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Abstract. We prove that any set A � N of positive upper density contains a finite S � A such thatP
n2S

1
n D 1, answering a question of Erdős and Graham.
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1. Introduction

A classical topic in the additive theory of unit fractions is the study of those finite sets
S � N such that

P
n2S

1
n
D 1. Erdős and Graham [4] conjectured that if the integers are

coloured by a finite number of colours, then there must be such a set which is monochro-
matic (aside from the trivial S D ¹1º). This conjecture was proved by Croot [2].

Theorem 1.1 (Croot [2]). If the integers ¹2; 3; : : :º are coloured in finitely many colours,
there is a monochromatic set S such that

P
n2S

1
n
D 1.

Colouring statements often have a natural strengthening to a corresponding density
statement, which Erdős and Graham also conjectured in this case: that any set of positive
density contains some finite S with

P
n2S

1
n
D 1. (This conjecture appears on [4, p. 36]

and [5, p. 298], for example, as well as in several unpublished notes and letters of Erdős
as reproduced in [5]. This conjecture has also been made by Sun [7].) Recall that for any
A � N, the lower and upper densities of A are defined to be

d.A/ D lim inf
N!1

jA \ Œ1; N �j

N
and xd.A/ D lim sup

N!1

jA \ Œ1; N �j

N
;

Thomas F. Bloom: Mathematical Institute, University of Oxford, Andrew Wiles Building,
Radcliffe Observatory Quarter (550), Woodstock Road, Oxford OX2 6GG, UK;
bloom@maths.ox.ac.uk

Bhavik Mehta: Department of Pure Mathematics and Mathematical Statistics, Centre for
Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, UK;
bm489@cam.ac.uk

Mathematics Subject Classification 2020: 11D68 (primary); 11B30, 11P05 (secondary).

https://creativecommons.org/licenses/by/4.0/
mailto:bloom@maths.ox.ac.uk
mailto:bm489@cam.ac.uk


T. F. Bloom 4564

respectively. When these limits are equal, d.A/D xd.A/D d , we say that A has density d
(and say that A has positive density if d > 0).

In this paper, we answer this question of Erdős and Graham in the affirmative in
a strong sense, proving the following criterion which uses only positive upper density.

Theorem 1.2. If A � N has positive upper density (and hence certainly if A has positive
density), then there is a finite S � A such that

P
n2S

1
n
D 1.

Given that we are working with sums of the shape
P

1
n

, it is perhaps more natural
to consider the logarithmic density. For any A � N, the lower and upper logarithmic
densities of A are defined to be

ı.A/ D lim inf
N!1

1

logN

X
n2A\Œ1;N �

1

n
and xı.A/ D lim sup

N!1

1

logN

X
n2A\Œ1;N �

1

n
:

A straightforward application of partial summation shows that xı.A/ � xd.A/, and hence
the analogue of Theorem 1.2 with upper logarithmic density is an immediate corollary.
Our methods in fact deliver the following more precise quantitative result.

Theorem 1.3. There is a constant C > 0 such that the following holds. If A� ¹1; : : : ;N º
and X

n2A

1

n
� C

log log logN
log logN

logN;

then there is an S � A such that
P
n2S

1
n
D 1.

Let �.N / be the maximum possible size of
P
n2A

1
n

ifA� ¹1; : : : ;N º has no subset S
with

P
n2S

1
n
D 1. The primes show that1 �.N /� log logN . Pomerance has observed2

that taking all n with a prime factor p � n
logn provides the lower bound

�.N /� .log logN/2:

This is the best lower bound that we are aware of, so that our current state of knowledge
is now

.log logN/2 � �.N /�
log log logN

log logN
logN:

We suspect that the lower bound is closer to the truth, in that �.N /� .logN/o.1/. We have
not tried to fully optimise the upper bound for �.N / in this paper, since the argument is
quite technical even without such an optimisation. Nonetheless, we do not believe the
methods in this paper alone are strong enough to prove �.N / � .logN/1�c for some
c > 0, let alone �.N /� .logN/o.1/, for which significant new ideas would be needed.

1We use Vinogradov’s notation f � g to denote the existence of some absolute constant C > 0
such that jf .n/j � C jg.n/j for all sufficiently large n.

2To our knowledge, this observation has only appeared in the literature in the Ph.D. thesis of
Croot [1], who heard it from Pomerance via personal communication. We include a proof of this
lower bound in Appendix A for the convenience of the reader.



On a density conjecture about unit fractions 4565

Formalisation of the proof

The proofs of the main results of this paper have now been completely formally verified
using the Lean proof assistant, in joint work with Bhavik Mehta. We discuss this form-
alisation in Appendix B, which is written for the curious mathematician who has never
themselves yet dabbled in formalisation, to give a flavour of what the process involves.

Comparison to Croot’s method

The main result of Croot [2] is actually a density statement for sets of sufficiently smooth
numbers. Roughly speaking, Croot proves that if A � Œ2; N � has

P
n2A

1
n
> 6 and all

n 2 A are ‘n1=4�o.1/-smooth’ (i.e., if a prime power q divides n 2 A then q � n1=4�o.1/),
thenA contains some S with

P
n2S

1
n
D 1. This suffices to deduce the colouring statement

of Theorem 1.1, but is too weak to deduce an unrestricted density statement, since the set
of n 2 N which are not n1=4�o.1/ smooth has positive density.

In [1], Croot suggests that it is possible that his method could be strengthened to
improve this smoothness threshold to n1�o.1/, which would suffice to show that all sets
with positive density contain some S with

P
n2S

1
n
D 1, since almost all integers n 2 N

are n1�o.1/ smooth. Such an improvement is essentially what we provide in this paper, and
our methods are a stronger form of the ideas introduced by Croot. Many of our lemmas
are similar to those of [2], but since we require stronger forms of them than Croot uses,
and to keep this paper self-contained, we include full proofs throughout, indicating the
correspondence to parts of [2] as we proceed.

Structure of the paper

In Section 2, we state our main technical proposition, Proposition 2.1, and use elementary
methods to deduce Theorems 1.2 and 1.3. The remainder of the paper is occupied with
the proof of Proposition 2.1.

Before we begin, we remark on the use of explicit constants in this paper. In many
places, we have used explicit constants and exponents (e.g., .logN/�1=100). The precise
form of these exponents should not be taken particularly seriously – in general, we have
chosen nice round numbers that allow for our statements to be true with ‘room to spare’.

2. The main technical proposition

We introduce the convenient notation

R.A/ D
X
n2A

1

n
;

which will be used throughout the rest of the paper. A summary of the non-standard
notation employed often in this paper, together with the definition and where it is first
used, is in Table 1.
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Notation Definition First used

R.A/
X
n2A

1

n
Section 2

Aq

°
n 2 A W q j n and

�
q;
n

q

�
D 1

±
Section 3

QA ¹q a prime power W Aq ¤ ;º Section 3

R.AI q/
X
n2Aq

q

n
Section 4

Tab. 1. Index of non-standard notation.

