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Abstract. A Kerr–de Sitter black hole is a solution .M; gƒ;m;a/ of the Einstein vacuum equations
with cosmological constant ƒ > 0. It describes a black hole with mass m > 0 and specific angular
momentum a 2 R. We show that for any " > 0 there exists ı > 0 so that mode stability holds for
the linear scalar wave equation �gƒ;m;a� D 0 when ja=mj 2 Œ0; 1 � "� and ƒm2 < ı. In fact,
we show that all quasinormal modes � in any fixed half-space Im � > �C

p
ƒ are equal to 0

or �i
p
ƒ=3.n C o.1//, n 2 N, as ƒm2 & 0. We give an analogous description of quasinormal

modes for the Klein–Gordon equation. We regard a Kerr–de Sitter black hole with small ƒm2 as
a singular perturbation either of a Kerr black hole with the same angular momentum-to-mass ratio,
or of de Sitter spacetime without any black hole present. We use the mode stability of subextremal
Kerr black holes, proved by Whiting and Shlapentokh-Rothman, as a black box; the quasinormal
modes described by our main result are perturbations of those of de Sitter space. Our proof is based
on careful uniform a priori estimates, in a variety of asymptotic regimes, for the spectral family and
its de Sitter and Kerr model problems in the singular limit ƒm2 & 0.

Keywords: quasinormal modes, Kerr–de Sitter black holes, singular perturbation theory, geometric
singular analysis.

1. Introduction

The metric of a subextremal Kerr–de Sitter (KdS) spacetime depends on the parameters
ƒ > 0 (cosmological constant), m > 0 (mass of the black hole), and a 2 R (specific
angular momentum). It involves the quartic polynomial

�ƒ;m;a.r/ D .r
2
C a2/.1 �ƒr2=3/ � 2mr: (1.1)

The spacetime, or the set of parameters .ƒ;m; a/, is called subextremal if �ƒ;m;a has
four distinct real roots

r�ƒ;m;a < r
C
ƒ;m;a < r

e
ƒ;m;a < r

c
ƒ;m;a:
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For subextremal parameters, the KdS metric is given on the domain of outer communica-
tions

MDOC
ƒ;m;a D Rt � .r

e
ƒ;m;a; r

c
ƒ;m;a/r � .0; �/� � .0; 2�/� (1.2)

in Boyer–Lindquist coordinates (introduced in the special case ƒ D 0 in [11]) by

gƒ;m;a WD �
�ƒ;m;a.r/

b2ƒ;m;a%
2
ƒ;m;a.r; �/

.dt � a sin2 � d�/2

C %2ƒ;m;a.r; �/

�
dr2

�ƒ;m;a.r/
C

d�2

cƒ;m;a.�/

�
C

cƒ;m;a.�/ sin2 �
b2ƒ;m;a%

2
ƒ;m;a.r; �/

�
.r2 C a2/d� � a dt

�2
; (1.3)

bƒ;m;a WD 1C
ƒa2

3
; cƒ;m;a.�/ WD 1C

ƒa2

3
cos2 �; %2ƒ;m;a.r; �/ WD r

2
C a2 cos2 �:

(1.4)

Its physical relevance stems from the fact that it is a solution of the Einstein vacuum
equation Ric.gƒ;m;a/ � ƒgƒ;m;a D 0. It was discovered by Carter [14], following the
earlier discovery [67] of the Kerr metric, which is obtained by formally setting ƒ D 0:

gm;a WD g0;m;a; Ric.gm;a/ D 0 on Rt � .r
e
m;a;1/r � .0; �/� � .0; 2�/� :

For ƒ D 0, the condition for subextremality is that r2 C a2 � 2mr have two distinct
real roots rCm;a < rem;a; these roots are m �

p
m2 � a2, and thus a Kerr spacetime is

subextremal if and only if ja=mj < 1. When ƒm2 > 0 is sufficiently small, this is also
a sufficient condition for the subextremality of the KdS spacetime; see Figure 1.1 below,
and Lemma 3.1 for a weaker—but sufficient for our purposes—statement.

The above expression for the metric becomes singular at r D reƒ;m;a and r D rcƒ;m;a.
This is merely a coordinate singularity, as can be seen by passing to the coordinates

t� WD t � Tƒ;m;a.r/; T 0ƒ;m;a.r/ D .r
2
C a2/

bƒ;m;a

�ƒ;m;a.r/
Fƒ;m;a.r/;

�� WD � �ˆƒ;m;a.r/; ˆ0ƒ;m;a.r/ D a
bƒ;m;a

�ƒ;m;a.r/
Fƒ;m;a.r/;

(1.5)

where Fƒ;m;a.r/ D 2
r�re

ƒ;m;a

rc
ƒ;m;a�r

e
ƒ;m;a

� 1. Expressed in the coordinates .t�; r; �; ��/, the

metric gƒ;m;a extends real analytically to

zMƒ;m;a D Rt� �
zXƒ;m;a; zXƒ;m;a WD .r

C
ƒ;m;a;1/r � S2�;�� : (1.6)

See [13, equation (5)] for the explicit expression.1 The two null hypersurfaces

HCƒ;m;a D Rt� � ¹r
e
ƒ;m;aº � S2�;�� ;

xHCƒ;m;a D Rt� � ¹r
C
ƒ;m;aº � S2�;��

are called the ( future/ event horizon and ( future/ cosmological horizon, respectively.

1In the main part of the paper, we will make a different choice of Fƒ;m;a.r/ which has better
properties in the limit ƒm2 & 0; see Section 3.1.
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The object of main interest in this paper is the set

QNM.ƒ;m; a/ � C

of resonances, or quasinormal modes, of the scalar wave operator �gƒ;m;a . Here, � 2
QNM.ƒ;m; a/ if and only if there exists a resonant state u0.r; �; ��/ 2 C1. zXƒ;m;a/

such that u.t�; r; �; ��/ D e�i�t�u0.r; �; ��/ 2 C1.Mƒ;m;a/ is a mode solution of the
wave equation �gƒ;m;au D 0. (For an equivalent definition in terms of Boyer–Lindquist
coordinates, see e.g. [28, Theorem 3] or [15, Definition 2.4].)

Theorem 1.1 (Quasinormal modes of Kerr–de Sitter black holes away from extremality:
massless scalar fields). Fix C > 0, and let " > 0. Then there exists ı > 0 such that for2

ja=mj � 1 � " and ƒm2 2 .0; ı/, every

� 2 QNM.ƒ;m; a/ with Im.ƒ�1=2�/ > �C

either satisfies � D 0 or � D�i
p
ƒ=3.nC o.1// for some n2N asƒm2& 0. Moreover,

the only mode solutions with � D 0 are constant functions. Conversely, for any n 2N and
� > 0 there exists, for sufficiently small ƒm2 > 0 and for any a=m 2 Œ�1C "; 1 � "�, an
element � 2 QNM.ƒ;m; a/ with j�

p
3=ƒC inj < �.

Thus, the set .ƒ=3/�1=2QNM.ƒ;m; a/ converges in any half-space Im � > �C to
the set �iN0 as ƒm2 & 0 when ja=mj remains bounded away from 1. The significance
of the set �i

p
ƒ=3N0 is that it is the quasinormal mode spectrum of the wave operator

on the static patch of de Sitter space, as computed in [12,17,60] and rigorously verified in
[106] (via [59, Appendix C]) and [61, Section 2]). The quasinormal modes described by
Theorem 1.1 are ‘zero-damped’ in that they tend to a real number (in fact, to 0) asƒ& 0;
for further results on zero-damped quasinormal modes, see [66].

The full result, Theorem 3.8 (together with Lemma 3.7), is more precise: we show the
convergence of resonances with multiplicity, and we also prove the convergence of (gen-
eralized) resonant states, appropriately rescaled, to (generalized) resonant states on the
static patch of de Sitter space. (Petersen–Vasy [87], based on earlier work by Galkowski–
Zworski [35], showed that resonant states are analytic, but our analysis does not make use
of this fact.) We refer the reader to [61, Sections 1 and 4] for plots and numerics in the
Schwarzschild–de Sitter case a D 0, and to Figure 1.1 below for a schematic illustration
of Theorem 1.1.

Mode stability is an immediate consequence of Theorem 1.1:3

Corollary 1.2 (Mode stability of Kerr–de Sitter black holes away from extremality). For
any " > 0, there exists ı > 0 such that mode stability holds for the scalar wave equation
on Kerr–de Sitter black holes with parameters ƒ;m; a satisfying ja=mj � 1 � " and

2The quantities a=m, ƒm2, and ƒ�1=2� are dimensionless; see Section 1.3.
3The KdS parameter range covered by Corollary 1.2 has been confirmed to constitute a “large”

range in the sense of [120, Conjecture 4].
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ƒm2 2 .0; ı/. That is, no � 2 C with Im � � 0 and � ¤ 0 is a quasinormal mode;
equivalently, for � 2 QNM.ƒ;m;a/, either Im� < 0 or � D 0. Moreover, for � D 0, the
only mode solutions are constants.

In particular, when ƒ > 0 and the ratio ja=mj < 1 are fixed, this implies the mode
stability of KdS when the black hole mass m is sufficiently small. Alternatively, when m

and ja=mj < 1 are fixed, we conclude mode stability when ƒ > 0 is sufficiently small;
this regime is of particular astrophysical interest since, according to the currently favored
ƒCDM model, ƒ is indeed positive but very small.

|a/m|0 1

Λm2

0

1/9

Cσ

0

−i
√

Λ/3

−2i
√

Λ/3

−3i
√

Λ/3

ℑσ = −C
√
ΛIm

Fig. 1.1. Left: Illustration of Theorem 1.1. The wave operator on Kerr–de Sitter spacetimes with
small ƒm2 has a resonance at 0, and resonances near �in

p
ƒ=3, n D 1; 2; : : : : Right: The

dashed region is the parameter space of subextremal Kerr–de Sitter black holes. The red region
is a schematic depiction of the set of parameters to which Theorem 1.1 applies. Mode stability is
known to hold in the union of the red region (Corollary 1.2) and the green region (see Section 1.2).

