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Abstract. We construct inverse spectral theory for finite rank Hankel operators acting on the Hardy
space of the upper half-plane. A particular feature of our theory is that we completely character-
ise the set of spectral data. As an application of this theory, we prove the genericity of turbulent
solutions of the cubic Szegő equation on the real line.
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1. Introduction

1.1. The cubic Szegő equation and Hankel operators

Let H 2.CC/ be the standard Hardy class in the upper half-plane, with the inner product
(linear in the first factor and anti-linear in the second) denoted by h�; �i. We will routinely
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identify functions f 2 H 2.CC/ with their boundary values on the real line, and with this
identification one has H 2.CC/ � L2.R/ as a closed subspace, h�; �i being the restriction
of the L2 inner product. Let PC be the orthogonal projection onto H 2.CC/ in L2.R/.

In [24, 25] Pocovnicu, by analogy with the unit circle case [6, 7] (which will be dis-
cussed later in Section 1.5), introduced and studied the cubic Szegő equation

i
@u

@t
D PC.juj

2u/; u D u.x; t/; x; t 2 R: (1.1)

Here, for every t 2 R, u.�; t / belongs to a suitable Sobolev class of functions inH 2.CC/.
Following the strategy of the unit circle case [6, 7], it was proven in [24, 25] that this
equation is completely integrable and possesses a Lax pair. The Lax pair involves the
anti-linear Hankel operator Hu on H 2.CC/, defined by

Huf D PC.u xf /; f 2 H 2.CC/I (1.2)

notice that the conjugate of f is always taken on the real line. It is well known that
the boundedness of Hu is equivalent to the inclusion u 2 BMOA.R/. By a version of
Kronecker’s theorem, the rationality of u is equivalent to Hu being finite rank. We refer
to [23] for the background on Hankel operators. Observe that while Hu is anti-linear, the
squareH 2

u is linear (and positive semi-definite). We will say that � > 0 is a singular value
of Hu if the corresponding Schmidt subspace

EHu.�/ D Ker.H 2
u � �

2I /

is non-trivial: EHu.�/ 6D ¹0º. The Lax pair formulation for (1.1) ensures, in particular,
that all singular values of Hu are integrals of motion of the Szegő equation. In order to
solve the Cauchy problem for the Szegő equation, one must develop a suitable version of
direct and inverse spectral theory for the Hankel operator Hu. In [24], this programme
was completely achieved when the symbol is rational and all singular values are simple
(i.e., all Schmidt subspaces EHu.�/ are one-dimensional).

The purpose of this paper is to extend the spectral analysis of [24] to the case of
multiplicities, i.e., to the case when the symbol is rational but the dimensions of the sub-
spaces EHu.�/ may be > 1. This requires a more detailed analysis of the structure of
these subspaces and of the action of Hu on them. Such analysis was performed in [11]
and is recalled later on in this introduction.

As an application of our spectral analysis, we prove the genericity of turbulent solu-
tions of the cubic Szegő equation on the line. In [24,25] it was proved that, for every s > 1

2
,

the initial value problem for (1.1) is globally well posed on the intersection W s;2.CC/
of H 2.CC/ with the Sobolev space W s;2.R/ on the line. Though the trajectories are
bounded inW 1=2;2.CC/ because of some conservation laws, they may not be bounded in
W s;2.CC/ if s > 1

2
. We shall call turbulent a solution of (1.1) with an unbounded traject-

ory in W s;2.CC/ for some s > 1
2

. An example of a turbulent solution is provided in [24]
as a rational solution with two poles such that the associated Hankel operator has a sin-
gular value of multiplicity 2. Using our spectral analysis, we are able to find many more
such turbulent rational solutions, leading to the following result.



Inverse problem for Hankel operators 4593

Theorem 1.1. There exists a dense Gı subset G of W 1;2.CC/ such that any solution u
of the cubic Szegő equation with initial datum in G satisfiesZ C1

1

k@xu.t/kL2

t2
dt D C1:

In the above statement, the regularity exponent 1 inW 1;2 is probably not essential but
it is technically easier to handle.

We close this paragraph by some comments about the phenomenon of turbulent solu-
tions for Hamiltonian equations, which has been actively studied by mathematicians in the
last two decades. Bourgain [1] asked whether there is a solution of the cubic defocusing
nonlinear Schrödinger equation on the two-dimensional torus T2 with initial data

u0 2 W
s;2.T2/; s > 1;

such that
lim sup
t!1

ku.t/kW s;2 D1:

There is still no complete answer to this question, despite a first partial result in this dir-
ection by Colliander–Keel–Staffilani–Takaoka–Tao [2]. Using this approach, Hani [17]
proved the existence of turbulent solutions for a totally resonant version of the cubic non-
linear Schrödinger equation on T2, and Hani–Pausader–Tzvetkov–Visciglia [18] estab-
lished the first – and, still at this time, the unique – example of solution of the tur-
bulent nonlinear Schrödinger equation, in the case of the cubic Schrödinger equation
on the cylinder T2 � R. In the direction of the growth of Sobolev norms for the non-
linear Schrödinger equation, let us also mention the works of Guardia [12], Guardia–
Kaloshin [15,16], Haus–Procesi [19], Guardia–Haus–Procesi [14], and more recently the
work of Guardia–Hani–Haus–Maspero–Procesi [13], which uses the integrable structure
of the defocusing cubic nonlinear Schrödinger equation on the one-dimensional torus.

The phenomenon of growth of Sobolev norms also occurs for two-dimensional incom-
pressible Euler equations: the sharp double exponentially growing vorticity gradient on
the disc was constructed by Kiselev–Šverak [21], and the existence of exponentially grow-
ing vorticity gradient solutions on the torus was shown by Zlatoš [28]. It also has been
recently observed by Schwinte and Thomann [27] for a system of two lowest Landau level
equations.

At this stage, observe that the above results provide examples of turbulent solutions
without establishing their genericity. In fact, as far as we know, the only equation where
genericity of turbulent solutions has been proved before Theorem 1.1 is the cubic Szegő
equation on the circle [5, 8].

1.2. Model spaces and isometric multipliers

Before recalling relevant results from [11], we need to talk about model spaces inH 2.CC/
and isometric multipliers on them. Let � be an inner function in the upper half-plane
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(i.e., � 2 H1.CC/ and j�.x/j D 1 for a.e. x 2 R). We will only be concerned with the
case when � is a finite Blaschke product, i.e.,

�.x/ D ei˛
mY
jD1

x � aj

x � aj
; x 2 CC; (1.3)

where ei˛ is a unimodular complex number and the parameters aj satisfy Im aj > 0.
The model space K� � H 2.CC/ is defined by

K� D H
2.CC/ \ .�H

2.CC//
?
I

here
�H 2.CC/ D ¹�f W f 2 H

2.CC/º

and the orthogonal complement is taken in L2.R/. It is clear that f 2 H 2.CC/ belongs
to K� if and only if � xf 2 H 2.CC/. When � is a finite Blaschke product (1.3), the model
space K� is finite-dimensional and can be explicitly described by

K� D
°p.z/
q.z/

; degp 6 m � 1
±
; q.z/ D

mY
jD1

.x � aj /;

where p represents any polynomial of degree 6 m � 1 (see, e.g., [4, Corollary 5.18]).
In particular, all elements of K� are rational functions.

Let S.�/ be the semigroup on H 2.CC/ defined by

.S.�/f /.x/ D ei�xf .x/; x 2 CC; � > 0: (1.4)

Further, let P� be the orthogonal projection onto K� , and let S� .�/ be Beurling–Lax
semigroup on K� , defined by

S� .�/f D P� .S.�/f /; f 2 K� ; � > 0 (1.5)

(see Section 2 for a more detailed discussion). This is a strongly continuous contractive
semigroup and therefore, by the theory of [20], it can be written as

S� .�/ D e
i�A� ; � > 0; (1.6)

where A� is the infinitesimal generator of S� .�/. For a general inner function � , the
operator A� may be unbounded, but under our assumption of rationality of � the oper-
ator A� is easily seen to be bounded and of finite rank. Furthermore, it is dissipative, i.e.,
ImhA�f; f i > 0 for every f in K� .

Let p be a holomorphic function in CC. It is called an isometric multiplier on K� if
for every f 2 K� , we have pf 2 H 2.CC/ and

kpf k D kf k 8f 2 K� :

In this case, we can consider the subspace

pK� D ¹pf W f 2 K�º:
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We note that the choice of the parameters p, � in the representation pK� for this subspace
is not unique. In fact, if p (resp. zp) is an isometric multiplier on K� (resp. on Kz� ), then
(see, e.g., [3, Theorem 10])

pK� D zpKz�

if and only if for some jwj < 1 and some unimodular constants ei˛ , eiˇ we have

z� D ei˛
w � �

1 � xw�
; zp D eiˇ

1 � xw�p
1 � jwj2

p: (1.7)

The transformation � 7! z� , p 7! zp is called a Frostman shift.

1.3. The Schmidt subspaces of Hankel operators

The relevance of these objects to Hankel operators transpires from the following result.

Theorem 1.2 ([11]). Let u 2 BMOA.R/ and let � > 0 be a singular value of Hu. Then
there exist an inner function  and an isometric multiplier p onK such that the Schmidt
subspace EHu.�/ is represented as

EHu.�/ D pK :

Moreover, there exists a unimodular constant ei˛ such that the action of Hu on EHu.�/
is given by

Hu.ph/ D �e
i˛pH h; h 2 K : (1.8)

In particular, by normalising p and suitably (see (1.7)), one can always achieve ei˛D1.

We note that H acts on K in a simple explicit way,

H h D  xh; h 2 K ;

because  xh 2 H 2.CC/ and so PC. xh/ D  xh.

1.4. Direct and inverse spectral problems for Hankel operators with rational symbols

Let u be a rational symbol, analytic in the upper half-plane. We normalise u so that
u.1/D 0 (subtracting a constant from u does not change the Hankel operatorHu). It fol-
lows that u 2 H 2.CC/.

First note that we have the commutation relation

S.�/�Hu D HuS.�/; � > 0: (1.9)

In fact,Hu is a Hankel operator if and only if it satisfies this relation. It follows from (1.9)
that the kernel ofHu is an invariant subspace for S.�/ and therefore, by the Beurling–Lax
theorem [22],

either RanHu D H 2.CC/ or RanHu D K�
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for some inner function � . For rational symbols u, the range of Hu is finite-dimensional,
and so we have the second possibility here with some rational inner function � . Further,
the range of Hu is closed, so finally we have

RanHu D K�

with some finite Blaschke product � . It will be convenient to normalise � so that

�.1/ D 1:

Let A� be the corresponding infinitesimal generator as in (1.6).
Let us denote the singular values of Hu by �1 > �2 > � � � > �N > 0; to each of these

singular values there corresponds a Schmidt subspaceEHu.�n/, which may have arbitrary
finite dimension. According to Theorem 1.2, we have

EHu.�n/ D pnK n ; n D 1; : : : ; N; (1.10)

where  1; : : : ;  N are finite Blaschke products in CC and each pn is an isometric multi-
plier on K n (in fact, each pn is a rational function, see Section 3.2). We will normalise
each  n so that  n.1/ D 1.

The “direct spectral problem” for Hu is given by the following theorem.

Theorem 1.3. Let u be a rational function analytic in the closed upper half-plane and
going to zero at infinity. Then

� For all n, the vector u 2 H 2.CC/ is not orthogonal to EHu.�n/.

� Denoting by un the orthogonal projection of u onto EHu.�n/, we have

Huun D �ne
i'nun

for some unimodular constants ei'n .

� The numbers
!n WD hA�un; uni; n D 1; : : : ; N

have strictly positive imaginary parts.

Next, we introduce the spectral data corresponding to a rational symbol u,

.¹�nº
N
nD1; ¹ nº

N
nD1; ¹e

i'nº
N
nD1; ¹!nº

N
nD1/: (1.11)

Here �n, ei'n and !n are defined in the previous theorem and  n are defined in (1.10).
According to the discussion of Section 1.2, the inner functions  n are defined only up
to Frostman shifts. So it would be more precise to say that the spectral data contains the
orbits of  n under all Frostman shifts, but for notational convenience we will be talking
about representatives  n of these orbits. Moreover, it will turn out that our solution to the
inverse problem is independent of the choice of a representative.

Now we can state, somewhat informally, one of our main results; the precise state-
ments are Theorems 5.5 and 6.2 below.
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Theorem 1.4. (i) Uniqueness: A rational symbol u is uniquely determined by the spectral
data (1.11). In fact, u is given by an explicit formula (5.17) below.

(ii) Surjectivity: Let N 2 N, and let

� �1 > � � � > �N > 0 be any positive real numbers,

�  1; : : : ;  N be any finite Blaschke products,

� ei'1 ; : : : ; ei'N be any unimodular complex numbers,

� !1; : : : ; !N be any complex numbers with positive imaginary parts.

Then there exists a rational symbol u such thatHu corresponds to the spectral data (1.11).

If all singular values �n are simple, we recover the result of Pocovnicu [24]. In this
case, the spectral data do not contain inner functions  n. Let us explain this. If �n is
simple, then  n is a single Blaschke factor

 n.x/ D
x � an

x � an
; an 2 CC:

By using a Frostman shift, an can be changed to any given number in CC. In other words,
in this case the orbit of  n by the action of Frostman shifts consists of all single Blaschke
factors, and so this orbit does not contain any information apart from the fact that the
dimension of the corresponding Schmidt subspace is one. In Section 5.9, we give a more
detailed comparison with the spectral data of [24].

Observe that the isometric multipliers pn are not part of our spectral data; in fact, they
can be explicitly determined from the spectral data, see Section 5.7.

1.5. The unit circle case

The Szegő equation (1.1) was originally introduced in [6, 7], where it was considered for
functions u defined on the unit circle; u was assumed to be in a suitable Sobolev subspace
of the Hardy space H 2.D/, where D is the unit disc. In this context, PC becomes the
orthogonal projection in L2.T / onto H 2.D/, often called the Szegő projection (hence
the name for the equation). In fact, [6, 7] provided the blueprint for the study of the Lax
pair structure of [24, 25]. More precisely, in the unit circle case the Szegő equation is
completely integrable and possesses a Lax pair, which involves a Hankel operator Hu
in H 2.D/. Solving the equation reduces to a solution of a direct and inverse spectral
problem for Hu. Despite many similarities, we would like to stress some important dif-
ferences between the unit circle and the real line cases:

� The choice of the spectral data in the unit circle case is very different. It involves
introducing an auxiliary Hankel operator (denoted by Ku in [7]) and looking at its
singular values and Schmidt subspaces.