We recall two elementary estimates of Mertens which will be used frequently:X
q�X

1

q
D log logX C c CO

� 1

logX

�
for some constant c; (1)

and Y
p�X

�
1 �

1

p

��1
� logX; (2)

where q indicates the summation is restricted to prime powers, and p indicates the product
is restricted to primes. Proofs of these estimates can be found in any textbook on analytic
number theory (for example, [6, Chapter 2]). Much more precise estimates are known, but
these weak forms are all that we will require.

We now present the main technical proposition of this paper, from which the results in
the introduction follow via elementary manipulations. Roughly speaking, this shows that
a solution to R.S/ D 1

d
, for some small d in a restricted range, can be found in any set A

which is

(1) reasonably large (i.e., R.A/ is large),

(2) not too ‘rough’ (i.e., every n 2 A has at least two small divisors),

(3) reasonably smooth, (i.e., no n 2 A is divisible by a prime power q > n1�o.1/), and

(4) arithmetically ‘regular’ (i.e., every n 2 A has roughly log logn (the expected amount)
many distinct prime factors).

Conditions (2)–(4) are not very restrictive in practice, since they are satisfied by almost
every n 2 N, and hence in applications one can easily discard any potential trouble-
makers and still be left with a large enough R.A/. The fact that we are finding solutions
to R.S/ D 1

d
with d small is also not a problem in applications, since for any d such

disjoint solutions can be trivially combined into some S 0 with R.S 0/ D 1 as required.
This should be compared to the Main Theorem of [2], which achieves the conclusion

R.S/ D 1 directly, but under a stronger smoothness hypothesis (namely a smoothness
threshold of N 1=4�o.1/ rather than our N 1�o.1/), and without any roughness hypothesis
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(corresponding to our condition (2)). The convenience of every n 2 A having at least two
small divisors is a novel feature of our approach.

Proposition 2.1. Let N be sufficiently large. Suppose A � ŒN 1�1= log logN ; N � and 1 �
y � z � .logN/1=500 are such that

(1) R.A/ � 2
y
C .logN/�1=200,

(2) every n 2 A is divisible by some d1 and d2, where y � d1 and 4d1 � d2 � z,

(3) every prime power q dividing some n 2 A satisfies q � N 1�6= log logN , and

(4) every n 2 A satisfies

99

100
log logN � !.n/ � 2 log logN:

There is some S � A such that R.S/ D 1
d

for some d 2 Œy; z�.

Before proceeding with the applications and proof of Proposition 2.1, we make some
further remarks about the reason we aim only to find a solution toR.S/D 1

d
with d small

(instead of directly finding some S with R.S/ D 1) and the utility of condition (2), that
there exists some pair of small divisors. For simplicity, we will only consider the case
when y D 1 and z D 4, so that condition (2) becomes ‘every n 2 A is divisible by 4’ and
the conclusion becomes ‘there is some S � A such that R.S/ D 1

d
for some 1 � d � 4’.

Similar to Croot’s method, we will would like to find solutions to 1 D
P
n2S

1
n

using
the circle method. Our formulation of the circle method (Proposition 3.1 below) requires,
amongst other assumptions, that

(1) R.A/ � 2 and

(2) a further technical hypothesis about the distribution of multiples of elements of A in
short intervals.

(Roughly speaking, the first ensures that the ‘major arc’ contribution is positive, and the
second ensures that the ‘minor arc’ contribution is small.) Since condition (1) of Pro-
position 2.1 says R.A/ > 2, we can arrange for R.A/ � 2 by discarding some elements
of A. Our conditions are not strong enough to force the second, technical, hypothesis,
however.

Following Croot, we aim to show that there is some subset A0 � A which satisfies this
additional hypothesis via a combinatorial ‘pruning’ technique. Unfortunately, to allow for
the high ‘smoothness’ threshold, the additional hypothesis is quite restrictive, and there-
fore the pruning is severe. In particular, supposing we begin with R.A/ � 2, our method
shows that either A itself satisfies the additional technical hypothesis, or else there is
some pruned B � A which does satisfy it – but we have lost some of the mass of A,
and can now only say that R.B/ � 1

3
R.A/ � 2

3
. Since it is possible that R.B/ � 2

3
,

whatever games we play, we certainly cannot hope to find a solution to R.S/ D 1 with
S � B!

This means that we have to relax our initial goal, and instead be content with, e.g.,
finding a solution to R.S/D 1

4
(after pruning B down a little further, so that R.B/� 2

4
–
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this is not strictly necessary in our simplified setup, but allowing for a small amount of
further pruning eases some of the technical burdens in the general case). This introduces
a further divisibility constraint however, since we can only hope to find a solution to
R.S/ D 1

4
with S � B if 4 divides the lowest common multiple of B . This is where

condition (2) becomes useful – since every element of A is divisible by 4, certainly 4
must divide the lowest common multiple of B � A. The universality of condition (2) is
helpful here – if there existed a subset of A, even a sparse one, that consisted of only odd
numbers, then it may be that our pruning procedure conspired so that B is contained in
this subset, and then we cannot find a solution to R.S/ D 1

4
with S � B .

We hope that this sketch illustrates some of the issues involved and the reason for the
particular form of Proposition 2.1.

In the remainder of this section, we will deduce Theorems 1.2 and 1.3 from Proposi-
tion 2.1, which will be proved in the remainder of the paper.

2.1. Proof of Theorem 1.3

We deduce Theorem 1.3 via the following corollary of Proposition 2.1.

Corollary 2.2. Suppose N is sufficiently large and A � ŒN 1�1= log logN ; N � is such that

(1) R.A/ � .logN/1=200,

(2) every n 2 A is divisible by some prime p satisfying 5 � p � .logN/1=500,

(3) every prime power q dividing some n 2 A satisfies q � N 1�6= log logN , and

(4) every n 2 A satisfies

99
100

log logN � !.n/ � 2 log logN:

There is some S � A such that R.S/ D 1.

Proof. Let k be maximal such that there are disjoint S1; : : : ; Sk � A, where, for each
1 � i � k, there exists some di 2 Œ1; .logN/1=500� such that R.Si / D 1

di
. Let t .d/ be

the number of Si such that di D d . If there is any d with t .d/ � d , then we are done,
taking S to be the union of any d disjoint Sj with R.Sj / D 1

d
. Otherwise,X

i

R.Si / D
X

1�d�.logN/1=500

t .d/

d
� .logN/1=500;

and hence if A0 D An.S1 [ � � � [ Sk/, then R.A0/ � .logN/1=500.
We may now apply Proposition 2.1 with y D 1 and z D .logN/1=500 – note that con-

dition (2) of Proposition 2.1 follows from condition (2) of Corollary 2.2 with d1 D 1 and
d2 D p 2 Œ5; .logN/1=500� some suitable prime divisor. Thus there exists some S 0 � A0

such thatR.S 0/D 1
d

for some d 2 Œ1; .logN/1=500�, contradicting the maximality of k.

The deduction of Theorem 1.3 is now a routine exercise in analytic number theory.
We will require the following simple application of sieve theory.
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Lemma 2.3. Let N be sufficiently large and z, y be two parameters such that logN �
z > y � 3. If X is the set of all those integers not divisible by any prime in p 2 Œy; z�,
then

jX \ ŒN; 2N /j �
logy
log z

N:

Proof. Any sieve will suffice here, even the sieve of Eratosthenes; for example, the for-
mulation of the sieve of Eratosthenes as given in [6, Theorem 3.1] yields

jX \ ŒN; 2N /j D
Y

y�p�z

�
1 �

1

p

�
N CO.2z/:

Mertens’ estimate (2) yields Y
y�p�z

�
1 �

1

p

�
�

logy
log z

;

and the result follows.

