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Sylvester domains and pro-p groups

Andrei Jaikin-Zapirain and Henrique Souza

Abstract. Let G be a finitely generated torsion-free pro-p group containing an open free-by-Zp
pro-p subgroup. We show that the completed group algebra FpJGK is a Sylvester domain. Moreover,
the inner rank irkFpJGK.A/ of a matrix A over FpJGK can be calculated by approximation by ranks
corresponding to finite quotients of G. As a consequence, we obtain a particular case of the mod p
Lück approximation for abstract finitely generated subgroups of free-by-Zp pro-p groups.

1. Introduction

A Sylvester rank function on a ring R is a function taking non-negative real values on
matrices over R and satisfying a series of conditions (see Section 2.4) resembling the
conditions of the rank function of matrices over a field. The value of a Sylvester rank
function rk on a matrixA overR is bounded from above by its inner rank rk.A/� irkR.A/.
If irkR is itself a Sylvester rank function, then the ringR is called a Sylvester domain. This
notion appeared first implicitly in the works of P. Cohn and was explicitly defined by W.
Dicks and E. Sontag [11]. One remarkable property of a Sylvester domain R is that it has
a universal division ring of fractions DR into which it embeds and such that for every
matrix A over R, its rank over DR is equal to its inner rank irkR.A/. In particular, R has
no zero divisors, see [11, Sec. 0].

In the case R D KŒ�� is a group algebra of a free group � over a field K, it was
proven by P. Cohn [10, Thm. 7.11.8, Prop. 5.5.1] thatKŒ�� is a Sylvester domain. In [17],
F. Henneke and D. López-Álvarez considered the case where � is a free-by-Z group and
showed that KŒ�� is a Sylvester domain if and only if every left finitely generated projec-
tive KŒ��-module is free.

We would like to notice that, for an abstract group � , if K is a field of characteristic 0
and KŒ�� is a Sylvester domain, then irkKŒ�� coincides with the von Neumann Sylvester
rank function rk� (for the definition of rk� , see [21, Sec. 2]).

In this paper we want to understand for which pro-p groups G the completed group
algebra FpJGK is a Sylvester domain. Often, the results in combinatorial group theory and
combinatorial pro-p group theory run in parallel; although their proofs are quite different.
For example, the theorem of J. Stallings [49] saying that a torsion-free and virtually free
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group is itself free was inspired by the previous and analogous result on free pro-p groups
due to J.-P. Serre in [47]. Later in [32], A. Lubotzky described how the classical theorems
of M. Hall, L. Greenberg and A. Howson about finitely generated subgroups of free groups
all have analogues for free pro-p groups. More recently, a new proof of the Hanna Neu-
mann Conjecture (first proven independently by J. Friedman and I. Mineyev in 2011) was
given by the first author in [19] using homological methods that apply both to the abstract
and pro-p versions of the conjecture. This result was later extended to non-solvable pro-p
Demushkin groups and their discrete counterparts, the hyperbolic surface groups, in [26]
and [3] respectively. Still in the theme of Demushkin groups, in [48] M. Shusterman and
P. Zalesskii extended the pro-p version of Howson’s theorem to non-solvable Demushkin
groups, for which they also proved the virtual retractions property that was established for
surface groups by P. Scott in [46].

In the case of a pro-p group G there exists a Sylvester function on FpJGK, which is an
analogue of the von Neumann Sylvester rank function and we also denote it by rkG (see
Example 2.5 for the definition). Its definition resembles the Lück approximation [21, 33].

If F is a finitely generated free pro-p group, then FpJF K is isomorphic to a ring of
non-commutative formal power series over Fp , and so from [9] we know that FpJF K is a
Sylvester domain. In [22], the first author proved that in this case irkFpJF K D rkF . In this
paper we extend this result to finitely generated free-by-Zp pro-p groups.

Theorem 1.1. Let G be a finitely generated torsion-free pro-p group containing an open
free-by-Zp pro-p subgroup. Then FpJGK is a Sylvester domain and, moreover, irkFpJGK D

rkG .

Question 1. Let G be a pro-p group. Assume that FpJGK is a Sylvester domain. Does
rkG coincide with the inner rank of FpJGK?

Recall that the pro-p Atiyah conjecture predicts that if G is a pro-p group with the
exponent of its torsion elements bounded by pn then rkG takes values in p�nZ (see [21,
Conj. 11.1]). The following consequence of Theorem 1.1 provides new cases where this
conjecture holds.

Corollary 1.2. LetG be a finitely generated torsion-free pro-p group containing an open
free-by-Zp pro-p subgroup. Then rkG takes only integer values.

Notice that the pro-p Atiyah conjecture implies also pro-p Kaplansky conjecture:
FpJGK does not have non-trivial zero divisors if G is torsion-free. Previously the pro-
p Atiyah conjecture was only known for pro-p groups which are residually-(torsion-free
p-adic analytic) [26, Cor. 5.5]. This class includes all infinite Demushkin groups, which
are the pro-p groups that satisfy Poincaré duality in dimension 2. Infinite Demushkin
G groups comprise an important class of free-by-Zp pro-p groups, and while the Atiyah
conjecture for them was previously known, the statement that FpJGK is a Sylvester domain
is new. In Section 2.2 we present examples of finitely generated torsion-free pro-p groups
containing an open free-by-Zp pro-p subgroup but which are not free-by-Zp themselves.
Observe that the free kernel is abelian if and only if G is a p-adic analytic group (see
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Remark 2.10 for a full characterization of the p-adic analytic groups G for which FpJGK
is a Sylvester domain).

Let us describe the structure of the paper and the main ideas behind the proof of
Theorem 1.1 comparing it with the proof of the main result in [17]. We let d.G/ denote
the cardinality of a minimal set of topological generators of a pro-p group G.

On one hand, all projective FpJGK-modules are free for the completed group algebra
FpJGK, and so, in contrast to the case of abstract free-by-cyclic groups considered in [17],
there is no difference for FpJGK to be a pseudo-Sylvester domain or a Sylvester domain.

On the other hand, ifN is a normal subgroup of an abstract group � such that �=NŠZ,
then the group algebra KŒ�� is isomorphic to the crossed product KŒN � � Z, which
allows easily to construct an embedding of the group algebra of a free-by-cyclic group
into a division ring. This decomposition as a crossed product does not exists in the pro-
p situation and we substitute it by presenting of FpJGK, when G is a finitely generated
free-by-Zp pro-p group with free pro-p kernel N , as a skew power series ring FpJGK Š
FpJN KJsI �; ıK for the natural conjugation automorphism

� WFpJN K! FpJN K

and the inner � -derivation ı (see Section 2.3). In Section 2 we discuss also preliminary
results and definitions about Sylvester matrix rank functions and universal embeddings
that we will use to prove Theorem 1.1.

In Section 3 we investigate pro-p groups G for which rkG D irkFpJGK or, more gen-
erally, FpJGK is a Sylvester domain. In particular, we show that if FpJGK is a Sylvester
domain then G is of cohomological dimension 2 and the properties rkG D irkFpJGK and
FpJGK being a Sylvester domain are commensurability invariants for torsion-free pro-p
groups. Thus, it is enough to prove Theorem 1.1 for an open subgroup.

LetƒD Fpha1; a2; : : :i be the free associative Fp-algebra with a universal divisionƒ-
ring of fractions Dƒ. Now assume that G is a finitely generated free-by-Zp pro-p group
having a mild flag presentation in the sense of Definition 4.5, a condition that we show
is virtually satisfied for every finitely generated free-by-Zp pro-p group (Lemma 4.6).
In this case we show that the maps � and ı extend through the series of embeddings
FpJN K ,! ƒJtK ,! DƒJtK in such a way that they induce embeddings of the respective
skew power series rings. We also show that the ring DƒJtKJsI�; ıK is a Noetherian domain
and therefore has a classical ring of fractions Q given by the Ore localization of its non-
zero elements. This provides an embedding of FpJGK into the division ring Q (Section 5).

For an arbitrary finitely generated virtually free-by-Zp pro-p group G, this construc-
tion provides an embedding of FpJGK in an Artinian ring Q. The next step is to show that
under this embedding all full matrices over FpJGK become invertible over Q. The main
tool to prove this is Theorem 2.8 proven in [22]. We achieve this in Section 6. This shows
that FpJGK is a Sylvester domain.

The last step is to show that irkFpJGKD rkG , and we prove it in Section 7. As a corollary
we obtain the pro-p Atiyah conjecture for finitely generated torsion-free virtually free-by-
Zp pro-p groups.
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In Section 8, we discuss some applications of our result to the Lück approximation in
positive characteristic.

We finish the paper with an appendix where we show that if R is a profinite ring and
R† is a localization of R with respect to a collection † of a square matrices over R, then
R† admits a Hausdorff ring topology such that the map R ! R† is continuous. This is
used only in the proof of Lemma 3.2 (see also the remark afterwards).

2. The setup
2.1. General notation

IfG is a pro-p group, we denote the Frattini subgroup ofG byˆ.G/DGpŒG;G� and the
lower p-central series of G by G1 D G and Gi D G

p
i�1ŒGi�1; G�, so that G2 D ˆ.G/.

We stack the commutators Œa; b� D a�1b�1ab on the right:

Œa1; a2; a3; : : : ; an� D ŒŒ� � � ŒŒa1; a2�; a3�; : : : �; an�:

If IG denotes the augmentation ideal of G in the completed group algebra FpJGK, the
induced filtration

Di .G/ D ¹g 2 G j g � 1 2 I
i
Gº

on G is called the dimension series mod p (or also the p-Zassenhaus filtration). We
remark that Gi � Di .G/ for every i � 1.

When we say that a pro-p group G is finitely generated, or that X is a generating set
for G, it will always mean generation in the topological sense. We recall that if w0.G/
denotes the smallest cardinality of a fundamental system of neighborhoods of 1 in G – its
local weight – then w0.G/ D max¹d.G/; jNjº [43, Cor. 2.6.3]. In particular, every closed
subgroup of a finitely generated pro-p group is at most countably generated.

2.2. Torsion-free virtually free-by-Zp groups

There are many abstract torsion-free groups which are virtually free-by-Z but not free-
by-Z themselves. One explicit family of such groups is given by the presentations �e D
ha; b; x; y j Œa; b�e D Œx; y�ei for e > 1 (see [5, Ex. 7.2]). More examples arise amongst
3-manifold groups such as fundamental groups of knot complements with Alexander poly-
nomial 1. One family of such knots is given by the Pretzel linksL.2mC 1;2nC 1;2qC 1/
satisfying .mC nC 1/.mC p C 1/ D m.mC 1/, such as L.�3; 5; 7/. The condition on
the Alexander polynomial implies that ŒG; G� is perfect, and such groups virtually fibre
over Z by being virtually special as a combined consequence of the works of I. Agol, P.
Przytycki and D. Wise [1, 2, 40].

In the pro-p case we can construct examples of torsion-free pro-p groups which are
virtually free-by-Zp but not free-by-Zp themselves using the ideas of [5].

Proposition 2.1. Let G be the pro-p completion of the abstract group

� D
˝
a1; a2; b1; b2 j Œa1; a2�

p
D Œb1; b2�

p
˛
:

Then G is a torsion-free pro-p group that is virtually free-by-Zp but not free-by-Zp itself.
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We divide the proof into two lemmas. Let F D F.x1; x2/ be another free pro-p
group on two generators and consider the surjective homomorphism 'WG ! F defined
by '.ai / D '.bi / D xi for i D 1; 2.

Lemma 2.2. There exists an open subgroup V � F and a homomorphism  W V ! Zp
such that  .x�1Œx1; x2�x/ D 1 for every x 2 F.x1; x2/.

Proof. Let V D ˆ.F /. Then, it is clear that Œx1; x2� is not contained in ŒV; V � and hence
is a non-trivial element of M D V=ŒV; V � ' Znp . Observe that Œx1; x2�ŒV; V � has finitely
many F -conjugates which are linearly independent modulo ŒV; V �, and so one can find a
homomorphism  0WM ! Zp such that  0.x�1Œx1; x2�xŒV; V �/ D 1 for all x 2 F . The
desired  is then the composition of the natural projection V !M with  0.

Let U D '�1.V /. We claim that U is free-by-Zp . More specifically, that if � WU !Zp
is the composition  ı ', then the following lemma holds.

Lemma 2.3. K D ker � is free pro-p.

Proof. Write G as the proper free pro-p product with amalgamation G D AqC B of the
free pro-p groups AD F.a1; a2/, B D F.b1; b2/ and cyclic subgroup C D hŒa1; a2�pi '
hŒb1; b2�

pi [43, Exer. 9.2.6 (a)]. Let .G ;X/ be the graph of pro-p groups consisting of two
vertices A and B and an edge C connecting them such that �1.G ; X/ ' G, and let Y be
the standard p-tree associated with .G ; X/ [42, Sec. 4]. We recall that:

V.Y / D G=A tG=B;

E.Y / D G=C;

d0.gC / D gA; d1.gC / D gB:

In particular,G acts on Y on the left andGnY 'X , the vertex stabilizers are conjugate
to A or B and the edge stabilizers are conjugate to C .

Let Z D KnY and Z be the associated graph of pro-p groups on Z. The edge stabi-
lizers of the K action on Y are the intersections K \ gCg�1 for g 2 G, which are trivial
by construction. Since the vertex stabilizers are all free pro-p, the fundamental group
�1.Z; Z/ is also free pro-p.

First, observe that U is a normal subgroup of G and G=U ' F=ˆ.F /. Hence, UA D
UB D G. Therefore, G=A D UA=A ' U=.U \ A/ and similarly for G=B . Since K is
normal in U with quotient Zp , we get homeomorphisms:

V.Z/ ' KnU=.U \ A/ tKnU=.U \ B/ ' Zp=�.U \ A/ t Zp=�.U \ B/:

Given that Œa1; a2�D Œb1; b2� is an element of both U \A and U \B that is not trivial
under � , V.Z/ is finite (and in fact consists of two elements).

Note that C is contained in U , and since it generates the image of � we have U '
K ÌC . Also observe that by the construction of � andK we have ŒG;U ��K. Combining
this information with the homeomorphismKnG 'KnU �U nG, we get that the induced
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right action of C in KnU � U nG is given by

.Kc; Ug/c0 D .Kcc0; Ug/

for c; c0 2 C and g 2 G. Therefore,

E.Z/ D KnG=C ' KnU=C � U nG ' U nG

and Z is finite. From [41, Thm. 6.6.1], we conclude that the induced map �1.Z;Z/! K

is an isomorphism.

Proof of Proposition 2.1. Again write G as the proper free pro-p product with amalga-
mation G D AqC B as in Lemma 2.3. Since both A and B are torsion-free, G is also
torsion-free by [42, Thm. 4.2 (b)]. By [27, Cor. 3.5], � is residually-p, and so it embeds
into G. Since Œa1; a2� and Œb1; b2� are distinct elements in Œ�; �� � ŒG; G� with the same
p-th power, the group ŒG;G� cannot be free pro-p. Hence, G itself cannot be free-by-Zp .
However, we have shown in Lemma 2.3 that G contains an open subgroup U that is free-
by-Zp .

2.3. Skew power series rings

Let R be a topological ring and � a continuous automorphism of R. We define the con-
tinuous map ı D � � id and observe that ı is a right � -derivation, that is, ı is an additive
map and for all a; b 2 R we have:

ı.ab/ D ı.a/b C �.a/ı.b/:

Moreover, � and ı commute. A (right) skew power series ring S D RJsI�; ıK over R with
automorphism � and derivation ı consists of the topological abelian group of all formal
power series X

i�0

siai ; with ai 2 R

together with a multiplication map defined by the rule:�X
i�0

siai

��X
j�0

sj bj

�
D

X
m�0

sm
� mX
nD0

X
k�n

�
k

n

�
ık�n

�
�n.am�n/

�
bk

�
: (2.1)

While we will not use it, one can define a left skew power series ring analogously. When
R is a Noetherian pseudocompact ring, our definition agrees with the one in [45] by seeing
S simultaneously as a right and left skew power series ring in the unique compatible way
(see [45, Sec. 1]).

