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Weyl connections with special holonomy on compact
conformal manifolds

Florin Belgun, Brice Flamencourt, and Andrei Moroianu

Abstract. We consider compact conformal manifolds .M; Œg�/ endowed with a closed Weyl con-
nection r, i.e., a torsion-free connection preserving the conformal structure, which is locally but
not globally the Levi-Civita connection of a metric in Œg�. Our aim is to classify all such structures
when both r and rg , the Levi-Civita connection of g, have special holonomy. In such a setting,
.M; Œg�;r/ is either flat, or irreducible, or carries a locally conformally product (LCP) structure.
Since the flat case is already completely classified, we focus on the last two cases. When r has
irreducible holonomy we prove that .M; g/ is either Vaisman, or a mapping torus of an isometry of
a compact nearly Kähler or nearly parallel G2 manifold, while in the LCP case we prove that g is
neither Kähler nor Einstein, thus reducible by the Berger–Simons theorem, and we obtain the local
classification of such structures in terms of adapted LCP metrics.

1. Introduction

A Weyl connection [28] on a conformal manifold .M; Œg�/ is a torsion-free linear con-
nection preserving the conformal structure Œg�. A Weyl connection is called exact if it is
the Levi-Civita connection of some metric lying in Œg� and closed if this property holds in
the neighborhood of each point. The analysis of exact Weyl connections thus belongs to
the field of Riemannian geometry, while the closed non-exact Weyl connections fall in the
area of genuine conformal geometry. In this article we will concentrate on the analysis of
this latter class of connections on compact conformal manifolds.

A closed non-exact Weyl connection r is better understood through the study of its
lift to the universal cover zM of M . Indeed, on zM there is a metric h, unique up to mul-
tiplication by a constant, belonging to the lifted conformal class and such that zr is the
Levi-Civita connection of h. Moreover, the deck-transformations given by �1.M/ act as
homotheties of . zM;h/, and the assumption that r is not exact is equivalent to saying that
�1.M/ contains at least one non-isometric homothety. Conversely, the Levi-Civita con-
nection of a metric h on zM with respect to which �1.M/ acts by homotheties which are
not all isometries, descends to a closed non-exact Weyl connection on M .

In [4] it is proved that on a compact conformal manifold .M; c/, a closed non-exact
Weyl connection r (or equivalently the metric h on the universal cover zM ) is irreducible
or flat provided that the connection is tame. This result was greatly improved successively
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by Matveev and Nikolayevsky [19] in the analytical case, then by Kourganoff [16] in the
smooth case, who proved that only three cases can occur: the universal cover . zM; h/ is
either flat, or irreducible, or a Riemannian product between an Euclidean space and an
irreducible incomplete manifold [16, Theorem 1.5] (cf. [9] for a more conceptual and less
technical proof). This last case corresponds to .M; Œg�;r/ being a locally conformally
product (LCP) manifold (see Definition 4.1 below).

LCP structures have grown as a very active area of research in the last decade. In
the homogeneous setting they were studied on solvmanifolds [1] and more generally on
compact quotients of Lie groups [6], and their conformal vector fields have been described
in [8]. A detailed presentation of LCP manifolds can be found in [7].

In the present work, we investigate the following.

Problem 1.1. Describe all compact Riemannian manifolds .M; g/ of dimension n � 3
whose Levi-Civita connection rg has special holonomy, such that there exists a closed,
non-exact Weyl connection r compatible with Œg� which also has special holonomy.

By special holonomy, we mean here that the restricted holonomy groups of r and rg

are both strictly contained in SO.n/. Note that if r were exact (but different from rg ),
i.e., the Levi-Civita connection of a metric in Œg� non-homothetic to g, the above question
amounts to characterize compact manifolds carrying two non-homothetic conformally
related metrics with special holonomy. This question has been answered by the third
named author [21].

We study separately the three possible cases, where the restricted holonomy of r is
zero, reducible but non-zero, or irreducible. The case wherer is flat was already classified
by Fried [10]. In every dimension n� 3, the conformal structure is induced by the quotient
of Rn n ¹0º by the semi-direct product of a group of isometries of Rn and a homothety of
ratio � > 1, all these transformations fixing the origin. Consequently, we focus on the two
remaining cases.

In the case where .M;r/ has special irreducible holonomy, the Berger–Simons holon-
omy classification implies that the Riemannian manifold . zM; h/, where h is the metric
induced by r on zM , is either Kähler or Einstein. In the Kähler case, we can use the well-
developed theory of LCK manifolds to finish the analysis, while in the Einstein case we
can relate our problem to the analysis done for exact Weyl connections in [21]. We prove
in Proposition 3.1 that the only possibility is that .M; g/ is either Vaisman, or a mapping
torus of an isometry of a compact nearly Kähler [14] or nearly parallel G2 manifold [11].

The last case, when .M;r/ has reducible non-flat holonomy, is more difficult, and
requires a deeper understanding of LCP structures. In this setting, we study separately
the cases where g is Kähler, Einstein or has reducible holonomy. The known examples of
LCP manifolds given in [7] provide intuition concerning the results. The only examples of
complex LCP manifolds constructed so far are some particular OT-manifolds, a class of
manifolds introduced by Oeljeklaus and Toma [22] defined by means of algebraic number
fields. When the number field has exactly two complex embeddings, the corresponding
manifold admits an LCK structure, which in turn induces an LCP structure. However,
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these manifolds carry no Kähler metric. Consequently, there are no examples of LCP
manifolds carrying a Kähler metric in their conformal class. In Theorem 4.3, we prove
that it is indeed impossible to construct such an example.

When g is an Einstein metric, the conformal relation between the metric h and the lift
Qg of g to the universal cover zM of M gives some link between the Ricci tensors of the
two metrics. We can then exploit the particular product structure of . zM;h/, which admits
a non-trivial flat factor, in order to conclude in this case as well. We prove in Theorem 4.5
that no Einstein metric lies in the conformal class of an LCP manifold.

The last part of this text is devoted to the study of the case where both h and g have
reducible holonomy. Examples of such structures are easy to construct. Indeed, every
Riemannian product between a compact manifold with adapted LCP metric and another
compact Riemannian manifold is again an LCP manifold (see Example 4.6 below or [7,
Section 3]). In Theorem 4.7 below we prove that conversely, if g is a reducible Rieman-
nian metric on a compact LCP manifold .M; Œg�;r/, then g is adapted and . zM; Qg/ is a
Riemannian product .M1; g1/ � .M2; g2/ such that the flat factor of . zM;h/ is tangent to
M1 at each point.

At the level of the universal cover, the solutions of Problem 1.1 are summarized in
Theorem 4.12 below. For a complete classification, one would need the description of dis-
crete cocompact groups acting freely by homotheties on the simply connected Riemannian
manifolds appearing in Theorem 4.12, but this problem is clearly out of reach.