Proof of Theorem 1.3. Let C � 2 be an absolute constant to be chosen shortly, and for
brevity let " D log log logN

log logN , so that we may assume that R.A/ � C" logN . SinceX
n�X

1

n
� logX;

if A0 D A \ ŒN "; N �, we have (assuming C is sufficiently large) R.A0/ � C
2
" logN .

Let X be those integers n 2 Œ1; N � not divisible by any prime p 2 Œ5; .logN/1=1200�.
Lemma 2.3 implies that, for any x � exp.

p
logN/,

jX \ Œx; 2x/j �
x

log logN

and hence, by partial summation, X
n2X

n2Œexp.
p

logN/;N�

1

n
�

logN
log logN

:

Similarly, if Y is the set of those N 2 Œ1; N � such that !.n/ < 99
100

log logN or !.n/ �
101
100

log logN , then Turán’s estimate (see, for example, [6, Theorem 2.12])X
n�x

.!.n/ � log logn/2 � x log log x

implies that jY \ Œx; 2x/j � x
log logN for any N � x � exp.

p
logN/, and soX

n2Y
n2Œexp.

p
logN/;N�

1

n
�

logN
log logN

:



T. F. Bloom 4570

In particular, provided we takeC sufficiently large, we can assume thatR.A0n.X [ Y //�
C
4
" logN , say.

Let ı D 1� 1
log logN , and let Ni D N ıi

, and Ai D .A0n.X [ Y //\ ŒNiC1;Ni �. Since

Ni � N
e�i= log log N

and A0 is supported on n � N ", the set Ai is empty for i > log.1
"
/ log logN , and hence

by the pigeonhole principle, there is some i such that

R.Ai / �
C

8

" logN
.log logN/ log.1

"
/
:

By construction, Ai � ŒNiC1;Ni �� ŒN
1�1= log logNi

i ;Ni �, and every n 2 Ai is divisible by
some prime p with 5 � p � .logN/1=1200 � .logNi /1=500. Furthermore, every n 2 Ai
satisfies !.n/ � 99

100
log logN � 99

100
log logNi and !.n/ � 101

99
log logN � 2 log logNi .

Finally, it remains to discard the contribution of those n 2 Ai divisible by some large
prime power q > N 1�6= log logNi

i . The contribution to R.Ai / of all such n is at most

X
N

1�6= log log Ni
i

<q�Ni

X
n�Ni

q jn

1

n
�

X
N

1�6= log log Ni
i

<q�Ni

log.Ni

q
/

q

�
logNi

log logNi

X
N

1�6= log log Ni
i

<q�Ni

1

q

�
logN

.log logN/2
;

using Mertens’ estimate (1). Provided we choose C sufficiently large, this is� R.Ai /
2

, and
hence, if A0i � Ai is the set of those n divisible only by prime powers

q � N
1�6= log logNi

i ;

then R.A0i / � .logN/1=200, say. All of the conditions of Corollary 2.2 are now met, and
hence there is some S � A0i � A such that R.S/ D 1, as required.

2.2. Proof of Theorem 1.2

Finally, we show how Proposition 2.1 implies Theorem 1.2. We will require the following
sieve estimate.

Lemma 2.4. Let N be sufficiently large, and suppose that z, y are two parameters such
that .logN/1=2 � z > 4y � 8. If Y � Œ1;N � is the set of all those integers divisible by at
least two distinct primes p1; p2 2 Œy; z�, where 4p1 < p2, then

j¹1; : : : ; N ºnY j �
� logy

log z

�1=2
N:
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Proof. Let w 2 .4y; z/ be some parameter to be chosen later. Lemma 2.3 implies that the
number of n 2 ¹1; : : : ; N º not divisible by any prime p 2 Œw; z� is� logw

log z N .
Similarly, for any p 2 Œw; z�, the number of those n 2 Œ1; N � divisible by p and no

prime q 2 Œy; p
4
/ is

�
logy
logp

N

p
:

It follows that the number of n 2 ¹1; : : : ; N ºnY is

�

� logw
log z

C logy
X
p�w

1

p logp

�
N:

By partial summation, X
p�w

1

p logp
�

1

logw
;

and hence
j¹1; : : : ; N ºnY j �

� logw
log z

C
logy
logw

�
N:

Choosing w D exp.
p
.logy/.log z// completes the proof.

Proof of Theorem 1.2. Suppose A � N has upper density ı > 0. Let y D C1

ı
and z D

ı�C2ı
�2

, where C1, C2 are two absolute constants to be determined later. It suffices to
show that there are some d 2 Œy; z� and finite S � A such that R.S/ D 1

d
. Indeed, given

such an S , we can remove it from A and still have an infinite set of upper density ı, so
we can find another S 0 � AnS with R.S 0/ D 1

d 0
for some d 0 2 Œy; z�, and so on. After

repeating this process at least dz � ye2 times, there must be some d 2 Œy; z�with at least d
disjoint S1; : : : ; Sd � A with R.Si / D 1

d
. Taking S D S1 [ � � � [ Sd yields R.S/ D 1 as

required.
By definition of the upper density, there exists arbitrarily large N such that

jA \ Œ1; N �j �
ı

2
N:

The number of n 2 Œ1; N � divisible by some prime power q � N 1�6= log logN is

� N
X

N1�6= log log N<q�N

1

q
�

N

log logN

by Mertens’ estimate (1). Further, by Turán’s estimateX
n�N

.!.n/ � log logN/2 � N log logN;

the number of n 2 Œ1; N � that do not satisfy

99

100
log logN � !.n/ � 2 log logN (3)
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is � N
log logN . Finally, provided we choose C2 sufficiently large in the definition of z,

Lemma 2.4 ensures that the proportion of all n 2 ¹1; : : : ; N º not divisible by at least two
distinct primes p1; p2 2 Œy; z� with 4p1 < p2 is at most ı

8
N , say.

In particular, provided N is chosen sufficiently large (depending only on ı), we may
assume that jAN j � ı

4
N , where AN � A is the set of those n 2 A \ ŒN 1�1= log logN ; N �

which satisfy conditions (2)–(4) of Proposition 2.1. Since jAN j � ı
4
N ,

R.AN /� � log
�
1 �

ı

4

�
� ı:

In particular, since y D C1

ı
for some suitably large constant C1 > 0, we have that

R.AN / �
4
y

, say. All of the conditions of Proposition 2.1 are now satisfied (provided N
is chosen sufficiently large in terms of ı), and hence there is some S � AN � A such
that R.S/ D 1

d
for some d 2 Œy; z�, which suffices to prove Theorem 1.2 as discussed

above.

It remains to establish Proposition 2.1, which will be the task of the remainder of the
paper.

