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Abstract. It is well known that the monotonicity condition, either in Lasry–Lions sense or in dis-
placement sense, is crucial for the global well-posedness of mean field game master equations,
as well as for the uniqueness of mean field equilibria and solutions to mean field game systems.
In the literature, the monotonicity conditions are always taken in a fixed direction. In this paper,
we propose a new type of monotonicity condition in the opposite direction, which we call the
anti-monotonicity condition, and establish the global well-posedness for mean field game master
equations with non-separable Hamiltonians. Our anti-monotonicity condition allows our data to
violate both the Lasry–Lions monotonicity and the displacement monotonicity conditions.

Keywords: master equation, mean field games, Lasry–Lions monotonicity, displacement
monotonicity, anti-monotonicity.

1. Introduction

In this paper, we consider the following second-order master equation, arising from mean
field games with common noise, with terminal condition V.T; x; �/ D G.x; �/:

LV.t; x; �/ WD �@tV �
y̌2

2
tr.@xxV /CH.x;�; @xV / �N V D 0; (1.1)

where

N V.t; x; �/ WD tr
�
xzE
h y̌2
2
@zx@�V.t; x; �; z�/ � @�V.t; x; �; z�/.@pH/

>.z�; �; @xV.t; z�; �//

C ˇ2@x@�V.t; x; �; z�/C
ˇ2

2
@��V.t; x; �; x�; z�/

i�
;

.t; x; �/ 2 Œ0; T / �Rd �P2.R
d /:
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Here ˇ � 0 is a constant, y̌2 WD 1C ˇ2, @t , @x , @xx are standard temporal and spatial
derivatives, @�, @�� are W2-Wasserstein derivatives, z� and x� are independent random
variables with the same law � and xzE is the expectation with respect to their joint law. The
theory of mean field games (MFGs, for short), initiated independently by Caines–Huang–
Malhamé [33] and Lasry–Lions [40], studies the asymptotic behavior of stochastic differ-
ential games with a large number of players interacting in certain symmetric way. We refer
to Lions [41], Cardaliaguet [15], Bensoussan–Frehse–Yam [7], Carmona–Delarue [20,21]
and Cardaliaguet–Porretta [18] for a comprehensive exposition of the subject. First intro-
duced by Lions [41], the master equation characterizes the value of the MFG, provided
there is a unique mean field equilibrium. Roughly speaking, it plays the role of the HJB
equation in the stochastic control theory.

The master equation (1.1) admits a unique local (in time) classical solution when
the data H and G are sufficiently smooth, see, e.g., Gangbo–Swiech [32], Bensoussan–
Yam [10], Mayorga [42], Carmona–Delarue [21] and Cardaliaguet–Cirant–Porretta [16].
In particular, [16] studied the local well-posedness of the master equations not only for
MFGs involving homogeneous minor players but also for MFGs with a major player.
It is much more challenging to obtain a global classical solution, we refer to Buckdahn–
Li–Peng–Rainer [14], Chassagneux–Crisan–Delarue [24], Cardaliaguet–Delarue–Lasry–
Lions [17], Carmona–Delarue [21], Gangbo–Meszaros–Mou–Zhang [31] and, in the
realm of potential MFGs, Bensoussan–Graber–Yam [8, 9], Gangbo–Meszaros [30].
We also refer to Mou–Zhang [43], Bertucci [12], and Cardaliaguet–Souganidis [19] for
global weak solutions which require much weaker regularity on the data, and Bayraktar–
Cohen [5], Bertucci–Lasry–Lions [13], Cecchin–Delarue [23], Bertucci [11] for classical
or weak solutions of finite state mean field game master equations. All the above global
well-posedness results, with the exception [14] that considers linear master equations and
thus no control or game is involved, require certain monotonicity condition, which we
explain next.

One typical condition, extensively used in the literature [5, 11–13, 17, 19, 21, 24, 43],
is the following well-known Lasry–Lions monotonicity condition. For a functionGWRd �
P2.Rd /! R,

EŒG.�1;L�1/CG.�2;L�2/ �G.�1;L�2/ �G.�2;L�1/� � 0 (1.2)

for any square integrable random variables �1, �2. Another type of monotonicity condi-
tion, originating in Ahuja [1] and later sparsely used in the literature, see Ahuja–Ren–
Yang [2] and [8, 9, 30, 31], is the displacement (or weak) monotonicity,

EŒŒ@xG.�1;L�1/ � @xG.�2;L�2/�Œ�1 � �2�� � 0: (1.3)

When G is regular enough with bounded @xxG, @x�G, (1.2) and (1.3) are equivalent to
the following inequalities, respectively, for all square integrable random variables �, �:

zEŒh@x�G.�;L� ; z�/z�; �i� � 0;

zEŒh@x�G.�;L� ; z�/z�; �i�C EŒh@xxG.�;L�/�; �i� � 0;
(1.4)
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where .z�; z�/ is an independent copy of .�; �/. These monotonicity conditions are crucial
for the uniqueness of mean field equilibria and the well-posedness of the master equations.

When none of the monotonicity conditions holds, the MFG could have multiple equi-
libria, see, e.g., Foguen Tchuendom [29], Cecchin–Dai Pra–Fisher–Pelino [22], Bayrak-
tar–Zhang [6]. In this case, one approach is to consider a special type of equilibria, see,
e.g., [22], Delarue–Foguen Tchuendom [25], Cecchin–Delarue [23], Bayraktar–Cecchin–
Cohen–Delarue [3, 4]. A larger literature is on the possible convergence of the equilibria
for the N -player game, which is quite often unique because the corresponding Nash sys-
tem is non-degenerate due to the presence of the individual noises, to the mean field
equilibria (which may or may not be unique), see, e.g., [17, 21, 43], Delarue–Lacker–
Ramanan [26, 27], Djete [28], Lacker [35–38], Lacker–Flem [39], Nuts–San Martin–
Tan [44]. Finally, we note that Iseri–Zhang [34] takes a quite different approach by invest-
igating the set of game values over all mean field equilibria and establishes the dynamic
programming principle and the convergence from the N -player game to the MFG.

We emphasize that the two inequalities in (1.4) share the same direction. Our goal of
this paper is to propose a new type of monotonicity condition in the opposite direction,
which we call anti-monotonicity condition, and establish the global well-posedness for the
master equation (1.1), with possibly non-separable Hamiltonian H . We remark that the
mean field equilibrium is a fixed point, and the monotonicity conditions (1.4) were used
to ensure the uniqueness of the fixed point. To motivate our anti-monotonicity condition,
let us use a very simple example to illustrate the idea. Suppose that f WR1! R1 is a con-
tinuously differentiable function and we are interested in its fixed point x�: f .x�/ D x�.
When f is decreasing, i.e., f 0 � 0, clearly f admits a unique fixed point x�. When f is
increasing, in general neither the existence nor the uniqueness of x� is guaranteed. How-
ever, if f is sufficiently monotone, in the sense that f 0 � 1 C " for some " > 0, then
again f has a unique fixed point x�. While in complete different contexts, our condi-
tions follow the same spirit. Roughly speaking, the standard monotonicity conditions (1.4)
correspond to the case that f is decreasing, while our new anti-monotonicity condition
corresponds to the case f is increasing, and for the same reason we will need to require
our data to be sufficiently anti-monotone in appropriate sense.

To be precise, our anti-monotonicity condition takes the following form:

zE
�
�0h@xxG.�;L�/�; �i C �1h@x�G.�;L� ; z�/z�; �i C j@xxG.�;L�/�j

2

C �2jzEF 1
T
Œ@x�G.�;L� ; z�/z��j

2
� �3j�j

2
�
� 0 (1.5)

for some appropriate constants �0 > 0, �1 2 R, �2 > 0, �3 � 0. We remark that the
inequality here takes the opposite direction to those in (1.4). In particular, the displace-
ment monotonicity requires the convexity of G in x, while here G is typically concave
in x, due to the first term in (1.5). This justifies the name of anti-monotonicity (and to have
a better comparison with (1.4), we may also set �1 D 1). We also note that, considering
the case �3 D 0, the second line of (1.5) is positive, this means that the first line of (1.5)
should be sufficiently negative, which is exactly in the spirit that G to be sufficiently
anti-monotone.
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To establish the global well-posedness of the master equation (1.1), we follow the
strategy in [31], which consists of three steps. The key step of this approach is to show
a priori that the anti-monotonicity propagates along the solution V . That is, under appro-
priate conditions, as long as V.T; �/ D G is anti-monotone, then V.t; �/ is anti-monotone
for all t . The second step is to show that the anti-monotonicity of V implies @xV is uni-
formly Lipschitz continuous in .x;�/, underW2 in �. This, together with a representation
formula established in [43], implies further the Lipschitz continuity underW1. In the final
step, we show that the uniform Lipschitz continuity underW1 enables us to extend a local
classical solution to a global one.

There is a major technical difference from [31] though. The assumptions we impose
for the propagation of anti-monotonicity prevents us from assuming uniform Lipschitz
continuity of the data G and H . Instead, we can only assume @xG, @xH are uniformly
Lipschitz. This has two consequences. First, the a priori estimate for the boundedness
of @xxV , which is crucial for the global well-posedness of the master equation and is
pretty easy to obtain under the conditions in [31], becomes very subtle. In fact, we need
some serious efforts to obtain this estimate. Moreover, unlike in [31], under our conditions
the solution V will not be Lipschitz continuous. Instead, we can only expect the Lipschitz
continuity of @xV . Therefore, we will actually consider the vector master equation of
EU WD @xV and establish its global well-posedness first. Once we obtain EU , then it is

immediate to solve the original master equation (1.1) for V .
The rest of the paper is organized as follows. In Section 2, we review the setting in [31]

and introduce our problem. In Section 3, we introduce the new notion of anti-monotonicity
and present the technical conditions used in the paper. In Section 4, we show a priori the
crucial propagation of the anti-monotonicity. Section 5 is devoted to the a priori uniform
Lipschitz estimate of @xV in�, first underW2 and then underW1. In Section 6, we provide
the a priori estimate for @xxV . Finally, in Section 7 we establish the global well-posedness
of the master equation (1.1).

