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Ideals of étale groupoid algebras with coefficients in
a sheaf with applications to topological dynamics

Gilles Gongalves de Castro, Daniel Gongalves, and Benjamin Steinberg

Abstract. We prove the Effros—Hahn conjecture for groupoid algebras with coefficients in a sheaf,
obtaining as a consequence a description of the ideals in skew inverse semigroup rings. We also use
the description of the ideals to characterize when the groupoid algebras with coefficients in a sheaf
are von Neumann regular, primitive, semiprimitive, or simple. We apply our results to the topological
dynamics of actions of inverse semigroups, describing the existence of dense orbits and minimality
in terms of primitivity and simplicity, respectively, of the associated algebra. Moreover, we apply
our results to the usual complex groupoid algebra of continuous functions with compact support,
used to build the C *-algebra associated with a groupoid, and describe criteria for its simplicity.

1. Introduction

Groupoid algebras with coefficients in a sheaf unify the study of usual convolution group-
oid algebras (often called Steinberg algebras) and skew inverse semigroup rings (see [19]).
The aforementioned constructions are key in the study of algebras associated with com-
binatorial objects such as graphs, higher rank graphs, ultragraphs, etc, and have deep
connections with topological dynamics and the intrinsic dynamics associated with com-
binatorial objects, see [9, 11] for example. Among the relevant properties of convolution
groupoid algebras and inverse semigroup skew rings, the constitution of its ideals play
a crucial role. For just a couple of examples, the ideal structure of a Leavitt path algebra
may be recovered from the ideal structure of a convolution groupoid algebra, see [27], and
minimality and topological freeness of actions of inverse semigroups can be described in
terms of simplicity of the associated skew rings (see [3, 17, 18]). Our goal in this paper is
to obtain a description of the ideals in groupoid algebras with coefficients in a sheaf and
apply this description to the topological dynamics of actions of inverse semigroups and to
the usual complex groupoid algebra of continuous functions with compact support used
to build the C*-algebra associated with a groupoid.

When one searches the literature for a classification of ideals in crossed products, the
references go back to the original Effros—Hahn conjecture, which suggested that every
primitive ideal of a crossed product of an amenable locally compact group with a commu-
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tative C *-algebra should be induced from a primitive ideal of an isotropy group, see [15].
Since then, the conjecture has been proved and generalized in several contexts, see [32]
for a comprehensive account of developments.

In the purely algebraic setting, an Effros—Hahn type conjecture is proved for partial
skew group rings in [13] and for groupoid convolution algebras in [12,32]. In this paper,
we prove an algebraic Effros—Hahn type conjecture in the context of groupoid algebras
with coefficients in a sheaf. Therefore, we extend the known results of [12, 13, 32] to
include skew inverse semigroup rings, and at the same time provide a unified statement to
the Effros—Hahn conjecture proved in [12, 13,32].

After we show our version of the Effros—Hanh conjecture, we use the machinery devel-
oped to prove it, namely the induction of modules for groupoid algebras with coefficients
in a sheaf, to describe several algebraic properties of groupoid algebras with coefficients in
a sheaf. This includes simplicity, semiprimitivity, and primitivity. For topological actions
of inverse semigroups, since the associated skew inverse semigroup ring can be seen as
a groupoid convolution algebra with coefficients in a sheaf, we relate topological proper-
ties of the action with algebraic properties of the associated groupoid convolution algebra.
Furthermore, we realize the usual algebra C,(5) (used to build groupoid C*-algebras) as
a groupoid algebra with coefficients in a sheaf (and hence as a skew inverse semigroup
ring), and then apply our topological results to describe when it is simple in terms of
the groupoid. Therefore, we provide a bridge between algebra and analysis (for example,
our simplicity characterization of C,(G) should be compared with the characterization of
simplicity of the reduced groupoid C *-algebra).

We now give a more detailed description of our work.

We begin by presenting some necessary background on the topics of the paper. In
particular, we recall the construction of convolution algebras with coefficients in a sheaf
and of skew inverse semigroup rings. Furthermore, we recall the Disintegration theorem,
which is used in [19] to prove that skew inverse semigroup rings and groupoid convolution
algebras with coefficients in a sheaf are essentially the same objects.

We describe the induction process that transforms representations of the skew group
rings associated with isotropy groups to modules for groupoid algebras with coefficients
in a sheaf in Section 3, and use this to prove Theorem 3.5, which asserts that every ideal in
a groupoid algebra with coefficients in a sheaf of modules is an intersection of annihilators
of induced modules.

In Section 4, we prove the Effros—Hahn conjecture for groupoid convolution algebras
with coefficients in a sheaf, Theorem 4.3, and use Theorem 3.5 to prove a number of
properties of Iz (G, O), the groupoid convolution algebra associated with a sheaf. We start
by showing that every primitive ideal of I';(G, @) is the annihilator of a single induced
representation, Theorem 4.1. We then show that induction of modules preserves sim-
plicity, Theorem 4.2. As with usual groupoid algebras, there is a diagonal commutative
algebra inside T.(G, ©), call it ['.(G©®, 9). We characterize when I'(5©, ©) is von
Neumann regular in Proposition 4.7, and describe when it is maximal commutative inside
I'¢(G, O) in Proposition 4.13. We specify the role of T', (9(0), 0) in determining when a
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ring homomorphism from I'¢(9, @) is injective in the generalized uniqueness theorem,
Theorem 4.16. We describe primitivity of I'c(G, @) in Theorem 4.18 and, under some
assumptions, show that I'¢(G, @) is left primitive if, and only if, the unit space of the
groupoid has a dense orbit, Theorem 4.22. In Theorems 4.24 and 4.26 we give a suffi-
cient condition for I', (9(0), ) to be semiprimitive and in Theorem 4.32 we characterize
simplicity of T (3@, 9).

We devote Section 5 to the topological dynamics of actions of inverse semigroups.
In Proposition 5.5, we show that if the associated algebra I'.(S x X, Q) is left primi-
tive then the action has a dense orbit. From this, we obtain that for certain topologically
free actions on locally compact, Hausdorff, zero-dimensional spaces the associated alge-
bra T (S x X, Q) is left primitive if, and only if, the action has a dense orbit, Corol-
lary 5.7. In Propositions 5.10 and 5.11 we give sufficient conditions for semiprimitivity of
I'.(S x X, 9), and, in Theorem 5.12 we relate simplicity of Iz (S x X, @) with minimal-
ity of the action.

Finally, in Section 6, we study the usual algebra C.(G) of complex valued, continuous
functions with compact support, which is used to build the C *-algebras (full and reduced)
associated to a groupoid. For Hausdorff groupoids, we give a direct description of C.(9)
as a skew inverse semigroup ring, Proposition 6.1. For general groupoids, we provide
a realization of C.(G) as a groupoid convolution algebra with coefficient in a sheaf in
Theorem 6.2; this implies that the same skew inverse semigroup ring representation as in
the Hausdorff case holds in general. Applying results of the previous section to C.(9), in
the Hausdorff case, we characterize the simplicity of C.(§) in terms of minimality and
effectiveness of G, see Theorem 6.4. We finish the paper considering the groupoid arising
from a partial action and prove that C.(9) is a partial crossed product, where G is the
transformation groupoid of the partial action.

2. Background

For completeness, in this section we recall the relevant concepts that will be used through-
out the paper, as defined in [19].

2.1. Groupoids

A groupoid G is a small category of isomorphisms. A fopological groupoid is a groupoid
equipped with a topology making the multiplication and inverse operations continuous.
The elements of the form gg_l are called units. We denote the set of units of G by G and
refer to GO as the unit space. The source and range maps are given by d (g) = g~'g and
r(g) = gg~!, for g € G. These maps are necessarily continuous when G is a topological
groupoid.

An étale groupoid is a topological groupoid G such that its unit space G© is locally
compact and Hausdorff and its range map r is a local homeomorphism (this implies that
the domain map d and the multiplication map are also local homeomorphisms). A bisec-
tion of G is a subset B C G such that the restriction of the range and source maps to B
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are injective. An étale groupoid is ample if its unit space has a basis of compact open sets
or, equivalently, if the arrow space G() has a basis of compact open bisections (when it
is clear from the context, we will also use G to denote the arrow space). We remark for
future use that, for every open bisection B, of an ample groupoid G, the range and source
maps are homeomorphisms from B to d (B) and r (B), respectively. The isotropy group
of a unit x € (@ is the group 9% ={g€9|d(g) =r(g) = x}. The isotropy subgroupoid
of a groupoid G is the subgroupoid

Iso(G) = | S={geG:d(g =r()}
xeg©®

We say that the topological groupoid § is effective if G = int(Iso(S)). We will use the
notation ¢ : y — z meaning that d (¢) = y and r () = z. Furthermore, for each x € §(©,
Orb(x) = r od1(x).

From now on, following Bourbaki, the term “compact” will include the Hausdorff
axiom. However, a space can be locally compact without being Hausdorff. If f/: X — Z
and g: Y — Z are maps of spaces, then their pullback is

X xpe Y ={(x.») | f(x) =8}
(with the subspace topology of the product space).

2.2. Ample groupoid convolution algebras with coefficients in a sheaf of rings
In this section, we recall the convolution algebra associated with a sheaf of rings over an
ample groupoid.'

Let G be an ample groupoid. Then a G-sheaf & consists of a topological space E, a
local homeomorphism p: E — 9(0) and a continuous map o: 9(1) xXd,p E — E (written
(7. e) = oy (e)) satisfying the following axioms:

(S1) O{p(e)(e) =e;

(82) play(e)) = r(y)ifd(y) = p(e);

(S3) ag(ay(e)) = apy,(e) whenever d (B) = r(y) and d (y) = p(e).

If x € GO, then &, = p~'(x) is called the stalk of € at x. Notice that &ty E4(,) — Er(y)
is a bijection with inverse a,-1.

We shall be interested in sheaves with extra structure. A G-sheaf of (unital) rings is a
G-sheaf @ = (E, p, @) equipped with a unital ring structure on each stalk O, such that
the following axioms hold:

(SR1) +: E x, , E — E is continuous;

(SR2) : E xp , E — E is continuous;

(SR3) the unit section x > 1 is a continuous mapping §© — E;

(SR4) ay: O4() = O, (y) is a ring homomorphism for all y € g,

ITechnically, this is just a ring but convolution algebra fits better with terminology in operator algebras
and every ring is a Z-algebra
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Note that the zero section x — 0, is continuous and that the negation map is con-
tinuous (these are standard facts about sheaves of abelian groups, and hence rings, over
spaces, cf. [14]).

Given a G-sheaf of rings O = (E, p,a, +, -), next we recall the definition of the ring
of global sections of © with compact support, which we shall also call the convolution
algebra of G with coefficients in the sheaf of rings O. Let A(G, Q) be the set of all map-
pings f: G — E such that p o f = r, that is, f(y) € Oy forall y € M. Equip
A(S, O) with a binary operation by defining (f 4+ g)(y) = f(y) + g(y), which we refer
to as pointwise addition. With this operation, A(G, @) is an abelian group with respect to
pointwise addition with 0 as the identity and (— f)(y) = — f(y) for y € GV,

We define, as an abelian group, I'¢ (G, O) to be the subgroup generated by all mappings
f € A(G, O) such that there is a compact open bisection U with f|y continuous and
Slgany = 0. In this case, we say that f is supported on U. If U is a compact open
bisection and s: r (U) — E is any (continuous) section of p, then we can define an element
syv € T'ce(9, O), supported on U, by

s(r(y)), ify eU
0r @) else.