3. A Fourier analytic argument

We follow the approach of Croot [2] and detect solutions to R.S/ D 1
k

for some fixed k
using Fourier analysis. The two important differences in the following proposition from
the work of Croot are the detection of solutions toR.S/D 1

k
for arbitrary integer k (a flex-

ibility which we require for our applications), and that condition (4) is now weighted
by a factor depending on q. By contrast, in [2] Croot has the simpler condition that the
number of n 2A such that no element of I is divisible by n is at mostN 3=4�o.1/. Roughly,
our approach allows for this N 3=4�o.1/ to be replaced by N o.1/, while replacing n 2 A
by the weaker n 2 Aq . It is ultimately this replacement of N 3=4�o.1/ by N o.1/ that results
in the ‘smoothness threshold’ being N 1�o.1/ rather than Croot’s N 1=4�o.1/, which in turn
allows us to deduce strong density results.

For any finite A � N and prime power q, we define

Aq D
°
n 2 A W q j n and

�
q;
n

q

�
D 1

±
;

and let QA be the set of all prime powers q such that Aq is non-empty (i.e., those pr such
that pr kn for some n 2 A).

Proposition 3.1. There is an absolute constant c > 0 such that the following holds. Sup-
pose that N � M � N 3=4 and k is an integer satisfying 1 � k � cM . Suppose further
that � 2 .0; 1/ and M

2
� K � N 3=4. Let A � ŒM;N � be a set of integers such that

(1) R.A/ 2 Œ 2
k
�

1
M
; 2
k
/,

(2) k divides the lowest common multiple of A,
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(3) if q 2 QA, then q � cmin.M
k
; �MK2

N2.logN/2
/, and

(4) for any interval I of length K,

(a) either

#¹n 2 A W no element of I is divisible by nº �
M

logN
;

or

(b) if DI is the set of q 2 QA such that

#¹n 2 Aq W no element of I is divisible by nº < �
M

q
;

there is some x 2 I divisible by all q 2 DI .

There is some S �A such thatR.S/D 1
k

. (In fact, there are at least 2�.jAj/ many such S .)

It may help to note that in our applications, we will choose � D N�o.1/, k D N o.1/,
and M;K D N 1�o.1/, and so the smoothness threshold is N 1�o.1/.

Proof. For brevity, let X D c min.M
k
; �MK

2

N2 .logN/2/, where c > 0 is some absolute
constant to be chosen later, so that condition (3) becomes q � X for all q 2 QA. For
any set of prime powers P , we write ŒP � for the lowest common multiple of all q 2 P .
Since A is fixed, in this proof we just write Q D QA.

Let F.A/ count the number of subsets S � A such that kR.S/ is an integer. Since
R.S/ � R.A/ < 2

k
and R.S/ D 0 if and only if S D ;, the number of S � A such that

R.S/ D 1
k

is exactly F.A/ � 1.
We first note that, for any integers a, b, we have by orthogonality

1a=b2Z D
1

b

X
�b=2<h�b=2

e
�ha
b

�
;

where e.x/ D e2�ix . In particular, since for any S � A the rational kR.S/ is of the
form km

ŒQ�
for some m 2 Z,

F.A/ D
1

ŒQ�

X
�ŒQ�=2<h�ŒQ�=2

Y
n2A

�
1C e

�kh
n

��
:

The most obvious contribution to F.A/ is from h D 0, which contributes exactly 2jAj

ŒQ�
.

Furthermore, if ŒQ� is even, then h D ŒQ�
2

contributes

1

ŒQ�

Y
n2A

�
1C e

�kŒQ�
2n

��
;

which is some real number � 0, since e.kŒQ�
2n
/ 2 ¹�1; 1º for all n dividing ŒQ� (and so

certainly for all n 2 A). Therefore,

F.A/ �
2jAj

ŒQ�
C

1

ŒQ�

X
h2J

Y
n2A

�
1C e

�kh
n

��
; (4)
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where J D .� ŒQ�
2
; ŒQ�
2
/ \ Zn¹0º. Our treatment of h 2 J depends on whether h is close

to an integer of the form tŒQ�
k

. We define the ‘major arc’ corresponding to t 2 Z as

M.t/ D
°
h 2 J W

ˇ̌̌
h �

t ŒQ�

k

ˇ̌̌
�
K

2k

±
(note that since ŒQ� � min.A/ � K, the major arcs M.t/ are disjoint for distinct t 2 Z)
and define the minor arcs as m D J n

S
t2Z M.t/. Writing h 2M.t/ as tŒQ�

k
C r , the

contribution of M.t/ to the right-hand side of (4) is, using 1C e.�/ D 2e. �
2
/ cos.��/,

1

ŒQ�

X
r2Œ�K=2k;K=2k�
r2J�tŒQ�=k

Y
n2A

�
1Ce

�kr
n

��
D
2jAj

ŒQ�

X
r2Œ�K=2k;K=2k�
r2J�tŒQ�=k

Y
n2A

cos
��kr
n

�
e
�kr
2
R.A/

�
:

The total contribution from all major arcs is therefore

2jAj

ŒQ�

X
r2Œ�K=2k;K=2k�

�X
t

1r2J�tŒQ�=k

� Y
n2A

cos
��kr
n

�
e
�kr
2
R.A/

�
:

(Note that since k j ŒQ� the first factor restricts r to be an integer.)
Since both cos.�kr

n
/ and

P
t 1r2J�tŒQ�=k are symmetric in r , this is equal to

2jAj

ŒQ�

X
r2Œ0;K=2k�

.2 � 1rD0/
�X

t

1r2J�tŒQ�=k

� Y
n2A

cos
��kr
n

�
cos.�krR.A//:

Since n � M � K and 0 � r � K
2k

, we have kr
n
�

1
2

, and so certainly cos.� kr
n
/ � 0.

Furthermore, we can write kR.A/ D 2� " for some 0 < " � k
M

, and hence (since r is an
integer)

cos.�krR.A// D cos.��r"/ � 0

for 0 � r � K
2k

, and henceY
n2A

cos
��kr
n

�
cos.�krR.A// � 0

for all 0 � r � K
2k

. It follows that the contribution to the right-hand side of (4) from the
union of all M.t/ is � 0. It therefore suffices to show thatX

h2m

Y
n2A

ˇ̌̌
cos
��kh
n

�ˇ̌̌
�
1

4
; (5)

say. Indeed, this implies that F.A/� 2jAj�1

ŒQ�
. Since all prime powers q 2Q satisfy q �X ,

we have the bound
ŒQ� � X�.X/ � eO.X/ � 2jAj=2;

say, using Chebyshev’s estimate that �.X/� X
logX , the trivial estimate jAj�MR.A/� M

k
,

and the fact that X � cM
k

(assuming c sufficiently small). It follows that, as required,
F.A/ � 2jAj=2�1 > 1.
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For any h � 0, let Dh D DIh
as defined in the theorem statement, where Ih is the

interval of length K centred at kh. That is, Dh is the set of those q 2 Q such that

#
°
n 2 Aq W jhnj >

K

2

±
< �

M

q
;

where kh � hn .mod n/ with jhnj � n
2

.
We introduce the convenient notation C.BI h/ D

Q
n2B jcos.�kh

n
/j. Let m1 be those

h 2 m such that (4a) holds for Ih, and m2 D mnm1.
We first address those h 2 m1. Note that if x 2 Œ0; 1