2. Preliminaries

2.1. Weyl connections

Let M be a compact manifold of dimension n � 3 and let c be a conformal structure on
M (usually c is the conformal class of a Riemannian metric g onM , denoted by c D Œg�).
A Weyl connection on M is a torsion-free linear connection r preserving the conformal
structure c, in the sense that for every Riemannian metric g 2 c, rXg D �2�g.X/g for
some 1-form �g onM called the Lee form of r with respect to g. The Lee form of r with
respect to g vanishes if and only if r is the Levi-Civita connection of g, denoted by rg .

The Weyl connection r, with the Lee form �g with respect to the Riemannian metric
g 2 c, acts on vector fields Y 2 C1.TM/ as follows:

rXY D r
g
XY C �g.Y /X C �g.X/Y � g.X; Y /�

]g
g ; (2.1)

where �]gg is the dual vector field to the 1-form �g with respect to g.
Note that, if g0 WD e2f g is another metric in the conformal class, then

�g 0 D �g C df: (2.2)

The Weyl connection r is called closed if �g is closed for one (hence for all) metrics
g 2 c and exact if �g is exact (for some, hence) for all g 2 c. From (2.2), an exact Weyl
connection on .M; c/ is the Levi-Civita connection of a metric in the conformal class c.
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2.2. The metric on zM associated to a closed Weyl connection

Assume now that g is a Riemannian metric on M and r is a closed Weyl connection on
.M; Œg�/ with Lee form �g with respect to g. We denote by � W zM ! M the universal
cover of M and by Qg WD ��g the induced Riemannian metric. The lift zr of r to zM has
Lee form z� WD ���g which is exact, since zM is simply connected. Consequently, there
exists a function ' 2 C1. zM/, defined up to a constant, such that z� D d'. By (2.2), zr is
the Levi-Civita connection of the metric h WD e2' Qg. The metric h is called associated to
r, and is uniquely determined by r up to a multiplicative constant.

The fundamental group �1.M/ acts on zM by isometries with respect to the metric Qg.
Moreover, it preserves z� D d', which means that ' is a �1.M/-equivariant function, i.e.,

'
�

.x/

�
D '.x/C �.
/; 8
 2 �1.M/;

for some (non-trivial) group homomorphism � W �1.M/! R. We infer that


�h D e2�.
/h; 8
 2 �1.M/;

showing that �1.M/ acts on zM by homotheties with respect to the metric h.
In this case, (2.1) applied on zM becomes

r
h
XY D r

Qg
XY C d'.Y /X C d'.X/Y � .d'/

]
hX; Y i; (2.3)

where we intentionally omit referring to h or to Qg in the last term, the convention being
that the metric used to compute the scalar product hX; Y i is the same as the one used to
“lift indices” ] W T � zM ! T zM .

2.3. Holonomy issues

From now on we consider that the assumptions of Problem 1.1 hold. This can be equiva-
lently stated by the fact that the restricted holonomy groups of the metrics h on zM and g
on M are special, that is, strictly contained in SO.n/.

According to the classical de Rham decomposition theorem [15, p. 185] and the
Berger–Simons holonomy classification [5, p. 300], there are four cases when the restricted
holonomy group of a Riemannian metric (or, more generally, of a closed Weyl connection)
on a n-dimensional manifold is special:

(i) the metric is irreducible and locally Kähler;

(ii) the metric is irreducible and Einstein with non-zero scalar curvature (either
locally symmetric or the quaternionic-Kähler case from the Berger–Simons the-
orem [5, p. 300]);

(iii) the metric is irreducible and the holonomy belongs to the list

SU.n=2/ � SO.n/; Sp.n=4/ � SO.n/; G2 � SO.7/; Spin.7/ � SO.8/ (2.4)

of the Berger–Simons theorem [5, p. 300];

(iv) the metric has reducible holonomy (so is locally a product by the local de Rham
theorem).
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We will discuss first the case where the Weyl connection r has irreducible holonomy
(cases (i)–(iii) in the above list). Then, in the last section we will treat the reducible case,
which is more delicate.

3. Irreducible Weyl holonomy

In this section, we consider the case when .M n; g/ is a compact Riemannian manifold
with special holonomy and the closed non-exact Weyl connection r has special irre-
ducible holonomy. As explained before, the lift zr of r to the universal cover zM of M
is the Levi-Civita connection of a metric h on zM which belongs to the conformal class
determined by the lift Qg of g to zM .

Because the restricted holonomy group Hol0.r/DHol. zM;h/ is a Riemannian holon-
omy, we need to consider the following cases.

Case (i). . zM;h/ is Kähler. Then .M; g/ is a locally conformally Kähler (LCK) compact
manifold with special holonomy which is not globally conformally Kähler, since r is
assumed to be non-exact. By [18, Case 1 of Theorem 1.3], it follows that .M; g/ is a
Vaisman manifold [25, 26] and r is the canonical Weyl connection of the LCK structure.

Case (ii). The metric h is irreducible and locally symmetric, or Hol0.r/D Sp.n=4/Sp.1/
for n � 8 and multiple of 4. It is well known that in this situation h is Einstein with non-
zero constant scalar curvature (see [5, Theorem 14.39] for the case of quaternionic-Kähler
manifolds). However, since h admits strict homotheties (which preserve the Ricci tensor
of h, but not its trace with respect to h), this case is impossible.

Case (iii). Hol0.r/ belongs to the Berger list (2.4). We will not study the first two cases,
since they correspond to . zM; h/ being Kähler, when Case (i) applies. Assume now that
Hol0.r/ is equal to G2 for n D 7 or Spin.7/ for n D 8. Then the manifold zM is spin
since its frame bundle reduces to the holonomy group of h, which is simply connected.
By a result of Wang [27], .M; h/ carries a non-trivial parallel spinor (so in particular it is
Ricci-flat).

Consequently, .M; Œg�;r/ is Einstein–Weyl [3], which by a result of Tod [24, Propo-
sition 2.2] implies that the Lee form �0 D d'0 of r with respect to the Gauduchon
metric (cf. [13]) g0 is rg0 -parallel. The global de Rham theorem shows that . zM; Qg0/

is isometric to .R � N n�1; d'20 C gN / for some n � 1-dimensional complete Rieman-
nian manifold .N n�1; gN /. Using the change of coordinates r WD e'0 we deduce that the
metric h D e2'0 Qg0 on zM is a Riemannian cone: . zM; h/ D .R�C � N

n�1; dr2 C r2gN /.
By [2], .N n�1; gN / is either nearly Kähler for n D 7, or nearly parallel G2 for n D 8.
Moreover, the restriction of the parallel spinor of . zM; h/ to .N n�1; gN / is a real Killing
spinor  with Killing constant 1=2:

r
gN
X  D

1

2
X �  ; 8X 2 TN: (3.1)
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This implies in particular that .N n�1; gN / is Einstein with positive scalar curvature
(thus compact by Myers’ theorem), and this implies that .M; g0/ is a mapping torus of an
isometry of .N n�1; gN /.