The KdS black holes considered in Theorem 1.1 fit into Vasy’s framework [107, Sec-
tion 6], recently extended to the full subextremal range of KdS black holes by Petersen–
Vasy [13]. This implies resonance expansions for solutions of the wave equation up to
exponentially decaying remainders.4 We state this in the simplest form, and only record
the terms corresponding to the quasinormal modes captured by Theorem 1.1:

Corollary 1.3 (Resonance expansions for waves). Put x D .r; �; ��/. For C > 0 and
" > 0, let ı > 0 be as in Theorem 1.1, and suppose ja=mj � 1� " and ƒm2 2 .0; ı/. Let
X WD Œr�; rC��S2

�;��
, where r� 2 .rCƒ;m;a; r

e
ƒ;m;a/ and rC 2 .rcƒ;m;a;1/. Let uDu.t�;x/

denote the solution of the initial value problem

�gƒ;m;au D 0; .u; @t�u/jt�D0 D .u0; u1/ 2 C1.X/˚ C1.X/:

4In the present context, the dynamical assumptions required by Vasy’s framework follow
already by combining the r-normal hyperbolicity for every r of the trapped set of subextremal
Kerr black holes, proved by Dyatlov [30], with the structural stability of such trapped sets [62]. In
fact, however, in the course of our proof of Theorem 1.1, we directly prove the meromorphicity of,
and high energy estimates for, the inverse of the spectral family of�gƒ;m;a in Im.ƒ�1=2�/ > �C ,
which imply such resonance expansions.
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Then u has an asymptotic expansion

ˇ̌̌
u.t�; x/ � u0 �

NX
jD1

� kjX
kD0

tk� e
�i�j t�ujk.x/

�ˇ̌̌
� C1e

�C
p
ƒt� ;

where u0 2C, and where �1; : : : ; �N 2C .possibly with repetitions/ are the quasinormal
modes with 0 > Im.ƒ�1=2�j /��C , and the

Pkj
kD0

tk� e
�i�j t�ujk are .generalized/mode

solutions5 of the wave equation. In particular,

ju.t�; x/ � u0j � C2 exp
�
�

�
.1C �/

r
ƒ

3

�
t�

�
;

where �D �.ƒm2;a=m/! 0 asƒm2& 0. Above, C1;C2 are constants depending only
on ƒ;m; a, and on the initial data u0, u1.

See [13, Theorem 1.5] (based on [107, Theorem 1.4]) for a more precise statement
which has weaker regularity requirements and allows for the presence of forcing. See
moreover [59] and [13, Theorem 1.6] (based on [57]) for applications of such resonance
expansions to quasilinear equations.

Remark 1.4 (Spacetime degeneration). A uniform description of the singular limit of
(waves on) KdS spacetimes as m& 0 is beyond the scope of this paper.

As an illustration of the flexibility of our method of proof, we also show:

Theorem 1.5 (Quasinormal modes of Kerr–de Sitter black holes away from extremality:
massive scalar fields). Let � 2 C. Denote by QNM.�Iƒ;m; a/ the set of resonances for

the Klein–Gordon operator �gƒ;m;a �
ƒ
3
�.6 Put �˙ D 3

2
˙

q
9
4
� �. Let C > 0. Then

for any " > 0, there exists ı > 0 such that for ja=mj � 1 � " and ƒm2 2 .0; ı/, every
� 2 QNM.�Iƒ;m; a/ with Im.ƒ�1=2�/ > �C satisfies

� D �i
p
ƒ=3.�˙ C nC o.1//

for some n 2 N0 as ƒm2 & 0. Conversely, there does exist a quasinormal mode near
each �i

p
ƒ=3.�˙ C n/.

Solutions of the Klein–Gordon equation admit resonance expansions in a manner
analogous to Corollary 1.3. For the remainder of this introduction, we restrict attention to
the massless case .Theorem 1.1/ unless explicitly stated otherwise.

5We do not rule out the possibility that some of the resonances controlled by Theorem 1.1 are
not simple; hence the need to allow for kj � 1.

6The normalization of the zeroth order term is chosen so that � is dimensionless; see Section 1.3.
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1.1. Prior work on quasinormal modes and resonance expansions on de Sitter black
hole spacetimes

In the special case aD 0 of Schwarzschild–de Sitter black holes (in which case the subex-
tremality condition becomes 0 < 9ƒm2 < 1), the discreteness of QNM.ƒ;m; 0/ was
shown by Sá Barreto–Zworski [89], relying in particular on [71]. For fixed values of
the parameters .ƒ;m/, they also characterized resonances in the high frequency regime
jRe � j � 1, and showed that in conic sectors Im � > �� jRe � j (with � > 0 sufficiently
small) they are given by�
˙l ˙

1

2
� i

�
nC

1

2

��
.1 � 9ƒm2/1=2

3ƒ1=2m

p
ƒ=3C o.1/; l !1 .n D 0; 1; 2; : : :/:

(1.7)

When ƒm2 & 0, these approximate resonances leave any fixed half-space Im.ƒ�1=2�/
> �C ; in this sense, Theorem 1.1 concerns an altogether different regime of resonances
than [89]. One is moreover led to conjecture that (at least away from the negative imagi-
nary axis) Theorem 1.1 continues to hold in the larger m-dependent range Im� ��cm�1

for any c < 1

12
p
3

.
Still for a D 0, the author and Xie [61] proved a version of Theorem 1.1 which only

provides uniform control of resonances in any fixed ball jƒ�1=2� j � C provided they are
associated with mode solutions which moreover have a fixed angular momentum l 2 N0

(i.e. their dependence on the angular variables is given by a degree l spherical harmonic).
The proof proceeded via uniform estimates for a degenerating family of ordinary dif-
ferential equations, whereas the proof of Theorem 1.1 requires more sophisticated tools
(see Section 1.4).

On Schwarzschild–de Sitter spacetimes, high energy resolvent estimates and reso-
nance expansions similar to Corollary 1.3 were established in [75,76] (exponential decay
to constants on zMƒ;m;0) and previously in [9]: in the latter paper, Bony–Häfner showed
that on MDOC

ƒ;m;0, waves are convergent sums over possibly infinitely many resonances,
up to an error term which has any desired rate of exponential decay. In recent work,
Mavrogiannis [70] gives a proof of exponential decay to constants (thus exponential
energy decay) using vector field (‘physical space’) techniques; this improves on ear-
lier work by Dafermos–Rodnianski [19] which gave superpolynomial energy decay. An
alternative definition of the quasinormal mode spectrum, as the set of eigenvalues of an
appropriate evolution semigroup, and a proof of some of its salient properties (such as
discreteness), was given by Warnick [113], and extended to asymptotically flat settings
by Gajic–Warnick [34]; see also [36].

These results were generalized to the case of slowly rotating Kerr–de Sitter black
holes in a series of papers by Dyatlov. In [28], Dyatlov defined resonances by exploiting
the separability of the wave equation and proved the discreteness of the set of resonances;
he moreover showed exponential decay to constants of waves first inMDOC

ƒ;m;a, and then in
zMƒ;m;a in [27] using red-shift estimates of Dafermos–Rodnianski [20] near the horizons.
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The paper [29] gives a description of the high energy resonances generalizing and signifi-
cantly refining (1.7), and proves resonance expansions for solutions of the wave equation,
up to error terms with any desired rate of exponential decay. As in the case aD 0, the semi-
classical methods of [29] are effective only in a high frequency regime, and all resonances
captured by it leave the subset of the complex frequency plane described in Theorem 1.1
when ƒm2 & 0.

A key ingredient in Dyatlov’s works is a robust approach to the analysis of the spec-
tral family at high frequencies near the trapped set. Wunsch–Zworski [115, 116] showed
that the trapped set of slowly rotating Kerr black holes is k-normally hyperbolic for
every k [62]; this was later extended to the full subextremal range, and to KdS black holes
with either small angular momentum or small cosmological constant by Dyatlov [30].
Moreover, [115] provided microlocal semiclassical (i.e. high energy) estimates at the
trapped set. Dyatlov subsequently devised a particularly elegant method [31] to prove
semiclassical estimates at normally hyperbolic trapped sets; we will use [31] (rephrased
as a propagation estimate as in [57, Theorem 4.7]) as a black box in the present paper.
Dyatlov’s method has since been extended to give estimates at the trapped set for waves
on asymptotically Kerr(–de Sitter) spacetimes [52].

Remark 1.6 (Further comments on trapping). An important conceptual feature of the
analysis of the trapped set in [28] is that it is based solely on the dynamical structure of
the trapped set (which is stable under perturbations [62]), rather than on the separability
of the wave equation. Using the separability, estimates at the trapped set of rotating Kerr
spacetimes can be proved using rather explicit pseudodifferential multipliers, as shown
by Tataru–Tohaneanu [99]; see also [21, 22] and the definitive [23] for a very explicit
approach of this nature. Andersson–Blue [3] can avoid this issue altogether by exploit-
ing a second order ‘hidden’ symmetry operator which is closely related to the complete
integrability of the geodesic flow on Kerr spacetimes.

Vasy’s influential nonelliptic Fredholm theory [107] provides a general framework for
proving the discreteness of resonance spectra and for establishing resonance expansions
of waves. This framework is fully microlocal, and makes use in particular of radial point
estimates (originating in [83]) and real principal type propagation estimates [26], together
with high energy estimates in the presence of normally hyperbolic trapping. Without hav-
ing to separate variables, [107] recovers the results on exponential decay to constants
proved in [9, 27, 76]. A detailed account is given by Dyatlov–Zworski [32].

The absence of modes for the Klein–Gordon equation in Im � � 0 can be proved
directly for all � > 0 (in the notation of Theorem 1.5) in the case a D 0. In the case of
small a=m¤ 0, it also follows for sufficiently small � > 0 from a perturbative calculation
off the massless KdS case (see [28] or [56, Lemma 3.5]). We also note that Besset–Häfner
[7] proved, by such perturbative means, the existence of exponentially growing modes
for weakly charged and weakly massive scalar fields on slowly rotating Kerr–Newman–
de Sitter spacetimes.
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1.2. Prior work on mode stability

We now turn to a discussion of the problem of mode stability for black hole spacetimes.
Mode stability (for massless scalar waves) is a much weaker statement than Theorem 1.1,
and by itself far from sufficient to obtain Corollary 1.3 (or even just boundedness of
waves).7 It is, however, more amenable to direct investigations. Indeed, for a D 0, mode
stability can be proved via an integration by parts argument (when Im� > 0) and a Wron-
skian (or boundary pairing) argument (when � 2 R n ¹0º); and the zero mode can be
analyzed using an integration by parts argument as well. (Even for the linearized Ein-
stein equation, an appropriate notion of mode stability for Schwarzschild–de Sitter black
holes can be proved with moderate effort, see e.g. [68] and [59, Section 7].) Given Vasy’s
general perturbation-stable framework [107], or using the arguments specific to the Kerr–
de Sitter metric by Dyatlov [28, Theorem 4], mode stability follows for the wave equation
on KdS with parameters .ƒ;m; a/ provided ja=mj is sufficiently small.

For subextremal KdS black holes with a ¤ 0, one can consider fully separated mode
solutions

e�i�teim�S.�/R.r/; m 2 Z;

where the angular function S and the radial function R solve decoupled ordinary dif-
ferential equations (ODEs). Mode stability can then be proved for certain values � 2 R
by means of Wronskian (or energy) arguments for the radial ODE. More precisely, this
applies to � which are not superradiant (see [94, Section 1.6] for this notion on Kerr space-
times); the set of superradiant frequencies � 2 R is a nonempty (when a ¤ 0 andm ¤ 0)
open interval centered roughly around ma. This argument also excludes resonances out-
side an appropriate subset of the upper half-plane. (There are no superradiant modes when
one restricts to axially symmetric mode solutions, i.e.mD 0, so mode stability for axially
symmetric scalar perturbations holds true.) Casals–Teixeira da Costa [15] exploit subtle
discrete symmetries of the radial ODE, conjectured in [1,48], to prove mode stability out-
side a smaller, but still always nonempty, subset of the closed upper half-plane. (We also
mention that [1] proposed exact quantizations conditions for quasinormal modes, which
were subsequently verified in [8].) Numerical evidence [49, 118] supports the conjecture
that mode stability does hold in the full subextremal range.