2
�, then

cos.�x/ � 1 � x2 � e�x
2

:

It follows that if kh � hn .mod n/, where jhnj � n
2

, thenˇ̌̌
cos
��kh
n

�ˇ̌̌
� e
�

h2
n

n2 :

Further, if h 2 m1, then jhnj � K
2

for at least M
logN many n 2 A, and hence

C.AI h/ � exp
�
�

X
n2A

h2n
n2

�
� exp

�
�

K2M

4N 2 logN

�
:

Therefore,X
h2m1

C.AI h/ � ŒQ� exp
�
�

K2M

4N 2 logN

�
� eO.X/ exp

�
�

K2M

4N 2 logN

�
:

Provided X � cK2MN 2 logN for some sufficiently small constant c > 0, this is � 1
8

,
and hence to show (5), it suffices to showX

h2m2

Y
n2A

ˇ̌̌
cos
��kh
n

�ˇ̌̌
�
1

8
; (6)

We will show that, for any h 2 m2,

C.AI h/ � N�4jQnDhj: (7)

(Note that this is trivial when Dh D Q.) Before establishing (7), we show how it im-
plies (6), and hence concludes the proof.

By condition (4b) of the hypotheses, since h 2 m2, kh is distance at most K
2
�

M
2

from some multiple of ŒDh�. Therefore, for any D � Q, the number of h 2 m2 with
Dh DD is at mostM times the number of multiples of ŒD � in Œ1; kŒQ��, which is at most

Mk
ŒQ�

ŒD �
�Mk

Y
q2QnD

q � kN jQnDjC1:

In particular, by (7), the contribution to the left-hand side of (6) from all h 2 m2 with
Dh D D is at most kN 1�3jQnDj.
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By definition of m, if h 2 m2, then kh is distance greater than K
2

from any multiple
of ŒQ�, and hence Dh ¤ Q. Therefore, using the trivial estimate jQj � N ,X

h2m2

C.AI h/ � kN
X

D¨Q

N�3jQnDj �
k

N

�
1C

1

N

�jQj
�

k

N
;

which is � 1
8

provided c is sufficiently small, which proves (6).
It remains to establish (7). Using the trivial estimate !.n/ � log n, for any n 2 A

there are O.logN/ many q 2 Q such that n 2 Aq . It follows that

C.AI h/ �
Y
q2Q

C.AqI h/
�.1= logN/:

To establish (7), therefore, it suffices to show that for every q2QnDh, we haveC.AqIh/�
N�C logN for some suitably large absolute constant C > 0. For any q 2 QnDh, there are,
by definition of Dh, at least �M

q
many n 2 Aq such that jhnj > K

2
and hence

C.AqI h/ � exp
�
�

X
n2Aq

h2n
n2

�
� exp

�
�
�MK2

4N 2q

�
:

It therefore is enough to have that for every q 2 Q,

�MK2

4N 2q
� C.logN/2:

This follows from q � X � c�MK2

N2.logN/2
, provided c is small enough.

4. Technical lemmas

In this section, we assemble some useful technical lemmas, most of which are quantitat-
ively stronger forms of lemmas used by Croot [2]. The following is [2, Lemma 2], which
we reprove here to keep the paper self-contained.

Lemma 4.1. If 0 < jn1 � n2j � N , thenX
q j .n1;n2/

1

q
� log log logN;

where the summation is restricted to prime powers.

Proof. If q j .n1; n2/, then q divides jn1 � n2j, and hence in particular q � N . The con-
tribution of all prime powers pr with r � 2 is O.1/, and hence it suffices to show thatX

p j jn1�n2j

1

p
� log log logN:

Any integer � N is trivially divisible by O.logN/ many primes.
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Clearly, summing 1
p

over O.logN/ many primes is maximised summing over the
smallest O.logN/ primes. Since there are � .logN/3=2 many primes � .logN/2, we
have X

p j jn1�n2j

1

p
�

X
p�.logN/2

1

p
� log log logN

by Mertens’ estimate (1).

The following is a quantitatively stronger form of [2, Lemma 3].

Lemma 4.2. Let 1
2
> " > 0 and letN be sufficiently large, depending on ". If A is a finite

set of integers such that R.A/ � .logN/�"=2 and .1� "/ log logN � !.n/ � 2 log logN
for all n 2 A, then X

q2QA

1

q
� .1 � 2"/e�1 log logN:

Proof. Since, by definition, every integer n 2 A can be written uniquely as q1 � � � qt for
qi 2 QA for some t 2 I D Œ.1 � "/ log logN; 2 log logN�, we have that, since t Š � . t

e
/t ,

R.A/ �
X
t2I

.
P
q2QA

1
q
/t

t Š
�

X
t2I

�e
t

X
q2QA

1

q

�t
:

Since . ex
t
/t is decreasing in t for x < t , either

P
q2QA

1
q
� .1� "/ log logN (and we are

done), or the summand is decreasing in t , and hence we have

.logN/�"=2 � R.A/ � 2 log logN
� P

q2QA

1
q

.1 � "/e�1 log logN

�.1�"/ log logN
:

The claimed bound follows, using the fact that e�"=.2.1�"// � 1� " for " 2 .0; 1
2
/, choos-

ing N large enough such that .2 log logN/2= log logN � 1C "2, say.

A weaker form of the following lemma is implicit in the proof of [2, Proposition 3].
For any finite A � N and prime power q 2 QA, we define

R.AI q/ D
X
n2Aq

q

n
:

Lemma 4.3. There is a constant c > 0 such that the following holds. LetN �M �N 1=2

be sufficiently large, and suppose that 1 � k � c log logN . Suppose that A � ŒM;N � is
a set of integers such that !.n/ � .logN/1=k for all n 2 A.

For all q such that R.AI q/ � .logN/�1=2, there exists d such that

(1) qd > M exp.�.logN/1�1=k/,

(2) !.d/ � 5
logk log logN , and

(3)
P

n2Aq ; qd jn
.qd;n=qd/D1

qd
n
�

R.AIq/

.logN/2=k .
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Proof. Fix some q with R.AI q/ � .logN/�1=2. Let D be the set of all d such that if p
is a prime and pr k d , then

pr > y D exp..logN/1�2=k/ and qd 2 .M exp.�.logN/1�1=k/; N �:

We claim that every n 2 Aq is divisible by some qd with d 2D, such that .qd; n
qd
/ D 1.