2. The setting

Throughout the paper, we will use the setting in [31]. We review it briefly in this section
and refer to [31] for more details.

We consider the following product filtered probability space on Œ0; T �:

� WD �0 ��1; F WD ¹Ftº0�t�T WD ¹F
0
t ˝ F 1

t º0�t�T ; P WD P0 ˝ P1; E WD EP:

Here, for ! D .!0; !1/ 2 �, B0.!/ D B0.!0/ and B.!/ D B.!1/ are independent
d -dimensional Brownian motions; F0 D ¹F 0

t º is generated by B0, and F1 D ¹F 1
t º is

generated byB and F 1
0 , where we assume F 1

0 has no atom. Let . z�1; zF 1; zB; zP1/ be a copy
of the filtered probability space .�1;F1; B;P1/ and define the larger filtered probability
space by

z� WD � � z�1; zF D ¹ zFtº0�t�T WD ¹Ft ˝ zF
1
t º0�t�T ;

zP WD P ˝ zP1; zE WD E
zP :
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Given an Ft -measurable random variable �.z!/ D '.!0; !1/, z! D .!0; !1; z!1/ 2 z�, we
see that z�.z!/ WD '.!0; z!1/ is a conditionally independent copy of �, conditional on F 0

t

under zP . When two conditionally independent copies are needed, we let .x�1; xF1; xB; xP1/
be another copy of .�1;F1; B;P1/, and enlarge the joint product space further,

xz� WD � � z�1 � x�1;
xzF D ¹ xzFtº0�t�T WD ¹Ft ˝ zF

1
t ˝

xF 1
t º0�t�T ;

xzP WD P ˝ zP1 ˝ xP1;
xzE WD E

xzP :

Throughout the paper, we will use the probability space .�;F ;P /. However, when con-
ditionally independent copies of random variables or processes are needed, we will tac-
itly use their extensions to the larger spaces . z�; zF ; zP ; zE/ and .xz�; xzF ; xzP ; xzE/ without men-
tioning.

We next introduce the Wasserstein space and differential calculus on Wasserstein
space. Let P WD P .Rd / be the set of all probability measures on Rd and, for any q � 1,
let Pq denote the set of � 2 P with finite q-th moment. For any sub-� -field G � FT
and � 2 Pq , we denote the set of Rd -valued, G -measurable, and q-integrable random
variables � by Lq.G /; and the set of � 2 Lq.G / such that the law L� D � by Lq.G I�/.
For any �; � 2 Pq , the Wq-Wasserstein distance between them is defined as follows:

Wq.�; �/ WD inf¹.EŒj� � �jq�/
1
g W for all � 2 Lq.FT I�/; � 2 Lq.FT I �/º:

For a W2-continuous function U WP2 ! R, its Wasserstein gradient, also called Lions-
derivative, takes the form

@�U W .�; zx/ 2 P2 �Rd ! Rd

and satisfies

U.L�C�/ � U.�/ D EŒh@�U.�; �/; �i�C o.k�k2/ (2.1)

for all � 2L2.FT I�/, �2L2.FT /. Let C0.P2/ denote the set ofW2-continuous functions
U WP2 ! R. For k D 1; 2, we introduce Ck.P2/, which are referred to as functions of
full Ck regularity in [20, Theorem 4.17], as follows. By C1.P2/, we mean the space of
functions U 2 C0.P2/ such that @�U exists and is continuous on P2 �Rd , it is uniquely
determined by (2.1). Similarly, C2.P2/ stands for the set of functions U 2 C1.P2/ such
that @zx�U , @��U exist and are continuous on P2 � Rd and P2 � R2d , respectively.
Let C2.Rd � P2/ denote the set of continuous functions U WRd � P2 ! R satisfying
@xU , @xxU exist and are joint continuous on Rd � P2, @�U , @x�U , @zx�U exist and are
continuous on Rd � P2 � Rd , and @��U exists and is continuous on Rd � P2 � R2d .
Finally, we fix the state space

‚ WD Œ0; T � �Rd �P2

for our master equation, and let C1;2.‚/ denote the set of continuous functions U 2
‚! R which have the following continuous derivatives: @tU , @xU , @xxU , @�U , @x�U ,
@zx�U , @��U .
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One crucial property of functions U 2 C1;2.‚/ is the Itô formula. For i D 1; 2, let
dX it WD bitdt C �

i
t dBt C �

i;0
t dB

0
t , where bi W Œ0; T � � � ! Rd and � i ; � i;0W Œ0; T � �

�! Rd�d are F -progressively measurable and bounded (for simplicity) processes, and
�t WD LX2t jF

0
t

, then we have (cf. [21, Theorem 4.17], [14, 24])

dU.t; X1t ; �t / D
h
@tUC @xU � b

1
t C

1

2
tr.@xxU Œ�1t .�

1
t /
>
C �

1;0
t .�

1;0
t />�/

i
.t; X1t ; �t /dt

C @xU.t; X
1
t ; �t / � �

1
t dBt C .�

1;0
t />@xU.t; X

1
t ; �t / � dB

0
t

C tr.zEFt Œ@�U.t; X
1
t ; �t ;

zX2t /.
zb2t /
>�/dt

C zEFt Œ.z�
2;0
t />@�U.t; X

1
t ; �t ;

zX2t /� � dB
0
t

C tr
�
xzEFt

h1
2
@zx@�U.t; X

1
t ; �t ;

zX2t /Œz�
2
t .z�

2
t /
>
C z�

2;0
t .z�

2;0
t />�

C @x@�U.t; X
1
t ; �t ;

zX2t /�
1;0
t .z�

2;0
t />

C
1

2
@��U.t; X

1
t ; �t ;

zX2t ;
xX2t /z�

2;0
t .x�

2;0
t />

i�
dt: (2.2)

Here LX2t jF
0
t

stands for the conditional law of X2t given F 0
t , and zEFt and xzEFt are the

conditional expectations given Ft corresponding to the probability measures zP and xzP ,
respectively. Throughout the paper, the elements of Rd are viewed as column vectors;
@xU; @�U 2 Rd are also column vectors; @x�U WD @x@�U WD @x Œ.@�U/

>� 2 Rd�d ,
where > denotes the transpose, and similarly for the other second-order derivatives; both
the notations “�” and h�; �i denote the inner product of column vectors.

We finally introduce the mean field game system related to the master equation (1.1).
Given t0 2 Œ0; T � and � 2 L2.Ft0/, it either takes the form of forward backward McKean–
Vlasov SDEs on Œt0; T �, denoting B t0t WD Bt � Bt0 , B0;t0t WD B0t � B

0
t0

,

X
�
t D � �

Z t

t0

@pH.X
�
s ; �s; Z

�
s /ds C B

t0
t C ˇB

0;t0
t ;

Y
�
t D G.X

�
T ; �T /C

Z T

t

yL.X�s ; �s; Z
�
s /ds �

Z T

t

Z�s � dBs �

Z T

t

Z0;�s � dB
0
s ;

(2.3)

where

yL.x; �; p/ WD p � @pH.x;�; p/ �H.x;�; p/; �t WD �
�
t WD L

X
�
t jF

0
t
;

or takes the form of forward backward stochastic PDE system on Œt0; T �,

d�.t; x/ D
h y̌2
2

tr.@xx�.t; x//C div.�.t; x/@pH.x; �.t; �/; @xu.t; x///
i
dt

� ˇ@x�.t; x/ � dB
0
t ;

du.t; x/ D �
h
tr
� y̌2
2
@xxu.t; x/C ˇ@xv

>.t; x/
�
�H.x; �.t; �/; @xu.t; x//

i
dt

C v.t; x/ � dB0t ;

�.t0; �/ D L� ; u.T; x/ D G.x; �.T; �//;

(2.4)
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where y̌2 WD 1 C ˇ2, the solution triple .�; u; v/ is F0-progressively measurable and
�.t; �; !/ is a (random) probability measure. Systems (2.3) and (2.4) connect to the master
equation (1.1) as follows: provided all the equations are well posed and in particular (1.1)
has a classical solution V , then

Y
�
t D V.t; X

�
t ; �t /;

Z
�
t D @xV.t; X

�
t ; �t /;

u.t; x; !/ D V.t; x; �.t; �; !//:

(2.5)

It is already well known that, cf. [21], if the master equation (1.1) has a classical solu-
tion V with bounded derivatives, then we can get existence and uniqueness of the mean
field equilibrium, and the equilibrium of the corresponding N -player game will converge
to the mean field equilibrium. Therefore, we shall only focus on the global well-posedness
of the master equation (1.1).

We conclude this section with the strategy from [31] for the global well-posedness
of (1.1). We will follow the same strategy in this paper, except that we shall replace the
monotonicity condition with the anti-monotonicity condition:

Step 1. Introduce appropriate monotonicity condition on data which ensure the propaga-
tion of the monotonicity along any classical solution to the master equation.

Step 2. Show that the monotonicity of V.t; �; �/ implies an (a priori) uniform Lipschitz
continuity of V in the measure variable �.

Step 3. Combine the local well-posedness of classical solutions and the above uniform
Lipschitz continuity to obtain the global well-posedness of classical solutions.

3. Assumptions and anti-monotonicity conditions

In this section, we introduce the following notations. For any A 2 Rd�d ,

�.A/ WD inf
jxjD1
hAx; xi D the smallest eigenvalue of

1

2
ŒAC A>�;

x�.A/ WD sup
jxjD1

hAx; xi;

�0.A/ WD the smallest real part of eigenvalues of A;

jAj WD sup
jxjDjyjD1

hAx; yi:

(3.1)

It is obvious that, for any A;A1; A2 2 Rd�d and x 2 Rd ,

j � j is a norm on Rd�d ; jA1A2j � jA1jjA2j; jAxj � jAjjxj;

and, when A is symmetric, �0.A/ D �.A/; jAj D j�.A/j _ j�.A/j:
(3.2)
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3.1. Regularity assumptions

We first specify some technical assumptions on G and H .