� The property u 6? EHu.�n/ of Theorem 1.3 is false in the unit circle case! Roughly
speaking, in the unit circle case for about half of the singular values (the ones termed
K-dominant in [7]) we have u ? EHu.�n/.
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Our proof of the second part of Theorem 1.4 is strongly inspired by [10], where a new
“algebraic” approach to the inverse spectral problem on the unit circle was developed.

1.6. The structure of the paper

In Section 2, we recall various well-known facts from the theory of model spaces, fo-
cussing on K� with rational � . In Section 3, we consider the set-up

pK � K� ;

where p is an isometric multiplier on K and derive identities relating the infinitesimal
generators A� and A . Although model spaces is a well-studied subject, some of our
results here appear to be new.

In Section 4, we introduce Hankel operators and prove Theorem 1.3. The key ingredi-
ent here is the commutation relation (recall that �.1/ D 1)

A�H
2
u �H

2
uA� D

i

2�
h�;Huui.1 � �/ �

i

2�
h�; uiu:

In Section 5, we prove the uniqueness part of Theorem 1.4 by giving an explicit expression
for u.x/ in terms of the spectral data. Our starting point is the formula

u.x/ D h.A�� � x/
�1u; 1 � �i; Im x > 0;

which follows directly from the fact that 1� � is the “reproducing kernel ofK� at infinity”
(see Lemma 2.5 below). We then consider the action of A� on the model space K� D
RanHu, represented as the orthogonal sum

K� D

NM
nD1

pnK n : (1.12)

We use the results of Section 3 and the above commutation relation forA� to show thatA�
has a rather special block-matrix structure in this representation. Using this block-matrix
structure, we express the resolvent .A�

�
� x/�1 in terms of our spectral data.

In Sections 6 and 7, we prove the last part of Theorem 1.4. Here we use the “algebraic”
approach of [10]. Namely, we take u given by the explicit expression established at the
previous step of the proof and check directly that the corresponding operator Hu has the
“correct” spectral data. An important step in the proof is checking that the functions pn,
given by certain explicit matrix formulas, are isometric multipliers on K n . Here we are
guided by intuition coming from Sarason’s work [26], which gives a general represent-
ation formula for all isometric multipliers on a given model space. Lemma 7.2 provides
a partial extension of this formula to the matrix case.

Section 8 is devoted to describing the evolution of the spectral data (1.11) of a solution
of the cubic Szegő equation (1.1). Finally, in Section 9, we combine the previous results
to prove Theorem 1.1.
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2. Model spaces

Almost all of this section is either well known or folklore; see, e.g., the monograph [4].
Some of the facts that we need are easy to find in the literature but for the case of the Hardy
spaces on the unit disc rather than the upper half-plane. In any case, for completeness we
present all necessary statements with simple proofs.

2.1. Model spaces

In what follows, we denote by H 2 the standard Hardy class in the upper half-plane CC.
Let v� , � 2 CC, be the reproducing kernel in H 2,

v� .x/ D
1

2�i

1

x� � x
;

so that f .�/ D hf; v� i for every f 2 H 2. Let � be a finite Blaschke product in CC, and
let K� be the corresponding model space

K� D H
2
\ .�H 2/?:

Further, let P� be the orthogonal projection inH 2 ontoK� ; it is straightforward to obtain
(see, e.g., [4, Proposition 5.14]) that P� is given by

P� W f 7! f � �PC.x�f /; f 2 H 2: (2.1)

Let S.�/ and S� .�/ be semigroups (1.4), (1.5), and let A� be the infinitesimal generator
of S� .�/ as in (1.6). For � 2 CC, the following resolvents are well defined and bounded
on K� :

.A� � x�/
�1
D �i

Z 1
0

S� .�/e
�i�x�d�;

.A�� � �/
�1
D i

Z 1
0

S� .�/
�ei��d�;

see, e.g., [20]. Using the definition of S� and computing the integrals, we see that these
resolvents can be expressed as

.A� � x�/
�1f D �2�iP� .f v� /; (2.2)

.A�� � �/
�1f D 2�iPC.f v� / D

f .x/ � f .�/

x � �
: (2.3)

Lemma 2.1. The operator A� is completely non-self-adjoint, i.e., there is no non-trivial
subspace N � K� , invariant for A� , where A� is self-adjoint.

Proof. From the definition of S.�/, it follows that

lim
�!1

kS.�/�f k D 0
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for any f 2 H 2. Since �H 2 is invariant under S.�/, the model space K� is invariant
under S.�/�, and therefore S� .�/�f D S.�/�f for any f 2 K� . Thus, we also have

lim
�!1

kS� .�/
�f k D 0

for any f 2 K� . It follows that S� .�/� is completely non-unitary on K� , i.e., there is no
non-trivial subspace N � K� , invariant for S� .�/� for all � > 0 and such that S� .�/� is
unitary on N for all � > 0. From here we get the claim.

We write �.1/ D limjxj!1 �.x/; clearly, we have j�.1/j D 1. In what follows,
we normalise � so that �.1/ D 1.

Lemma 2.2. Let � be a finite Blaschke product and �.1/ D 1. Then 1 � � 2 K� .

Proof. For h 2 H 2, we have

h�h; 1 � �i D hh; x�.1 � �/i D hh; x� � 1i D 0:

It follows that 1 � � is orthogonal to �H 2, and so it belongs to K� .

Lemma 2.3. Let � be a finite Blaschke product and �.1/D 1. Then for any f 2K� and
for any � 2 CC, we have

f .�/ D
1

2�i
hf; .A� � x�/

�1.1 � �/i; (2.4)

.H�f /.�/ D �
1

2�i
h.A�� � �/

�1.1 � �/; f i:

Proof. We have

f .�/ D hf; v� i D hf; P�v� i D hf; P� .v� .1 � �//i

because P� .�v� / D 0. By (2.2),

hf; P� .v� .1 � �//i D
1

2�i
hf; .A� � x�/

�1.1 � �/i;

which yields (2.4). Similarly,

H�f .�/ D h� xf ; v� i D h�v� ; f i D hPC.�v� /; f i D �hPC..1 � �/v� /; f i

D �
1

2�i
h.A�� � �/

�1.1 � �/; f i;

where we have used (2.3) at the last step.

Corollary 2.4. Let � be a finite Blaschke product and �.1/D 1. Then the linear span of
each of the two sets

¹.A� � x�/
�1.1 � �/º�2CC ; ¹.A

�
� � �/

�1.1 � �/º�2CC

is dense in K� .
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2.2. Behaviour at infinity

For a rational function f with the Laurent expansion

f .x/ D a0 C
a1

x
C
a2

x2
C � � � ; jxj ! 1;

at infinity, we will denote

ƒ1.f / D a1; ƒ2.f / D a2:

Lemma 2.5. Let � be a finite Blaschke product and �.1/D 1. For any f 2K� , we have

ƒ1.f / D �
1

2�i
hf; 1 � �i; ƒ2.f / D �

1

2�i
hA��f; 1 � �i;

and, in particular,

ƒ1.�/ D
1

2�i
k1 � �k2; ƒ2.�/ D

1

2�i
hA�� .1 � �/; 1 � �i: (2.5)

Proof. Since A� is bounded, we can expand the resolvent in (2.4), which yields

f .x/ D �
1

2�i

1

x
hf; 1 � �i �

1

2�i

1

x2
hA��f; 1 � �i CO

� 1
x3

�
as jxj ! 1. This yields the required identities.

2.3. Formulas for A� and A�
�

Lemma 2.6. Let � be a finite Blaschke product and �.1/ D 1. Then the operator A�
on K� satisfies the identities

A�f .x/ D xf .x/ �ƒ1.f /�.x/ D xf .x/C
1

2�i
hf; 1 � �i�.x/; (2.6)

A��f .x/ D xf .x/ �ƒ1.f / D xf .x/C
1

2�i
hf; 1 � �i; (2.7)

ImA� D
1

4�
h�; 1 � �i.1 � �/: (2.8)

Proof. Let A� be the operator given by the right-hand side of (2.6). We need to check that
for all f 2 K� , 


 1

i�
.S� .�/ � I /f � A�f




! 0; � ! 0C: (2.9)

First we observe that for all � > 0 and any h 2 K� ,Z 1
�1

ei�x � 1

i�x
�.x/h.x/ dx D 0; (2.10)

since
ei�x � 1

i�x
2 H 2 and � xh 2 H 2:



P. Gérard, A. Pushnitski 4602

Using this, we compute

1

i�
h.S� .�/ � I /f; hi D

1

i�
h.S.�/ � I /f; hi D

Z 1
�1

ei�x � 1

i�x
xf .x/h.x/ dx

D

Z 1
�1

ei�x � 1

i�x
.xf .x/ �ƒ1.f /�.x//h.x/ dx

D

Z 1
�1

ei�x � 1

i�x
A�f .x/h.x/ dx;

and thereforeD 1
i�
.S� .�/ � I /f � A�f; h

E
D

Z 1
�1

�ei�x � 1
i�x

� 1
�
A�f .x/h.x/ dx:

By the Cauchy–Schwarz inequality,ˇ̌̌D 1
i�
.S� .�/ � I /f � A�f; h

Eˇ̌̌2
6 kgk2

Z 1
�1

ˇ̌̌ei�x � 1
i�x

� 1
ˇ̌̌2
jA�f .x/j

2dx;

and the integral in the right-hand side tends to zero as �! 0C by dominated convergence.
This yields (2.9).

Similarly, let A�
�

be the operator given by the right-hand side of (2.7); we need to
check that 


 1

i�
.S.�/� � I /f � A��f




! 0; � ! 0C;

for all f 2 K� . This is achieved by following the same line of reasoning, with the only
difference that instead of (2.10) we use the identityZ 1

�1

e�i�x � 1

i�x
h.x/ dx D 0; � > 0; g 2 K� ;

because both factors in the integral are complex conjugates of elements of H 2.
Finally, (2.8) follows by subtracting (2.7) from (2.6).

2.4. The action of Frostman shifts

Let  be a finite Blaschke product. Here we compute the action of Frostman shifts (1.7)
on various quantities relevant to the subsequent analysis of inverse problems. First note
that if we require that  .1/D z .1/D 1, this fixes the unimodular constant ei˛ in (1.7),
so we obtain

z D
1 � xw

w � 1

w �  

1 � xw 
; jwj < 1: (2.11)

Next, observe that the function i 1C 
1� 

is a Herglotz function, i.e., it maps the upper half-
plane into itself. As a rational Herglotz function, it admits the representation

i
1C  .x/

1 �  .x/
D Ax C B C

X
j

cj

j̨ � x
; Im x > 0;



Inverse problem for Hankel operators 4603

where A > 0, B 2 R, cj > 0, j̨ 2 R, and the sum is finite; the points j̨ are the solutions
to the equation  .x/ D 1. Recalling that

k1 �  k2 D 2�iƒ1. / (2.12)

and renormalising, we obtain the representation

i
k1 �  k2

4�

1C  .x/

1 �  .x/
D x C B C

X
j

cj

j̨ � x
; Im x > 0; (2.13)

with the same conditions on the parameters B , cj , j̨ .

Lemma 2.7. Let be a finite Blaschke product with .1/D 1, and let z be as in (2.11).
Then

k1 � z k2 D
1 � jwj2

j1 � wj2
k1 �  k2; (2.14)

i
k1 � z k2

4�

1C z 

1 � z 
D i
k1 �  k2

4�

1C  

1 �  
C

1

2�

Imw

j1 � wj2
k1 �  k2: (2.15)

Proof. Computing the asymptotics of z at infinity, comparing with the asymptotics of  
and using (2.12), we obtain (2.14). After this, the proof of (2.15) is direct algebra.

This lemma shows that under the Frostman shift, only the constant B in representa-
tion (2.13) changes. The next lemma gives more precise information about this constant.

Lemma 2.8. Let  be a finite Blaschke product with  .1/ D 1. Then

i
k1 �  k2

4�

1C  .x/

1 �  .x/
D x �

RehA .1 �  /; 1 �  i
k1 �  k2

CO
� 1
x

�
(2.16)

as jxj ! 1. As a consequence, the function

i
k1 �  k2

4�

1C  .x/

1 �  .x/
C

RehA .1 �  /; 1 �  i
k1 �  k2

(2.17)

is invariant under the Frostman shifts  7! z as in (2.11).

Proof. Using (2.12) and expanding the function at infinity, we get

i
k1 �  k2

4�

1C  .x/

1 �  .x/
D �

1

2
ƒ1. /

2C ƒ1. /
x
CO. 1

x2
/

�
ƒ1. /
x
�
ƒ2. /

x2
CO. 1

x3
/

D x
1C ƒ1. /

2x
CO. 1

x2
/

1C ƒ2. /
xƒ1. /

CO. 1
x2
/

D x �

�
ƒ2. /

ƒ1. /
�
ƒ1. /

2

�
CO

� 1
x

�
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as jxj ! 1. By (2.5), (2.12) and (2.8), the constant term in the above formula trans-
forms as

ƒ2. /

ƒ1. /
�
ƒ1. /

2
D
hA� .1 �  /; 1 �  i

k1 �  k2
�

1

4�i
k1 �  k2 D

RehA .1 �  /; 1 �  i
k1 �  k2

;

which yields (2.16). By Lemma 2.7, function (2.17) changes by a constant under the
Frostman shift. By (2.16), this constant is zero.

3. Isometric multipliers on model spaces

In this section, we consider the following scenario: � is a finite Blaschke product,  is an
inner function in CC and p is an isometric multiplier onK . We assume that pK � K�
and derive some identities relating the infinitesimal generators A� and A . Although the
results of this section are relatively straightforward, the set-up is rather special and hard
to locate in the literature.

3.1. Formula for the projection onto pK 

Let  be a non-constant inner function in CC, and let p be an isometric multiplier onK .
Denote M D pK and let PM be the orthogonal projection onto M . First we need a for-
mula for PM .

Lemma 3.1. Let f 2 H 2 be such that xpf 2 L2.R/. Then

PMf D pPC. xpf / � p PC. xp x f /: (3.1)

Proof. Using formula (2.1) for the orthogonal projection P onto K , we see that the
right-hand side of (3.1) can be written as

pPC. xpf / � p PC. xp x f / D pP PC. xpf /:

It is clear that the right-hand side here is in pK . It remains to check that its difference
with f is orthogonal to pK . For h 2 K , we have

hf � pP PC. xpf /; phi D hf; phi � hP PC. xpf /; hi D hf; phi � h xpf; hi D 0;

as required.