We thus end up with two conformally related metrics with special holonomy on the
compact manifoldM : the original metric g, and the Gauduchon metric g0 of r. We claim
that g is a scalar multiple of g0.

Indeed, if this is not the case, it follows from [21, Theorems 5.1 and 6.3] that R � N
admits a triple warped product metric, so N admits a metric with reducible holonomy,
which is conformal to gN . We denote this metric by gr . As N is compact and simply
connected, de Rham’s decomposition theorem shows that .N; gr / is a global Riemannian
product .N1; g1/� .N2; g2/. By [17, Corollary 3.4], the conformal factor between gN and
gr only depends on N1 or N2. Up to permuting the indices, we can therefore assume that
gN D e

2f .g1 C g2/, where f W N1 ! R.
We will now exploit the relation between the .4; 0/ curvature tensors of gN and gr (cf.

[5, Theorem 1.159]):

RgN D e2f
�
Rgr C gr 7

�
r
grdf � df ˝ df C

1

2
jdf j2grgr

��
:

Viewing the curvature applied to two vectors as a 2-form, and using the metric gN to
identify vectors and 1-forms, this relation is equivalent to

R
gN
X;Y D R

gr
X;Y CX

[N ^

�
r
gr
Y df � df .Y /df C

1

2
e�2f jdf j2grY

[N
�

� Y [N ^
�
r
gr
X df � df .X/df C

1

2
e�2f jdf j2grX

[N
�
;

for every tangent vectorsX;Y . Applying this relation to a vectorX 2 TN1 and to a vector
Y 2 TN2, and using the fact that Rgr .X; Y / D 0, rgrY df D 0 and df .Y / D 0, we obtain

R
gN
X;Y D �Y

[N ^
�
r
g1
X df � df .X/df C e

�2f
jdf j2g1X

[N
�
:

On the other hand, using (3.1) repeatedly we obtain

1

2
R
gN
X;Y �  D R

gN
X;Y D

1

2
Y [N ^X [N �  :

Comparing these two equations we obtain

� Y [N ^
�
r
g1
X df � df .X/df C e

�2f
jdf j2g1X

[N
�
�  D Y [N ^X [N �  ;

8X 2 TN1; 8Y 2 TN2;

whence

r
g1
X df � df .X/df C e

�2f
jdf j2g1X

[N D �X [N ; 8X 2 TN1:

Applying this formula to X yields

.Hessg1f /.X;X/ D df .X/
2
� jdf j2g1g1.X;X/ � e

2f gr .X;X/ for all X 2 TN1:
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On the other hand, at a point where f attains its minimum on M1, the left-hand term
is non-negative, whereas the right-hand term is strictly negative for X ¤ 0, which is a
contradiction. This proves that g is proportional to g0.

Summarizing, we have proved the following.

Proposition 3.1. The only compact manifolds .M; g/ with special holonomy carrying
a closed non-exact Weyl connection r with special irreducible holonomy are Vaisman
manifolds or mapping tori of an isometry of a compact nearly Kähler or nearly parallel
G2 manifold.

4. Reducible Weyl holonomy

We consider now the remaining case, when the holonomy of the closed non-exact Weyl
connection r on .M; Œg�/ (or, equivalently, of the metric h WD e2' Qg on the universal
cover zM ) is reducible.

Assume first that the Weyl connection r is flat. This case was classified in [10], where
it is shown that the universal cover zM endowed with the metric h (whose Levi-Civita
connection is zr) is isometric to Rn n ¹0º and �1.M/ is a semi-direct product K Ì Z
between a finite group of isometries of Rn fixing the origin and a group generated by an
homothety of ratio � < 1. Seeing Rn n 0 as the product RC � Sn�1 together with the
metric dr2 C r2gS where gS is the round metric on the sphere, one deduces that �1.M/

acts by isometries for the metric 1
r2
dr2 C gS , which is conformal to the previous metric

and descends toM . In addition, this metric is a product metric, so it is reducible, implying
that all manifolds occurring in Fried’s classification [10] are solutions of Problem 1.1. In
fact, the same argument as in Case (iii) in the previous section shows that the product
metric on S1 � Sn�1 is the only metric with special holonomy in its conformal class,
because otherwise Sn�1 would be a product of two positive-dimensional manifolds, which
is clearly impossible.

We will thus assume from now on that the Weyl connection r is non-flat and has
reducible holonomy. We introduce the following terminology.

Definition 4.1. A Weyl connection r on a compact conformal manifold .M; c/ is called
a locally conformally product (LCP) structure if it is closed, non-exact, non-flat, and has
reducible holonomy. An LCP structure .c;r/ is said to be compatible with a Riemannian
metric g on M if g 2 c.

By assumption, the metric h on the universal cover of any LCP manifold has reducible
holonomy. However, as h is incomplete, we cannot apply de Rham’s decomposition theo-
rem even though zM is simply connected. Nonetheless, we have the following.

Theorem 4.2 (Kourganoff [16, Theorem 1.5]). The universal cover . zM;h/ of a compact
LCP manifold .M; c;r/ is globally isometric to a Riemannian product Rq � .N; gN /,
where Rq .q � 1/ is the flat Euclidean space, and .N; gN / is an incomplete Riemannian
manifold with irreducible holonomy.
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Our assumption throughout this section is thus that .Œg�;r/ is an LCP structure, and
that g has special holonomy. We will distinguish 3 cases, according to the type of g:
Kähler, irreducible Einstein, and reducible.

In view of Theorem 4.2, we fix some notations on LCP structures that we will use
until the end of this section. For any LCP structure .Œg�; r/ on the compact manifold
M we denote by Qg the lift of the metric g to the universal cover zM of M and by h WD
e2' Qg the reducible Riemannian metric on zM for which zr D rh. With respect to product
decomposition . zM;h/ŠRq � .N;gN /where Rq is an Euclidean space and .N;gN / is an
irreducible incomplete manifold. the tangent bundle of zM decomposes into the orthogonal
rh-parallel direct sum TRq ˚ TN . We call TRq the flat distribution and TN the non-flat
distribution of the LCP structure.

4.1. LCP structures on compact Kähler manifolds

The aim of this subsection is to prove the following.

Theorem 4.3. On compact Kähler manifolds, there are no LCP structures compatible
with the Kähler metric.

Proof. Assume that .M; g; J / is a compact Kähler manifold admitting an LCP structure
.Œg�;r/. This situation is similar to the one studied in [18, Section 6], except that loc. cit.
dealt with reducible metrics which are locally conformally Kähler, while here we consider
Kähler metrics which are locally conformally reducible.

On the universal cover zM of M the metric Qg is Kähler with respect to the lift zJ . In
order to use some results from [18], we introduce the notationD1 WD TRq andD2 WD TN .

Consider first the case when the dimensions n1 and n2 ofD1 andD2 are both at least 2.
Most arguments in [18, Theorem 6.2] are valid without the compactness assumption. More
precisely, the second formula on p. 143 of [18] shows the following.