Assumption 3.1. (i) H 2C2.Rd�P2�Rd / and there exist constants xLHxp , xLHxx ,LH2 >0
such that

j@xpH j � xL
H
xp; j@xxH j �

xLHxx ; j@ppH j; j@x�H j; j@p�H j � L
H
2 : (3.3)

(ii) H 2 C3.Rd �P2 �Rd /, and

@xH; @pH; @xxH; @xpH; @ppH; @xxpH; @xppH; @pppH 2 C2.Rd�P2 �Rd /;

@�H; @x�H; @p�H; @xp�H; @pp�H 2 C2.Rd �P2 �R2d /;

where all the second- and higher-order derivatives ofH involved above are uniformly
bounded.

Assumption 3.2. (i) G 2 C2.Rd �P2/, and there exist constants xLGxx ;L
G
2 > 0 such that

j@xxGj � xL
G
xx ; j@x�Gj � L

G
2 : (3.4)

(ii) @xG; @xxG 2 C2.Rd � P2/, and @�G; @x�G 2 C2.Rd � P2 � Rd /, and all the
second- and higher-order derivatives of G involved here are uniformly bounded.

Here the spaces C2, C3 are defined in the same manner as C1;2.‚/. Note that at
above we do not require the first-order derivatives to be uniformly bounded. In fact, con-
dition (3.14) below does not allow @xH to be bounded.

Remark 3.3. Under Assumption 3.2 (i), we see that @xG is uniformly Lipschitz continu-
ous in � under W1 on Rd � P2 with Lipschitz constant LG2 . This implies further the
Lipschitz continuity of @xG in � under W2 on Rd � P2, and we denote the Lipschitz
constant by zLG2 � L

G
2 ,

zEŒŒ@x�G.x; �; z�/z��� � zL
G
2 .EŒj�j

2�/
1
2 8 � 2 L2.F 1

T ; �/; � 2 L2.F 1
T /:

3.2. Monotonicity and anti-monotonicity conditions

Under the above regularity conditions on the data G andH , the MFG may still have mul-
tiple mean field equilibria over a long time duration and thus the global well-posedness of
classical solutions for the master equations can fail. Therefore, some structural conditions
on G, H are needed in order to guarantee its global well-posedness. The typical struc-
tural conditions assumed in the literature are two types of monotonicity conditions, i.e.,
the Lasry–Lions monotonicity condition and the displacement monotonicity condition.

Definition 3.4. Let U WRd �P2 ! R be such that U 2 C2.Rd �P2/.

(i) U is called Lasry–Lions monotone if for any �; � 2 L2.F 1
T /,

zEŒh@x�U.�;L� ; z�/z�; �i� � 0: (3.5)
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(ii) U is called displacement monotone if for any �; � 2 L2.F 1
T /,

zEŒh@x�U.�;L� ; z�/z�; �i C h@xxU.�;L�/�; �i� � 0: (3.6)

(iii) U is called displacement semi-monotone if for some � 2 R and for any �; � 2
L2.F 1

T /,

zEŒh@x�U.�;L� ; z�/z�; �i C h@xxU.�;L�/�; �i� � �EŒj�j2� � 0: (3.7)

Here, as in Section 2, .z�; z�/ is an independent copy of .�; �/. We remark that the
displacement semi-monotonicity is obviously weaker than the displacement monoton-
icity (3.6), and when @xxU is bounded, it is also weaker than the Lasry–Lions monoton-
icity (3.5).

Remark 3.5. The above formulations of the monotonicity conditions are convenient for
our purpose. For U 2 C2.Rd � P2/, (3.5) and (3.6) are equivalent to (1.2) and (1.3),
respectively, which appear more often in the literature. See [31, Remark 2.4].

We next turn to the monotonicity conditions for the Hamiltonian H . In the literature,
the Lasry–Lions monotonicity has only been proposed for the separable Hamiltonians,
i.e.,H.x;�;p/DH0.x;p/� F.x;�/ and F satisfies (1.2). In [31], a notion of displace-
ment monotonicity for non-separable H was proposed to study the well-posedness of the
master equation (1.1).

Definition 3.6. Let H be a Hamiltonian satisfying Assumption 3.1 (i) and H be strictly
convex in p. We say that H is displacement monotone if for any �; � 2 L2.F 1

T / and any
bounded Lipschitz continuous function ' 2 C 1.Rd IRd /,

zE
h
h@x�H.�;L� ; z�; '.�//z�C @xxH.�;L� ; '.�//�; �i

C
1

4
j.@ppH.�;L� ; '.�///

� 12 zEF 1
T
Œ@p�H.�;L� ; z�; '.�//z��j

2
i
� 0: (3.8)

Remark 3.7. (i) The above definition of displacement monotonicity for non-separable
Hamiltonians is not really used in the rest of the paper except for the comparison with the
new notion of anti-monotonicity introduced below. We refer to [31, Proposition 3.7] for
another equivalent definition of the above one.

(ii) The function '.�/ in (3.8) is chosen to be @xV.t; �;L�/ in the proof of the
propagation of the displacement monotonicity (3.6) along V.t; �/ in [31]. Since @xV is
not known priorly, the displacement monotonicity (3.8) is made for any desirable func-
tion '.

(iii) When H is non-separable, it still remains a challenge to find appropriate condi-
tions on H so that the Lasry–Lions monotonicity (3.5) could propagate along the solu-
tion V.t; �/.
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Finally, we introduce the anti-monotonicity condition, which is the main structural
condition in this paper and serves as an alternative sufficient condition for the global
well-posedness of the master equation. Denote

D4 WD ¹E� D .�0; �1; �2; �3/ W �0 > 0; �1 2 R; �2 > 0; �3 � 0º: (3.9)

Definition 3.8. Let U 2 C2.Rd �P2/ and E� 2 D4. We say U is E�-anti-monotone if

.AntiMon/
E�
�U.�; �/ WD

zE
�
�0h@xxU.�;L�/�; �i C �1h@x�U.�;L� ; z�/z�; �i

C j@xxU.�;L�/�j
2
C �2jzEF 1

T
Œ@x�U.�;L� ; z�/z��j

2

� �3j�j
2
�
� 0 8�; � 2 L2.F 1

T /: (3.10)

Remark 3.9. (i) The main feature of (3.10) is that the direction of the inequality is
opposite to those in Definition 3.4. In particular, (3.10) implies the Lasry–Lions anti-
monotonicity,

zEŒh@x�U.�;L� ; z�/z�; �i� � 0; (3.11)

for the case that �0 D �3 D 0 and �1 D �2 D 1. In fact, in this case condition (3.10) is
stronger than (3.11), and we interpret it as U is sufficiently Lasry–Lions anti-monotone,

zEŒh@x�U.�;L� ; z�/z�; �i� � �zEŒj@xxU.�;L�/�j
2
C jzEF 1

T
Œ@x�U.�;L� ; z�/z��j

2� � 0:

Similarly, in the case �0 D �1 D �2 D 1 and �3 D 0, we see that (3.10) implies U is
sufficiently displacement anti-monotone,

zEŒh@xxU.�;L�/�; �i C h@x�U.�;L� ; z�/z�; �i�

� �zEŒj@xxU.�;L�/�j
2
C jzEF 1

T
Œ@x�U.�;L� ; z�/z��j

2� � 0: (3.12)

Note that the concavity of U in x could help in (3.12), while in (3.6) its convexity is
helpful.

(ii) Inequality (3.10) implies the displacement semi-anti-monotonicity, i.e.,

zEŒh@xxU.�;L�/�; �i C h@x�U.�;L� ; z�/z�; �i� � �3zEŒj�j
2� (3.13)

if E� 2 D4, �0 D �1 D 1 and �3 � 0. Note that condition (3.13) is weaker than (3.12) for
the case. We recall that in the literature a function uWRd ! R is said to be semi-concave,
or �-concave, if @xxu � �Id for some constant � > 0, where Id is the d � d identity
matrix. We follow the same spirit to call U E�-anti-monotone if U satisfies (3.10).

We next provide an example which is E�-anti-monotone.

Example 3.10. Let d D 1 and consider the function for some constants a0, a1,

U.x; �/ D
a0

2
jxj2 C a1x

Z
R
y�.dy/; .x; �/ 2 R �P2:

It is clear that @xxU D a0 and @x�U D a1.



Mean field game master equations with anti-monotonicity conditions 4479

(i) For any �; � 2 L2.F 1
T /, we have

zEŒh@x�U.�;L� ; z�/z�; �i� D a1jEŒ��j
2:

So U is Lasry–Lions monotone if a1 � 0, and Lasry–Lions anti-monotone if a1 � 0.

(ii) Similarly, we have

zEŒh@xxU.�;L�/�; �i C h@x�U.�;L� ; z�/z�; �i� D a0EŒj�j
2�C a1jEŒ��j

2:

Then one can easily check that U is displacement monotone if a0 � 0, a1 � �a0, and
displacement anti-monotone if a0 � 0, a1 � �a0.

(iii) For any E� 2 D4, we have

.AntiMon/
E�
�U.�; �/ WD Œ�0a0 C ja0j

2
� �3�EŒj�j

2�C Œ�1a1 C �2ja1j
2�jEŒ��j2:

Then U is E�-anti-monotone if

�0a0 C ja0j
2
� �3 � 0; �0a0 C ja0j

2
� �3 � �Œ�1a1 C �2ja1j

2�;

which is equivalent to

�3 � max.�0a0 C ja0j2; �0a0 C ja0j2 C �1a1 C �2ja1j2/:

In particular, if we set �0 D �1 D �2 D 1, �3 D 0, and �1 � a0; a1 � 0, we see that U
is E�-anti-monotone.

Remark 3.11. Let U 2 C2.Rd �P2/ and E� 2 D4.

(i) When �0 D 0, then for all �1; �2 2 L2.F 1
T /, (3.10) is equivalent to the following

integral form:

�1EŒU.�1;L�1/C U.�2;L�2/ � U.�1;L�2/ � U.�2;L�1/�

C EŒj@xU.�1;L�2/ � @xU.�2;L�2/j
2
C �2j@xU.�2;L�1/ � @xU.�2;L�2/j

2�

� �3EŒj�1 � �2j
2�C o.EŒj�1 � �2j

2�/:

Here o."/ means it vanishes faster than " as "! 0.