(sxv)y) = {

In the special case that s is the unit section x +— 1, over U, we denote s yy by simply yy.
In other words,

Ly, ify €U
) =1 "
Or(y), else.

Notice that if f € I'-(G, @) is supported on a compact open bisection U, then f =
syu where s = f o (r|y)~'. Thus T'.(G, @) can also be described as the abelian group
generated by all elements of the form syy where s: r(U) — E is a section, and U is a
compact open bisection.

A crucial property of elements of I';(G, @), and that we will use in our work, is that
they can only be non-zero on finitely many points of any fiber of d or r.

Proposition 2.1. Let f € T'.(G, Q) and x € G, Then there are only finitely many y €
d =1 (x) such that f(y) # 0 and, similarly, for r ' (x).

Finally, to make I; (G, ) into a ring, we define the convolution of elements of I, (G, 9)
as follows. If f,g € [':(5,0) and y € S then

frg) =Y f(Bap(gp)). Q.1)

Bo=y

It is proved in [19] that if f, g € Tc(9, O), then f * g € [':(G, @). In fact, it is shown
that if f is supported on U and g is supported on V', with U, V' compact open bisections,
then f * g is supported on U V. In the case that G is Hausdorff, it is shown in [19] that
I'.(G, O) consists precisely of those continuous functions f: G — E with po f =r
and compact support (i.e., the inverse image of the complement of the zero section is
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compact). Furthermore, in [19] it is shown how to build a sheaf of rings so that the above
construction yields the usual algebra of § over a unital ring R from [28]. This sheaf is
recalled below.

Example 2.2. Let R be any unital ring, which we view as a space with the discrete
topology. We define the constant sheaf of rings A(R) to be the G-sheaf of rings with
E = R x §© and with p: R x §©@ — G© the projection. The addition and multiplica-
tion are pointwise, that is, (r, x) + (r',x) = (r + r’, x) and (r, x)(+', x) = (rr’, x). The
mapping « is given by a(y)(r,d (y)) = (r,r(y)). Then I'.(G, A(R)) is the usual algebra
of G over R, from [28].

2.3. The disintegration theorem

A key result in [19] is the disintegration theorem, which generalizes results in [29] for
Steinberg algebras. In this subsection, we recall the theorem as well as the related con-
cepts.

Let § be an ample groupoid and O = (E, p, «) be a G-sheaf of rings. Put R =
I':(G, 0); it is a ring with local units. A (left) R-module M is unitary it RM = M.
We denote by R-mod the category of unitary (left) R-modules.

A G-sheaf of O-modules M = (F, q, B) is a G-sheaf such that each stalk M, has a
(unitary) left @,-module structure such that:

(SM1) addition +: F x4 4 F — F is continuous;
(SM2) the module action E x,, F — F is continuous;
(SM3) B, (rm) = ay,(r)By,(m) forallr € O4¢,) and m € Mg(y).
The following result is proved in [19] and will be used in our text.
Proposition 2.3. Let X be a Hausdorff space with a basis of compact open sets and let

A = (F, q) be a sheaf of abelian groups on X. Then, for each f € Ay, there is a section
s: X — F with compact support such that s(x) = f.

If M is a G-sheaf of (-modules, then we can look at the set M = I'¢ (9, M) of contin-
uous sections s: §©© — F with compact support. This is an abelian group with pointwise
operations. We define an R-module structure on it by putting, for f € Randm € M,

(fm)x) = > f)By(m(d(©))).
yer=1(x)

Proposition 2.4. The construction M +> T'¢(G, M) is a functor from the category of G-
sheaves of O-modules to the category of T'¢(G, ©)-mod.

A quasi-inverse for the functor above is constructed in [19]. We recall the main con-
cepts below.
Let M be a unitary R-module and x € G Let

Ny ={m e M | yym = 0 for some U C g compact open with x € U},
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and define M, := M/ N,. Furthermore, define

and ¢: F — G by g([m],) = x. Put a topology on F by taking as a basis all sets of the
form
D(m,U) = {[m]x | x € U},
where m € M and U € G© is compact open. To define the G-sheaf structure, for y € G,
put
By ([mlac)) = lrumlr),

where U is any compact open bisection containing y. Then 8: GV Xd,q F — F is well
defined, continuous, and turns

Sh(M) := (F.q.B)

into a G-sheaf. Moreover, Sh(M) is a G-sheaf of abelian groups with respect to the fiber-
wise addition
[m]x + [n]x = [m + n]x

(i.e., addition is fiberwise continuous and each B, is an additive homomorphism). To
define the @ ,-module structure on M, let r € 9,.. Choose a sectiont € I, (9(0), ) with
t(x) = r (using Proposition 2.3), and define r[m], = [tm],. Then Sh(M) is a G-sheaf of
(9-modules and, as proved in [19], we have that the construction M — Sh(M) is a functor,
as we make precise below.

Proposition 2.5. The construction M + Sh(M) is a functor from the category I'.(G, O)-
mod 7o the category of G-sheaves of O-modules.

Combining the last two propositions we get.

Theorem 2.6 (Disintegration theorem). The functors M +— Sh(M) and M +— T'(G, M)
provide an equivalence between the category I'c (G, O)-mod of unitary I'c (G, O)-modules
and the category of G-sheaves of O-modules.

It follows from the above that there are natural isomorphisms M = I'.(9, Sh(M)) and
M = Sh(I'c (G, M)).

Remark 2.7. As a consequence of Theorem 2.6, M = I'.(G, Sh(M)) for any unitary
module M and so we have an equality of annihilator ideals

Ann(M) = Ann (T (S, Sh(M))).
In particular, for every ideal 7 of I'¢ (G, @) we have

I = Ann (T¢(5.0)/1) = Ann (T¢(Sh(Tc(S. 9)/1))).
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2.4. Skew inverse semigroup rings

By a partial automorphism of a ring A, we mean a ring isomorphism ¢: I — J between
two-sided ideals 7, J of A. The collection of all partial automorphisms of A forms an
inverse monoid that we denote /4. If S is an inverse semigroup, then an action of S on A
is a homomorphism «: S — I4, usually written s — «. The domain of «/(s) is denoted
Dy« and the range is then Dg. We say that the action is non-degenerate if

Z D, = A.

ecE(S)

To ensure associativity of the skew inverse semigroup ring, we assume that each Dy is
a ring with local units (although weaker conditions suffice). Given an action « of S on a
ring A, the construction of the corresponding skew inverse semigroup ring is done in three
steps.

(1) First we consider the set

finite
i:{Zas&mseDs}g@Ds (2.2)

seS seS

where d, for s € S, is a formal symbol (and 065 = 0). We equip £ with compo-
nent-wise addition and with multiplication defined as the linear extension of the
rule

(as0s)(Dedr) = as (as* (as)bt)(gsz-

(2) Then, we consider the ideal
N = (ad, —abs | r,s € S,r <sanda € D,), 2.3)

i.e., N is the ideal of £ generated by all elements of the form ad, — ads, where
r <s and a € D,. It is shown in [3, Lemma 2.3], that these elements already
generate N as an additive group.

(3) Finally, we define the corresponding skew inverse semigroup ring, which we de-
note by A x S, as the quotient ring £/ N .

If S is a group, then the ideal N is the zero ideal and the multiplication simplifies to the
rule
ads - bé; = aas(b)ds:,

and so A x S is the familiar skew group ring. Notice also that the quotient of &£ by any
ideal yields a system, in the sense of [22, p. 2].

A key class of inverse semigroup actions is that of spectral actions. Recall from [19]
that an action « of an inverse semigroup S on A is called spectral if it is non-degenerate
and D, has a unit element 1, for each e € E(S), which is necessarily a central idempotent
of A. In the case of a spectral action, the central idempotents in the Boolean algebra
generated by the 1, are a set of local units for A.
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2.5. The interplay between groupoid convolution algebras with coefficients in a
sheaf of rings and skew inverse semigroup rings

It is shown in [19] that, under certain mild conditions, groupoid convolution algebras with
coefficients in a sheaf of rings can be realized as skew inverse semigroup rings and vice
versa. We recall this more precisely below.

We denote by G2 the set of all compact open bisections of G. It is an inverse semigroup
with operations given by

BC={bc€9|b€B, ceC, andd(b):r(c)}

and B* = {b~! | b € B).

Let O = (E, p, @) be a G-sheaf of rings. Put A = T, (9(0), ), which we view as the
ring of compactly supported continuous sections of @ over §(® with pointwise operations.
In [19] a spectral action of S = G¢ on A is defined. If U C GO ig open then we put
Oly = (p~'(U), +,-); it is a sheaf of rings on U. Then A(U) = T'.(U, O|y) can be
identified with the subring of A consisting of sections supported on U. For s € S, put
Ds; = A(r(s)). Note that since r(s) is compact open, D has an identity, the mapping
Xr(s)- We define an isomorphism &;: Dgx — Dj by

& () (r») = oy (f(d))

for y € s and f € Dg«. We then have the following (which is proved more generally for
inverse subsemigroups of G¢ satisfying certain conditions).

Theorem 2.8 ([19, Theorem 7.1]). Let O be a G-sheaf of rings on an ample groupoid G.
Then,
Te(§,0) = Te(5©, 0) x §°

as rings.

To obtain the converse characterization, we recall some key concepts first.

Given a Boolean action p of an inverse semigroup S on a space X, the groupoid of
germs § = § x X is defined as follows (see [28]). The unit space GO ig taken to be X
and

G ={(s,x) € Sx X | x € Dy=}/~

where (s, x) ~ (¢, y) if and only if x = y and there exists u < s,¢ with x € D,x. We
write [s, x] for the class of (s, x). The source and range maps are defined by d ([s, x]) = x
and r([s, x]) = ps(x), the product is defined by [s, p; (x)][t, x] = [st, x], and the inverse
is given by [s, x]! = [s*, ps(x)]. The topology on G is that of X, whereas a basis of
neighborhoods for GV is given by the sets (s, U), where U C D+ is open (compact open
if X is zero-dimensional), and (s, U) = {[s,x] | x € U}.

We also need to recall the generalized Stone space of a generalized Boolean algebra
B. A character of B is a non-zero Boolean algebra homomorphism A: B — {0, 1} to
the two-element Boolean algebra. The (generalized) Stone space of B is the space B of
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characters of B topologized by taking as a basis the sets
D@@) ={Ae B|A(a)=1}

witha € B.
Let o be a spectral action of an inverse semigroup S on a ring A. We want to define
a Boolean action of S on the Pierce spectrum Aof A (recall from [19] that the Pierce
spectrum of A4 is B, where B = E(Z(A))).
Fors € S, let
Dy ={AeA|r(ls) =1}

Notice that D s 1s compact open and can be identified with the Pierce spectrum of Dy.
Define @: Dy« — D by

as(A)(e) = A(O‘s* (elss*))
fore € E(Z(A)).

Let G = S x A be the corresponding groupoid of germs. It is ample as A has a basis of
compact open sets. We want to define a G-sheaf of O 4 rings such that A x S = ' (9, Q4).
For this, @4 is the sheaf of unital rings constructed as follows: The underlying space of
@4 is definedtobe E =[], ——=— A/I,, where

A€E(Z(A))
Iy ={aeA|3e e (1) withea = 0}
and the class a + I, is denoted [a];. If r € A and e € E(Z(A)), then we put

(r. D(€) = {Irlx | A € D(e)}.