For the ring RJsI �; ıK to exist, one needs to ensure that the infinite sums on the right-
hand side of (2.1) converge for every possible choice of elements ai and bj . If this is the
case, then (2.1) defines a continuous multiplication on S which makes it into a topological
R-algebra satisfying

as D s�.a/C ı.a/; for every a 2 R:
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In this paper, the ring R will either be the completed group algebra FpJN K over Fp of
a free pro-p subgroup N of a pro-p group G or a power series ring ƒJtK over a discrete
Fp-algebra ƒ for a fixed prime p. In both cases, R is a complete ring whose topology is
induced by a Hausdorff filtrationRk , whereRk is either the intersection of the k-th power
I kG of the augmentation ideal of FpJGK with FpJN K or the principal ideal generated by tk

of ƒJtK. Following the nomenclature of [28, 31], we have a filtration function

w.a/ D p� sup¹k�0ja2Rkº;

which is submultiplicative, satisfies the ultrametric inequality and is such that ai ! 0 if
and only if w.ai /! 0. In the FpJN K case, this filtration function is called a valuation
in [12, Sec. 2.2], though we shall reserve the name “valuation” for a stronger class of
filtration functions (see Section 4).

Hence, we restrict ourselves to complete Hausdorff rings with a submultiplicative fil-
tration function w. We say that the derivation ı D � � id is topologically nilpotent if
ık ! 0 pointwise, that is, w.ık.a//! 0 for any a 2 R. If ı is topologically nilpotent,
then each infinite sum X

k�n

�
k

n

�
ık�n

�
�n.am�n/

�
bk

appearing in (2.1) is convergent for any choices of ai and bj and therefore the ring
RJsI �; ıK exists. One of our preliminary results is that the completed Fp-group algebra
of any free-by-Zp pro-p group G with free kernel N is isomorphic to a right skew power
series ring over FpJN K.

2.4. Universal division ring of fractions

All ring homomorphisms in this paper are assumed to preserve the multiplicative iden-
tity 1. A subring S of R is division closed if for every unit x 2 S \R� one has x�1 2 S .
The division closure of a subring S of R is the smallest division closed subring of R
containing S .

Let f W R ! S be a ring homomorphism. We say that f is epic if for every ring Q
and homomorphisms ˛; ˇ W S ! Q, the equality ˛ ı f D ˇ ı f implies ˛ D ˇ (i.e., the
natural map HomRing.S;Q/! HomRing.R;Q/ is injective for all rings Q).

As in [10, Chap. 7.2], we define an epic division S -ring as a division ring D together
with an epic homomorphism 'WS !D . The condition on ' to be epic is equivalent to the
condition that the division closure of '.S/ is equal to D [10, Cor. 7.2.2]. Let '0WS ! D 0

be another epic division S -ring. A subhomomorphism of epic division S -rings is a homo-
morphism  WK ! D 0, where K is a local subring of D containing '.S/ with maximal
ideal ker , such that ı 'D '0. Two subhomomorphisms 1WK1!D and 2WK2!D

are equivalent if there is a subring K0 of D contained in K1 \K2 such that  1 and  2
agree onK0 and it is local with maximal ideal ker. 1/\K0 D ker. 2/\K0. A special-
ization D ! D 0 of epic division S -rings is an equivalence class of subhomomorphisms.
The archetypal examples are D D Q and D 0 D Fp for S D Z, with the local subrings K
being the localization of Z at a prime p.
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The universal division S -ring is an epic division S -ring D such that for every other
epic division S -ring D 0 there exists a specialization D ! D 0. It is unique up to S -
isomorphism and we will denote it by DS . If the associated map 'WS ! DS is injective,
we say that DS is the universal division S -ring of fractions. In general, we will say that
S ! D is universal if the division closure of the image of S in D is isomorphic (as a
S -ring) to DS .

The universal division S -ring DS need not exist in general, even if S is a domain [38].
One class of rings that possess a universal division ring of fractions is the class of Sylvester
domains [10, Thm. 7.5.13]. To define a Sylvester domain, we consider Sylvester matrix
rank functions and the inner rank. A Sylvester matrix rank function rk on a unital ring S
is a non-negative real-valued function defined on the set Mat.S/ of all matrices over S
satisfying:

(SMat1) rk.A/ D 0 if A is a zero matrix and rk.1/ D 1;

(SMat2) rk.AB/ � min¹rk.A/; rk.B/º for any pair of matrices A and B that can be
multiplied;

(SMat3) rk.A 0
0 B / D rk.A/C rk.B/ for any matrices A and B;

(SMat4) rk.A C
0 B / � rk.A/C rk.B/ for any matrices A, B and C of appropriate sizes.

Since rk.Idn/D n by (SMat3), one concludes that rk.A/�min¹n;mº for every matrixA2
Matn�m.S/ by property (SMat2) and the identities A D IdnA D AIdm. If S is a division
ring, then any matrix can be put in row-echelon or column-echelon form by multiplication
with invertible matrices, an operation that does not change the rank by (SMat2). It follows
then from (SMat4) that there is a unique Sylvester matrix rank function on S , given by
the number of linearly independent rows (with a left S -action) or columns (with a right
S -action). We include a proof of the following general fact for which we could find no
reference.

Lemma 2.4. Let B be any submatrix of a matrix A 2 Mat.S/ and rk be any Sylvester
matrix rank function on S . Then, rk.B/ � rk.A/.

Proof. Any submatrixB ofA2Matn�m.S/ can be obtained by removing rows or columns
of A. Hence, it suffices to prove the claim for A D . B a / and for A0 D

�
B
a0

�
for arbitrary

columns a 2 Matn�1.S/ and rows a0 2 Mat1�m.S/. Since

B D
�
B a

�
�

�
Idn�1
0

�
D
�
Idm�1 0

� �B
a0

�
;

the lemma follows from property (SMat2).

Every Sylvester matrix rank function defines a dimension function dim for finitely
presented S -modulesM ' Sm=ASn with A 2Matn�m.S/ through dimM Dm� rk.A/.
This dimension function is an example of a Sylvester module rank function (see [22,
Sec. 2.1]), and this correspondence gives a bijection between the sets of Sylvester matrix
rank functions and Sylvester module rank functions.
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Example 2.5. LetG be a pro-p group andG >U1 >U2 > � � � be a sequence of open nor-
mal subgroups of G such that

T1
iD1Ui D ¹1º. Then, for any matrix A over the completed

group algebra FpJGK, if Ai denotes its reduction modulo Ui , the limit

rkG.A/ D lim
i!1

rkFp Ai

jGWUi j

exists, whereAi is seen as a linear operator FmjGWUi jp !FnjGWUi jp after some choice of basis
for FpŒG=Ui �, and defines a Sylvester matrix rank function on S D FpJGK that does not
depend on the choice of the chain Ui [21, Prop. 11.2]. We denote the associated Sylvester
module dimension function by dimG . Observe that for a finitely presented FpJGK-module
M we have

dimGM D lim
i!1

dimFp Fp ˝FpJUi K M

jGWUi j
:

If a ring S has a universal division ring u W S ! DS , we denote by rkS the induced
Sylvester rank function:

rkS .M/ D rkDS

�
u.M/

�
.M is a matrix over S/:

It is characterized uniquely by the following universal property: for every division S -ring

 W S ! E and every matrix M over S , rkE.
.M// � rkS .M/.

Proposition 2.6. Let S be a ring and u W S !DS its universal division ring. Let ˛ W S !
S be an automorphism. Then there exists a unique z̨ WDS !DS such that u ı ˛ D z̨ ı u.

Proof. The universal property of rkS implies that rkS D rkS ı˛. Hence u ı ˛ W S ! DS

is also universal. Thus, u and u ı ˛ are S -isomorphic. This implies the existence of z̨.

The inner rank irkS .A/ of a non-zero matrix A 2 Matn�m.S/ is the smallest non-
negative integer k such that A factors as a product BC with B 2 Matn�k.S/ and C 2
Matk�m.S/. If the inner rank of a square n � n matrix A is n, we call A a full matrix.
A ring S is called a Sylvester domain if the inner rank irk is a Sylvester matrix rank
function on S . Note that irk always satisfies the conditions (SMat1) and (SMat2), and
every Sylvester matrix rank function rk on S satisfies rk.A/ � irk.SA/ by (SMat2). In
fact, irk satisfies an even stronger property than (SMat1): irkA D 0 if and only if A is the
zero matrix. Every Sylvester domain S possesses a universal division ring of fractions DS

such that irk D rkDS
. For the construction of DS , see [10, Sec. 7.4 and 7.5]. Moreover,

DS satisfies another universal property.

Proposition 2.7 (cf. [10, Thm. 7.5.13 (e)]). If S is a Sylvester domain and  WS ! R is
a ring homomorphism such that the image through  of every full matrix A over S is
invertible over R, then  extends uniquely to a map  WDS ! R.

If  W S ! R is a homomorphism of rings and rk is a Sylvester matrix rank function
on R, then the precomposition with  defines a Sylvester matrix rank function on S ,



A. Jaikin-Zapirain and H. Souza 10

denoted  # rk. Given a Sylvester matrix rank function rk0 on S , we say that R is an
envelope for rk0 if there exists  and rk as above such that rk0 D  # rk.

We recall that a ring U is von Neumann regular if for every a 2U there exists b 2U

such that aba D a. In particular, every division ring is von Neumann regular. In [22], the
first author proved the following.

Theorem 2.8 ([22, Cor. 2.5]). Let S be a ring and rk be a Sylvester matrix rank function
on S with an envelope 'WS ! U which is a von Neumann regular ring. Assume that:

(1) TorS1 .U;U/ D 0, and

(2) for any finitely generated left or rightS-submoduleMof U and any exact sequence
0! I ! Sn !M ! 0, I is a free S -module.

Then rk D irk. In particular, S is a Sylvester domain and the division closure of '.S/ in
U is S -isomorphic to DS , the universal division S -ring of fractions.

In the same paper it is shown the following converse to Theorem 2.8.

Proposition 2.9 ([22, Prop. 2.2]). Let S be a Sylvester domain and D its universal divi-
sion S -ring of fractions. Then:

(1) For any left (resp. right) S -submodule M (resp. N ) of Dr , we have that

TorS1 .N;M/ D 0:

(2) For any finitely generated left or right S -submodule M of Dr and any exact
sequence 0 ! I ! Sn ! M ! 0, I is a (set-theoretic) union of submodules
isomorphic to Sk where

k D n � dimM D dim I;

where dim is the Sylvester module rank function associated to the inner rank in S .

We can see Theorem 2.8 as a homological criterion to determine whether S is a
Sylvester domain and 'WS ! U is a universal embedding for S .

Remark 2.10. A big technical difficulty in proving Theorem 1.1 is establishing the valid-
ity of the condition (2) of Theorem 2.8 for the embedding FpJGK! Q we construct in
Section 5. If G is a non-trivial pro-p p-adic analytic group and FpJGK is a Sylvester
domain, then cdG � 2 by Proposition 3.3 and hence G ' Zp Ì Zp or G ' Zp . In par-
ticular, G is free-by-cyclic and Theorem 1.1 applies, showing that those are precisely the
p-adic Lie groups G for which FpJGK is a Sylvester domain. However, for any torsion-
free p-adic Lie group G the completed group algebra FpJGK is a Noetherian domain, and
hence it possesses a classical Ore ring of fractions Q. For G D Zp Ì Zp or G D Zp it is
straightforward to see that the map FpJGK! Q satisfies the conditions of Theorem 2.8.
Since Q is flat over FpJGK, we have TorFpJGK

1 .Q;Q/ D 0. Moreover, any finitely gener-
ated G-submodule M of Q is isomorphic to a finitely generated G-submodule of FpJGK
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by the Ore condition. Observe that any submodule of a finitely generated FpJGK is finitely
generated and hence closed and profinite. Since FpJGK has global dimension at most 2,
by [8, Rem. after Thm. 3.5] we have

Tor
FpJGK
1 .I;Fp/ ' TorFpJGK

1 .I;Fp/ ' TorFpJGK
2 .M;Fp/ � TorFpJGK

2

�
FpJGK;Fp

�
D 0;

where Tor denotes the derived functor of the completed tensor product. By [8, Prop. 3.1],
I is projective, and thus I is a free FpJGK-module since the latter is a local ring. For the
fact that FpJGK is a local Noetherian domain of global dimension cdG, see [4]. The fact
that rkG D rkQ is also true for any p-adic analytic group, and is a result of M. Harris
[16, Lem. 1.10.1].

3. Sylvester domains and completed group algebras

In this section, we study pro-p groups G for which FpJGK is a Sylvester domain or
rkG D irkFpJGK. It is clear that the second condition is stronger, but we believe, that in
fact they are equivalent. The main objective of this section is to show that both condi-
tions are commensurability invariants. As far as the authors are aware, no analogue of this
results is known for abstract group rings. We start with a key lemma.

Lemma 3.1. Let G be a pro-p group and suppose that FpJGK is a Sylvester domain with
universal division ring of fractions DFpJGK. Then, for every finitely generated left (right)
FpJGK-submodule M of Dm

FpJGK and short exact sequence

0! I ! FpJGKn !M ! 0;

the FpJGK-module I is free of finite rank.

The main step for obtaining this result is the following.

Lemma 3.2. The submodule I is closed in FpJGKn.

Remark. We provide two proofs of the lemma. The first one is much easier but requires
an additional condition that irkFpJGK D rkG . We notice that this is the case needed for the
proof of Theorem 1.1. The second proof of Lemma 3.2 does not require any additional
hypothesis but uses a non-trivial result, proved in the appendix, that DFpJGK admits a
Hausdorff ring topology such that the embedding FpJGK! DFpJGK is continuous.

First proof of Lemma 3.2. In this proof we not only assume that FpJGK is a Sylvester
domain but that irkFpJGK D rkG . Let

G > N1 > N2 > � � �

be a chain of normal open subgroups of G with trivial intersection. By [24, Prop. 2.15],
for every finitely generated left FpJGK-module N ,

dimG N D lim
i!1

dimFp Fp ˝FpJNi K N

jGWNi j
:
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If xI denotes the closure of I in FpJGKn, let xM D FpJGKn=xI . Since the image Ji of I and
xI in FpŒG=Ni �n coincide, we get

dimDFpJGK.DFpJGK ˝FpJGK xM/ D dimG
xM

D lim
i!1

dimFp Fp ˝FpJNi K
xM

jGWNi j

D lim
i!1

dimFp FpŒG=Ni �n=Ji

jGWNi j

D lim
i!1

dimFp Fp ˝FpJNi K M

jGWNi j

D dimGM D dimDFpJGK.DFpJGK ˝FpJGK M/:

The embedding M ! Dm
FpJGK factors through the map M ! DFpJGK ˝FpJGK M given

by m 7! 1˝ m, so the latter must also be injective. Hence, any x 2 xI not in I is such
that 1 ˝ x is a non-zero element of DFpJGK ˝FpJGK M . This element lies in the kernel
of the surjection DFpJGK ˝FpJGK M ! DFpJGK ˝FpJGK xM , which is an isomorphism by
comparing dimensions. Therefore, I D xI is closed in FpJGKn.