By contrast with the Kerr–de Sitter case, the mode stability of subextremal Kerr space-
times is settled (and 0 is not a resonance in this case). It was proved for fully separated
mode solutions in Im� > 0 by Whiting [114] who used a carefully defined integral trans-
form which maps the radial function R to another function which satisfies an ODE for
which Wronskian arguments can be applied successfully; Shlapentokh-Rothman [94]
showed that Whiting’s transformation can be used to prove mode stability on the real

7When combined with the Fredholm theory of [13], it does however imply the existence of a
spectral gap, i.e. a small number ˛ > 0 such that 0 is the only resonance in Im.ƒ�1=2�/ > �˛; and
this gives decay to constants, at the rate e�˛t� , of smooth linear waves.
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axis.8 Mode stability in Im � � 0 for the Teukolsky equation for other values of the
spin s 2 1

2
Z (with s D 0 corresponding to the scalar wave equation) was subsequently

proved by Andersson–Ma–Paganini–Whiting [5]. A different proof of these mode stabil-
ity results, based on a discrete symmetry of the relevant confluent Heun equation, was
given in [15].

We remark that when a ¤ 0, the ODE for S.�/ depends on the value of � (see [94,
equation (1.3)]), and the underlying operator is not self-adjoint when � …R and thus does
not possess a complete orthonormal basis of eigenfunctions; since it is therefore not clear
that one can expand a general mode solution into fully separated ones, one cannot directly
deduce mode stability in Im � > 0, in the sense used in this paper, from Whiting’s result.
(See however [33].) Nonetheless, we prove the following theorem.

Theorem 1.7 (Mode stability of subextremal Kerr black holes). Denote by gm;aD g0;m;a
the Kerr metric on Rt� � Œr

e
m;a;1/r � S2

�;��
, expressed in terms of the coordinates t�; ��

in (1.5) where we take F0;m;a.r/ to be equal to �1 near r D rem;a and equal to 0 for
r > 2rem;a.9 Let 0 ¤ � 2 C, Im � � 0. Suppose u.t�; r; �; ��/ D e�i�t�u0.r; �; ��/ is
a mode solution of �gm;au D 0, where u0 is smooth on the space Œrem;a;1/r � S2

�;��
,

and such that e�i�rr�2im�u0.r; �; ��/ D r�1v0.r�1; �; ��/ where v0 D v0.�; �; ��/ is
smooth on Œ0; 1=rem;a/ � S2

�;��
. Then u0 � 0 on Œrem;a;1/ � S2.

Proof of Theorem 1.7 when � 2 R n ¹0º or a D 0. We first consider the case � 2R n ¹0º.
Suppose u is a mode solution of the fully separated form

u.t; r; �; �/ D e�i�teim�S.�/R.r/I

here S.�/ D S�ml .�/, m 2 ¹�l;�l C 1; : : : ; lº, denotes an oblate spheroidal harmonic.
We recall the regularity requirements on R from [94, Definition 1.1]: near r D 1, the
function re�i�r�R.r/ D re�i�rr�2im�R.r/ is smooth in 1=r , where r� D r C 2m log r
(which agrees with r�, defined in [94] by dr�

dr D
r2Ca2

r2�2mrCa2
, up to terms which are smooth

in 1=r); and near r D rem;a, the function

.r � rem;a/
�
i.am�2mrem;a�/

2

p
m2�a2 R.r/

8The quantitative main result of [94] was a key input in the proof of decay of solutions of the
wave equation on subextremal Kerr spacetimes by Dafermos–Rodnianski–Shlapentokh-Rothman
[23]. The merely qualitative mode stability result is sufficient for this purpose as well if one uses it,
in conjunction with strong (Fredholm and high energy) estimates for the spectral family, to exclude
the presence of a nontrivial nullspace of the spectral family for Im � � 0; see [54] and also Propo-
sitions 3.17, 3.18, and 3.21, as well as the proof of Theorem 1.7 below in Section 3.9.

9In these coordinates, gm;a extends analytically down to, and across, the future event horizon
HCm;a DHC0;m;a, with the level sets of t� being transversal to HCm;a. See (3.6a) for the explicit form
of this metric when the black hole mass and (specific) angular momentum are 1 and Oa, respectively,
and the function F0;m;a is denoted � Q�e .
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is smooth down to r D rem;a. Since

t � t� �
2mrem;a

2
p

m2 � a2
log.r � rem;a/ and � � �� �

a

2
p

m2 � a2
log.r � rem;a/

modulo functions which are smooth at r D rem;a, these regularity requirements are the
same as those made in Theorem 1.7 if one recalls that the functions eim��S�ml .�/ are
smooth on S2

�;��
(which is enforced by the boundary conditions placed on S�ml .�/ at

� D 0; � ; cf. [94, equation (1.4)]). Therefore, [94, Theorems 1.5 and 1.6] apply to yield
u D 0.

Given a general mode solution e�i�tu0.r; �; �/, we may separate u0.r; �; �/ into a
convergent sum of smooth functions of the form eim�S.�/ (cf. the discussion follow-
ing [94, equation (1.4)]), with smooth dependence on r . Each summand is itself a mode
solution which is fully separated, and therefore it vanishes.

If a D 0, i.e. gm;0 is the Schwarzschild metric, then mode stability for fully separated
mode solutions in Im� > 0 implies mode stability for general mode solutions. Indeed, we
can expand a mode solution e�i�tv.r; �; �/ into spherical harmonics in .�; �/, and each
piece e�i�tYlm.�; �/Rlm.r/, l 2 N0, l 2 ¹�m; : : : ; mº, is then a fully separated mode
solution which therefore vanishes.

The case � D 0, in which the boundary condition at r D1 becomes the decay require-
ment ju0.r; �; ��/j . r�1 (or merely ju0j D o.1/), is analyzed in Lemma 3.19. The proof
of Theorem 1.1 for Im � > 0 is given in Section 3.9; it relies on a continuity argument in
a and the fact that putative resonances � for�gm;a with Im� � 0, which we have already
observed must satisfy Im � > 0, depend continuously on a and yet have to disappear as
a& 0; but they have to remain in a compact subset of C in view of high energy estimates
(which give an upper bound on j� j). This is impossible, and thus resonances in Im � > 0

cannot exist.
Teixeira da Costa [100] proved the mode stability of extremal Kerr black holes, i.e.

for jaj Dm, using an appropriate integral transform—which due to the different character
of the radial ODE, related to the presence of a degenerate event horizon, is substantially
different from that introduced by Whiting. (The exceptional values � 2 .2m/�1N0 are
not covered by this result.) See [100, Theorem 1.2]; see also Remark 1.13 for the relation
between Teixeira da Costa’s result and the topic of the present paper.

We remark that mode stability fails for the Klein–Gordon equation on subextremal
Kerr spacetimes for a large range of parameters, as shown by Shlapentokh-Rothman [93].
Moschidis [86] proved a number of related mode instability results for deformations of the
Kerr spacetime by means of potentials or metric deformations which either exhibit stable
trapping or feature a non-Euclidean conic infinity. These results do not have a bearing on
Theorem 1.5, however, since the scalar field mass term vanishes in the appropriate Kerr
limit. (In any case, depending on the value of �, Theorem 1.5 implies mode stability or
mode instability.)

A proof of mode stability for the scalar wave equation on Kerr–de Sitter black holes
(without restriction to axially symmetric modes), beyond the Schwarzschild–de Sitter case
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and its small perturbations, has remained elusive, with all attempts so far having been
based on integral transforms [97, 102] or discrete symmetries [15]. The starting point for
the present paper is the idea, substantiated in a simple special case in [61], that subex-
tremal KdS spacetimes with small ƒm2 can be regarded as singular perturbations of
subextremal Kerr spacetimes and of de Sitter space, and that one can extrapolate mode
stability and the approximate values of quasinormal modes from these two singular limits.
We explain this in some detail in Section 1.4.

Remark 1.8 (KdS mode stability in the full subextremal range). In the event that a direct
proof (via an integral transform, discrete symmetries, or otherwise) of the conjectural
mode stability of all subextremal KdS black holes should be found, the recent work by
Petersen–Vasy [13] would immediately imply exponential decay to constants of solutions
of the wave equation. But even then, Theorem 1.1 and Corollary 1.3 would give, in the
regime in which they apply, significantly more precise information on the quasinormal
mode spectrum which likely remains out of reach for any direct methods. We hope that
the rather general singular perturbation perspective put forth in the present paper can be
put to use in other settings involving spectral or resonance analysis in singular limits.

1.3. Scaling

In order to reduce the number of parameters, we record the following.

Lemma 1.9 (Scaling). For s > 0, let Ms W .t�; r; �; ��/ 7! .st�; sr; �; ��/. Then on the
extended spacetime zMƒs2;m=s;a=s .see (1.6)/, we have

M �s gƒ;m;a D s
2gƒs2;m=s;a=s : (1.8)

In the notation of Theorems 1.1 and 1.5, we furthermore have

QNM.ƒ;m; a/ D s�1QNM.ƒs2;m=s; a=s/;

QNM.�Iƒ;m; a/ D s�1QNM.�Iƒs2;m=s; a=s/: (1.9)

Proof. The expressions (1.1) and (1.4) imply that

.M �s �ƒ;m;a/.r/D s
2�ƒs2;m=s;a=s.r/; .M �s %

2
ƒ;m;a/.r; �/D s

2%2
ƒs2;m=s;a=s

.r; �/;

M �s bƒ;m;aD bƒ;m;aD bƒs2;m=s;a=s; .M �s cƒ;m;a/.�/D cƒ;m;a.�/D cƒs2;m=s;a=s.�/:

(1.10)

Therefore, r�ƒ;m;a D sr
�

ƒs2;m=s;a=s
for � D �; C; e; c. Plugged into (1.5) (with the choice

of Fƒ;m;a made there), this gives

.M �s .@rTƒ;m;a//.r/ D @rTƒs2;m=s;a=s.r/I

since M �s .s@r / D @r , we can choose the constant of integration for Tƒ;m;a so that

.M �s Tƒ;m;a/.r/ D sTƒs2;m=s;a=s.r/:
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We can similarly arrange .M �s ˆƒ;m;a/.r/ D sˆƒs2;m=s;a=s.r/. We conclude that Ms

takes the form .t; r; �; �/ 7! .st; sr; �; �/ in Boyer–Lindquist coordinates. The claim (1.8)
then follows onMDOC

ƒ;m;a from (1.10) and the explicit form (1.3) of gƒ;m;a. On the extended
manifold zMƒs2;m=s;a=s , the equality (1.8) follows by analytic continuation, or directly by
inspection of the explicit form (3.2) of the metric in .t�; r; �; ��/ coordinates.