Proposition 4.4. Assume that T zM D D1 ˚D2 is a rh-parallel splitting on a Rieman-
nian manifold . zM n; h/ with ni WD dim.Di / � 2, and assume moreover that a conformally
related metric Qg WD e�2'h on zM is Kähler. Then

1

n1

�
jz�1j

2
h � ı

hz�1
�
C

1

n2

�
jz�2j

2
h � ı

hz�2
�
� jz� j2h D 0; (4.1)

where z�i denotes the restriction of z� WD d' to Di .

The conformal change formulas (cf. [5, Theorem 1.159]) give

j˛j2h D e
�2'
j˛j2
Qg ; ıh˛ D e�2'

�
ı Qg˛ � .n � 2/ Qg.d'; ˛/

�
for every 1-form ˛. Equation (4.1) thus becomes

1

n1

�
jz�1j

2
Qg�ı

Qg z�1C.n�2/ Qg.z�; z�1/
�
C
1

n2

�
jz�2j

2
Qg�ı

Qg z�2C.n�2/ Qg.z�; z�1/
�
�jz� j2

QgD0: (4.2)
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As n1 C n2 D n, Qg.z�; z�i / D jz�i j2Qg and jz� j2
Qg
D jz�1j

2
Qg
C jz�2j

2
Qg
, we thus get

1

n1

�
.n2 � 1/jz�1j

2
Qg � ı

Qg z�1
�
C

1

n2

�
.n1 � 1/jz�2j

2
Qg � ı

Qg z�2
�
D 0: (4.3)

The forms z�i are �1.M/-invariant, so they are pull-backs of 1-forms �i defined on M .
The relation (4.3) thus projects to the compact quotient M D zM=�1.M/ into

1

n1

�
.n2 � 1/j�1j

2
g � ı

g�1
�
C

1

n2

�
.n1 � 1/j�2j

2
g � ı

g�2
�
D 0: (4.4)

so after integration over M we obtain � D 0, which is excluded.
It remains to study the case when one of the distributions D1 or D2 has dimension 1.

Since zM is simply connected, this distribution determines a rh-parallel vector field � on
zM of unit length with respect to h. Then the vector field z� WD e'� has unit length with

respect to Qg, and by (2.3) (applied to Qg instead of g) we get

r
Qg
X
z� D rhX

z� � d'.z�/X � d'.X/z� C Qg.X; z�/.d'/]

D �d'.z�/X C Qg.X; z�/.d'/]; (4.5)

where we have used thatrhX z� D d'.X/e
'� D d'.X/z�. Up to passing to a double cover of

M if necessary, z� projects to a unit length vector field � on .M;g/ which by (4.5) satisfies

r
g
X� D ��.�/X C g.X; �/� (4.6)

(we identify from now on vectors and 1-forms using the metric g). We decompose � as

� D a� C bJ � C �0;

where a WD �.�/, b WD �.J �/ and �0.�/ D �0.J �/ D 0. Since J is rg -parallel, (4.6)
immediately gives

r
g
X� D �aX C g.X; �/�; r

g
XJ � D �aJX C g.X; �/J�; 8X 2 TM: (4.7)

Let us denote bym the complex dimension ofM , so that nD 2m,m> 1. Using a local
orthonormal basis ¹eiºiD1;:::;2m of the tangent bundle and the relations d D

P
ei ^ r

g
ei ,

ı D �
P
eiyrgei , d c D

P
Jei ^ r

g
ei , ı

c D �
P
Jeiyrgei , we readily compute

d� D �� ^ �; d c� D 2a� � � ^ J �; ı� D .2m � 1/a; ıJ � D b (4.8)

(here� WD g.J �; �/ is the Kähler form). The anti-commutation of d c and ı (cf. [20]) yields

0 D d cı� C ıd c� D .2m � 1/d ca �
X

eiy
�
2ei .a/� � r

g
ei
� ^ J � � � ^ rgeiJ �

�
D .2m � 1/Jda � 2Jda � ı�J � � r

g

J�
� Cr

g

�
.J �/C

�
ı.J �/

�
�

D .2m � 3/Jda � ı�J � � r
g

J�
� Cr

g

�
.J �/C b�:
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Since (4.7) implies rg
�
J � D 0, we obtain thus

.2m � 3/Jda � ı�J � � r
g

J�
� C b� D 0: (4.9)

From (4.7) together with the fact that d� D 0, we obtain for every vector field X :

g.X;r
g

J�
�/ D g.J �;r

g
X�/ D X.b/ � g.r

g
XJ �; �/ D X.b/C ag.JX; �/;

whence rg
J�
� D db � aJ� . Equation (4.9) thus reads

0 D .2m � 3/Jda � ı�J � � db C aJ� C b�: (4.10)

We take the scalar product with J � in (4.10) and obtain

0 D .2m � 3/�.a/ � ı� � J �.b/C a2 C b2;

which after an integration over M and use of the divergence theorem and (4.8) yields

0 D

Z
M

�
.2m � 3/�.a/ � J �.b/C a2 C b2

�
d�g

D

Z
M

�
.2m � 3/aı� � bı.J �/C a2 C b2

�
d�g

D 4.m � 1/2
Z
M

a2d�g :

This shows that the function a vanishes identically, and thus (4.10) becomes

0 D ı�J � C db � b�: (4.11)

From (4.7) and (4.11) we get

d.bJ �/ D db ^ J � C bdJ � D b� ^ J � � bJ� ^ � 2 �.1;1/M: (4.12)

The global i@N@-lemma (cf. [20]) shows that there exists a real function  on M such that

bJ� ^ � � b� ^ J � D i@N@ :

Applying the Lefschetz operator ƒ to this relation and using the commutation relation
Œƒ; @� D i N@� (see [20, (14.15)]), we get

� D
1

2
�
N@ D

1

2
N@� N@ D �i Œƒ; @�N@ D �bƒ.J� ^ � � � ^ J �/ D 0;

since ƒ.J� ^ �/ D �g.�; �/ D �a D 0, and similarly ƒ.� ^ J �/ D 0. It follows that  
is constant, so

bJ� ^ � D b� ^ J �: (4.13)
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We now remark that the 1-form �0 is harmonic. Indeed, d�0 D d� � d.bJ �/ D 0 by
(4.12) and (4.13) and

ı�0 D ı� � ı.bJ �/ D ı� � bıJ � C J �.b/ D ı� � b
2
C J �.b/ D 0

by (4.11). Since .M; g; J / is compact Kähler, J�0 must be harmonic too, so in particular
dJ�0 D 0. We then compute

0 D d.dJ �/ D �d.J� ^ �/ D �d.J�0 ^ �/ D J�0 ^ d� D J�0 ^ � ^ �:

Since J�0, � and � D �0 C bJ � are mutually orthogonal, this shows that �0 vanishes
identically, so

