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Abstract. Let @ ¢ RY be a smooth bounded domain with N > 2 and £ e = Q\ B(P,¢), where
B(P, ¢) is the ball centered at P € Q with radius e. In this paper, we establish the number, location
and non-degeneracy of critical points of the Robin function in €, for & small enough. We will show
that the location of P plays a crucial role in the existence and multiplicity of the critical points. The
proof of our result is a consequence of delicate estimates on the Green’s function near dB(P, €).
Some applications to computing the exact number of solutions of related well-studied nonlinear
elliptic problems are shown.

Keywords: Robin function, Green’s function, critical points, non-degeneracy.

1. Introduction and main results

Let D C R¥, N > 2, be a smooth domain. For (x, y) € D x D, x # y, denote by
Gp(x, y) the Green’s function in D. It satisfies

—AxGp(x,y) =6x(y) inD,
Gp(x,y)=0 on D,

in the sense of distribution. We have the classical representation formula

GD(XJ’)ZS(X’J’)—HD(X,J’)» (11)
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where S(x, y) is the fundamental solution given by

1
——Injx—y| ifN =2,
2r

S(x.y) = Cy

_ ift N >3,

lx — y|N—2
where Cy = m with wy the volume of the unit ball in RY. The function
Hp(x,y) is the regular part of the Green’s function which is harmonic in both variables x
and y. The Robin function is defined as

Rp(x):= Hp(x,x) inD.

Note that our definition differs, up to a multiplicative constant, from that of some other
authors (see, for example, [2,6] where Rp (x) = 2w Hp (x, x) for N = 2). However, since
we are interested in the critical points of the Robin function, this difference plays no role
in our results.

The Robin function plays a fundamental role in a great number of problems (see [2,12]
and the references therein). It also plays a role in the theory of conformal mappings and
is closely related to the inner radius function (see [19]) and to some geometric quantities
such as the capacity and transfinite diameter of sets (see [2, 12]). For elliptic problems
involving critical Sobolev exponent [16,23], the number of solutions is linked to the num-
ber of non-degenerate critical points of the Robin function. Despite the great interest in
the Robin function, many questions are still unanswered and we are far from a complete
understanding of its properties.

The only smooth bounded domain where the Robin function is explicitly known is the
ball centered at a point Q € R¥; in this case, the Robin function is radial and Q is the
only critical point (it turns out to be non-degenerate). The computation of the number of
critical points as well as other geometric properties (for example, the shape of level sets)
in general domains of RY interested a great number of experts in PDEs, but the results
on this subject are very few. One additional difficulty is that it is not known if the Robin
function satisfies some differential equation (see [2] for more information). This is known
only for planar simply-connected domains [2] where it solves the Liouville equation.

To our knowledge, one of the first result in general domains is [6], in which Caffarelli
and Friedman proved that the Robin function admits only one non-degenerate critical
point in convex and bounded domain in R?. Note that here a crucial role is played by
the Liouville equation. Later, the existence and uniqueness of critical points of the Robin
function for a convex and bounded domain in higher dimension was proved in [10]. How-
ever, the question of non-degeneracy of this critical point is still open. Also some results
on the non-degeneracy of the critical points of the Robin function for some symmet-
ric domains can be found in [17]. For non-convex domains, for example, domains with
“rich” topology, we cannot expect the uniqueness of the critical point of the Robin func-
tion. However, how the topology of the domain impacts the number of critical points of
the Robin function is still unclear and seems to be a very difficult issue.
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Fig. 1. Left: Robin function in €2; right: Robin function in Q.

In this paper, we study what happens when we remove a small hole in the domain
Q C R™. More precisely, denoting by B(xo, r) the ball centered at xo of radius r, set

Q. =Q\ B(P,e) with P € Q. (1.2)

Note that the Robin function Rg, blows up at dB(P, ¢) (see Figure 1). So, for & small
enough, Rq and Rq, look very differently near P.

Our aim is to study the number of critical points of the Robin function Rq, as well
as their non-degeneracy. Observe that the regular part Hg, (x, y) satisfies

AHg, (x,y) =0 in 2,
Hg, (x,y) = S(x,y) ondQ,.

Hence, by the standard regularity theory, we have that

Hgq,(x,y) — Ha(x,y) (1.3)

in any compact set K € Q \ B(P,r) as ¢ — 0 for some small fixed r > 0. Setting x = y
in (1.3), we get that Rq, (x) = Rq(x) for any x € K, which is a good information about
the behavior of Rq, far away from P. The behavior of Rq, close to 9B, is much more
complicated and is the most delicate problem to be addressed in this paper. Here a careful
use of the maximum principle for harmonic functions will be crucial. Actually, sharp
estimates up to dB(P, ) will allow us to prove the existence of critical points for Rq,
which converge to P as ¢ — 0.

Our first result emphasizes the role of the center of the ball B(P, ¢). Indeed, the sce-
narios are very different depending on whether P is a critical point of Rgq or not.

In all the paper, we denote, for x € Q,, by O(f (e, x)) a quantity such that

O(f(e.x)) = C|f(e. x)l,

where C is a constant independent of € and x.
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B(P,¢)

Fig. 2. An example of a domain 2.

Theorem 1.1. Suppose 2 is a bounded smooth domain in RN, N >2 with P € Q (see
Figure 2). If VRq(P) # 0, then for & small enough,

f{critical points of Rgq, in B(P,r)\ B(P,&)} =1,

where B(P,r) C Q is chosen not containing any critical point of Rgq. Moreover, the
critical point x. € B(P,r) of Rq, satisfies, for ¢ small enough, the following:

(Py) The asymptotic behavior of x. is

N2 2 IN=3
i Vv Rt P)PH) VRq(P) +o(1))
xe =P+ for N = 3, (1.4)
VR (P) _
rs(—n2|V<RQ(P)|2 n 0(1)) for N =2,

where rg is the unique solution of the equation

Inr )
r——=0 in(0,00). (1.5)
Ine

(Py) x¢ is a non-degenerate critical point with index,, (VRg,) = (—=)N+L,
(P3) Rq.(xs) > Ra(P).

Remark 1.2. The condition VRg(P) # 0 cannot be removed. Indeed, if 2 = B(0, R),
we know that O is the unique critical point of Rg, and in the shrinking annulus Q, =
B(0, R) \ B(0, ¢) we have that Rg, is radial with respect to the origin. Since R, |sq, =
~+o00, we have that the set of minima of R, is a sphere, and then Rq, admits infinitely
many minima.

Remark 1.3. Although Rgq, |sp, = +00, we have by (P3) that Rq, (x,) < C. Roughly
speaking, this means that x, is not “so close” to dB(P, ) (actually, by (P1) we have that
—les_Pl — +00).

Remark 1.4. Let us give the idea of the proof of the theorem. Our starting point is the
following basic representation formula for the gradient of the Robin function (see [13,24]
for N = 2,3 and [4] for any N > 2),

VRq, (x) = [ vs<y)(w)2doy (1.6)

Qe 8vy

0Gq,(x,y)\2 / y—P 0Gq,(x,y)\2
= v ey - dO' — 2 dG )
[asz (y)( vy ) Y Joprpe) ( dvy ) Y
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where v.(y) and v(y) are the outer unit normal to d€2, and 02, respectively. By (1.6),
we will derive some C !-estimates which are crucial to prove our results and, in our opin-
ion, have an independent interest. Let us start to discuss the case N > 3, where we get,
uniformly for x € Q,,

N-2

m) + 0(s). (1.7)

VRa,(x) = VRa() +  VRamppa) +0(
|

2eN—2 x—P
NonN (x—P|2—e2)N—1

The previous estimate is a second-order expansion of the Robin function in €2,.

It turns out that V&R (x) and VRN p(p ) (X) are the leading terms of the expansion
of VRgq, (x).

Note that from (1.7) we get that

VRq,(x) = VRa(x)

uniformly on the compact sets of 2 not containing P. So, under some non-degeneracy
assumptions on the critical points of Rgq(x), we get that the number of critical points
of Rq, (x) far away from P is the same of Rg(x). Next let us study what happens when
x — P. Here the analysis is very delicate but formally, using the uniform convergence
in (1.7), we get

2 y
Noy |y|?N=2

N
IRa(P) 2 1
=V R .
(Z dx;j Y~ Now@—2N) IyIZN“‘)

j=

VRa, (P + e28-3 y) ~ VRq(P) —

Since the function

N

IR (P) 2 1
F(y) = o
=2 x; 7 Non@—2N)|yPN-4

j=1

admits a unique non-degenerate critical point with index (—1)V+1

holds for Rq,, which proves (P;) and (P,) for N > 3.
The case N = 2 is a little bit more complicated because Rg2\ g(p ) (X) does not goes
to 0 as ¢ — 0. Actually, an additional term appears in the expansion,

, we get that the same

ln|x—P|) x—P

1
VR =VR \Y —(1
R, (x) = VR() + YRz )+ (1 - === ) =5
1 x—P

T W |x—P2—¢2

1
+0(|x—P||1ng|)' (1.8)

However, up to some technicalities, the proof follows the same line as in the case N > 3.
Finally, let us point out that the maximum principle plays a crucial role in getting
uniform estimates up to €2 in (1.7) and (1.8).
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Remark 1.5. An interesting asymptotic formula for the Robin function in €2, is the fol-
lowing (see [2, pp. 198-199]): for every x # P and N > 3,

G3(x, P)
N(N =2)oy (27N — Ra(P))
(an analogous formula holds for N = 2). Formula (1.9) is a consequence of the Schiffer—
Spencer formula (see [25] for N = 2 and [22] for N > 3) but the remainder term O (¥ ~1)
is not uniform with respect to x (as stated in [22, p. 771]).
In Proposition 3.1, we prove the following:

Ra.(x) = Ra(x) + +0E" ™, (19

N-2
0] m) + 0(8) for N > 3,
Ra,(x) = Ra(x) + Re () + o
L ol e
—_— or = Z,
2 Ine Ine

where the remainder terms are uniform with respect to x € €2,. This can be seen as an
extension of (1.9).

Theorem 1.1 states the uniqueness and non-degeneracy of the critical points of Rq,
near the hole B(P, ¢). Under a non-degeneracy condition on the critical points of Rg,
we can compute the exact number of the critical points of Rq, in Q.

Corollary 1.6. Suppose that Q and Q2 are the domains as in Theorem 1.1. If
VRa(P) #0

and all critical points of Rgq in Q are non-degenerate, then for € small enough, all critical
points of Rq, are non-degenerate and

ff{critical points of Rgq, in 2.} = fH{critical points of Rg in 2} + 1.

As previously mentioned, the Robin function of the ball B(0, R) has a unique non-
degenerate critical point. So Corollary 1.6 applies and then if P # 0, the Robin func-
tion Rq, has rwo non-degenerate critical points. On the other hand, if P = 0, we are in
the situation described in Remark 1.2. Hence a nice consequence of the previous corollary
is the following one.

Corollary 1.7. Assume that @ = B(0,R) C RN, N > 2, and Q, = B(0, R) \ B(P, ¢).
Then, for € small enough,

2 ifP #0,

critical points of Rg. in Q} =
Beritical p . in Q) {Oo P

and if P # 0, the two critical points are non-degenerate (see Figure 3).

In next theorem, we study what happens when VR g (P) = 0. This case is more del-
icate and it seems very hard to give a complete answer. However, in some cases it is
possible to compute the number of the critical points, as stated in the following.
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Qe = B(0,1)\ B(P.¢) Qe = B(0.1)\ B(0,¢)
P
(0]
B(P,¢) B(O’Sf)
0 \P/=0

Fig. 3. Left: P # 0O (two critical points); right: P = 0 (infinitely many critical points).

Theorem 1.8. Suppose Q2 is a bounded smooth domain in RY, N >2 and P € Q.
Suppose

e VRq(P)=0.
o The critical point P is non-degenerate, i.e., det(Hess(Rgq(P))) # 0.

e The Hessian matrix Hess(Rgq (P)) has m < N positive eigenvalues
0<A1 =A< <A

with associated eigenvectors vy, ...,y with |v;| = 1fori =1,...,m.