(ii) When �0D �1, then for any �1; �2 2L2.F 1
T /, (3.10) is equivalent to the following

form:

�0EŒh@xU.�1;L�1/ � @xU.�2;L�2/; �1 � �2i�

C EŒj@xU.�1;L�2/ � @xU.�2;L�2/j
2
C �2j@xU.�2;L�1/ � @xU.�2;L�2/j

2�

� CEŒj�1 � �2j
2�C o.EŒj�1 � �2j

2�/:

(iii) In general, for any �1; �2 2 L2.F 1
T /, (3.10) is equivalent to the following form:

E
�
�0h@xU.�1;L�2/ � @xU.�2;L�2/; �1 � �2i

C �1h@xU.�2;L�1/ � @xU.�2;L�2/; �1 � �2i
�

C EŒj@xU.�1;L�2/ � @xU.�2;L�2/j
2
C �2j@xU.�2;L�1/ � @xU.�2;L�2/j

2�

� �3EŒj�1 � �2j
2�C o.EŒj�1 � �2j

2�/:
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Assumption 3.12. (i) G satisfies Assumption 3.2 (i) and is E�-anti-monotone for some
E� 2 D4;

(ii) H satisfies Assumption 3.1 (i) and there exist constantsLHxp > 0,LHxx > 0, x
 > 
 > 0
such that

�.@xpH/ � L
H
xp; �.@xxH/ � L

H
xx ; (3.14)

and

LHxp � L

H
xx �

xLHxx � x
L
H
xp;

xLHxp � x
L
H
xp: (3.15)

Note that no structural conditions are required for @x�H here, and @ppH can be
degenerate.

4. Propagation of anti-monotonicity

In this section, we show that any classical solution V to the master equation (1.1) could
propagate the anti-monotonicity under appropriate conditions.

Theorem 4.1. Let Assumption 3.12 hold and let V be a classical solution of the master
equation (1.1) such that

@xxV.t; �; �/ 2 C2.Rd �P2/; @x�V.t; �; �; �/ 2 C2.Rd �P2 �Rd /;

and all the second- and higher-order derivatives of V involved above are also continuous
in the time variable and are uniformly bounded. Assume further that there exist a constant
LVxx > 0 such that

j@xxV j � L
V
xx ; (4.1)

and a constant

�0 >
x
2Œ1C LVxx �

2 � 8�3

4

such that �1 WD

x
Œ1C LVxx �q
4.
�0 C 2�3/

< 1: (4.2)

Introduce the following symmetric matrices, which depend only on 
 , x
 , E�, and LVxx:

A1 WD

244Œ1 � �1� 0 0

0 2�2 0

0 0 Œ1 � �1�Œ�0
 C 2�3�

35 ; (4.3)

A2 WD

264 �0 �0 j�0 �
1
2
�1j C �3

�0 j�1j
1
2
j�1j C �2 C �3

j�0 �
1
2
�1j C �3

1
2
j�1j C �2 C �3 j�1j C 2�3

375C
2640 1 1

1 �2 �2

1 �2 0

375LVxx :
Then, whenever

LHxp � �.A
�1
1 A2/L

H
2 ; (4.4)

V.t; �/ is E�-anti-monotone in the sense of (3.10) for all t 2 Œ0; T �.
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Proof. Without loss of generality, we shall prove the theorem only for t0 D 0.
Fix � 2 L2.F0/ and � 2 L2.F0/. Given the desired regularity of V and H , the fol-

lowing system of McKean–Vlasov SDEs has a unique solution .X; ıX/:

Xt D � �

Z t

0

@pH.Xs; �s; @xV.s;Xs; �s//ds C Bt C ˇB
0
t ; �t WD LXt jF 0

t
;

ıXt D � �

Z t

0

�
@pxH.Xs; �s; @xV.s;Xs; �s//ıXs

C zEFs Œ@p�H.Xs; �s; @xV.s;Xs; �s/;
zXs/ı zXs�

C @ppH.Xs; �s; @xV.s;Xs; �s//Œ‡s C x‡s�
�
ds;

(4.5)

where

‡t WD zEFt Œ@x�V.t; Xt ; �t ;
zXt /ı zXt �;

x‡t WD @xxV.t; Xt ; �t /ıXt :

In the sequel, for simplicity of notation, we omit the variables .t; �t / as well as the
dependence on @xV , and denote

Hp.Xt / WD @pH.Xt ; �t ; @xV.t; Xt ; �t //;

Hp�.Xt ; zXt / WD @p�H.Xt ; �t ; zXt ; @xV.t; Xt ; �t //;

and similarly for Hxp , Hpp , Hx�, @xxV , @x�V , etc. We remark that, . zXt ; ı zXt / is a con-
ditionally independent copy of .Xt ; ıXt / and �t is F 0

t -measurable.
Recall (4.5) and introduce

It WD EŒh‡t ; ıXt i�; NIt WD EŒh x‡t ; ıXt i�;

�t WD .AntiMon/
E�
Xt
V.t; �/.ıXt ; ıXt /

D �0 NIt C �1It C EŒj x‡t j
2
C �2j‡t j

2
� �3jıXt j

2�:

By the calculation in [31, Theorem 4.1], we have

d

dt
I.t/ D E

�
�hHpp.Xt /‡t ; ‡t i � hzEFt ŒHp�.Xt ;

zXt /ı zXt �; ‡t � x‡t i

C hzEFt ŒHx�.Xt ;
zXt /ı zXt �; ıXt i

�
;

d

dt
NI .t/ D E

�
�hHpp.Xt /x‡t ; x‡t i � 2hHpp.Xt /x‡t ; ‡t i

� 2h x‡t ; zEFt ŒHp�.Xt ;
zXt /ı zXt �i C hHxx.Xt /ıXt ; ıXt i

�
;

(4.6)

and, by the calculation in [31, Theorem 5.1], we have

d‡t D .dBt /
>K1.t/C ˇ.dB

0
t /
>K2.t/C ŒK3.t/‡t CK4.t/�dt;

d x‡t D .dBt /
> xK1.t/C ˇ.dB

0
t /
> xK2.t/

C Œ2Hxp.Xt /x‡t � @xxV.Xt /Hpp.Xt /‡t C xK3.t/�dt;

(4.7)
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where (K5.t/ and K6.t/ in [31] turn to K3.t/ and K4.t/, respectively, here)

K1.t/ WD zEFt Œ@xx�V.Xt ;
zXt /ı zXt �;

K2.t/ WD K1.t/C
xzEFt ŒŒ.@�x�V /.Xt ;

xXt ; zXt /C @zxx�V.Xt ; zXt /�ı zXt �;

K3.t/ WD Hxp.Xt /C @xxV.Xt /Hpp.Xt /;

K4.t/ WD zEFt ŒŒHx�.Xt ;
zXt /C @xxV.Xt /Hp�.Xt ; zXt /�ı zXt �;

xK1.t/ WD @xxxV.Xt /ıXt ;

xK2.t/ WD xK1.t/C zEFt Œ.@�xxV /.Xt ;
zXt /ı zXt �;

xK3.t/ WD ŒHxx.Xt / � @xxV.Xt /Hpx.Xt /�ıXt � @xxV.Xt /zEFt ŒHp�.Xt ;
zXt /ı zXt �:

In particular, this implies that

d

dt
EŒj‡t j

2� � 2EŒh‡t ; K3.t/‡t CK4.t/i�;

d

dt
EŒj x‡t j

2� � 2EŒh x‡t ; 2Hxp.Xt /x‡t � @xxV.Xt /Hpp.Xt /‡t C xK3.t/i�:

(4.8)

Moreover, by (4.5) we have

d

dt
EŒjıXt j

2� D �2EŒhHpx.Xt /ıXt C zEFt ŒHp�.Xt ;
zXt /ı zXt �

CHpp.Xt /Œ‡t C x‡t �; ıXt i�: (4.9)

Thus, by (4.6), (4.8), and (4.9), we have

d

dt
�t � �0E

�
�hHpp.Xt /x‡t ; x‡t i � 2hHpp.Xt /x‡t ; ‡t i

� 2h x‡t ; zEFt ŒHp�.Xt ;
zXt /ı zXt �i C hHxx.Xt /ıXt ; ıXt i

�
C �1E

�
�hHpp.Xt /‡t ; ‡t i � hzEFt ŒHp�.Xt ;

zXt /ı zXt �; ‡t � x‡t i

C hzEFt ŒHx�.Xt ;
zXt /ı zXt �; ıXt i

�
C 2E

�
h x‡t ; Œ2Hxp.Xt /x‡t � @xxV.Xt /Hpp.Xt /‡t C xK3.t/�i

C �2h‡t ; ŒK3.t/‡t CK4.t/�i
�

C 2�3EŒhHpx.Xt /ıXt C zEFt ŒHp�.Xt ;
zXt /ı zXt �CHpp.Xt /Œ‡t C x‡t �; ıXt i�

D E
�
hŒ��0Hpp.Xt /C 4Hxp.Xt /�x‡t ; x‡t i

C hŒ��1Hpp.Xt /C 2�2K3.t/�‡t ; ‡t i

C hŒ�0Hxx.Xt /C 2�3Hpx.Xt /�ıXt ; ıXt i

C h�1zEFt ŒHx�.Xt ;
zXt /ı zXt �C 2�3zEFt ŒHp�.Xt ;

zXt /ı zXt �; ıXt i

� h2Œ�0Hpp.Xt /C @xxV.Xt /Hpp.Xt /�‡t ; x‡t i

C hŒ�2�0 C �1�zEFt ŒHp�.Xt ;
zXt /ı zXt �C 2 xK3.t/C 2�3Hpp.Xt /ıXt ; x‡t i

C h��1zEFt ŒHp�.Xt ;
zXt /ı zXt �C 2�2K4.t/C 2�3Hpp.Xt /ıXt ; ‡t i

�
:
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Next, by Assumptions 3.1 (i) and 3.12 (ii), and (3.15) we have

d

dt
�t � Œ4L

H
xp � �0L

H
2 �EŒj x‡t j

2�C Œ2�2L
H
xp � Œj�1j C �2L

V
xx �L

H
2 �EŒj‡t j

2�

C Œ�0L
H
xx C 2�3L

H
xp � Œj�1j C 2�3�L

H
2 �EŒjıXt j

2�

� 2LH2 Œ�0 C L
V
xx �EŒj‡t jj x‡t j�

� Œj�1 � 2�0jL
H
2 C 2x
Œ1C L

V
xx �L

H
xp C 2L

V
xxL

H
2 C 2�3L

H
2 �

� .EŒjıXt j
2�/

1
2 .EŒj x‡t j

2�/
1
2

� LH2 Œj�1j C 2�2Œ1C L
V
xx �C 2�3�.EŒjıXt j

2�/
1
2 .EŒj‡t j

2�/
1
2 :