The sets of the form (7, D(e)) form a basis for a topology on E and p: E — B, defined
by p([r]x) = A, maps (r, D(e)) homeomorphically to D(e), whence p is a local homeo-
morphism. The ring structures on the A/, turn Q4 = (E, p, +, -) into a sheaf of unital
rings on m). Each stalk of Oy4 is Q4,4 = A/, and the unit is the class [e]; where
A(e) = 1. We obtain the G-sheaf structure on @4 by putting

a[s,)t]([a])t) = [as(ls*sa)]&su) 24
for [s, A] € G,

Theorem 2.9 ([19, Theorem 9.5]). If S is an inverse semigroup with a spectral action «
onaring A, then A xS = T.(S x A, O4) with the S X A-sheaf structure on Q4 coming
from (2.4) and the usual sheaf of rings structure on Q4 over the Pierce spectrum A.

3. Induced modules

In this section, we describe the induction of modules from isotropy skew group rings for
groupoid algebras with coefficients in a sheaf, and we show how we can use induction to
study the ideals of this algebra. We fix an ample groupoid G and a G-sheaf of rings O.
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Given x € §©, we define Ly = {y € § | d(y) = x} and £, = Dyer, Ory) as a
direct sum of abelian groups. For y € Ly, 1, € £ represents the element that is 1, at
coordinate y and it is O, ;) at all other coordinates € L, with n # y. Since the isotropy
group G% of x acts on O, we can form the skew group ring

By =0, x93
which we call the isotropy skew group ring at x.

Proposition 3.1. The abelian group £ has a structure of free right By-module where
the right action is given by
aly -bé = aoy, (b)1,s 3.1

fory e Ly, a € Oppy, b € Ox and § € G, and extended in the natural way. Moreover,
if for each y € Orb(x), we choose ny, € G such that d(ny) = x and r(n,) =y, then
{1y, }yeom(x) is a basis for L.

Proof. We check the associativity of the right action, the other properties being straight-
forward. For that, consider y € Ly, a € Op(), b,c € Oy and §,n € G%. We have that

(aly -b8)-cn = aa,(b)lys-cn
aoy, (b)oy,s(c)lysy
aay (bas(c))lysy
=al, - bas(c)én
=al, - (bécn).

To prove the second part of the statement, for each y € Orb(x), we fix an element
ny € Gsuchthatd(n,) = x and r(n,) = y. In order to show that £, is free we consider
the abelian group homomorphism

d: L, — @ By 1,
y€O0rb(x)
given by
®(aly) = a'l,_(ly) (a)ﬂ,_(l,,))/lr(y), 3.2)

where 1, is the canonical vector for y € Orb(x), and )
B,-module structure. Observe that

yeor(x) Bx 1y has the natural right

— -1 — -1 —
an;(ly) (Cl) € (9(1(7],(},)) - (9)6 and d(nr(y)y) - r(nr(y)y) =X,

so that @ is indeed well defined. We now show that ® is a right By-module isomorphism.
Giveny € Ly,a € O,¢), b € O, and § € G}, we have that

D(aly - b8) = P(aay, (b)1ys)
=l (acty (0)) 7,5y V811 (r8)
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— -1
=y (a)ocn:(ly)y(b)r]r(y))/Slr(y)
-1
= (@), Yb31r ()
-1
= (Olnr—(1y) (a)r/r(y))’lr(y))b(g
= ®(al,)bs,

so that & is a right By-module homomorphism.
In order to build the inverse of ® we use the following identification as abelian groups,

P BlL,= P P o.s,.

y€O0rb(x) y€Orb(x) §€G%
We now define the abelian group homomorphism W : @y corb(x) Bxly = £x by
U(bsly) = ay,(b)1y,s,

where b € Oy, § € Gy and y € Orb(x). Here, 1,8 € Ly and oy, (b) € r(ny) = r(nyd) so
that W is well defined.
We now prove that W = ®~!. Given y € Ly and a € O, (y), we have that

-1
W(@(aly)) = ‘Ij(an;(ly) (a)ﬂr(y)l/lr(y)) = Uy (O‘n;(ly) (a))ln,(y)n;(ly)y = aly.
On the other hand, given b € Oy, § € G} and y € Orb(x), we have that

D(W(bS1y)) = D(ay, (b)lnyg)

— -1
=yt (e, (011,51 81rr,8)

= O‘;yl (“ny (b))”;lny&y
= bél,.

It follows that @ is a right B,-module isomorphism between £, and the free module
Dy com(x) Bx1y- Moreover, for each y € Orb(x), W(1,) = 1,, so that {1y, }com(x) is
basis for £. [ ]

Let x € §©. From now on we assume that, for each y € Orb(x), we have chosen
ny € G such that n, = x and, for y # x,

d(ny) =xandr(n,) = y. 3.3)

Proposition 3.2. The abelian group £, has a structure of T'c (G, O)-left module with left
action given by
fraly= > f(Bap(a)lgy. (34)
d(B)=r(y)
where [ € T¢(G,0), y € Lx and a € O, ). Moreover, with the By right action given by
equation (3.1), we have that £ is a I'c (G, O)-Bx-bimodule.
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Proof. By Proposition 2.1, the sum in (3.4) is finite. Also notice that f(8), ag(a) €
O, 8) = Or(8y), so that the expression in (3.4) is well defined. For the left-module proper-
ties, we prove the associativity, the other properties being immediate. For f, g € I (G, O),
vy € Ly and a € O, (), we have that

Fgap=7r-( Y sBrap@is)
d(B)=r(y)

= > ) fOes(gBas@)lspy
d(B)=r(y) d($)=r(B)

= > > fG)es(g(B))asp(@)lssy
d(B)=r(y) d(8)=r(B)

= Z Zf(S)ag(g(ﬂ))asﬁ(a)lsﬂy
d(&)=r(y) sp=¢

= Y (f*Qar(@)]g,
a)=r()
=(f xg)-aly.
We now check the associativity with respect to the left and right actions. Fix f €
I'e(5,0),y € Lx,a € O,), b € Ox and § € G%. Then,

(fatybs=( Y fBus@lp)-bs
d(B)=r(y)

S F(Bas@ag, B)lsys
d(B)=r(y)

Y. f(Bag(acy(b))1pys
dB)=r(y)
= [ (aay(b)lys) = f - (aly - bé). n
Remark 3.3. A sum such as in (3.4) can be decomposed using orbits. In general, for

x € G the sum Y 45, can be decomposed as Y, com(x) 2 where the last sum
isoverall y € Gsuchthatd(y) = x and r(y) = y.

yix—y’

In possession of the bimodule £,, we can define an induction functor
Indy : Bx-mod — T'.(G, @)-mod
defined by
Indy(M) = £, ®p, M.

The induction functor is exact as £ is a free right Bx-module. We can also use the basis
of Proposition 3.1 to decompose Ind, (M) as a direct sum. More specifically, for each
y € Orb(x) let ny, € G asin (3.3). Then, given M € By-mod, we have that

Ind,(M) = £, ®8, M= P 1, ®M. (3.5)
y€O0rb(x)
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We now compute how the I'c(G, @) action behaves with respect to the isomorphism
decomposition of Indy (M ). Given f € I'+(9, O), y € Orb(x) and m € M, we have that

frlpy@m= Y > fOlg, ®m

z€0rb(x) §:y—z

Z Z anznz_‘(f({))lnznz_lény ®m

z€O0rb(x) §:y—z

o> @ (f©O)n; ny -m. (3.6)

z€O0rb(x) &:y—>z

where the first equality follows from (3.4) and the decomposition of the set {8 € G |

d(B) =y} as U commnil €5 1d©) =y.r@) =z}

The following lemma follows immediately from equation (3.6).

Lemma 3.4. Let M be a B,-mod, Ind, (M) be the induced module, and for each y €
Orb(x) let n, €S as in (3.3). Then, for every f€I'c(G,O), we have that f € Ann(Ind, (M))
if, and only if, for every y, z € Orb(x), we have that

3wy (f©)n; " Eny € Ann(M).
Liy—>z

Now let M be a G-sheaf of @-modules. Our next goal is to describe Ann(T"; (G, M))
in terms of the annihilators of the induced modules. First, we have to give a structure of
left B,-module to M, for each x € G . Givenb € 0,, 8 € G% and m € My, we define

b8 - m = bBs(m). (3.7)

As before, we only prove the associativity of the left product. Suppose we are given as
well, ¢ € O, and n € G7, then

bs-(cn-m) =béd- (C,B,,(m))
= bBs(cBy(m))
= bag(c)Bsy(m)
= (bas(c)én) -m
= (bécn) - m.

The following generalizes [32, Theorem 5]. We adapt the proof there to accommodate
the extra structure.

Theorem 3.5. Let M be a G-sheaf of O-modules. Then,

Ann (FC(S,M)) = ﬂ Ann(Indx(Mx)).

xeg©

Consequently, every ideal of T'¢(G, O) is an intersection of annihilators of induced mod-
ules.
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Proof. Let f € Ann(T.(9, M)) and x € §©. In order to prove that f € Ann(Ind, (M )),
by Lemma 3.4, it suffices to show that for every y, z € Orb(x), we have that

3 a1 (F©O)n7 ' ¢ny € Ann(My).

Cy—>z

Let m € M. Then, by Proposition 2.3, there exists s € T (G, M) such that s(x) = m. Fix
y,z € Orb(x). By Proposition 2.1, [r ~'(z) N supp( f)| < oo, and since G(* is Hausdorff,
there exists a compact-open neighborhood U of y such that

Und(r~(z) Nsupp(f)) < {y}.

Now, let U, and U, be compact-open bisections such that ,, € U, and n, € U;. By replac-
ing U, with U U,, if necessary, we may assume that r (U,) C U . Since f € Ann(I'¢(G, M))
and the annihilator is an ideal, we have that y;—1 * f * yy, € Ann(I'c(§, M)), and there-
fore

0= ((xg=r * f*xu)8) () = > Gy * [ * xu,) By (s(d (). (3.8

yer~1(x)

Notice that, for each y € r~!(x)

oz * [ *20) W) = Y xum )y, (f2)) @y, (1, (v3)-

Y1V2V3=Y

We are interested in the non-zero terms of the above sum. For that, it is necessary that
y1 = n; !, since ;! is the sole element of U;! such that the range is x. Also, by the
properties of U and U,, it is necessary that d (y,) = y and hence y3 = n,,. It follows that

(u=r = f*0)0) = > a1 (f©Q). (3.9)
Vi;lyz__l)fzﬂy

By substituting (3.9) in (3.8) and making the appropriate change of variables, we get

0= a1 (f©)Byiey, () = D @, (fQ)nz " tny - m.
§iy—z §iy—>z
Since m was arbitrary, } ¢.,,_, , &)1 (f(©)nz'¢ny € Ann(My) as we wanted to prove.
Suppose now that f € Ann(Ind, (My)) for every x € . Given s € I'o(G, M), we
want to prove that fs = 0. For x € G, by Lemma 3.4, if y € Orb(x) and ny € Gisas
in (3.3) then, we have that

0= > o (fOM)n'y s

yix—>y

= Y a1 (f) By (5()

Yy x—>y

=B (X Sy (s)).