As a consequence of (1.8), pulling back along M �s or M �
1=s

proves the equivalence�
�gƒ;m;a �

ƒ

3
�

�
.e�i�t�u.r; �; ��// D 0

”

�
�g

ƒs2;m=s;a=s
�
ƒs2

3
�

�
.e�i.s�/t�u.sr; �; ��// D 0:

Thus, � 2 QNM.�I ƒ; m; a/ if and only if s� 2 QNM.�I ƒs2; m=s; a=s/. This
implies (1.9) and finishes the proof.

It thus suffices to consider the first asymptotic regime mentioned after Corollary 1.2.
Concretely, we take s D

p
3=ƒ in Lemma 1.9, and henceforth work with

ƒ D 3:

1.4. Singular limits and asymptotic regimes

We now describe a few elements of the proof of Theorem 1.1. Let us fix ƒ D 3, and fix
also the ratio a=m D Oa 2 .�1; 1/; thus, in this section we exclusively work with Kerr–
de Sitter metrics

gƒ;m;a D g3;m; Oam;

and we are interested in the limit m& 0. For notational simplicity, we work with Boyer–
Lindquist coordinates here, and we restrict our attention to frequencies � which lie in a
strip rather than a half-space; thus, Im � is bounded, but Re � is unbounded.

For fixed r > 0, the Kerr–de Sitter metric gƒ;m;a D g3;m; Oa;m in (1.3) converges, as
the black hole mass tends to 0 (i.e. the black hole ‘disappears’), to the de Sitter metric

gdS D �.1 � r
2/dt2 C

1

1 � r2
dr2 C r2=g; =g D d�2 C sin2 � d�2:

This metric is singular at the cosmological horizon r D 1, but a coordinate change similar
to (1.5) shows that this is merely a coordinate singularity (see (3.4)). Moreover, gdS is the
expression in polar coordinates .r; �; �/ of a metric on Rt � B.0; 1/, where B.0; 1/ WD
¹x 2R3W r D jxj< 1º, which is smooth across x D 0. One can then define resonances and
mode solutions for �gdS as in the Kerr–de Sitter setting explained before Theorem 1.1;
the set of quasinormal modes of �gdS (which are known explicitly, see Lemma 3.7) is
then precisely the limit of QNM.3;m; Oam/ as m& 0 in Theorem 1.1.

Now, gƒ;m;a does not converge smoothly to gdS. Rather, in rescaled coordinates

Ot D t=m; Or D r=m;
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the rescaled metric m�2gƒ;m;a converges, for fixed Or > 0 and as m& 0, to the metric

Og D �
O�. Or/

O%2.r; �/
.dOt�Oa sin2 � d�/2 C

O%2.r; �/

O�.r/
d Or2 C O%2. Or; �/d�2

C
sin2 �
O%2. Or; �/

.. Or2COa2/d��Oa dOt /2;

O�. Or/ WD Or2 � 2 Or C Oa2; O%2. Or; �/ WD Or2 C Oa2 cos2 �;

of a Kerr black hole with mass 1 and angular momentum Oa. Note the relationship

e�i�t D e�i Q�
Ot ; Q� D m�; (1.11)

between frequencies on the KdS spacetime and frequencies for the rescaled observer on
the Kerr spacetime. Thus, Q� is small compared to � when m > 0 is small; but since
j� j itself may be large, the rescaled frequency Q� may nonetheless be large too—or not,
depending on the relative size of j� j and m�1.

Remark 1.10 (Simple model). An operator on .2m; 2/r � S1
�

that the reader may keep
in mind in the subsequent discussion is

Pm.�/ WD

�
1 �

2m

r
� r2

�
D2
r C r

�2D2
� � �

2; D D
1

i
@:

(This is a poor approximation of the spectral family of the Schwarzschild–de Sitter wave
operator.) The two singular limits as m& 0 are

Pm.�/! P0.�/ D .1 � r
2/D2

r C r
�2D2

� � �
2; r ' 1;

m2Pm.�/! OP. Q�/ D

�
1 �

2

Or

�
D2
Or C Or

�2D2
� � Q�

2; Or ' 1; Q� D lim
m&0

m�:
(1.12)

(In the second line, � may vary with m.) Here, P0.�/ plays the role of the de Sitter model,
and OP. Q�/ that of the Kerr model.

We now list the different frequency regimes for � and Q� as m& 0, together with a
brief description of the two limiting problems that one needs to study in each regime.

(1) Bounded frequencies. � remains bounded as m& 0: the spectral theory for de Sitter
space for bounded frequencies enters—and thus the de Sitter quasinormal mode
spectrum—but the Kerr wave operator enters only at frequency Q� D 0 by (1.11).

(2) Large frequencies. 1� jRe � j � m�1, i.e. � is large but remains small compared
to m�1: this involves high energy (semiclassical) analysis on de Sitter space—where
there are no quasinormal modes—and low (i.e. near zero) frequency analysis for the
Kerr wave operator. From this point onwards, we are in the high frequency regime
from the perspective of the de Sitter limit.

(3) Very large frequencies. jRe � j is comparable to m�1: in this case, Q� D m� is, in the
limit m& 0, of unit size but real. Thus, we are in a bounded real frequency regime for
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the Kerr wave operator. Excluding the possibility of KdS resonances in this regime
thus requires as an input the absence of modes on the real axis for the Kerr wave
operator (Theorem 1.7).

(4) Extremely large frequencies. Finally, if jRe � j is large compared to m�1 as m& 0,
then we are in a high (real) frequency regime (j Q� j D jm� j � 1) also from the per-
spective of the Kerr model. In this case, the absence of Kerr modes follows directly
using semiclassical methods.

More concretely then, in the bounded frequency regime, the uniform analysis of the
spectral family �gƒ;m;a.�/ D eit��gƒ;m;ae�it� (acting on functions of the spatial vari-
ables only) takes place on function spaces which incorporate the two different spatial
limiting regimes: for Or ' 1, we measure regularity with respect to @ Or , @! (spherical
derivatives), and for r ' 1 with respect to @r , @! ; put differently, writing x 2 R3 for
spatial coordinates on de Sitter space, we use @ Ox D m@x (where Ox D x=m) for bounded
j Oxj, and @x when jxj ' 1. (In the region Or & 1, the vector fields r@r , @! work in both
regimes simultaneously.) This is conveniently phrased on a geometric resolution (blow-
up) of the total space Œ0; 1�m �B.0; 1/x in which one introduces polar coordinates around
.m; x/ D .0; 0/; see Figure 1.2.

x

x̂

m

Ẋ

X̂

Fig. 1.2. The total space for analysis at bounded frequencies.

We call this total space the q-single space Xq of X D B.0; 1/, and refer to the corre-
sponding scale of function spaces as (weighted) q-Sobolev spacesH s;l;


q;m : these are spaces
of functions of the spatial variables, and indeed equal to H s as a set, but with norms that
degenerate in a specific manner as m & 0. For functions supported in Or & 1, the m-
dependent norm on H s;l;


q;m for integer s is given by

kuk2
H
s;l;

q;m
D

X
jCj˛j�s





r�l�m

r

��

.rDr /

jD˛
!u





2
L2
;

where L2 is the standard L2-norm on X . The algebra of q-(pseudo)differential opera-
tors is described in detail in Section 2.1; it is a close relative of the surgery calculus of
McDonald [73] and Mazzeo–Melrose [72]; see Remark 2.2.

The proof of Theorem 1.1 for bounded � uses a priori estimates on q-Sobolev spaces
for u in terms of�gƒ;m;a.�/u, with constants that are uniform as m& 0. These estimates
are based on three ingredients.



Mode stability of Kerr–de Sitter black holes away from extremality 4905

(1) Symbolic analysis: elliptic regularity, radial point estimates, microlocal propagation
of regularity. This is a direct translation to the q-calculus of the corresponding esti-
mates introduced in the black hole setting by Vasy [107]; by design, these q-estimates
are uniform in m. They take the form

kuk
H
s;l;

q;m
� C

�
k�gƒ;m;a.�/ukH s�1;l�2;
q;m

C kuk
H
s0;l;

q;m

�
; s0 < sI (1.13)

that is, symbolic (or principal symbol) arguments control u to leading order in the q-
differentiability sense. The differential order s � 1 on�gƒ;m;a.�/u reflects the usual
loss of one derivative in radial point or hyperbolic propagation estimates. The shift of
�2 in the weight l � 2 reflects the scaling near the Kerr regime Or ' 1; cf. (1.12).

(2) Estimates for the Kerr model problem. This is a quantitative estimate for a function
v on OX (i.e. expressed in the rescaled coordinates Ox) in terms of the zero energy
operator � Og.0/ applied to v. Apart from involving symbolic estimates as before,
such an estimate involves analysis at spatial infinity, where the operator � Og.0/ is an
elliptic element of Melrose’s b-algebra [80, 82]. Applying this estimate to the error
term kuk

H
s0;l;

q;m

in (1.13) (cut off to a neighborhood of OX in Figure 1.2) and noting

that � Og.0/ and m2�gƒ;m;a.�/ differ by an operator whose coefficients vanish to
leading order at m D 0 for bounded Or , this gives the improved estimate

kuk
H
s;l;

q;m
� C

�
k�gƒ;m;a.�/ukH s�1;l�2;
q;m

Ckuk
H
s0;l0;

q;m

�
; s0 < s; l0 < l: (1.14)

(3) Estimates for the de Sitter model problem. This is a quantitative estimate for a func-
tion v on PX (see Figure 1.2) in terms of�gdS.�/v where�gdS.�/ is the spectral fam-
ily of de Sitter space. The caveat here is that the singular limit m& 0 leaves a mark
not just geometrically (as in Figure 1.2) but also analytically, in that the point x D 0
is blown up, and q-Sobolev spaces involve a choice of weight at r D 0. Indeed, in the
near-de Sitter region m . r , q-Sobolev spaces are cone Sobolev spaces (i.e. weighted
b-Sobolev spaces) with cone point at r D 0, and for appropriate weights one has ellip-
tic estimates at the cone point. (This issue was already addressed in a simple setting
in [61, Section 2.1].) Thus, if � is not a de Sitter quasinormal mode, one can apply
this quantitative estimate to the error term in (1.14) and thereby weaken the error
term to10 Ckuk

H
s0;l0;
0
q;m

where 
0 < 
 . But this is bounded by Cmıkuk
H
s;l0Cı;
0Cı
q;m

where 0 < ı � min.l � l0; 
 � 
0/, and hence small compared to kuk
H
s;l;

q;m

when m

is small. Therefore, we obtain a uniform estimate

kuk
H
s;l;

q;m
� Ck�gƒ;m;a.�/ukH s�1;l�2;
q;m

for all sufficiently small m, and for bounded � which are at most a fixed small distance
away from de Sitter quasinormal modes. See Proposition 3.26. A Grushin problem

10While not apparent from this sketch, careful accounting of the orders required to apply the two
model operator estimates, and of the q-regularity of the error term, shows that the symbolic analysis
is indeed necessary in order to get an error term with differential order � s here.
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setup together with Rouché’s theorem takes care of KdS quasinormal modes near
de Sitter quasinormal modes.