3.2. Projecting onto M D pK in K�

Here we work out formulas for projections of various functions onto M D pK in K� .

Lemma 3.2. Let  and � be non-constant inner functions in CC, and let p be an iso-
metric multiplier on K . Assume that pK � K� and that � is a finite Blaschke product.
Then both  and p are rational (in particular,  is also a finite Blaschke product). Fur-
thermore,

p � p.1/ 2 K� : (3.2)
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Proof. It is easy to compute the reproducing kernel of K (cf., e.g., [4, Section 5.5]):

F� .x/ WD P v� .x/ D
1

2�i

1 �  .�/ .x/

x� � x
:

Since F� 2 K and pK � K� , we see that pF� is rational with .pF� /.1/ D 0. Mul-
tiplying by .x� � x/, we find that the function

.1 �  .�/ .x//p.x/

is rational. Since this is true for any � 2 CC and  is non-constant, we conclude that
both p and  p are rational. Since p is not identically zero, we finally conclude that  is
also rational.

Let us prove (3.2). Take some h 2 K withƒ1.h/ 6D 0, for example, hD 1� (if  
is normalised by  .1/ D 1), see (2.5). By (2.7), we have

A�� .ph/ � pA
�
 h D xp.x/h.x/ �ƒ1.ph/ � p.x/.xh.x/ �ƒ1.h//

D p.x/ƒ1.h/ �ƒ1.ph/ D .p.x/ � p.1//ƒ1.h/:

Here the left-hand side is in K� , and so the right-hand side is also in K� .

Lemma 3.3. Let  and � be finite Blaschke products with  .1/D �.1/D 1, and let p
be an isometric multiplier on K . Assume that M D pK � K� . Then

PM .1 � �/ D p.1/p.1 �  /

and

kPM .1 � �/k D jp.1/jk1 �  k: (3.3)

Proof. By formula (3.1), we have

PM .1 � �/ D pPC. xp.1 � �// � p PC. xp x .1 � �//:

Let us compute the two terms in the right-hand side. We have

xp.1 � �/ D . xp � p.1//.1 � �/C p.1/.1 � �/

D . xp � p.1// � �. xp � p.1//C p.1/.1 � �/:

By (3.2), the first term in the right-hand side is anti-analytic and the second term is inH 2,
so we get

PC. xp.1 � �// D ��. xp � p.1//C p.1/.1 � �/ D p.1/ � � xp: (3.4)

Next, we have

xp x .1 � �/ D xp. x � 1/ � � xp. x � 1/C xp.1 � �/:
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Since p. � 1/ 2 pK � K� , we have � xp. x � 1/ 2 H 2. Thus, using (3.4),

PC. xp x .1 � �// D �� xp. x � 1/C PC. xp.1 � �// D �� xp. x � 1/C p.1/ � � xp:

Combining this, we obtain

PM .1 � �/ D p.p.1/ � � xp/ � p .p.1/ � � xp � � xp. x � 1//

D .1 �  /p.p.1/ � � xp/C � jpj2. x � 1/ D p.1/p.1 �  /;

as claimed. Computing the norms and using the isometricity of p, we obtain (3.3).

Lemma 3.4. Assume the hypothesis of the previous lemma. Then

PM .p � p.1// D ~p.1 �  /

with some ~ 2 C.

Unlike in the previous lemma, we do not have a direct argument for it, nor an expres-
sion for the constant ~. Our proof requires two intermediate steps.

Lemma 3.5. Assume the hypothesis of Lemma 3.3 and let � 2 CC. Then

PM .A
�
� � �/

�1.p.1 �  // D cp.A� � �/
�1.1 �  /

with some c 2 C.

Proof. The statement of the lemma is equivalent to the following one. Let f 2 pK ,
f ? p.A� � �/

�1.1 �  /; then

f ? .A�� � �/
�1.p.1 �  //: (3.5)

Write f D ph, h 2 K ; then condition f ? p.A� � �/
�1.1 �  / is equivalent to h ?

.A� � �/
�1.1 �  /. We have

hf; .A�� � �/
�1.p.1 �  //i D h.A� � x�/

�1.ph/; p.1 �  /i;

and, by (2.2),

.A� � x�/
�1.ph/ D �2�iP� .phv� / D �2�iphv� C w; w 2 �H 2:

It follows that

h.A� � x�/
�1.ph/; p.1 �  /i D �2�ihphv� ; p.1 �  /i: (3.6)

We would like to use the isometricity of p in the right-hand side of (3.6). In order to
be able to do so, we must check that hv� is in K . Let g 2 H 2; consider

hhv� ;  gi D hh; v� gi D hh;PC.v� g/i:
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Further, we have

PC.v� g/.x/ D
1

2�i

 .x/g.x/ �  .�/g.�/

x � �

D
1

2�i
 .x/

g.x/ � g.�/

x � �
C

1

2�i
g.�/

. .x/ � 1/ � . .�/ � 1/

x � �

D  zw C
1

2�i
g.�/.A� � �/

�1. � 1/;

where zw 2 H 2. Now

hh;PC.v� g/i D hh; zwi �
1

2�i
g.�/hh; .A� � �/

�1.1 �  /i D 0;

where the first term in the right-hand side vanishes because h 2 K and the second term
vanishes because of our condition on h. Thus, we have checked that hv� 2 K .

We come back to (3.6),

hphv� ; p.1 �  /i D hhv� ; 1 �  i D �.2�i/ƒ1.hv� /;

where we have used Lemma 2.5 at the last step. Finally, we have h.x/ D O. 1
x
/ and

v� .x/ D O.
1
x
/ at infinity, and therefore ƒ1.hv� / D 0. We have checked (3.5); the proof

is complete.

Lemma 3.6. Assume the hypothesis of Lemma 3.3 and let � 2 CC. Then

PM .A
�
� � �/

�1.p � p.1// D c0p.A� � �/
�1.1 �  / (3.7)

with some c0 2 C.

Proof. We have, from (2.3),

.A�� � �/
�1.p.1 �  // D

p.x/.1 �  .x// � p.�/.1 �  .�//

x � �

D p.x/
.1 �  .x// � .1 �  .�//

x � �

C .1 �  .�//
.p.x/ � p.1// � .p.�/ � p.1//

x � �

D p.A� � �/
�1.1 �  /C .1 �  .�//.A�� � �/

�1.p � p.1//:

Let us applyPM to both sides of this identity. Observing that p.A� � �/
�1.1� /2pK 

and using the previous lemma, we obtain

cp.A� � �/
�1.1� /D p.A� � �/

�1.1� /C .1� .�//PM .A
�
� � �/

�1.p �p.1//:

Rearranging, we obtain the required identity with c0 D c�1
1� .�/

.

Proof of Lemma 3.4. We have the strong convergence

��.A�� � �/
�1
! I; j�j ! 1; (3.8)

and the same is true for the resolvent of A� . Applying this to (3.7), we obtain the required
result.
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3.3. Relation between A� and A 

Theorem 3.7. Let  and � be finite Blaschke products normalised so that  .1/ D
�.1/ D 1. Let p be an isometric multiplier on K ; assume that M D pK � K� . Then
there exists a constant c 2 C such that for any h1; h2 2 K , we have

hA� .ph1/; ph2i D hA h1; h2i C chh1; 1 �  ih1 �  ; h2i: (3.9)

Moreover,

hA�PM .1 � �/; PM .1 � �/i

kPM .1 � �/k2
D
hA .1 �  /; 1 �  i

k1 �  k2
C ck1 �  k2; (3.10)

and
1

4�
kPM .1 � �/k

2
D

1

4�
k1 �  k2 C Im ck1 �  k2: (3.11)

Proof. By complex conjugation, (3.9) is equivalent to

hA�� .ph2/; ph1i D hA
�
 h2; h1i C xchh2; 1 �  ih1 �  ; h1i: (3.12)

Let us prove the last identity. By (2.7), we have

A�� .ph2/.x/ � p.x/A
�
 h.x/ D xp.x/h2.x/ �ƒ1.ph2/ � p.x/.xh2.x/ �ƒ1.h2//

D �ƒ1.ph2/C p.x/ƒ1.h2/ D .p.x/ � p.1//ƒ1.h2/:

Let us apply PM to both sides here and use Lemmas 3.4 and 2.5:

PMA
�
� .ph2/ � pA

�
 h2 D ~p.1 �  /ƒ1.h2/ D �

~

2�i
p.1 �  /hh2; 1 �  i:

Denote
xc D �

~

2�i
I

taking the inner product with ph1 and using the isometricity of p on K , we arrive
at (3.12).

In order to prove (3.10), it suffices to take h1 D h2 D p.1/.1 �  / in (3.9) and
divide by kPM .1 � �/k2, using Lemma 3.3. Taking imaginary part and using (2.8), we
arrive at (3.11).

4. Direct spectral problem: Proof of Theorem 1.3

Throughout this section, u is a bounded rational symbol with no poles in the closed upper
half-plane, normalised so that u.1/ D 0 and Hu is the Hankel operator (1.2). Further-
more, � is the finite Blaschke product such that

RanHu D K�

and normalised by �.1/ D 1.
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4.1. Commutation relations for Hu and A�

Lemma 4.1. Let u, � be as above. Then Hu.1 � �/ D u. Furthermore,

A��Hu D HuA� ; (4.1)

A�H
2
u �H

2
uA� D

i

2�
h�;Huui.1 � �/ �

i

2�
h�; uiu: (4.2)

Proof. Let v� be the reproducing kernel of H 2, then

Huv� .x/ D
1

2�i

u.x/ � u.�/

x � �
: (4.3)

Comparing (4.3) with (2.3), we find that

Huv� D
1

2�i
.A�� � �/

�1u:

By (3.8), it follows that

k.2�i�/Huv� C uk ! 0; j�j ! 1;

and so u 2 RanHu D K� . Using this, we obtain

Hu.1 � �/ D PC.u � ux�/ D PCu D u:

Next, the kernel of Hu is �H 2 and therefore Hu.I � P� / D 0. It follows that for any
f 2 K� ,

HuS.�/f D HuP�S.�/f D HuS� .�/f:

Thus, restricting the commutation relation (1.9) onto K� , we obtain

S� .�/
�Hu D HuS� .�/

or equivalently
e�i�A

�
�Hu D Hue

i�A� :

Differentiating this with respect to � at � D 0 and taking into account the anti-linearity
of Hu, we arrive at (4.1).

The proof of (4.2) is a twice repeated application of (4.1) and (2.8). We have

A�H
2
u D .A� � A

�
� C A

�
� /H

2
u D

i

2�
h�;H 2

u .1 � �/i.1 � �/C A
�
�H

2
u

D
i

2�
h�;Huui.1 � �/CHuA�Hu:

Further, using the anti-linearity of Hu,

HuA�Hu D Hu.A� � A
�
� C A

�
� /Hu D �

i

2�
h1 � �;Hu�iHu.1 � �/CHuA

�
�Hu

D �
i

2�
h�; uiuCH 2

uA� :

Combining these identities, we obtain (4.2).
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4.2. The action of Hu on the cyclic subspace generated by 1 � �

As in the introduction, we denote by �1 > � � � > �N > 0 the singular values ofHu and by
EHu.�j / the corresponding Schmidt subspaces. We set for brevity Ej WD EHu.�j / and
denote by Pj the orthogonal projection ontoEj . Observe thatHu commutes withH 2

u and
therefore it commutes with Pj . We also set g D 1 � � and

gj WD Pjg; uj WD Pju:

By the previous lemma, we have Hug D u and therefore Hugj D uj .

Lemma 4.2. For any j , none of the elements g, u, Huu are orthogonal to Ej . Further-
more, we have

Huuj D �j e
i'j uj ; Hugj D �j e

�i'j gj (4.4)

for some unimodular constants ei'j .

Proof. Since HuEj D Ej (see Theorem 1.2), the three conditions g ? Ej , u ? Ej and
Huu ? Ej are equivalent to each other.

Suppose, to get a contradiction, that for some j we have Pjg D 0, i.e., the three
orthogonality conditions above hold. For f 2Ej , applying the commutation relation (4.2),
we get

A�H
2
uf D H

2
uA�f;

which can be rewritten as
H 2
uA�f D �A�f:

Thus, A�f 2 Ej , and so we obtain that Ej is an invariant subspace for A� . Further,
by (2.8), we get A�

�
f D A�f for any f 2 Ej . This contradicts the complete non-self-ad-

jointness of A� (see Lemma 2.1).
Let us prove that Huuj and uj are collinear. Let f 2 Ej \ u?j ; then

hA�H
2
uf; uj i � hH

2
uA�f; uj i D �

2
j hA�f; uj i � �

2
j hA�f; uj i D 0:

By the commutation relation (4.2), this yields f ? Huu, hence f ? Huuj . Thus, we get

Ej \ u
?
j � Ej \ .Huuj /

?:

Both of these subspaces are non-trivial and have codimension one in Ej . We conclude
that these two subspaces must coincide, which means that uj and Huuj are collinear.

Since
kHuuj k

2
D hH 2

uuj ; uj i D �
2
j kuj k

2;

from the previous step we get the first one of relations (4.4) with some unimodular con-
stant ei'j . Substituting uj D Hugj , we obtain the second relation in (4.4).
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4.3. Proof of Theorem 1.3

The first two statements of the theorem are already proved in Lemmas 4.1 and 4.2.
It remains to prove the third one. Using (4.1), we obtain

!j D hA�Hugj ;Hugj i D hgj ;HuA�Hugj i D hgj ; A
�
�H

2
ugj i

D �2j hA�gj ; gj i: (4.5)

Further, using (2.8),

Im!j D �
2
j ImhA�gj ; gj i D

�j
2

4�
jhgj ; gij

2
D
�2j kgj k

4

4�
> 0: (4.6)

4.4. The matrix structure of A�

In preparation for our discussion of the inverse problem in the next section, here we dis-
cuss the matrix structure of A� with respect to the orthogonal decomposition (1.12).
It turns out that the off-diagonal entries of the matrix of A� are rank one. We compute
these entries here. Recall that Pj be the orthogonal projection in K� onto Ej .

Lemma 4.3. For all j 6D k, we have

PkA�Pj D
i

2�

�2j � �j�ke
i.'j�'k/

�2j � �
2
k

h�; gj igk : (4.7)

Proof. Let fj 2Ej and fk 2Ek ; then, taking the bilinear form of the second commutation
relation in Lemma 4.1, we obtain

.�2j � �
2
k/hA�fj ; fki D

i

2�
hfj ;Huuj ihgk ; fki �

i

2�
hfj ; uj ihuk ; fki:

Recall that

uj D Hugj D �j e
�i'j gj ; Huuj D H

2
ugj D �

2
j gj :

Substituting this into the above formula and dividing by �2j � �
2
k

, we obtain

hA�fj ; fki D
i

2�

�2j � �j�ke
i.'j�'k/

�2j � �
2
k

hfj ; gj ihgk ; fki;

as required.