Vix—>)y
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and since ,3,7;1 is injective, we conclude that

Y fBy(s)) =0

yix—Yy
This implies that if we fix y € §(©,
fs= > > fWBy(sx) =0.

x€0rb(y) V:Xx—>y

and hence f € Ann(I'¢(9, M)).
The last part follows from Theorem 2.6 and Remark 2.7. |

4. Applications

4.1. Primitive ideals

In this section, we prove that every primitive ideal of I'¢ (G, @) is the annihilator of a single
induced representation. Recall that an ideal is (left) primitive if it is the annihilator of a
simple (left) module.

Theorem 4.1. Let G be an ample groupoid and O a G-sheaf of rings. If I is a primitive
ideal of T'¢(G, O), then there exists x € §© and M a left By-module such that I =
Ann(Ind, (M)).

Proof. By Theorem 3.5 and Remark 2.7, there exists M a G-sheaf of (9-modules such
that 7 = Ann(I'¢ (G, M)) = (), eg0 Ann(Indy (My)) and Tc (G, M) is a simple T (G, O)-
module. The latter implies that there exists x € G such that M, # 0. We take M = M,
with the left Bx-module structure given by (3.7). Clearly I € Ann(Ind,(M)).

Suppose now that I # Ann(Indy(M)) =: Jy. Then there exists s € ' (G, M) such
that J,s # 0. Since I'¢ (G, M) is simple and J,s is a non-trivial submodule, we have that
Jxs =T¢(G, M). Consider now m € M \ {0} and let ¢ € ' (G, M) be such that ¢ (x) =
(such ¢ exists by Proposition 2.3). Then there exists f € J suchthatz = f's, and therefore,

m=1(x)=fs(x)= Y > fWBy(s).
y€Orb(x) V:y—>Xx

On the other hand, since f € J, and for any y € Orb(x) we have ,Bn;l(s(y)) € My,
using (3.7) and Lemma 3.4 (and recalling that n, = x), we obtain that

0= fOMymy-Byi(sM) = D fBy(s().
yiy—x yiy—x

This way,
O#Fm= Y 0=0,

y€O0rb(x)
which is a contradiction. [
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4.2. Simple modules
We now prove that the induction of modules preserves simplicity.

Theorem 4.2. Let G be an ample groupoid, O a G-sheaf of rings and x € SO, If M is a
simple Byx-module, then Ind, (M) is a simple I'¢(G, O)-module.

Proof. For w € Ind, (M) \ {0}, we have to prove that I';(G, ©) - w = Indx(M). Due to
the decomposition given in (3.5), we can write w = Zle Ly, ® m;, where y; € Orb(x)
forall i, y; # y,; ifi # j, and m; € M \ {0} for all i. Since G is Hausdorff, we can
find U € G open set containing only y; among the y;. Using equation (3.6), we can
check that yy - w = 1;, ® my. Then, we may assume without loss of generality that
w = ly, ® m for some y € Orb(x) and some m € M \ {0}. Also, it is sufficient to prove
that given z € Orb(x) and m’ € M, there exists f € I'c(G, @) such that f - w =1,, @ m’.

We now fix z € Orb(x) and m’ € M. Since M is simple, there exists @ € By such
that a - m = m’. We can write a = Zle a;8;, where a; € Oy and §; € G for all i. For
eachi = 1,...,k, we take U; a compact-open bisection containing §; and s; € I'¢(G, Q)
such that s; (x) = a;, see Proposition 2.3. We also take compact-open bisections U, and
U, such that ny, € U, and n, € U, respectively. Define

f=Y " xuv. *siyu * Xuyt
i=1

Arguing similarly to what was done in the proof or Theorem 3.5 to prove equation (3.9),
starting from (3.6), we see that

folgem= > > 1, @a1(f©O), "ty -m

v€Orb(x) Z‘y—)v

Ly ®Z Z nz! XUZ *Si{U; * Xuy 1(5))712 é'r/y

i=1 ¢y—>z
§='728i77;1

nZ®Za (o (s: (r 3))))8i - m

= 1,12 ® Zai&- -m
i=1

=1, ®a-m=1, @m'. "

We now show that the module M in Theorem 4.1 above can be chosen to be simple
under some strong hypotheses on the rings By. Let J(S) denote the Jacobson radical
of aring S. A ring S is called a left max ring if each non-zero left S-module has a
maximal (proper) submodule. For example, any Artinian ring S is a left max ring. Indeed,
if M # 0, then J(S)M # M by nilpotency of the Jacobson radical. But M/J(S)M is



G. G. de Castro, D. Gongalves, and B. Steinberg 18

then a non-zero S/J(S)-module and every non-zero module over a semisimple ring is a
direct sum of simple modules and hence has a simple quotient. Thus M has a maximal
proper submodule. A result of Hamsher [20] says that if S is commutative, then S is a
left max ring if and only if J(S) is T -nilpotent (e.g., if J(S) is nilpotent) and S/J(S)
is von Neumann regular ring. We now prove an analog of the Effros—Hahn conjecture for
groupoid algebras with coefficients in a sheaf if all the isotropy skew group rings are left
max rings.

Theorem 4.3. Let G an ample groupoid and O a G-sheaf of rings, with the isotropy skew
group rings By, being left max rings for all x € G, Then the primitive ideals of T+ (S, Q)
are exactly the ideals of the form Ann(Indy (M), where M is a simple Byx-module.

Proof. By Theorem 4.2 it suffices to show that any primitive ideal / is of the form
Ann(Indy(M)) where M is a simple B,-module. By Theorem 2.6 we may assume that
our simple module with annihilator / is of the form I'¢ (G, M) for some G-sheaf M of
O-modules. Let x € G° with M, # 0. We already know from the proof of Theorem 4.1
that / = Ann(Ind,(My)). Let N be a maximal By-submodule of M, (which exists by
assumption on By) and let / = Ann(Ind, (M, /N)). Since M /N is simple, it suffices to
show that J = I. Clearly, / € J (by Lemma 3.4) since Ann(M,;,) € Ann(M,,/N). So it
suffices to show that J annihilates I'¢ (G, M).

Suppose that this is not the case. Then there exists s € ' (G, M) with Js # 0. Since J
is an ideal and I'¢ (G, M) is simple, we deduce Js = I'¢(G, M). Let m € M, \ N (using
that N is a proper submodule) and let ¢ € I'¢(G, M) with ¢(x) = m. Then t = fs with
f € J.Letus compute

m=1(x)= (X)) =Y > f@)By(sv)). (4.1)
vEQ, VIV>X

Letus fix v € Oy, fix y,: x — v and set y, = x. Then by the assumption f € J and
Lemma 3.4, we have (since -1 (s(v) € My)) that

DT FWBys) = > f(Byy, (Byz1s()) € N.
yiv—x yiv—>x
We deduce from (4.1) that m € N, which is a contradiction. It follows that J annihilates
I'e(G,M)andso I = J. [

A result of Park shows that if R is a unital ring and G is a group acting on R by
automorphisms, then the skew group ring R x G is Artinian if and only if R is Artinian
and G is finite, see [23,24]. This leads to the following corollary to Theorem 4.3.

Corollary 4.4. Let G be an ample groupoid with finite isotropy groups and let O be a G-
sheaf of Artinian rings. Then the primitive ideals of T'¢(G, Q) are precisely the annihilators
of modules induced from simple modules of isotropy skew group rings.

Proof. Under these hypotheses each isotropy skew group ring is Artinian and hence left
max. The result follows from Theorem 4.3. ]
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4.3. von Neumann regularity of T'. (G, @)

In this section, we prove that ', (9(0), 0) is von Neumann regular (a ring R is von Neu-
mann regular if @ € aRa for all a € R) if and only if O is a sheaf of fields. One interesting
consequence of this is that the zero section has closed image, which will be used in results
studying the algebraic properties of I'. (G, O).

To show that when O is a sheaf of fields the zero section is closed we need first a sheaf
theoretic result. Recall that R* denotes the group of units of a ring R.

Lemma 4.5. Let O be a G-sheaf of rings. Then,

o= J o;

xeG©)

is open and the inversion map on O is continuous.

Proof. Let r € OF with inverse r’. Then there are neighborhoods U, U’ of x in §° and
sections s:U — O, 5": U’ — @ with s(x) = r and s'(x) = r’. Without loss of generality, we
may assume that U = U’, or else we can replace them by U N U’. Since r'r = rr’ = 1y,
there is a neighborhood W of x with W C U such that (s" * s)|w = (s *xs')|w = yw and
sor e s(W) € O*. As s(W) is open we deduce @™ is open. Note that on s(W), inversion
is given by s” o p where p: @ — G is the projection. Thus inversion is continuous.  m

Corollary 4.6. Let O be a G-sheaf of fields. Then the image of the zero section is closed.

Proof. The complement of the image of the zero section is @ and so the result follows
from Lemma 4.5. L]

Lemma 4.5 is further employed in the subsequent characterization of the von Neumann
regularity of T'.(G©, ), as we see below. Recall that a unital ring R is indecomposable
if it has no central idempotents except 0 and 1. For example, fields and integral domains
are indecomposable. The special case of the following result for sheaves of rings on a
compact totally disconnected space can be found in [21, Proposition V.2.6].

Proposition 4.7. Let O be a G-sheaf of commutative rings such that each stalk is indecom-
posable. Then, T.(, 9) is von Neumann regular if and only if Ox is a field for all x € .

Proof. 1f O is a sheaf of fields and s € I', (9(0), ), then
U = supp(s) = s~' (0)

is compact open (as O™ is open by Lemma 4.5) and s: U — @*. By continuity of inver-
sion on O, we deduce that s': U — ©* given by s’(x) = s(x)~! is continuous and,
by construction, it has support U. Thus s’ € T, (9(0), O). Trivially, s * s’ x s = s and so
T, (9(0), 0) is von Neumann regular.

Conversely, suppose that T (G®, @) is von Neumann regular. Let O, # r € O,. Then
there exists s € ['.(3®, ©) with s(x) = r. Choose 5" € T(G©@, ©) with s % 5" x5 = 5.
Note that if ' = s’(x), then rr'r = r and so rr’ is a non-zero idempotent. But since O
is indecomposable, this implies rr’ = 1. Thus r € O}. ]
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Note that the Pierce sheaf associated to a commutative ring A is a sheaf of indecom-
posable commutative rings over the Pierce spectrum of A and hence the construction used
in [19] (see Section 2.5) to build a groupoid algebra with coefficients in a sheaf of ring
from a skew inverse semigroups ring A x S will produce a sheaf of fields when 4 is
commutative and von Neumann regular, see [26].

4.4. The centralizer of I'. (5, ©) in T (G, )

Maximal commutativity of I'.(G®, @) will play a key role in describing primitivity and
simplicity of I'¢(G, O). It is also a much-studied concept in the theory of partial skew
rings, see [3, 18]. Of course, @ should be a G-sheaf of commutative rings in order for
I, (9(0), ) to be commutative. In this section, we characterize (under suitable hypothe-
ses on O) the centralizer of T'.(3*, ©) in T'.(G, ©), denoted by Cr,(5.0)(Tc(5©?, 9)),
and give sufficient and necessary conditions for I, (9(0), ) to be maximal commutative.
We also get a generalized uniqueness theorem for T'. (G, @), similar to what is found for
Steinberg algebras in [7].

We begin with an important observation that is true for any G-sheaf of rings (not nec-
essarily commutative).

Proposition 4.8. Let G be an ample groupoid and O a G-sheaf of rings. If f € I'¢(9, Q)
centralizes To(G©, 9), then supp(f) € Is0(S). In particular, if G is Hausdorff and the
zero section has closed image, then f € T'.(Int(Iso(9)), 9).