Second proof of Lemma 3.2. We can identify DFpJGK with the universal localization of
FpJGK at the set of all full matrices. Thus, by Theorem A.1, DFpJGK admits a Haus-
dorff ring topology such that the embedding FpJGK! DFpJGK is continuous. Hence, if
m1; : : : ; mn is a set of generators for M , the map FpJGKn !M sending .d1; : : : ; dn/ to
d1m1 C � � � C dnmn is also continuous. In particular, the kernel I of this map is closed in
FpJGKn.

Proof of Lemma 3.1. We recall that by Proposition 2.9 the FpJGK-module I is the direct
union of submodules Ii isomorphic to FpJGKk . We claim that I is itself isomorphic to
FpJGKk .

Let J D I=IGI , where IG is the augmentation ideal of FpJGK. Since I is the direct
union of submodules isomorphic to FpJGKk , the Fp-vector space J must be isomorphic
to the direct union of subspaces of dimension at most k. Therefore dimFp J � k and there
exists i such that J D Ii C IGI . Since I is closed by Lemma 3.2, it is finitely generated.
Hence, by Nakayama’s lemma, I must be equal to Ii .

The following observation is an immediate consequence of the previous lemmas.

Proposition 3.3. Let G be a finitely generated pro-p group. If FpJGK is a Sylvester
domain, then G is finitely presented and cdG � 2.

Proof. Apply Lemma 3.1 with M being the augmentation ideal of FpJGK. Observe that
G is finitely presented if and only if

H2.G;Fp/ D TorFpJGK
2 .Fp;Fp/ ' TorFpJGK

1 .M;Fp/ � TorFpJGK
0 .I;Fp/

is finite, that is, if I is finitely generated.
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Before we proceed, we recall the definition of a crossed product between a ring and
a group. Let R be an associative and unital ring and G be a group. We say that S is a
crossed product of R and G if S D ˚g2GSg such that for every g; h 2 G, SgSh � Sgh,
S1 D R and for every g 2 G there exists a unit ug 2 Sg . We will write S Š R �G. It is
clear that the multiplication is uniquely determined by the rules

ug1ug2 D ug1g2�.g1; g2/; rug1 D ug1�.g1/.r/;

where � WG �G ! R� and � WG ! Aut.R/ are functions satisfying the identities

�.g1g2; g3/�.g3/
�
�.g1; g2/

�
D �.g1; g2g3/�.g2; g3/;

�.g2/
�
�.g1/.r/

�
D �.g1; g2/

�1�.g1g2/.r/�.g1; g2/;
(3.1)

for every g1; g2; g3 2 G and r 2 R – this follows directly from the associativity of the
product in S [39, Lem. 1.1]. Since ug are invertible in S , ¹ug j g 2 Gº is a free basis of
S as a left R-module.

Let G be a pro-p group, U a normal open subgroup of G and T a transversal of U
in G. Since FpJGK D ˚t2T FpJU Kt , we obtain that FpJGK Š FpJU K � G=U . For every
g 2 G, let Ng be its representative in T . For any t 2 T , we put utU D t . In this case the
maps � and � can be explicitly described as follows: �.g1U/ is conjugation by g1 and

�.g1U; g2U/ D .g1g2/
�1
� g1 � g2:

Proposition 3.4. Let G be a pro-p group and U a normal open subgroup of G. Suppose
FpJU K has a universal division ring of fractions Q. Then:

(a) The conjugation action ofG on FpJU K extends to a homomorphismG!Aut.Q/.

(b) For a fixed transversal T of G=U , the maps from the crossed product decompo-
sition FpJGK ' FpJU K �G=U can be extended to maps � WG=U ! Aut.Q/ and
� WG=U � G=U ! Q� satisfying the identities (3.1). In particular, the crossed
product Q �G=U exists and FpJGK embeds into it.

(c) If E is the ring of right Q-endomorphisms of Q � G=U , then left multiplication
induces an embedding of rings Q � G=U ! E such that it makes E a free Q �

G=U -module on both sides.

(d) As a right FpJGK-module, the crossed product Q � G=U is isomorphic to the
induced module Q˝FpJU K FpJGK.

Proof. (a) This follows from Proposition 2.6.
(b) Since U � Q�, one can take the same � as in the crossed product decomposition

of FpJGK. It is then only a matter of checking whether or not the map G=U ! Aut.Q/
induced through � by T also satisfies the second identity in (3.1). However, for each
fixed pair g1; g2 2 G, both the left and the right-hand side of that identity define ring
automorphisms of Q which coincide on FpJU K. Since the inclusion of FpJU K into Q is
an epimorphism of rings, both sides must indeed be equal as automorphisms of Q.
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(c) Let T be a transversal of U inG. Then T D ¹g1; : : : ; gnº is a Q-basis of Q �G=U .
for every i D 1; : : : ; nwe define 
i 2E such that 
i .gi /D ıijgj . We identify the elements
of the ring Q �G=U with its images in E.

We have that E D
Ln
iD1.Q � G=U / ı 
i . To see it, it is enough to show that if

˛1; : : : ; ˛n 2 Q � G=U and ˛ D
Pn
iD1 ˛i ı 
i D 0, then ˛1 D � � � D ˛n D 0. This fol-

lows from the equality ˛.gi / D ˛igi . We also have that E D
Ln
iD1 
i ı .Q �G=U /, for

which it is enough to show that if ˛1; : : : ; ˛n 2Q �G=U and ˛ D
Pn
iD1 
i ı ˛i D 0, then

˛1 D � � � D ˛n D 0. Write ˛i D
Pn
jD1 ˛ijgj . Then

˛.gk/ D
X

g�1i gjgk2U

˛ij �.gk ; gk/gi :

Now it is clear that if all ˛.gk/ D 0 then for every i; j , ˛ij D 0.
(d) Just observe that the map Q˝FpJU K FpJGK! Q � G=U sending a ˝ b to ab is

an isomorphism of right FpJGK-modules, whose inverse is given by sending q1g1C � � � C
qngn to q1 ˝ g1 C � � � C qn ˝ gn.

Theorem 3.5. Let G be a torsion-free finitely generated pro-p group. Then the following
are equivalent:

(A) FpJGK is a Sylvester domain.

(B) FpJU K is a Sylvester domain for every open subgroup U of G.

(C) FpJU K is a Sylvester domain for some open subgroup U of G.

Moreover, in case one of the above holds and U is an open normal subgroup of G with a
universal embedding FpJU K! Q, then Q �G=U is a division ring and the induced map
FpJGK! Q �G=U is a universal embedding.

Proof. (A))(B) Suppose first that FpJGK is a Sylvester domain with universal division
ring of fractions Q. We want to show that the induced embedding FpJU K! FpJGK! Q

satisfies the hypothesis of Theorem 2.8.
First, we claim that the right FpJGK-module Q˝FpJU K FpJGK is a submodule of Qr

for some r . Indeed, as a left Q-vector space, it has a basis ¹1 ˝ g j g 2 T º for some
transversal T ofG=U . One then checks that the map that sends

P
g2T rg ˝ g to .rgg/g2T

in QjGWU j is right FpJGK-equivariant. This implies that for every finitely generated right
FpJU K-submoduleM of Q, the right FpJGK-moduleM ˝FpJU K FpJGK is a submodule of
QjGWU j. Hence

TorFpJU K
1 .M;Q/ ' TorFpJGK

1

�
M ˝FpJU K FpJGK;Q

�
D 0

by Proposition 2.9. Since Q is the direct limit of its finitely generated submodules, we
conclude that TorFpJU K

1 .Q;Q/ D 0.
Now take a short exact sequence

0! I ! FpJU Kn !M ! 0:
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Tensoring once more with FpJGK over FpJU K, we get a short exact sequence

0! I ˝FpJU K FpJGK! FpJGKn !M ˝FpJU K FpJGK! 0:

Since M ˝FpJU K FpJGK is a submodule of QjGWU j, by Lemma 3.1 the module I ˝FpJU K

FpJGK is free of finite rank. By tensoring over FpJGK with Fp , we conclude that I is
finitely generated over FpJU K.

Then, I is itself a finitely generated FpJU K-submodule of Qn, so one can repeat the
prior argument with the short exact sequence

0! J ! FpJU Kk ! I ! 0

to conclude that I must be finitely presented and hence of type FP1 over FpJU K. There-
fore, by [8, Lem. 2.1] we conclude that

Tor
FpJU K
1 .I;Fp/ ' TorFpJU K

1 .I;Fp/ ' TorFpJGK
1

�
I ˝FpJU K FpJGK;Fp

�
D 0;

where Tor is the derived functor of the completed tensor product of profinite modules.
Since I is profinite, I must be projective over FpJU K by [8, Prop. 3.1] and hence free
(and of finite rank) by Kaplansky’s theorem on projective modules over local rings. By
Theorem 2.8, FpJU K is a Sylvester domain and its division closure Q0 inside Q is FpJU K-
isomorphic to its universal division ring of fractions.

(B))(C) is immediate.
(C))(A) Now, suppose that FpJU K is a Sylvester domain with universal division ring

of fractions Q for some open subgroup of G. It suffices to prove the theorem for the case
jGWU j D p, so we may assume U is a normal subgroup of G. Then, by Proposition 3.4,
the embedding FpJU K! Q induces an embedding FpJGK! Q � G=U ! E where E
is the ring of right Q-endomorphisms of Q � G=U , and we will check the conditions of
Theorem 2.8 for this embedding. The ring E is von Neumann regular as it is isomorphic
to a matrix ring over a division ring, and since Q � G=U is isomorphic to the induced
module Q˝FpJU K FpJGK as right FpJGK-modules, we have:

TorFpJGK
1 .E;E/ ' TorFpJGK

1

�
.Q �G=U /p; .Q �G=U /p

�
' TorFpJGK

1 .Q �G=U;Q �G=U /p
2

' TorFpJGK
1

�
Q˝FpJU K FpJGK;Q �G=U

�p2
' TorFpJU K

1 .Q;Qp/p
2

D 0:

Now, take any finitely generated right FpJGK-submoduleM ofE ' .Q �G=U /p and
a short exact sequence

0! I ! FpJGKn !M ! 0:

As an FpJU K-module, I must be free of finite rank by Lemma 3.1. Hence, I is finitely
generated over FpJGK. Taking another short exact sequence

0! J ! FpJGKk ! I ! 0
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and repeating this argument, one obtains that J must also be finitely generated, so that I
is finitely presented. In particular,

TorFpJGK
1 .I;Fp/ ' TorFpJGK

2 .M;Fp/:

By Proposition 3.3, U is of cohomological dimension 2. By Serre’s theorem [47] (see
also [15]), G is also of cohomological dimension 2. Thus, since M is a finitely presented
submodule of .Q �G=U /p , there is an exact sequence of Tor groups:

0! TorFpJGK
2 .M;Fp/! TorFpJGK

2 .Q �G=U;Fp/
p
' TorFpJU K

2 .Q;Fp/
p:

By Proposition 2.9, the FpJU K-module Q has weak dimension at most 1, so that all the Tor
groups above vanish. Since TorFpJGK

1 .I; Fp/ D 0 and I is finitely generated, the FpJGK-
module I is free of finite rank and one can apply Theorem 2.8.

Observe that Q � .G=U / is then a domain since it embeds into a division ring. Given
that it is also a finite-dimensional Q-algebra, it must be itself a division ring, so we have
shown that Q � .G=U / is the universal division ring of fractions of FpJGK.

Corollary 3.6. LetG be a torsion-free finitely generated pro-p group. Then the following
are equivalent:

(A0) rkG D irkFpJGK.

(B0) rkU D irkFpJU K for every open subgroup U of G.

(C0) rkU D irkFpJU K for some open subgroup U of G.

Proof. We first observe that if rkU D irkFpJU K, then the inner rank is a Sylvester matrix
rank function on FpJU K and therefore it is a Sylvester domain having a universal division
ring of fractions.

(A0))(B0) Let Q be the universal division ring of fractions of FpJGK, A be a n �m
matrix over FpJU K (which we also see as a matrix over FpJGK) and define the left FpJU K-
module M D FpJU Km=FpJU KnA. Note that FpJGK ˝FpJU K M ' FpJGKm=FpJGKnA.
Hence:

dimU M D
dimU FpJGK˝FpJU K M

jGWU j
D dimG FpJGK˝FpJU K M

D dimQ Q˝FpJGK FpJGK˝FpJU K M

D dimQ Q˝FpJU K M:

(B0))(C0) Is immediate.
(C0))(A0) We have shown in Theorem 3.5 that if Q is the universal division ring of

fractions of FpJU K, then Q � G=U is the universal division ring of fractions of FpJGK.
Hence, for any n � m matrix A over FpJGK which we see as a matrix over Q � .G=U /

and as a njGWU j �mjGWU j matrix over FpJU K:

irkFpJGKA D rkQ�.G=U/A D
rkQ A

jGWU j
D

irkFpJU KA

jGWU j
D

rkU A
jGWU j

D rkG A:
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4. Mild flag pro-p groups
Let G be a pro-p group with a closed normal subgroup N such that N D F.x1; x2; : : : /
is a free pro-p group of at most countable rank and G=N ' Zp . Let g 2 G be such that
gN topologically generates G=N , and consider the group algebra S D FpJGK. We want
to decompose it as a skew power series algebra over R D FpJN K with the automorphism
� of S is given by x 7! g�1xg and the derivation ı is � � id. If we let s D g � 1 2 S ,
observe that we get the relation

xs D s�.x/C ı.x/

for any x 2 S .
To better understand the filtered structure of S and R and their respective associated

graded rings, we fix the notation for the following filtration on S : if IG is the augmentation
ideal of S , we let SkDI kG for k�0 and SkDS for k<0. We define the continuous function
wWS ! Œ0; 1� through:

w.a/ D p� sup¹k2Zja2Skº: (4.1)

It is directly verified that w.a/ is a filtration function in the sense of [31, Def. I.2.1.1] (or
a valuation in the sense of [12, Sec. 2.2]), that is, w satisfies:

(i) w.a/ D 0 if and only if a D 0;

(ii) w.1/ D 1;

(iii) w.aC b/ � max¹w.a/; w.b/º for any pair a; b 2 S .

(iv) w.ab/ � w.a/w.b/.

The conditions above also imply a stronger version of (iii) called the strong ultrametric
inequality: if moreover w.a/ ¤ w.b/, then w.a C b/ D max¹w.a/; w.b/º. Following
[31, Def. I.2.2.1], we shall say thatw is a valuation ifw satisfies a stronger version of (iv):
w.ab/ D w.a/w.b/ for any pair a; b 2 S . This is the definition also adopted in [28].

Proposition 4.1. The completed group algebra S is isomorphic to the right skew power
series ring RJsI �; ıK.

Proof. From the homeomorphism G � N � G=N , we obtain that S is the free profinite
R-module on the profinite space G=N ' ¹1; g; g2; : : : º. Through a base change, we get
that the set of powers of s D g � 1 also form a topological basis for S over R, from which
we can identify it as a topological abelian group with the group of formal power series
in s over R. Hence, it suffices to show that the formula (2.1) defining the multiplication
always converges. For this, it is also sufficient to check that ı is topologically nilpotent in
the induced filtration of R, that is, ık converges to zero pointwise. Observe that IG and R
are � -invariant because � is an inner automorphism of S and N is normal in G.

To show that ı is topologically nilpotent, it also suffices to show that ı.S/ � IG and
that ı.IG/ � I 2G , for then we inductively get from the inclusions ı.I kG/ � ı.I

k�1
G /IG C

I k�1G ı.IG/ � I
kC1
G for all k � 2 that ık.S/ � I kG . This gives us that ık converges to zero

uniformly and hence is topologically nilpotent in S and thus in R.
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The proof of Proposition 4.1 also shows the following result.