Remark 1.11 (Comparison with [61]). The work [61] demonstrated how on the spher-
ically symmetric Schwarzschild–de Sitter spacetime, and after separation into spherical
harmonics, uniform estimates for a degenerating family of ordinary differential equa-
tions in the radial variable imply Theorem 1.1 for bounded spectral parameters and for
fixed spherical harmonic degrees. In the present paper, we adopt a point of view based
fully on the analysis of partial differential operators; the part of the proof concerned with
bounded frequencies is conceptually very similar to [61, Section 3], except now the uni-
form estimates are proved using microlocal means, as described above. The remaining
three frequency regimes (2)–(4) are not covered by [61].

The large frequency regime (2) is the most delicate one. From the perspective of
de Sitter space, uniform analysis away from the cone point utilizes semiclassical Sobolev
spaces (i.e. measuring regularity with respect to h@x for jxj ' 1 where h D j� j�1), but
there is now an artificial conic point at r D 0 through which we need to propagate semi-
classical estimates (along null-bicharacteristics which hit the cone point or emanate from
it). We do this by adapting the semiclassical propagation estimates which were proved in
[53] by means of the semiclassical cone calculus introduced in [55]: this involves radial
point estimates at incoming and outgoing radial sets over the cone point, and estimates
for a model operator on an exact Euclidean cone which here is the spectral family of the
Laplacian at frequency 1 (i.e. on the spectrum). In terms of the model of Remark 1.10, we
are considering h2P0.h�1/ D .1 � r2/.hDr /

2 C r�2.hD� /
2 � 1, and the model oper-

ator arises by passing to Qr WD r=h and taking the limit h & 0 for bounded Qr , giving
D2
Qr
C Qr�2D2

�
� 1. (We refer the reader to [16,77–79,117] for further results on propaga-

tion through, and diffraction by, conic singularities.)
From the perspective of the rescaled Kerr model on the other hand, the large frequency

regime (2) puts us into a regime of low frequencies Q� , and we need to prove uniform esti-
mates for the spectral family � Og. Q�/ for real Q� near 0. Uniform estimates for low energy
resolvents on asymptotically flat spaces or spacetimes have a long history going back to
work by Jensen–Kato [65], with recent contributions including [10, 24, 25, 41–43, 54, 84,
85,96,98,109,111]. Here, we use an approach that matches up exactly with the semiclassi-
cal cone analysis on the de Sitter side: we work with function spaces (and a corresponding
ps.d.o. algebra which we call the scattering-b-transition algebra—see Section A.3—
which is taken directly from [41] except for different terminology) which resolve the
transition from the (elliptic) b-analysis at zero frequency to (nonelliptic) scattering theory
(in the spirit of [83]) at nonzero frequencies. The same model operator as above (conic
Laplacian at frequency 1) now captures the transition from zero to nonzero energies for
the low energy spectral family of the Kerr wave operator. This is less precise, but tech-
nically simpler than the very precise second microlocal approach introduced recently by
Vasy [111]. In terms of the model of Remark 1.10, we pass to O� D Or�1 in order to work
at spatial infinity, so Q��2 OP. Q�/ D .1 � 2 O�/ Q��2. O�2D O�/2 C O�2 Q��2D2

�
� 1, then introduce

Q�D O�= Q� , and pass to the limit Q� & 0 for bounded Q�; this produces . Q�2D Q�/2C Q�2D2
�
� 1.
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Upon identifying Q� D Qr�1, this is the same operator as the one arising from the high
frequency cone point perspective above.

On the level of estimates, we combine symbolic estimates and estimates for the two
model spectral families by means of an appropriate family of .m; �/-dependent norms,
called Q-Sobolev norms, which reduce to semiclassical cone Sobolev norms in the high
energy de Sitter regime, and to scattering-b-transition Sobolev norms in the low energy
Kerr regime. Concretely, an integer order norm with these properties is

kuk2
H
s;.l;
;l0;r/
Q;m;�

D

X
jCj˛j�s





r�l�m

r

��

.hC r/�l

0Cl

�
h

hC r

��rC
�
h

hC r
rDr

�j�
h

hC r
D!

�˛
u





2
L2
;

h WD j� j�1 2 .m; 1�;

for u with support in r & m. For fixed m > 0 and � , this is equivalent to the H s-norm,
but it degenerates in the correct manner as m& 0. (In the main part of the paper, such
weighted Q-Sobolev norms have an extra order, denoted b, which however does not matter
outside the extremely high frequency regime. Moreover, the order r will be variable to
accommodate incoming and outgoing radial point estimates.)

Next, in the very large frequency regime (3), we are now, from the de Sitter per-
spective, fully in a semiclassical regime. The symbolic propagation through the conic
singularity again follows [53], but the model problem at the cone point is now the spec-
tral family of the Kerr wave operator at bounded nonzero real frequencies. Estimates for
the latter are limiting absorption principle type estimates; they are proved as in [83] up
to compact error terms, and removing these error terms precisely requires the mode sta-
bility for the Kerr spacetime [94]. (This is reminiscent of propagation results for 3- or
N -body scattering [104, 105], where microlocal propagation of decay through collision
planes requires the invertibility of a spectral problem for a subsystem.)

Finally, in the extremely large frequency regime (4) we can use semiclassical methods
also for the spectral family on the Kerr spacetime (and therefore the absence of extremely
large frequency quasinormal modes can be proved entirely using symbolic means). Here,
the full null-geodesic dynamics of the Kerr spacetime enter; this is described in detail in
[30], and we can use this and the relevant microlocal propagation results, in particular at
the trapped set [31], as black boxes.

While the analysis of bounded frequencies is done separately (see Section 3.8), the
analysis of all three high frequency regimes is phrased in terms of the single afore-
mentioned family of weighted Q-Sobolev spaces. These capture regularity with respect
to a Lie algebra of vector fields adapted to each of the regimes discussed. We adopt
a fully geometric microlocal point of view and describe the underlying Lie algebra of
Q-vector fields on a suitable total space (a resolution of R� � Œ0; 1�m � B.0; 1/ where
xR D R [ ¹�1;C1º); the full spectral family .�;m/ 7! �g3;m; Oam

.�/ is then (for fixed
Im � ) a single element of a corresponding space of Q-differential operators. Its microlo-
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cal analysis is accomplished by means of an algebra of Q-pseudodifferential operators.
Q-geometry and Q-analysis are developed in detail in Section 2.

Remark 1.12 (Separation of variables). It is conceivable that one can prove Theorem 1.1
by starting with Carter’s separation of variables [14] and extending the ODE techniques
introduced in [61] to keep track of uniformity in half-spaces Im � > �C and also in the
parameters .`; m/ of the spheroidal harmonics (generalizing the usual parameters ` 2
N0 and m 2 Z \ Œ�`; `� of spherical harmonics); we shall not pursue this possibility
here. We merely note that this approach would introduce yet another large parameter
(j`j C jmj ! 1). Elements of the low frequency analysis for the Kerr model in the case
Oa D 0 are developed from a separation of variables point of view in [24, 25].

Remark 1.13 (Mode stability in the full subextremal range). For simplicity of notation,
fix the black hole mass to be 1, and consider a sequence .ƒj ; 1; aj / of subextremal KdS
parameters with ƒj & 0, jaj j < 1. Then the limiting Kerr parameters .1; a/, a D lim aj ,
may be extremal. While the mode stability of extremal Kerr black holes is known [100]
(with the exceptional frequencies requiring separate treatment), there do not exist any esti-
mates yet on the spectral family on an extremal Kerr spacetime (in any frequency regime)
which could take the place of the estimates on the subextremal Kerr spectral family used
above. If such estimates were available, one could likely generalize Theorem 1.1 to all
subextremal KdS black holes (possibly even including the extremal case) when ƒm2 is
sufficiently small; at present, this is out of reach however.

The analytic framework introduced in this paper is very flexible. In particular, it can
be generalized in a straightforward manner to degenerating families of operators acting
on sections of vector bundles. In particular, for the Teukolsky equation on Kerr–de Sitter
spacetimes, we expect an analogue of Theorem 1.1 to hold; this would be an important
step towards an unconditional proof of the nonlinear stability of Kerr–de Sitter black holes
without restriction to small angular momenta. (The case of small angular momenta was
treated in [59].) Furthermore, other singular limits with similar scaling behavior can be
analyzed using the same approach. As a simple (albeit contrived) example, the operator

�gdS Cm�2V.x=m/;

where V 2C1c .R3/ (or more generally with inverse cubic decay), fits into our framework:
the analogue of the de Sitter model is now simply the spectral family of �gdS , while the
analogue of the Kerr model is� Ox � �2C V. Ox/, i.e. the spectral family of the Schrödinger
operator�C V on R3

Ox
. Thus, if�C V has no resonances in the closed upper half-plane,

then the resonances of�gdS Cm�2V.x=m/ have the same description as in Theorem 1.1.
(Note that separation of variables is not available at all for this operator when V has no
symmetries.)

On the other hand, if the Kerr model of the equation under study has zero energy res-
onances or bound states—as is the case for the Maxwell equations [4,95] or the equations
of linearized gravity [2, 45]—the bounded frequency analysis sketched above fails. It is
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an interesting open problem to analyze the limiting behavior of KdS quasinormal modes
in this case.

1.5. Outline of the paper

The technical heart of the paper is Section 2. We first discuss in detail the geometric
and analytic tools (q-analysis) which we will use for the uniform analysis at bounded
frequencies—see Section 2.1—before describing the appropriate large frequency gener-
alization (Q-analysis) in Sections 2.2–2.5. The main result of the paper, Theorem 3.8, is
set up in Sections 3.1–3.2. After placing the full spectral family of a degenerating family
of Kerr–de Sitter spacetimes into the framework of Q-analysis in Section 3.3, the proof
of Theorem 3.8 occupies Sections 3.4–3.9, with Section 3.9 describing the modifications
necessary to treat resonances in a full half-space (rather than merely in strips, as described
in Section 1.4). The proof of Theorem 1.5 does not require any further work, and is given
in Section 3.10.

Appendix A reviews elements of geometric singular analysis and recalls the vari-
ous pseudodifferential algebras (the b-, scattering, semiclassical scattering, semiclassical
cone, and scattering-b-transition algebras) that are used in the analysis of the model
problems discussed in Section 1.4. Appendix B contains supplementary material for Sec-
tion 2.4; this is included for conceptual completeness, but it is not used in the proofs of
the main results.

2. Geometric and analytic setup of the singular limit

Let us fix an n-dimensional manifoldX without boundary, and fix a point 0 2X and local
coordinates x 2B.0;2/D ¹x 2RnW jxj<2º so that xD 0 at the point 0. (All constructions
presented below go through whetherX is compact or not. The main case of interest in this
paper is when X � R3 is the spatial part of the de Sitter manifold. For compact X the
discussion of function spaces is slightly simplified.)