Proof. If d(y) # r(y) then, by the Hausdorff property of G, there is a compact open
subset U of G with d (y) € U and r(y) ¢ U. Therefore,

f)=f*xuly) = v * f(y) =0.

Thus, f is supported on Iso(9). If, in addition, G is Hausdorff, then f is continuous and
hence, since the zero section is closed, supp( /) is open. Thus f € I';(Int(Iso(9)),9). =

We immediately obtain the following corollary.

Corollary 4.9. Let G be an effective Hausdor[f ample groupoid and let O be a sheaf of
commutative rings with the zero section closed. Then T, (9(0), 0) is a maximal commuta-
tive subring of T'¢(G, O9).

Remark 4.10. Taking @ as the constant sheaf of Example 2.2, the above corollary recov-
ers [30, Proposition 3.8].

We will impose a few extra conditions on the sheaf @ in order to obtain a characteri-
zation of the centralizer. The first concept we need to introduce is the following.

Definition 4.11. Let O be a G-sheaf of rings. We define ker @ = {y € Iso(9) | ay(a) =
a,Ya € Oq(,)}. Note that ker @ is a subgroupoid of Iso(9) and Int(ker @) is an ample
subgroupoid. Therefore, we can consider the ring I'; (Int(ker @), @), which can also be
described as the additive subgroup of T'¢ (9, ©) generated by s yy, where U is a compact-
open bisection contained in Int(ker 9).
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Lemma 4.12. Let G be an ample groupoid and O a G-sheaf of commutative rings. Then
I (Int(ker 0), 0) C {f € Tc(S,0) | supp(f) C ker O} € Cr,(5,0)(Tc (5, 0)).

If G is Hausdorff and the zero section has closed image, then the first inclusion is an
equality. Moreover, if O is G-sheaf of integral domains, then the second inclusion is an

equality.

Proof. The first inclusion is immediate. For the second inclusion, suppose first that f &
(S, 0) is such that supp( f) C ker @. Then, for g € ['-(5©, 9), we have that

Fegly) = {(J:(V)O‘y(g(d(l’)))a if y € supp(f).

, else,

0, else.

ox fm {g(r(y))arm (f@). ify € supp(f),

For y € supp(f) < ker O, we have that

FWay(g(d ) = Fg(d®) = g(r) f(¥) = g(r)arq) (f¥)).

and hence g * f = f * g. Since g was arbitrary, f* € Cr,(g,0)(I¢ (G©,0)).

When § is Hausdorff, an element f € I'¢(G, O) is continuous. If, moreover the zero
section has closed image, then supp( /) is an open subset of ker @, from which we get the
inclusion { f € I'¢(9, Q) | supp(f) € ker O} < I'.(Int(ker 9), 9).

Now, suppose that @ is G-sheaf of integral domains. For an element

f €Cr,.0) (T8, 0),

we claim that f is supported on ker (9. We already know that f is supported on Iso(G) by
Proposition 4.8. Suppose that y € Iso(G) and f(y) # 0. Putx =d(y) = r(y).Fora € O,
let s be a section in I'.(3(?, @) with s(x) = a (such a section exists by Proposition 2.3).
Then,

fWay(a) = fxs(y) =sx fy) =af(y).

Since Oy is an integral domain and f(y) # 0, we deduce that ay (a) = a. |

We now characterize maximal commutativity of Iz (G, ), without any assumption of
Hausdorffness in the groupoid.

Proposition 4.13. Let G be an ample groupoid and O a G-sheaf of commutative rings.
IfT.(S9, 0) is a maximal commutative subring of T (S, Q), then Int(ker @) = G©. If
moreover O is a G-sheaf of integral domains and

FC(Int(kerO),O) = {f e T'c(S,0) | supp(f) < ker(9},

then the converse is also true.



G. G. de Castro, D. Gongalves, and B. Steinberg 22

Proof. Suppose first that T'(5©, @) is maximal commutative and let U C ker @ be
compact open. We must show that U € G(®. We have that yy centralizes T'.(G®, 9)
by Lemma 4.12 and hence, by maximality, yy € I'; (9(0), ). Therefore, U C GO and
Int(ker ©) = G as required. To get the equality

I‘C(Int(ker@),@) = {f € I'.(G,0) | supp(f) < ker(9},

we observe that
(59, 0) C Te(Int(ker ©), 0) € {f € Te(S, 0) | supp(f) C ker O}

and apply Lemma 4.12.
The converse follows immediately from the hypothesis and Lemma 4.12. ]

Remark 4.14. Recall that when O is the constant sheaf A(R) of Example 2.2, I.(G, A(R))
is the usual groupoid algebra of [28] and T (S®, A(R)) is the so called diagonal sub-
algebra. In this case, we have that ker A(R) =Is0(G), and so the condition Int(ker A(R)) =
G says that G is effective. We conclude that T, (9(0), A(R)) is maximal commutative in
the usual groupoid algebra I (G, A(R)) if, and only if, § is effective and I'.(§©, A(R)) =
{f € Te(S. A(R)) | supp(f) < Iso(9)].

In the case of Hausdorff groupoids, and sheaves such that the zero section is closed,
the criteria given in Proposition 4.13 for maximal commutativity can be simplified, as we
show below.

Corollary 4.15. Let Gbe a Hausdorff ample groupoid and O a G-sheaf of integral domains
such that the zero section is closed (eg. O is a G-sheaf of fields). Then, Te(S©®, 9) is a
maximal commutative subring of T¢(S., ©) if and only if Int(ker O) = §©. In particular,
if G is effective, then T(S©), ©) is a maximal commutative subring.

Proof. When G is Hausdorff, an element f € I'.(G, O) is continuous. If, moreover the
zero section has closed image, then supp(f') is an open subset of ker 9, from which we
get the inclusion { f € ' (9, Q) | supp(f) S ker@} C I'.(Int(ker @), 0). By Lemma 4.12,
we then get that I'; (9(0), ) is maximal commutative if and only if

e(5©, 0) = I (Int(ker 9), 9).
But this is trivially equivalent to §© = Int(ker Q). |

Theorem 4.16 (Generalized uniqueness theorem). Let G be an ample groupoid and O a
S-sheaf of commutative rings. A ring homomorphism w : T'c(G, Q) — A is injective if and
only if]TlCFc(g’@)(pc(S(o)’@)) is injective.

Proof. The “only if” part is immediate. For the “if”” part, we notice that since - (G, O) is
a skew inverse semigroup ring by the results of Section 2.5, we can use the second part
of the proof of [3, Theorem 3.4] to show that if / is a non-zero ideal of ' (9, @), then
I N Cr.g,0)(T¢ (S©, 9)) # {0} from which the result follows. |
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In the Hausdorff case, we can use Lemma 4.12 and Corollary 4.15 to obtain the fol-
lowing.

Corollary 4.17. Let G be a Hausdorff ample groupoid and O a G-sheaf of integral domains
such that the zero section is closed (eg. O is a G-sheaf of fields). A ring homomorphism
7w Te(G, O) — A is injective if and only if 7|1, (ni(er 0),0) IS injective. If in addition
Int(ker O) = @ (eg. G is effective), 7 is injective if and only if 7|, (5, 0) IS injective.

4.5. Primitivity of I'. (G, O)

In this section, we give some necessary conditions and some sufficient conditions for
I'¢(G, O) to be left primitive. Under certain hypotheses on the sheaf, the condition will be
both necessary and sufficient. Recall that a ring is said to be left primitive if it has a faith-
ful simple left module. The following theorem generalizes a result of [30] for Steinberg
algebras.

Theorem 4.18. Let G be an ample groupoid and O a G-sheaf of rings.
(1) If T¢(G, O) is left primitive, then there is an orbit Orb(x) such that,
Jor f €Te(5,0), fla=1omxy) = 0implies f = 0.
(2) Suppose that there is an orbit Orb(x) with By left primitive and such that
Sla=1omxy) = 0implies f =0 for f € T¢(G,0). Then T'¢(§, O) is left primitive.

Proof. Let M be a faithful simple left I'; (G, @)-module. There exists a G-sheaf of (-
modules M such that M = T'.(G, M) by the Disintegration Theorem. By Theorem 4.1,
there exists x € G such that

{0} = Ann(M) = Ann (Indx(Mx)).

We claim that f|;-1 (o)) = 0 implies f = 0 for f € I'c(§, O). Indeed, f annihilates
£ sinceif d(y) = x and a € O, (), then

fral,= > f(Bepla)lg, =0 asr(y) € Orb(x).
dB)=r)

Thus f annihilates M. Since {0} = Ann(M ) = Ann(Ind, (My)), we conclude that f = 0.

For (2), let M be a faithful simple left B,-module and consider N = Ind, (M) the
induced module. That N is a simple left "¢ (G, @)-module follows from Theorem 4.2.

We now prove that N is faithful. For that, we fix f € [':(G, @) \ {0}. By assumption,
there exists y € supp( f') such that d (y) € Orb(x). We choose elements 7,, for y € Orb(x)
as per (3.3). Consider the following element of B, :

a= Z %l (f @) 1768 nawm-

&d(y)—>r(y)

and notice that a # 0, since the coefficient of U,_(ly))/ﬂd(y) is ot (f(y)), which is non-
r(y
zero. Since M is faithful, there exists m € M such thata - m # 0. By (3.6), the component
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of -1y 4() ® m corresponding to the coordinate given by 1, is

X b ® oyt (FO)TrgyEnae) - m = ln,, @ a-m #0.
&d(y)—r(y)

Hence f - 1;,, ® m # 0, which proves the faithfulness of N. (]

The first condition in Theorem 4.18 implies that if ' (G, Q) is left primitive, then G
has a dense orbit.

Corollary 4.19. Let G be an ample groupoid and O a G-sheaf of rings. If T'¢(G, O) is left
primitive, then there exists x € GO such that Orb(x) = GO,

Proof. Let Orb(x) be as in Theorem 4.18 (1). If @ # U is a compact open subset of G©,
then yy # 0 and so there exists y € Orb(x) with yy (y) # 0, thatis, y € U. We conclude
that Orb(x) is dense. |

Remark 4.20. Notice that, in the case of the constant sheaf (as in Example 2.2) the above
result generalizes [30, Proposition 4.9] to allow for usual groupoid algebras over possibly
non-commutative rings (as opposed to fields).

Corollary 4.21. Let G be a Hausdorff ample groupoid and O a G-sheaf of rings such that
the zero section has closed image. If there exists x € G such that Orb(x) = §© and B,
is left primitive, then T'¢ (G, O) is left primitive.

Proof. 1f0 # f € T'+(G, O) then, since f is continuous and the image of the zero section
is closed, supp f is open, whence d (supp 1) is open. By density of Orb(x), we conclude
there exists

y € d ' (Orb(x)) N supp(f).

The result now follows from Theorem 4.18 (2). ]

Next, we give necessary and sufficient conditions for I'¢ (G, @) to be left primitive in
the case that ( is a sheaf of fields and T (S, ©) is a maximal commutative subring.

Theorem 4.22. Suppose that O is a G-sheaf of fields and T (3, Q) is a maximal com-
mutative subring. Then T'¢(G, Q) is left primitive if and only if §9 has a dense orbit.

Proof. Corollary 4.19 shows that the condition is necessary. For the converse, let x have
a dense orbit, B, be as usual and let M be any simple B,-module (since B, is unital,
these exist). We verify that Indy (M) is a faithful left I'. (G, @)-module. It is simple by
Theorem 4.2.