Corollary 4.2. For every free-by-Zp groupG and any non-zero a 2S , we havew.ı.a// <
w.a/, where w is the function defined in (4.1).

To describe some cases in which w.a/ is actually a valuation, we will make use of the
following definition given in [13, Def. 1.1].

Definition 4.3. Let Fpha1; : : : ; ani be the free Fp-algebra on n generators with augmen-
tation ideal I D .a1; : : : ; an/. Choose l elements �1; : : : ; �l 2 I and let J D .�1; : : : ; �l /
be the two-sided ideal generated by them. We say that the sequence of elements �1; : : : ; �l
is strongly free if J=JI is a free Fpha1; : : : ; ani=J -module with basis ¹�i C JI º.

Let F D F.g1; : : : ; gn/ be a free pro-p group on n generators. With respect to the
filtration induced by augmentation ideal, the graded ring Gr.FpJF K/ is isomorphic to the
free Fp-algebra on n generators ai D gi � 1. A minimal pro-p presentation

hg1; : : : ; gn j r1; : : : ; rli

is a called a strongly free presentation if the homogeneous components �i D ri � 1 form
a strongly free sequence in Gr.FpJF K/. A pro-p group is mild if it has a strongly free
presentation.

To highlight the choice of filtration on FpJF K, one says in that case that G is a mild
pro-p group with respect to the p-Zassenhaus filtration, that is, the filtration by dimension
series mod p – cf. [35, Def. 4.4], [13, Lem. 1.3 and Rem. 1.6] and [28, Def. 1.1]. We will
concern ourselves solely with mild groups with respect to this filtration.

We observe that if Gr.FpJGK/ is an integral domain, then w must be a valuation. The
mildness condition gives us the following result.

Proposition 4.4 ([35, Prop. 4.5], cf. [14, Thm. 2.11]). If

G ' hg1; : : : ; gn j r1; : : : ; rli

is a strongly free presentation, then Gr.FpJGK/'Gr.FpJF K/=J , where J is the two-sided
ideal generated by the �i D ri � 1.

Hence, our strategy is to use mildness and an explicit description of Gr.FpJF K/=J
to obtain that Gr.FpJGK/ is a domain, and thus that w is a valuation on FpJGK. Before
establishing mildness, we prove a technical lemma that will give us a “canonical” minimal
presentation for free-by-Zp pro-p groups.

Definition 4.5. A flag presentation of a pro-p group G is a finite presentation given by
the quotient of the free pro-p group F on a set of generators ¹x1; : : : ; xn; gº by l relations
of the form �

xi ; g; : : : ; g„ ƒ‚ …
ai times

�
D hi for hi 2 ˆ. zN/ and 1 � i � l; (4.2)
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where the ai are positive integers and zN is the normal subgroup of F generated by
¹x1; : : : ; xnº. If all the ai are equal to 1, we shall say that the flag presentation is mild. A
pro-p group with a mild flag presentation will be called a mild flag pro-p group.

If G has a mild flag presentation as in (4.2), then G is a mild group. Indeed, if l D 0,
the presentation shows that the group is free and vacuously satisfies the hypothesis of
mildness. Otherwise, let �i and 
 be the elements in H 1.G;Fp/ that are dual to the basis
¹xi ; g j 1 � i � nº of G=ˆ.G/:

�i .xj / D ıi;j ; �i .g/ D 0; 
.xi / D 0; 
.g/ D 1:

There is an Fp-vector space decomposition of H 1.G; Fp/ ' V ˚W such that V D h
i
and W D h�i j 1 � i � ni, and the identities in (4.2) show that the restriction of the cup
product to V ˝W ! H 2.G;Fp/ is surjective and that 
 [ 
 D 0 by [37, Prop. 3.9.13].
Hence, G satisfies the cup-product criterion of [35, Prop. 5.8] to being a mild group (cf.
[13, Sec. 6]). Later on we shall see that mild flag presentations are also strongly free
presentations, and can be used to describe the graded ring Gr.FpJGK/.

Lemma 4.6. Every finitely generated free-by-Zp pro-p group G has a flag presentation.
Moreover, G has a normal open subgroup U , inverse image of an open subgroup of Zp ,
such that U has a mild flag presentation.

Proof. LetG ' N ÌG=N be a free-by-Zp pro-p group withG=N ' hgN i ' Zp andN
free pro-p. Let A D N=ˆ.N/ and consider it as an FpJG=N K-module through the action
of g. Since FpJG=N K is a PID and A is finitely generated over it, it can be decomposed as
a direct sum FpJG=N Kk ˚

Ll
iD1 FpJG=N K=.di / with 0 ¤ di 2 IG=N for all i . Its Pon-

tryagin dual Hom.N=ˆ.N/;Q=Z/must then decompose asQk ˚
Ll
iD1 FpJG=N K=.di /

where Q is an injective FpJG=N K-module.
Since 0¤ di 2 IG=N , we obtain thatH 1.G=N;FpJG=N K=.di //' Fp for all i . By the

Lyndon–Hochschild–Serre spectral sequence, we have:

H 2.G;Fp/ ' H
1
�
G=N;H 1.N;Fp/

�
' H 1

�
G=N;Hom

�
N=ˆ.N/;Q=Z

��
'

lM
iD1

H 1
�
G=N;FpJG=N K=.di /

�
' F lp: (4.3)

Choose representatives x1; : : : ; xk ; z1; : : : ; zl in N for the FpJGK-cyclic generators of
each factor inN=ˆ.N/ such that ¹x1; : : : ; xk ; z1; : : : ; zl ; gº is a minimal generating set for
G – this is possible because the mapA!G=ˆ.G/ is a homomorphism ofG=N -modules.
If A is a free FpJG=N K-module, then (4.3) shows that H 2.G;Fp/ D 0 and therefore G is
a free pro-p group with the mild flag presentation

G ' hx1 : : : ; xk ; g j ¿i:

Hence, we can assume that A is not a free FpJG=N K-module, and in particular that
H 2.G;Fp/ is non-zero.
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Since the G=N -action on the finite module FpJG=N K=.di / is unipotent, there exists
some positive ai such that Œzi ; g; : : : ; g„ ƒ‚ …

ai times

� is a fixed point, or equivalently, there exists hi in

ˆ.N/ such that �
zi ; g; : : : ; g„ ƒ‚ …

aiC1 times

�
D hi : (4.4)

Then, by the isomorphism in (4.3), we find that the identities (4.4) for 1 � i � l form a
generating set of relations for G, yielding the desired flag presentation.

By taking in G the intersection U of the stabilizers of the G-action in each finite
module FpJG=N K=.di /, we can assume that each non-free direct factor ofA is isomorphic
to Fp , that is,

A ' FpJU=N KkjGWU j ˚
l 0M
iD1

Fp

as FpJU K-modules. We note thatN �U and thatU 'N ÌU=N 'N Ì Zp . By repeating
the steps above, we obtain a mild flag presentation for U .

Remark 4.7. Conversely, every pro-p groupGwith a flag presentation is also free-by-Zp .
If N is the normal subgroup of G generated by the xi , then G=N ' Zp so that G '
N Ì Zp . Taking the non-negative powers of g as a continuous section G=N ! G, the
Reidemeister–Schreier rewriting process shows that N has a presentation with a generat-
ing set converging to 1 [43, Sec. 2.4] given by all the elements

xi;k D
�
xi ; g; : : : ; g„ ƒ‚ …

k times

�
and relations

xi;aiCk D

� k�1Y
jD0

gj�kC1xi;aiCk�1�jg
k�1�j

�
� g�khig

k

for 1 � i � l and k � 0. These relations allows us to eliminate the generators xi;aiCk
for 1 � i � l and k � 0, showing that N is free pro-p. Alternatively, the LHS spectral
sequence gives us

l � dimFp H
2.G;Fp/

D dimFp H
2.N;Fp/

G=N
˚H 1

�
G=N;H 1.N;Fp/

�
� l C dimFp H

2.N;Fp/
G=N ;

where the last inequality is obtained by a computation of H 1.G=N; H 1.N; Fp// as in
Lemma 4.6. Hence H 2.N; Fp/G=N D 0, and since the cohomology groups are discrete
torsion G=N -modules, one gets H 2.N;Fp/ D 0 as desired.
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We now turn to the problem of showing that mild flag presentations of G are strongly
free, and to characterize the graded ring of FpJGK. We recall that

L D
M
i�1

Di .F /=DiC1.F /

has the structure of a free restricted Lie algebra over Fp in the sense of [18, Sec. V.7]. A
free generating set of this Lie algebra is the image �1; : : : ; �n; 
 of x1; : : : ; xn; g, and we
can identify Gr.FpJF K/ with the universal restricted enveloping algebra UL of L ([30,
Thm. 6.5] and [31, Thm. A.3.5]). If the elements �1; : : : ; �l associated to a presentation of
G lie in L and r is the restricted ideal of L they generate, then for J the ideal of Gr.FpJF K/
generated by the �i the Gr.FpJF K/=J -modules J=J Gr.I / and M D r=Œr; r�C rŒp� are
isomorphic. We recall Lazard’s elimination theorem for free (unrestricted) Lie algebras.

Theorem 4.8 ([7, Prop. 10]). Let R be a non-zero commutative ring, X a set and S a
subset of X . If L.X/ is the free Lie R-algebra on X , then L.X/ is isomorphic as a Lie
algebra to the direct sum L.S/˚ h, where h is the ideal of L.X/ generated by XnS and
is isomorphic to the free Lie algebra on the set®

Œx; s1; : : : ; sk � j x 2 XnS; s1; : : : ; sk 2 S
¯
:

Note that since L is a free restricted Lie algebra it is also a free unrestricted Fp-Lie

algebra on the p-th powers �p
j

i ; 
p
j

of the restricted basis �1; : : : ; �n; 
 . The following is
an immediate consequence of Lazard’s elimination theorem.

Theorem 4.9 ([50, Sec. 1.2]). If h is the restricted ideal generated by the �i , then L '

h
p
i
j i � 0i ˚ h and h is itself a free restricted Lie algebra with free generating set®�

�i ; 
; : : : ; 
„ ƒ‚ …
k times

�
j 1 � i � n; k � 0

¯
:

From this, we are able to deduce a restricted variant of [28, Thm. 3.3], keeping the
above notation and using the fact that the universal restricted enveloping algebra of L=h

is a polynomial algebra generated by 
 .

Proposition 4.10. If �1; : : : ; �l are homogeneous elements of h with respect to the canon-
ical grading of L which are linearly independent over FpŒ
� modulo Œh; h�C hŒp�, then
they are strongly free. Moreover, the restricted Lie algebra h=.�1; : : : ; �l / is free, so that

L=.�1; : : : ; �l / ' h=.�1; : : : ; �l / Ì h
pi j i � 0i

is a free-by-(free of rank 1) restricted Lie algebra.

Proof. If r and J denote the restricted ideal of L and the two-sided ideal of Gr.FpJF K/
respectively generated by the �i , we must show that

M D r=Œr; r�C rŒp�
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is a free Gr.FpJF K/=J -module with basis given by the image of the �i . Observe that r is
generated, as a restricted ideal of h, by the elements

�i;k D
�
�i ; 
; : : : ; 
„ ƒ‚ …

k times

�
with k � 0 and 1 � i � l . Hence, it suffices to show that these elements are part of a
free restricted generating set of h, for which it is enough to show that the �1; : : : ; �l are
FpŒ
�-independent modulo Œh; h� C hŒp�. Since this holds by assumption, we are done.
Moreover, as the �i;k form part of a free restricted basis of h, the quotient h=.�1; : : : ; �l /

is a free restricted Lie algebra, so the latter part follows.

Corollary 4.11. The n elements �i D Œ�i ; 
� are strongly free, as so is, modulo Œh; h�C
hŒp�, any Fp-linearly independent subset of the Fp-subspace that they span.

Proof. The first part follows from Theorem 4.9 and Proposition 4.10. For the second part,
note that an Fp-linear independent subset of their Fp-span will remain FpŒ
�-linear inde-
pendent modulo Œh; h�C hŒp�.

Corollary 4.12. Every mild flag presentation of a free-by-Zp pro-p group G is strongly
free, and Gr.FpJGK/ is the skew polynomial ring generated by g � 1 over the free algebra
Gr.FpJN K/. In particular, it is a domain.

Proof. The l relations in (4.2) of a mild flag presentation lie in the Fp-span of Œ�i ; 
�
modulo Œh; h� C hŒp� in the language of Corollary 4.11. This can be seen by observing
that: (1) the �i have degree two and (2) writing them in the basis of D2.F /=D3.F / given
by the commutators Œxi ; xj �, Œxi ; g� and possibly the squares x2i and g2 if p D 2 for
1 � i < j � n, the image ofˆ. zN/ in this quotient does not include expressions involving
Œxi ; g� and g2. The last part follows from the universal property of restricted enveloping
algebras and the identification Gr.FpJGK/ ' Gr.FpJF K/=J D UL=r of Proposition 4.4.

Corollary 4.13. The completed group algebra S is a domain for every mild flag free-by-
Zp pro-p group G.

Proof. We have shown that the function wWS ! Œ0; 1� defined in (4.1) is a multiplicative
valuation. In particular, w.ab/ D w.a/w.b/ ¤ 0 for any a, b non-zero.

Assume now that G has a mild flag presentation

G '
˝
x1; : : : ; xn; g j Œxi ; g� D hi 2 ˆ. zN/; 1 � i � l

˛
:

In particular, G is mild with respect to the dimension series and w is a valuation on S .
Let Rk be as in the introduction, that is, the induced filtration of R with respect to the
filtration Sk of S . Then, w restricts to a valuation function on R as well.

If we set
xi;j D Œxi ; g; : : : ; g„ ƒ‚ …

j times

� and Xi;j D xi;j � 1;
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then the group algebraRDFpJN K is isomorphic to the Magnus algebra FphhXi;j � � � j jD0
if i � lii, the Fp-algebra of non-commutative power series in at most countable variables

X1;0; : : : ; Xl;0; XlC1;0; XlC1;1; : : : ; Xn;0; Xn;1; : : : ;

this follows from the finitely generated case of [31, Prop. II.3.1.4] by taking the inverse
limit of finite sets of generators. Moreover, as a subring of S D FpJGK, it inherits the
valuationw. Since this ring has a simple description by power series, it would be desirable
to have the property that

w
� X
m2Mon.¹Xi;j º/

�mm
�
D max

®
w.m/ j �m ¤ 0

¯
; (4.5)

where Mon.¹Xi;j º/ denotes the set of all non-commutative monomials in the Xi;j . How-
ever, this is not true for arbitrary valuations on Magnus algebras, and the valuations on
R that do satisfy (4.5) are called weight functions with respect to the basis ¹Xi;j º in
[12, Sec. 2.4]. By [12, Prop. 3.2], w is a weight function with respect to ¹Xi;j º if and
only if the restricted Fp-Lie algebra generated by Xi;j is free in this basis. This is exactly
what we have shown in Proposition 4.10; hence, the following result holds.

Corollary 4.14. The induced valuation w on R is a weight function with respect to the
basis ¹Xi;j º of R associated to a mild flag presentation.

5. The embeddings of the group algebra

We keep the notation of Section 4, and throughout this section we assume that G has a
mild flag presentation

G '
˝
x1; : : : ; xn; g j Œxi ; g� D hi 2 ˆ. zN/; 1 � i � l

˛
:

We recall thatRD FpJN K and S D FpJGK'RJsI�; ıK by Proposition 4.1. In this section
we embed the ring S into a division ring Q.