This can be done greedily, just removing from n=q all those prime power divisors pr kn=q
such that pr � y, which removes at most

y!.n/ � exp..logN/1�1=k/:

We can therefore bound

R.AI q/ �
X
d2D

1

d

X
n2Aq ; qd jn
.qd;n=qd/D1

qd

n
:

We will control the contribution from those d with !.d/ > !0 D 5
logk log logN with

the trivial bound X
n2Aq ; qd jn
.qd;n=qd/D1

qd

n
�

X
n�N
qd jn

qd

n
� logN

and Mertens’ bound (1). Together these implyX
d2D

!.d/>!0

1

d

X
n2Aq

qd jn

qd

n
� logN

X
d

pr kd)y<pr�N
!.d/�!0

1

d
� k�!0 logN

X
d

pr kd)y<pr�N

k!.d/

d

� C k1 k
�!0 logN

Y
y<p�N

�
1C

k

p � 1

�
� k�!0 logN

�
C2

logN
logy

�k
for some absolute constants C1; C2 > 0. Recalling the definitions of y and !0, this is

� C k2 k
�!0.logN/3 �

1

logN
;

say, for N sufficiently large. It follows that

1

2
R.AI q/ �

X
d2D

!.d/�!0

1

d

X
n2Aq ; qd jn
.qd;n=qd/D1

qd

n
:

The result follows sinceX
d2D

1

d
�

X
d

pr kd)y<pr�N

1

d
�

Y
y<p�N

�
1 �

1

p � 1

��1
�

logN
logy

� .logN/2=k :
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5. An iterative procedure

To prove Proposition 2.1, we need to find some suitable A0 � A which satisfies the
hypotheses of Proposition 3.1 (for some suitable k). This is achieved by the following
proposition, assuming various technical conditions, which we can arrange to hold via an
iterative procedure. The following proposition is analogous to [2, Proposition 3], and the
basic structure of the proof is the same, but there are several technical refinements that are
necessary in our proof.

Proposition 5.1. Suppose N is sufficiently large and N �M � N 1=2, and suppose that
A � ŒM;N � is a set of integers such that

99

100
log logN � !.n/ � 2 log logN for all n 2 A;

R.A/ � .logN/�1=101

and, for all q 2 QA,
R.AI q/ � .logN/�1=100:

Then

(1) either there is some B � A such that R.B/ � 1
3
R.A/ andX

q2QB

1

q
�
2

3
log logN;

(2) or for any interval of length �MN�2=.log logN/,

(a) either

#¹n 2 A W no element of I is divisible by nº �
M

logN
;

(b) or if DI is the set of q 2 QA such that

#¹n 2 Aq W no element of I is divisible by nº <
M

2q.logN/1=100
;

there is some x 2 I divisible by all q 2 DI .

If
P
q2QA

1
q
�

2
3

log logN , then case .2/ is guaranteed.

Proof. Let I be any interval of length �MN�2=.log logN/, and let AI be those n 2 A that
divide some element of I . We may assume that jAnAI j< M

logN (or else item (a) of case (2)
holds), and we need to show that either there is some x 2 I divisible by all q 2 DI , or
the first case holds.

Let EI be the set of those q 2 QA such that R.AI I q/ > 1
2
.logN/1=100. For every

q 2 DI , by definition,

R.AI I q/ � R.AI q/ �
� M

2q.logN/1=100

� q
M

>
1

2.logN/1=100
;

and hence in particular DI � EI .
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For any q 2 EI , we may therefore apply Lemma 4.3 with A replaced by AI , and k
chosen such that .logN/1=k D 2 log logN . This produces some dq such that qdq > jI j
and !.dq/ < 1

500
log logN (provided N is sufficiently large), andX

n2AI ; qdq jn
.qdq ;n=qdq/D1

qdq

n
�

1

.logN/1=100.log logN/2
:

By definition of AI , every n 2 AI with qdq j n must divide some x 2 I – in fact, they
must all divide the same x 2 I (call this xq 2 I , say), since all such x are in particular
divisible by qdq > jI j, which can divide at most one element in I .

Let
A
.q/
I D

° n

qdq
W n 2 AI with qdq j n and

�
qdq;

n

qdq

�
D 1

±
so that, assuming N is sufficiently large, R.A.q/I / � .logN/�1=99, say. We may therefore
apply Lemma 4.2 with "D 2

99
(note that since!.n/� 99

100
log logN for n2A and!.dq/ <

1
500

log logN , we must have !.m/ � 97
99

log logN for all m 2 A.q/I ). This implies thatX
r2Q

A
.q/
I

1

r
�
95

99
e�1 log logN:

Trivially, Q
A

.q/
I

� QA, and further by choice of xq , all r 2 Q
A

.q/
I

divide xq , and hence

X
r jxq

r2QA

1

r
�
95

99
e�1 log logN � 0:35 log logN:

For any two n1 ¤ n2 2 I , we haveX
q j .n1;n2/

1

q
� log log logN � 0:01 log logN

for N sufficiently large, by Lemma 4.1. It follows that if
P
q2QA

1
q
�

2
3

log logN , then
there can be at most one such possible value for xq 2 I as q ranges over EI , and hence
this common shared value of xq is an x 2 I divisible by all q 2 EI , and hence certainly
by all q 2 DI , as required.

Furthermore, since
P
q2QA

1
q
� .1C o.1// log logN � 1:01 log logN , say, there must

always be at most two distinct values of xq 2 I as q ranges over EI . If there is no x 2 I
divisible by all q 2 DI , there must be exactly two such values, say w1 and w2.

Let A.i/ D ¹n 2 A W n j wiº and A.0/ D An.A.1/ [ A.2//. Since every q 2 QA.1/

divides w1,X
q2Q

A.1/

1

q
�

X
q�N

1

q
�

X
q jw2

1

q
C

X
q j .w1;w2/

1

q
�

�
1 �

95

99
e�1 C o.1/

�
log logN:



On a density conjecture about unit fractions 4581

For large enough N , the right-hand side is � 2
3

log logN , and similarly for A.2/. Since
R.A.0// C R.A.1// C R.A.2// � R.A/, we are in the first case choosing B D A.1/ or
B D A.2/, unless R.A.0// � R.A/

3
. In this latter case, we will derive a contradiction.

Let A0 � A.0/ be the set of those n 2 AI \ A.0/ such that if n 2 Aq , then q 2 EI .
By definition of EI and Mertens’ estimate (1),

R.A.0/nA0/ �
jAnAI j

M
C

X
q2QAnEI

1

q
R.AI I q/�

log logN
.logN/1=100

;

and so in particular, since R.A/ � .logN/�1=101, we have R.A0/� .logN/�1=101.
In particular,

jA0j �
M

.logN/�1=101
:

Therefore, there must exist some x 2 I (necessarily x ¤ w1 and x ¤ w2 since A0 � A.0/)
such that, if A00 D ¹n 2 A0 W n j xº, then

jA00j � N 2= log logN .logN/�1=101;

and hence jA00j � N 3=2 log logN , say.
However, if n 2 A00, then both n j x and n j w1w2 (since every q with n 2 Aq is in EI

and so divides either w1 or w2), and hence n divides

.x; w1w2/ � .x; w1/.x; w2/ � jx � w1jjx � w2j � N
2:

Therefore, the size of A00 is at most the number of divisors of some fixed integerm � N 2,
which is at most N .1Co.1//2 log2= log logN (see [6, Theorem 2.11], for example), and hence
we have a contradiction for large enough N , since 2 log 2 < 3

2
.

Finally, to apply Proposition 3.1 we need to prepare our set A so that

R.A/ 2
h 2
k
�
1

M
;
2

k

�
and R.AI q/ � .logN/�1=100;

say. Both can be achieved using a greedy ‘pruning’ approach, adapted from the proof
of [2, Proposition 2].

Lemma 5.2. Let N be sufficiently large and A � Œ1; N �. There exists B � A such that

R.B/ � R.A/ �
1

.logN/1=200

and R.BI q/ � 2

.logN/1=100 for all q 2 QB .