We first describe somewhat briefly the geometric and analytic setup for the degenerate
limit for fixed frequencies in Section 2.1; we call this q-analysis. The geometric setup for
uniform analysis across all frequency regimes is then discussed in detail in Sections 2.2–
2.4; we call this Q-analysis. (The letters ‘q’ and ‘Q’ stand for ‘quasinormal modes’.) We
freely make use of the material of Appendix A.

2.1. q-geometry and q-analysis

When, in the context of Theorems 1.1 and 1.5, the frequency � is fixed, the following
space captures the geometric degeneration of the spacetime as m! 0.

Definition 2.1 (q-single space). The q-single space of X is the resolution Xq of
Œ0; 1�m �X defined as the blow-up

Xq WD
�
Œ0; 1� �X I ¹0º � ¹0º

�
:
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We denote by zfq the front face, and by mfq the lift of ¹0º � X . We write �zfq ; �mfq 2

C1.Xq/ for defining functions of these two boundary hypersurfaces.

See Figure 2.1. Our interest will be in uniform analysis as m & 0; thus, one may
as well replace Œ0; 1� by any other interval Œ0;m0� with m0 > 0. We work with a closed
interval of values of m since it will be convenient to keep all parameter spaces compact.

r

x̂

m

mfq ∼= Ẋ

zfq ∼= X̂

Fig. 2.1. The q-single space Xq when dimX D 1.

Remark 2.2 (q-analysis and analytic surgery). If X is 1-dimensional, the set ¹0º � X
is a hypersurface, and Xq is equal to the single surgery space defined in [72]; this was
first introduced by McDonald [73]. For higher-dimensional X , the single surgery space is
defined via blow-up of a hypersurface of X , rather than a point as in the q-single space
above. However, much of the discussion of the geometry, Lie algebra of vector fields,
and pseudodifferential calculus carries over from [72, Sections 3–4] to the q-setting with
minor changes. We shall nonetheless give a self-contained account here to fix the notation
and to facilitate the subsequent generalization to the Q-calculus.

We denote by m the lift of the first coordinate on Œ0; 1� � X to Xq; we furthermore
write

x D r!; r � 0; ! 2 Sn�1; (2.1)

Ox WD
x

m
; Or WD

r

m
; O� WD Or�1 D

m

r
: (2.2)

We finally put
PX WD ŒX I ¹0º� D Œ0; 2/r � Sn�1; OX WD R3

Ox
: (2.3)

Thus, @ PX D r�1.0/� PX is the front face of PX . Moreover, OX is the radial compactification
xT0X of the tangent space T0X . We have natural diffeomorphisms

zfq Š OX; mfq Š PX;

and we shall use both notations for these boundary hypersurfaces.

Definition 2.3 (q-vector fields). The space of q-vector fields on X is defined as

Vq.X/ WD ¹V 2 Vb.Xq/WVm D 0º:
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Form 2N0, we denote by Diffmq .X/ the space ofm-th order q-differential operators, con-
sisting of locally finite sums of up tom-fold compositions of elements of Vq.X/ (a 0-fold
composition being multiplication by an element of C1.Xq/). For ˛ D .˛zf; ˛mf/ 2 R2,
put

Diffm;˛q .X/ D �
�˛zf
zfq

�
�˛mf
mfq

Diffmq .X/ D ¹�
�˛zf
zfq

�
�˛mf
mfq

AWA 2 Diffmq .X/º:

Since Xq \ ¹m > 0º D .0; 1� � X , an element V 2 Vq.X/ is thus a smooth family
.0; 1� 3 m 7! Vm 2 V.X/ of smooth vector fields on X which degenerate in a particular
fashion in the limit r ! 0, m! 0. Since Vb.Xq/ is a Lie algebra, and since ŒV;W �m D
V.Wm/ �W.Vm/ D 0 whenever Vm D 0 and Wm D 0, we conclude that also Vq.X/

is a Lie algebra.

Remark 2.4 (Comparison with [61]). The uniform analysis of a family of ordinary dif-
ferential equations [61] was phrased in terms of horizontal b-vector fields on the subset
of ŒŒ0; 1/m � Œ0; 1/r I ¹0º � ¹0º� where m . r . 1; thus, the b-behavior at the lift of r D 0
was excised. The q-single space and class of q-vector fields defined here, even in the ODE
setting where X is an open interval containing 0, is more natural, as it does not introduce
an artificial b-boundary at the lift of r D 0.

In local coordinates m � 0, Ox 2 R3 near the interior zfıq of zfq, the space Vq.X/ is
spanned by @ Oxj (j D 1; : : : ; n) over C1.Xq/. Near the interior mfıq , Vq.X/ is spanned
by @xj (j D 1; : : : ; n) or equivalently by @r , @! (schematic notation for spherical vector
fields). Near the corner zfq \ mfq, where we have local coordinates O�; r; !, we can use
r@r � O�@ O�, @! as a spanning set. A global frame near zfq is given by

p
m2 C jxj2@xj

(j D 1; : : : ; n). In particular, if we regard V.X/ as the subset of m-independent vector
fields on Xq, then

V.X/ � ��1zfq
Vq.X/; Diffm.X/ � ��mzfq

Diffmq .X/ D Diffm;.m;0/q .X/: (2.4)

We denote by
qTX ! Xq

the q-vector bundle which has local frames given by the above collections of vector fields;
thus there is a bundle map qTX! TXq such that Vq.X/D C1.X; qTX/. From the above
local coordinate descriptions, we can then also conclude that the restriction maps

Nzfq WVq.X/! Vb. OX/; Nmfq WVq.X/! Vb. PX/ (2.5)

are surjective, and their kernels are �zfqVq.X/ and �mfqVq.X/, respectively. These maps
thus induce bundle isomorphisms

qTzfqX Š
bT OX; qTmfqX Š

bT PX; (2.6)

and corresponding isomorphisms of cotangent bundles. We can define the q-principal
symbol for V 2Vq.X/ as qσ1.V /W qT �X 3 � 7! i�.V /, and by linearity and multiplicativ-
ity we can define qσm.A/ 2 Pm.qT �X/ for A 2 Diffmq .X/; the principal symbol qσm.A/
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vanishes if and only if A 2 Diffm�1q .X/. We also have surjective restriction maps

Nzfq WDiffmq .X/! Diffmb . OX/; Nmfq WDiffmq .X/! Diffmb . PX/; (2.7)

and bσm.NH .A// D
qσm.A/jqT �

H
X for H D zfq;mfq under the above bundle isomor-

phisms. These maps can be defined completely analogously to restrictions of b-vector
fields: that is, Nzfq.A/u D .A Qu/jzfq for u 2 PC1. OX/ D C1.zfq/ where Qu 2 C1.Xq/ is
any smooth extension of u; similarly for Nmfq .

Definition 2.5 (Weighted q-Sobolev spaces). Suppose X is compact, and fix a finite col-
lection V1; : : : ; VN 2 Vq.X/ of q-vector fields which at any point ofXq span the q-tangent
space. Fix any weighted positive density � D �˛zf

zfq
�
˛mf
mfq
�0 where 0 < �0 2 C1.Xq;

q�X/.

We then define, for s 2 N0 and l; 
 2 R, the function space H s;l;

q;m .X; �/ to be equal to

H s.X/ as a set, but equipped with the squared norm

kuk2
H
s;l;

q;m .X;�/

WD

X
˛2NN

0
; j˛j�m

k��lzfq
�
�

mfq
V ˛uk2

L2.X;�m/
; V ˛ D

NY
jD1

V j̨

j ;

where we write 0 < �m0 2 C1.X;�X/ for the restriction of � to m�1.m0/.

In particular, if � D jdxj, then for u supported in j Oxj . 1, resp. r & 1, kukH sq;m.X/ is
uniformly equivalent to mn=2kuk

H sb .
OX/

(since jdxj D mnjd Oxj), resp. kukH sb . PX/.
To analyze q-differential operators using microlocal techniques, we need to define a

corresponding pseudodifferential algebra.

Definition 2.6 (q-double space). The q-double space of X is defined as the resolution of
Œ0; 1�m �X

2 given by

X2q WD
�
Œ0; 1� �X2I ¹0º � ¹0º � ¹0ºI ¹0º � ¹0º �X; ¹0º �X � ¹0º

�
:

We denote the front face of X2q by zfq;2, the lift of ¹0º � X2 by mfq;2, and the lift of
Œ0; 1� � diagX (with diagX � X

2 denoting the diagonal) by diagq. Furthermore, lbq;2,
resp. rbq;2, denotes the lift of ¹0º � ¹0º �X , resp. ¹0º �X � ¹0º. See Figure 2.2.

Lemma 2.7 (b-fibrations from the q-double space). The lifts of the left projection Œ0; 1� �
X � X 3 .m; x; x0/ 7! .m; x/ and the right projection .m; x; x0/ 7! .m; x0/ are b-
fibrations �L; �RWX2q ! Xq.

Proof. We only consider the left projection. It lifts to a projection ŒŒ0; 1� �X �X I ¹0º �
¹0º � X� D Xq � X ! Xq which is b-transversal to ¹0º � ¹0º � ¹0º, and hence lifts to a
b-fibration �

Œ0; 1� �X �X I ¹0º � ¹0º �X I ¹0º � ¹0º � ¹0º
�
! Xq: (2.8)

On the left, we can reverse the order of the two blow-ups since the second center is
contained in the first. Since the map (2.8) is b-transversal to the lift of ¹0º � X � ¹0º,
this lift can be blown up, and the map (2.8) lifts to the desired b-fibration.
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diagq

zfq,2 ∼= X̂2
b

mfq,2 ∼= Ẋ2
b

lbq,2lbq,2

rbq,2

rbq,2

r′

r

m

x̂

x̂′

Fig. 2.2. The q-double space X2q .

It is easy to check in local coordinates on X2q that the lift of Vq.X/ to X2q along �L is
transversal to diagq (see also (2.9) below). (This can also be deduced from the analogous
statement for b-double spaces by using Lemma 2.9, together with the analogous statement
in m > 0.) The resulting isomorphism qTX Š N diagq induces a bundle isomorphism
N � diagq Š

qT �X .

Definition 2.8 (q-pseudodifferential operators). Let s; l; 
 2 R. Then ‰s;l;
q .X/ is the
space of all smooth families of bounded linear operators on C1c .X/, parameterized by
m 2 .0; 1�, with Schwartz kernels � 2 ��lzfq;2

�
�

mfq;2

Im�1=4.X2q ;diagqI�
�
R

q�X/ which van-
ish to infinite order at lbq;2 and rbq;2, and which are conormal at zfq;2 and mfq;2. When
X is noncompact, we furthermore demand that � is properly supported, i.e. the projection
maps �L; �RW supp � ! Xq are proper.