We note here that the diagonal entries PjA�Pj have more complicated structure, to
be discussed in the next section.
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5. Inverse spectral problem: The spectral data and uniqueness

5.1. Preliminaries and notation

The aim of this section is to prove the uniqueness part of Theorem 1.4 and to give an
explicit formula for the symbol u (and other objects) in terms of the spectral data (1.11).
In order to motivate these formulas, we make some preliminary remarks and calculations.
We follow the notation of the previous subsection; in particular, u, � , �j , Ej , ei'j , !j ,
gj , uj are as above. We also denote for brevity

�j D kgj k:

Then formula (4.6) becomes

Im!j D
�2j �

4
j

4�
I (5.1)

in particular, �j is determined by the spectral data (1.11).
First observe that by (2.4), we have

w.x/ D
1

2�i
h.A�� � x/

�1w; gi; Im x > 0; (5.2)

for any w 2 K� . Applying this to u and recalling that by Lemma 4.2,

u D

NX
kD1

uk D

NX
kD1

�ke
�i'kgk ;

we find

u.x/ D
1

2�i

NX
kD1

�ke
�i'k h.A�� � x/

�1gk ; gi

D
1

2�i

NX
k;jD1

�ke
�i'k h.A�� � x/

�1gk ; gj i: (5.3)

Thus, u.x/ will be determined if we compute all matrix entries

h.A�� � x/
�1gk ; gj i: (5.4)

This leads us to the consideration of the matrix structure of A�
�

in the orthogonal decom-
position (1.12). We have computed the off-diagonal entries of A�

�
in this decomposition

in the previous section. Here we start by discussing the diagonal entries.
In this section, we will use some matrix notation which we explain here. Below h�; �i

is the inner product in CN . We denote by 11; : : : ; 1N the standard basis in CN , and
1 D .1; : : : ; 1/> 2 CN . If .˛1; : : : ; ˛N / are complex numbers, we will denote by D.˛/
the diagonal N �N matrix with ˛1; : : : ; ˛N on the diagonal.
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5.2. Diagonal elements of A�
�

Here we consider the operatorPkA��Pk acting inEk . Recall that by Theorem 3.7, we have

hA� .pjh/; pjwi D hA j h;wi C cj hh; 1 �  j ih1 �  j ; wi; h; w 2 K j ; (5.5)

with some constants cj . Further, by Lemma 3.3, we have

gk D pk;1pk.1 �  k/; (5.6)

where pk;1 D pk.1/.

Lemma 5.1. For Im x > 0, we have

Rk.x/ WD h.PkA
�
�Pk � xI /

�1gk ; gki D
�2
k

k1 �  kk2
1 �  k.x/

1
2�i
C ck.1 �  k.x//

: (5.7)

Proof. Let us compute the vector

f D .PkA
�
�Pk � xI /

�1gk

by solving the equation

PkA
�
�f � xf D gk ; f 2 Ek :

Using (5.6) and writing f D pkh, our equation becomes

PkA
�
� .pkh/ � xpkh D pk;1pk.1 �  k/:

Let us take an inner product of this with an arbitrary element pkw 2 Ek , w 2 K k :

hA�� .pkh/; pkwi � xhh;wi D pk;1h1 �  k ; wi:

Using (5.5), we obtain

h.A� k � xI /h;wi C ckhh; 1 �  kih1 �  k ; wi D pk;1h1 �  k ; wi:

Since w 2 K k is arbitrary, this implies

.A� k � x/hC ckhh; 1 �  ki.1 �  k/ D pk;1.1 �  k/:

Let us apply .A� k � x/
�1 and take the inner product with 1 �  k :

hh; 1 �  ki C ckhh; 1 �  kih.A
�
 k
� x/�1.1 �  k/; 1 �  ki

D pk;1h.A
�
 k
� x/�1.1 �  k/; 1 �  ki:

By (2.4), we have

1 �  k.x/ D
1

2�i
h.A� k � x/

�1.1 �  k/; 1 �  ki;
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and therefore our equation becomes

hh; 1 �  ki
� 1

2�i
C ck.1 �  k.x//

�
D pk;1.1 �  k.x//:

Finally,

Rk.x/ D hpkh; gki D pk;1hh; 1 �  ki D jpk;1j
2 1 �  k.x/

1
2�i
C ck.1 �  k.x//

:

Computing the norm in (5.6), we obtain

�k D kgkk D jpk;1jkpk.1 �  k/k D jpk;1jk1 �  kk:

Putting this together, we arrive at the required formula.

5.3. Matrix elements of the resolvent of A�
�

Here we compute the matrix entries (5.4). First let us introduce notation for the (normal-
ised) matrix elements of A� with respect to the vectors gj ,

Akj WD
1

�2j �
2
k

hA�gj ; gki:

The off-diagonal entries have already appeared in the right-hand side of (4.7):

Akj D
i

2�

�2j � �j�ke
i.'j�'k/

�2j � �
2
k

; j 6D k: (5.8)

The diagonal entries are given by (4.5), viz.

Ajj D
!j

�2j �
4
j

D
!j

4� Im!j
: (5.9)

Next, for any x in the open upper half-plane we define an N � N matrix Q.x/ as fol-
lows:

Qkj .x/ D .A
�/kj ; k 6D j; (5.10)

Qkk.x/ D
1

Rk.x/
; (5.11)

where Rk.x/ is defined in the previous lemma. The following lemma is nothing but some
linear algebra.

Lemma 5.2. For any n, m, we have

h.A�� � x/
�1gm; gni D hQ.x/

�1
1m;1ni: (5.12)

Proof. Fix m and denote f D .A�
�
� x/�1gm. Our aim is to compute hf; gni; the ele-

ment f satisfies the equation
.A�� � x/f D gm: (5.13)
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Let us write f D
PN
jD1 fj with fj 2 Ej . For every j , we have

A��fj D
X
k 6Dj

.A�/kj hfj ; gj igk C PjA
�
�Pjfj :

Thus, our equation (5.13) becomes a system

.PkA
�
�Pk � x/fk C

X
j 6Dk

.A�/kj hfj ; gj igk D ıkmgk ; k D 1; : : : ; N:

Inverting PkA��Pk � x, we get

fk C
X
j 6Dk

.A�/kj hfj ;gj i.PkA
�
�Pk � x/

�1gk D ıkm.PkA
�
�Pk � x/

�1gk ; kD 1; : : : ;N:

Let us take the inner product with gk and use the notation Rk.x/:

hfk ; gki C
X
j 6Dk

.A�/kj hf; gj iRk.x/ D ıkmRk.x/; k D 1; : : : ; N:

Denote � D .�1; : : : ; �N /> 2 CN , �k D hfk ; gki; then we obtain

1

Rk.x/
�k C

X
j 6Dk

.A�/kj �j D ıkm; k D 1; : : : ; N:

By the definition of Q.x/, this rewrites as

Q.x/� D 1m:

Thus, � D Q.x/�11m and

h.A�� � x/
�1gm; gni D hf; gni D �n D h�;1ni D hQ.x/

�1
1m;1ni;

as required.

5.4. Expression for Q.x/ in terms of the spectral data

We have defined the diagonal entries of Q.x/ in terms of Rk.x/, and expression (5.7)
for Rk.x/ involves the constants ck . It is not obvious that Q.x/ can be expressed entirely
in terms of the spectral data (1.11). Let us show that this can be done.

First we need some notation. For every j and Im x > 0, we define

bj .x/ D
1

�2j

�
i
k1 �  j k

2

4�

1C  j .x/

1 �  j .x/
C

RehA j .1 �  j /; 1 �  j i
k1 �  j k2

� x
�
: (5.14)

Clearly, bj is determined by the spectral data; we recall that �2j D
p
4� Im!j
�j

. By (2.13)
and Lemma 2.8, this is a rational Herglotz function with the representation

bj .x/ D
X
k

cjk

j̨k � x
(5.15)
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with some cjk > 0 and j̨k 2R. Again by Lemma 2.8, this function is Frostman-invariant
(i.e., invariant with respect to the action of Frostman shifts on  j ).

Let Q.x/ be as defined by (5.10), (5.11). Recall that D.˛/ WD diag¹˛1; : : : ; ˛N º.

Lemma 5.3. The matrix Q.x/ can be expressed in terms of the spectral data by

Q.x/ D A� � xD.�2/�1 �D.b.x//; Im x > 0: (5.16)

Proof. For the off-diagonal entries, (5.16) evidently agrees with (5.10). The issue is only
to check that the diagonal entries agree. First we compute, using (4.5), (5.6) and (5.5):

Re!k
�2
k
�2
k

�
RehA k .1 �  k/; 1 �  ki

k1 �  kk2

D
RehA�gk ; gki
kgkk2

�
RehA k .1 �  k/; 1 �  ki

k1 �  kk2

D
RehA� .pk.1 �  k//; pk.1 �  k/i

kpk.1 �  k/k2
�

RehA k .1 �  k/; 1 �  ki
k1 �  kk2

D
RehA� .pk.1 �  k//; pk.1 �  k/i

k1 �  kk2
�

RehA k .1 �  k/; 1 �  ki
k1 �  kk2

D
Re ckk1 �  kk4

k1 �  kk2
D k1 �  kk

2 Re ck :

Writing the diagonal entry of the right-hand side of (5.16) and using the last formula,
we get

Akk �
x

�2
k

� bk.x/ D Re Akk � i Im Akk �
x

�2
k

� bk.x/

D
Re!k
�2
k
�4
k

�
i

4�
C

1

4�i

k1 �  kk
2

�2
k

1C  k.x/

1 �  k.x/

�
RehA k .1 �  k/; 1 �  ki

�2
k
k1 �  kk2

D
k1 �  kk

2

�2
k

Re ck �
i

4�
C

1

4�i

k1 �  kk
2

�2
k

1C  k.x/

1 �  k.x/
:

On the other hand, let us compute 1
Rk.x/

and use (3.11),

1

Rk.x/
D
k1 �  kk

2

�2
k

� 1

2�i

1

1 �  k.x/
C ck

�
D
k1 �  kk

2

�2
k

�
Re ck C

1

4�i

�2
k

k1 �  kk2
C

i

4�
C

1

2�i

1

1 �  k.x/

�
D �

i

4�
C
k1 �  kk

2

�2
k

�
Re ck C

1

4�i

1C  k.x/

1 �  k.x/

�
:

Putting this together, we obtain the required identity.
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Remark 5.4. Note that in the simple spectrum case, by performing a Frostman shift in
each subspace pjK j , we can choose

 j .x/ D
x � i

x C i

for all j . Then a calculation shows that k1 �  j k2 D 4� and the formula for Q.x/
becomes

Q.x/ D A� � xD.�2/�1:

5.5. Uniqueness and formula for u

Now we can put it all together and give a formula for u in terms of the spectral data. The
theorem below is more precise form of Theorem 1.4 (i).

Theorem 5.5. Let u be a bounded rational function without poles in the closed upper
half-plane, normalised so that u.1/ D 0. Then u is uniquely determined by the spectral
data (1.11) according to the following formula:

u.x/ D
1

2�i
hQ.x/�1D.�/D.e�i'/1;1i; Im x > 0: (5.17)

Here

Q.x/ D A� � xD.�2/�1 �D.b.x//;

where the matrix A is defined by

Akj D
i

2�

�2j � �j�ke
i.'j�'k/

�2j � �
2
k

; j 6D k;

Ajj D
!j

�2j �
4
j

D
!j

4� Im!j
;

and bj are the functions defined by (5.14).

Proof. Combining (5.3) with (5.12) gives

u.x/ D
1

2�i

NX
k;jD1

�ke
�i'k hQ.x/�11k ;1j i D

1

2�i
hQ.x/�1D.�/D.e�i'/1;1i;

as required.

5.6. Formula for gj

For our proof of surjectivity in the following sections, we will need a formula for gj ,
which appeared in the proof of the above theorem. It will be convenient to have it in the
vector form.
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Lemma 5.6. The vector
g.x/ D .g1.x/; : : : ; gN .x//>

can be expressed in terms of the spectral data by

g.x/ D
1

2�i
.Q.x/>/�11: (5.18)

Proof. As in the proof of Theorem 5.5, takingwD gk in (5.2) and using (5.12), we obtain

gk.x/ D
1

2�i
h.A�� � x/

�1gk ; gi D
1

2�i
hQ.x/�11k ;1i

D
1

2�i
h.Q.x/>/�11;1ki:

Writing this in the vector form, we obtain (5.18).

5.7. Formula for pj

For our proof of surjectivity in the following sections, it will be convenient to have a for-
mula for the isometric multiplier pj in the representation Ej D pjK j . First let us fix
the unimodular multiplicative constant in the definition of pj . By (1.8), this can be done
so that

Hu.pjh/ D �jpj j xh; h 2 K j : (5.19)

This does not fix pj uniquely but up to a factor of˙1 (observe that (1.8) is invariant under
the change p 7! �p).

Take h D 1 �  j in (5.19),

Hu.pj .1 �  j // D ��jpj .1 �  j /:

On the other hand, (4.4) gives the equation Hugj D �j e�i'j gj and (5.6) gives a relation
between gj and pj .1 �  j /. Putting this together, after a little algebra we obtain

ei'j D �
pj;1

pj;1
: (5.20)

Next, by (5.6) again we find

pj D
1

pj;1

gj

1 �  j
:

Taking into account (5.20), this becomes

pj D ˙ie
�i'j =2

1

jpj;1j

gj

1 �  j
D ˙ie�i'j =2

k1 �  j k

�j

gj

1 �  j
; (5.21)

where the sign˙ remains undetermined.
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5.8. Formula for �.x/

Below, we give a formula for �.x/, Imx > 0, in terms of the spectral data. We do not need
this formula in the rest of the paper, and so we give it without proof. Along with Q.x/,
consider the matrix

Q#.x/ D A � xD.�2/�1 �D.b.x//; Im x > 0I

the difference with Q.x/ is that here we take A instead of A�. The matrix Q#.x/ is
no longer necessarily invertible in CC. The inner function � can be recovered from the
spectral data by the formula

�.x/ D
detQ#.x/

detQ.x/
; Im x > 0:

The idea of the proof is to start from formula

1 � � D

NX
jD1

gj D

NX
jD1

pj;1pj .1 �  j /;

express pj according to (5.21) and rearrange the result using some matrix algebra similar
to the one of Section 7.1 below.

