x D �1 where � D 1 leads to g.�1; h/ � h�1e2.f .�1/�C0/=h for h small
enough. Then (B.2) shows that g.�1; h/ is exponentially large, in contradiction with
jg.�1; h/j . h�M . Summing up, Pper and hence P have no temperate supersymmetric
structure and the proposition follows.

Appendix C. Iteration of the Schur complement

Let us conclude the appendix with a lemma about the Schur complement. We recall that,
for a matrix M 2MdCd 0.C/ with d; d 0 2 N� written in block form

M D

�
A B

C D

�
with A 2Md .C/ invertible;

the Schur complement of the block D 2Md 0.C/ of M is the matrix defined by

R.M/ D D � CA�1B 2Md 0.C/:

Moreover, by the Schur complement method, M is invertible if and only if R.M/ is
invertible.

Lemma C.1. For d1; d2; d3 2 N� and matrices M 2 Md1Cd2Cd3.C/ and M 0 2

Md2Cd3.C/ written in block form

M D

0@A B C

D E F

G H I

1A and M 0 D

�
A0 B 0

C 0 D0

�
;

we denote respectively, when they make sense, by R1.M/, R1;2.M/ and R2.M
0/ the

Schur complements of the blocks
�
E F
H I

�
2 Md2Cd3.C/ of M , I 2 Md3.C/ of M and

D0 2Md3.C/ of M 0.
IfM has the previous form with A and

�
A B
D E

�
invertible, then the Schur complements

R1;2.M/, R1.M/ and R2.R1.M// make sense and satisfy

R2.R1.M// D R1;2.M/:

Proof. First, sinceA and
�
A B
D E

�
are invertible, the respective Schur complements R1.M/

and R1;2.M/ of the blocks
�
E F
H I

�
and I of M make sense. Moreover, by the Schur

complement method, the invertibility of A and
�
A B
D E

�
implies that the Schur complement
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E �DA�1B of the block E of
�
A B
D E

�
is invertible, and a straightforward computation

shows that�
A B

D E

��1
D

�
A�1 C A�1B.E �DA�1B/�1DA�1 �A�1B.E �DA�1B/�1

�.E �DA�1B/�1DA�1 .E �DA�1B/�1

�
:

It follows that

R1;2.M/ D I �
�
G H

� �A B

D E

��1 �
C

F

�
D I �GA�1C C .H �GA�1B/.E �DA�1B/�1.DA�1C � F /: (C.1)

Moreover,

R1.M/ D

�
E F

H I

�
�

�
D

G

�
A�1

�
B C

�
D

�
E �DA�1B F �DA�1C

H �GA�1B I �GA�1C

�
:

Since E �DA�1B is invertible, the Schur complement R2.R1.M// of the block I �
GA�1C of R1.M/ makes sense and satisfies

R2.R1.M//D I �GA�1C � .H �GA�1B/.E �DA�1B/�1.F �DA�1C/: (C.2)

The statement of Lemma C.1 then follows from (C.1) and (C.2).
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