Assume that B(P,r) C Q admits P as the only critical point of Rq. If the eigenvalue A;

is simple for some | € {1, ..., m}, then we have two non-degenerate critical points xlie
of Rq,.(x)in B(P,r)\ B(P, ) which satisfy

]
. <2+0(1)>2N—2£2NN—_22UI iFN >3,
xl,a =P+ Na)N)Ll

e (1 +o0(1)v; fN =2,

(1.10)

where v; is the [-th eigenvector associated to A; with |v;| = 1, T ; is the unique solution of

5 Inr

=0 in(0,00).
AMmlng in (0, 00)

Finally, it holds
Ra. (xj,) = Ra(P). (1.11)

Moreover, if all the positive eigenvalues of Rq (P) are simple, we have that
fi{critical points of Rq, (x) in B(P,r)\ B(P,¢e)} = 2m (1.12)
and all critical points satisfy (1.10) forl =1, ..., m.

Remark 1.9. The condition det(Hess Rq (P)) # 0 is satisfied by many examples. In [21],
it was proved that it holds up small perturbations of the domain €2. Note that only posi-
tive eigenvalue of the Hessian matrix of Rgq(P) “generates” critical points for Rg (see
Proposition 5.1). Hence saddle points of Rg give less contribution to the number of crit-
ical points of Rgq,.
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Fig. 4. An example of a two-dimensional domain €2, and the new critical points xljt‘s and xzig.

Corollary 1.10. Let Q2 be a convex and symmetric domain (see Gidas, Ni and Niren-
berg [14]) with respect to the origin (see Figure 4). We have that

(i) If P #0, then Rq,(x) admits exactly two non-degenerate critical points in 2.

(ii) If P = 0 and all the eigenvalues of Hess(Rq(0)) are simple, then Rq,(x) admits
exactly 2N non-degenerate critical points in Q.

Remark 1.11. An example of a domain €2 which satisfies the conditions of Theorem 1.8
for N > 2 is the following (see Section 0):

N
Qs = {x e RV, Zx,?(l +a;8)? <1with§ >0and0 <oy <ap <--- focN}.
i=1

We will give a precise description of the Robin function Rg; for small § in Theorem 6.1.

Remark 1.12. The proof of Theorem 1.8 uses again estimates (1.7) and (1.8). In this
case, we get that

IRq, (P + e78=> P Ra(P 2 ;
a.(P + 32 y) Z aP) VN s
ax; 9x; 0x; Naoy |y|2N-2
In other words, after diagonalization we get that
N—2 N 2 1
VRq. (P +e28-2y) ~ V Ajy?— for N > 3.
2.(F +€272y) (; 77" Noy(4—2N) IyIZN“‘) o=

Note thatif 0 <A; <Ay <.+ <ApandA; <Ofor j =m 4+ 1,..., N, then the function

2 1
Fy)=) Ajy?—
0) = 27 - pora—am

admits 2m non-degenerate critical points and the claim follows as in Remark 1.4. On the
other hand, if some positive eigenvalue is multiple, say A; = A, = --- = A > 0, then the
function F is spherically symmetric in (y1, y2, ..., V). This implies that there is a set of
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critical points of F given by a sphere S*. Since we have a manifold of critical points, the
number of the critical points depends on the approximation function and it leads to a third-
order expansion of Rgq, (x). Further considerations on multiple eigenvalues deserve to be
studied apart. However, when €2 is a symmetric domain, we obtain partial results on the
critical points of Rq, (x) (see Theorem 5.7).

Remark 1.13. Our results can be iterated to handle the case in which k (k > 2) small
holes are removed from 2. Moreover, using similar ideas, our main theorems are true if
we replace B(P, ) by a small convex set.

As in the case VRq(P) = 0, we have the following corollary.

Corollary 1.14. Suppose 2 is a bounded smooth domain in RN N >2 and P € 9.
If VRq(P) = 0, all critical points of Rq are non-degenerate and Hess(Rgq (P)) has
m < N positive eigenvalues which are all simple, and for small ¢ it holds

f{critical points of Rgq,(x) in 2.} = #{critical points of Rq(x) in Q} + 2m — 1.
Finally, all critical points of R, (x) are non-degenerate.

As said before, the non-degeneracy of critical points of the Robin function plays an
important role in PDEs. Now we would like to give applications of our results to some
elliptic problems. For example, let us consider the following:

—Au =u? in Q,,
u>0 in Qg (1.13)
u=20 on 092,

where the solution u, , satisfies either

p—>+o0

lim pf |Vue, p|?dx = 8we for N =2 (1.14)
Qe

or
. fsz |V“s,p|2dx
lim £

- 2
N5 (fg, ul 3l dx) P

=S forN >3, (1.15)

with S the best constant in Sobolev inequality. We have the following results.

Theorem 1.15. Suppose N =2 or N >4, Q C R¥ is a convex domain and the crit-

ical point of Rq(x) is non-degenerate (the uniqueness was proved in [5, 10], the non-

degeneracy in [5] for N = 2). Then there exists some &y > 0 such that for any fixed
N+2

e € (0,&9], p large for N =20rm—p>05mallf0rN > 4,

(1) if VR@(P) # 0, we have exactly two solutions of (1.13) satisfying (1.14) for N =2
or (1.15) for N > 4 (see Figure 5);

(2) if VRq(P) = 0and all the eigenvalues of V> Rq (P) are simple, then we have exactly
2N solutions of (1.13) satisfying (1.14) for N =2 or (1.15) for N > 4.
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Fig. 5. Picture of two solutions concentrating at critical points of Rq, .

Proof of Theorem 1.15. Firstly, let us fix & € (0, &9] such that Theorems 1.1 and 1.8 apply.
Then if VRq(P) # 0, from Corollary 1.6 we get that Rq, admits exactly two criti-
cal points in €, which are non-degenerate. If VR (P) = 0 and all the eigenvalues of
V2Rq(P) are simple, then Theorem 1.8 gives us that Rg, admits exactly 2N critical
points in 2, which are non-degenerate. Next it is known by [11, 20, 23] that the solu-
tions of (1.13) with (1.14) or (1.15) concentrate at critical points of R, when p is large
for N =2 or % — p > 01is small for N > 4. Moreover, from [1, 18], using the non-
degeneracy assumption of the critical points of Rg,, we have the local uniqueness of
these solutions. ]

Remark 1.16. Observe that in the above corollary, the assumption N > 4 instead of the
natural one N > 3 is due to technical reason in proving the uniqueness result in [1]. If the
uniqueness result in [1] is extended to N = 3, we will get the claim also in this case.

Similar applications can also be given on Brezis—Nirenberg problem [3, 16], planar
vortex patch in incompressible steady flow [7, 9] and plasma problem [5, 8] for some
non-convex domains.

The paper is organized as follows. In Section 2, we prove some lemmas which esti-
mate the regular part Hg, in terms of Hg and Hgwn\ p(p ¢)- Here the maximum principle
for harmonic functions allows us to get uniform estimates for Rq, up to dB(P, ). These
will be the basic tools to give the expansion of Rgq, and its derivatives which will be
proved in Section 3. In Section 4, we consider the case VR g (P) # 0 and prove Theo-
rem 1.1 and Corollary 1.6. In Section 5, we consider the case VRq(P) = 0 and prove
Theorem 1.8 and Corollaries 1.10 and 1.14. In Section 6, we will give an example of
domains which satisfy the assumptions of Theorem 1.8. Finally, in the appendix we recall
some known properties of the Robin function in the exterior of the ball as well as some
useful identities involving the Green’s function.

2. Uniform estimates on the regular part of the Green’s function

Set Q. = Q\ B, where B, = B(P,¢) with P € Q. Observe that B, C 2 for ¢ sufficiently
small, and we will always assume this is the case. We denote by

BS :=RN\ B,

and without loss of generality, we take P = 0 € Q.
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In this section, we will prove two crucial lemmas that will be repeatedly used in the
proof of our expansion of the Robin function and its derivatives. In order to clarify their
role, let us write down the following representation formula for the gradient of the Robin
function proved in [4, p. 170] for x € Q. and letting v, be the outer unit normal to the
boundary of the domain,

VR, (x) :/m v(y)(w)zday :/m v(y)(aGQE(x,y))szy

vy vy

G @, (x,y)\? / Y (0Gg,(x,y)\2
= e — | (= . 2.1
[ v o KL I G v I

Using the identities G, = Go + Ho — Hg, and Gg, = GBg +Hpe— Hg,,

ths. = /3 Q,,(y)(w>2dgy N /an(y)<3(Hsz(x,y)—HQE(X,y)))Z 1o,

vy, v,
=VRq(x)
+2/ v(y)f?Gs;(x,y) 3(Hsz(x,y)—Hszg(x7y))dOy
90 vy vy
y (0Gpe(x,y)\2 / y (0(Hpe(x,y) — He, (x,y))\2
/338 s( vy, ) doy 3B, € ( vy, ) doy

=—VRB§' (x) by Lemma A.2

y 0Gpe(x,y) 0(Hpe(x,y) — Ho, (x.y))
-2 = do
0B

Y.
€ vy vy

Hence in order to estimate the previous integrals, we need to known the behavior of
Hgq(x,y) — Hg,(x,y) on 92 and Hpe(x,y) — Hg,(x, y) on 0B, respectively. It will
be done in the next lemmas.

Lemma 2.1. Forany x € Qg and y € Qq with |y| > Co > 0andi = 1,..., N, it holds
N-2

d(He(x.y) — Ha, (x.y)) _ 0(@%) + O(¢) for N >3, )
9yi x| ~
g 0(’111111); )+0(®) for N =2.

Proof. Let us point out that the functions Hg(x, y) and Hg, (x, y) are well defined if
x € Q.
For any y € Q with |y| > Cy > 0, we have that

Ax(Hg(x,y) — Hg, (x,y)) =0 forx € @\ Be,
Hqo(x,y)— Hgq,(x,y) =0 for x € 092,
Hq(x,y)— Hg,(x,y) = —Ggq(x,y) forx € 0B;.
By the representation formula for harmonic function, we obtain

3Gq, (x.1)

3 Ga(y,t)doy.
Vy

Ho(x.y) — H, (x.y) =/

&
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Since Gq(y, ) has no singularity if t € 9B, and |y| > Cp > 0, we see that V, (Hq (x, y) —
Hg, (x,y)) is well defined for y € Q with |y| > Cp > 0.
Now fix y € Q with |y| > C¢ > 0 and observe that

H. — H
Axa( Q(x,y)ay QS(X»y)) :O forxeg\Ba,
d(Ha(x,y) — Ho,(x.y)) =0 for x € 092,
dyi
d(Ha(x.y) = Ho (x.y)) _ 3Galx.y) . .p
dyi dyi N

For N > 3, we consider, in 2, the function

_ W(Ha(x,y) — Ho, (x,))) eN =2 9Ga(0.y)

be(x,y):

dyi |x|N=2 9y;
We have
Axbe(x,y) =0 forx € Q\ B,
N=2 3G (0
be(x,y) = £ — 2(0.5) = 0(V7?) forx € 992,
[x|N=2 9y
0Gq(x, 0Gq (0,
be(x,y) = — 2(x. ) + 2(0.5) for x € 0B;.
dyi dyi
=0(&) uniformly for |[y| > Co > 0

So, by the maximum principle, we get that

)Ha(r.y) = Ho, (v, ) | "2 3Ga ) _
By 2 dy

for any x € Q, which implies (2.2) for N > 3.
For N = 2, we consider

_ d(Ha(x,y) — He, (x,)) n In|x] dG(0, y)

be(x,y):
e(x. ) dy; Ine ay;
so that, for any |y| > Cy > 0,
Axbe(x,y) =0 forx € Q\ B,
In|x| 0Ga(0, y) 1
be(x,y) = =0 f 02,
e (%, y) Ine ay; (|ln£|) orx e
G , G (0,
be(x,y) = — ?x”+ %(”=0@ for x € 3B,
Vi Vi

and exactly as for N > 3, we get b (x,y) = O(ﬁ) forany x € Qg, |y| = Cp > 0. So the
claim follows. u
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The next lemma concerns the estimate for Hpc (x,y) — Hg,(x,y) as y € dB,. Since
the corresponding integrals of (2.1) are harder to estimate, we will need to write the lead-
ing term of the expansion as ¢ — 0.