Note that, recalling the �1 in (4.2),

4�1EŒj x‡t j
2�C 2x
Œ1C LVxx �.EŒjıXt j

2�/
1
2 .EŒj x‡t j

2�/
1
2 C �1Œ�0
 C 2�3�EŒjıXt j

2� � 0:

Then, recalling (4.3) and denoting a WD Œ.EŒj x‡t j2�/
1
2 ; .EŒj‡t j2�/

1
2 ; .EŒjıXt j2�/

1
2 �,

d

dt
�t � Œ4Œ1 � �1�L

H
xp � �0L

H
2 �EŒj x‡t j

2�C Œ2�2L
H
xp � Œj�1j C �2L

V
xx �L

H
2 �EŒj‡t j

2�

C ŒŒ1 � �1�Œ�0
 C 2�3�L
H
xp � Œj�1j C 2�3�L

H
2 �EŒjıXt j

2�

� 2LH2 Œ�0 C L
V
xx �EŒj‡t jj x‡t j�

� LH2 Œj�1 � 2�0j C 2L
V
xx C 2�3�.EŒjıXt j

2�/
1
2 .EŒj x‡t j

2�/
1
2

� LH2 Œj�1j C 2�2Œ1C L
V
xx �C 2�3�.EŒjıXt j

2�/
1
2 .EŒj‡t j

2�/
1
2

D aŒA1L
H
xp � A2L

H
2 �a

>
� 0;

where the last inequality thanks to (4.4) and the fact that A1 � 0. Thus

.AntiMon/
E�
� V.0; �; �/ D �0 � �T D .AntiMon/

E�
XT
G.ıXT ; ıXT / � 0:

That is, V.0; �; �/ is E�-anti-monotone.

5. The Lipschitz continuity

We first show that the anti-monotonicity of V implies the uniformly Lipschitz continuity
of @xV in � under W2. Unlike in [31], since we do not require the first-order derivatives
of G, H to be bounded, here we do not expect the Lipschitz continuity of V itself.

Theorem 5.1. Let Assumptions 3.1 (i), 3.2 (i) hold and V be a classical solution of the
master equation (1.1) such that

@xxV.t; �; �/ 2 C2.Rd �P2/; @x�V.t; �; �; �/ 2 C2.Rd �P2 �Rd /;

and all the second- and higher-order derivatives of V involved above are also continu-
ous in the time variable and are uniformly bounded. Assume further that V.t; �; �/ is
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E�-anti-monotone in the sense of (3.10) for all t 2 Œ0; T �. Then @xV is uniformly Lipschitz
continuous in � under W2, with a Lipschitz constant C�2 depending only on E�, the para-
meters in (3.3) and (3.4), and LVxx .

Proof. In this proof, C > 0 denotes a generic constant depending only on quantities men-
tioned in the statement of the theorem. As in the proof of Theorem 4.1, without loss
of generality we show the theorem only for t0 D 0. First, by (3.10) we have, for any
�; � 2 L2.F 1

t /,

EŒjzEF 1
T
Œ@x�V.t; �;L� ; z�/z��j

2� � C jzEŒh@x�V.t; �;L� ; z�/z�; �i�j C CEŒj�j2�: (5.1)

Next, applying Hölder’s inequality to (5.1) we have

EŒjzEF 1
T
Œ@x�V.t; �;L� ; z�/z��j

2� � CEŒj�j2�: (5.2)

From now on, we fix � 2L2.F0/ and � 2L2.F0/ and continue to use the notation as in the
proof of Theorem 4.1. In particular, X , ıX , �t , ‡ , x‡ are defined by (4.5). Applying (5.2)
by replacing E by EF 0

t
and noting that Xt is Ft -measurable, we have

EŒj‡t j
2� D EŒEF 0

t
ŒjzEFT Œ@x�V.t; Xt ; �t ;

zXt /ı zXt �j
2��

� CEŒEF 0
t
ŒjıXt j

2�� � CEŒjıXt j
2�: (5.3)

Using Hölder’s inequality on (4.5) and noting in particular

j x‡t j � L
V
xxjıXt j;

we obtain

jıXt j
2
� 2j�j2 C C

Z t

0

ŒjıXsj
2
C jzEFs Œjı

zXsj�j
2
C j‡sj

2�ds: (5.4)

Taking expectation on (5.4) and using (5.3), we derive

EŒjıXt j
2� � 2EŒj�j2�C C

Z t

0

EŒjıXsj
2�ds:

Then it follows from Grönwall’s inequality that

sup
t2Œ0;T �

EŒjıXt j
2� � CEŒj�j2�: (5.5)

Next, by (4.7), we have

‡t D ‡T �

Z T

t

ŒK3.s/‡s CK4.s/�ds �

Z T

t

.dBs/
>K1.s/ � ˇ

Z T

t

.dB0s /
>K2.s/:

Taking conditional expectation zEFt , we have

‡t D zEFt Œ@x�G.XT ; �T ;
zXT /ı zXT � �

Z T

t

zEFt ŒK3.s/‡s CK4.s/�ds: (5.6)
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Then by (5.6) and the required regularity of G, H and V , we have

j‡t j
2
� C zEFt Œjı

zXT j
2�C C

Z T

t

zEFt Œj‡sj
2
C jı zXsj

2�ds:

Now taking conditional expectation zEF0 , we get

zEF0 Œj‡t j
2� � C zEF0 Œjı

zXT j
2�C C

Z T

t

zEF0 Œj‡sj
2
C jı zXsj

2�ds:

Thus, by Grönwall’s inequality we have

j‡0j
2
D zEF0 Œj‡0j

2� � C zEF0 Œjı
zXT j

2�C C

Z T

0

zEF0 Œjı
zXsj

2�ds: (5.7)

Note that, recalling the setting in Section 2, ı zXt is measurable with respect to
F 0
t _

zF 1
t , which is independent of F0 under zP . Then the conditional expectation in the

right-hand side of (5.7) is actually an expectation. Plug (5.5) into (5.7), we obtain

jzEF0 Œ@x�V.0; �; �0;
z�/z��j2 D j‡0j

2
� CEŒj�j2�:

This implies

jzEŒ@x�V.0; x; �0; z�/z��j � C.Ej�j
2/
1
2 ; �0 � a.e. x: (5.8)

Since @�V is continuous, then (5.8) actually holds for all x. In particular, this implies that
there exists a constant C�02 > 0 such that

j@xV.0; x;L�C�/ � @xV.0; x;L�/j D

ˇ̌̌̌ Z 1

0

EŒ@x�V.0; x;L�C��; � C ��/��d�

ˇ̌̌̌
� C

�0
2 .EŒj�j2�/

1
2 :

Now, taking random variables �, � such that

W 2
2 .L�C�;L�/ D EŒj�j2�;

the above inequality exactly means that @xV.0; x; �/ is uniformly Lipschitz continuous
in �0 under W2 with uniform Lipschitz constant C�02 .

We emphasize that the above Lipschitz continuity is under W2, while the global well-
posedness of the master equation requires the W1-Lipschitz continuity. As in [31], we
shall derive the desiredW1-Lipschitz continuity from theW2-Lipschitz continuity by util-
izing the pointwise representation for the Wasserstein derivative developed in [43]. Note
again that in Theorem 5.1 we only have the Lipschitz continuity for @xV , but not for V ,
so at below we shall also consider

EU.t; x; �/ WD @xV.t; x; �/;
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which formally should satisfy the following vectorial master equation on Œ0; T / � Rd �
P2.Rd /, with terminal condition EU.T; x; �/ D @xG.x; �/:

� @t EU �
y̌2

2
tr.@xx EU/C @xH.x;�; EU/C @pH.x;�; EU/ � @x EU � EN EU D 0; (5.9)

where

EN EU.t; x; �/ WD tr
�
xzE
h y̌2
2
@zx@� EU.t; x; �; z�/ � @� EU.t; x; �; z�/.@pH/

>.z�; �; EU.t; z�; �//

C ˇ2@x@� EU.t; x; �; z�/C
ˇ2

2
@�� EU.t; x; �; x�; z�/

i�
:

To be precise, fix t0, �, we first consider the following McKean–Vlasov SDE on
Œt0; T �:

X
�
t D � �

Z t

t0

@pH.X
�
s ; �s;rY

�
s /ds C B

t0
t C ˇB

0;t0
t ; �t WD �

�
t WD L

X
�
t jF

0
t
;

rY
�
t D @xG.X

�
T ; �T / �

Z T

t

@xH.X
�
s ; �s;rY

�
s /ds �

Z T

t

rZ�s � dBs

�

Z T

t

rZ0;�s � dB
0
s :

(5.10)

Next, given � as above, for fixed x 2 Rd and letting .e1; : : : ; ed / denote the natural basis
of Rd , we introduce a series of FBSDEs, possibly McKean–Vlasov type,8̂̂̂̂

ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

X
�;x
t D x �

Z t

t0

@pH.X
�;x
s ; �s;rY

�;x
s /ds C B

t0
t C ˇB

0;t0
t ;

rY
�;x
t D @xG.X

�;x
T ; �T / �

Z T

t

@xH.X
�;x
s ; �s;rY

�;x
s /ds

�

Z T

t

rZ�;xs � dBs �

Z T

t

rZ0;�;xs � dB0s I

(5.11)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

rkX
�;x
t D ek �

Z t

t0

�
.rkX

�;x
s />@xpH.X

�;x
s ; �s;rY

�;x
s /

C .r2kY
�;x
s />@ppH.X

�;x
s ; �s;rY

�;x
s /

�
ds;

r
2
kY

�;x
t D .rkX

�;x
T />@xxG.X

�;x
T ; �T /

�

Z T

t

�
.rkX

�;x
s />@xxH.X

�;x
s ; �s;rY

�;x
s /

C .r2kY
�;x
s />@pxH.X

�;x
s ; �s;rY

�;x
s /

�
ds

�

Z T

t

r
2
kZ

�;x
s � dB

t0
s �

Z T

t

r
2
kZ

0;�;x
s � dB0;t0s I

(5.12)
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ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

rkX
�;x
t D �

Z t

t0

�
.rkX�;x

s />@xpH.X
�
s ; �s;rY

�
s /

C .r2kY�;xs />@ppH.X
�
s ; �s;rY

�
s /

C zEFs Œ.rk
zX�;xs />.@�pH/.X

�
s ; �s;

zX�;xs ;rY �s /

C .rk zX
�;x
s />@�pH.X

�
s ; �s;

zX�s ;rY
�
s /�
�
ds;

r
2
kY

�;x
t D

zEFT

�
.rk zX

�;x
T />@�xG.X

�
T ; �T ;

zX
�;x
T /

C .rk zX
�;x
T />@�xG.X

�
T ; �T ;

zX
�
T /
�

C .rkX
�;x
T />@xxG.X

�
T ; �T /

�

Z T

t

r
2
kZ�;xs � dB

t0
s �

Z T

t

r
2
kZ0;�;xs � dB0;t0s

�

Z T

t

�
.rkX�;x

s />@xxH.X
�
s ; �s;rY

�
s /

C .r2kY�;xs />@pxH.X
�
s ; �s;rY

�
s /

C zEFs Œ.rk
zX�;xs />@�xH.X

�
s ; �s;

zX�;xs ;rY �s /

C .rk zX
�;x
s />@�xH.X

�
s ; �s;

zX�s ;rY
�
s /�
�
dsI

(5.13)

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:̂

r�kX
x;�;zx
t D �

Z t

t0

�
zEFs

�
.rk zX

�;zx
s />@�pH.X

�;x
s ; �s; zX

�;zx
s ;rY �;xs /

C .rk zX
�;zx
s />@�pH.X

�;x
s ; �s; zX

�
s ;rY

�;x
s /

�
C .r�kX

x;�;zx
s />@xpH.X

�;x
s ; �s;rY

�;x
s /

C .r2�kY
x;�;zx
s />@ppH.X

�;x
s ; �s;rY

�;x
s /

�
ds;

r
2
�k
Y
x;�;zx
t D zEFT

�
.rk zX

�;zx
T />@�xG.X

�;x
T ; �T ; zX

�;zx
T /

C .rk zX
�;zx
T />@�xG.X

�;x
T ; �T ; zX

�
T /
�

C .r�kX
x;�;zx
T />@xxG.X

�;x
T ; �T /

�

Z T

t

r
2
�k
Zx;�;zxs � dBs �

Z T

t

r
2
�k
Z0;x;�;zxs � dB0s

�

Z T

t

�
.r�kX

x;�;zx
s />@xxH.X

�;x
s ; �s;rY

�;x
s /

C .r2�kY
x;�;zx
s />@pxH.X

x
s ; �s;rY

�;x
s /

C zEFs

�
.rk zX

�;zx
s />@�xH.X

�;x
s ; �s; zX

�;zx
s ;rY �;xs /

C .rk zX
�;zx
s />@�xH.X

�;x
s ; �s; zX

�
s ;rY

�;x
s /

��
ds:

(5.14)

The following local (in time) result provides the crucial W1-Lipschitz continuity
of EU .
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Proposition 5.2. Let Assumptions 3.1 (i) and 3.2 (i) hold. Recall the constants xLHxx , xLHxp ,
LH2 in (3.3), LG2 , xLGxx in (3.4), and zLG2 in Remark 3.3. Then there exists ı > 0, depending
only on d , xLHxx , xLHxp , LH2 , xLGxx , zLG2 , such that whenever T � t0 � ı, the following hold.

(i) The McKean–Vlasov FBSDEs (5.10), (5.11), (5.12), (5.13), and (5.14) are well
posed on Œt0; T � for any � 2 P2 and � 2 L2.Ft0 ; �/.

(ii) Define EU.t0; x; �/ WD rY
x;�
t0

. Then we have the pointwise representation

@�k
EU.t0; x; �; zx/ D r

2
�k
Y
x;�;zx
t0

: (5.15)

Moreover, there exists a constant C�1 > 0, depending only on d , xLHxx , xLHxp , LH2 ,
LG2 , xLGxx such that

j@� EU.0; x; �; zx/j � C
�
1 : (5.16)

(iii) Assume further that Assumptions 3.1 (ii) and 3.2 (ii) hold true. Then the vectorial
master equation (5.9) has a unique classical solution EU . Moreover,

EU.t; �; �/; @x EU.t; �; �/ 2 C2.Rd �P2/; @� EU.t; �; �; �/ 2 C2.Rd �P2 �Rd /;

and all their derivatives in the state and probability measure variables are continu-
ous in the time variable and are uniformly bounded.

(iv) The following decoupled McKean–Vlasov FBSDE

Xxt D x C B
t0
t C ˇB

0;t0
t ;

Y
x;�
t D G.XxT ; �T / �

Z T

t

H.Xxs ; �s;
EU.s;Xxs ; �s//ds

�

Z T

t

Zx;�s � dBs �

Z T

t

Z0;x;�s � dB0s

(5.17)

is well posed on Œt0; T � for any x 2 Rd . Define V.t0; x; �/ WD Y
x;�
t0

. Then V is the
unique classical solution of the master equation (1.1) and @xV D EU on Œ0; T � �
Rd �P2.

We emphasize that at above C�1 depends on LG2 in (3.4), but ı depends only on zLG2 in
Remark 3.3, not on LG2 .

Proof. The proof of (i)–(iii) is very lengthy, but essentially identical to that of [31, Pro-
position 6.2], except that [31] considers both @�V and @x�V D @� EU . So we omit it here.

(iv) By the smoothness of EU obtained in (iii), clearly the V defined in (iv) is smooth
and Y x;�t D V.t;Xxt ; �t /. By applying Itô’s formula (2.2), we see that V satisfies the PDE

� @tV �
y̌2

2
tr.@xxV /CH.x;�; EU/ � tr

�
xzE
h y̌2
2
@zx@�V.t; x; �; z�/

C
ˇ2

2
@��V.t; x; �; x�; z�/ � @�V.t; x; �; z�/.@pH/

>.z�; �; EU.t; z�; �//

C ˇ2@x@�V.t; x; �; z�/
i�
D 0: (5.18)
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Differentiate it with respect to x, we obtain the PDE for EU 0 WD @xV :

� @t EU 0 �
y̌2

2
tr.@xx EU 0/C @xH.x;�; EU/C @pH.x;�; EU/ � @x EU

� tr
�
xzE
h y̌2
2
@zx@� EU 0.t; x; �; z�/C

ˇ2

2
@�� EU 0.t; x; �; x�; z�/

� @� EU 0.t; x; �; z�/.@pH/
>.z�; �; EU.t; z�; �//

C ˇ2@x@� EU 0.t; x; �; z�/
i�
D 0: (5.19)

Compare this with (5.9), we see that EU also satisfies (5.19). Thus, by the uniqueness we
have

EU D EU 0 D @xV:

Plug this into (5.18), we verify that V satisfies (1.1).

6. Uniform estimates of @xxV

We note that all the above results rely on the bound LVxx of @xxV in (4.1). In particular,
in Theorem 4.1 the LHxp depends on LVxx . Then it is crucial to obtain an a priori uniform
estimate of LVxx which is independent of LHxp . Recall (2.5), we have @xxV D @xxu, so it
suffices to establish the a priori estimate for the solution u to the backward SPDE in (2.4),
for an arbitrarily given � (not necessarily satisfying the forward SPDE in (2.4)).

For this purpose, we consider a special form of H .

Assumption 6.1. The Hamiltonian H takes the following form:

H.x;�; p/ D hA0x; pi CH0.x; �; p/; (6.1)

where A0 2 Rd�d is a constant matrix and H0WRd � P2 � Rd ! R is a function satis-
fying

(i) H0 2 C2.Rd �P2 �Rd / and there exist constants LH0xx ; xL
H0
xx ; L

H0
2 > 0 such that

�.@xxH0/ � L
H0
xx ; j@xxH0j �

xLH0xx ; (6.2)

j@xpH0j; j@ppH0j; j@x�H0j; j@p�H0j � L
H0
2 on Rd �P2 �Rd : (6.3)

(ii) H0 satisfies Assumption 3.1 (ii).

Given A0, consider its Jordan decomposition

A0 D Q0J0Q
�1
0 ; (6.4)

where J0 2 Cd�d is the Jordan normal form of A0 and Q0 2 Cd�d is invertible. Let xQ0
denote the conjugate of Q0 and thus Q0 xQ>0 is positive definite. The following estimate
will be crucial.
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Lemma 6.2. Recall (3.1). For any t � 0, we have

je�A0t j �
p
LA0eŒ1��

0.A0/�t ; where LA0 WD inf
Q0

x�.Q0 xQ
>
0 /

�.Q0 xQ
>
0 /
: (6.5)

Here the infimum is over all Q0 satisfying (6.4).