5.9. Comparison with [24]

For the reader’s convenience, we compare the spectral data of Pocovnicu’s paper [24]
(where the case of singular values of multiplicity one was considered) with the one of this
paper. In [24], notation 
j is used for Re!j and �j is used for 'j . Notation �j and �j
in [24] have the same meaning as here. The spectral data in [24] is

.¹2�2j �
2
j º
N
jD1; ¹4��

2
j º
N
jD1; ¹2'j º

N
jD1; ¹Re!j ºNjD1/I

these are the generalised action-angle variables for the Szegő equation. Taking into ac-
count (5.1), we see that this spectral data is in a one-to-one correspondence with our
spectral data (1.11).

6. Inverse spectral problem: The surjectivity of the spectral map

6.1. The set-up

Suppose we are given N 2 N, and the spectral data (1.11), where

� 0 < �1 < �2 < � � � < �N are real numbers;
� ¹ j º

N
jD1 are finite Blaschke products with the normalisation condition  j .1/ D 1;

� ¹ei'j ºNjD1 are unimodular complex numbers;

� ¹!j º
N
jD1 are complex numbers with positive imaginary parts.



P. Gérard, A. Pushnitski 4620

We define the numbers �j > 0 so that (4.6) holds, i.e.,

4� Im!j D �
2
j �
4
j :

With these parameters, let us define the N � N matrices A, Q.x/ as in Section 5.5.
Since

Q.x/ D A� � xD.�2/�1 �D.b.x//

and, by Lemma 2.8,

b.x/ D O
� 1
x

�
; jxj ! 1;

we find that

.Q.x//�1 D �
1

x
D.�2/CO

� 1

jxj2

�
; jxj ! 1: (6.1)

Theorem 6.1. For every x 2 CC, the matrix Q.x/ is invertible. Furthermore,

sup
x2CC

kQ.x/�1k <1:

Observe that as a consequence, the radial limits

lim
"!0C

Q.x C i"/�1

exist for a.e. x 2R. We now define u.x/ by formula (5.17). It is evident that u is a rational
function; by (6.1), we have u.x/! 0 as jxj!1. Furthermore, by Theorem 6.1, u.x/ has
no poles in the closed upper half-plane. The main result of this section is the following.

Theorem 6.2. The Hankel operatorHu corresponds to the spectral data (1.11) according
to Theorem 5.5.

The main step of the proof is as follows. Let us define the functions gj .x/ by (5.18).
By definition, these are rational functions going to zero at infinity and by Theorem 6.1
they do not have poles in the closed upper half-plane. Thus, gj 2 H 2 for all j .

Theorem 6.3. The eigenvalue equations

Hugj D �j e
�i'j gj ; j D 1; : : : ; N;

or in the vector form,

PC.uxg/ D D.�/D.e�i'/g; (6.2)

hold true.

In this section, we prove Theorems 6.1 and 6.3. In the following section, we prove
Theorem 6.2.
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6.2. Algebraic properties of the matrix A

For convenience of notation and also to make the connection with Hankel operators more
transparent, let us define the anti-linear operator H in CN by

Hf D D.�/D.e�i'/ xf ; xf D .f1; : : : ; fN /
>: (6.3)

Lemma 6.4. The matrix A satisfies

Im A D
1

4�
h�;1i1; (6.4)

A�H D HA: (6.5)

Proof. First let us check (6.4). For j 6D k, we have

1

2i
.Akj �Ajk/ D

1

2i

i

2�

1

�2j � �
2
k

.�2j � �j�ke
i'j e�i'k � �2k C �j�ke

�i'kei'j /

D
1

4�
;

which agrees with the right-hand side of (6.4). For j D k, we have

Im Ajj D
1

4�
;

which again agrees with (6.4). The second identity (6.5) can be written as

Ajk�j e
�i'j D Akj�ke

�i'k

in terms of the matrix entries. For j 6D k, the matrix A satisfies this relation by an inspec-
tion of the definition of Ajk ; for j D k this relation is trivially true.

Lemma 6.5. The eigenvalues of A lie in the open upper half-plane.

Proof. Since by (6.4) we have Im A > 0, the question reduces to proving that A has no
real eigenvalues. Assume, to get a contradiction, that Ker.A� �I/ 6D ¹0º for some � 2R.
Since Im A > 0, from here we easily check that

Ker.A � �I/ D Ker.A� � �I/:

Now let f 2 Ker.A � �I/; by (6.5), we have

A�Hf D �Hf;

i.e., .A� ��I/Hf D 0, and therefore .A��I/Hf D 0. Thus, we see that Ker.A � �I/
is an invariant subspace of H . It follows that it is also an invariant subspace of the lin-
ear Hermitian operator H2 D D.�/2. It is also clear from (6.4) that Ker.A � �I/ is
orthogonal to the vector 1. But this vector is clearly cyclic for D.�/2. This contradiction
completes the proof.
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6.3. Proof of Theorem 6.1

Let � � ¹1; : : : ; N º; we shall denote by P� the orthogonal projection from CN onto the
j� j-dimensional subspace

¹x 2 CN
W xs D 0 for s … �º:

We shall denote by CC the closed upper half-plane Im z > 0.

Lemma 6.6. Let A be an N � N matrix such that for any subset L � ¹1; : : : ; N º, and
for all ˇ` 2 CC, ` 2 L, the jLj � jLj matrix

D.ˇ/C PLAP �L

is invertible. Then
sup

˛1;:::;˛N2CC

k.D.˛/CA/�1k <1:

Proof. Assume, to get a contradiction, that there exist sequences ˛.n/ 2 .CC/N and
X .n/ 2 CN such that kX .n/k D 1 for all n and

k.D.˛.n//CA/X .n/k ! 0; n!1:

After extracting a subsequence, we can achieve

X .n/ ! X; kXk D 1:

Furthermore, again extracting subsequences, we can split the index set ¹1; : : : ; N º into
disjoint subsets J [ L as follows:

J D ¹j 2 ¹1; : : : ; N º W j˛
.n/
j j ! 1; n!1ºI

L D ¹` 2 ¹1; : : : ; N º W ˛
.n/

`
! ˛` 2 CCº:

Now for every j 2 J , we have

˛
.n/
j X

.n/
j C .AX .n//j ! 0;

as n!1, and therefore

˛
.n/
j X

.n/
j ! �.AX/j :

It follows that X .n/j ! 0 as n!1, and so Xj D 0.
Next, for every ` 2 L, we have

˛
.n/

`
X
.n/

`
C .AX .n//` ! 0;

which yields

˛`X` C .AX/` D 0:
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Denoting ˇ` D ˛`, ` 2 L, this can be written as

D.ˇ/PLX C PLAX D 0:

But by the previous step, X D P �LPLX , and so we obtain

D.ˇ/PLX C PLAP �LPLX D 0:

By the assumption of the invertibility, we conclude PLX D 0, and so X D 0 – con-
tradiction!

Proof of Theorem 6.1. It suffices to prove the corresponding statement forQ.x/� in place
of Q.x/. Further, since

Q.x/� D A � xxD.�2/�1 �D.b.x//�;

and Im.x��2j C bj .x// > 0 for all x 2CC, it suffices to prove that for any �1; : : : ; �N 2CC
the matrix ACD.�/ is invertible and

sup
�1;:::;�N2CC

k.ACD.�//�1k <1:

Let us show that this follows from the previous lemma. For �j 2 CC, write �j D j̨ C i ǰ
with j̨ 2 R, ǰ > 0. First, notice that Lemma 6.5 remains valid if we replace A by
ACD.˛/. Next, since

Im.ACD.�// D Im ACD.ˇ/ > 0;

it is clear that all eigenvalues of ACD.�/ lie in CC. If .ACD.�//f D �f for some
� 2 R, then taking the imaginary part of the quadratic form, we obtain ImhAf; f i D 0,
and so � is an eigenvalue of A C D.˛/, which is impossible. Thus, all eigenvalues of
ACD.�/ lie in CC.

Finally, considering any square submatrix of A, we observe that it has the same struc-
ture as A itself, and so the above argument applies to this submatrix. It follows that the
hypothesis of Lemma 6.6 is satisfied, and we arrive at the required result.

6.4. Orthogonality of gj

Our aim here is to prove that gj form an orthogonal set in H 2, normalised by

kgj k D �j :

In view of (5.18), this is a consequence of the following.

Lemma 6.7. For any X; Y 2 CN , we have

1

4�2

Z 1
�1

hQ.x/�1X;1ihQ.x/�1Y;1i dx D hD.�2/X; Y i: (6.6)
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Proof. As a first step, let us prove the identity

ImQ.x/�1 D
1

4�
Q�.x/�1.h�;1i1/Q.x/�1 for a.e. x 2 R. (6.7)

Recall that
Q.x/ D A� � xD.�2/�1 �D.b.x//;

and Im bj .x/ D 0 for a.e. x 2 R. It follows that

ImQ.x/ D Im A� D � Im A D �
1

4�
h�;1i1 for a.e. x 2 R.

From here we get the required identity (6.7).
Next, observe that by (6.7), the integrand in the left-hand side of (6.6) rewrites as

1

4�2
hQ.x/�1X;1ihQ.x/�1Y;1i D

1

�
hImQ.x/�1X; Y i

D
1

2�i
.hQ.x/�1X; Y i � hQ.x/�1Y;Xi/

for a.e. x 2 R. Therefore, the left-hand side in (6.6) rewrites as

1

2�i
lim
R!1

Z R

�R

hQ.x/�1X; Y i dx �
1

2�i
lim
R!1

Z R

�R

hQ.x/�1Y;Xi dx:

Deforming the integration contour from Œ�R; R� to the upper semi-circle of radius R
centered at the origin and using (6.1), we obtain

1

2�i
lim
R!1

Z R

�R

hQ.x/�1X; Y i dx D
1

2
hD.�2/X; Y i;

and, by complex conjugation,

1

2�i
lim
R!1

Z R

�R

hQ.x/�1Y;Xi dx D �
1

2
hD.�2/X; Y i:

Putting this together, we obtain (6.6).

6.5. The action of Hu on gj

Our aim here is to prove Theorem 6.3. We recall that by our definitions,

u.x/ D

NX
jD1

�j e
�i'j gj .x/ D hD.�/D.�/g.x/;1i: (6.8)

Lemma 6.8. Let f 2 L2.R/ be such that xf 2 L2.R/. Then

PC.xf / D xPC.f /C
1

2�i

Z 1
�1

f .x/ dx:
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Proof. We have

f .z/ D
1

2�i

Z 1
�1

f .x/

x � z
dx;

and therefore

PC.xf /.z/ � zPC.f /.z/ D
1

2�i

Z 1
�1

xf .x/

x � z
dx �

1

2�i

Z 1
�1

zf .x/

x � z
dx

D
1

2�i

Z 1
�1

f .x/ dx;

as required.

Lemma 6.9. We have the identity

.A � xD.�2/�1/PC.uxg/ � PC.uD.b/xg/ D
1

2�i
D.�/D.e�i'/1 �

u.x/

2�i
1: (6.9)

Proof. By the definition of g (cf. (5.18)), we have

Q>.x/g.x/ D
1

2�i
1: (6.10)

Let us take the complex conjugate of this equation, multiply by u.x/ and apply PC:

PC.uQ
�
xg/ D �

1

2�i
u1:

By the definition of Q.x/ and by using Lemma 6.8, we rewrite the left-hand side as

PC.uQ
�
xg/ D APC.uxg/ � PC.xuD.�

2/�1xg/ � PC.D.b/uxg/

D .A � xD.�2/�1/PC.uxg/ �
1

2�i
D.�2/�1

Z 1
�1

u.x/g.x/ dx

� PC.D.b/uxg/:

Observe that by (6.10), we have Q>.x/g.x/ 2 H1, and also by the definition of g.x/,
we have xg.x/ 2 H1; thus, all the expressions above are well defined.

By (6.8) and the orthogonality of gj , we getZ 1
�1

u.x/g.x/ dx D D.�2/D.�/D.e�i'/1:

Putting this together, we obtain the required identity.

Lemma 6.10. We have the identity

Q�.x/D.�/D.e�i'/g.x/ D
1

2�i
D.�/D.e�i'/1 �

u.x/

2�i
1 (6.11)

for a.e. x 2 R.
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Proof. Since Im A D 1
4�
h�;1i1 and D.b/ is real on R, we have

Q�.x/D.�/D.e�i'/g.x/ D .A �A� CA� � xD.�2/�1 �D.b//D.�/D.e�i'/g.x/

D
2i

4�
hD.�/D.e�i'/g.x/;1i1CQ.x/D.�/D.e�i'/g.x/

for a.e. x 2 R. By (6.8),

2i

4�
hD.�/D.e�i'/g.x/;1i1 D �

u.x/

2�i
1:

Further, by the commutation relation (6.5), we see that Q.x/ satisfies

D.�/D.e�i'/Q.x/> D Q.x/D.�/D.e�i'/:

Using this formula, we obtain

Q.x/D.�/D.e�i'/g.x/ D D.�/D.e�i'/Q>.x/g.x/ D
1

2�i
D.�/D.e�i'/1;

where we have used (6.10) at the last step. Putting this together, we obtain the required
identity.

The next lemma involves multiplication by bj .x/ on the real axis. Here we need to
proceed with caution because bj .x/ has poles on the real axis, see (5.15). We claim that

D.b.x//Q.x/�1 2 H1.CC/ and D.b.x//u.x/ 2 H1.CC/: (6.12)

Indeed, from Q.x/ D A� � xD.�2/�1 �D.b.x// it is clear that Q.x/ has singularities
at the same points as D.b.x//, and so these singularities cancel out. As an alternative
argument, one can write

I D .A� � xD.�2/�1/Q.x/�1 �D.b.x//Q.x/�1; x 2 CCI

by Theorem 6.1, one finds that the product D.b.x//Q.x/�1 is bounded outside a neigh-
bourhood of infinity. On the other hand, this product is bounded in the neighbourhood of
infinity because both factors are bounded there. This gives the first inclusion in (6.12); the
second one follows by recalling that definition (5.17) of u.x/ involves Q.x/�1.

Lemma 6.11. We have the identity

PC.Q
�.x/�1PC.uD.b/xg// D PC.Q

�.x/�1D.b/PC.uxg//:

Note that by (6.12), both sides here are well defined.