� D bJ �: (4.14)

The relations (4.7) now read

r
g
X� D bg.X; �/J �; r

g
XJ � D �bg.X; �/�; 8X 2 TM; (4.15)

thus showing that the distribution spanned by � and J � is rg -parallel. With the equalities
(4.15), one has

Œe�'�; J �� D r
g

e�'�
J � � r

g

J�
e�'� D �be�'� C be�'� D 0; (4.16)

and
d.e�'�/ D d.J �/ D 0: (4.17)

We now consider the universal cover zM of M , endowed with the Kähler metric Qg.
We will denote by � and zJ� the one-forms dual to z� and zJ z� via the metric Qg in order to
avoid confusions. The previous analysis shows that the distribution .z�; zJ z�/ is Qg-parallel.
Since . zM; Qg/ is simply connected and complete, one can use the de Rham decomposition
theorem to obtain

. zM; Qg/ D .M0; g0/ � .K; gK/ (4.18)

where M0 is the integral manifold of the parallel distribution .z�; zJ z�/ endowed with the
metric g0 WD �2C . zJ�/2 and .K;gK ; zJ jK/ is a Kähler manifold. The relations (4.15) give
that zJ z� is a geodesic vector field, therefore its integral curve through any point p 2M0 is
the geodesic starting at p with speed zJ z�p . Hence, the completeness of .M0; g0/ implies
that the flow  Jt of zJ z� is defined for all times. In addition, the flow  s of the vector field
� D e�'z� is also defined for any time by definition of �. We fix p 2M0 and using (4.17)
and the simple connectedness of M0, we know there exist two functions �; � such that
d� D e�'�, d� D zJ�, �.p/ D �.p/ D 0.

We have defined so far all the necessary objects to construct a diffeomorphism between
M0 and R2. Namely, we consider the maps:

f1WR
2
!M0; .s; t/ 7!  s ı  

J
t .p/; f2WM0 ! R2; x 7!

�
�.x/; �.x/

�
: (4.19)
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By (4.16), the two flow maps  and  J commute, and then easy computations give

d.f1 ı f2/D id; f1 ı f2.p/D .0; 0/; d.f2 ı f1/D id; f2 ı f1.0; 0/D p; (4.20)

so f1 and f2 are inverse to each other. Consequently, f1 is a diffeomorphism, and after
computing the pull-back of g0 by f1, one obtains in the new coordinates:

.M0; g0/ ' .R
2; e�2'ds2 C dt2/: (4.21)

In these coordinates one has � D e'ds and zJ� D dt . Note that the function ', viewed as
a function on R2, only depends on t due to the fact that �.'/ D z�.�/ D z�.e�'z�/ D 0 by
(4.14).

We can compute the scalar S0 curvature of .M0; g0/ using the relations (4.15) and we
obtain

S0 D . zJ z�/. Qb/ � Qb
2

where Qb is the lift of b to zM . Thus the Riemannian surface .M0; g0/ is flat if and only
if .J �/.b/ � b2 D 0. If this were the case, we would have b2 D 0 at some point where
b attains its maximum or its minimum (which exist since M is compact), whence b Š 0,
yielding that ' is constant by equation (4.14). This is impossible since ' is unbounded.

The Riemannian surface .M0; g0/ is thus irreducible. Moreover, the action of the fun-
damental group of M preserves the distribution spanned by @

@s
by assumption, so we

deduce that �1.M/ preserves the factorM0 in the decomposition zM 'M0 �K, because
�1.M/ acts by isometries on . zM; Qg/, thus its action preserves the de Rham decomposi-
tion of . zM; Qg/. Hence, �1.M/ preserves the decomposition M0 ' R � R. We consider
the restriction H of �1.M/ to the second factor R (i.e., the factor with the t coordinate).
Clearly H preserves the 1-form zJ� D dt , so H contains only translations.

The function ' being equivariant, for any 
 2 H there exists a constant �
 > 0 such
that


�'.t/ D '.t/C ln�
 : (4.22)

If H is of rank 1 (as an abelian group), then it is discrete and generated by a single
translation. If it is of rank at least 2, then it is dense in R (as a group of translations),
and the map that associates to a translation in H its constant given by equation (4.22) is a
group homomorphism, so ' is an affine map by continuity.

Summarizing the previous discussion, no matter whether ' is affine or not, there
always exists � 2 RC n ¹0; 1º such that the function t 7! '.t/� t ln� is �1.M/-invariant,
thus it can be written as the pull-back of a function  on M . We will now compute
the co-differential of the 1-form dt on . zM; Qg/. By (4.18) and (4.21), this is equal to the
co-differential of dt on .R2; e�2'ds2 C dt2/: Consider the orthonormal frame .e1 WD
e'.t/ @

@s
; e2 WD

@
@t
/ on .R2; e�2'ds2 C dt2/: We have Œe1; e2� D �'0.t/e1, so using the

Koszul formula we readily obtain

re1e1 D '
0.t/e2; re1e2 D �'

0.t/e1; re2e1 D re2e2 D 0:
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This gives ı Qgdt D '0.t/D  0.t/C ln� and consequently we obtain ıg.e dt/D e ln�
on .M; g/ (we denoted here by the same symbol the projection of dt to M ). Integrating
against the volume form of g yields ln � D 0 which is absurd because ' is unbounded.
This concludes the proof.

4.2. LCP structures on compact Einstein manifolds

In this subsection, we will prove the following.

Theorem 4.5. On a compact Einstein manifold, there are no LCP structures compatible
with the Einstein metric.

Proof. Assume that .Œg�; r/ is an LCP structure on an Einstein manifold .M; g/, i.e.,
satisfying

Ricg D �g (4.23)

for some real constant �.
Since Qg D e�2'h, (2.3) shows that the connections r Qg and rh are related by:

r
h
XY � r

Qg
XY D d'.Y /X C d'.X/Y � Qg.X; Y /.d'/

] Qg ; (4.24)

where .d'/] Qg is the dual vector field to d' with respect to Qg.
Moreover, from [5, Theorem 1.159] we have the following relations between the

Laplace operators on functions and the Ricci tensors of the metrics Qg and h:

� Qgf D e2'
�
�hf C .n � 2/h.df; d'/

�
; (4.25)

and

Ric Qg � Rich D .n � 2/
�
r
h.d'/C d' ˝ d'

�
�
�
�h' C .n � 2/kd'k2h

�
h: (4.26)

Note that Rich.X; Y / D 0 for every X 2 TRq and Y 2 TN . Let us fix vector fields
X 2X.Rq/ and Y 2X.N /, identified with their canonical extensions to zM . In particular,
rhXY D 0. Plugging X; Y into (4.26) and using (4.23) yields

r
h.d'/.X; Y /C d'.X/d'.Y / D 0: (4.27)

This implies

X
�
Y.e'/

�
D X

�
e'
�
d'.Y /

��
D e'

�
d'.X/d'.Y /Crh.d'/.X; Y /

�
D 0:

Since this holds for everyX 2X.Rq/ and Y 2X.N /, we see that e' D f1C f2 for some
smooth functions f1 2 C1.Rq/ and f2 2 C1.N /.