Proof. Fix J0, Q0 as in (6.4). It is obvious that e�A0t D Q0e�J0tQ�10 . We claim that

jhe�J0tx; yij � eŒ1��
0.A0/�t jxjjyj 8x; y 2 Cd : (6.6)

Then, for any x; y 2 Rd with jxj D jyj D 1, we have

jhe�A0tx; yij D jhe�J0tQ�10 x;Q0>yij � e
Œ1��0.A0/�t jQ�10 xjjQ0>yj

� eŒ1��
0.A0/�t

q
x�.Q�10 . xQ>0 /

�1/

q
x�.Q0 xQ

>
0 /

D eŒ1��
0.A0/�t

s
x�.Q0 xQ

>
0 /

�.Q0 xQ
>
0 /
:

Since Q0 is arbitrary, this implies (6.5) immediately.
To see (6.6), assume the Jordan normal form J0 D diag.J1; : : : ; Jk/. Here d1 C � � � C

dk D d ; Ji D �iIdi C Udi 2 Rdi�di , i D 1; : : : ; k; �1; : : : ; �k are all the eigenvalues
of A0; and Udi is the matrix whose .j; j C 1/-component is 1, j D 1; : : : ; di � 1, and all
other components are 0. It is straightforward to see that

e�J0t D diag.e�J1t ; : : : ; e�Jk t /:

Note that, for each i , since Idi and Udi can commute, and U di
di
D 0,

e�Ji t D e��i te�Udi t D e��i t
di�1X
nD0

.�t /n

nŠ
U ndi :

For any x.i/; y.i/ 2 Cdi , it is clear that

jhU ndix
.i/; y.i/ij �

1

2
Œjx.i/j2 C jy.i/j2�:

Then, for x D .x.1/; : : : ; x.k//; y D .y.1/; : : : ; y.k// 2 Cd with jxj D jyj D 1, we have

jhe�J0tx; yij D

ˇ̌̌̌ kX
iD1

he�Ji tx.i/; y.i/i

ˇ̌̌̌
�

kX
iD1

je��i t j

di�1X
nD0

tn

nŠ
jhU ndix

.i/; y.i/ij

� e��
0.A0/t

kX
iD1

di�1X
nD0

tn

nŠ

1

2
Œjx.i/j2 C jy.i/j2� � e��

0.A0/t

d�1X
nD0

tn

nŠ
:

This implies (6.6) immediately.
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Remark 6.3. (i) Form (6.1) is assumed for estimate (6.5) and for the property

de�A0t D �e�A0tA0dt D �A0e
�A0tdt; (6.7)

required in the proof of Theorem 6.4 below. In general, e�
R t
0 @xpHds does not enjoy these

properties. When d D 1, however, e�
R t
0 @xpHds obviously satisfies similar properties and

thus we do not need the special form (6.1). Moreover, we remark that any alternative
structures which could ensure a uniform a priori bound for @xxu can serve our purpose.

(ii) It is clear that, under (6.1), (6.2), and (6.3), we may set

LHxp WD �.A0/ � L
H0
2 ; xLHxp WD jA0j C L

H0
2 I

LHxx WD L
H0
xx ;

xLHxx WD
xLH0xx ; LH2 WD L

H0
2 :

(6.8)

Then (3.3) and (3.14) hold true. We shall remark though that the term �.A0/ and the
condition �.@xxH0/ � LH0xx are not used in Theorem 6.4 below.

(iii) When A0 is symmetric, one can easily see that LA0 D 1, and in this case (6.5)
can be improved: je�A0t j � e��

0.A0/t .

Then we have the following uniform a priori estimate.

Theorem 6.4. Let Assumptions 3.2 (i) and 6.1 hold and let �W Œ0; T � ��! P2 be F0-
progressively measurable with

sup
t2Œ0;T �

E
h Z

Rd
jxj2�t .dx/

i
< C1:

Assume .u; v/ is a classical solution to the backward SPDE in (2.4) for the given � here
(� is not necessarily a solution to the forward SPDE in (2.4)) such that @xxu is bounded
and, for some fixed constant xLA � 1,

LA0 � xLA; �0.A0/ � �2 WD max
°
�3;
xL
H0
xx

2xLGxx
C 1

±
; (6.9)

where
�3 WD 1C L

H0
2
xLAŒ1C xLGxx

xLA C

q
.1C xLGxx

xLA/2 � 1�:

Then the following estimate holds: for any � � �3,

j@xxu.t; x/j � L
u
xx.�3/ 8.t; x/; (6.10)

where

Luxx.�/ WD
� � 1 � L

H0
2
xLA �

q
.� � 1 � L

H0
2
xLA/2 � 2L

H0
2
xLGxx.

xLA/2Œ� � 1�

L
H0
2
xLA

:

We note that (6.9) implies Luxx.�/ is well defined for � � �3, and we emphasize that
the bound Luxx.�3/ depends only on LH02 , xLGxx and xLA, in particular not on T , �0.A0/,
or xLH0xx .
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Proof. Fix .t0; x/. First, under our conditions it is clear that the following FBSDE on
Œt0; T � has a unique solution .Xx ;rY x ;rZx ;rZ0;x/:

Xxt D x �

Z t

t0

@pH.X
x
s ; �s;rY

x
s /ds C B

t0
t C ˇB

0;t0
t ;

rY xt D @xG.X
x
T ; �T / �

Z T

t

@xH.X
x
s ; �s;rY

x
s /ds �

Z T

t

rZxs � dBs

�

Z T

t

rZ0;xs � dB
0
s :

(6.11)

In particular, @xu serves as the decoupling field:

rY xt D @xu.t; X
x
t /; t 2 Œt0; T �: (6.12)

Next, denote L0 WD Luxx.�
0.A0//, and consider the following BSDE on Œt0; T �:

r
2Y xt D @xxG.X

x
T ; �T / �

Z T

t

r
2Zxs � dBs �

Z T

t

r
2Z0;xs � dB

0
s

�

Z T

t

�
r
2Y xs ŒA

>
0 C @pxH0.X

x
s ; �s;rY

x
s /�

C ŒA0 C @xpH0.X
x
s ; �s;rY

x
s /�r

2Y xs C @xxH0.X
x
s ; �s;rY

x
s /

C Œr2Y xs ^ L0�@ppH0.X
x
s ; �s;rY

x
s /Œr

2Y xs ^ L0�
�
ds: (6.13)

Here A ^ L0 WD Œ.�L0/ _ aij ^ L0�i;j is the truncated matrix. The above BSDE has
a Lipschitz continuous driver and thus is well posed. Recalling (6.7) and applying Itô’s
formula, we have

e�A0tr2Y xt e
�A>

0
t
D e�A0T @xxG.X

x
T ; �T /e

�A>
0
T

�

Z T

t

e�A0sŒr2Zxs � dBs Cr
2Z0;xs � dB

0
s �e
�A0s

�

Z T

t

e�A0s
�
r
2Y xs @pxH0.X

x
s ; �s;rY

x
s /

C @xpH0.X
x
s ; �s;rY

x
s /r

2Y xs C @xxH0.X
x
s ; �s;rY

x
s /

C Œr2Y xs ^ L0�@ppH0.X
x
s ; �s;rY

x
s /Œr

2Y xs ^ L0�
�
e�A

>
0
sds:

Taking conditional expectation EFt on both sides, we obtain

r
2Y xt D e

A0.t�T /EFt Œ@xxG.X
x
T ; �T /�e

A>
0
.t�T /

�

Z T

t

eA0.t�s/EFt

�
r
2Y xs @pxH0.X

x
s ; �s;rY

x
s /C @xpH0.X

x
s ; �s;rY

x
s /r

2Y xs

C @xxH0.X
x
s ; �s;rY

x
s /

C Œr2Y xs ^ L0�@ppH0.X
x
s ; �s;rY

x
s /Œr

2Y xs ^ L0�
�
eA

>
0
.t�s/ds:
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Recalling (3.2) and applying Lemma 6.2, we have

jr
2Y xt j � e

2Œ1��0.A0/�.T�t/ xLGxx
xLA C

xL
H0
xx
xLA

2Œ�0.A0/ � 1�
Œ1 � e2Œ1��

0.A0/�.T�t/�

C L
H0
2
xLAŒ2C L0�

Z T

t

e2Œ1��
0.A0/�.s�t/EFt Œjr

2Y xs j�ds:

Taking the conditional expectation EFt0
and noting that

�0.A0/ � �2 �
xL
H0
xx

2xLGxx
C 1;

we derive

EFt0
Œjr2Y xt j� � e

2Œ1��0.A0/�.T�t/ xLGxx
xLA C xLGxx

xLAŒ1 � e2Œ1��
0.A0/�.T�t/�

C L
H0
2
xLAŒ2C L0�

Z T

t

e2Œ1��
0.A0/�.s�t/EFt0

Œjr2Y xs j�ds

� xLGxx
xLA C L

H0
2
xLAŒ2C L0�

Z T

t

e2Œ1��
0.A0/�.s�t/EFt0

Œjr2Y xs j�ds:

Then by Grönwall’s inequality, we have

EFt0
Œjr2Y xt j� �

xLGxx
xLA C

xLGxxL
H0
2 j
xLAj2Œ2C L0�

2Œ�0.A0/ � 1� � L
H0
2
xLAŒ2C L0�

� Œ1 � e�Œ2Œ�
0.A0/�1��L

H0
2
xLAŒ2CL0��ŒT�t��: (6.14)

Recall (6.10), one can check straightforwardly that for any � � �3,

d

d�
Luxx.�/ D

1

L
H0
2
xLA

h
1 �

.� � 1 � L
H0
2
xLA/ � L

H0
2
xLGxx.

xLA/2q
.� � 1 � L

H0
2
xLA/2 � 2L

H0
2
xLGxx.

xLA/2Œ� � 1�

i
< 0: (6.15)

Then, since �0.A0/ � �2 � �3 and L0 D Luxx.�
0.A0//, by (6.9) and (6.10) we have

2Œ�0.A0/ � 1� � L
H0
2
xLAŒ2C L0� � 2Œ�3 � 1� � L

H0
2
xLAŒ2C Luxx.�3/� � 0:

Thus (6.14) implies

EFt0
Œjr2Y xt j� �

xLGxx
xLA C

xLGxxL
H0
2 j
xLAj2Œ2C L0�

2Œ�0.A0/ � 1� � L
H0
2
xLAŒ2C L0�

D
2xLGxx

xLAŒ�0.A0/ � 1�

2Œ�0.A0/ � 1� � L
H0
2
xLAŒ2C L0�

D L0;
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where the last equality is due to the straightforward calculation. In particular, by setting
t D t0, we have jr2Y xt0 j � L0. Similarly, we can show jr2Y xt j � L0 for all t 2 Œt0; T �.
Then r2Y xs ^ L0 D r

2Y xs and thus (6.13) becomes

r
2Y xt D @xxG.X

x
T ; �T / �

Z T

t

r
2Zxs � dBs �

Z T

t

r
2Z0;xs � dB

0
s

�

Z T

t

�
r
2Y xs ŒA

>
0 C @pxH0.X

x
s ; �s;rY

x
s /�

C ŒA0 C @xpH0.X
x
s ; �s;rY

x
s /�r

2Y xs C @xxH0.X
x
s ; �s;rY

x
s /

Cr
2Y xs @ppH0.X

x
s ; �s;rY

x
s /r

2Y xs
�
ds: (6.16)

By considering the equation for @xxu derived from the BSPDE in (2.4), one can
readily see from (6.11), (6.12), and (6.16) that r2Y xt D @xxu.t; X

x
t /. In particular,

j@xxu.t0; x/j D jr
2Y xt0 j � L0. Since .t0; x/ is arbitrary, we have j@xxu.t; x/j � L0 D

Luxx.�
0.A0// for all .t; x/. This, together with (6.15), implies (6.10).