A typical element of‰s;l;
q .X/ is given in coordinates m>0 and x;x0 2Rn (the lift of
coordinates on X centered around 0 to the left and right factor of X2) as a quantization11

.Opq;m.a/u/.x/ D .2�/
�n

“
exp

�
i
x � x0

�zfq;2

�

�
�

�
jx � x0j

�zfq;2

�
a.m; x; �/u.x0/

dx
�nzfq;2

d�;

(2.9)

where � 2 C1c ..�1
2
; 1
2
// is identically 1 near 0, and a is the local coordinate expression of

an element of the symbol space S s;l;
 .qT �X/ consisting of conormal functions on qT �X

with weights �s, �l , and �
 at fiber infinity, over zfq;2, and over mfq;2, respectively.

Lemma 2.9 (Boundary hypersurfaces of X2q ). In the notation of Section A.1, we have
natural diffeomorphisms

zfq;2 Š OX
2
b ; mfq;2 Š PX

2
b : (2.10)

11In these local coordinates, we can take �zfq;2 D
p

m2 C jxj2 C jx0j2.
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Proof. The front face of ŒŒ0; 1� � X2I ¹0º � ¹0º � ¹0º� is the radial compactification
xT.0;0/.X

2/. The lift of ¹0º � ¹0º �X , resp. ¹0º �X � ¹0º, intersects this at ¹0º � @. xT0X/,
resp. @. xT0X/ � ¹0º. The first isomorphism in (2.10) is thus the same as the fact—which
can be checked by direct computation—that the resolution of R2n at ¹0º � @Rn and
@Rn � ¹0º is naturally diffeomorphic to .Rn/2b .

For the second isomorphism in (2.10), note that the lift of ¹0º � X2 to ŒŒ0; 1� � X2I
¹0º � ¹0º � ¹0º� is ŒX2I ¹0º � ¹0º�. In this manifold, we then further blow up the
lift of X � ¹0º—resulting in ŒX � PX I ¹0º � @ PX�—and then we blow up the lift of
¹0º � PX , which can in fact be done prior to blowing up ¹0º � @ PX and thus results in
ŒX � PX I ¹0º � PX I ¹0º � @ PX� D Œ PX2I .@ PX/2� D PX2b , as claimed.

The principal symbol map qσs;l;
 fits into the short exact sequence

0! ‰s�1;.l;
/q .X/ ,! ‰s;l;
 .X/
qσs;l;


����! S s;l;
 .qT �X/=S s�1;l;
 .qT �X/! 0:

Restricting to operators whose Schwartz kernels are classical (denoted by an added sub-
script ‘cl’) at zfq;2 and mfq;2 (thus smooth when the corresponding order vanishes), we
obtain from Lemma 2.9 surjective normal operator maps

Nzfq W‰
s;0;

q;cl .X/! ‰

s;

b . OX/; Nmfq W‰

s;l;0
q;cl .X/! ‰

s;l
b . PX/: (2.11)

As in the case of q-differential operators, the principal symbols of NH .A/ are related to
that of A by restriction using (2.6). Also, the normal operators can be defined via testing,
and therefore are multiplicative once we know that ‰q.X/ is closed under composition;
we turn to this now.

Pushforward along �L maps the Schwartz kernel of elements of ‰s;l;
q;cl .X/, resp.

‰
s;l;

q .X/ into ��lzfq

�
�

mfq

C1.Xq/, resp. A.�l;�
/.Xq/. Therefore, the composition of two
q-ps.d.o.s is well-defined as a map on conormal functions on Xq. One can prove that the
composition is again a q-ps.d.o. using the explicit quantization map in local coordinates
above and direct estimates for the residual remainders (in ‰�1;l;
q .X/). A geometric
proof proceeds via the construction of an appropriate triple space.

Definition 2.10 (q-triple space). Define the following submanifolds of Œ0; 1�m �X3:

C D ¹.0; 0; 0; 0/º;

LF D ¹0º � ¹0º � ¹0º �X; LS D ¹0º �X � ¹0º � ¹0º; LC D ¹0º � ¹0º �X � ¹0º;

PF D ¹0º �X �X � ¹0º; PS D ¹0º � ¹0º �X �X; PC D ¹0º �X � ¹0º �X:

The q-triple space of X is then defined as

X3q WD
�
Œ0; 1� �X3IC ILF ; LS ; LC IPF ; PS ; PC

�
:

We denote by zfq;3 and mfq;3 the lifts of C and ¹0º �X3, respectively. For � D F; S; C ,
we denote by bfq;� and mfq;� the lifts of L� and P�, respectively; and diagq;� denotes the
lift of Œ0; 1�� .�X� /

�1.diagq/ where �X� WX
3! X2 are the projections �XF W .x; x

0; x00/ 7!

.x; x0/, �XS W .x; x
0; x00/ 7! .x0; x00/, �XC W .x; x

0; x00/ 7! .x; x00/. Finally, diagq;3 is the lift
of Œ0; 1� � diag3 where diag3 D ¹.x; x; x/W x 2 Xº is the triple diagonal.
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Lemma 2.11 (b-fibrations from the q-triple space). The projection map Œ0; 1�m � X3 3
.m; x; x0; x00/ 7! .m; x; x0/ 2 Œ0; 1� � X2 to the first and second factors of X3 lifts to a
b-fibration �F WX3q ! X2q , and similarly for the lifts �S , �C WX3q ! X2q of the projections
to the second and third, resp. first and third, factors of X3.

Proof. We only prove the result for �F . Since the lifted projection ŒŒ0; 1� � X3ILF �!
ŒŒ0; 1� �X2I ¹0º � ¹0º � ¹0º� is b-transversal to the lift of C � LF , it lifts to a b-fibration�

Œ0; 1� �X3IC ILF
�
!
�
Œ0; 1� �X2I ¹0º � ¹0º � ¹0º

�
:

The preimage of the lift of ¹0º � ¹0º �X , resp. ¹0º �X � ¹0º, is the lift of PS , resp. PC ,
and thus the lifted projection�

Œ0; 1� �X3IC ILF IPS ; PC
�
! X2q

is a b-fibration still. It is b-transversal to the lift of LS , and thus lifts to a b-fibration if
we blow up LS in the domain; since LS and PS are transversal, and since LS � PC ,
[74, Proposition 5.11.2] implies that we can commute the blow-up of LS through that of
PS ; PC . Arguing similarly for LC , we thus have a b-fibration�

Œ0; 1� �X3IC ILF ; LS ; LC IPS ; PC
�
! X2q :

This is b-transversal to the lift of PF ; blowing up PF in the domain thus gives the desired
b-fibration �F .

For later use, we record

��1F .zfq;2/ D zfq;3 [ bfq;F ; ��1F .mfq;2/ D mfq;3 [mfq;F ;

��1F .lbq;2/ D bfq;C [mfq;S ; ��1F .rbq;2/ D bfq;S [mfq;C ;

��1F .diagq/ D diagq;F ;

(2.12)

and similarly for the preimages under �S and �C .

Proposition 2.12 (Composition of q-ps.d.o.s). Let Aj 2 ‰
sj ;lj ;
j
q .X/, j D 1; 2. Then

A1 ı A2 2 ‰
s1Cs2;l1Cl2;
1C
2
q .X/.

Proof. Since the space ‰sq.X/ is invariant under conjugation by powers of �zfq and �mfq ,
it suffices to prove the result for l1 D l2 D 0 and 
1 D 
2 D 0. Write the Schwartz kernel �
of A1 ı A2 in terms of the Schwartz kernels �1; �2 of A1; A2 as

� D .�1�2/
�1.�C /�.�

�
F �1 � �

�
S�2 � �

�
C �1 � �

��2/

where 0 < �1 2 C1.XqI
q�X/ is an arbitrary q-density, and �2 D j dm

m
j is a b-density

on Œ0; 2/m with � WX3q ! Œ0; 1� denoting the lifted projection. The term in parentheses is
then a bounded conormal section of ��F

q�X ˝ ��S
q�X ˝ ��C

q�X ˝ ��b�Œ0;1�Œ0; 2/ Š
b�X3q which vanishes to infinite order at the boundary hypersurfaces of X3q which map
to lbq;2 or rbq;2 under �C . The conclusion then follows using pullback and pushforward
results for conormal distributions (see [74, Section 4] and [81]).
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A proof of the uniform (for m 2 .0; 1�, the point being uniformity as m & 0)
boundedness of elements of ‰0q .X/ on L2.X; �/ for 0 < � 2 C1.Xq;

q�X/ can be
reduced, using Hörmander’s square root trick (see [63, proof of Theorem 2.1.1]), to
the uniform L2-boundedness of elements of ‰�1q .X/. Such elements have Schwartz
kernels � 2 C1.X2q ; �

�
R

q�X/ which vanish to infinite order at lbq;2 and rbq;2. Push-
forward of � along �L thus gives an element of C1.Xq/. The Schur test implies the
desired L2-boundedness; since ‰q.X/ is invariant under conjugation by weights, we
deduce boundedness on L2.X; �/ for any weighted q-density �. One can then define
weighted Sobolev spaces H s;l;


q .X/ also for real orders s 2 R in the usual manner (cf.
Section A.4), and any A 2 ‰s;l;
q .X/ defines a (uniformly as m & 0) bounded map

H
Qs;Ql; Q

q .X/! H

Qs�s;Ql�l; Q
�

q .X/ for all Qs; Ql; Q
 2 R.

The normal operator maps (2.5)–(2.7) for q-differential operators imply relationships
between integer order q-Sobolev spaces on X and families of b-Sobolev spaces on collar
neighborhoods of OX and PX . We immediately state the version for general orders, which
rests on (2.11); for brevity, we restrict to the class of densities which we will use in Sec-
tion 3.

Proposition 2.13 (Relationships between Sobolev spaces). Fix a density � D �
n=2
zfq �0

where 0 < �0 2 C1.X; q�X/.12

(1) Consider the .change of coordinates/ map �zfq W .0; 1�m �
OXı 3 .m; Ox/ 7! .m;m Ox/

2 Xq, and let � 2 C1.Xq/ be identically 1 near zfq and supported in a collar neigh-
borhood of zfq � Xq. Then we have a uniform equivalence of norms

k�uk
H
s;l;

q;m .X/

� mn=2�l
k��zfq .�u/jmkH s;
�lb . OX;jd Oxj/; (2.13)

in the sense that there exists a constant C > 1 independent of m 2 .0; 1� such that the
left hand side is bounded by C times the right hand side, and vice versa.

(2) Consider the inclusion map �mfq W .0; 1�m �
PXı ,! Xq, and let � 2 C1.Xq/ be iden-

tically 1 near mfq and supported in a collar neighborhood of PX � Xq. Then we have
a uniform equivalence of norms

k�uk
H
s;l;

q;m .X/

� m�
k��mfq
.�u/jmkH s;l�
b . PX;�c/

; (2.14)

where �c is the lift of a fixed smooth positive density on X to PX . .Thus, one can take
�c D jdxj D rn�1jdr dgSn�1 j near r D 0./

Proof. Via division by ml , we can reduce to the case l D 0. Moreover, �mfq WD
mp
jxj2Cm2

is a defining function of mfq , and its pullback along �zfq is hOri�1, which is a defining
function of @ OX ; therefore, we may also reduce to the case 
 D 0.