We set
xi;j D

�
xi ; g; : : : ; g„ ƒ‚ …

j times

�
:

ThenN is the free pro-p group on the set ¹xi;j º. PutƒDFph¹ai;j ºi be the free associative
algebra over Fp in the same number of variables ai;j and consider the power series ring
ƒJtK in a variable t . Through the universal property of the Magnus algebra, there exists
a unique ring homomorphism �WR ! ƒJtK sending xi;j � 1 to ai;j twi;j , where wi;j D
� logp w.xi;j � 1/ is the logarithm of the valuation defined in (4.1) by the filtration Rk D
R \ I kG of R.

Lemma 5.1. The map � is an embedding of topological rings that preserves the valuation
(i.e. an isometric embedding).



A. Jaikin-Zapirain and H. Souza 24

Proof. We must show that r 2 R belongs to Rk if and only if its image �.r/ 2 ƒJtK
belongs to tkƒJtK. Since we have shown in Corollary 4.14 that the valuation w induced
by the filtration Rk is a weight function, we see that the valuation of r expressed as a non-
commutative power series equals the valuation of its monomial of least total weighted
degree (with the weight of xi;j being wi;j ). Hence, it suffices to check this condition only
for monomials xi1;j1 � � � xim;jm , which is immediate. Moreover, any valuation preserving
map must be injective, from which the lemma follows.

Proposition 5.2. Both � and ı extend from R toƒJtK in such a way that � is an automor-
phism, ı is a � -derivation, �.t/ D t , ı.t/ D 0,

�.ai / D
�
�
�.yi /

�
twi

and ı.ai / D
�
�
ı.yi /

�
twi

:

Moreover, ı.ƒJtK/ � tƒJtK and therefore it is also topologically nilpotent on ƒJtK. In
particular, the embedding R ,! ƒJtK induces an embedding S ,! ƒJtKJsI �; ıK.

Proof. Once we set that �.t/ D t (and thus ı.t/ D 0), we can define � arbitrarily on the
generators ai ofƒ, and for this map to extend the � from R the formula must be as given.
The same applies for the derivation ı D � � Id. From Corollary 4.2 and Lemma 5.1,
combined with the fact that � and ı thus defined commute, we conclude that ı.ƒJtK/ �
tƒJtK and thus the successive compositions ıi .�/ converge to zero for any element � 2
ƒJtK. Hence, the formulas in (2.1) are well defined for ai and bj in ƒJtK and allows us to
construct the ring ƒJtKJsI �; ıK, into which S embeds.

As we stated in Section 2.4, the free algebra ƒ is a Sylvester domain, and therefore it
has a universal division ƒ-ring of fractions D .

Proposition 5.3. The maps � and ı extend from ƒJtK to DJtK. Moreover, ı.DJtK/ �
tDJtK, and thus we get an embedding ƒJtKJsI �; ıK ,! DJtKJsI �; ıK.

Proof. Since ı D � � 1, it suffices to show that � extends from ƒJtK to DJtK. Let us
consider � as a map � Wƒ ! DJtK through the usual embedding ƒJtK ! DJtK. If we
show that the image of every full matrix A 2 Matn�n.ƒ/ through � is invertible, by the
Proposition 2.7 we get an extension of � to a map � WD ! DJtK. Moreover, this suffices
to define � on DJtK, since we must have �.t/ D t .

By Proposition 5.2, for each generator ai;j 2 ƒ there exists bi;j 2 ƒJtK such that
�.ai;j / D ai;j C bi;j t . This implies that for every matrix A 2 Matn�n.ƒ/ there exists a
matrix B 2 Matn�n.DJtK/ such that �.A/ D AC Bt . However, a matrix over DJtK is
invertible if and only if its projection over D is invertible, which is the case when A is a
full matrix. Therefore, we can extend � (and hence ı) from ƒJtK to DJtK.

To show that ı.DJtK/ � tDJtK and thus it is still topologically nilpotent, we will use
the fact that D is the division closure ofƒ in D and hence can be recursively obtained by
adding inverses to ƒ and closing under the ring operations. This implies that it suffices to
show that ı.a�1/ 2 tDJtK whenever ı.a/ 2 tDJtK for a 2D non-zero. In this case, write
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ı.a/ D tb for b 2 DJtK, and observe that we must have

ı.a�1/ D ��.a/�1ı.a/a�1 D ��.a/�1ba�1t:

We already have the following chain of embeddings for the group algebra S :

S ' RJsI �; ıK ,! ƒJtKJsI �; ıK ,! DJtKJsI �; ıK:

In order to construct our candidate for the universal division S -ring of fractions, we will
complete this chain by showing the existence of a universal DJtKJsI�; ıK-ring of fractions.
To shorten the notation, we denote the ring DJtKJsI �; ıK simply by D.

Let J be the two-sided ideal of D generated by t and s. By the construction of the
embedding, the restriction of the J -adic topology to S as a subspace of D coincides with
the topology given by the powers of the augmentation ideal on S . Since ı.DJtK/� tDJtK,
the skew relation defining s gives us

DJtKs � sDJtKC tDJtK;

and therefore J is contained in the right ideal generated by t and s. Inductively we have
the identities:

J D sD C tD;

J 2 D s2D C stD C t2D;
::: D

:::

J n D

nX
iD1

si tn�iD;

::: D
:::

(5.1)

and therefore the intersection
T1
iD1 J

i is trivial: a power series on s belongs to J n only
if the coefficient of si is a multiple of tn�i . In other words, the J -adic topology on D is
Hausdorff. It also follows from (5.1) that the J -adic topology on D is complete.

Proposition 5.4. The maps � and ı induce maps

x� WJ n=J nC1 ! J n=J nC1 and xıWJ n=J nC1 ! J nC1=J nC2

such that xı is a right x� -derivation on

Gr D ' D=J ˚ J=J 2 ˚ J 2=J 2 ˚ � � � :

If Nt D t C J 2 and Ns D s C J 2, then the graded ring Gr D is isomorphic to the skew
polynomial ring D ŒNt �ŒNsI x�; xı�.

Proof. From (5.1) and the fact that ı.D/ � tDJtK we see that J n is � -invariant and that
ı.J n/ � J nC1. Hence, the maps x� and xı are well defined, and direct calculations on



A. Jaikin-Zapirain and H. Souza 26

representatives of homogeneous elements shows that indeed xı is a right x� -derivation on
the subring D Œt � of Gr.D/ generated by D and Nt .

Hence, it remains to check that the powers Nsi D si C J iC1 for i � 0 form a basis
of Gr.D/ over D Œt �, since the skew commutation relations for Ns are inherited from those
of D. From (5.1), we can deduce that

J n=J nC1 D

nM
iD1

si tn�iD

as D-modules. Therefore, if
P
ri Ns

i D 0 is any relation among the powers of Ns, isolating
the homogeneous components in Gr D gives us that ri D 0.

Corollary 5.5. The ring D is a Noetherian domain. In particular, it has a classical Ore
ring of fractions Q.

Proof. To show that it is a domain, note that the product of homogeneous elements in D is
non-zero in the graded ring, and see, for instance, [36, Cor. D.IV.5] for lifting the Noethe-
rian property from GrD to D. Then, the existence of Q follows from [34, Thm. 2.1.15].

6. Homological finiteness properties

Throughout this section, we fix a mild flag free-by-cyclic pro-p group G, with free kernel
N D F.x1; x2; : : : /. We let R D FpJN K and S D FpJGK. By Proposition 4.1, we can
identify S with a skew power series algebra RJsI �; ıK over R, which can be embedded
into the division ring Q of Corollary 5.5, the classical ring of fractions of the ring D D
DJtKJsI �; ıK where D is the universal division ring of fractions of the free Fp-algebra
ƒ D Fpha1; a2; : : : i.

The objective now is to show that S is a Sylvester domain and that the embedding
S ,!Q is universal. First, however, we need to prove some homological vanishing results
about S -submodules of Q and GrS -submodules of Gr D ' D ŒNt �ŒNsI x�; xı�.

6.1. Filtered modules

IfM is a finitely generated right (respectively, left) S -submodule of Q, then there exists an
element c 2 D such that cM (respectively, Mc) is a finitely generated right (respectively,
left) S -submodule of D. This gives us a bijective correspondence between isomorphism
classes of S -submodules of Q and S -submodules of D, so we can always assume that a
finitely generated S -submodule of Q is contained in D.

If we consider S as an filtered ring with the filtration Sk D I kG and S�k D S for k � 0,
the S -module D becomes a filtered S -module (and even a filtered ring) with the positive
filtration given by the powers of J , its two-sided ideal generated by t and s. Hence, for
every S -submodule M � D, we can endow M with an induced filtered structure:

Mk DM \ J
k ; M�k DM; 8k � 0:
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Since we must state general results about filtered rings that will apply both to S and D,
we will denote a general filtered ring by � with a filtration by �-submodules �k , k 2 Z.
Following the terminology in [22, Sec. 4.1], a filtration ¹Mkº on a �-module M is:

(Separated) The intersection
T
k2ZMk is trivial;

(Complete) M is complete with respect to the metric

dM .a; b/ D inf¹p�k j a � b 2MkºI

(Bounded) Each quotient Mk=MkC1 is an �=�1-module of finite length.

In particular, the filtrations on the S -modules M D S and M D D are separated and
complete, and moreover the filtration on M D S is bounded. Observe that the induced
filtration on an S -submodule of a separated module is again separated.

If � is bounded and complete as a left �-module and M is a finitely generated and
separated �-module, then M is also complete [22, Prop. 4.2].

We recall that a homomorphism 'WM ! N of filtered �-modules is called strict if
'.Mk/ D '.M/ \ Nk for every k 2 Z, that is, if the filtrations on Im.'/ induced by '
and by N coincide. A sequence of filtered �-modules M ! N ! Q is strict exact if the
sequence is exact and each homomorphism is strict. Observe that an strict exact sequence
as above induces an exact sequence GrM ! GrN ! GrQ of Gr�-modules.

To obtain free resolutions in the category of finitely generated filtered �-modules
and strict homomorphisms, we must make a slight change to natural filtration of the free
�-modules

L
I �. Let V be a multiset of integers, that is, a set of integers that allows

for repetition of elements. We say that V is bounded if for every k 2 Z the multiset
¹¹v 2 V j v � kºº is finite. In particular, every element of a bounded multiset V is belongs
Z�k D ¹z 2 Z j z � kº for some k D k.V / 2 Z. If necessary, one can realize a multiset
V as a proper set V by taking the disjoint union of singletons of its repeating elements. If
V is bounded, V can be made into a profinite set by adjoining a point at infinity.

For any separated, bounded and complete �-module M , let M.V / be the �-moduleL
v2V M with the following filtration:

M.V /k D
M
v2V

Mk�v:

Then, forM D �, we have that�.V / is a free�-module satisfying the following univer-
sal property: identifying V with the set of elements .0; : : : ; 1; : : : / 2 �.V /, any function
f W V ! N from V to a filtered �-module N such that f .v/ 2 Nv extends uniquely to
a strict homomorphism 'W�.V / ! N . Moreover, observe that �.V / is bounded as a
filtered �-module if and only if V is bounded as a multiset of integers.

Let 1M.V /D lim
 �

M.V /=M.V /k denote the completion ofM.V / for each multiset V .
If N is a separated, complete and bounded �-module and M.V /! N is a strict homo-
morphism, then there is a unique strict extension 1M.V /! N . We recall the following
result of [22].
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Proposition 6.1 ([22, Prop. 4.5 and Cor. 4.6]). LetM be a complete and bounded filtered
�-module for a complete and bounded filtered ring �. Then, there are bounded multisets
of integers Vi and a strict exact sequence of filtered �-modules

� � � ! 1�.Vi /! � � � ! 1�.V1/! 1�.V0/!M ! 0:

While the modules 1�.V / are no longer free over � even if V is bounded, if � is
pseudocompact in the sense of [8] then they are still flat with respect to complete tensor
product

M y̋ S N D lim
 �
k2Z

M=Mk ˝� N=Nk

of filtered �-modules M and N [8, Cor. 1.3 and Lem. 2.1], for in this case 1�.V / can be
identified as a topological �-module with the free pseudocompact �-module �JV K on
set V [8, p. 444]. This applies in particular to � D S and to � D D.

Let us denote by Tor�i .�; �/ the i -derived bifunctor obtained from the complete
tensor product, hereby referred to as the i -th continuous Tor group, in order to differentiate
it from the usual i -derived functor Tor�i .�;�/ obtained from the usual tensor product
�˝� �. Therefore, we already know that Tor�i .

1�.V /;M/ D Tor�i .N;
1�.V // D 0 for

any i > 0 and�-modulesM andN . The following proposition gives us a way to compare
both functors.

Proposition 6.2 ([22, Prop. 4.9]). LetM be a separated, filtered and complete�-module
for some filtered ring � and V a bounded multiset of integers. Then, the following hold:

(1) If M is finitely presented, then the natural maps M ˝� 1�.V /! M y̋�
1�.V /

and M y̋� 1�.V /! 1M.V / are strict isomorphisms.

(2) Let k � 2. If M is of type FPk , then Tor�
k�1

.M;1�.V // D 0.

This result implies the following proposition, well known to the specialist, but for
which we have found no reference in the literature. Observe that the isomorphisms of
Proposition 6.2 are all functorial inM . First we show a partial form of [29, Lem. XX.6.3].

Lemma 6.3. Let � be any ring, M a �-module and suppose that the �-modules on a
exact sequence

� � � ! Xj ! � � � ! X1 ! X0 ! 0

satisfy Tor�i .M;Xj / D 0 for every j and every 1 � i � k � 2 with k � 2. Then,

M ˝� Xk !M ˝� Xk�1 ! � � � !M ˝� X1 !M ˝� X0 ! 0

is exact.

Proof. We already have exactness up to

M ˝� X2 !M ˝� X1 !M ˝� X0 ! 0: (6.1)
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Let Zi be the image of Xi in Xi�1, that is, the kernel of Xi�1! Xi�2. We have the exact
sequence:

0 D Tor�1 .M;X0/!M ˝� Z2 !M ˝� X1 !M ˝� X0 ! 0;

which shows that M ˝� Z2 is the kernel of M ˝� X1 !M ˝� X0. Since it is also fits
in the exact sequence

M ˝� X3 !M ˝� X2 !M ˝� Z2 ! 0

by right exactness, we are able to extend the sequence (6.1) by one degree more.
Observe that Z2 also satisfies Tor�i .M;Z2/ D 0 now for every 1 � i � k � 3, since

we have the exact sequence

0 D Tor�iC1.M;X0/! Tor�i .M;Z2/! Tor�i .M;X1/ D 0:

Hence, by taking X 00 D Z2 and X 0i D XiC1 for i > 0, we are reduced to showing that the
exact sequence

� � � ! X 0i ! � � � ! X 02 ! X 01 ! X 00 ! 0

induces the exact sequence

M ˝� X
0
k�1 !M ˝� X

0
k�2 ! � � � !M ˝� X

0
1 !M ˝� X

0
0 ! 0;

which now follows from induction on k since we have already proven the base step
k D 2.

Proposition 6.4. If � is a bounded and complete filtered ring, M is a filtered �-module
of type FPk for some k � 2, N is a separated, bounded and complete �-module and

� � � ! 1�.Vi /! � � � ! 1�.V1/! 1�.V0/! N ! 0 (?)

is a strict exact sequence with each Vi bounded (such as in Proposition 6.1), then the
groups Tor�i .M;N / can be computed as the i -th homology of the complex

� � � ! 1M.Vi /! � � � !2M.V1/!2M.V0/! 0

for i � k � 1, where this complex is obtained by applying M ˝� � to the sequence (?).
In particular, one has Tor�i .M;N / ' Tor�i .M;N / for i � k � 1.