Consider an element 
 2 �1.M/ acting on zM as a strict homothety of h. Since Qg is
of course �1.M/-invariant, this means that there exists a positive real number �¤ 1 such
that 
�.e'/ D �e' . We thus obtain


�f1 � �f1 D �f2 � 

�f2:
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Since this is an equality between functions on Rq and N respectively, there exists a con-
stant c such that 
�f1 � �f1 D c. This equation can be written as


�
�
f1 �

c

1 � �

�
D �

�
f1 �

c

1 � �

�
:

On the other hand, [7, Lemma 3.4] shows that f1 is bounded on Rq . The above equivari-
ance property thus shows that f1 � c

1��
vanishes, i.e., f1 is constant.

We have thus proved that ' is the pull-back to zM of a function defined on N . We now
plug in a non-zero vector X from TRq in the Ricci transformation formula (4.26) and
obtain:

� Qg.X;X/ D �
�
�h' C .n � 2/kd'k2h

�
h.X;X/;

whence
� D �e2'

�
�h' C .n � 2/kd'k2h

�
:

We conclude from (4.25) that
�� D � Qg':

Recall now that d' is the pull-back to zM of the Lee form � on M . The previous relation
thus reads��D ıg� onM , which, by integration on the compact manifoldM , yields that
� D 0 and thus � is g-harmonic. The Bochner formula applied to the compact Ricci-flat
manifold .M;g/ then shows that � is rg -parallel. However, this is impossible by [12] (see
also [4, Theorem 1.6]).

4.3. LCP structures on reducible manifolds

We start by recalling the construction in [7] of LCP structures on compact manifolds
carrying a reducible metric in their conformal class. Let .c;r/ be an LCP structure onM .
Recall that a metric g 2 c is called adapted if the Lee form of r with respect to g vanishes
on the flat distribution [7, Definition 3.8]. This is equivalent to the fact that the function '
on zM defined by h D e2' Qg is constant along Rq , i.e., it is the pull-back of a function on
N . By [7, Proposition 3.6], every LCP structure admits adapted metrics.

Example 4.6. Let g0 be an adapted metric for an LCP structure onM 0, and let . zM 0; h0/D
Rq � .N 0; gN 0/ be the decomposition of the universal cover of . zM 0; h0 WD e2' Qg0/ given
by Theorem 4.2. If .K; gK/ be any compact Riemannian manifold, then the Riemannian
product .M;g/ WD .M 0; g0/� .K;gK/ also carries an LCP structure. Indeed, the lift of the
Riemannian metric g to the universal cover zM D zM 0 � zK of M can be written

Qg D Qg0 C QgK D e
�2'h0 C QgK D e

�2'.gRq C gN 0 C e
2'
QgK/

so . zM; e2' Qg/ is the Riemannian product of the flat space Rq and

.N; gN / WD .N
0
� zK; gN 0 C e

2'
QgK/

(the latter being a warped product metric on N 0 � zK since ' is a function on N 0).
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The universal cover zM ofM admits thus a Riemannian product metric g D g1C g2 –
where g1 WD g0 is a metric onM1 WD zM

0, and g2 WD QgK onM2 WD zK – which is �1.M/D

�1.M
0/��1.K/-invariant. The connectionrh induces an LCP structure onM , for which

the flat distribution TRq is contained in TM1 and the function 'W zM DRq �N 0 � zK!R
determining the conformal change from h to Qg only depends on the factor N 0.

Our aim is to prove that conversely, every reducible Riemannian manifold carrying
an LCP structure is obtained locally by the above construction, or, equivalently, that the
properties described in the paragraph above are satisfied on every compact reducible LCP
manifold.

Theorem 4.7. Assume that .M; g/ is a compact reducible Riemannian manifold (thus
its universal cover . zM; Qg/ is isometric to a Riemannian product .M1; g1/ � .M2; g2/

of two complete Riemannian manifolds). If .Œg�;r/ is an LCP structure on M , defining
the �1.M/-equivariant product metric e2' Qg D h WD gRq C gN on zM , then up to inter-
changing the factors M1 and M2, the flat distribution TRq is contained in TM1, and the
conformal factor ' is the pull-back of a function on M1 which is constant along Rq .

Moreover, the universal cover zM decomposes as a triple product Rq � N 0 �M2,
where M1 D Rq �N 0, and h D gRq C gN 0 C e

�2'g2, with .N 0; gN 0/ incomplete.

Proof. Let � be a non-zero rh-parallel vector field tangent to the flat factor Rq of zM . One
can assume that h.�; �/ D 1. Since rh� D 0, � is Killing with respect to h and conformal
Killing with respect to the complete Riemannian product metric Qg, which is non-flat since
we excluded the Einstein case in Theorem 4.5. Moreover, � is complete, therefore we can
apply the following remarkable result.

Theorem (Tashiro–Miyashita [23]). A complete conformal Killing vector field on a com-
plete, non-flat Riemannian product is Killing.

We infer that � is Killing with respect to Qg, which implies that �.'/D0. Thus z�.�/D0,
for all h-parallel vector fields � tangent to the factor Rq , showing that z�.TRq/ D 0, or
equivalently that g is adapted. We will use this fact several times in the subsequent proofs
without referring to it explicitly.

We consider the open set

W� WD ¹x 2M j �1 ¤ 0; �2 ¤ 0º;

where for every tangent vector X 2 T zM we will denote by X1 and X2 its projections to
TM1 and TM2.

Our goal is to show that W� D ;. This will be done in two steps: first we prove that
if W� is non-empty, then it is dense in zM . Next, assuming W� is dense, we will obtain a
contradiction.

Lemma 4.8. For every rh-parallel vector field �, the set W� is either empty or dense
in zM .
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Proof. The statement is trivial for � D 0, so we can assume that h.�; �/ D 1. For every
x 2 zM we denote by zM?x the maximal integral manifold induced by the distribution �?.
Since . zM; h/ is isometric to Rq � .N; gN / and � is a constant vector on Rq , one has
M?x ' Rq�1 �N .

Suppose thatW� ¤; and fix x 2W� . Applying (2.3) to a vector fieldX 2 T zM?x yields

0 D r
Qg
X� C

z�.X/� D r
Qg
X .e

'�/ (4.28)

showing that the distribution generated by � is parallel along zM?x . Let y 2 zM?x . One has
�y … TM1 because otherwise �x would be in TM1 since TM1 is Qg-parallel. With the same
argument, one has �y … TM2, and we conclude that y 2 W� and thus zM?x � W� .