Proof. Let us take the inner product of the left-hand side of the required identity with an
arbitrary element f 2 H 2:

hPCQ
�.x/�1PC.uD.b/xg/; fi D hPC.uD.b/xg/;Q.x/�1fi

D huD.b/xg;Q.x/�1fi D huxg;D.b/Q.x/�1fi:
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Since D.b/Q.x/�1 2 H1, we have

huxg;D.b/Q.x/�1fi D hPC.uxg/;D.b/Q.x/�1fi
D hQ�.x/�1D.b/PC.uxg/; fi D hPC.Q�.x/�1D.b/PC.uxg//; fi:

This proves the required identity.

Proof of Theorem 6.3. Let us apply Q�.x/�1 to both sides of (6.11) and then use (6.9):

D.�/D.e�i'/g.x/ D Q�.x/�1
� 1

2�i
D.�/D.e�i'/1 �

u.x/

2�i
1

�
D Q�.x/�1.A � xD.�2/�1/PC.uxg/ �Q�.x/�1PC.uD.b/xg/:

Next, let us apply PC to both sides and use Lemma 6.11:

D.�/D.e�i'/g.x/ D PCQ
�.x/�1.A � xD.�2/�1/PC.uxg/ � PCQ

�.x/�1PC.uD.b/xg/
D PCQ

�.x/�1.A � xD.�2/�1/PC.uxg/ � PCQ
�.x/�1D.b/PC.uxg/

D PCQ
�.x/�1Q.x/PC.uxg/ D PC.uxg/ D Hug:

This is exactly the required eigenvalue equation in the vector form (6.2).

7. Proof of Theorem 6.2

In this section, we complete the proof of the surjectivity of the spectral map. An important
step consists in establishing that the rational function pj is indeed an isometric multiplier
on the model spaceK j . An ingredient of this proof is a representation of the functions pj
in terms of a completely non-unitary contraction on CN , which is inspired by Sarason’s
work [26].

7.1. Rational function pj is an isometric multiplier on K j

Let us define pj as in (5.21), selecting for definiteness the sign “C”:

pj D ie
�i'j =2

k1 �  j k

�j

gj

1 �  j
:

In the vector form, denoting
p D .p1; : : : ; pN />;

recalling formula (5.18) for g and setting 
j D 1

2
p
�
k1 �  j k, we obtain

p D
1
p
�
D.e�i'=2/D.
/D.�/�1D.1 �  /�1.Q.x/>/�11:

We need to rearrange this expression as follows.
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Lemma 7.1. We have
p D D.e�i'=2/.I � BD. //�1ˇ; (7.1)

where ˇ 2 CN and B is a completely non-unitary contraction in CN (with respect to the
usual Euclidean norm), satisfying

BB� C h�; ˇiˇ D I: (7.2)

Proof. First we rewrite formula (5.16) for Q.x/ as

Q.x/ D A�1 � iD.

2/D.�2/�1D

�1C  
1 �  

�
;

where

A1 WD A � diag
°RehA j .1 �  j /; 1 �  j i

�2j k1 �  j k
2

±
:

Then we have

D.
/D.�/�1D.1 �  /�1.Q.x/>/�1

D D.
/D.�/�1D.1 �  /�1.A1 � iD.

2/D.�2/�1D.1C  /D.1 �  /�1/�1

D .A1D.
/
�1D.�/D.1 �  / � iD.
/D.�/�1D.1C  //�1

D .D.�/D.
/�1A1D.
/
�1D.�/D.1 �  / � iD.1C  //�1D.
/�1D.�/:

Denote for brevity
A2 D D.�/D.
/

�1A1D.
/
�1D.�/;

then

.A2D.1 �  / � iD.1C  //
�1D.
/�1D.�/

D .A2 � i � .A2 C i/D. //
�1D.
/�1D.�/

D .I � BD. //�1.A2 � i/
�1D.
/�1D.�/;

where
B D .A2 � i/

�1.A2 C i/:

This yields (7.1) with

ˇ D
1
p
�
.A2 � i/

�1D.
/�1D.�/1:

Next, let us prove (7.2). We will see that this is a consequence of the rank one relation (6.4)
for A. Since

Im A D Im A1 D
1

4�
h�;1i1;

we have
Im A2 D

1

4�
h�;D.
/�1D.�/1iD.
/�1D.�/1;
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and therefore

BB� D .A2 � i/
�1.A2 C i/.A2

�
� i/.A2

�
C i/�1

D .A2 � i/
�1.A2A2

�
C I C 2 Im A2/.A2

�
C i/�1

D I � .A2 � i/
�1.4 Im A2/.A2

�
C i/�1 D I � h�; ˇiˇ:

Finally, let us check thatB is a completely non-unitary contraction in CN . The fact thatB
is a contraction is clear from (2.11). To check that B is completely non-unitary, let us first
consider the matrix A2 and check that it is completely non-self-adjoint. Indeed, sup-
pose A2 has a real eigenvalue � with an eigenvector f ; then

.A1 � �D.
/
2D.�2/�1/D.
/�1D.�/f D 0:

But this is impossible for f 6D 0, because A1 � �D.
/
2D.�2/�1 is completely non-self-

adjoint (see Lemma 6.5). Since A2 is completely non-self-adjoint, so is A2; it follows
that B is completely non-unitary.

The isometricity of pj is a consequence of the following lemma.

Lemma 7.2. Let B be a completely non-unitary contraction in CN , and let

BB� C h�; ˇiˇ D I

with some vector ˇ 2 CN . Let  1; : : : ;  N be inner functions in CC, and let the vector p
be defined by

p.z/ D .I � BD. .z///�1ˇ; z 2 CC:

Then each pj is an isometric multiplier on K j .

Proof. Step 1: Let �1; : : : ; �N be complex numbers in the closed unit disc, j�j j 6 1. As B
is a completely non-unitary contraction, so is BD.�/, and therefore, by a compactness
argument, the norms

k.I � BD.�//�1k

are bounded uniformly for j�j j 6 1, j D 1; : : : ; N . It follows that the inverse

.I � BD. .x///�1; x 2 CC;

is analytic and bounded in CC.

Step 2: Let x 2R; denote for brevityADBD. .x//. Observe that we haveBB�DAA�.
Furthermore,

j..I � A/�1ˇ/j j
2
D Œ.1 � A/�1.h�; ˇiˇ/.I � A�/�1�jj

D Œ.I � A/�1.I � AA�/.I � A�/�1�jj ;

and

.I � A/�1.I � AA�/.I � A�/�1 D I C .I � A/�1AC A�.I � A�/�1:
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It follows that

jpj .x/j
2
D 1C Œ.I � BD. .x///�1B�jj j .x/C ŒB

�.I �D. .x//�B�/�1�jj j .x/:

Let us multiply this by jh.x/j2, where h 2 K j . We obtain, for x 2 R,

jpj .x/j
2
jh.x/j2 D jh.x/j2 C Œ.I � BD. .x///�1B�jj . j .x/h.x//h.x/

C ŒB>.I �D. .x//B>/�1�jj . j .x/h.x//h.x/:

Observe that the second term in the right-hand side is the boundary value of a function
in H 1.CC/, while the third term is the complex conjugate of such boundary value. It fol-
lows that the integrals over R of both these terms vanish, and so integrating yields the
required isometricity of pj .

7.2. The action of Hu on pjK j

In Theorem 6.3 above, we have checked the eigenvalue equation

Hugj D �j e
�i'j gj : (7.3)

Here our aim is to compute the action of Hu on the whole subspace pjK j .

Lemma 7.3. For every j D 1; : : : ; N and for every h 2 K j , we have

Hu.pjh/ D �jpj j xh: (7.4)

Proof. Recall that pj is defined by the formula

pj D i
p
4�e�i'j =2


j

�j

gj

1 �  j
;

and we have already checked that pj is an isometric multiplier on K j . The desired
equation (7.4) can be written on the real line as

PC.upj xh/ D �jpj j xh;

i.e., we need to check that

F WD upj xh � �jpj j xh 2 H
2.C�/:

Let us check this inclusion. Observe that by construction, F is a rational function without
poles on R and F.x/ D O. 1

x2
/ as jxj ! 1. Thus, we only need to check that F has no

poles in the open lower half-plane.
First note that by the same logic the eigenvalue equation (7.3) can be transformed into

the condition
G WD ugj � �j e

�i'j gj 2 H
2.C�/:

Observe that G is a rational function without poles in the closed lower half-plane.
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Next, recalling the definition of pj and using that j j j D 1 on the real line, we find

F D �i
p
4�

j

�j
ei'j =2

� ugj xh
1 �  j

C �j e
�i'j

gj j xh

1 �  j

�
D �i

p
4�

j

�j
ei'j =2

Gxh

1 �  j
:

From this representation, we see that F has no poles in the open lower half-plane. The
proof is complete.

7.3. Identification of �

Lemma 7.4. Let � be the finite Blaschke product such that RanHu DK� and �.1/D 1.
Let g be defined by

g D

NX
jD1

gj ;

where gj is given by (5.18); then g D 1 � � .

Proof. By Theorem 6.3, we have

Hug D

NX
jD1

Hugj D

NX
jD1

�j e
�i'j gj D u:

On the other hand, we know from Lemma 4.1 that Hu.1 � �/ D u. It follows that g �
.1 � �/ 2 KerHu.

Further, by the definition of g and by Theorem 6.3, we see that g 2 RanHu. Also,
1 � � 2 K� D RanHu. It follows that g � .1 � �/ 2 RanHu; we conclude that g �
.1 � �/ D 0.

7.4. Identification of the range of Hu

Lemma 7.5. The range of Hu is given by

RanHu D
NM
kD1

pkK k :

Proof. By Lemma 7.3, the subspaces pkK k are mutually orthogonal and

NM
kD1

pkK k � RanHu:

It suffices to check that for some dense set D in RanHu, we have

D �

NM
kD1

pkK k :
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We use Corollary 2.4 and Lemma 7.4; let us prove that for any � 2 CC,

.A�� � �/
�1g 2

NM
kD1

pkK k :

By the definition of g, it suffices to check that

.A�� � �/
�1gj 2

NM
kD1

pkK k

for all j D 1; : : : ;N and all � 2 CC. From formula (2.3) for the resolvent of A�
�

and from
formula (5.18) for gj , we find

.A�� � �/
�1gj .x/ D

gj .x/ � gj .�/

x � �
D

1

2�i
hQ.x/�1.Q.�/ �Q.x//Q.�/�11j ;1i

D
1

2�i
h.Q.�/ �Q.x//Q.�/�11j ; .Q>.x//�11i:

Recalling that

g.x/ D
1

2�i
.Q>.x//�11

and on the other hand

Q.x/ �Q.�/ D �iD.
2/D.�2/�1D
�1C  .�/
1 �  .�/

�
1C  .x/

1 �  .x/

�
D �iD.
2/D.�2/�1D

�
�2. .x/ �  .�//

.1 �  .�//.1 �  .x//

�
;

we obtain, for some constants cjk.�/,

gj .x/ � gj .�/

x � �
D

NX
kD1

cjk.�/
gk.x/. k.x/ �  k.�//

.1 �  k.x//.x � �/
:

Since gk.x/ D pk;1pk.x/.1�  k.x//, we are left with a linear combination of terms of
the form

pk.x/
 k.x/ �  k.�/

x � �
D �pk.x/.A

�
 k
� �/�1.1 �  k/;

which belong to pkK k . This completes the proof.

7.5. Identification of !j

Lemma 7.6. For any X; Y 2 CN , we haveZ 1
�1

hQ.x/�1D.b.x//X;1ihQ.x/�1Y;1i dx D 0: (7.5)
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Proof. Following the proof of Lemma 6.7, we obtain

1

4�2
hQ.x/�1D.b.x//X;1ihQ.x/�1Y;1i

D
1

2�i

�
hQ.x/�1D.b.x//X; Y i � hQ.x/�1Y;D.b.x//Xi

�
:

Since bj are real-valued on R, we have

hQ.x/�1Y;D.b.x//Xi D hD.b.x//Q.x/�1Y;Xi

for a.e. x 2 R. Therefore, the left-hand side of (7.5) rewrites as

1

2�i
lim
R!1

Z R

�R

hQ.x/�1D.b.x//X; Y i dx �
1

2�i
lim
R!1

Z R

�R

hD.b.x//Q.x/�1Y;Xi dx:

Deforming the integration contour as in the proof of Lemma 6.7 and using that b.x/ D
O. 1

x
/ at infinity, we find that both limits are equal to zero.

Lemma 7.7. For the operator A� corresponding to Hu, we have

hA�gj ; gki D �
2
j �

2
kAkj

and, in particular,
hA�gj ; gj i D

!j

�2j
:

Proof. We shall prove the equivalent identity

hA��gj ; gki D �
2
j �

2
k.A

�/kj :

By (2.7), we have
A��gj .x/ D xgj .x/ �ƒ1.gj /:

Recall that
gj .x/ D

1

2�i
hQ.x/�11j ;1i:

By the asymptotic formula (6.1), we find

ƒ1.gj / D �
1

2�i
�2j D �

1

2�i
hD.�2/1j ;1i;

and therefore

A��gj .x/ D
1

2�i
h.xQ.x/�1 CD.�2//1j ;1i

D
1

2�i
hQ.x/�1.xI CQ.x/D.�2//1j ;1i

D
1

2�i
hQ.x/�1.xD.�2/�1 CQ.x//D.�2/1j ;1i

D
1

2�i
hQ.x/�1A�D.�2/1j ;1i �

1

2�i
hQ.x/�1D.b.x//D.�2/1j ;1i:
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It follows that

hA��gj ; gki D
1

4�2

Z 1
�1

hQ.x/�1A�D.�2/1j ;1ihQ.x/�11k ;1i dx

�
1

4�2

Z 1
�1

hQ.x/�1D.b.x//D.�2/1j ;1ihQ.x/�11k ;1i dx:

Here the first term in the right-hand side equals

hD.�2/A�D.�2/1j ;1ki D �
2
j �

2
k.A

�/kj

by Lemma 6.7 and the second one equals zero by Lemma 7.6.

7.6. Proof of Theorem 6.2

The theorem follows by putting together Theorem 6.3 and the lemmas of this section.
Indeed, by Theorem 6.3 and by Lemma 7.5, the set of singular values of Hu is exactly
¹�nº

N
nD1. Again by Theorem 6.3 and by Lemma 7.3, the inner function  j and the unim-

odular constant ei'j corresponds to the eigenvalue �j . Finally, by Lemma 7.7, the para-
meters !j correspond to A� and gj .