7. Global well-posedness

In this section, we establish the global well-posedness of the master equation. We shall
first construct the global well-posedness of the vectorial master equation (5.9). Following
the idea from [21,24,31,43], the key is to extend a local classical solution to a global one
through an a priori uniform Lipschitz continuity estimate of the solution in�. We note that
Theorem 6.4 implies the uniform a priori bound of @xxV . Then, by applying Theorems 4.1
and 5.1, we obtain the uniform a priori Lipschitz continuity of EU D @xV with respect to �
under W2. Moreover, by Proposition 5.2 we derive the desired uniform a priori Lipschitz
continuity of EU with respect to � under W1.

We now present the main well-posedness result. Note that the dependence on the
parameters is quite subtle, so we will introduce them carefully. Following the order of the
assumptions below, one can easily construct a class of G and H satisfying all of them,
see, e.g., Example 7.2. In particular, in light of Remark 6.3 (iii), we may set xLA D 1 and
consider symmetric A0.

Theorem 7.1. Let Assumption 3.2 with xLGxx , LG2 and Assumption 3.12 (i) with E� 2 D4
hold true, and H takes the form (6.1) such that Assumption 6.1 (ii) holds and there
exists LH02 satisfying the requirements in (6.3). Fix an arbitrary xLA � 1 and set �3 as
in (6.9) and LVxx WD L

u
xx.�3/ as in (6.10). Assume further the following hold true:

(i) There exist 0 < 
 < x
 such that 
 � xLGxx , x
 > 1, and (4.2) holds true.

(ii) Set A1, A2 as in (4.3). The matrix A0 satisfies

LA0 � xLA; �.A0/ � Œ1C �.A
�1
1 A2/�L

H0
2 ;

�0.A0/ � �3; jA0j C L
H0
2 � x
Œ�.A0/ � L

H0
2 �:

(7.1)
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(iii) There exist 0 < LH0xx � xL
H0
xx satisfying (6.2) and


Œ�.A0/ � L
H0
2 � � LH0xx �

xLH0xx

� Œx
Œ�.A0/ � L
H0
2 �� ^ Œ2xLGxx Œ�

0.A0/ � 1��: (7.2)

Then the master equation (1.1) on Œ0;T � admits a unique classical solution V with bound-
ed @xV , @xxV and @x�V .

Furthermore, the McKean–Vlasov FBSDEs (5.10), (5.11), (5.12), (5.13), (5.14) and
(5.17) are also well posed on Œ0; T � and the representation formula (5.15) remains true
on Œ0; T �.

Proof. The uniqueness as well as the well-posedness of the involved FBSDEs and the
representation formula (5.15) follow exactly the same arguments as in [31, Theorem 6.3].
Thus we shall only prove the existence.

Set LHxp , xLHxp , LHxx , xLHxx , LH2 as in (6.8). Then clearly Assumptions 3.1 and 3.12
hold true. By (7.1) and (7.2), we see that (6.9) holds true and thus we have the a priori
estimate (6.10). Moreover, by (7.1) we have LHxp � �.A

�1
1 A2/L

H
2 , and thus the result of

Theorem 4.1 holds true.
We now let C�2 be the a priori (global) uniform Lipschitz estimate of @xV with respect

to � under W2, as established by Theorems 4.1 and 5.1. Let ı > 0 be the constant in
Proposition 5.2, but with xLGxx replaced with LVxx and LG2 replaced with C�2 . Let 0 D
T0 < � � � < Tn D T be a partition such that TiC1 � Ti � ı

2
, i D 0; : : : ; n � 1.

First, since Tn � Tn�2 � ı, by Proposition 5.2 the master equation (1.1) on ŒTn�2; Tn�
with terminal condition G has a unique classical solution V . For each t 2 ŒTn�2; Tn�,
applying Theorem 6.4 we have j@xxV.Tn�1; �; �/j � LVxx . Note that by Proposition 5.2 (iii)
and (iv) V.t; �; �/ has further regularities, this enables us to apply Theorems 4.1 and 5.1
and obtain that @xV.t; �; �/ is uniform Lipschitz continuous in � under W2 with Lipschitz
constant C�2 . Moreover, by Proposition 5.2 (ii) @xV.Tn�1; �; �/ is also uniformly Lipschitz
continuous in � under W1.

We next consider the master equation (1.1) on ŒTn�3; Tn�1� with terminal condition
V.Tn�1; �; �/. We emphasize that @xV.Tn�1; �; �/ has the above uniform regularity with the
same constants LVxx , C�2 , then we may apply Proposition 5.2 with the same ı and obtain
a classical solution V on ŒTn�3; Tn�1� with the additional regularities specified in Propos-
ition 5.2 (iii) and (iv). Clearly, this extends the classical solution of the master equation to
ŒTn�3;Tn�. We emphasize again that, while the bound of @x�V.t; �/may become larger for
t 2 ŒTn�3; Tn�2� because the C�1 in (5.16) now depends on k@x�V.Tn�1; �/kL1 instead
of k@x�V.Tn; �/kL1 , by the global a priori estimates in Theorems 4.1 and 5.1 we see that
@xV.t; �/ corresponds to the same LVxx and C�2 for all t 2 ŒTn�3; Tn�. This enables us to
consider the master equation (1.1) on ŒTn�4; Tn�2� with terminal condition V.Tn�2; �; �/,
and then we obtain a classical solution on ŒTn�4; Tn� with the desired uniform estimates
and additional regularities.

Repeat the arguments backwardly in time, we may construct a classical solution V for
the original master equation (1.1) on Œ0; T � with terminal condition G. Moreover, since
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this procedure is repeated only n times, by applying (5.16) repeatedly we see that (5.16)
indeed holds true on Œ0; T �.

We conclude the paper by providing an example which satisfies all the assumptions in
Theorem 7.1. We emphasize that there is no smallness assumption imposed here.

Example 7.2. For simplicity, let d D 1. Fix positive constants 0 < ˛ � x̨ and 0 < 
 < x

with x
 > 1, and fix .�1; �2; �3/ satisfying the requirements in (3.9). Set xLA WD 1 and
let M0 be a large number which will be specified later. Assume

(i) G satisfies Assumption 3.2 with

�x̨M0 � @xxG.x; �/ � �˛M0 on R �P2.R/I (7.3)

(ii) H satisfies Assumption 6.1 with A0 WDM 3
0 > L

H0
2 in (6.1), and


ŒA0 � L
H0
2 � � @xxH0.x; �; p/ � x
ŒA0 � L

H0
2 � on R �P2.R/ �R: (7.4)

Then, forM0 large enough, which may depend on ˛, ˛, 
 , x
 , .�1; �2; �3/, and LG2 , LH02 ,
one can choose appropriate �0 such that all the conditions in Theorem 7.1 hold true.

Proof. We first emphasize that (7.3) and (7.4) involve only @xxG and @xxH0. Note that
the parameters LG2 , LH02 , which M0 will depend on, do not involve these derivatives. So
it is rather easy to constructG andH0 satisfying both Assumptions 3.2 and 6.1, and (7.3),
(7.4) with arbitrarily large M0. Moreover, recall (3.4) and (6.2), by (7.3) and (7.4) it is
clear that

xLGxx D x̨M0; LH0xx D 
ŒA0 � L
H0
2 �; xLH0xx D x
ŒA0 � L

H0
2 �: (7.5)

Then the �3 in (6.9) and Luxx.�3/ in (6.10) become, by recalling xLA D 1,

�3 WD 1C L
H0
2 Œ1C x̨M0 C

p
.1C x̨M0/2 � 1�;

LVxx D L
u
xx.�3/ WD

2x̨M0.�3 � 1/

�3 � 1 � L
H0
2 C

q
.�3 � 1 � L

H0
2 /2 � 2L

H0
2 ˛M0.�3 � 1/

:

We now show that the following �0 satisfies all the requirements

�0 D
x
2Œ1C LVxx �

2 � 8�3

4

C 1:

First, by the choice of �0, it is obvious that �0 >
x
2Œ1CLVxx �

2�8�3
4


, which verifies (4.2).

Next, let O.M/ denote a generic positive function of M such that O.M/
M

is bounded
both from above and away from 0. Then we see that

�3 D O.M0/; LVxx D O.M0/; �0 D O.M
2
0 /: (7.6)
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By (3.10), we have

.AntiMon/
E�
�U.�; �/ � Œ��0˛M0 C x̨

2M 2
0 � �3�EŒj�j

2�

C Œj�1jL
G
2 C �2jL

G
2 j
2�jEŒ��j2:

Since �0M0 D O.M
3
0 /, it is clear that G is E�-anti-monotone when M0 is large enough.

Moreover, since d D 1, we have �.A0/ D x�.A0/ D �0.A0/ D A0 and LA0 D 1 �
xLAD 1. Recall (4.2) and (4.3). WhenM0 is large, it is clear that 1� �1 is uniformly away
from 0 and then it follows from (7.6) that �.A�11 A2/ D O.M

2
0 /. Thus, since A0 D M 3

0

and x
 > 1, forM0 sufficiently large we have the following inequalities which verify (7.1):

A0 � 1C �.A
�1
1 A2/L

H0
2 ; A0 � �3 and A0 C L

H0
2 � x
ŒA0 � L

H0
2 �:

Finally, since xLGxx D x̨M0, it is clear that 2xLGxx ŒA0 � 1� � x
ŒA0 �L
H0
2 � forM0 large

enough. Then (7.4) implies (7.2).
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