Let / be the annihilator of Ind, (M). Recall from [19] that I'. (G, O) is a skew inverse
semigroup ring T.(5, ©) x S for an appropriate inverse semigroup S. By [3, Theo-
rem 3.4], since I', (9(0), 0) is maximal commutative, if / # 0, then there exists 0 # s €
I NT(S©, 0). Since s is continuous and the orbit of x is dense, 0 # s(y) for some
y € Orb(x). Let y: x — y and let U be a compact open bisection containing y. Then
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xu-1 *s* yuy € I NT(Q,0)and yy-1 * s * yy(x) = a,-1(s(y)) # 0. Thus without
loss of generality, we may assume that s(x) # 0. Since s(x) is a unit of By, s(x)m # 0
forallm € M \ {0}. Soif 0 # m € M, then

sx®@m=s(x)x ®m = xax(s(x)) ®m = xs(x) ®m = x @ s(x)m # 0,
contradicting that s € 1. Thus I = 0. This completes the proof. ]

Corollary 4.23. Let G be a Hausdorff ample groupoid and O a G-sheaf of fields. Assume
that Int(ker @) = GO, e.g., if G is effective. Then, T'+(S, O) is left primitive if and only if
SO has a dense orbit.

4.6. Semiprimitivity

Recall that a ring is semiprimitive if its Jacobson radical is zero. Equivalently, it is semi-
primitive if it has a faithful semisimple module. There are many open questions about the
semiprimitivity of group rings and skew group rings, in particular, it is still unknown if
a group algebra over a field of characteristic 0 is necessarily semiprimitive. So we shall
endeavor to understand things modulo this situation. The results of this section generalize
the semiprimitivity results for Steinberg algebras from [30].

Recall that a subset D € G© is invariant if for all y € G, d(y) € D if and only if
r(y) € D.If X is an invariant subset of GO then G|x will denote the restriction of G to X .

Theorem 4.24. Let G be an ample groupoid and O a G-sheaf of rings. Suppose that there
is an invariant subset X with By semiprimitive for some x in each orbit of X and such
that f|g)y = 0implies f = 0 for [ € I'c(G, Q). Then I'c (G, O) is semiprimitive.

Proof. Let T be a set of orbit representatives of X with B, semiprimitive for all x € T'.
Let M, be a faithful left semisimple By-module and consider N = @, 7 Ind,(My).
Then N is a semisimple left "¢ (G, @)-module by Theorem 4.2.

We now prove that N is faithful. For that, we fix f € T'.(G, Q) \ {0}. By assumption,
there exists y € G|y such that f(y) # 0. Say that d (y) € Orb(x) with x € T'. Again, we
use the notation of (3.3). Consider the following element of By :

@= Z %l (SO)nrnEnac),

s:d(y)—>r(y)

and notice that a # 0, since the coefficient of U:(l),)yﬁd(y) is anf(l)( f(y)), which is
r(y

non-zero. Since M, is faithful, there exists m € M, such that a - m # 0. By (3.6), the
component of f - 1y, ® m corresponding to the coordinate given by 1, is

Z l”r(y) ® a'l;(ly) (f(é‘))nr_(ly)é‘r’d()’) m = 171r(y) ®a-m 75 0.
&:d(y)—>r(y)

Hence f -1 ® m # 0, which proves the faithfulness of N. |

Nd (y)
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Corollary 4.25. Let G be a Hausorff ample groupoid and O a G-sheaf of rings such that
the zero section has closed image (e.g., a sheaf of fields). If there exists a dense invari-
ant subset X C GO itk B, semiprimitive for some x in each orbit, then T'¢(G, Q) is
semiprimitive.

Proof. 1f0 # f € T'+(G, O) then, since f is continuous and the image of the zero section
is closed, supp f is open, whence d (supp f) is open. By density of X, we conclude there
exists Y € Glx N supp(f). The result now follows from Theorem 4.24., |

Theorem 4.26. Suppose that O is a G-sheaf of fields and T (3, Q) is a maximal com-
mutative subring. Then I'c(G, O) is semiprimitive.

Proof. For x € G let B, be the skew group ring, as usual, and let M, be any simple
B,-module (since By is unital, these exist). We verify that M = @ . g Indx (My) is a
faithful semisimple left I'c (G, @)-module. It is semisimple by Theorem 4.2.

Let I be the annihilator of M. Recall from [19] that I'.(G, O) is a skew inverse
semigroup ring T(5), ©) x S for a suitably chosen inverse semigroup S. By [3, The-
orem 3.4], since I', (S(O), ) is maximal commutative, if I # 0, then there exists 0 #
s € I NT.(59, 0). Suppose that s(x) # 0 with x € G©. Since s(x) is a unit of By,
s(x)m # 0 forallm € My \ {0}. Soif 0 £ m € M,, then

sx®@m=s(x)x ®m = xax(s(x)) ®m = xs(x) @ m = x @ s(x)m # 0,
contradicting that s € I. Thus I = 0. This completes the proof. ]

Corollary 4.27. Let G be a Hausdorff ample groupoid and O a G-sheaf of fields. Assume
that Int(ker O) = GO e.g., if G is effective. Then Te(S, O) is semiprimitive.

4.7. Simplicity

Under the hypothesis that we have a sheaf of fields, we give necessary and sufficient
conditions for the ring I'. (G, O) to be simple.

We say that G is minimal if the only open invariant subsets of G are {0} and G . For
the action of §% on I',. (9(0), ), given in Section 2.5, we say that an ideal / of T, (9(0), 0)
is G%-invariant if for all s € §¢, @ (D} N I) C 1. Finally, T.(§®, ©) is §¢-simple if the
only G%-invariant ideals of I', (9(0), 0) are {0} and T, (9(0), 0O).

We aim to show that minimality is equivalent to §%-simplicity for a large class of G-
sheaves of commutative rings. To see that some hypothesis on O is needed, let § be any
ample groupoid and R a commutative ring that is not a field. Let @ be the constant sheaf
associated with R. Let I be a non-zero proper ideal in R. Then the set of functions in
) (9(0), ) that take values in / is a non-zero, proper G%-invariant ideal that contains no
characteristic function yy with V' # (. So minimality does not imply §%-simplicity in this
case.

In what follows, for G an ample groupoid, @ a G-sheaf of rings and U C 9(0) open,
we define the ideal Iy = {f € T(3®, ©) | supp f C U}.
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Lemma 4.28. Let G be an ample groupoid and O a G-sheaf of rings.
(1) IfU € SO is open, then Iy is generated by yy with V.C U compact-open.
() If I is an ideal of T.(S@,0) and U = J
such that yy € I. In particular, Iy C 1.

yver V. then Iy is generated by yv

Proof. (1) Let f € Iy. Since supp(f) is compact and G has a basis of compact opens,
we can find a compact open set V with supp(f) € V € U (choose a compact open neigh-
borhood of each x € supp(f) contained in U and take the union of a finite subcover).
Then f = fyy and so Iy is indeed generated by the yy with V' C U compact open.
(2) Notice that if V, W are such that yy, yw € I, then yyuw, xv\w and yynw are
all in 7. Also, if yy € I and W C V is compact open, then yw = ywyyv € I. It now
follows that if W C U is compact-open, then W C W; U --- U W, with W; such yw, €
foralli =1,...,n,sothat yw € I.It follows that Iy € I by (1). [

Lemma 4.29. Let G be an ample groupoid and O a G-sheaf of indecomposable rings.
Then there is a one-to-one correspondence between open subsets of §© and ideals of
(59, ) generated by idempotents, where if U G is open, we define the ideal

Iy ={f €Te(§.0) | supp f S U},

and if I € T(S©, 0) is an ideal generated by idempotents, we define Uy = UXVEI V.
In particular, if O is a G-sheaf of fields, then there is a bijection between open subsets of
5O and ideals of I'. (9(0), ).

Proof. If U € G© is open, then, by Lemma 4.28 (1), Iy is generated by the yy with
V C U compact open. Thus Iy is generated by idempotents and clearly U = | J yely V
since G(© has a basis of compact opens.

Conversely, suppose that [ is an ideal generated by idempotents. Since @ is a sheaf
of indecomposable rings, the idempotents of I'. (9(0), ) are the characteristic functions
xv with V' € G© compact open. It now follows that I < Iy where U = | 1 V.By
Lemma 4.28 (2), we have the reverse inclusion Iyy C 1.

The final statement follows because if @ is a G-sheaf of fields, then I, (9(0), @) is von
Neumann regular by Proposition 4.7 and hence every ideal is generated by idempotents
(since if aba = a, then ba and a generate the same ideal and ba is idempotent). |

XVE

Proposition 4.30. Let G be an ample groupoid and O a G-sheaf of rings such that each
non-zero ideal I of T, (9(0), O) contains a characteristic function yy with@ # V C g
compact open. Then the groupoid G is minimal if and only if Te(5©, ©) is G¢-simple.

Proof. First, suppose that G is minimal. Let [ be a non-zero G%-invariant ideal and let
U = UXVGI V. Then by Lemma 4.28 (2), we have that Iy is generated by those yy in
I and hence Iy C I. Also, by hypothesis, Iy # 0 and so U # @. We claim that U is
G%-invariant. Indeed, if x € U and y: x — y, then by definition there is yy € I with
x € V.Choose W € G% with y € W. Then aw (xv) = xwyw-1 = XwXv Xw-1 isin [
andy € WV W1, Thus y € U and so U is invariant. We conclude that U = G and so
I.(S®, 0) = Iy C I, as required.
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Conversely, suppose that T (3, 9) is G%-minimal. Let U be a non-empty open
invariant subset of G . Then we claim Iy is G%-invariant. It suffices to show that if
W is a compact open bisection and V' C U is compact open, then dw (xv) € Iy, as the
xv with V C U generate Iy by Lemma 4.28 (1). But, as before, dw (xv) = ywyw-1 and
wWVvw-lcu by invariance. Thus &w (xy) € Iy. We conclude that Iy = FC(S(O), 0),
as Iy #0,andso U = GO, n

We now specialize the above results. Recall that a commutative ring R with identity is
local if the non-invertible elements of R form an ideal mt, which is necessarily the unique
maximal ideal of R. Every field is local and every local ring is indecomposable.

A sheaf of fields is a sheaf of local rings. Another example is the following: if X is
a locally compact, totally disconnected space and @ is the sheaf of germs of continuous
complex (or real) valued functions on X, then @ is a sheaf of local rings. The maximal
ideal m, of O, consists of those germs of functions that vanish at x. The global sections
correspond exactly to continuous functions f on X; the corresponding section sends x to
the germ of f at x. Thus the section corresponding to f vanishes at x € X if and only if
f(x) = 0 and so only the zero section is non-invertible at every point of X . This motivates
the following extension of [3, Proposition 5.4].

Corollary 4.31. Let G be an ample groupoid and O a G-sheaf of rings such that every
non-zero section s € I'; (9(0), O) is invertible at some x € GO Then, the groupoid G is
minimal if and only if T (@, ©) is G¢-simple. In particular, the statement of the corollary
is true if O is a sheaf of fields.

Proof. Let I be a non-zero ideal of I'.(§®, @) and 0 # s € I. Then by hypothesis, there
is x € G guch that s(x) € OF and hence, since @™ is open by Lemma 4.5, we conclude
there is a compact open neighborhood W of x such that s(W) € (O*. Since inversion is
continuous on @* by Lemma 4.5, there is a section ¢ defined on W with #(y) = s(y)~!
forall y € W.Thent € FC(Q(O), 0O), yw = st € [ and W # @. The result now follows
from Proposition 4.30.