Lemma 2.2. For any x € Q, y € 0B, we have

o(1) for N > 3,
Vy(Hpg(x,y) — Ha, (x,y)) = ¢e(x,y) + 1 (2.3)
» B ’ 0(—) forn =2,
[Ing|
where the function ¢.(x, y) is given by
N-2
y &
(= N) 5 (Ha(x.0) - Ha(0.0) 1) for N =3,
pee) = L (et _y)
e2L27 \—sIne — Hg(0,0)
In |x| B
. 2(VyHQ(x,0) -y =V, Ha(0.0) - ym)] for N =2.

Remark 2.3. It is possible to improve estimate (2.3) for N > 3 in order to have a lower-
order term like o(1). This can be achieved by adding other suitable terms to ¢, like in the
2-dimensional case. However, the remainder term O(1) will be enough for our aims.

Proof of Lemma 2.2. As in the proof of Lemma 2.1, we can prove that Vy, (Hpe(x, y) —
Hq,(x,y)) is well defined for x € Q; and y € 0B,. Thenfor N >2andi =1,..., N,

I(Hpg (x,y) — Ho, (x.7)) _

Ay 0 forx € Q\ Be,

dyi

d(Hpe(x,y) — Ho (x,y))  0Gpe(x,y)

= — for x € 9%2,

dyi ayi

d(Hge(x,y) — H ,

(Hpg (x y)a Q. (x.y)) —0 for x € 3B,
Vi

Next we consider in 2, the functions

d(Hpe(x,y) — Ha,(x,y))
ayi

bei(x,y) = — Pe,i(x,y)

fori =1,..., N and ¢ ; (x, y) being the i-th component of ¢, (x, y). Then denoting by

be(x,¥) = (b (X, ¥)s - be N (X, ¥)),s
we have

Axbei(x,y) =0 forx € Q\ Bg,

_9Gpe(x.y)
dyi
bei(x,y) = —¢e,i(x,y) for x € 0B,.

bei(x,y) = —¢e,i(x,y) forx €09,
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Case 1: N = 2. In this case, we have, for x € 0B, (recall that y € dB,),

[be(x. )| = |e(x. )l
_ ll:_i (—ﬁlns— HQ()C,O)_
—5=Ine — Ho(0,0)

1) —2 (VyHg(x,0) — Vy Hg(0,0)) - y}

=0(Ixly)=0(?)

- 0(|1nle|)'

On the other hand, for x € 92, using (A.1), we have

beilr ) = -

2

Vi — X Py Vi
[x|2+¢e2—-2x-y &2(x|*?+e2—2x-y) &2

YiX-y Vi |yl
2w+ w0 ()
+ &2 |x|? + g2 \|lng]|

L [282|x|2y1~+zeZ(x-y)yi—4<x-y)2yi] (=) =o0(—)
Tl PRPRP e -200y) el /= Mine]

=0(¢)
So by the maximum principle, we get

O(Hpe(x,y) — Ho, (x,3)) 1
i ~deie. ) = 0(7 ).

which gives the claim.

Case 2: N > 3. In this case, we have, for x € 0B;,

~ 1
1be(x. )| = I¢e(x. )| = (N —2)~ | Ha(x.0) — Ho(0.0)| = O(D).

=0(x))=0(s)
while, when x € 092 using (A.1) with |y| = ¢,
Xi—=Vi o XPyi—exi oy 1 -
bei(x.y) = =Cy(N =2)[ 2 e = 2 B D 4 0N )|
|x =yl (x> 4+ 0()) > €*Ix]
N—— e e Y —
=0 =Ix2~N y;+0(2)
= 0(1).
As in the previous case, the maximum principle gives the claim. ]

Lemmas 2.1 and 2.2 will allow us to give sharp estimates for Rg, and VRgq, in Q2.
For what concerns Hpge (x, y) — Hgq,(x, y), we need additional information on its sec-
ond derivative. For this it will be useful to use the following known result for harmonic
function.
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Lemma 2.4. Let u(x) be a harmonic function in a domain D C RN, N > 2, and let
B(x,r) C D, then

N
[Vu(x)| = — sup [u(x)].
I 3B(x,r)
Proof. See [15, p. 22]. ]

By the previous lemma, we deduce the following corollary.

Corollary 2.5. For any x € Q,, we have that
o if|y| = Cy, then

9*(Ha(x,y) — Ha, (x,))

0x;0y;
N2 €
N
O(dist(x,GQS)IXIN_Z) " O(dist(x,aﬂe)) Jor¥ =3 (2.4)
In |x| 1 _ '
(s aaome) * Gaagma) V=2
o ify € 0B, then
82(HBg(x,y) — Hg,(x,y))
0x;0y;
16| OGaaes 1 ) forN=z3,
_ 8,2; Y n dist(x, 02,) (2.5)
X; for N =2,

( I 1 )
diSt(x, 8Q€)| 8|
Wh€le ¢8 iS theﬁ”’lction ll’ltl Oduced l}’l Lemma 22.

Proof. Let N =2 and |y| > Cy. From (2.2) and by Lemma 2.4 with r = dist(x, 092,),
we get

)az(HQ(x, y) — Hg, (x,y)) ‘
0x;j0y;

C ‘a(HQ(X,y)—HQS(X,y))

P
~ dist(x, 02¢) 3B(x dist(x,02.)) ayi

(g syime )+ © G same))
dist(x, 9Q¢) Ine dist(x, 32)|Ing|/’
which gives the claim. In the same way, we get, for N > 3,
oN—2

£
dist(x, 0Q2,)|x|V—2 + dist(x, 898))’

‘%(3(%(&y)a;iHsze(x,y)))‘ _ 0(

which proves (2.4) for N > 3. In the same way, applying Lemma 2.4 to the function
Vy(Hpe(x,y) — Ho,(x,y)) — ¢(x, y) and using (2.3), we have (2.5). |
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3. Estimates on the Robin function Rg_ and its derivatives

In this section, we prove an asymptotic estimate for Rq, and its derivatives in the domain
Q. = Q\ B,. Itis worth to remark that we get uniform estimates up to 0B, for small .
These allow us to find the additional critical point for Rgq, (which will be actually close
to dB;), but we believe that these estimates are interesting themselves. There is a common
strategy in the proof of the estimates both for Rq, and its derivatives. We start using some
representation formula and after some manipulations (as in (2.1)) we reduce our estimate
to some boundary integrals. Lastly, we use the lemmas of Section 2 to conclude.

3.1. Estimate of Rq,
The main result of this section is the following.

Proposition 3.1. We have that, for any x € Q,,

eN-2

O(W) +0(e) for N =3,
0SS (|
27 Ine

Ra.(x) = Ra(x) + Rpg(x) + (3.1

- ) for N = 2.

Remark 3.2. If N = 2, taking in account the explicit expression of Rpe (see (A.2)), we
have that (3.1) can be written in this way,

1 (n )2 1 & In |x|

Ra.(¥) = Ra(x) = 5———— + >—In——— + 0|~ ).

2. (%) 2(*) 27 Ineg + " |x|? — &2

Proof of Proposition 3.1. Starting by (1.1) and the representation formula for harmonic

function, we have

Ine

G ,
HQE(X,I) — _[ Ms()},[)do‘y’
0, va
and so
G ,
Ra, () = - [ D55, y)d0,
Qe Vy
G , G .
— _/ MS(x,y)dO'y _/ MS(x,y)day
Q avy aBg a\)y
8G . 8 H ) - H )
_ _/ a(x y)S(x,y)de_/ (Ha(x,y) Q. (x y))S(x,y)day
Q dvy 0% dvy
=R (x) Kl.s
aG c y a H < 5 _H )
T e B e TR0
0B¢ va 0B, va
= see (A.10) K> ¢
Rpe (x) it N >3,
=Ra(x)— K1 — Kz e + 1 (3.2)
“ b 2 mgé-(x)+2—1nm N = 2.
T £
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Computation of K1, By (2.2), we get that
3 HQ X, - HQE X,
o= [ Wl —Ha G g,
IQ Vy
= 019 (Ha(x.y) = Ha, (o)) [ SGrp)do,
~—————
=0(1)
eN—2
_ O(W) + 0(8) for N > 3,
B In |x| 1
of| 0 for N = 2.
( Ine >+ <|ln8|> or
Computation of K, . First we observe that
d(Hpg(x,y) — Hszg(x,y))‘
vy B¢
—y o(l) if N > 3,
=¢e(x.y) — + 1
’ s o(=—) ifN=2
[Ineg|
N =2 N 2 )
(Hg(x 0) — Hq (0, 0)| e 2) +0(1) ifN >3,
Ir1 G 0
e )
_ 27 ——lns—HQ(O 0) (3.3)
1
—2(v Ha(x.0) - y — Vyy Ho(0,0) - M)]
Ine
1
0 if N =2.
<|ln8|> !

Case N > 3. By (3.3), we get that

o _ [ Hp(x.y)~Ho(x.y) Cy
2o lx — y|N=2

3 doy
9B: Vy
oN—2

_ [Ng 2(H9(x 0) — Ho (0, 0)| e 2)+0(1)]/338 #d@

N1
by (A12) = x5 E—

N-2
= 0(jyvz)

and so the claim follows for N > 3.
Case N = 2. In the same way, we get by (3.3),

1 a H c x, _H )
Kow— L[ G —Ha )
21 9B, va
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1 Gq(x,0
= ( - 2(x.0) —1)/ In|x — y|doy
472g —5-Ine — Hq(0,0) 9B,

gl o lxLy =2meln|x| by (A.13)

Ine [Ingl

1 In |x|
_ E(vyblg(x,O) ~ ¥y Ha(0.0)== )/BB yln|x — y|do,

=0(g2|In|x|]) by (A.14)

1
0] 1 —y|ld
(|1ns|)/2;38|n|x yllday

=0(e|ln|x]|]) by (A.14)

= _—In2
2nn£ +271 Ine

1 |x| 1 (nkhy In|x|
— ) ‘ .
+ (1118)

By (3.2) and the estimates for K ¢ and K> , the claim follows. |

3.2. Estimate of VRgq,
The main result of this section is the following.
Proposition 3.3. We have that for any x € g,

VRe,(x) = VRa(x) + VRp¢ (x)

N-2

0(8—_) + 0(e) for N > 3,
1 In|x|\ x 1 '
—(1-—)—+0(— N =2.
(- )|x|2 + (|x||ln8|) for
Proof. Recalling (2.1), we have that
VRq.(x) = VRa(x) + VRpe(x)
d(Hq(x,y) — Hg, (x,y))\2
£ d
+ [ vo( - ) doy
Iy¢
dGa(x,y) d(Ha(x,y) — Ho,(x,y))
+2/ v(y) S; 2 5 L doy
Q Vy Vy
12.8
d(Hpge (x, — H s 2
_/ Z( (Hpe(x,y) Q. (x y))) do,
3B, € vy,
13,6
0Gpe(x,y) 0(Hge(x,y) — H ,
_2/ y 0Gpe (x,y) (Hpg (x, y) — Ho, (x y))day. 35)
9B, € vy vy

14.2
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We will show that, for N > 3, the integrals /;, ..., I4, are lower-order terms with
respect to VRq and VRpe. If N = 2, the situation is more complicated because both
integrals I3, and 14 ¢ give a contribution.

Computation of I 5. By (2.2), we get that

82(N_2)
0(||2(TZ)) + 0(82) for N > 3,

2
(‘hlln l? D (|1n8|2) for N'-= 2.

Computation of I, . By (2.2), we get that

0Gq(x,
|| = 0(|V(Hg(x,y)—Hszg(X,y))D/ (—Q( y)‘day
a0 vy
=1
N-2
O(IXIW) + Of(¢) for N > 3,

0(‘111111? )+0(|1nlg|) for V= 2.