Proof. This can be thought as a “partial” analogue of how one may compute derived func-
tors through acyclic resolutions (cf. [29, Thm. XX.6.2]). We consider another resolution
of N by projective �-modules:

� � � ! Pi ! � � � ! P1 ! P0 ! N ! 0; (??)

and we will show that there exists a morphism of complexes Pi ! 1�.Vi / extending the
identity on N and satisfying

Hi .M ˝� ?/ ' Hi .M ˝� ??/ for all 0 � i � k � 1:
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Since Tor�i .M; N / does not depend on the choice of projective resolution (??), we
can inductively choose the Pi such that we have a commuting diagram with surjective
columns:

� � � Pi � � � P1 P0 N

� � � 1�.Vi / � � � 1�.V1/ 1�.V0/ N:

id

For each i � 0, we let Xi be the kernel of the map Pi ! 1�.Vi /. Then, Proposi-
tion 6.2 (2) and the long exact sequence

� � � ! Tor�iC1
�
M; 1�.Vj /

�
! Tor�i .M;Xj /! Tor�i .M;Pj /! � � �

shows that Tor�i .M;Xj / D 0 for every 1 � i � k � 2. Hence, by Lemma 6.3, we know
that the diagram

M ˝� Xk M ˝� Xk�1 � � � M ˝� X0 0

M ˝� Pk M ˝� Pk�1 � � � M ˝� P0 0

M ˝� 1�.Vk/ M ˝� 3�.Vk�1/ � � � M ˝� 1�.V0/ 0

has an exact top row and each column is a short exact sequence because of the vanishing
of Tor1.M; 1�.Vi //. Then, applying the Snake Lemma to each column one finds the exact
sequences

0 D Hi .M ˝� X�/! Hi .M ˝� ?/! Hi .M ˝� ??/! Hi�1.M ˝� X�/ D 0;

yielding the desired isomorphism for every i � k � 1. The last part follows from the
isomorphisms in part (1) of Proposition 6.2.

We also state the following result of [22], which we will use to lift vanishing results
about the Tor groups over GrS to those over S .

Theorem 6.5 ([22, Thm. 4.10]). Let � be a filtered ring and k � 1. Assume that � is
complete and bounded as a left and right �-module. Let M and N be complete filtered
right and left �-modules respectively and assume that:

(1) M is of type FPkC1,

(2) N is bounded, and

(3) TorGr�
k

.GrM;GrN/ D 0.

Then Tor�
k
.M;N / D 0.
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6.2. Graded modules over Gr S

We have shown in Corollary 4.12 that the ring Gr S is a skew polynomial ring over the
graded ring GrR, the latter which can be identified with ƒ. Hence, we shall see Gr S
as isomorphic to ƒŒQsI z�; zı� where Qs D Ns D g � 1. Moreover, since this isomorphism is
compatible with the isomorphism Gr D ' D ŒNt �ŒNsI x�; xı� under the injective map Gr S !
Gr D, the maps z� and zı are restrictions of x� and xı to GrS respectively. Hence, there are
unique extensions z�; zı from ƒ to D that make the following diagram commute:

D D Œt �

D D Œt �:

z�;zı

�

x�;xı

�

The ring GrSDƒŒQsI z�;zı� can then be embedded in the skew polynomial ring D ŒQsI z�;zı�

through the inclusion ƒ! D , and such embedding is an epic ring homomorphism. We
note the following lemma.

Lemma 6.6 (cf. [17, Lem. 2.1]). The left (resp. right) Gr S -modules Gr S ˝ƒ D (resp.
D ˝ƒ GrS ) and D ŒQsI z�; zı� are isomorphic.

Proof. Consider the additive map �WGrS ˝ƒ D !D ŒQsI z�; zı� given by the unique exten-
sion of the ƒ-balanced map mWGrS �D ! D ŒQsI z�; zı� defined by

m.Qsn; r/ D Qsnr:

Indeed, it is bi-additive, satisfies m.Qsn; r 0r/ D m.Qsnr 0; r/ for any r 0 2 ƒ and therefore
extends to an abelian group homomorphism �. It is a direct verification that � is left
GrS -linear, and to see that it is an isomorphism, it suffices to observe that it is also right
D-linear and maps the basis ¹Qsn ˝ 1º of GrS ˝ƒ D to the basis ¹Qsnº of D ŒQsI z�; zı�. The
proof for the right module case is similar.

From this and the fact that D ŒQsI z�; zı� is an Ore domain [34, Thm. 1.2.9 and 2.1.15],
the same argument in [17] gives us the following result.

Proposition 6.7 (cf. [17, Lem. 2.7 and 2.8]). Let M (resp. M 0) be a left (resp. right)
GrS -module and N (resp. N 0) be a left (resp. right) GrS -submodule of Ore.D ŒQsI z�; zı�/k

for some k � 1. Then the following holds:

(1) Ext3GrS .M;M
0/ D 0;

(2) D ŒQsI z�; zı� has projective dimension at most 1 as a left and right GrS -module;

(3) Every left or right GrS -submodule of D ŒQsI z�; zı�k for k � 1 has projective dimen-
sion at most 1;

(4) Every finitely generated left or right GrS -submodule of Ore.D ŒQsI z�;zı�/k for k � 1
has projective dimension at most 1;

(5) TorGrS
2 .D ŒQsI z�; zı�;M/ D 0;
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(6) TorGrS
1 .D ŒQsI z�; zı�; N 00/ D 0 for every left D ŒQsI z�; zı�-module N 00;

(7) TorGrS
1 .D ŒQsI z�; zı�; N / D 0;

(8) TorGrS
1 .Ore.D ŒQsI z�; zı�/; N / D 0;

(9) TorGrS
1 .N 0;Ore.D ŒQsI z�; zı�// D 0;

(10) TorGrS
1 .Ore.D ŒQsI z�; zı�/;Ore.D ŒQsI z�; zı�// D 0.

Proof. (1) Since the skew polynomial ring Gr S over the free algebra GrR has global
dimension at most 2 by [34, Thm. 7.5.3] and [10, Cor. 2.5.2], every left or right module
M has a projective resolution of length at most 2. Hence, the claim follows.

(2) Let 0! P1 ! P0 ! D ! 0 be a projective resolution of the left ƒ-module D

overƒ, which exists becauseƒ is a free algebra and hence has global dimension at most 1.
Applying the functor GrS ˝ƒ � to this sequence we obtain the sequence

0! GrS ˝ƒ P1 ! GrS ˝ƒ P0 ! GrS ˝ƒ D ! 0

which is again exact by the freeness of GrS over ƒ (by both sides!). Since each GrS ˝ƒ
Pi is again projective, this is a projective resolution of GrS ˝ƒ D over GrS . We know
that GrS ˝ƒ D is isomorphic to D ŒQsI z�; zı� as a left GrS -module by Lemma 6.6, so the
claim for the left module D ŒQsI z�; zı� follows. The proof for D ŒQsI z�; zı� as a right Gr S -
module is analogous, exchanging the functor GrS ˝ƒ � for �˝ƒ GrS .

(3) Let A be an Gr S -submodule of D ŒQsI z�; zı� and B be another Gr S -module. The
short exact sequence

0! A! D ŒQsI z�; zı�! C ! 0

induces a long exact sequence

� � � ! Ext2GrS

�
D ŒQsI z�; zı�; B

�
! Ext2GrS .A;B/! Ext3GrS .C;B/! � � � ;

where the first term vanishes by (2) and the third term vanishes by (1). Hence,

Ext2GrS .A;B/ D 0

for all GrS -modules B , and the claim follows from [44, Prop. 8.6].
(4) Every finitely generated GrS -submodule of Ore.D ŒQsI z�; zı�/ is GrS -isomorphic to

an GrS -submodule of D ŒQsI z�; zı� by taking the smallest common multiple of the denomi-
nators of a generating set. Hence, the claim follows from (3).

(5) The right GrS -module D ŒQsI z�; zı� has projective dimension at most 1 by (2), so the
claim follows.

(6) By Lemma 6.6, the right GrS -modules D ŒQsI z�; zı� and D ˝ƒ GrS are isomorphic.
Since GrS is a free left ƒ-module, we have isomorphisms:

TorGrS
1

�
D ŒQsI z�; zı�; N 00

�
' TorGrS

1 .D ˝ƒ GrS;N 00/

' Torƒ1 .D ; N 00/; by [44, Cor. 10.72]

' TorD
1 .D ; N 00/; by [17, Thm. 2.5 (2)]

' 0; because D has dimension 0:
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(7) The short exact sequence 0!N ! Ore.D Œs�/k! C ! 0 induces the long exact
sequence

� � � ! TorGrS
2

�
D ŒQsI z�; zı�; C

�
! TorGrS

1

�
D ŒQsI z�; zı�; N

�
! TorGrS

1

�
D ŒQsI z�; zı�;Ore

�
D Œs�

�k�
! � � � :

The first term vanishes by (5) and the third term vanishes by (6), so that

TorGrS
1

�
D ŒQsI z�; zı�; N

�
D 0

as well.
(8) Let

� � � ! Pk ! � � � ! P0 ! N ! 0

be a projective resolution of N over GrS . The natural isomorphism of functors

Ore
�
D ŒQsI z�; zı�

�
˝GrS � ' Ore

�
D ŒQsI z�; zı�

�
˝

DŒQsIz�; zı�

�
D ŒQsI z�; zı�˝GrS �

�
gives us an isomorphism of complexes

Ore
�
D ŒQsI z�; zı�

�
˝GrS P� ' Ore

�
D ŒQsI z�; zı�

�
˝

DŒQsIz�; zı�

�
D ŒQsI z�; zı�˝GrS P�

�
: (�)

Since the Ore localization is flat by [34, Prop. 2.1.16 (ii)], the homology of the right-hand
side of (�) is isomorphic to the homology of D ŒQsI z�; zı�˝GrS P�. Hence, we get isomor-
phisms TorGrS

i .Ore.D ŒQsI z�; zı�/; N / ' TorGrS
i .D ŒQsI z�; zı�; N / for all i � 0. In particular,

TorGrS1 .Ore.D ŒQsI z�; zı�/; N / D 0 by (7).
Finally, (9) Is analogous to (8), and for (10) note that the proof of parts (5)–(8) also

holds in the right GrS -module setting, and that (10) is a special case of (8).

Observe that the embedding Gr S ! Gr D (induced by Gr �) can be extended to an
embedding D ŒQsI z�; zı� ! Ore.Gr D/ satisfying Qs 7! Ns in the following way: the image
of ƒ in the latter is contained in D Œt �, and the map D Œt �! D defined by t 7! 1 splits
this homomorphism. Hence, the image of every full matrix is again full, and the uni-
versal property of D gives us the desired extension. Therefore, every finitely generated
Gr S -submodule of Ore.Gr D/ is isomorphic to a finitely generated Gr S -submodule of
Ore.D ŒQsI z�; zı�/k for some k � 1.

Corollary 6.8. The following hold:

(1) Gr D has projective dimension at most 1 as a left and right GrS -module;

(2) Every left or right GrS -submodule of Gr D has projective dimension at most 1;

(3) Every finitely generated left or right GrS -submodule of Ore.Gr D/ has projective
dimension at most 1.

(4) TorGrS
2 .Gr D; N / D 0 for every left GrS -module N ;

(5) TorGrS
1 .Gr D; N / D 0 for every left Gr D-module N ;
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(6) TorGrS
1 .Gr D; N / D 0 for every left GrS -submodule N � Ore.Gr D/;

(7) TorGrS
1 .Ore.Gr D/; N / D 0 for every left GrS -submodule N � Ore.Gr D/;

(8) TorGrS
1 .M;Ore.Gr D// D 0 for every right GrS -submodule M � Ore.Gr D/;

(9) TorGrS
1 .Ore.Gr D/;Ore.Gr D// D 0.

Remark 6.9. The vanishing results of Corollary 6.8 can also be proven directly, through
an argument similar to that of Proposition 6.7, once one has shown that Gr � makes ƒŒNt �
into a free ƒ-module on both sides. Indeed, the set

¹Ntk ; w j k � 1;w a monomial in the letters a1; a2; : : :º

is a basis for ƒŒNt � as a right and as a left ƒ-module.

6.3. FpJGK is a Sylvester domain

Since every free-by-Zp pro-p group has cohomological dimension at most 2, our ring
S D FpJGK has “continuous” global dimension at most 2 in the sense of A. Brumer [8,
Sec. 3]. By the characterization of P being a projective profinite S -module if and only if
TorS1 .Fp; P / D 0 given in [8, Prop. 3.1], through dimension shifting we can improve the
results of Proposition 6.1.

Corollary 6.10. Let M be a complete and bounded filtered S -module. Then, there are
bounded multisets of integers V0, V1 and V2 and a strict exact sequence of filtered S -
modules

0! 1S.V2/! 1S.V1/! 1S.V0/!M ! 0:

Proof. Take the exact sequence of Proposition 6.1. If Ki denotes the kernel of 1S.Vi /!
2S.Vi�1/, then we know that

TorS1 .Fp; Ki / ' � � � ' TorSiC1.Fp; K0/ ' TorSiC2.Fp;M/:

Since the continuous global dimension of S is 2, we have that TorS1 .Fp;K1/D 0, that is,
K1 is a projective and hence free S -module.

Inducing a filtration onK1 from 1S.V1/, it becomes again a separated, complete and fil-
tered S -module with a strict inclusion mapK1!1S.V1/. Since 1S.V1/'SJ.V1[¹1º;1/K
is countably based, then so is K1, which we identify with a free profinite S -module
SJ.X; �/K on a countable profinite pointed set .X; �/. By counting how many elements
of X have a non-trivial image in each homogeneous component of GrK1, one obtains a
multiset of integers V such that the induced map S.V /! K1 is injective and has a dense
image. This implies that 1S.V /! K1 is an isomorphism, completing the proof.

We can now prove the main finiteness result of this section.

Proposition 6.11. LetM be a finitely generated left (resp. right) S -submodule of Q. Then,
TorS1 .Fp;M/ (resp. TorS1 .M;Fp/) is finite and TorS2 .Fp;M/D 0 (resp. TorS2 .M;Fp/D 0).
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Proof. We follow the ideas of [22, Prop. 4.13]. We will prove the proposition for left
modules only, since the proof for right modules is analogous. We can assume thatM �D,
so that M is a filtered, separated, bounded and complete S -module. Let us take

0! 1S.V2/ d2�! 1S.V1/ d1�! 1S.V0/ d0�!M ! 0 (�)

the strict exact sequence of Corollary 6.10. Since Gr 1S.Vi /' .GrS/.Vi /, we have another
exact sequence

0! .GrS/.V2/
d2
�! .GrS/.V1/

d1
�! .GrS/.V0/

d0
�! GrM ! 0: (Gr �)

We know, through Proposition 5.4, that GrM is a GrS -submodule of the skew poly-
nomial ring

D ŒNt �ŒNsI x�; xı� ' Gr D where Nt D t C J and Ns D s C J:

By Corollary 6.8, we know that

TorGrS
2 .Gr D;GrM/ D TorGrS

1 .Gr D;GrM/ D 0:

Since TorGrS
i .Gr D; .GrS/.Vj // D 0 for every i > 0 by the freeness of each .GrS/.Vj /,

we can apply Lemma 6.3 with k D 4 to deduce that Gr D˝GrS Gr� is exact. Observe that
we have

D y̋ S 1S.Vi / ' 1D.Vi /
by Proposition 6.2.