The final statement follows because if @ is a sheaf of fields, then s(x) # 0 implies
s(x) is invertible. |

We remark that if O is a G-sheaf of commutative local rings, then the hypotheses of
Proposition 4.30 are equivalent to the hypotheses of Corollary 4.31. Indeed, the proof of
Corollary 4.31 provides one implication. On the other hand, for a G-sheaf of local rings,
the sections s € I, (9(0), ) that are nowhere invertible form an ideal that contains no
non-zero characteristic function. Thus if the hypotheses of Proposition 4.30 apply, then
there are no non-zero nowhere invertible sections.

Theorem 4.32. Let G be an ample groupoid and O a G-sheaf of fields. The following are
equivalent:

(1) Tc(S, O9) is simple;

(2) Te(S©, ) is G%-simple and a maximal commutative subring of Te(S, O);
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(3) G is minimal, Int(ker Q) = 5O gnd
T (Int(ker ©), ©) = {f € T'c(S, 0) | supp(f) < ker O}.

If moreover, G is Hausdorff, the above items are also equivalent to:

(4) G is minimal and Int(ker ©) = G©.

Proof. The equivalence between (1) and (2) is given by [3, Theorem 3.7]. The equivalence
between (2) and (3) follows from Propositions 4.13 and 4.31. In the Hausdorff case, the
equivalence between (2) and (4) is due to Corollary 4.15 and Proposition 4.31. ]

5. Applications to topological dynamics

Motivated by our results on primitivity and semiprimitivity, described in Corollary 4.23
and Theorem 4.26, in this section, we characterize the existence of a dense orbit in an
action of an inverse semigroup on a topological space in terms of primitivity of the asso-
ciated algebra. We will also show that the algebras associated with effective actions are
always semiprimitive.

An important class of actions is formed by topologically free” actions [5,11,17,18,30].
We recall the definition, in the context of inverse semigroup actions, below.

Definition 5.1 ([16, Definition 4.1]). Let 0 = ({Xs}ses, {0s}ses) be an action of an
inverse semigroup S on a locally compact Hausdorff space X by partial homeomorphisms.
We say that 0 is topologically free if, and only if, the interior of the set {x € X+ | O5(x) =
x} is equal to

{x € X« | thereis e € E(S) such thate < s and x € X},

foralls € S.

We will see below that the groupoid of germs associated with an inverse semigroup
action is the key object connecting properties of the action with properties of the associated
algebras. We refer the reader to the second paragraph below Theorem 2.8, or to [11, Sec-
tion 3], for the definition of the groupoid of germs.

The following is proved in [16, Proposition 4.7], [30, Proposition 5.6] and [11, Propo-
sition 7.3].

Proposition 5.2. Let 6 be an action of the inverse semigroup S on the topological space
X. Then, 8 is topologically free if, and only if, the corresponding groupoid of germs S x X
is effective.

2The terminology “effective” is used in [11] but the more usual meaning of effective action is faithful
and, indeed, the origin of the term “effective groupoid” is that G is effective if and only if the action of the
inverse semigroup of open bisections on GO js faithful.
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Proposition 5.3. Given an action 6 of the inverse semigroup S on the topological space X,
the groupoid of germs S X X has a dense orbit if and only if 0 has a dense orbit.

Proof. This is immediate, since the unit space of S x X is identified with X, and the
groupoid orbit of a point x € X is equal to the orbit of x under the action of S, as shown
in [30, Proposition 5.4]. [

Remark 5.4. If X is locally compact, Hausdorff and second countable, having a dense
orbit is equivalent to topological transitivity of the action, see for example [31, Lemma 3.4]
(or for a special case [2, Theorem 4.1]).

Next, we recall how to associate an algebra to a topological inverse semigroup action.
Let R be a unital and commutative ring, and 8 = ({0s}ses, {Xs}ses) be an action of an
inverse semigroup S on a locally compact, Hausdorff, zero-dimensional space X (see [5,
11] for details on actions of inverse semigroups). There is a corresponding dual action
(see [11]) & = ({os}ses, {Ds}ses) of the semigroup S on the R-algebra £.(X) of all
locally constant, compactly supported, R-valued functions on X where, for each s € S,
o is the isomorphism from Dg+ = £L.(X;+) onto Dy = £.(X;) given by

fobg(x) ifxe X,

as(f)(x) = {0 .

By [11, Theorem 5.10], the skew inverse semigroup ring, £.(X) x S, associated to
the action « above, is isomorphic to the usual groupoid algebra, denoted by R(S x X),
over the groupoid of germs S x X . Recall from Example 2.2 that R(S x X)) is isomorphic
to [ (S x X, A(R)), where A(R) is the constant sheaf over S x X. More generally, we
can consider a S X X-sheaf of rings (@, which includes the example above as well as the
S x A-sheaf 94 coming from a spectral action of an inverse semigroup S on a unital ring
A as in Theorem 2.9.

We will use the results developed in Section 4 to relate algebraic properties of the ring
I':(S x X, O) and topological properties of the action of S on X. When the groupoid
of germs S x X is not Hausdorff, our results depend on the maximal commutativity of
I ((S x X)© 9). As we showed in Corollary 4.15, when S x X is Hausdorff this con-
dition is simplified and, in particular, if @ is topologically free then T ((S x X)©@, 9) is
maximal commutative. For sufficient conditions for the groupoid of germs to be Haus-
dorft, see [11, Proposition 3.20] and [16, Theorem 3.15] for example.

Proposition 5.5. Let 0 = ({Os}ses, {Xs}ses) be a action of an inverse semigroup S on
a locally compact, Hausdorff, zero-dimensional space X, and let O be a S X X -sheaf of
rings. If T (S x X, O) is left primitive then 0 has a dense orbit.

Proof. By Corollary 4.19 the groupoid of germs S x X has a dense orbit. The result now
follows from Proposition 5.3. ]

In the case of a sheaf of fields and Tz ((S x X)©, ©) maximal commutative we have
a converse of the above result.
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Theorem 5.6. Let 0 = ({0s}ses, {Xs}ses) be an action of an inverse semigroup S on a
locally compact, Hausdorff, zero-dimensional space X, and let O be a S x X-sheaf of
fields. Suppose that Te((S x X)©, 0) is maximal commutative. Then 6 has a dense orbit
if, and only if, T'c (S X X, O) is left primitive.

Proof. This follows from the Theorem 4.22 and Proposition 5.3. ]

If S x X is Hausdorff and the action is topologically free, then we do not need the
assumption that T ((S x X)©@, 9) is maximal commutative, as we see below.

Corollary 5.7. Let 0 = ({0s}ses,{Xs}ses) be a topologically free action of an inverse
semigroup S on a locally compact, Hausdorff, zero-dimensional space X, and let O be
a S x X-sheaf of fields. If S x X is Hausdorff, then 0 has a dense orbit if, and only if,
I'.(S x X, 0) is left primitive.

Proof. This follows from Corollary 4.23 and Proposition 5.3. ]

Remark 5.8. If R is a field then, taking @ = A(R) in the corollary above, we obtain that
an action 6 on X, whose groupoid of germs is Hausdorff, has a dense orbit if, and only if,
£c(X) xS is left primitive.

Remark 5.9. Since I'. (S x X, A(R)) coincides with the groupoid algebra of [28], the
above corollary can also be obtained using [30, Theorem 4.10].

Next, we observe that for a sheaf of fields and . ((S x X)©, @) maximal commuta-
tive, the algebra ', (S x X, ) is always semiprimitive.

Proposition 5.10. Let 6 = ({Os}ses,{Xs}ses) be an action of an inverse semigroup S on
a locally compact, Hausdorff, zero-dimensional space X, and let O be a S x X -sheaf of
fields. If T ((S x X)© ., 0) is maximal commutative, then T (S x X, ©) is semiprimitive.

Proof. This follows Theorem 4.26. ]

As before, if S x X is Hausdorff and the action is topologically free, then we do not
need the assumption that T ((S x X)©, ) is maximal commutative.

Proposition 5.11. Let 0 = ({0s}ses,{Xs}ses) be a topologically free action of an inverse
semigroup S on a locally compact, Hausdorff, zero-dimensional space X, and let O be a
S X X-sheaf of fields. If S x X is Hausdorff, Then T'c(S X X, O) is semiprimitive.

Proof. This follows directly from Proposition 5.2 and Corollary 4.27. ]

Finally, we show that Theorem 4.32 can be used to describe the minimality of a topo-
logically free topological action in terms of the simplicity of the associated algebras. In
particular, the theorem below should be compared with [3, Corollaries 4.19 and 4.20].

Theorem 5.12. Let 0 = ({0s}ses, {Xs}ses) be a topologically free action of an inverse
semigroup S on a locally compact, Hausdorf{f, zero-dimensional space X, and let O be a
S x X -sheaf of fields. If S x X is Hausdorff, then 6 is minimal if, and only if, T. (S x X, Q)
is simple.
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Proof. By Proposition 5.2, the groupoid of germs S x X is effective. Hence Int(ker O) =
SxX ) and the result follows from Theorem 4.32. ]

6. Complex groupoid algebras

Let G be an ample groupoid. We let C(9) be the usual ring used to build C*(G), see [10,
25]. Since G is ample, C.(9) is the span of functions f : § — C for which there exists
a compact-open bisection U such that supp(f) € U and the restriction f|y is continu-
ous, where C has the usual topology. Our goal is to prove that C.(G), with the convolution
product, is a groupoid ring with coefficients in a §-sheaf. In the Hausdorff case, we explic-
itly build a spectral action (recall the definition of a spectral action from the paragraph
above Section 2.5) and show that C,(9) is isomorphic to the skew inverse semigroup ring
of this action, so that we can apply Theorem 2.9. In the general setting, we build a §-sheaf
of rings.

6.1. The Hausdorff case

Let A := C.(SG©) be the ring of complex valued continuous functions with compact sup-
port and G¢ be the inverse semigroup of compact-open bisections of G (see Section 2.5).
For each U € G%, let Dy = {f € C.(S©®) : supp(f) C r(U)}. Define a spectral action
of 9% on Aby ay : Dy-1 — Dy, where ay (f)(r(y)) = f(d(y)) and oy (f) vanishes
outside r (U). We then have the following.

Proposition 6.1. With the above conditions, suppose that G is Hausdorff. Then C.(G) is
isomorphic as a ring to A x G%.

Proof. We first build a covariant system for (G4, A,«). The map 6 : A — C.(9) is the usual
inclusion of étale groupoid algebras. The map ¢ : §¢ — C.(9) is given by ¢(U) = 1y.
A straightforward computation using the convolution product shows that (C.(9), 6, ¢) is
a covariant system for (5, A, @). By [19, Theorem 3.5], there is a ring homomorphism
7w AxG? — C.(9) such that w(ady) = 0(a) * o(U) forall U € §% and a € Dy.