Computation of I3 ;. Then we look at the cases N > 3 and N = 2 separately.
Case N > 3. By (3.3), we get
/ y (3(H3g (x,y) — Ho, (x, y)))2
13,8 = -

B, € 8vy

do,

= (N —2)2/ %[é(HQ(x,O) Ho0.0)7 = IIVN 22) + 0(1)]2day

(N— )2 N 2 2 y
> (Hsz(x 0) — He (0, 0)| e 2) /BB ~doy +0( )[ ( (doy
=0 =0(N—1)
+ 0(1)/ ‘X‘day — 0N 2).
3B, | €
Case N = 2. Again by (3.3), we have that
d(Hpe(x,y)— H , 2
13’82[ g( (Hpe(x,y) Q. (x y))) do,

9B, va

_ /338 X(qss(x,y) vy 0(|1n_18|>)2dOy
= /338 —(Pe(x,y) - vy)2d0y+ 0(|1 |)/ |pe(x, y)|doy +O<( )2)

=0(1)
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= /338 %(qﬁs(ny’) +vy)*doy + 0<|lrisl)

1 Gq(x,0) 2/ 2 In |x]| 1
— 1 Ydo, +—=(1- 0
47[282(—%1I18—HQ(0,0) ) 9B, € % n£2< me (|lns|>)
~—————

=0

x/ y[v Ha(x.0) -y — Vy Ho(0,0) - y |x|]d0y
OB, €

||
+/agg : O(I)d(’y”LO(u g|) 71283 (I—ITJ? +0<|1nls|))
\.—,—./

=0(e)
0Hgq(x,0) 0Hg(0,0) In|x]| / 1
- d 0
X;( ay; ay; Ine ) 9B yyidoy + <|ll‘18|)
= *,_/

=7re38"»

- 2(1 - h;ﬂ'j')(vyHQ(x,O) v, Ha (0, 0)ln|x|) + O(L)

[Ing|
=2V, Ho(x,0) + 0()1;1112' ) + O(Ilnlsl)'

Computation of 14,¢. As in the previous step, let us consider the case N > 3 firstly.

Case N > 3. Recalling (3.3) and using (A.4) and (A.5), we have

_ y 0Gpe(x,y) d(Hpe(x,y) — Ho,(x.y))
14 e = 2 - dO'y
9B, € Ovy vy
N -2 eN-2 1 dGpe(x.y)
=2——|H 0) — Hp(0,0 ——"-d
. ( a(x,0) — Ho( )| e 2) /338 9 oy
=0 =0(ER=) by (A5)

0Gpe(x,y) eN=2
—f ““do, =0 .
om0, 0 <|x|N-1)

=0(E=2) by (A4)

+ 0(1)

Case N = 2. Using (3.3), we have

_ y 0Gpe (x,y) 0(Hpg (x,y) — Ho, (x,)))
14 e = 2 - dO'y
9B, € vy vy
y 0Gpe(x.y)
=2 k7 d
/Z;Bg e dvy <¢8(x y)vy t 0(|1 |)) %

1 In |x| 1 y 0Gpe(x,y)
5(1_ Ine +0(|1n8|))/33$g vy doy

=—yeby(A9)




Qualitative analysis on the critical points of the Robin function 4733

4 dGpe (x, )\
n _/ XM(V Ha(x.0) -y — Vy Ho(0,0) - y n|x|)d0y
dB. € va
'_E4,8
1 |y]|9G B (x.y)
0 ——\d 3.6
+ <|ln£|)/a B, 5‘ vy ‘ o (36

=0(1) by (A.4)

) 3G pc . .
Also, by (A.6), we have faBg yyj #day = gt 5}%(1 - %) and then

|x|4

2

Ras = —2(1 ;lz)(v Ha(x,0) — V, Ho (0, 0)1n|x|)

2
0H, 0 0Hq(0,0) 1
Z( a(x, ) 2(0,0) n|x|)xj
|X|4] ay; dy; Ine
ln|x| &2
- —2(VyHQ(x,0) Vy Ha(0.0)7 ) n 0(W>. 3.7)
Hence from (3.6) and (3.7), we find
1 In |x| 1
Iy, =—(1——— -2V, H 0)+0(——).
e n( Ine )| |2 2(x.0) + (|x|-|lng|)
Collecting the estimates for /1, ..., 4, we have the expansion for VRgq, . [

3.3. Estimate of V?Rgq,

These estimates will be crucial to prove the uniqueness of the critical point of Rg, close
to dB(0, &). The basic result of this section is the following.

Proposition 3.4. Foranyi,j =1,..., N and for x € Q; such that dist(x, Q) > C > 0,
we have

PRa,(x)  PRa(x) | PRpe(x)

axian - Bx,-axj 3x,-8x,-
N-2 N-2
& & &
(= = +
dist(x, 0B)|x|¥N—2  dist(x,0B;)  |x|¥
N-2 N—2|,[2
SRy
dist(x, dB;)N  dist(x, dB,)N+!
1 Injx|\ 0 / x;
Ry 0 38
T[( lns)axj(|x|2) (3.8)

( In | x| D
x|2|1n8| dist(x, dB;) Ine

( |x| N |x|? ) for N = 2.
dist(x, 0Bg)?|Ing|  dist(x, dB¢)3|In¢|
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Proof. Differentiating formula (3.5) fori, j = 1,..., N, we have
2 Rg, (x)
3x,~ 8x]~
_ 2Rq (x) aszg (x)

ax,- 3)6]' 8x,~ 8Xj

P (Ha(x,y) — Ha, (x.y))\ ((Ha(x, y) — Ha.(x. 7))
+2/Q v,-(y)( dx;jdvy )( vy )doy

Jie

2 —
) [ () F0a0r2) BHa(.y) = Ha,(x3) 4
9 3xj8vy a\)y

'12,5

G 02(H — H
+ 2/ vi (») 2(x.y) & (Hax.y) 2. (¥, ) doy
IQ avy 8xj8vy

J3.6
3 2/338 &(32(1‘135 (x,y) — Ho,(x, y)))(a(HBg (x,y)— HQg(x’y)))doy

€ dx; dv,, vy

J4.£

_2/ yi ?Gpe(x.y) d(Hpg(x.y) — Ho, (x.y)) ,
9B, €  0xj0vy vy,

Oy

JS,S

, / Vi 9Ggg (x. ) #*(Hpg (x.y) — Ha, (x.)))
3B, € vy, 0x; vy

doy .

J6.e

We have to estimate the integrals Jy, ..., Je .. The computations are very similar to
those of Proposition 3.3.

Computation of J1,,. By Lemma 2.1 and (2.4), we get

82N_4 82
0 O(—") forN =3,
(dist(x,BB€)|x|2N_4) * (dist(x,aBg)) ori =

1 2
oM v =2
dist(x, 0B;) In” &

Jl,s =

Computation of J» .. Here we use the assumption that x satisfies
dist(x,02) > C > 0.

We need it to have
PGal(x,y)

= 0(1) f 0Q2.
0x; vy, (1) forye
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Using Lemma 2.1, we immediately have

oe| < /BQ )82Gg(x,y)H8(HQ(x,y) — Hg,(x.y)) .

dx; dv,, vy 7
8N_2

O(W) + (8) for N > 3,
In |x|

Computation of J3 s. Recalling that

/BQ‘%?”V@:L

we have

o= [ |PCalea) Pllay) - Ha. ()

vy dx;0v,,

‘day

N2

_ O(dist(x,aB€)|x|N—2) + O(W) for N > 3,
In |x]|
OQWD for N = 2.

Computation of J4,.. We will show that
N-2 2N—4
e e
o o for N > 3,
(dist(x, 838)) + ( ) orN =

|x|N—l

02Hq(x,0) In |x|

et L ) ‘—) for N = 2.
9x; 071 (dist(x,aBg)llne|) < Ine ) o

(3.9)

4,6 =

By (2.5), we derive that

9?(Hg, (x,y) — Hpe (x,y))
ij avy y€dB,

2 /0H(x,0 eN72x;
Al ( 8(x] ) - N Ha,0) Y s 1)
o(d,;) for N > 3,
ist(x, 0B;)
1 1 3Gg(x,0)
) e—Ine—2wHq(0.0) dx, (3.10)

2
2 PHa(x,0) 0Hq(0,0) x;
22 ( - e

&

& P 0x;dy; dy;  |x|?Ine
1
o\ — for N = 2.
(dist(x,8B8)|lna|> o
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Hence for N > 3, we have (see (3.3))

N2

N —2)2
V-2 |N2+0(s))

o = —2/ 2 (H (x,0) — Hg(0,0)
& 9B, &

|x
0H(x,0) N=2y; P
(T by, 2T N0 0 [V +O<dist(x,BBs)>)dOy

N 22 N 2
= E2 (Haw.0) = Hal0.0) )

dH (x,0) eV 72x; Vi
x( s — (2= N)Hg(0,0)5— il )/BB 2 doy

=0
N—-1

+ 8%/{;3 (0<dist(x8, 838)) + O(QT))”["Y

N-2 2N—4
= O(distg(x, aBg)) + 0<|i|ﬁ>’

which gives (3.9) for N > 3.
If N = 2, we have, again using (3.3),

J _/ Vi 1 dGq(x,0)
be 9B, €3 —lne —2wHqa(0,0)  0x;

2
—2(ZM | =Yy H(0.0) - y—2 )

= dx;jdy; |x|?Ine

1 Ga(x,0)
O(dist(x, 8EBS)|1ng|>}[E(_ﬁ lnj—xHQ(O, 0 1)+ 0(8)]d0y

_ 1 ( 1 BGQ(X,O)>< Ggq(x,0) _1) /aBEJ’ide
NS

273 \—Ing — 27 Hq(0,0)  0x; —5—Ine — Ho(0,0)

=0

1 Gq(x,0)
)
ne3 \—5-Ine — Hq(0,0)
2
0?Ho(x.0) 9Hg(0,0) x;
Xl;( o, 0y, oy |x|21ns)/338y‘y’ %
= ~————

ns38il

1 GQ(X,O) & /
. “No(—2 |d
2n83(—%lns—HQ(0,0) ) (dist(x,aBg)|lng|) 25, [vildoy
~————

=0(g2)

1 dGq(x,0) / il
0 d
+ (8)(—1118—27[1‘19(0, 0) dx; ) B, & o

=0(3)

&
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1 In |x| 1 02 Hg (x,0) 2
=—(1- ) “d
n83( Ine + <|x| . |lns|)) ox;dy;  Jom, Vi @0y
—7e3
1 In |x| o
0
(dist(x,838)|ln8| + Ine )
_ 02 Hq(x,0) ( 1 )+ (’1n |x] )
9x; dy; dist(x, 0B;)|Ing| Ing 1/°
which proves (3.9).
Computation of Js . We will show that
SN_2 8N_2|x| N 2|x|2
O\— ol —— O\ ————— for N > 3,
(|x|N)+ <dist(x,8Bg)N)+ (dist(x,aBs)N“) oriV =

| x| 0 ‘
Ts.e = %(_1 + h]ln)sc + 0(|1nlg|))§_,(|)%>
2

x| 2
+0(|l“8|disix’838)2)+0(|lne|disf(x,aB£)3)+0(| |3> for N =2.