We now claim that the sequence

0! 1D.V2/ id y̋d2
����! 1D.V1/ id y̋d1

����! 1D.V0/ id y̋d0
����! D y̋ S M ! 0 (D y̋ S�)

is again exact. There is a commutative diagram

0 Gr bD.V2/ Gr bD.V1/ Gr bD.V0/

0 Gr D˝GrS .GrS/.V2/ Gr D˝GrS .GrS/.V1/ Gr D˝GrS .GrS/.V0/;

id y̋d2 id y̋d1

id˝d2 id˝d1

where the vertical arrows are isomorphisms by [22, Lem. 4.8]. Since we have shown the
bottom row is exact, the same holds for the top row, showing by [22, Prop. 4.4] that the
sequence (D y̋ S�) is exact at 1D.Vi / for i 2 ¹1; 2º. That the map id y̋ d0 is surjective is
also clear, so it remains to show exactness at 1D.V0/.

Let x 2 ker id y̋ S d0. For each k � 0, we have the following short exact sequence:

0! 1S.V1/=d�11
�1S.V0/k� d1

�! 1S.V0/=1S.V0/k d0
�!M=d0

�1S.V0/k�! 0:
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Tensoring with D=J k over S , we obtain the exactness of

D=J k ˝S 1S.V1/=d�11
�1S.V0/k� id˝Sd1

�����! D=J k ˝S 1S.V0/=1S.V0/k
id˝Sd0
�����! D=J k ˝S M=d0

�1S.V0/k�:
Let xk be the image of x in the middle term. Since xk belongs to the kernel of id˝S d0,

there exists
yk 2 D=J k ˝S 1S.V1/=d�11

�1S.V0/k�
such that .id˝S d1/.yk/ D xk . We then choose a sequence zk 2 D y̋ S 1S.V1/ such that
each zk maps to yk in the quotient. By construction, we have limk!1 d1.zk/ D x. How-
ever, since id y̋ S d1 is a filtered homomorphism, the topology on D y̋ S 1S.V1/ coincides
with the topology induced by id y̋ S d1. In particular, the sequence zk converges to some
z such that d1.z/ D x, as desired. The exactness at 1D.V0/ follows, and thus (D y̋ S�) is
exact as we claimed.

By Proposition 6.4, the complex (D y̋ S�) is a resolution ofM over D that can be used
to compute

TorD
i .D ;D y̋ S M/ ' TorD

i .D ;D y̋ S M/:

The isomorphisms of complexes

D ˝D .D y̋ S �/ ' D y̋D .D y̋ S �/;

' .D y̋D D/ y̋ S �;

' D y̋ S �

also gives us the isomorphisms

TorD
i .D ;D y̋ S M/ ' TorSi .D ;M/ ' Hi .D y̋ S �/:

Since M is a finitely generated S -module, then D y̋ S M is a finitely generated D-
module [22, Cor. 4.3], so that

dimD TorD
1 .D ;D y̋ S M/ <1: (6.2)

On one hand, Shapiro’s isomorphism [44, Cor. 10.72] gives us:

TorDŒNt�ŒNsIx�;xı�
2

�
D ;D ŒNt �ŒNsI x�; xı�˝GrS GrM

�
' TorGrS

2 .D ;GrM/ ' 0, by Corollary 6.8:

On the other hand, since

Gr.D y̋ S M/ ' Gr.D ˝S M/ ' D ŒNt �ŒNsI x�; xı�˝GrS GrM by [22, Lem. 4.8];

and as a finitely generated module over the Noetherian ring D the module D is of type
FP1, we get by Theorem 6.5 that

TorS2 .D ;D y̋ S M/ D 0: (6.3)
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Since Fp-linear independent elements in Fp y̋ S 1S.�/ remains D-linear independent in
D y̋ S 1S.�/ through tensoring with D˝Fp , we have that

dimFp ker
�2Fp.Vn/! 3Fp.Vn�1/

�
� dimD ker

�2D.Vn/! 3D.Vn�1/
�

for n 2 ¹1; 2º. Then, the claims follow from equations (6.2) and (6.3).

Corollary 6.12. Let M be a finitely generated left or right S -submodule of Q. Then for
any exact sequence 0! I ! Sd !M ! 0 of left S -modules, I is free of finite rank.

Proof. Again, we will only prove the corollary for left S -submodules. Since Fp with
trivial G-action is the only simple and pseudocompact S -module, by Proposition 6.11
and [8, Cor. 3.2], we know that M has projective dimension at most 1 as an S -module.
Hence, I is projective by [44, Prop. 8.6] and thus free by Kaplansky’s theorem on local
rings. Its rank as a free S -module is then given by

dimFp Fp y̋ S I D d � dimFp Fp y̋ S M C dimFp TorS1 .Fp;M/;

which is once again seen to be finite by Proposition 6.11.

We can now prove the main theorem of this section.

Theorem 6.13. Let G be a torsion-free finitely generated virtually free-by-Zp pro-p
group. Then FpJGK is a Sylvester domain.

Proof. By Lemma 4.6 and Theorem 3.5, we can assume that G is a mild flag free-by-Zp
pro-p group. We use the notation of this section.

We want to apply Theorem 2.8 to the embedding S ! Q constructed throughout Sec-
tion 5. The condition (2) was shown in Corollary 6.12, so it only remains to show that

TorS1 .Q;Q/ D 0:

Since Q is flat as a D-module [34, Prop. 2.1.16], if P� ! Q is a projective resolution of
Q over S we have the isomorphisms:

Q˝D TorSi .D;DFpJGK/ D Q˝D Hi .D ˝S P�/

' Hi .Q˝D D ˝S P�/

' Hi .Q˝S P�/

D TorSi .Q;Q/:

Hence, if TorSi .D;Q/ vanishes, then so does TorSi .Q;Q/. The same reasoning, now
applied to the right factor, gives us

TorSi .D;D/ D 0 H) TorSi .Q;Q/ D 0:

Hence, because the Tor functor commutes with direct limits, it suffices to show that
for every finitely generated right and left S -submodules M and N of D, one has

TorS1 .M;N / D 0:
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Note that GrM and GrN are Gr S -submodules of Gr D in the filtration induced by the
powers of the ideal J generated by t and s. The short exact sequence

0! GrM ! Gr D ! Q! 0

induces the long exact sequence

� � � ! TorGrS
2 .Q;GrN/! TorGrS

1 .GrM;GrN/! TorGrS
1 .Gr D;GrN/! � � �

on the Tor groups. Since by Corollary 6.8 the module GrN has projective dimension at
most 1 and TorGrS

1 .Gr D;GrN/ D 0, we get

TorGrS
1 .GrM;GrN/ D 0:

We have shown in Proposition 6.11 that M is of type FP1: given a presentation

0! K ! Sn !M ! 0;

with n minimal we have that K is finitely generated and thus profinite as TorS1 .M;Fp/ D
TorS0 .K;Fp/ is finite, an argument we can now repeat with M replaced by K. Moreover,
the vanishing of

TorS1 .K;Fp/ ' TorS1 .K;Fp/ ' TorS2 .M;Fp/

shows that it is projective by [8, Lem. 2.1 (ii) and Prop. 3.1] and hence free. Since S is
bounded and N is finitely generated, it is also bounded, and thus the claim now follows
from Theorem 6.5.

7. The equality rkG D irkFpJGK

The main result of this section is the following theorem.

Theorem 7.1. Let G be a pro-p group, .Q; w/ a division ring with a non-archimedean
discrete valuationwWQ!¹pk j k 2Zº [ ¹0º and 'WFpJGK!Q a continuous embedding
with respect to the topology on Q induced by w. Then

'# rkQ � rkG :

We split again the proof into several lemmas. For each i 2 Z define following subsets
of G:

Gi D
®
g 2 G j w

�
'.g � 1/

�
� p�i

¯
:

EachGi is a clopen and non-empty subset ofG, as 1 2Gi for every i . Moreover, since
G is compact, there exists a minimum

k0 D min
®
k 2 Z j w

�
'.g � 1/

�
� p�k for all g 2 G

¯
:

This implies that Gi D G for every i � k0. We note the following lemma.
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Lemma 7.2. The integer k0 is non-negative. In particular,G0DG. Moreover,w.'.g//D
1 for every g 2 G.

Proof. Suppose by contradiction that k0 < 0 and let g 2 G be such that w.'.g � 1// D
p�k0 . Observe that since FpJGK embeds into a division ring, G is torsion-free, and in
particular gp ¤ 1. Since Q has characteristic p, we get

w
�
'.gp � 1/

�
D w

�
'.g � 1/p

�
D p�pk0 > p�k0 ;

contradicting the definition of k0.
Suppose now that w.'.g// > 1 for some g 2 G. Then, since w.'.g// ¤ w.�1/ D 1,

we have
w
�
'.g � 1/

�
D max

®
w
�
'.g/

�
; w.�1/

¯
D w

�
'.g/

�
> 1;

a contradiction. On the other hand, if w.'.g// < 1, then the same argument shows that
w.'.g � 1// D 1. We get a contradiction by considering:

w
�
'.g�1 � 1/

�
D w

�
'
�
g�1.1� g/

��
D w

�
'.g�1/

�
w
�
'.g � 1/

�
D w

�
'.g�1/

�
> 1:

By the continuity of w it follows that the Gi form a chain of normal open subgroups
of G, for it is easily verified that each Gi contains 1 and is closed under products, inverses
and conjugation. Since w.q/D 0 if and only if q D 0, we can also conclude that

T
i�0Gi

D ¹1º, that is, the chain Gi is residual in G. Hence, this chain can be used to compute the
rank function rkG of Example 2.5.

Let Qi be the set of elements q 2Q with v.q/�p�i . In particular, Q0 is an Fp-algebra
containing '.FpJGK/ with ideals Qi for each i � 0.

Lemma 7.3. There exists a division ring extension Q�Q0 and an extensionw0 of the val-
uation w to Q0 such that Q0 contains a central element z with w0.z/D p�1. In particular,
Q0i D z

iQ00 for every i 2 Z.

Proof. Consider the polynomial ring QŒz� and define w0WQŒz�!¹pk j k 2Zº[¹0º to be

w0
� nX
iD0

qiz
i

�
D max

®
w.qi /p

�i
¯
:

We check that w0 is an additive non-archimedean valuation on QŒz�, for it is immediate
that it is discrete.

Let r D
Pn
iD1 qiz

i and r 0 D
Pn
iD1 q

0
iz
i be two arbitrary elements in QŒz�. We have

w0.r/ D 0 if and only if all of the qi have valuation 0, that is, if and only if qi D 0 for
all i . Hence, w0.r/ D 0 implies r D 0. Suppose the minimal w0 valuation on r and r 0 is
attained at the terms qmzm and q0nz

n with m and n minimal for this properties. Then, for
all 0 � i; j � n, we have:

w.qm/p
�m
� w.qi /p

�i ;

w.q0n/p
�n
� w.q0j /p

�j :
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Multiplying both inequalities implies:

w.qmq
0
n/p
�m�n

� w.qiq
0
j /p
�i�j

8i; j:

In particular, for every 1 � k � 2n, we have:

w.qmq
0
n/p
�n�m

� max
®
w.qiq

0
j / j i C j D k

¯
p�k � w

� X
iCjDk

qiq
0
j

�
p�k : (7.1)

Suppose now, by contradiction, that there exists i ¤m and j ¤ n with i C j DmC n
such that w.qiq0j / � w.qmq

0
n/. Without loss of generality, we may suppose that i < m,

so that n < j . By the minimality of m and n, we must have w.qi /p�i < w.qm/p�m and
w.q0j /p

�j � w.q0n/p
�n. This implies:

w.qi /=w.qm/ < p
i�m
D pn�j � w.q0n/=w.q

0
j /;

and thus w.qiq0j / < w.qmq
0
n/, a contradiction. Therefore, if i C j D m C n, we have

w.qiq
0
j / < w.qmq

0
n/. Hence

w.qmq
0
n/p
�n�m

D w
� X
iCjDmCn

qiqj

�
p�m�n: (7.2)

We have

rr 0 D

2nX
kD0

� X
iCjDk

qiq
0
j

�
zk :

Since

w
� X
iCjDk

qiq
0
j

�
p�k � w.qmq

0
n/p
�n�m

D w
� X
iCjDmCn

qiq
0
j

�
p�n�m by (7.1) and (7.2);

the minimalw0 valuation on rr 0 must be attained in the z-degreemC n, with value exactly
w0.r/w0.r 0/.

At last, we must show thatw0.r C r 0/�max¹w0.r/;w0.r 0/º. We may suppose, without
loss of generality, that w.qm/p�m D w0.r/ � w0.r 0/ D w.q0n/p

�n. Observe that in this
case

w.qi C q
0
i /p
�i
� max

®
w.qi /; w.q

0
i /
¯
p�i � w.qm/p

�m
D w0.r/:

Since

r C r 0 D

nX
iD1

.qi C q
0
i /z

i ;

we are done.
Now QŒz� is a Noetherian domain and thus we can construct the division ring of ratio-

nal functions Q0 D Q.z/ by localizing at the non-zero elements. Hence, the valuation w0

also extends to Q0, which concludes the proof.
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By virtue of Lemma 7.3, we can suppose that Q contains a central element z of val-
uation p�1, for a division ring extension does not change the induced rank function on
FpJGK. Consider now Q0, the ring of elements with non-negative valuation. We note that
'.FpJGK/ � Q0 and the non-zero left or right ideals of Q0 are the two-sided ideals ziQ0

for i � 0: if ziuD uzi 2Q0 withw.u/D 1, then u�1 2Q0 and hence the ideals generated
by ziu and zi coincide. This implies that Q0=zQ0 is the only simple Q0-module, and the
length of the Q0-modules Q0=z

iQ0 are precisely i .
Let A 2 Matn�n.FpJGK/ be a matrix such that '.A/ is invertible in Q, that is,

'# rkQ.A/ D n:

We define the left FpJGK-module M D FpJGKn=FpJGKnA and the Q0-length of M over
an open subgroup U to be

lU .M/ D lenQ0
.Q0 ˝FpJU K M/;

the length of the induced Q0-module. The proof henceforth will follow similar arguments
to the ones in [22, Sec. 5].

Let dimG=Gi and '# dimQ be the Sylvester module rank functions associated to rkG=Gi
and '# rkQ. Then, since it suffices to show that rkG.A/ D limi!1 rkG=Gi .A/ D n, by the
relation rkG.A/ D n � dimG.M/ it only remains to show that

lim
i!1

dimG=Gi .M/ D 0:

Lemma 7.4. We have that lG.M/ is finite.

Proof. Since A is invertible over ', we have

'# dimQ M D dimQ Q˝FpJGK M D 0:

Observing that
Q˝FpJGK M ' Q˝Q0

.Q0 ˝FpJGK M/;

this implies that the Q0-module Q0 ˝FpJGK M is torsion. Given that M is finitely gener-
ated and every proper quotient of Q0 is of the form Q0=z

iQ0 and thus has finite length,
that module must have finite length over Q0.

Lemma 7.5. Let U � V be open subgroups of G with jV W U j D p. Then, lU .M/ �

plV .M/. In particular, lU .M/ � jGWU jlG.M/.

Proof. Let L D Q0 ˝FpJU K M and take any element g 2 V nU . Define the function
� WQ0 �M ! L by

�.q;m/ D qg ˝ g�1m � q ˝m:

Since U must be normal in V , we have that �.qu;m/ D �.q; um/ for every u 2 U , that
is, � induces a homomorphism of left Q0-modules  WL! L such that

 .q ˝m/ D qg ˝ g�1m � q ˝m:
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It is immediate to verify that  i .q˝m/D
Pi
jD0.�1/

j
�
i
j

�
qgi�j ˝ gj�im and there-

fore  p D 0. Moreover, L= .L/ ' Q0 ˝FpJV K M , and by applying  we find that this
surjects onto  i .L/= iC1.L/ for every i . Hence:

lU .M/ D lenQ0
L � p � lenQ0

Q0 ˝FpJV K M D plV .M/:

Recall that xQ D Q0=Q1 is a division ring.