8. The Szegő dynamics

8.1. Formulas for the Szegő dynamics

In this section, we express the Szegő dynamics for rational solutions in terms of the spec-
tral data. The main result here is

Theorem 8.1. Let u be a solution of the cubic Szegő equation

i
d

dt
u D PC.juj

2u/ (8.1)

with ujtD0 rational. Then the solution is rational for all t > 0, and the spectral data of u
satisfy the following law:

d

dt
�j D

d

dt
 j D 0I (8.2)

d

dt
'j D �

2
j ; (8.3)

d

dt
!j D

1

2�
�4j �

4
j : (8.4)

Before coming to the proof of Theorem 8.1, observe the following. Since we know
from [24] that the initial value problem for the cubic Szegő equation is well posed in
every Sobolev spaceW s;2.CC/ for every s > 1

2
, the uniqueness implies that it is enough to

prove that the rational function corresponding to the spectral data defined by the evolution
laws (8.2), (8.3), (8.4) is indeed a solution of the cubic Szegő equation.
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We consider the spectral data evolving according to the evolution laws (8.2), (8.3)
and (8.4). For each t > 0, we define the matrices A and Q.x/ as in Section 5, suppress-
ing the dependence on t in our notation. We define the anti-linear operator H in CN as
in (6.3). According to Section 5, the functions u and uj can be recovered from the spectral
data by the formulas

uj .x/ D
1

2�i
hQ.x/�1H1j ;1i;

u.x/ D
1

2�i
hQ.x/�1H1;1i: (8.5)

Our aim is to differentiate (8.5) with respect to t and check that u satisfies (8.1).

8.2. The time derivative of Q

We first observe that equation (8.4) means, in particular, that Im !j are fixed by the
dynamics. By (5.1), it follows that �j are also fixed.

The time derivative of H1 is straightforward to compute

d

dt
H1 D D.�/

d

dt
D.e�i'/1 D �iH2H1 D �iH3

1: (8.6)

Let us compute the time derivative of the matrix A. For j 6D k, the only time-dependent
quantities of Akj are 'j and 'k , and so we get

d

dt
Akj D

i

2�

��j�k.i�
2
j � i�

2
k
/ei'j e�i'k

�2j � �
2
k

D
1

2�
�j�ke

i'j e�i'k :

For the diagonal entries Ajj , we have, by our definitions,

d

dt
Ajj D

1

�2j �
4
j

d

dt
!j D

1

2�

�4j �
4
j

�2j �
4
j

D
1

2�
�2j :

Putting this together, we find

d

dt
A D

1

2�
h�;H1iH1:

Since bj is independent of t , we obtain

d

dt
Q.x/ D

1

2�
h�;H1iH1; Im x > 0;

and finally, taking inverses,

d

dt
Q.x/�1 D �

1

2�
h�; .Q�.x//�1H1iQ.x/�1H1; (8.7)

for Im x > 0 and, by taking limits, everywhere on the real axis apart from finitely many
points.
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8.3. Formulas for Huu and H 2
uu

One easily verifies the identity

uHuuCH
2
uu D PC.juj

2u/:

Using this, one can rewrite the Szegő equation in the following equivalent form:

i
d

dt
u D uHuuCH

2
uu: (8.8)

Now, in preparation for what comes next, let us express Huu and H 2
uu in terms of the

spectral data. We have

Huu D
X
j

�j e
i'j uj D

1

2�i

X
j

�j e
i'j hQ.x/�1H1j ;1i D

1

2�i
hQ.x/�1H2

1;1i;

H 2
uu D

X
j

�2j uj D
1

2�i

X
j

�2j hQ.x/
�1H1j ;1i D

1

2�i
hQ.x/�1H3

1;1i:

8.4. Concluding the proof of Theorem 8.1

First we need an identity relating Q and H . From the matrix identity (6.5), we get

Q.x/H D HQ�.x/; Im x > 0:

Passing to the inverses,
H .Q�.x//�1 D Q.x/�1H ; (8.9)

for Im x > 0 and, by taking limits, also everywhere on the real axis apart from finitely
many points (the poles of bj ).

Using (8.6) and (8.7), we find (suppressing the dependence on x)

i
d

dt
u D

i

2�i

d

dt
hQ�1H1;1i

D
1

2�

D� d
dt
Q�1

�
H1;1

E
C

1

2�

D
Q�1

� d
dt

H1

�
;1
E

D

� 1

2�i

�2
hH1; .Q�/�1H1ihQ�1H1;1i C

1

2�i
hQ�1H3

1;1i

D u.x/
1

2�i
hQ�1H1;H1i CH 2

uu:

Using (8.9), we transform the inner product in the right-hand side as

hQ�1H1;H1i D hH .Q�/�11;H1i D hH2
1; .Q�/�11i D hQ�1H2

1;1i:

Putting this together, we obtain the Szegő equation in form (8.8).



Inverse problem for Hankel operators 4637

9. The genericity of turbulent solutions: Proof of Theorem 1.1

In this last section, we prove Theorem 1.1. The key argument is to establish that, if u is
a rational solution of the cubic Szegő equation (1.1) such that one of the singular values
of the Hankel operator Hu is multiple while the other singular values are simple, then
the L2 norm of @xu tends to infinity as t tends to infinity. This can be achieved thanks to
the representation of rational solutions obtained in previous sections.

9.1. Upper bound for general rational solutions

We start with a general a priori bound for rational solutions.

Proposition 9.1. If u is a rational solution of the cubic Szegő equation, then

lim sup
t!C1

k@xu.�; t /kL2

t
< C1:

Before proceeding with the proof, we need a simple lemma. For every spectral data

.�;  ; ei' ; !/ WD .¹�j º
N
jD1; ¹ j º

N
jD1; ¹e

i'j º
N
jD1; ¹!j º

N
jD1/;

denote by A.�;  ; '; !/ the matrix defined in Section 5.3. We also denote by Pj the
projector matrix onto the j -th direction in CN .

Lemma 9.2. Fix .�; ;!/; there exists C > 0 such that for every j D 1; : : : ;N , we have

8� 2 RN ; sup
'2TN

kPj .A.�;  ; '; !/
�
CD.�//�1k 6

C

1C j�j j
:

A similar result holds for A.�;  ; '; !/ in place of A.�;  ; '; !/�.

Proof. Let X 2 CN of norm 1, and let

Z WD .A.�;  ; '; !/� CD.�//�1X:

We want to prove that the components of Z satisfy

jZj j 6
C

1C j�j j
:

We already know, from Lemma 6.6 and from the proof of Theorem 6.1, that kZk is
bounded. Furthermore, one can easily check from the proof of Lemma 6.6 that this estim-
ate is uniform in ' 2 TN . Then we come back to the equations in Z, which read

�jZj C .A.�;  ; '; !/
�Z/j D Xj

and this immediately leads to the required estimate. The proof for A is similar.
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Proof of Proposition 9.1. By Theorems 5.5 and 8.1, the rational solution of the cubic
Szegő equation reads

u.x; t/ D
1

2�i
hRt .�.x; t//

�1X.t/;1i

with, for every � D .�1; : : : ; �N / 2 C�
N

,

Rt .�/ WD A.�;  ; '.t/; !.0//� CD.�/; X.t/ WD D.�/D.e�i'.t//1;

and

�j .x; t/ WD
�2j

2�
t � bj .x/ �

x

�2j
: (9.1)

Notice that the time dependence of �j .x; t/ is due to the time dependence of Re !j .t/
coming from (8.4), and that

@x�j .x; t/ D �b
0
j .x/ �

1

�2j

is independent of t . Also recall that bj is a rational Herglotz function, representable
as in (5.15). Consequently, denoting by Pj the projector matrix onto the j -th direction
in CN , we have

@xu.x; t/ D

NX
jD1

i@x�j .x; t/

2�
hRt .�.x; t//

�1PjRt .�.x; t//
�1X.t/;1i: (9.2)

Write A.t/ WD A.�;  ; '.t/; !.0// for brevity and observe that

hRt .�.x; t//
�1PjRt .�.x; t//

�1X.t/;1i

D hPj .A.t/
�
CD.�.x; t///�1X.t/;Pj .A.t/CD.�.x; t///

�1
1i

so that Lemma 9.2 and identity (9.2) lead to

j@xu.x; t/j .
NX
jD1

j@x�j .x; t/j

1C �j .x; t/2
; x 2 R;

where . denotes inequality up to a multiplicative constant. Let us fix j ; observe that
bj .x/C

x

�2
j

is strictly increasing between the poles of bj . We decompose the integralZ
R

j@x�j .x; t/j
2

.1C �j .x; t/2/2
dx

into a finite sum of integrals over the open intervals between the adjacent poles of bj
(plus two semi-infinite intervals). Then on each interval the map x 7! �j .x; t/ is strictly
decreasing. We write in each of these integrals

j@x�j .t; x/j dx D d�j :
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We have
jb0j .x/j .

�
bj .x/C

x

�2j

�2
C 1I

indeed, this follows by observing that both sides are rational functions with poles of
second order located at the same points and by inspecting the behaviour at infinity. Next,
we have, as t !C1,

j@x�j .t; x/j D
ˇ̌̌
b0j .x/C

1

�2j

ˇ̌̌
.
�
bj .x/C

x

�2j

�2
C 1 D

�
�j .t; x/ �

�2j

2�
t
�2
C 1

. �j .t; x/
2
C t2:

Plugging this estimate into each of our integrals and summing over j , we get the required
bound k@xu.�; t /k2L2 . t2.

9.2. Lower bound in the case of one multiple eigenvalue

Proposition 9.3. Let u be a rational solution of the cubic Szegő equation on the line such
that Hu has singular values �1; : : : ; �N , with �1 being multiple and �j being simple for
every j � 2. Then

lim inf
t!C1

k@xu.t/kL2

t
> 0:

Proof. We decompose @xu.x; t/ as in the proof of Proposition 9.1, starting from (9.2).
Since �j is simple for j > 2, it is easy to check (see, e.g., Remark 5.4) that �j .x; t/ is
linear in x, and therefore that @x�j .x; t/ is uniformly bounded. Consequently, using again
Lemma 9.2, the quantityX

j�2

Z
R
j@x�j .x; t/j

2
jhRt .�.x; t//

�1PjRt .�.x; t//
�1X.t/;1ij2 dx

is bounded as t !1. It remains to study the integralZ
R
j@x�1.x; t/j

2
jhRt .�.x; t//

�1P1Rt .�.x; t//
�1X.t/;1ij2 dx;

which we minorize by the integral I.t/ of the same function on an interval Jt constructed
as follows. Since �1 is a multiple eigenvalue, 1 �  1 has at least one zero on the real
line. Denote by xc such a zero. Since  1 is a Blaschke product, we know that i 01.xc/ is
a non-zero real number. Consider the interval

Jt D
h
xc C

�

t
C
~1

t2
; xc C

�

t
C
~2

t2

i
;

where � 6D 0 and ~1 < ~2 are real numbers which we are going to choose. For x 2 Jt ,
we can expand

 1.x/ D 1C  
0
1.xc/

��
t
C
~

t2

�
C
1

2
 001 .xc/

�2

t2
CO.t�3/

D 1C  01.xc/
�

t
C

�
 01.xc/~ C

1

2
 001 .xc/�

2
� 1
t2
CO.t�3/
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with ~1 6 ~ 6 ~2. It follows that

1C  1.x/

1 �  1.x/
D

2C  01.xc/
�
t
CO.t�2/

� 01.xc/
�
t
� . 01.xc/~ C

1
2
 001 .xc/�

2/ 1
t2
CO.t�3/

D �
2t

 01.xc/�

1C 1
2
 01.xc/

�
t
CO.t�2/

1C . ~
�
C

�
2

 00
1
.xc/

 0
1
.xc/

/1
t
CO.t�2/

D �
2t

 01.xc/�

�
1C

��
2
 01.xc/ �

~

�
�
�

2

 001 .xc/

 01.xc/

�1
t
CO.t�2/

�
D �

2

 01.xc/�
t C

�
�1C

2~

�2 01.xc/
C

 001 .xc/

. 01.xc//
2

�
CO.t�1/

so that, in view of expression (5.14) of b1, we obtain

�1.x; t/ D
�21
2�
t � b1.x/ �

x

�21

D
�21
2�
t �

i

4�

k1 �  1k
2

�21

1C  1.x/

1 �  1.x/
C

RehA 1.1 �  1/; .1 �  1/i
�21k1 �  1k

2

D

� �21
2�
C

i

2�

k1 �  1k
2

��21 
0
1.xc/

�
t �

i

4�

k1 �  1k
2

�21

�
�1C

2~

�2 01.xc/
C

 001 .xc/

. 01.xc//
2

�
�

RehA 1.1 �  1/; .1 �  1/i
�21k1 �  1k

2
CO.t�1/

or equivalently

�1.x; t/ D �1t C �1.~/CO.t
�1/; x D xc C

�

t
C
~

t2
; ~ 2 Œ~1; ~2�;

�1 WD
�21
2�
C

i

2�

k1 �  1k
2

��21 
0
1.xc/

;

�1.~/ WD �
i

4�

k1 �  1k
2

�21

�
�1C

2~

�2 01.xc/
C

 001 .xc/

. 01.xc//
2

�
�

RehA 1.1 �  1/; .1 �  1/i
�21k1 �  1k

2
:

We define � such that �1 D 0. Consequently, for x in the interval Jt ,

�1.x; t/ D �1.~/CO
�1
t

�
:

Let us write Z.x; t/ WD Rt .�.x; t//�1X.t/, zZ.x; t/ WD R�t .�.x; t//
�1
1, so that

hRt .�.x; t//
�1P1Rt .�.x; t//

�1X.t/;1i D Z1.x; t/ zZ1.x; t/:

In order to estimate Z1, zZ1 for x 2 Jt , we write, by the definition of Z and zZ,

�1Z1 C ŒA.t/
�Z�1 D �1e

�i'1.t/; �1 zZ1 C ŒA.t/ zZ�1 D 1:
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Observe that (9.1) implies that, for x 2 Jt and for j � 2, �j .x; t/ � cj t for some cj > 0.
Therefore, from Lemma 9.2, we infer

jZj .x; t/j C j zZj .x; t/j 6 O
�1
t

�
; j > 2;

and consequently,

Z1.x; t/ D z1.~/e
�i'1.t/ CO

�1
t

�
; zZ1.x; t/ D zz1.~/CO

�1
t

�
;

where

z1.~/ WD
�1

�1.~/C
x!1
�2
1
�4
1

; zz1.~/ WD
1

�1.~/C
!1
�2
1
�4
1

:

Here the parameters ~1 < ~2 are chosen so that the denominators of z1.~/ and zz1.~/ do
not cancel for ~ 2 Œ~1; ~2�. Consequently, for x 2 Jt ,

jhRt .�.x; t//
�1P1Rt .�.x; t//

�1X.t/;1ij2 D jz1.~/zz1.~/j
2
CO

�1
t

�
;

where ~ WD t2.x � xc �
�
t
/ 2 Œ~1; ~2�. On the other hand,

j@x�1.x; t/j D
k1 �  1k

2

2��21

j 01.x/j

j1 �  1.x/j2
�

k1 �  1k
2

2��21 j 
0
1.xc/j�

2
t2

for x 2 Jt . Making the change of variable

~ WD t2
�
x � xc �

�

t

�
in the integral, we conclude that

I.t/ D

Z
Jt

j@x�1.x; t/j
2
jhRt .�.x; t//

�1P1Rt .�.x; t//
�1X.t/;1ij2 dx

�
k1 �  1k

4

4�2�41 j 
0
1.xc/j

2�4
t2
Z ~2

~1

jz1.~/zz2.~/j
2 d~;

which completes the proof.