It remains to understand how the decomposition of � with respect to TM1 and TM2

varies in the direction of �. Let Dx be the maximal integral manifold through x of the
distribution spanned by �. We know that Dx ' R and ' is constant along Dx since
d'.�/ D z�.�/ D 0. This implies that rh

�
z� D 0. We remark that the metric duals z�] and

z�]h of � with respect to Qg and h are related by z�] D e2' z�]h , showing that

r
h
�
z�] D rh� .e

�2' z�]h/ D e�2'rh�
z�]h D 0:

Applying (2.3) again, we obtain

0 D rh� � D r
Qg

�
� � z�] Qg.�; �/ D r

Qg

�
� � e�2' z�];

0 D rh�
z�] D r

Qg

�
z�] C z�.z�]/� D r

Qg

�
z�] C jz� j2g�;

which can be rewritten

r
Qg

�
� D e�2' z�]; r

Qg

�
z�] D �jz� j2g�: (4.29)

Taking the Qg-scalar product with z�] in the second equation of (4.29) shows that z�] has
constant norm alongDx , so the subspace E WD span.�; �]/ defines a r Qg -parallel distribu-
tion along Dx . We distinguish two cases.

Case 1. Assume that Ex \ TxM1 D ¹0º D Ex \ TxM2. Since E \ TM1 and E \ TM2

are both r Qg -parallel along Dx , this implies that

Ey \ TyM1 D ¹0º D Ey \ TyM2 for every y 2 Dx :

In particular, � is contained neither in TM1 nor in TM2 along Dx , so Dx � W� .

Case 2. Assume now that Ex \ TxM1 ¤ ¹0º. The case Ex \ TxM2 ¤ ¹0º will be treated
similarly. Since x 2W� , one has �x … TxM1, so z�]x ¤ 0 and the dimension of E is 2 along
Dx . Moreover, Ex \ TxM1 has dimension 1, so the distribution E \ TM1 has dimension
1 along Dx . This allows us to define a r Qg -parallel vector field X 2 E \ TM1 along
Dx satisfying Qg.X;X/ D 1. Consider the r Qg -parallel vector field Y along Dx (uniquely
defined up to a sign) which is orthogonal to X , belongs to E, and satisfies Qg.Y; Y / D 1.
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We take a scalar product with respect to X and Y in equation (4.29) and obtain

�
�
Qg.�;X/

�
D e�2' Qg.z�]; X/; �

�
Qg.z�]; X/

�
D �jz� j2

Qg Qg.�;X/;

�
�
Qg.�; Y /

�
D e�2' Qg.z�]; Y /; �

�
Qg.z�]; Y /

�
D �jz� j2

Qg Qg.�; Y /:

Defining �X WD Qg.�;X/, �Y WD Qg.�; Y /, c WD e�' jz� j Qg and taking a further derivative with
respect to � in the first and third equations above leads to

�2.�X / D �c
2�X ; �2.�Y / D �c

2�Y :

We conclude that there exist c1; c2; c3; c4 2 R such that

�X .t/ D c1 cos.ct/C c2 sin.ct/; �Y .t/ D c3 cos.ct/C c4 sin.ct/;

where we parameterized Dx via t 7! expx.t�/. Due to the initial conditions, .c1; c2/ ¤
.0;0/ and .c3; c4/¤ .0;0/, so �X and �Y are analytic non-zero functions of t . We now write
the decomposition of X , Y and � according to TM1 ˚ TM2 as X DW X1, Y DW Y1 C Y2
and � DW �1 C �2 respectively, and we obtain along Dx :

�1 D �XX1 C �Y Y1; �2 D �Y Y2:

One has Qg.X1; Y1/ D Qg.X1; Y / D Qg.X; Y / D 0, so for any y 2 Dx

�y 2 TyM2, .�XX1/y D 0 and .�Y Y1/y D 0; �y 2 TyM1, .�Y Y2/y D 0:

Note that X D X1 is non-vanishing along Dx , and Y2 is also non-vanishing since other-
wise Y would belong to E \ TM1 which has dimension 1 and is spanned by X . Thus, a
necessary condition for �y to belong to TyM2 is that �X .y/D 0 and a necessary condition
for �y to belong to TyM1 is that �Y .y/ D 0. However, since the functions �X and �Y are
analytic and non-zero, these two conditions occur only on a discrete subset of Dx . Since
in Case 1 we have Dx � W� , this argument shows that Ux WD Dx \W� is dense in Dx in
both cases.

Now, using the fact that zM?y �W� for every y 2W� , we conclude thatW� DUx � zM?x
which is dense in zM , thus proving the lemma.

We will now prove that W� is actually empty for every �.

Lemma 4.9. For every rh-parallel vector field �, the set W� is empty.

Proof. Like before, one can assume that h.�; �/ D 1. By (2.3) we then obtain 0D r QgX� C
z�.X/� � z�] Qg.X; �/ for every X 2 T zM . Denoting by � WD e'�, this equation reads

r
Qg
X� D

z�] Qg.X; �/ 8X 2 T zM: (4.30)

By taking a further covariant derivative in this relation and skew-symmetrizing, we obtain

R
Qg
X;Y � D Qg.�; Y /

�
r
Qg
X
z�] � z�.X/z�]

�
� Qg.�;X/

�
r
Qg
Y
z�] � z�.Y /z�]

�
8X; Y 2 T zM:



F. Belgun, B. Flamencourt, and A. Moroianu 18

For X WD X1 2 TM1 and Y WD X2 2 TM2 and using the notation ˛ WD �e�' z� , the above
relation becomes

0 D Qg.�;X2/r
Qg
X1
˛ � Qg.�;X1/r

Qg
X2
˛ 8X1 2 TM1; 8X2 2 TM2: (4.31)

Let us assume W� is non-empty, thus dense in zM by Lemma 4.8. The relation (4.31)
implies that r QgX˛ D 0 at each point of W� , for all X orthogonal to the 2-plane P spanned
by �1 and �2, the components of � in TM1 and TM2 which are both non-zero. In particu-
lar,

dk˛k2
Qg.X/ D 0 8X ? P; (4.32)

which implies that dk˛k2
Qg

belongs to P � the dual 2-plane to P . Take now in (4.31) the
scalar product with 2˛. We obtain�

�[ ^ dk˛k2
Qg

�
.X1; X2/ D 0; 8Xi 2 TMi ; i D 1; 2: (4.33)

But the 2-form �[ ^ dk˛k2
Qg

is a decomposable form whose factors are both in the dual 2-
plane P �, and, considering the basis of P defined byXi WD �i , i D 1; 2, the above relation
shows that �[ ^ dk˛k2

Qg
D 0 on W� , thus everywhere on zM . But the factor �[ is unitary

and, as ˛ only depends on ' which is constant on Rq , dk˛k2
Qg
.�/ D 0, thus dk˛k2

Qg
? �[.

We thus obtain dk˛k2
Qg
D 0 on zM , so k˛k2

Qg
D e�2'kz�k is constant on zM . But kz�k2

Qg
D

k�k2g is bounded, whereas ' is unbounded on zM . This contradiction shows that

W� D ;:

Lemma 4.10. The distribution TRq is either contained in TM1 or in TM2.