Here we will use that, for N > 2,

N *Gpe(x.y) 2x; Ix|? — 2 ( :
oy ——=2 "7 _ .
N 0x;0vy |y|=¢ glx — y|¥ elx — y|N+2 j — Vi
|x| |x|?
- O<—) 0<— : 3.11
£|x—y|N + 8|x—y|N+1) ( )

We have that, by (3.3) and for N > 3,

yi 0*°Gpe(x,y) (N —2 N2
>® /aB e Ox;jdvy ( e ( e(x.0) — Ha(0, )| IN— 2) + O( )) Oy

Vo -2 PG (x.7)
H, 0) — Hq(0,0 | —————d
(Ha(x.0) = Ha 0.0/ 5 2)/33 o,

092G e (x, )
+ [, oS o

Differentiating (A.5), and using (3.11),

N-2

rhs. = O(SMN )+ 0('?—') /BBE ﬁdoy + 0<|x€|2> /BBE mdoy,

and observing that for y € dB,, we get dist(x, dB;) < |x — y/|,

v N2x] N2y 2
hs.=0(—)+0(——— )+ 0(—m ), 312
r.h.s ( [x|V ) + (dist(x, BBS)N) + (dist(X, aBs)NJ,-]) ( )
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which gives the claim. If N = 2, we have, using (2.5),

I = / yi 0*Gpe(x, Y)[ ( Ga(x,0) 1)
5, — — 2
9B. € dx; 0y, 2 \—— lng — Hgq(0,0)

_2(V Ha(x,0) -y — Vy Ho(0,0) - y |x|) + O(ﬁ)]doy

1 Gal(x,0) ?Gpg(x.y)
=5 (2 ) o gy,
wet \—5-1Ine — Hq(0,0) 9B, Xjovy

—_1+1‘11x1‘§‘+0(\1n15|) = "X/ (\XIzsz)
2 2
2 aHQ(x,O)/ 9°Gpe(x,y)
= LA s Sy 2T g
+ 5 > R e L
_0( 8‘3)

2, 9Hg(0.0) In |x| / G y)

82 dx; Ine ! ! 0x;0vy ¢

=1

g (Ep @t + % (r—-e2)= 0GEs)

1 PG e (x. y)
+0(|ln£|)/338‘ afjajyy doy

Differentiating (A.6) and using (3.11) as in (3.12),

I In |x| L)) 1
ehs. = 5 (= 1+ o+ ) 35 (7) + (eramaa0e)

| |2 2
+ 0(|ln£| dis)tc(x, 8B8)3) + 0(;?)

Computation of Je . We will show that

8N—2 8N—2
o(——)+o0 for N > 3,
<|x|N_1)+ (dist(x,BBg)|x|N_2) ori =
6,6 —
: 9 Hg(x,0) 1 1
2t o(——)+0(~——) forN =2.
ax; 971 (|x|2 T g|) (dist(x,aBe)|lne|) o
We have, by (3.10) and N > 3,
I _/ yi 0Gpg(x, )
6,6 — R
) & 8vy
N —2 /3Hg(x,0) eN72x; 1
2 — N)Hg (0,0 o(————))d
X( e ( ox; —( VHa (0.0 =5 x|V )+ (dist(x,aﬁe))) %
9H (x,0) eN2x; [ 3Gpe(x,y)
= 2— N)Hgq (0,0 ey
82 ( 0x; = Y Ha( ) |x |N) vy, %

=0(5y=r) by (A5)
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1 9Gpe(x,y)
O(dist(x,aﬂg))/aBs‘ Bauj : )d(’y

=0( SIN %) by (A4)

N2 N2
= O T 1 0 ’
(|x|N—l)+ (dist(x,aBe)|X|N_2)
and for N = 2,

/ i 0Gpe(x,y) 1 3Ga(x,0)
338 vy —Ine —2mwHgq(0,0)  dx;

J6,s = -

_2( 2 32 Hq (x 0)

¥
Sy V3 Ha(0.0) ¥ i 8)+0(

1 1 3Gq(x,0) dGpe(x,y)
= Yi doy
g2 Ilne + 2nHg(0,0) 0x; 3B, v,

&
— )Id
dist(x, 838)|1n8|)] %

=0(5p) =0(M)by<A5>

2 9%Hq(x,0) 0Gpe(x.y)
g2 0x;0y; 9B, it vy,

doy +2V, Ho (0,0
oy + 2 VyHa0.0 |21n8

8:! 2 4
== +O(W) by (A.6)

dGpe(x,y) 1 dGpe(x,y)
v AN o(——— —= " \|d
XfaBg YiviT g, Ao (dlst(x aBg)|1ne|)/33J o, ‘ %y

=1by (A4)

6
=—s240( Slz)by (A6)

32 Hg(x,0) 1 1
=— (0] O\ —————— ),
0x;dy; + <|x|2 . |ln8|) + <dist(x, 8B8)|lne|>

which proves the claim.
Now we look at the cases N = 2 and N > 3 separately. If N > 3, collecting the
previous estimates, we have that

2‘]1,8 + 2J2,8 + 2‘]3,8 - 2']4,8 - 2‘]5,8 - 2']6,8
82N—4 2 EN_Z

= O(dist(x, BBE)IXIZN—“) + O(dist(x, 838)) + 0(|X|N—2) +0@)
(=) ez + g ams)
o)+ 0(65) * i) )

+ 0(15ws) + () = © i)

+o<dm(x i) O )+ G amye) + (e ggwn)



4740

F. Gladiali, M. Grossi, P. Luo, S. Yan

If N = 2, collecting the previous estimates, we have that

2J1,e + 2.]2,8 =+ 2.]3,E — 2J4,e — 2.]5,5 — 2J6,s
In? | x| 1 In |x|
—o(——=__VY+o0 ‘_
( )+ (dist(x,aBs)|lne|2) ( Ing )

dist(x, dB,) In% &
L+linfxll 9 Ho (x0)

1
+O<_>+ (dist(x,BBs)|ln8| _2/8§j3yi

[In e
In|x| 9 (i a
1( _ o 0(|1n_le|)) (g?)+0<|lna|dist);x,338)2)

+—(1 —
an
BZHQJ%OTJr 0( 1 )

T Inge
2
x| - [In ]

|x|?
+ 0(|ln8| dis)tc(x, 336)3) * 0(;7) +%j8yi

d Xi

= %(“Tﬁ')@(m)

+0( 1 n 1 In | x| )
|x|?2[Ing| = dist(x, 0B;)|Ing|  dist(x, dB;)|In¢|

|x| |x|? )
b

o
dist(x, dB¢)?|Ing|  dist(x, dB¢)3|In¢|

which ends the proof.
We will apply the C?-estimates of Rg, at the critical points of R, . This leads to

the following corollary.
Corollary 3.5. Set, for every ¢ > 0 and 0 < g < 1 and for small ¢ > 0,

> ced ifN >3,
Dege = |x € Q0 such that dist(x, 99) = C > 0,4 M1 =& TN =31
x| =crd ifN=2

Then foranyi,j =1,...,N and x € Dg 4, we have that
PR, (x)  PRa()
8)(,'3)6]' n 3xi 8)Cj
2 2(1 — N)xixj+87 |x|?
— 1 ) i N-2
(NwN +o(1) R e
+0(e'79 + gN727Na) for N >3,
+ 1In|x| =2x;x; + 8/ |x[? (3.13)
m Ing |x|4
O(——— +ri ) 4+ 0(1) or N = 2.
(r§q|ln el : ) f

2%123 for N > 3 and any ¢ < 1 for

Remark 3.6. We will apply this corollary with g <
N =2.
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Proof of Corollary 3.5. First of all, we have that, for N > 2 and since |x| > ce?,

PRpe(x) 2 2(1=N)xix; + 8 (1x? —eZ)EN_2
0x; 0 Noy (|x|? — e2)N
:_( 2 ( &2 ))Z(I—N)x,-xj —l—8ij|x|2£1\,_2
Noy |x[2N |x |2V '

Next we observe that dist(x, dB;) = |x| — & ~ |x| since x € D¢ 4, and by Remark 4.2.
So we have that (3.8) becomes

2 2(1 — N)x;xj +8/ |x|?
_ — 1 l N-2
(Na)N ol )) NE €
+0(e'79 4 N727Na) for N > 3,
I Ra, (x) _ 9> Ra (x) + llnjx| 8 / x;
0x; 0x; 0x; 0x; —;EE(W)
1 1— 82
+0(g—) + 0L+ 0(=5)  forN=2,
razq|ln£| ¢ |x|®
=o0(1)
which gives the claim. ]

4. The case VR g (0) # 0. Proof of Theorem 1.1 and Corollary 1.6

We start this section with a necessary condition on the location of the critical points
of Rg, . Basically, it is a consequence of Proposition 3.3.

Proposition 4.1. Set

1
22N=3

—— VRq(0). @.1)

Yo = 1
(Noy)2N=3[VRq(0)[2V=3

If x¢ is a critical point of Rq,(X), then for ¢ — 0 we have that either
Xe > X0 0 withVRgq(x9) =0 4.2)

or

4.3)
Xe = [yo +o(D)]re ifN =2,

where 1¢ is defined in (1.5).

{xs = (yo +o(1)e?"3 if N >3,

Proof. Let x, be a critical point of Rg, and first consider N > 3. By (3.4), we get

N-2 N-=-2

2e Xg e
0= VRa(xe) = o ey + O(|x8|N—1> +0G(). (44
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If x; — x¢ # 0, we have that (4.2) holds. So let us suppose that

xg — 0.
By (3.4), we have
2eN-2 x 1
VRO + o) = o v [|xa || Sl e
and, since
LI +O(L)‘Z%—£—>+oo if N > 3,
e[V (1 = )V ! |xe | | x| |xe

then lim, ¢ ﬁ = 0 and (4.5) becomes

28N_2

Therefore,

i N—2 N(UN
1m
=0 |x |2N 3

IVRa(0)],

which gives the claim.
Next we consider the case N = 2. As for N > 3, we get that if x, — x¢ # 0, by (3.4)
we derive that (4.2) holds. So assume that x; — 0. By (3.4), we have

1 2 1
VR(0) + o(1) = —¢ ( nprel & 0(—)). (4.6)
w|xe|2\ Ineg |xg|? — &2 [In g|
Sincze ﬁ — +o00 and at least one among (xf)’ # 0, using that the two terms %,
|x|€2——52 have the same sign, we get that
In |x8| &2
1 d ——= =o(1), 4.7
e =0 and o = o) @.7)
which implies also that
o) - (1)
=o0(1) andthen ——— = 0(1), 4.8)
|x e|3 e |(|xe]? — &%)
(indeed, if by contradiction —= | >k >0,then2—3 lnhll’fj‘ < %, a contradiction as ¢ — 0.)
So that (4.6) becomes
1 In|x 1
2| VRLO)|(1 + o(1)) = —— 11 ”“'(1+0( ))
|xe| Ine |In | x|
1
_ Te n|xs|(1+o(1))
|xe| Inre
Ixel
- [ re |x ‘ ](1 +o(1)). 4.9)

[xe| ln
re
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Since the both terms % and ng‘ are positive and r, — 0, it cannot happen that

|x€| — 0. Moreover, since VRq(0) # 0 it is not p0551ble that ng‘ — 400. Then |x‘9| —
A € (0, +00) and by (4.9) we have that A = VRSO R o which proves the claim. |

Remark 4.2. Let us point out that
e (e ——) (4.10)
) lnel” \/|inel/ '

In fact, taking g(r) = r — 1“’ , then

1
gr)y=1———>0 foranyr € (0,00),

rine
and
1 1 —In|lng| 1 1 In |In g|
<0, = — >0
<|ln5|> Ine| (‘/|lne|> Vling|  2[lng|

Remark 4.3. Proposition 4.1 implies that the critical points of Rq, that converge to 0
belong to the ball

B(yoe?N=3,8eN=3) if N >3,
B(yore, 0r5) if N =2,

where § > 0 is a small fixed constant. So, if x, is a critical point of Rg,, then either
Xe € Q¢ \ €, and then x, converges to a critical point of Rg or x, — 0, and then x, € €,.

In the next lemma, we introduce a function F' which plays a crucial role in the proof
of the main results.

Lemma 4.4. Let us consider the function F: RN \ {0} — R as

N
IR (0) Dy 1 _
= N=>3
2} o, VT a—anjyprs YN =
F(y)=1"3
aﬁg(()) 1 .
Z y;j ——logly| ifN =2
ia T
with )
Dy =—— forN >2. @.11)
Noy

Then, the function F has a unique critical point yq (see (4.1)) which is non-degenerate
and satisfies

N(2N 2)

)W IVRQ(O)I
D2N 3

det(Hess(F (y0))) = (—1 (3—2N) #0. (4.12)
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Remark 4.5. The non-degeneracy of yo, together with (4.12), implies that there exists
§ > 0 such that B(yo,8) C R \ {0} and

det(Hess(F(y))) # 0

in B(yo, 8). If necessary, choosing a smaller § we can assume that |y| = ¢ > 0 for every
y € B(yo,§). From now, we fix § = § in the definition of €,.