Proof. We construct a sequence of decreasing sets A D A0 © A1 © � � � © Ai as follows.
Given some Ai , if there is a prime power qi 2 QAi

such that

R.Ai I qi / <
2

.logN/1=100
;
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then we let AiC1 D Ain.Ai /qi
. If no such qi exists, then we halt the construction. This

process must obviously terminate in some finite time (since some non-empty amount
of Ai is being removed at each step). Suppose that it halts at Aj D B , say. The amount
lost from R.A/ at step i isX

n2.Ai /qi

1

n
D

1

qi
R.Ai I qi / <

2

qi .logN/1=100
;

and furthermore each q � N can appear as at most one such qi , since after removing
.Ai /qi

anything left in Ai cannot have qi as a coprime divisor. It follows that

R.B/ > R.A/ �
2

.logN/1=100
X
q�N

1

q
� R.A/ �

1

.logN/1=200
;

since
P
q�N

1
q
� log logN .

Lemma 5.3. Suppose thatN is sufficiently large andN �M �N 1=2. Let ˛ > 2

.logN/1=200

and A � ŒM;N � be a set of integers such that

R.A/ � ˛ C
1

.logN/1=200

and if q 2QA, then q � M

.logN/1=100 . There is a subsetB �A such thatR.B/ 2 Œ˛ � 1
M
;˛/

and, for all q 2 QB ,

R.BI q/ �
1

.logN/1=100
:

Proof. We first apply Lemma 5.2 to produce some A0 � A such that

R.A0/ � ˛ and R.A0I q/ �
2

.logN/1=100

for all q 2 QA0 .
We now argue that wheneverD is such that R.D/ � ˛ and R.DI q/ � .logN/�1=100

for all q 2 QD , there exists some x 2 D such that

R.Dn¹xºI q/ � .logN/�1=100

for all q 2QD . Given this, the lemma immediately follows, since we can continue remov-
ing such elements from A0 one at time until R.B/ falls in the required interval.

To see why the above fact holds, apply Lemma 5.2 to obtain some B � D (such that
R.B/� .logN/�1=200, and hence in particular B is non-empty), and let x be any element
of B . If x 62Dq , then by definition R.Dn¹xºIq/D R.DIq/ � .logN/�1=100. If x 2Dq ,
then x 2 Bq , and so

R.Dn¹xºI q/ � R.BI q/ �
q

x
�

2

.logN/1=100
�
q

M
�

1

.logN/1=100

as required.
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We now have everything we need to prove Proposition 2.1. The idea is, after pruning
the set into a suitable form by repeated applications of Lemma 5.3, an application of
Proposition 5.1 ensures that the hypotheses of Proposition 3.1 are satisfied, which in turn
delivers a solution to R.S/ D 1

d
for some suitable d as required.

Proof of Proposition 2.1. LetM DN 1�1= log logN and di D dyeC i . By repeated applica-
tions of Lemma 5.3, we can find a sequenceA�A0�A1� � � � �At , where dt Dd z4e� 1,
such that

R.Ai / 2
h 2
di
�
1

M
;
2

di

�
and R.Ai I q/ � .logN/�1=100 for all q 2 QAi

:

(Note that the hypotheses of Lemma 5.3 continue to hold since

2

di
�
1

M
�

2

di C 1
C

1

.logN/1=200
�

3

.logN/1=200

for all 0 � i � t .) Let 0 � j � t be minimal such that there is a multiple of dj in Aj . Such
a j exists by assumption, since every n 2 A is divisible by some d 2 Œy; z

4
/.

Suppose first that case (2) of Proposition 5.1 holds for Aj . The hypotheses of Propos-
ition 3.1 are now met with k D dj , � D 1

2
.logN/1=100, and K D MN�2= log logN . This

yields some S � A0 � A such that R.S/ D 1
dj

as required.
Otherwise, Proposition 5.1 yields some B � Aj such that

R.B/ �
2

3dj
�
1

M
�

1

2dj
C .logN/�1=200

and where X
q2QB

1

q
�
2

3
log logN:

Let ei D 4dj C i and, once again, repeatedly apply Lemma 5.3 to find a sequence B �
B0 � � � � � Br , where er D bzc, such that

R.Bi / 2
h 2
ei
�
1

M
;
2

ei

�
and R.Bi I q/ � .logN/�1=100 for all q 2 QBi

:

By minimality of j , no d 2 Œy; dj / divides any element of Aj , and hence every n 2 Aj is
divisible by some e 2 Œ4dj ; z�. In particular, there must exist some 0 � s � r such that Bs
contains a multiple of es . Furthermore, sinceX

q2QBs

1

q
�

X
q2QB

1

q
�
2

3
log logN;

we must be in the second case of Proposition 5.1. The hypotheses of Proposition 3.1 are
now met with k D es and �, K as above, and thus there is some S � Bj � A such that
R.S/ D 1

es
.
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Appendix A. Pomerance’s lower bound

Recall that �.N / is the maximum of
P
n2A

1
n

asA ranges over thoseA� ¹1; : : : ;N ºwith
no subsets S � A such that

P
n2S

1
n
D 1. In this appendix, we present an observation

of Pomerance, as related in Croot’s Ph.D. thesis [1], which yields the best lower bound
for �.N / that we know of.

Theorem A.1. �.N /� .log logN/2.

Proof. Let C � 1 be some absolute constant, to be chosen later, and let A be the set of all
those n 2 ¹1; : : : ; N º such that, if p is the largest prime divisor of n, then p logp > Cn.
Considering the contribution to the sum from all those n with a fixed largest prime divisor
separately, we see that X

n2A

1

n
�

X
p�N= logN

1

p

X
m�logp=C

1

m

�

X
p�N= logN

log logp
p

� .log logN/2:

It remains to prove that there are no distinct n1; : : : ; nk 2 A such that

1

n1
C � � � C

1

nk
D 1:

Suppose otherwise, and fix such n1; : : : ; nk . Let p be the largest prime which divides any
of n1; : : : ; nk , and suppose (without loss of generality) n1 D pm1 < � � � < nl D pml are
all those ni divisible by p. Then

1

p

� 1
m1
C � � � C

1

ml

�
D 1 �

1

nlC1
� � � � �

1

nk
;

where the right-hand side is some fraction whose denominator is not divisible by p. There-
fore, p must divide the numerator of 1

m1
C � � � C

1
ml

, and hence p divides

Œm1; : : : ; ml �
� 1
m1
C � � � C

1

ml

�
;

where Œm1; : : : ; ml � is the lowest common multiple. Chebyshev’s estimate shows that
Œ1; : : : ; m� � eO.m/ for all large enough m, and hence

p � Œ1; : : : ; ml �
�
1C

1

2
C � � � C

1

ml

�
� .logml /eO.ml / � eO.ml /:

It follows that logp � O.ml /, and so nl D pml � p logp. By construction, however, p
is the largest prime divisor of nl , and hence p logp > Cnl , which is a contradiction for
a suitable choice of C .
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Appendix B. Formalisation of the proof (by Thomas F. Bloom, Bhavik Mehta)

All proofs contained in this paper, in particular the proofs of Theorem 1.2, have been
formally verified using the Lean proof assistant [3], in joint work with Bhavik Mehta.
This verification is complete, in that all prerequisites have also been verified, meaning
that the proofs of the main results of this paper have been formally checked down to an
axiomatic level.3 We use many prerequisite results from the Lean mathematical library
mathlib [8], a central repository of commonly used mathematical results and definitions
which is developed by a large volunteer community.4

B.1. The main results

We first present the actual Lean statements which have been formally proved; in some
Lean projects it is a non-trivial task to verify that the Lean theorems do indeed correspond
to the natural language theorems, and that one has actually proved what was intended.
Fortunately, the relatively elementary nature of the statements of Theorems 1.2 and 1.3
make this straightforward in this instance.