To prove that  is an isomorphism, it suffices to prove that 7 admits an inverse. Notice
that any element /' € C.(9) can be written as

=Y fu.
i=1

where Uy, ..., U, are pairwise disjoint compact-open bisections such that, for each i =
1,...,n,supp(fy;) € U; and the restriction fy, to U; is continuous using that G is Haus-
dorff. We want to build a map ¢ : C.(9) — A x G%. For this, given f € C.(9) and a
decomposition as above, we set

V()= fu % 1y-1u;.

i=1
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We have to prove that v is well defined. The general case follows from the particular case
that supp( f) € U, where U is a compact-open bisection with U = [ J/_; U;. In this case,
by the definition of A x G4, we have that

Y fuix lyidy, = ) fu x lu-1du = fx 1g-1du.

i=1 i=1

We now prove that ¥ = 7!, First, given f € C.(9) and a decomposition as above

T(W () = D 0(fv; ¥ ly-1) x0Gv) = Y fu, ¥ 1y * ly, = f.

i=1 i=1

Observing that ¥ is a group homomorphism, to show that v is a left-inverse for 7, it is
enough to consider an element ady;, where a € Dy . In this case,

V(m(ady)) = ¥(a*xly) =axly x ly-18y = ady.

1

Hence, v = 7™, concluding the proof. ]

6.2. The general case

With the previous notation, let us build a G-sheaf @ as follows. We let A = C, (9(0)) and
O = A x §©/ ~ where the equivalence relation is given by (a, x) ~ (a’,x’) if x = x’
and there exists an open neighborhood U of x such that a|y = @’|y. The topology on O
has as basis the sets

D(a,U) = {[a.x]: x € U},

where a € A and U is a compact-open set of G, The map p : @ — G© is defined as
p([a, x]) = x, which is a local homeomorphism by the definition of the topology on .
The ring structure on each stalk is the natural one, namely [a, x] + [b, x] := [a + b, x] and
[a,x][b.x] = [ab,x] fora,b € Aand x € G Notice that a net {[a;, x3]}1ea converges
to [a, x] in O if, and only if, for every open neighborhood U of x, there exists Ao such
that x, € U and [a,, x;] = [a, x;] for all A > A¢. With this, it is straightforward to check
that conditions (SR1) and (SR2) as in Section 2.2 are satisfied. The continuity of the unit
section is immediate from the definition of the topology on O.
The map o : § xg,, O — O is given by

ay([a.d(y)]) =[acdo(rlv)™ r ()],

where U is a compact bisection containing y. Since U is a bisection, the above def-
inition does not depend on a. Also, since the intersection of open bisections is again
an open bisection, the definition does not depend on U. To prove that « is continuous,
let {(yx.[axr, d(y2)])}ren be a net converging to (y, [a.d(y)]) in G xq,, O. Fix U a
compact-open bisection containing y, and let V be a compact-open subset of G con-
taining r (y) and such that V' C r(U). Using that r is continuous, and the description of
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convergence in @ given above, we find A such that for all A > ¢, we have that y, € U,
[ax,d(yy)] = [a,d(y))] and r(yy) € V. Then, for A > A, we have that

Ay, ([al’ d(Vl)]) = Qy, ([a,d(y;t)])
=[aodo(rlU) . r(yp)] € D(aodo(rlU)~"V).

Varying V as above, we obtain a neighborhood basis of [z od o (r|U)~!, r (y)], from where
we conclude that « is continuous. Conditions (S1), (S2), and (SR4) of Section 2.2 are easy
to check. We prove (S3). Let 8, y € G be such that d (8) =r (y) and let [a, d (y)] € 9. Also,
let U and V be open bisections containing 8 and y, respectively. We may assume, without
loss of generality, that d (U) = r (V). Then,

agy([a.d()]) =[aod o(rluy)™.r(By)]
=[aodo(rly) ™ odo(rly)".r(p)]
=ap([acdo(r|y)™,d(B)])
= ag(ay([a.d()])).

Theorem 6.2. Let G be an ample groupoid and O the G-sheaf constructed above. Then
I'c (G, O) and C.(G) are isomorphic as rings.

Proof. First, let f : § — O be such that p o f = r and there exists U compact-open
bisection of G such that f'|y is continuous and f'|g\y = 0. Define ¢ : § — C by ¢r(y) =
0,ify ¢U,and ¢r(y) = a(r(y)),if y €U and f(y) = [a,r(y)]. Since f |y is continuous,
if y € U and f(y) = [a, r(y)], then there exists an open set V such that y € V C U and
f(m) = [a, r(n)] for all n € V. This implies that ¢¢ |y is also continuous, and therefore
@r € Cc(9). Due to the ring structure on each stalk, we can define a group homomorphism
®:T¢(G,0) = C(S) such that (f) = ¢y, for [ a generator of I'.(G, O) as above.

On the other hand, given u € C.(9) such that there exists U compact-open bisection
such that u|y is continuous and supp(u) C U, we can define a,, € C.(3®) by ay, (x) = 0 if
x ¢r(U)anday(x) =u((r|y)~'(x))if x € r(U). Then the function v, : G — © given by
Yu(y) =0ify ¢ U, and ¥, (y) = [ay, ¥ (y)] is such that yr, |y is continuous and therefore
Yy € T'e(G, ©). Again, we can build a group homomorphism ¥ : C.(9) — T'(G, O).
Straightforward computations show that ¥ = &1,

It remains to prove that the above group isomorphism is also a ring isomorphism. We
prove that W is multiplicative. Since the maps are already group homomorphisms, due to
distributivity, it is enough to consider u, v € C.(G) such that there exist U, V' compact-
open bisections such that supp(#) € U, supp(v) € V and u|y and v|y are continuous.
Notice that in this case supp(u * v) C UV, u * v|yy is continuous and for y = Bp, where
B €U and p € V, we have that (u x v)(y) = u(B)v(p). Keeping the notation of the above
paragraphs, we have that

[au*v,r(ﬂ)], ify=BpwithelU, yeV
0, otherwise.

Yusw (y) = {
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On the other hand,

[au,r(ﬂ)]aﬁ([av,r(p)]), ify=BpwithgeU, yeV
0, otherwise.

(Yu x ) (y) = {

Now, if y = Bp, with B € U and p € V, then
[au, r(B)]ag ([av, r(p)]) = [au, r(B)][av o d o (rlv) ™", r(B)]
= [au(avod o (rlv)™").r(B)].
Notice that if x ¢ r(UV), then
uxn(¥) = 0 = ay(x)(ay o d o (rly)™")(x).
And if x = r(y), where y = Bp, with B € U and p € V, then

Ayxy (X) = (u % v)(y)
=u(B)v(p)
= au(x)ay(r(p))
= au(x)ay(d (B))
= ay(x)(ay o d o (rly) ") (x).

It follows that vY,+, = ¥, * ¥, and hence the multiplicativity of W is proved. [
We finish by characterizing simplicity of C.(9)

Lemma 6.3. Let G be an ample groupoid and O the G-sheaf constructed above. Then,
Int(ker(Q)) = G if and only if  is effective.

Proof. That § effective implies Int(ker(0Q)) = G© holds for any G-sheaf of rings. For the
other implication, let y € Int(Iso(SG)) be such that there exists a compact-open bisection
U with y € U C Iso(9). Observe that, in this case, d o (r|U)_1 is the identity map on
r(U).Leta € C.(9) and p € U. Then,

wo([a.d(p)])) = [aod o (rlp) " .r(p)] = [a.d(p)]

so that p € ker(9). Hence U C ker(O) and y € Int(ker(©9)) = . It follows that § is
effective. u

Theorem 6.4. Let G be an ample Hausdorff groupoid. Then, C.(9) is simple if and only
if G is minimal and effective.

Proof. Note that the equivalence of (1) and (2) in Theorem 4.32 holds for any G-sheaf
because it comes from [3, Theorem 3.7]. Let O be the sheaf constructed above and con-
sider the isomorphism of Theorem 6.2. Observe that @ is a sheaf of commutative rings
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that satisfies the hypothesis that every non-zero section is invertible at some point. By
Corollary 4.31, we have that C, (9(0)) is G%-simple if and only if G is minimal. If G is
effective, then C.(5(?) is maximal commutative by Corollary 4.9. On the other hand if
C. (9(0)) is maximal commutative, then G is effective by Proposition 4.13 and Lemma 6.3.
Hence, we get that C,(9) is simple if and only if G is minimal and effective. n

Example 6.5 (Graph algebras). Let E be a graph. By means of the graph groupoid G, it
was shown in [8] that the Leavitt path algebra Lc (E) is dense in the C*-algebra C*(E).
Observe that the algebra C.(Gg) is between Lc (E) and C*(E). Since G is Hausdorff,
using Theorem 6.4 and the results of [6], we obtain that the following are equivalent

(1) Lc(E) is simple;
(2) C*(E) is simple;
(3) C¢(SEk) is simple.

6.3. The algebra of continuous functions, with compact support, on the
transformation groupoid

In this subsection, X is always a Hausdorff, locally compact, totally disconnected topo-
logical space, and C.(X) denotes the algebra of all continuous, compactly supported,
R-valued functions on X (where R stands for either the real numbers or the complex
numbers), with point-wise addition and multiplication.

It is proved in [5] that a partial skew group ring of the form £¢(X) x G (where
£c(X) stands for the locally constant functions on X) can be seen as the Steinberg
algebra associated with the transformation groupoid G x X. Next, we argue that an anal-
ogous result holds when we replace £¢ (X) with C.(X) and the Steinberg algebra with
C.(G x X). In fact, the outline of the proof is the same as the one of the proof given
in [5, Theorem 3.2], and so we will refrain from presenting a whole proof, and instead
will only point to the main differences between the two settings.

For f € C.(X) we define the support of f by

supp(f) = {x € Xf(x) # 0}.

Notice that when dealing with a function f in £¢ (X), the set {x € Xf(x) # 0} is already
closed and so it is not necessary to take closure in the definition of support. This is one of
the main differences between the C.(X) and £¢ (X) cases.

Now, let 0 = ({ X }geG, {0 }gcc) be a partial action of a discrete group G on X, such
that X, is clopen for every g in G. Such action induces an action in the algebra level, as
done in [4, 13]: For each g in G, consider the ideal

Dg :={f € Cc(X): f vanisheson X \ Xg} in C.(X),

and define ag : Dg-1 — Dg by setting ag (f)= f o 0,1, forall f € Dg—1. Then the col-
lection

® = ({Dg}gEG, {ag}gec) 6.1)
is an algebraic partial action of G on C.(X).
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Associated with the above partial action we consider the partial skew group ring
C.(X) x G. We also associate to the action 6 an étale groupoid, denoted by G x X,
and known as the transformation groupoid (see [1]). Let

Gx X :={(t.x):t€Gandx € X,}.
The inverse of (#,x) € G x X is

t.x)"' =" 0,-1(x)).

So, the range and source maps 7 : G x X — (G x X)©@ ands: G x X — (G x X)© are
given by r(¢,x) = (1,x), and s(¢, x) = (1, ;-1 (x)) (where 1 denotes the group unit).

From the above, we have that (s, y), (¢, x) € G x X then (s, y), (¢, x) is a composable
pair if, and only if, ;-1 (y) = x. In this case, we have

(s, ). x) = (s, y).

Finally, we equip G x X with the topology inherited from the product topology on G x X.
We now state the key result in this subsection.

Theorem 6.6. Let 8 = ({Xg}geG.{0e}eeG) be a partial action of a discrete group G
over a locally compact, Hausdorff, totally disconnected topological space X, such that
each Xg is clopen for all g. Let ({Dg}geG . {0tg }geG) be the corresponding partial action
(as defined above) and G x X be the transformation groupoid associate with 0. Then,
C:(X) x G and C.(G x X) are isomorphic as R-algebras.

Proof. The proof is analogous to the proof of [5, Theorem 3.2]. One should only take into
account that for a general continuous function the set of points where the function does
not vanish does not need be closed. ]
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