Proof of Lemma 4.4. By a straightforward computation, we have that yo is the unique
critical point of F(y). Next we have that for N > 2, the Hessian matrix of F(y) computed

at yo = (¥1,0,---, YN,0) is given by

i Yi,0)j,0
8l 4+ (2 —2N) 22220

Hess(F(yo)) = —Dn ol )1<i N

s (
|yol?N—2

Aij

Note that A; =3 — 2N is the first eigenvalue of the matrix A;; with associated eigenvector
v1 = Yo. Next we observe that any vector of the space

X = {x eRY, xlyg}

is an eigenvector of the matrix A;; corresponding to the eigenvalue A = 1, so that
det(A;;) = 3 —2N. Hence we have that

2N—2
IVRQ(0)|2V=3 /; Yi,0)},0
1 <8j —(@N-2) )15i,j§N]

detHess(F(yg)) = det[— >
DK]N73 [yol

NQN-2) N

VRa(0)| 273
_ VROV
DN~ i=1
NQ2N-=2)
| 2N=

VR (0 3
DK]N—S

= (-1

which proves (4.12). [
Now we are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that we assume that P =0 € Q.If x, € B(0,r) \ B(0,¢) is
a critical point of Rgq,, then, since B(0,r) C 2 is chosen not containing any critical point
of Rg, by Proposition 4.1, we necessarily have that x, — 0 and the expansion in (4.3)
holds. Then by Proposition 4.1 and Remark 4.3, it is enough to prove the existence and
the uniqueness of the critical point x, in the ball €,.

Let us introduce the function F: B(yg,8) — R as

1 _
Weﬂﬁg@%” if N >3,
IN—3
Fe(y) = 6i
—Rq.(rey) if N =2,
Ie
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where yg is defined in (4.1) and § is chosen as in Remark 4.5. Let us show that
VF, — VF inCY(B(y0.9)),
where F is the function defined in Lemma 4.4. Indeed, using Proposition 3.3 we have that

y
Noy (Jy|? +o(1)N-1

which gives the uniform convergence of V F; to VF in B(yy, §).
k
Concerning N = 2, we have that, again by Proposition 3.3, (1.5) and since i—g =o(1)
for any k > 0 by Remark 4.2,

VF(y) = VR (rey)

VF:(y) = VR, (623 y) = VR (0) — +o(1),

y In|y|+Inr, ey
= VRa(0 1) — B
2@ +o) = e e 7P+ o)IP
Inly| -
y nly
0(0) n|y|2( + lnr5)+0()

which gives the uniform convergence of V F; to VF in B(yy, §) for N = 2.
Let us show the C!-convergence. By Remark 4.5, we can apply Corollary 3.5 with

q= 21}’\,—__23 and a suitable ¢ > 0 such that for N > 3,

PRG) _ g PRa )

£2N-3

8xi8xj axiaxl'
5 2 Rpe N3 52
= o(l) + £28=3 P Rpe(e28=2y) + 0(e) + O( 2N
Bxiax,-

=0(1)
i
Yiyj
- 2N)|y'T]{,) +o(l),

=2Cy(2—N J
N ( )<|y|2N—2

which gives the claim. In the same way, if N = 2, using (1.5) and again the Corollary 3.5
with any ¢ < 1 and a suitable ¢ > 0,

PF(y) _ PR, (rey) __1Inly|+1Inre 2yiy; + 8 |y (rf‘”)
0x; 0x;j © i dx; 7T relne [y |4 re|lng|
:_l<1 lnlyl)—2yiyj+<’>’,-’|y|2 (r3_2q>
7 Inr, [y|* [Inre|

since r, — 0,

123y + 8 y?
™ |yI*

which gives the claim.

rhs. = — + o(1),
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Finally, the C !-convergence of V F, to VF and (4.12) gives that
deg(V Fe. B(y0.6),0) = deg(VF. B(yo.6).0) # 0,

which, jointly with the non-degeneracy of yg, implies the existence and uniqueness of
a critical point y, € B(yo, §) of Fe. By the definition of F, this implies the existence
of a unique critical point x, for Rq, in €. Finally, by the definition of €,, x; — 0 and
by (4.3) of Proposition 4.1 we get (1.4). Moreover,

indexy, (Rg, (x)) = index,, (Fs(y)) = sgn(detJac(F;(y¢)))
= sgn(detJac(F(yo))) = ()N 1,
We end the proof showing that Rgq, (x;) — Rq(0). By Proposition 3.1, we have that for

N >3,
N-2

€
Ra.(xe) = Ralxs) +Rpe(xe) + 0 (W) +0(¢)
—— |x€|
=R (0)+o(1) N——
(N=2)(N—1)
=0(e 2N-3 )
N-2
= R(0) + Cx +o(1) = R(0) + o(1), (4.13)

(|xs|> — e2)N 2

N
=0(e2N=3)

which gives the claim. For N = 2, we have by Remark 3.2

Re.(xe) = Ra(x) + %m (1 . %) +0( h;lx:' )
=Rq(0)+o(1) L (o) by @) —o(1) by (4.7)

= Rq(0) +0(1), (4.14)

which gives the claim. ]

Next we prove Corollary 1.6.

Proof of Corollary 1.6. Set 8 = {x € Q such that VRg(x) = 0}. Since VRq(P) # 0,
we get that 8 N B(P,r) = @ for any small fixed r > 0. Now we write

Q=6 UG U(B(P,r)\ B(P,¢))
with
€ ={x,dist(x,8) <r} and E :=Q,\ (€1 UB(P,r)),

where r is such that det(Hess(Rgq(x))) # 0 in €.

By Proposition 3.3 and Corollary 3.5, we have that Rq, — Rgq in €; and so by the
choice of r, the non-degeneracy of the critical points of Rgq and the C2-convergence
of Rq, to Rq in €; we have

#{critical points of R, (x) in €1} = #{B},
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while the C!-convergence of Rg, to Rq in Q. \ B(P.r) gives
ff{critical points of Rgq, (x) in €} = 0.
Finally, from Theorem 1.1, we get that
ff{critical points of Rgq,(x) in B(P,r) \ B(P,¢)} =1,

which proves the claim. |

5. The case VR g (P) = 0, proof of Theorem 1.8

As in the previous sections, we assume that P = 0. We will follow the line of the proof
of Theorem 1.1. So we start with a necessary condition satisfied by the critical points
of Rg, (x).

Proposition 5.1. If 0 is a non-degenerate critical point for Rq(x) and x. is a critical
point of Rq, (x), then for ¢ — 0 we have that either

Xe => X0 0 withVRgq(x9) =0

or

2 D\ 2= ~-
Xg = WN

Fe(1+ o(1)yy ifN =2,

(5.1)

where A is a positive eigenvalue of the Hessian matrix Hess(Rgq(0)), v is an associated
eigenvector with |v| = 1 and T is the unique solution of

5 Inr

s =0 in(0.00). (5.2)

Remark 5.2. It is immediate to check that (5.2) admits only one solution 7, satisfying

2 e( 1 1 )
* T \(Axlne)? (Axfne)i/

1
1
(Am|lngl) 2

1 —1In+/Ax|l 1 In(Ax|l
n+/Amr|lng| <0, h(res) = B n(Ar|lnel) -0
Ar|lnel VAr|lng|  4Am([lng|

Remark 5.3. Unlike when VR (P) # 0, here in general we do not have the uniqueness

of the limit point of x.. It depends on the simplicity of the eigenvalue A. This will play
a crucial role in the next results.

1

This can be seen by observing that r,; = I
(Am|lngl) 4

and rep = satisfy

h(re,) =
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Proof of Proposition 5.1. The first assertion follows arguing as in Proposition 4.1 (see
(4.4) or (3.4)). On the other hand, if x; — 0, using (4.5) and (4.6) for N > 3 and (4.7)
and (4.8) for N = 2, we get again ﬁ — 0. Furthermore, from Proposition 3.3 and
VR (0) =0, we get

2x; eV 72 (L1 o(1) forA =3
N _— 0 or
2 Ra (0 2N-2 -
T i L S
j=1 Y ZLE T (14 0(1)) for N = 2.
7| x| ?|In g

From (5.3), we immediately get that, as ¢ — 0,

28N_2
————— — > ) for N >3,
NCUN|XS|2N_2 -
1
L N R
7|xe|?[In gl

where A is a positive eigenvalue of the Hessian matrix Hess(Rgq (0)). Hence (5.1) follows
by dividing (5.3) by |x.| and passing to the limit. L]

Analogously to the previous section, let us introduce “the limit function” of a suitable
rescaling of Rq, .

Lemma 5.4. Let us consider the function F:RV \ {0} > Ras

1 32329(0) Dy
- forN >3,
5 Zl awox, VT Goamppve N =
F(y) = (5.4)
1 32329(0)
Z oo, ViV T D> 1In|y| for N =2,

where Dy (N > 2) is the same as in (4.11). Suppose that Hess(Rgq(0)) has m < N
positive eigenvalues 0 < A1 < Ay < --- < A,,. Then we have that

~ Dy \ 28—
ifVEF) =0, theny = 7O = (TN)ZN 200 forsomel € {1,....m}, (5.5
I
where v is an eigenvector of the matrix ( 8)‘?32)6( ) )i,j=1,..,N associated to A; such that
D] = 1.
Moreover, it holds

N
det(Hess(F (7)) = @N = 2)4; [ [(hs = 1) (5.6)

gy

Remark 5.5. If the eigenvalue A; is simple, we get two corresponding eigenvectors v(l)

with |v(1)| = 1 and then two critical points y ) in (5.5). Moreover, by (5.6) yi) are non-

degenerate critical pomts and then it is possible to select §¢) > 0 such that in B( y(l) §D)
we have det(Hess(F(y))) # 0.
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Proof of Lemma 5.4. Observe that VF (y) is given by

PN N
IF(y) 9> R (0) Dy yi
= Vi — for N > 2, 5.7
dyi o dxdxy T yPN2
and then if Vﬁ(y) = 0, we immediately get that Iy\é)% = A; forsome ] € {1,...,m}

proving (5.5).
Claim (5.6) will be proved by diagonalizing the matrix Hess(Rgq(0)). Here we con-
sider the case N > 3 (N = 2 can be handled in the same way). Let P be the orthogonal

matrix such that
P" Hess(Rq(0))P = diag(Ay, ..., An).

Taking Z = P'(y), we get that the system VF (y) = 0 becomes

AMiZ;i — Dy =0 forN>2andi=1,...,N.

i
| A |2N -2
Note that these zeros are critical points of the function

Dy

1 N
T() =5 Ay -
=1

Next step is the computation of the determinant of the Hessian matrix of F. We know that

det Hess(F (y))
= det(P" Hess(T'(y))P) = det(Hess(T'(yV)))

= det(diag(A1, .., A )+(_&5_ LN —2) Ny,-(l)y,§1>) )
e g 1y AN |y(l)|2N_2 ik |y(—l)|2N ISi,ksN

(O O]

. . _ _ _ Vi Vi
_det(dlag(xl Ao AN — A1) + N 2)Al(|y(l)|2)1§i,k5N)'

=My

By the basic theory of linear algebra, we can find that the eigenvalues of Mgy are A; — A;
fors=1,...,1—1,1+1,...,N and 2N — 2)A;. Hence we have

N
detHess(F (yV)) = @N =24, [[(hs = 10). .
=y
Assume that A; is a simple eigenvalue. Then, following the notations of Remark 5.5,
analogously to the previous section, we define

e —

) N=2 o) N=2 .
B(yyean=2,8Vean=2) if N > 3, 21 e
et = and e = U et

By 7,807, if N =2, ;
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Proposition 5.1 implies that, under the assumption that all the eigenvalues of the matrix

2 .. .. . . . =
(38)‘? gx“?))i, j=1,..,N are positive, the critical points x, satisfy either x, € Q, \ €, and
i0X; o~

then x, converge to a critical point of Rg or x, — 0, and then x, € €,.