Remark. We note the following:

� Proposition 9.3 includes the case studied in [24], which corresponds to N D 1 and
was revisited in [9, Appendix B] by solving explicitly the corresponding ODE system.
Here our approach is more flexible so that we can deal with more general data, providing
enough turbulent solutions to establish genericity in the next subsection.

� In [24], it is proved that, if u is a rational solution and ifHu has only simple singular
values, then all the Sobolev norms of u stay bounded. Proposition 9.3 shows that the
situation may be dramatically different if there exists a multiple singular value for Hu.
In fact, we expect that the existence of such a multiple singular value always implies that
the norms of the solution in W s;2 with large s are unbounded.
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9.3. Lower bound for generic data in W 1;2.CC/

Denote by ˆ.t/ the flow map of the cubic Szegő equation on W 1;2.CC/. The main step
in the proof of Theorem 1.1 is the following approximation result.

Lemma 9.4. For every u0 2 W 1;2.CC/, there exists a family .u"0/ in W 1;2.CC/ such
that, as "! 0,

u"0 ! u0 in W 1;2.CC/

and, for every ", Z C1
1

k@xˆ.t/u
"
0kL2

t2
dt D C1:

Proof. Step 1: Reduction to rational u0. Recall thatW 1;2.CC/ is a Hilbert space with the
inner product

hu; vi C h@xu; @xvi:

Let u0 2 W 1;2.CC/. We first claim that u0 can be approximated in W 1;2.CC/ by a se-
quence of rational functions. Indeed, the Fourier transform of a rational function in
W 1;2.CC/ is a linear combination of

�ke�˛� ; � > 0;

where k is a nonnegative integer and ˛ is a complex number of positive real part. By the
Plancherel theorem, if u 2 W 1;2.CC/ is orthogonal to all rational functions, thenZ 1

0

.1C �2/yu.�/�ke�˛� d� D 0

for every complex number ˛ with Re ˛ > 0. Consequently, by making k D 0 and ˛ tend
to the imaginary axis, we infer that u D 0. Therefore, it is enough to prove the lemma
if u0 is a rational function in W 1;2.CC/, which means

u0.x/ D
A.x/

B.x/

where B is a polynomial of degree N � 1 with zeros in the open lower half-plane only,
and A is a polynomial of degree at most N � 1, with no common factors with B .

Step 2: Reduction to u0 with simple eigenvalues. For a given N , the set of rational
functions u0 as above is a complex manifold of dimension 2N , on which the condition
thatH 2

u0
has N simple positive eigenvalues defines a dense open subset, characterised by

det.hH 2.nCm/
u0

u0; u0i/06n;m6N�1 ¤ 0

(see [24] for more detail). So we are reduced to proving the statement for u0 belonging to
this dense open subset.
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Step 3: Defining u"0. Denote by .�n;  n; ei'n ; !n/16n6N the spectral data of u0. Let
'NC1 D 0, !NC1 D i and �NC1 D " > 0; we also set

 NC1.x/ D
� x � i
x C i

�2
(although any Blaschke product of degree > 2 will do). We define u"0 to be the rational
function with spectral data .�n;  n; ei'n ; !n/16n6NC1. Our aim is to check that u"0! u0
in W 1;2.CC/ as "! 0 by applying the inverse spectral formula (5.17) of Theorem 5.5.
But first we need to go through some preliminaries.

Denote by A" the .N C 1/ � .N C 1/ matrix associated to u"0, and by A the N �N
matrix associated to u0. In view of formulas (5.8) and (5.9), we have

A"
NC1;NC1 D

!NC1

�2NC1�
4
NC1

D
!NC1

4� Im!NC1
D

i

4�
;

and
A"
NC1;k D

i

2�
CO."/; A"

k;NC1 D O."/;

as "! 0 for any k 6 N . It follows that

A"
D A0 CX

"; A0 D

 
A 0

i
2�
h�;1N i

i
2�

!
; kX"k D O."/

as "! 0, where 1N D .1; : : : ; 1/ 2CN . Denote � 2CN
C , �NC1 2CC and z� D .�; �NC1/ 2

CNC1
C . By Theorem 6.1, the inverse of A� �D.�/ exists and

sup
�1;:::;�N2CC

k.A� �D.�//�1k <1:

We express the inverse of A�0 �D.
z�/ as

.A�0 �D.
z�//�1D

 
.A� �D.�//�1 i

2�
.� i

4�
� �NC1/

�1.A� �D.�//�11N

0 .� i
4�
� �NC1/

�1

!
: (9.3)

From here we find that this inverse is uniformly bounded,

sup
z�2CNC1
C

k.A�0 �D.
z�//�1k <1:

From the resolvent identity

..A"/� �D.z�//�1 � .A�0 �D.
z�//�1 D �..A"/� �D.z�//�1X".A�0 �D.

z�//�1

and the estimate kX"k D O."/, we find that the inverse of .A"/� � D.z�/ is similarly
uniformly bounded, and moreover

sup
z�2CNC1
C

k.A�0 �D.
z�//�1 � ..A"/� �D.z�//�1k D O."/ (9.4)



P. Gérard, A. Pushnitski 4644

as "! 0. Now let Q.x/ be the N �N matrix associated with u0, and

Q".x/ D .A
"/� � xD.�2/�1 �D.b.x//;

Q";0.x/ D A�0 � xD.�
2/�1 �D.b.x//:

Since the eigenvalues �1; : : : ; �N are simple, we have bk.x/ D 0 for k D 1; : : : ; N (see
Remark 5.4), and from the explicit form of  NC1 one obtains

bNC1.x/ D �
1

�2NC1

1

x
D �

"
p
4�

1

x
:

We denote by PNC1 the projection in CNC1 onto the subspace spanned by the last vector
.0; : : : ; 0; 1/ of the canonical basis, and let P?NC1 D I � PNC1 be the projection onto
the orthogonal subspace in CNC1. Denoting by D.�/, D.ei'/ the diagonal operators
in CNC1, we have

u"0.x/ D
1

2�i
hQ".x/

�1D.�/D.e�i'/1;1iCNC1 ;

u0.x/ D
1

2�i
hQ.x/�1P?NC1D.�/D.e

�i'/1;1iCN :

Step 4: Proof that u"0 ! u0 in L2.R/. We will check two facts:

u"0.x/! u0.x/ uniformly in x 2 R; (9.5)

ju"0.x/j C ju0.x/j 6
C

jxj
; jxj > 2; (9.6)

where the constant C is independent of ".
Let us check (9.5). Since �NC1 D ", we have

u"0.x/ D
1

2�i
hQ".x/

�1P?NC1D.�/D.e
�i'/1;1iCNC1

C
"

2�i
hQ".x/

�1PNC11;1iCNC1 ; (9.7)

where the second term in the right-hand side is O."/ uniformly in x 2 R. Using (9.4),
we replace Q".x/�1 by Q";0.x/�1 in the first term in the right-hand side, accruing a uni-
form O."/ error. By the matrix structure in (9.3), we find

1

2�i
hQ";0.x/

�1P?NC1D.�/D.e
�i'/1;1iCNC1

D
1

2�i
hQ.x/�1P?NC1D.�/D.e

�i'/1;1iCN D u0.x/:

This proves (9.5).
Let us check (9.6). For u0.x/, the estimate is obvious. For u"0.x/, we use decomposi-

tion (9.7) again. By the resolvent identity and the matrix structure in (9.3),

kQ".x/
�1P?NC1k 6 CkQ";0.x/

�1P?NC1k 6 CkQ.x/�1k 6
C

jxj
;
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which gives the required estimate for the first term in the right-hand side of (9.7). For the
second term, for the same reasons,

"kQ".x/
�1PNC1k 6 C"kQ";0.x/

�1PNC1k

6 C"
ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���1 ˇ̌̌
6
C

jxj
(9.8)

for jxj > 2. This concludes the proof of (9.6); we have checked that u"0 ! u0 in L2.R/.

Step 5: Proof that @xu"0 ! @xu0 in L2.R/. We have

@xQ".x/ D �D.�
2/�1 �D.b0.x//;

and so

@xQ".x/
�1
D Q".x/

�1D.�2/�1Q".x/
�1
C

"
p
4�

1

x2
Q".x/

�1PNC1Q".x/
�1;

because b01.x/ D � � � D b
0
N .x/ D 0 and b0NC1.x/ D

"p
4�

1
x2

. Thus,

@xu
"
0.x/ D

1

2�i
hQ".x/

�1D.�2/�1Q".x/
�1D.�/D.e�i'/1;1i

C
1

2�i

"
p
4�

1

x2
hQ".x/

�1PNC1Q".x/
�1D.�/D.e�i'/1;1i:

In the same way as on the previous step of the proof, one proves that the first term in the
right-hand side here converges in L2.R/ to @xu0.x/. It remains to check that the second
term converges to zero in L2.R/.

Along with (9.8), and for the same reasons, we have the estimate

kPNC1Q".x/
�1
k 6 C

ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���1 ˇ̌̌
:

Using this, we find

"

x2
jhQ".x/

�1PNC1Q".x/
�1D.�/D.e�i'/1;1ij

.
"

x2
kQ".x/

�1PNC1Q".x/
�1D.�/D.e�i'/k

.
"

x2

ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���1 ˇ̌̌
kPNC1Q".x/

�1D.�/D.e�i'/k

.
"

x2

ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���1 ˇ̌̌
� .kPNC1Q".x/

�1P?NC1k C "kPNC1Q".x/
�1PNC1k/:

Further, by (9.3) we have

PNC1Q";0.x/
�1P?NC1 D 0
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and so, by the resolvent identity,

kPNC1Q".x/
�1P?NC1k D kPNC1Q";0.x/

�1.X"/�Q".x/
�1P?NC1k

. kPNC1Q";0.x/�1kkX"k . "
ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���1 ˇ̌̌
:

Putting this together, we find

"

x2
jhQ".x/

�1PNC1Q".x/
�1D.�/D.e�i'/1;1ij .

"2

x2

ˇ̌̌�
�
i

4�
�

"
p
4�

�
x �

1

x

���2 ˇ̌̌
:

Now it is a matter of elementary calculation to check that the function in the right-hand
side converges to zero inL2.R/. For example, it is easy to see that this function is bounded
by C min¹1; "

2

x4
º, which yields the required convergence. We have checked that @xu"0 !

@xu0 in L2.R/, and so u"0 ! u0 in W 1;2.CC/.

Step 6: Concluding the proof. From Proposition 9.3, we know that

lim inf
t!C1

k@xˆ.t/u
"
0kL2

t
> 0

for every " > 0, and the lemma is proved.

Let us complete the proof of Theorem 1.1. For every positive integer n, we consider

�n WD

²
u0 2 W

1;2.CC/ W 9tn;

Z tn

1

k@xˆ.t/u
"
0kL2

t2
dt > n

³
:

By the well-posedness of the cubic Szegő equation on W 1;2.CC/ (see [24]), the map

u0 2 W
1;2.CC/ 7! ˆ.�/u0 2 C.Œ0; T �;W

1;2.CC//

is continuous for every T > 0, and therefore �n is an open subset of W 1;2.CC/. Fur-
thermore, by Lemma 9.4, �n is dense in W 1;2.CC/. Hence, Baire’s theorem implies that
G WD

T
n�1 �n is a dense Gı subset of W 1;2.CC/. This completes the proof of The-

orem 1.1.
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379–404 (2011) Zbl 1270.35172 MR 2872121

[26] Sarason, D.: Nearly invariant subspaces of the backward shift. In: Contributions to operator
theory and its applications (Mesa, AZ, 1987), Oper. Theory Adv. Appl. 35, Birkhäuser, Basel,
481–493 (1988) Zbl 0687.47003 MR 1017680

[27] Schwinte, V., Thomann, L.: Growth of Sobolev norms for coupled lowest Landau level equa-
tions. Pure Appl. Anal. 3, 189–222 (2021) Zbl 1472.35363 MR 4265361

[28] Zlatoš, A.: Exponential growth of the vorticity gradient for the Euler equation on the torus.
Adv. Math. 268, 396–403 (2015) Zbl 1308.35194 MR 3276599

https://doi.org/10.1007/978-0-387-21681-2
https://zbmath.org/?q=an:1030.47002
https://mathscinet.ams.org/mathscinet-getitem?mr=1949210
https://doi.org/10.3934/dcds.2011.31.607
https://doi.org/10.3934/dcds.2011.31.607
https://zbmath.org/?q=an:1235.35263
https://mathscinet.ams.org/mathscinet-getitem?mr=2825631
https://doi.org/10.2140/apde.2011.4.379
https://zbmath.org/?q=an:1270.35172
https://mathscinet.ams.org/mathscinet-getitem?mr=2872121
https://doi.org/10.1007/978-3-0348-9284-1_18
https://zbmath.org/?q=an:0687.47003
https://mathscinet.ams.org/mathscinet-getitem?mr=1017680
https://doi.org/10.2140/paa.2021.3.189
https://doi.org/10.2140/paa.2021.3.189
https://zbmath.org/?q=an:1472.35363
https://mathscinet.ams.org/mathscinet-getitem?mr=4265361
https://doi.org/10.1016/j.aim.2014.08.012
https://zbmath.org/?q=an:1308.35194
https://mathscinet.ams.org/mathscinet-getitem?mr=3276599

	1. Introduction
	2. Model spaces
	3. Isometric multipliers on model spaces
	4. Direct spectral problem: Proof of Theorem 1.3
	5. Inverse spectral problem: The spectral data and uniqueness
	6. Inverse spectral problem: The surjectivity of the spectral map
	7. Proof of Theorem 6.2
	8. The Szegő dynamics
	9. The genericity of turbulent solutions: Proof of Theorem 1.1
	References