The following is the Lean statement of Theorem 1.2:

theorem unit_fractions_upper_density (A : set N) :
upper_density A > 0 !
9 (S : finset N), S � A ^ † n in S, (1 / n : Q) = 1

This is proved on line 1261 of final_results.lean. This statement is very close to its
natural language analogue, after one checks that upper_density means what it should.
The statements (A : set N) and (S : finset N) are type declarations, informing
Lean that A and S are a set and finite set respectively of natural numbers.

Note that we require further type information (called a ‘coercion’) when we write
(1 / n : Q) instead of simply 1 / n – this is because since n has type N, by default
Lean will interpret 1 / n as having type N also, performing a ‘natural number division’
where 1 / n is 0 for n > 1. To avoid this, we use an explicit coercion to Q so that Lean
knows we mean the rational 1

n
.

The following is the Lean statement of Theorem 1.3 (which is proved on line 2042 of
final_results.lean):

theorem unit_fractions_upper_log_density : 9 C : R,
8f (N : N) in at_top, 8 A � Icc 1 N,
C * log(log(log N)) / log(log N) * log N � † n in A, (1 / n : Q)
! 9 S � A, † n in S, (1 / n : Q) = 1

3The Lean code for this verification is freely available at https://github.com/b-mehta/unit-
fractions.

4This repository can be explored at https://leanprover-community.github.io/mathlib_docs/
index.html.

https://github.com/b-mehta/unit-fractions
https://github.com/b-mehta/unit-fractions
https://leanprover-community.github.io/mathlib_docs/index.html
https://leanprover-community.github.io/mathlib_docs/index.html
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This statement requires a little more interpretation. Namely, 8f (N : N) in at_top is
a Lean formalisation of the statement ‘for all sufficiently largeN 2N’. We write Icc 1 N
for Œ1; N � \N (the Icc stands for ‘Interval closed closed’). Otherwise, the statement is
as in Theorem 1.3.

Of course, every proposition and lemma in this paper also has a corresponding formal
statement. Indeed, the process of formalisation made it natural to divide a single proof
in this paper into multiple smaller claims, so the number of lemma statements is much
greater in the formalisation. To give another example of what the translation from natural
language mathematics to Lean looks like, the following is the formally verified Lean
version of Lemma 4.2 (line 1659 of aux_lemmas.lean):

lemma rec_qsum_lower_bound (" : R) (h"1 : 0 < ") (h"2 : " < 1/2) :
8f (N : N) in at_top, 8 A : finset N,
log N ^ (-" / 2) � rec_sum A !
(8 n 2 A, (1 - ") * log (log N) � (! n : R)) !
(8 n 2 A, (! n : R) � 2 * log (log N)) !
(1 - 2*") * exp (-1) * log (log N) �

† q in ppowers_in_set A, (1 / q : R)

Again, the reader should verify for their satisfaction that this does indeed state the same
thing as Lemma 4.2. The code rec_sum A is what is called R.A/ in the paper, and
ppowers_in_set A is what we have called QA. The coercion (! n : R) is required
since ! n is defined as a function from N!N, and we wish to compare it in an inequal-
ity with an element of R.

B.2. The proof

In total, the proof is spread out over five files with a total of 9255 lines of code. The
total amount of Lean code written for this project is larger than this, since there were
several classic elementary number theoretic results (for example, Mertens’ estimates and
Chebyshev’s estimate) that were also required. These more foundational results will be
included in mathlib, the central repository of Lean results.

The formal proofs follow very similar lines to the proofs as presented in this paper,
although of course are greatly expanded in length, as every claim, no matter how obvious
or elementary, must be explicitly written and checked. The formal verification of some
of these ‘obvious’ facts was perhaps the most tedious part of the formalisation process.
In particular, the ‘asymptotic’ type of quantitative estimates frequently implicitly used in
this paper, such as the fact that

1

logN
C

1

2.logN/1=100

�501
500

log logN
�
�

1

6.logN/1=101
;

for all sufficiently large N , are obvious after a moment of thought to any mathematically
mature human reader, but required a lengthy formal proof.
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One difference between this paper and the formalisation is that the ‘algorithmic’ style
or argument frequently used in this paper, such as that in the proof of Lemma 5.2, was
converted into a more formal inductive scheme. Although in principle Lean can formal-
ise a proof phrased as an algorithm that terminates in finite time, checking an inductive
hypothesis is much simpler and easier to structure. All of the algorithmic style proofs in
this paper were translated into suitable inductive analogues (although in some cases the
best inductive hypothesis to use for the simplest proof required some thought).

B.3. The process

The formalisation began in January 2022 and concluded in July 2022. At the beginning
of the formalisation, the first author had no experience with Lean at all, and learnt Lean
(or at least a sufficient subset of Lean) through the formalising process.

A very helpful intermediate step in the formalisation was the production of a ‘blue-
print’ of the paper, which contained expanded versions of all statements and proofs used
in this paper, including many ‘obvious’ steps that were omitted as is customary in the
mathematical literature. Some proofs were also reorganised with a view to what would be
the simplest order to formalise things in. This part of the process required no knowledge
of Lean, but was a necessary prerequisite to allow for a smooth translation from natural
language proofs to Lean proofs. The blueprint also had an accompanying diagram with
all dependencies indicated, which made it easy to organise the project and see what was
still to be done. To give an idea of the level of complexity of a formalisation of this length,
the final dependency graph for this project is shown in Figure 1.5

B.4. Reflections

This formalisation is a first in several respects: it is the first recent analytic number the-
ory result to be formally verified; the first instance of the circle method; the first solution
to a long-standing problem of Erdős. Part of the motivation for this formalisation was
as a proof of concept: the Lean proof assistant and accompanying mathlib is advanced
enough to make feasible the fast formalisation of new research results in mathemat-
ics, on the same timescale as the production of the ‘human-readable’ paper. Of course,
this was made feasible by the relatively elementary and self-contained nature of the
mathematics involved. Nonetheless, we believe that this arrangement, with a formal cer-
tificate of validation accompanying the human version of the paper, is a sign of things to
come.

5This blueprint is available at https://b-mehta.github.io/unit-fractions/blueprint/index.html. The
template for this blueprint was created by Patrick Massot, and was also used for other Lean formal-
isation projects, such as the Liquid Tensor project, https://github.com/leanprover-community/lean-
liquid.

https://b-mehta.github.io/unit-fractions/blueprint/index.html
https://github.com/leanprover-community/lean-liquid
https://github.com/leanprover-community/lean-liquid
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