Proof of Theorem 1.8. Recall that we assume that P = 0 € Q2. As in the proof of Theo-
rem 1.1, if x, € B(0,r) \ B(0, ¢) is a critical point of Rg,, then, since B(0,r) C 2 is
chosen to not contain any critical point of Rg different from 0, by Proposition 5.1 we
necessarily have that x, — 0. Following the notation of Remark 5.5, denote by fﬁ) the
critical point of F associated to Eﬁ) and let us show the existence of one critical point
of Rq, in B(0,r) which by (5.1) satisfies (1.10). The same holds for 3O, giving the
proof of the first claim of Theorem 1.8.
Let us introduce the function F: B()_zg), §V)y > Ras

1 _
Wﬁgs(éﬁ%—%y) if N > 3,
-~ 2N—-2
Fe(y) = &

1
—Rq, (Fey) if N =2.
T'e
Furthermore, using Corollary 3.5 with
N =2
q= forN >3 and g<1 forN =2
2N -2

and arguing as in the proof of Theorem 1.1, we get that
Vi, — VE inCYBGFY,sD)).

Since )—,g) is a non-degenerate critical point of F, then VF, (y) admits a unique criti-
cal point yélzr — yﬁ) in B()_zg), §®) and also yéll is a non-degenerate critical point of
R, (0).

Finally, (1.10) follows by (5.1) and (1.11) can be proved repeating step by step the
proof of (4.13)—(4.14) in Theorem 1.1.

Next let us assume that all the eigenvalues of the Hessian matrix Hess(Rq(0)) are
simple. Again by Proposition 5.1, Remark 5.5 and the discussion above, we have that
if x, is a critical point belonging to B(0,r) \ B(0, ¢), then x, € .. The simplicity of the
eigenvalue and the previous claim prove (1.12). |

Proof of Corollary 1.10. In this case, the Robin function g (x) has only one critical
point P = 0 which is a non-degenerate minimum point (see [10, 17]). This means that
Hess(Rgq(0)) has N positive eigenvalues and, if they are simple, the Robin function
Ra\B(0,s)(x) has exactly 2N critical points for & small enough. So the claim follows
by Theorems 1.1 and 1.8. ]

Remark 5.6. What about multiple eigenvalues of Hess(Rg (0))?
In this case, we are not able to give a complete description of the critical points
of Rg, . Suppose that we have a multiple eigenvalue satisfying

Aj :Aj+1:"':Aj+ks j,kZl.
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In this case, the function T'(y) defined in formula (5.8) admits a manifold of critical points
given by

D =
k 2 2 N\ 2N=2
S —_{xj+---+xj+k—_ (—) }

Aj
By (5.6), we have that the Hessian matrix is non-degenerate in the directions different
from x;,...,x;4r and so it is a non-degenerate manifold of critical points for N in

the sense of Morse—Bott theory. However, even in this explicit case, it seems hard to
get the existence results of critical points for 7(y) under non-radial small perturbations.
Of course, no possible information can be deduced about the non-degeneracy.

Without additional assumptions, as pointed out in the introduction, it is even possible
to have infinitely many solutions (the radial case). For these reasons, the case of multiple
eigenvalues is unclear.

Before the close of this section, we give a partial result when 2 is a symmetric
domain.

Theorem 5.7. Let Q C RY be convex and symmetric with respect to X1, ...,XN for
N > 2. Then we have that Rq,(x) has at least 2N critical points which are located on
the coordinate axis, i.e.,

1

1 2 N—2 N-2 .
xiez(O,...,O,j:( +o(1)) g3, ,...,o) fori=1,...,N.
’ N—— NonA; ——
i—1 N—i
2R £
Moreover, we have % #0fori =1,...,N.

1

Proof. We prove the claim by constructing 2N zeros for VRgq, (x). For the case N > 3,
as in the previous theorem, we study the equation

2 Z; _
O = (Al + 0(1))2, —_ (N_Q)N + 0(1))WSN 2 fOI' N 2 3

Here we introduce the points
Yie = (1 —a)a1e29-2,0,....0) and Ya, = ((1 + a)a1e2¥-2,0,...,0)

for any a € (0,1) and o7 = (a—’l") 7¥=2. We have that Q. = Q\ B(0, ¢) is symmetric,
and then
8£Q€(Yl,a) _ 8£QS(Y2,8)
dyi dyi

=0 foranyi =2,...,N.

Also we have

BRQg (Yl,s) _ PT 8398 (Yl,s)
a1 0xg

2 Yy, _
= (Al + 0(1))Y1,8 — (N_a)N =+ 0(1))@81\/ 2
&

— (1 —a)al)tler%_—%[l - +o(1)] >0,

(1—a)2N-2
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and similarly,

IRq, (Y2,6)

=(1+ a)()él/‘\lé‘zjx'izz []
Iy

1
~ it 0(1)] <0.
This implies that there exists Z; , = (bs%,o, ...,0)withb € (1 —a)ay, (1 + a)ay)
satisfying VR, (Z1,) = 0. Taking a small, we can write b = a1 + o(1). Hence there
exists Z1,, = (a1 + 0(1))8%,0, ...,0) satisfying VRq, (Z1,) = 0.

The same computation holds if we replace Y ¢, Y2 ¢ by —Y1 ¢, —Y> . getting the exis-
tence of a second critical point —Z; .. Since Hess(Rgq(0)) has N positive eigenvalues
0 <Ay <Ay <--- < Ay, then repeating the argument above for any positive eigenvalue,
we have that Rq, (x) has atleast 2N critical points xii i=1,...,N)in B(0,r)\ B(0,¢),

&
where B(0,r) \ {0} C 2 does not contain any critical point of Rg (x). Moreover,

1
xE =47, = (O,...,O,i( ' +0(1))N‘2872%fz,0,...,o) fori=1,....N.
N—— NQ)NA; N——
i—1 N—i

Also using (3.13) for N > 3, we compute
82Rg£ (xiﬂ;)

N-—2
e + o(1
5 (1)

2

=@2N -2)A;+0(1)#0 fori=1,...,N.
For the case N = 2, as in the previous theorem, we study the equation

1 Z;iIn|Z|
0= (A +o(1 z-—(— 1)’—.
A +o(1)Z; 7r+0() |Z|21n8
Then, similarly to the idea in proving the case N > 3, we can write
xi, = (1 +0(1)7e1.0) and  x3, = (0, (1 + o(1))7e2).
Finally, using (3.13) for N = 2, we compute

PRa, (x5 - 1 Infy
ax? 7 mxE2N-2 Ine

+0o(l) =21 +0(1)#0 fori =1,2. m

Remark 5.8. Here we point out that the positive eigenvalues may be multiple in Theo-
rem 5.7.

6. Examples on which the conditions of Theorem 1.8 hold

In Theorem 1.8, we proved that if all positive eigenvalues of the Hessian matrix of Rg
are simple, then we can give the precise number and non-degeneracy of the critical points
of the Robin function Rq, (x). In this section, we exhibit some domains on which this
assumption is satisfied.
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We recall that the regular part of the Green’s function in B; = B;(0) is

1 1

—h—— fory € Bj(0)and N = 2,
2yl Ix = 5l

HB](xay) =

f € B;1(0) and N > 3.
N(N -2)on |y|N—2.|x_#|N—2 ory 1(0) an =

Then we have the following result.

Theorem 6.1. Let N > 2 and

N
Qs = {x eRY, inz(1+ai8)2<1with8>0and0<oz1 Sazf---fom}.

i=1

Then the Robin function Rqy has a unique critical point P = 0 and is even with respect
fo X1,...,XN.

Moreover, if ) Sy < -+- < Q41 = g4z = 0 = Utk < Wyrkt+1 < S Ay,
then Rq;(x) is radial function with respect to Xjy41 *+* Xy+k» I.€.,

— 2 2
Ra;(x) = Rgs(xl,...,xlo, \/xlo-‘rl 4+ .. +xlo+k,xlo+k+1,...,x1v),

and we have that Ajy 41 = Ajy42 = -+ = Ajy4k for any § > 0.

Moreover, if there exists some k such that ay # o forany j € {1,..., N} with j #k,
then the k-th eigenvalue of Hess(Rq; (0)) is simple for small § > 0.

Finally, if o; # o foranyi,j € {1,..., N} withi # j, then all the eigenvalues of
Hess(Rq;(0)) are simple.

Proof. Firstly, suppose that A is a reflection or a rotation such that AQ = Q. We have
(i) H(y,x)and H(Ay, Ax) are harmonic in y.

(i1) Forany y € 02 and x € Q it holds that H(y, x) = H(Ay, Ax).

Hence we have H(y, x) = H(Ay, Ax) for any x, y € 2, which gives

R(x) = R(Ax).
Now since €25 is symmetric with respect to xy, ..., xy, then the Robin function Rgq; is
even function with respect to x, . . ., xn. Also from the fact that 25 is convex and [6, 10],

we have that Rq; has a unique critical point P = 0. Moreover, by [17] Hess(Rgq, (0)) is
a diagonal matrix with i-th eigenvalue

2Rq, (0
A = —g() fori =1,...,N.
0x;
fap Sar < <ayr1 = g2 = = Uptk < Ag+k+1 < ++ < an, then Rgy(x)
is a radial function with respect to x;,41 -+ - Xjy4+k and Ajo41 = Ajgq2 = --+ = Agy4% for

any 6 > 0.
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Seta; < <--- <ay and consider the general case for small § > 0. Let gs(x,y) =
Hs(x,y) — Hpo,1)(x, y), then we have

Axg(g(xmy):Ov inQSv

1 1
N(N—2)w1v<|x—y|’v—2

1 (6.1)
gs(x.y) = Ty IN—2 7 N—Z) for N'= 3. on 99;.
[y '|X_W|
1 1 1 1
—In—— — —1In 5 for N =2
2yl 21yl 2l
Next, on 025, we have
1 1
=2 T IV x = 52
- o () — (- )
x—yV2A y V2 x = N2 x|V (1—a(x,y) "z
N -2 ,
= W 22000 ) | e,y for N 23, (6.2)
2|x — y|N=2
and
1 ! 1 !
n —1In
k- 2l
1 Pl =gelP o 1 R
=_-In——=— = -In(1 —a(x,y)) = —za(x,y) + O(a(x, y)7), (6.3)
2 |x — y|? 2 2
where 5 5 )
X =y =yl lx -2
. [yl
a(x,y) = >
lx — ¥l
Also for x € 025, it holds
y
|y|2-|x—Wz=|y|2-IXI2—2(x,y)+1
N
=-28(yP =) exi +x—yP+0@*.  (64)

i=1

Hence for x € 0Q2g, from (6.2), (6.3) and (6.4), we have

BUIVP—1) S~ 2 e
gs(x,y) = R E— ;aixi + 0(8%) for N > 2. (6.5)
Now using (6.1) and (6.5), we deduce
$(lyl>=1)

Hs(x.y) = Hpo,n(x.y) — vs(x,y) + 0(8%) forN =2,

NQ)N
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where vg(x, y) is the solution of

Axvs(x,y) =0 in Qg,
1 N 5 (6.6)
vs(x,y) = W Zaixi on 0925.
i=1
Then it follows
8(|x|> -1
Rs(x) = R(x) — %N)vg(x,x) + 0(8%) for N > 2. (6.7)

Also for x € Q25 and small |y|, by Taylor’s expansion, it holds

N

1 _( 1 )7
lx — y|¥ x| + [y]* = 2(x, )

1 206,9)  y? | 4x,y)? 30\ 2
- _ %)
e T Rt T How)
1 N{x,y) Nly> NN +2)(x,y)? 3
_ . _ N E 0 . (68
(T e e o). 68)

From (6.6) and (6.8), we get
N(N +2)
—v

3 Dy + o (xy),

N
vs(x,y) = 0§ (%, y) + Nol (x,y) - 7v§3)(x,y) +
where

Axvél)(st)ZO inQSs

N
1
v§l)(x, y) = W Zaixiz on 092,
i=1

Axvgz)(x, y)=0 in Qg,
(x.¥) 5
v§2)(x,y) = |x|;V+2 Zaixiz on 092,
i=1
Axv§3)(x, y)=0 in Qg,
P s
3
v(g )(x,y) = NEES Zaixiz on 0925,
i=1
AP (x,y) =0 in Q4.