Lemma 7.6. We have that

dim xQ xQ˝FpJGi K M �
lGi .M/

i
:

Proof. When we view M as a left FpJGiK-module, it has a presentation of the form

FpJGiKnjGWGi j=FpJGiKnjGWGi jB

for some matrix B 2 MatnjGWGi j�njGWGi j.FpJGiK/. By projecting the matrix onto Fp and
applying elementary matrix operations, we can find one such matrix B satisfying

B D

�
Ida C B1 B2
B3 B4

�
;

where the Bi are matrices with entries in the augmentation ideal IGi of FpJGiK and
njGWGi j � a D dimFp M=IGi . Since the Bi vanish when acting on xQ, one gets that

dim xQ xQ˝FpJGi K M D dimFp Fp ˝FpJGi K M D dimFp M=IGiM D njGWGi j � a:

By definition, we have that for any x 2 IGi , v.'.x// � i , so that '.IGi / � z
iQ0.

Hence, there are matrices B 02 and B 04 over Q0 such that we can express '.B/ as

'.B/ D

�
Ida C '.B1/ B 02
'.B3/ B 04

�
„ ƒ‚ …

C1

�
Ida 0

0 zi IdnjGWGi j�a

�
„ ƒ‚ …

C2

:

This implies that

.Q0=z
iQ0/

njGWGi j�a D Q
njGWGi j
0 =Q

njGWGi j
0 C2

is a quotient of Q0 ˝FpJGi K M ' Q
njGWGi j
0 =Q

njGWGi j
0 '.B/. Therefore, we obtain that

lGi .M/ D lenQ0
Q0 ˝FpJGi K M

� lenQ0
.Q0=z

iQ0/
njGWGi j�a

D i
�
njGWGi j � a

�
D i dim xQ xQ˝FpJGi K M:
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Proof of Theorem 1.1. Note that, by Lemma 2.4, to show that '# rkQ � rkG it suffices
to show that they coincide over square matrices invertible under '. Indeed, any matrix
A 2 Matn�m.FpJGK/ contains a maximal submatrix B 2 Matk�k.FpJGK/ such that

'# rkQ.B/ D '
# rkQ A D k;

and if rkG.B/ D k the lemma shows us that k � rkG.A/.
Thus, let M D FpJGKn=FpJGKnA where A 2 Matn�n.FpJGK/ is invertible under '.

We want to show that dimGM D 0. We have that

dimFp Fp ˝FpJGi K M

jGWGi j
D

dim xQ xQ˝FpJGi K M

jGWGi j

�
lGi .M/

i jGWGi j
; by Lemma 7.6,

�
lG.M/

i
; by Lemma 7.5:

Since lG.M/ is finite by Lemma 7.4, we have limi!1
lG.M/
i
D 0, which concludes the

proof.
Now we are ready to finish the proof of Theorem 1.1. By Lemma 4.6 and Corollary 3.6,

we can assume thatG is a mild flag free-by-Zp pro-p group. Let Q and DDDJtKJsI�; ıK
be as in Section 5. Observe that the valuation w on D naturally extends to Q and the
embedding FpJGK! Q is continuous by Lemma 5.1. By Theorem 7.1, '# rkQ � rkG . In
the proof of Theorem 6.13 we showed that '# rkQ D irkFpJGK. Since irkFpJGK � rkG , we
have that irkFpJGK D rkG .

8. Abstract subgroups of free-by-Zp pro-p groups

In this section we discuss some consequences that Theorem 1.1 implies in the study of
the Lück approximation for finitely generated (abstract) subgroups of a free-by-Zp pro-p
groups.

Let us first recall the statement of the Lück approximation. Let � be a group and let
K be a field. For every matrix A 2 Matn�m.KŒ��/ and every normal subgroup N of � of
finite index let us define

'A�=N W KŒ�=N �n ! KŒ�=N �m

.x1; : : : ; xn/ 7! .x1; : : : ; xn/A:

This is a K-linear map between two finite-dimensional K-vector spaces. Thus, we can
define a Sylvester rank function of KŒ�� by means of

rk�=N .A/ D
dimK Im'A

�=N

j� W N j
D n �

dimK ker'A
�=N

j� W N j
: (8.1)



A. Jaikin-Zapirain and H. Souza 44

Conjecture 2 (The Lück approximation conjecture). Let � be a group, K be a field and
� > N1 > N2 > � � � a descending chain of normal subgroups of � of finite index with
trivial intersection. Let A be a matrix over KŒ��. Then the following holds.

(1) The sequence ¹rk�=Ni .A/ºi�1 converges.

(2) The limit limi!1 rk�=Ni .A/ does not depend on the chain � > N1 > N2 > � � � .

(3) If moreover � is locally indicable, then there exists a universal embeddingKŒ��!
Q and limi!1 rk�=Ni .A/ D rkKŒ��.A/.

If K is of characteristic 0, the parts (1) and (2) of Conjecture 2 are known to be true
[20], and for part (3) we know that there exists an embedding ' WKŒ��!Q into a division
ring Q such that limi!1 rk�=Ni .A/ D rkQ.'.A// [25], but we still do not know whether
' is universal in general [23]. If K is of positive characteristic, the parts (1), (2) and (3)
are only known when � is amenable [21, 23].

Let nowG be a free-by-Zp pro-p group and � a finitely generated (abstract) subgroup
of G. It is clear that � is locally indicable and from [23, Thm. 3.7] we know that there
exist a universal division FpŒ��-ring of fractions DFp Œ��. The following theorem provides
a particular case of Conjecture 2 for � .

Theorem 8.1. Let G be a free-by-Zp pro-p group and � a finitely generated (abstract)
subgroup of G. Let G > U1 > U2 > � � � be a chain of normal open subgroups of G with
trivial intersections. Let Hi D � \ Ui . Then for every matrix A over FpŒ��,

lim
i!1

rk�=Hi .A/ D rkFp Œ��.A/:

Proof. Since the closure of � in G is a finitely generated free-by-Zp pro-p group, we
can assume that � is dense in G, so that G is topologically finitely generated. Hence, this
implies that the inclusion map � ! G induces isomorphisms �=Hi ' G=Ui for every
i � 1.

By Theorem 1.1, there exists DFpJGK. Denote by ' W FpŒ��!DFpJGK the correspond-
ing embedding. Theorem 1.1 implies also that for every matrix A over FpŒ��,

lim
i!1

rk�=Hi .A/ D lim
i!1

rkG=Ui .A/ D rkDFpJGK

�
'.A/

�
:

Thus, we have to show that ' is universal. Let N be a normal free pro-p subgroup of G
such that G=N Š Zp . PutH D N \ � . Denote by D� (resp. DH ) the division closure of
FpŒ�� (resp. FpŒH �) in DFpJGK and by R the subring generated by DH and FpŒ��.

In [24, Prop. 3.5], it was shown that DH is the universal division ring of fractions
of FpŒH �. We also claim that the induced surjective map DH � .�=H/! R is an iso-
morphism. Let 
1; : : : ; 
n lie in different classes modulo H . There exists an open normal
subgroup U of G containing N such that 
1; : : : ; 
n lie in different classes modulo U . By
Proposition 3.4 (d),

Pn
iD1 DH
i is direct. Hence, it sends linearly independent elements

to linearly independent elements, establishing its injectivity.
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These two facts together imply that the ring R is isomorphic to a crossed product
DFp ŒH� � .�=H/. Since �=H is finitely generated, R a Noetherian ring. Thus, D� is
isomorphic to the Ore division ring of fractions of R. Hence, we obtain that D� will be
the universal division ring of fraction of FpŒ��.

Appendix: Localization of profinite rings
Let R be an associative ring and † a collection of square matrices over R. The universal
localization of R with respect to † is a ring R† that comes with a ring homomorphism
�WR ! R† such that �.A/ is invertible for every A 2 †, and R† is universal for that
property.

We denote by z† the set of all square matrices over R that become invertible under �.
In general, z† is greater than †. However Rz† is R-isomorphic to R†. We say that † is
complete if † D z†.

It is clear that a complete collection of square matrices is multiplicative, that is it
contains GLn.R/ for every n, is closed under products when defined and if A;B 2 † then
. A C
0 B / 2 † for any matrix C of the appropriate size. It also has the following property

regarding diagonal summands on †:

If
�
A 0
0 B

�
2 †; then A;B 2 †: (DS)

J. Beachy has shown in [6] that R† and � can be constructed as follows. From now
on we assume that † is complete. Let Rn denote the rows of n elements in R, nR the
columns of n elements in R and †n denote the subset of n-by-n matrices in †. Consider
the set T† given by the disjoint union of all the products Rn �†n � nR, that is, the triples
.a; C; x/ where a is a row matrix over R of length n, C 2 †n and x is a column matrix
over R of height n. We define two binary operations of sum and product in T† as follows:

.a; C; x/C .b;D; y/ D

� �
a b

�
;

�
C 0
0 D

�
;

�
x
y

��
;

.a; C; x/ � .b;D; y/ D

� �
a 0

�
;

�
C �xb
0 D

�
;

�
0
y

��
;

where the matrices make sense because † is multiplicative, x is an n � 1 matrix and b is
an 1 �m matrix.

We define an equivalence relation R1 � T† � T† on T† by means of .a; C; x/ �R1

.b; D; y/ if there exists invertible matrices U; V over R such that b D aU , y D Vx and
D D VCU . Observe that in particular C andD must have the same size if .a;C; x/ �R1

.b;D;y/. We denote the quotient T†= �R1
by†�1R and the equivalence class of a triple

.a; C; x/ in †�1R by .aWC W x/.
The operations of sum and product are well defined on the equivalence classes and

descend to a sum and a product on the quotient T†. With the sum, it becomes a com-
mutative semigroup. To obtain an abelian additive group, we further introduce a new
equivalence relation.
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Let †�10 R be the subsemigroup of †�1R generated by all the elements of the form
.aW C W 0/ and .0W C W y/. It is shown in [6] that all the elements of †�10 R are either of
that form or of the form

�
. a 0 /W . A 0

0 D /W
�
0
x

��
for blocks of the appropriate sizes. This

subsemigroup allows us to define the congruence relation R2 �†
�1R�†�1R on†�1R,

where two elements Np; Nq 2 †�1R are equivalent if there exists Nz1; Nz2 2 †�10 R such that
Np C Nz1 D Nq C Nz2.

The quotient space†�1R=�R2
inherits the sum and product, under which it becomes

an associative ring with trivial element being the class Œ.1 W 1 W 0/� and the identity element
being the class Œ.1 W 1 W 1/�. The additive inverse of Œ.aWC W x/� is Œ.aWC W �x/�. One of the
main results of [6] is that this quotient space is precisely the universal localization R†,
where the map �WR! R† is given by x 7! Œ.1W 1W x/�.

Suppose now that R is a topological ring. In that case, all the spaces nR and Rn have
a natural product topology, and †n also becomes a topological space as it is contained in
Matn.R/ ' Rn

2
. Hence, T† becomes a topological space endowed with the direct union

topology on which the operations of sum and product defined are continuous. Under the
quotient topology, those operations are still continuous on †�1R and R†, so that R†
becomes a topological ring. We call this topology structure onR† the induced topological
structure fromR. It is clear that �WR!R† is a continuous ring homomorphism. The main
result of the appendix is the following theorem.

Theorem A.1. Let R be a profinite ring and † a collection of square matrices over R.
Then R† admits a Hausdorff ring topology such that �WR! R† is continuous. In partic-
ular, every finitely generated R-submodule of R† is profinite.

Proof. Without loss of generality we assume that† is complete. SinceR is profinite, then
T† is a Hausdorff space under the induced topology.

Claim 1. We have that †�1R is Hausdorff.

Proof. We must show that the equivalence relation R1 is a closed subspace of T† � T†.
Since T† is given the union topology and each equivalence class under R1 is entirely
contained in one of the subsets Tn D Rn �†n � nR, it suffices to prove that Xn D .R1 \

.Tn � Tn// is closed in Tn � Tn.
Consider the continuous maps  W Tn � Tn � GLn.R/2 ! Rn �Matn.R/ � nR and

� WTn � Tn � GLn.R/2 ! Tn � Tn given by

 .a; C; x; b;D; y; U; V / D .aU � b; VCU �D;Vx � y/;

�.a; C; x; b;D; y; U; V / D .a; C; x; b;D; y/:

It is clear that Xn D �. �1.0; 0; 0//. Since GLn.R/2 is compact, � is a closed map, so
we are done.

The kernel of †�1R! R† is the subsemigroup

†�10 R �†
�1
0 R D ¹ Np 2 †

�1R j 9Nz 2 †�10 R such that Np C Nz 2 †�10 Rº;

which contains †�10 R but it might be strictly larger.
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Claim 2. We have that †�10 R is closed in †�1R.

Proof. It again suffices to consider†�1Rn D .Rn �†n � nR/=�R1
and show that Yn D

†�10 R \†
�1Rn is closed in †�1Rn, as we have a homeomorphism between †�1R and

the disjoint union
S
n�1†

�1Rn.
Decompose Yn D ZI [ZII [

Sn�1
iD1 ZIII;i where

ZI D
®
.aWC W 0/ 2 Yn

¯
;

ZII D
®
.0WC W x/ 2 Yn

¯
;

ZIII;i D

²� �
a 0

�
W

�
C 0

0 D

�
W

�
0

x

��
2 Yn j

a 2 Ri ; x 2 n�iR;

C 2 †i ; D 2 †n�i

³
:

We only need to show that each one of the ZI , ZII and ZIII;i is closed in †�1Rn.
The inverse image of ZI in Rn � †n � nR is the set of triples of the form .a; C; 0/,

which immediately shows that it is closed. An analogous description holds for the inverse
image of ZII , hence it is also closed. The only case requiring a finer description is that of
ZIII;i .

The inverse image of ZIII;i in Rn �†n � nR is²� �
a 0

�
U; V

�
C 0

0 D

�
U; V

�
0

x

��
j U; V 2 GLn.R/

³
:

Define

Zi D

²� �
a 0

�
;

�
C 0

0 D

�
;

�
0

x

��³
� Rn �†n �

nR:

Then, the inverse image in question is the image ofZi � .GLn.R//2 under the continuous
right group action map �W .Rn �†n � nR/ � .GLn.R//2 ! Rn �†n �

nR given by

�.b;A; y; U; V / D .bU; V �1AU; V �1y/:

Since † satisfies property (DS), the set Zi is closed, and because .GLn.R//2 is compact
the map � is closed. Hence, �.Zi � .GLn.R//2/ and ZIII;i are both closed.

Claim 3. We have that ¹Œ.1W 1W 0/�º is closed in R†.

Proof. We must show that †�10 R �†
�1
0 R is a closed subset of †�1R. Consider the map

'W†�1R �†�10 R!†�1R given by '. Np; Nz/D NpC Nz. The inverse image '�1.†�10 R/ is
closed in the product by Claim 2. Since this inverse image is precisely .†�10 R�†

�1
0 R/�

†�10 R, it proves that †�10 R �†
�1
0 R is closed in †�1R.

By Claim 3, the ring topology constructed on R† is such that ¹0º is closed. Since
.R†;C/ is a topological abelian group, it must also be Hausdorff.

For the last statement of the theorem, take one such M � R† and observe that the
kernel I of any surjection Rn ! M must be closed in Rn. Therefore, M ' Rn=I is
profinite.
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