Proof. Let x be any point in zM . By Lemma 4.9, TxRq � TxM1 [ TxM2. This clearly
implies that TxRq � TxM1 or TxRq � TxM2. For i D 1; 2, the sets

Ci WD ¹x 2 zM; TxRq � TxMiº

are closed and disjoint. Since zM is connected, one of them is equal to zM , thus proving
the lemma.

We can now finish the proof of Theorem 4.7.
Up to exchanging M1 and M2 we can assume that TxRq is contained in TxM1 for

every x 2 zM . Using (2.3) for some non-zero rh-parallel section � of TRq , we get for
every X 2 T zM

0 D r
Qg
X� C

z�.�/X C z�.X/� � z�] Qg.X; �/: (4.34)

The vector field � and is tangent to TM1 and the same holds for r QgX� since TM1 is r Qg -
parallel. Therefore, projecting the equation above on TM2 and takingX D � yields z�2D 0,
so

X2.'/ D 0 for all X2 2 TM2: (4.35)
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The action of the Lie group Rq on zM D M1 �M2 defined by the rh-parallel vector
fields � from the Riemannian factor Rq is free, proper, isometric with respect to h and Qg,
and preserves all slices M1 � ¹x2º , x2 2M2. Fix a point y2 2M2 and denote by N 0 the
quotient space .M1 � ¹y2º/=Rq with respect to the above free proper action of Rq . The
projection pWM1 � ¹y2º ! N 0 is an Rq principal bundle with an Rq-invariant horiontal
(integrable) distribution D. As M1 is simply connected, N 0 is as well, thus the flat Rq-
connection D in the above principal bundle has no monodromy and is therefore trivial,
which makes every leaf of the foliation tangent to D inside M1 � ¹y2º diffeomorphic to
the baseN 0. In fact, they are also isometric when considered the metric induced by h, thus
.M1 � ¹y2º; hjM1�¹y2º/ is isometric to the Riemannian product .Rq; gRq / � .N 0; gN 0/.

In order to prove that zM D M1 �M2 is a triple product, we need to show that the
decomposition M1 � ¹y2º D Rq � N 0 is independent of the choice of y2 2 M2. This in
turn holds if and only if the distributions Rq andD are invariant by the infinitesimal action
of any vertical vector field NX2 2 X. zM/ with respect to the projection p2W zM !M2, i.e.,
for example for NX2 induced by a vector field X2 2 X.M2/. In fact, ŒX1; NX2� is a section
of TN (as both X1 and NX2 are) for any vector field tangent to D � TN . That makes
D � TM1 automatically stable along NX2.

Consider now � a rh-parallel vector field tangent to Rq and compute

Œ�; NX2� D r
Qg

�
NX2 � r

Qg
NX2
�:

The first term belongs to TM2 (in fact it is zero for our choice of NX2 being a lift
of X2 2 X.M2/) and the second vanishes from (4.28) since NX2 ? � and �. NX2/ D 0 from
(4.35). This implies that the quotient spaceM1 of zM inherits the product structure defined
by the pair of integrable distributions Rq and D on each slice M1 � ¹y2º, therefore zM
is diffeomorphic to the triple product Rq � N 0 �M2. From a metric viewpoint, we have
h D gRq C gN 0 C e

�2'g2 and Qg D e2'.gRq C gN 0/C g2 as claimed.
In particular, .N; gN / is isometric to .N 0 �M2; gN 0 C e

�2'g2/, so .N 0; gN 0/ is not
complete because otherwise .N;gN / would be complete as a warped product of two com-
plete Riemannian manifolds.

Although the universal cover of M turns out to be a triple product as in Example
4.6 of a Riemannian product of an LCP manifold M 0 with a compact manifold K, the
next example shows that the fundamental group of M is not necessarily a product of two
groups acting separately on the factors M1 and M2, so the reducible metric g on the LCP
manifold M is not globally a product in general.

Example 4.11. Let .a; b/ be the canonical coordinate system of R2. We consider the
transformation of R2 given by the matrix

A D

�
1 1

1 2

�
and we chose a basis of eigenvectors of A with associated eigenvalues .�; ��1/, inducing
a coordinate system .x; y/ in R2. We define zM D R2 � R�C � R, and we endow this
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manifold with the metric

h WD dx2 C t4dy2 C dt2 C t2ds2;

written in the coordinate system .x; y; t; s/. We now define the group of transformations
G generated by the maps

.a; b; t; s/ 7! .aC 1; b; t; s/;

.a; b; t; s/ 7! .a; b C 1; t; s/;

.a; b; t; s/ 7! .a; b; t; s C
p
2/;

.a; b; t; s/ 7!
�
A.a; b/T ; �t; s C 1

�
;

written in the coordinate system .a; b; t; s/. It is easy to check that G acts freely, properly
and co-compactly on zM by homotheties, and the last map is an homothety of ratio � ¤ 1,
so it is a strict homothety. Thus the metric h defines an LCP structure onM WD zM=G (see
[7, Remark 2.6] for more details). In addition, the metric

Qg WD t�2h D t�2dx2 C t2dy2 C t�2dt2 C ds2

descends to a reducible metric g on M . With the notations of this section, we can write

.M1; g1/ D .R
2
�R�C; t

�2dx2 C t2dy2 C t�2dt2/; .M2; g2/ D .Rds
2/;

but the groupGD�1.M/ is not a product of two groups acting separately onM1 andM2.

The above example shows that our results do not answer completely Problem 1.1, since
we cannot describe the structure of the fundamental groups of the solutions. However,
we do have a complete classification at the level of the universal covers. To make this
precise, note that there is a one-to-one correspondence between the solutions .M;g;r/ of
Problem 1.1, and tuples . zM; Qg; '; �/, where:

(1) . zM; Qg/ is a complete simply connected Riemannian manifold of dimension n � 3
with special holonomy;

(2) ' is a smooth function on zM such that the metric h WD e2' Qg has special holonomy;

(3) � is a discrete co-compact group acting on zM by isometries of Qg and homotheties
of h, not all of them being isometries.

Summarizing the results in Proposition 3.1, Theorems 4.3, 4.5 and 4.7, we obtain the
following classification result.

Theorem 4.12. The triples . zM; Qg; '/ satisfying conditions (1)–(2) above, for which there
exists a group � satisfying condition (3), are of the following form:

• zM DR�S , QgD dt2C gS , and 'D dt , where .S;gS / is a either a complete Sasakian
manifold, a round sphere, or a compact nearly Kähler or nearly parallel G2 manifold.

• zM D Rq �N 0 �M2, Qg D e�2'.gRq C gN 0/C g2, with q � 1, ' 2 C1.N 0/, where
.M2; g2/ is a complete Riemannian manifold and .N 0; gN 0/ is incomplete.
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