N
{x.»)?
v§4)(x,y) = |X|T+4 Zaixz on 0925,

i

i=1

Axvés)(x,y) =0 in Qg,

v (x,y) = 0(y®) on dQ;.
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We know that as § — 0, vgl)(x, y) = v (x, y), where
N
AvD(x,y) =0 in B;(0), vV (x,y) = Zaixiz on 981 (0). 6.9)
i=1

Solving (6.9), we can get

N
v(l)(x, y) = —@(Mz -+ ;aixiz.

Then it holds

N
V=D (e =2 4 (e = 1) D et

i=1

(x* = DD (x,x) = —

x=0

N

VA((x? = Do x|y = v2((N —Dlx|* — Zaix?))
i=1

=2(N — 1)Ey —2diag(a, o2, ..., an),

where Ep is the unit matrix. In the same way, we have that for § — 0, v 81)(x y) —
v (x,y) fori = 2,3, 4, where

N NN -1 2(Ix> =1
@) _ . 2 _ _
v (x,y)—(x,y);:laz 2N 12) oo (x]7 = D{x, y) N 12 E X i,

(N -1
v y) = [yPrP(x.y) = |y|2(—T<|x|2 -+ Zaix? :
i=1

N N
VW) = -2y Lo (x)) ~ SNV = 1) + Sa)gi (1))

i=1 i=1

N N
=Y D (NN = 1)+ 8a;) fi (X)yiyj + (Zaix?) (x,)?
i=1

i=1j+#i
with 5
xixj(|x]*—=1)
fij(x) = ”T
and 5 5
(|x]* = Dx; (Ix|*=1) (Ix*=1

S= 5N AN+ DN ) TINN T4

For future aims, it will be useful to remark that

NN = 1)|x? + 43N | a;x?

4
2NN +2) + O

v@®(x,x) =
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Finally, since vés) (x.y) = O(]y|?) as § — 0, we get
V2((|x]2 = Do (x. x))|,_, — On.

where Oy is the zero matrix in R"V . Hence by the explicit form of v
forward (and tedious) computation gives that

V2(1x]? = Dvs (x, x)) |,
L _WV- 1)(N? —2N —4)E 8N+

(gl),. o v§4), a straight-

d R . 6.10
N +2 N N +2 iag(o oN) ( )
Observe that 52
Rp, (x) 2 o
— 8t forl <i,j<AN. 6.11
dx;0x;j Noy? =0 = ©-11)

Finally,let A; fori =1,..., N be the eigenvalues of Hess(Rgq; (0)); for N > 2, from (6.7),
(6.10) and (6.11), we find
2 N —1)(N? —2N —4) + 8(N + Da;
A = 4 =1 ) H8WN A+ Daig 6y fori=1... N,
Noy N(N +2)opy

Hence we deduce that if there exists some k such that oy # o forany j € {1,..., N}
with j # k, then the corresponding k-th eigenvalue of Hess(Rgq, (0)) is simple for small
5> 0.

Furthermore, if o; # «; forany i, j € {1,..., N} withi # j, then all the eigenvalues
of Hess(Rq;(0)) are simple. [

Appendix A. Some useful computations on the Green’s function in the exterior
of the ball

We recall that the Green’s function Gge¢ (x, y) of RN\ By is given by (see [2], for exam-
ple)

1 2 2
__(1n|x_y|_1n\/|x| |y| +82_2x.y) fOfN=2,
2w 2
1

&
GBg(va) = eN-2
N( — — — ) for N > 3,
|x —yN=2 lx]y — e 5NV 2
and, fori =1,..., N,
0Gpe(x,y) _ 1 ( X; —ij ) Ix12y; — &2x; N ) AD
dyi Noy \|x — y| (Ix2|y|2 —2e2x -y + &) 2
The Robin function of RN \ B is given by (see [2])
D¢ for N =2
— 1N —F or = Z,
2 |x|? — &2
Rpg(x) = N2 (A.2)
for N > 3.

MaP =)V
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It will be also useful the well-known representation formula for harmonic function in the
ball B,: if u is harmonic in B, we have that

dGp, (x,y) 1 e —|x|? / u(y)
u(x) = — — " u(y)ds, = ds,. A.3)
== sy = e S |

In the next lemma, we prove some identities which we use in our computations.

Lemma A.1. We have that for any x € Bf and N > 2, the following equalities hold:

dGpe(x,y) N2
& do, = — —, A4
faBg vy, 0T AN Ay
dGpe(x,y) Xj N
e "7 Oy = ——=& , (AS)
/{;BS y] 81)y y |x|N
0G g (x.y) eV oroxy 8o,
v e T - - — 4 L — . A.6
/Bs ViYj o, Oy [ [8 P + N(|x| € )] (A.6)

Proof. In order to prove (A.4) and (A.5), we will use the well-known facts that for x € B,,

G G
/ Bs (xv )’) do_y — _1 and / y] Mdo'y = _'xj . (A7)
EY: 8vy 0B va

(these can be deduced by (A.3)). Let us prove (A.4) for N > 3. We have that, for x € B¢,

dGpe(x,y) e — |x|? 1
—————dog, = Ndoy.
9B, vy, Noye Jap, |x =yl

Setting x = 82#, and then |t| < &,

h |t]* — &2 / |¢|2N 4 (|f|2—82)|f|N2/ L
rhs. =¢ o, = oy,
Non|t|? Jyp, |62t —|t]2y|V 7 NoyeN-1 o, It — Y[V 7

and using (A.7) for ¢t € B,

rh.s. = Oy = ————.
vy Y |x|N=2

(N2 0Ge ),
eN-2 9B

In the same way, we get (A.5),

dGpe(x,y) g — |x|? Vi
Vi : do, = ~doy.
0B, dvy Noye Jop, |x =yl

Setting x = 82#, and then || < ¢,

|t|2—82[ 112V y; Jon — (|f|2—82)|f|N_2/ Vi
3B, |

Noy|t|? &2t — |t]2y|N 7 NowyeN-1

rhs. =¢
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and using (A.7) for ¢t € Bg,
e[V 2 dGp.(x,y) Xj N
rhs. = N2 ti /BB o, doy = —Ws
Let us prove (A.6). We have that the function
i
ax) = xix; + (e = |x?)
is harmonic and a|yp, = x;x;. So
3Gp,(x,y) Sji' 2 2
yjyj———————do, = —(x,-xj + —=(" — |x| )) (A.8)
9B, 8vy N

and arguing as before, we obtain that

3GB§(X»y)d et —|x)? Viyj
Viyj——g ——doy =
9B, Vy 9

do,.
Noye Jop, |x—yN "7
Setting x = &2 \zt|2’ and then |t| < &,
" :€|z|2—82/ Py <|r|2—82>|r|N—2/ v
Noylt|? Jop, |2t —[t2y|N " NoyeN=1  Jop lt —y[N
and using (A.8) for ¢ € Bg,
e[V 2 8; 2 2 eN =2 4 XiXj 5; 2 &
r.h.s.———(t~t~+—8 — |t ):— [8 + —¢ ( ——)]
eN—2 \""Y N( %) |x| V-2 lx|4 N |x|2
N s §i
£ 2 XiXj J 2 2 ]
= — &—— + =(|x|"—&7) |,
SR e

which proves the claim.

The next lemma concerns some identities on the Robin function.

Lemma A.2. We have that for any x € Bf and N > 2, the following identities hold:

Y (0Gpe(x,y)\2 2 N x
Z(—=—= = —VRpe(x) =
/{;Bg 8( 81)y ) dO'y ‘RBs (.X)

A9
Nox® (np—epn1 B9

and

dGpe (x,
9B, 8vy

8N_2
Cwn (|x]2 — e2)N-2 = Rpe(x)

1(1—|x|2 +1||)R()+11|x|fN2
—(—1In nil|x = c(X — 1n — or = Z.
27 |x]% — &2 Be 2 &

for N > 3,
(A.10)
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Proof. Letus prove (A.9). Fort € B, using the expressions of the Green’s and the Robin
functions in B, and recalling [4, p. 170], we have

aGBs(t y) _ _ 2 N-2 4
L v (5 e = 90,0 = e

and we deduce the following formula:

! /y L4 2 N2 ! f { € B,. (A1)
— oy = £ or an . .
(Now)? Jos, e 1i—yPV 7~ Non® @ — ()N yiEPe

Now, let x € B¢, then using (A.1)

/ X<3G35(x,y))2da _ 1 (€2 —|x]?)? / y 1 Jo
3B, € avy 7 (Nonw)? &2 o, € lx —yPN Y

Setting x = &2 \tlz and so [t| < e,

1 y 1
hs. 22 / S —
P (Now)? |t|4(| " —#%) ylme & |£2t|—‘|;|ZJ’|2N %
t

L ey
(N )2 2N—2 |y|=38|t_y|2N y

and using (A.11) for |¢t] < e,

N 2 |l|2N—4 t

r.n.s. =
NCL)N 8N_2 (82 _ |l|2)N—l
__2 nN— X

= = —VRpc(x),
Noy'  (xp-epnt e

which gives the claim.
Next let us prove (A.10). If N > 3, we have

0Gpe(x,y) g2 —|x|? 1
e S(x, y)doy, = ————C ———doy.
/338 vy (x. y)doy Noye N/ass x— ypN—2 4

2 1

Setting x = ¢ TR

|l|2—82 |Z|2N—4/ 1 4
(oF
Noye N aN—4 om, |t — y]2N—2 y

r.hs. =

|l|2N_4/ dGp,(t,y)
= £ S(t,y)d
2N+ [, av, (t. y)doy
. I£[2N—4 N2 N2
=—Cy

= Cy—————.
e2N—4 (g2 — |([2)N-2 N(xP? = e2)N-2
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If N = 2, we have, arguing as above,

0Gpe (x,
0B,

vy,
2t
:_82—|x|2/ Injx—y| :_82|z|2_82/ Inle 5 — ol
4w Jop, Ix—yP anelt|? Jop, 12—y
_ |f|2—82/ Injt —y|+1Ine—In|t|
— dne Jos = yI? y
= [ 2D s a0, - S [ o,
B vy an2e ] Jos, It = yI?
1 3 1 & 1 £
=—Rp (¢ —In—=—h——+ —In—
(1) + 5 7] 5 82—|t|2+27[ m
x|

—Rpc(x) — — In—,
€ 2 )
which ends the proof. ]

The final lemma computes some useful integrals.

Lemma A.3. We have that for any x € BS and N > 2, the following identities hold:

Cny 1 eN—1
do, = A.12
[335 2l = N (A12)

/ In|x — y|doy = 2meln|x|, (A.13)
0B¢
/33 [In|x — y||doy = O(e|ln|x|]). (A.14)

Proof. For x € B¢, using (A.4) and (A.5), we have

Cy |x|? + &> —2x-y
———doy, = CNf do
/BBS x —y[¥=27 0B, |lx—yIN g
£ |x|2 +82/ aGBg(X,y)d
= O'y
N —2&%2—|x|%2 JoB vy,
2¢e X / dGpe(x,y)
- doy,
N —2¢e2—|x|? Jom vy,
gNV-1 1
TN _2]xpN2

Let us prove (A.13). Denoting by F(x) = faBg In|x — y|do,, by (A.3) we get, for any

X € Bq,
8F(x)—x-/ B —/ Y g, =0
- 1 - )
0x; 0B |lx—y2 7 Jap Ix—y2 7
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and then F(x) = F(0) = faBs In|y|doy = 2melne. Next, if x € BE, setting x = &5

le]2
e
/ In|x —y|doy = / <ln|x —y|+In —)day
0B, 0B, lt]
|x]

=2nelne + 2weln — = 2mweln|x]|,
e

which proves (A.13).

Finally, to estimate [, B, [In|x — y||doy we consider the alternative either ¢ < |x| <
or [x| > %
If |x| > %,then

1
2

2

1 Xy e
jIn|x — ylldo 5[ [l + 2 (1-222 1 ) [ao
/335 7 9B 2 ( |x|2 |x|2) y

&

=0(1)
= Q2x|ln|x|| + o(1))e.

On the other hand, if ¢ < |x| < %, for y € 0B, we have |[x — y| < 1. So

/ [In|x — y||doy = —/ In|x — y|doy, = —2meln|x|,
0B B¢

which ends the proof. ]
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