For part (1), the L2-case s D 0 now follows from the observation that ��zfq .jdxj/ D

mnjd Oxj. For s > 0, fix an elliptic operatorA0 2‰sb. OX/ (independent of m) with Schwartz

12This includes as a special case m-independent smooth positive densities on X .
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kernel �0, and fix also Q� 2 C1c .Xq/ to be identically 1 near supp� but still with support
in a collar neighborhood of zfq; define then A 2 ‰sq. OX/ via its Schwartz kernel � as

� D .��L Q�/.�
�
R Q�/ � .�

�1
zfq /
��0; (2.15)

where �L; �RWX2q ! Xq denote the lifted left and right projections. (Thus, � is obtained
from �0 via dilation-invariant extension off zfq;2, followed by cutting it off to a neighbor-
hood of zfq;2.) In particular, A is elliptic as a q-ps.d.o. near the q-cotangent bundle over
supp�. We then have a uniform equivalence of norms

k�ukH sq;m.X/ � k.�u/jmkL2.X/ C kA.�u/jmkL2.X/

� mn=2
�
k��zfq .�u/jmkL2. OX;jd Oxj/ C kA0.�

�
zfq .�u/jm/kL2. OX;jd Oxj/

�
� mn=2

k��zfq .�u/jmkH sb . OX;jd Oxj/
;

as claimed. For s < 0, the claim follows by duality.
The proof of part (2) is completely analogous; one now takes an elliptic operator

A0 2 ‰
s
b.
PX/ to measure H s

b .
PX/-norms, and relates this to H s

q .X/-norms by measuring
the latter using a q-ps.d.o. A defined analogously to (2.15).

2.2. Q-single space

We shall control (solutions of) the degenerating spectral family for an infinite range
of spectral parameters on the following space, which is a resolution of a parameter-
dependent version of the q-single space Xq from Definition 2.1.

Definition 2.14 (Q-single space). The Q-single space of X is the resolution of R� �
Œ0; 1�m �X defined as the iterated blow-up

XQ WD ŒxR �XqI @xR � zfqI @xR �mfq� (2.16)

D
�
xR � Œ0; 1� �X I xR � ¹0º � ¹0ºI @xR � ¹0º � ¹0ºI @xR � ¹0º �X

�
: (2.17)

We denote its boundary hypersurfaces as follows:

(1) mf (the ‘main face’) is the lift of xR � ¹0º �X ;

(2) zf (the ‘zero energy face’) is the lift of xR � ¹0º � ¹0º;

(3) nf (the ‘nonzero energy face’) is the lift of @xR � ¹0º � ¹0º;

(4) if (the ‘intermediate semiclassical face’) is the lift of @xR � ¹0º �X ;

(5) sf (the ‘semiclassical face’) is the lift of @xR � Œ0; 1� �X .

The hypersurfaces nf, if, sf have two connected components each, denoted nf˙, if˙, sf˙,
corresponding to whether � DC1 or�1. ForH �XQ equal to any one of these bound-
ary hypersurfaces, we denote by �H 2C1.XQ/ a defining function ofH , i.e.H D ��1H .0/

and d�H ¤ 0 onH . For H D nf, we denote by �H a total boundary defining function for
nfC [ nf�, likewise for H D if; sf.
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We introduce a variety of functions defined on (subsets of) XQ. We denote by �;m
the lifts of the first two coordinates on R � Œ0; 1� �X . We furthermore write x D r! and
Ox D x=m, Or D r=m, O� D Or�1 as in (2.1)–(2.2). We also set

h D j� j�1; Qr WD
r

h
; Q� WD Qr�1 D

h

r
; Q� WD m�; Qh WD j Q� j�1 D

h

m
: (2.18)

See Figure 2.3.

zf

nf+

if+if+

mfmf

sf

σ

m

x̂

σ̃

x̂h

h

r̃

ρ̂

r

σ̃

ρ̃

rh̃

ρ̂

m

x̂

h̃

Fig. 2.3. The Q-single space XQ in the case X D .�1; 1/, restricted to � > �C , and the coordi-
nates (2.1), (2.2), and (2.18).

Proposition 2.15 (Structure of boundary hypersurfaces).

(1) The restriction of .�; Ox/ to the interior of zf induces a diffeomorphism

zf Š R� � OX:

Thus, zf is the total space of the .trivial/ fibration OX � zf! R� .

(2) The restriction of .�; .r; !// to the interior of mf induces a diffeomorphism

mf Š ŒxR � PX I @xR � @ PX�:

(3) The restriction of . Q�; Ox/ to the interior of nf˙ induces a diffeomorphism

nf˙ Š Œ.˙Œ0;1�/ � OX I ¹0º � OX�:

(4) The restriction of . Q�; x/ to the interior of if˙ induces a diffeomorphism

if˙ Š .˙Œ0;1�/ � PX:
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zf

nf+

if+if+

mfmf

sf

|σ| ≲ 1

1 ≪ σ ≪ m−1

σ ≃ m−1 (σ̃ ≃ 1)

Fig. 2.4. The Q-single space XQ for X D .�1; 1/. We show here the intersections of three level
sets of the (rescaled) frequency variable � ( Q� ) with m�1.0/: one level set � D �0 where j�0j . 1
is bounded and thus the rescaled Kerr frequency Q�0 D m�0 D 0 vanishes; one level set � D �1
where �1 is large but Q�1 WDm�1 still vanishes; and one level set Q� Dm� D Q�0 where the rescaled
frequency Q�0 is of order 1.

Proof. The front face of ŒxR � Œ0; 1� �X I xR � ¹0º � ¹0º� D xR � ŒŒ0; 1� �X I ¹0º � ¹0º� is
diffeomorphic to xR� xT0X D xR� OX (with coordinates � , Ox in the interior). The boundary
hypersurface zf is obtained from this front face by blowing up � D ˙1, which does not
change the smooth structure. (Note that the lift of the final submanifold @xR � ¹0º � X
in (2.17) is disjoint from this front face.) This proves part (1).

For part (2), we note that the lift of xR� ¹0º �X toXQ is given by first resolving xR�X
at xR � ¹0º (which produces xR � PX ) followed by the resolution of @xR � @ PX . Within this
space then, the final resolution in (2.17) only blows up the lift of @xR � PX , which does not
change the smooth structure.

For part (3), we first note that the front face nf0˙ of the blow-up of the lift of ¹˙1º �
¹0º � ¹0º toX 0Q WD ŒxR� Œ0; 1��X I xR� ¹0º � ¹0º� is diffeomorphic to Œ0;1�� � OX where
� D �=h with � D .r2 Cm2/1=2 a defining function of the front face of X 0Q. The final
blow-up in (2.17) restricts to nf0˙ as the blow-up of ¹1º � @ OX , that is,

nf˙ D
�
Œ0;1�� � OX I ¹1º � @ OX

�
:

Upon restriction to a compact subset K of the interior OXı in the second factor (thus
r .m), we can replace � by m, and thus � by m=hD˙Q� . (That is, �=.˙Q�/ is a positive
smooth function on Œ0;1�� �K.) Near the boundary of OX on the other hand, let us work
in the collar neighborhood Œ0; 1/ O� � Sn�1! of @ OX � OX . Since there we can replace � by r
and thus � by Qr , the lift of Œ0;1�� � Œ0; 1/ O� � Sn�1! to nf˙ is�
Œ0;1�Qr � Œ0; 1/ O� � Sn�1! I ¹1º � ¹0º � Sn�1!

�
D
�
Œ0;1� � Œ0; 1/I ¹1º � ¹0º

�
� Sn�1:
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Observe then that the map . Qr; O�/ 7! . Qr O�; O�/ induces a diffeomorphism�
Œ0;1� � Œ0; 1/I ¹1º � ¹0º

�
Š
�
Œ0;1� � Œ0; 1/I ¹0º � ¹0º

�
: (2.19)

Since Qr O� D ˙Q� , this proves part (3).
Finally, to prove (4), we note that coordinates near the lift of ¹1º � ¹0º � X to

ŒxR � Œ0; 1� �X I @xR � ¹0º � ¹0º� are r � 0, ! 2 Sn�1, O� D m=r � 0, and Q� D h=r � 0,
with the lift of ¹1º � ¹0º �X given by Q� D O� D 0. Therefore,

if Š Œ0;1� O�= Q� �X;

and it remains to note that O�= Q� D m=h D ˙Q� .

Definition 2.16 (Pieces of zf, mf and nf˙). We define

mf˙;„ WD mf \ ��1.˙Œ1;1�/;

nf
˙;Q„
WD nf˙ \ Q��1.˙Œ1;1�/; nf˙;low WD nf˙ \ Q��1.˙Œ0; 1�/:

We furthermore set, for �0 2 R and Q�0 2 R n ¹0º,

zf�0 WD zf \ ��1.�0/; mf�0 WD mf \ ��1.�0/; nfQ�0 WD nf \ Q��1. Q�0/:

Thus, using the notation for the single spaces for semiclassical cone, sc-b-transition,
and semiclassical scattering analysis from Sections A.2, A.1, and A.3, respectively, Pro-
position 2.15 provides diffeomorphisms

mf˙;„ Š PXc„ (with semiclassical parameter h D j� j�1 2 Œ0; 1�);

nf
˙;Q„
Š OXsc;Q„ (with semiclassical parameter Qh D jQ� j�1 2 Œ0; 1�);

nf˙;low Š OXsc-b (with spectral parameter Q� 2 ˙Œ0; 1�);

(2.20)

as well as
zf�0 Š OX; mf�0 Š PX; nfQ�0 Š OX:

2.3. Q-vector fields and differential operators

We next turn to the class of � - and m-dependent vector fields on X on which our uniform
analysis will be based.

Definition 2.17 (Q-vector fields). The space of Q-vector fields on X is defined as

VQ.X/ WD ¹V 2 �if�sfVb.XQ/WV� D 0; Vm D 0º:

Since XQ \ ¹� 2 R; m > 0º D R� � .0; 1�m � X , an element V 2 VQ.X/ is thus a
smooth family R� .0;1� 3 .�;m/ 7! V�;m of smooth vector fields onX which degenerate
or become singular in a particular fashion in the limits r ! 0, m! 0, j� j ! 1, or any
combination thereof.
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Lemma 2.18 (Properties of VQ.X/). The space VQ.X/ is a Lie algebra, and in fact

V;W 2 VQ.X/ H) ŒV;W � 2 �sf�ifVQ.X/: (2.21)

Moreover, for any weight w D
Q
H �

˛H
H whereH � XQ ranges over all boundary hyper-

surfaces and ˛H 2 R, we have w�1ŒV; w� 2 �sf�ifC
1.XQ/ for any V 2 VQ.X/.

Proof. The final claim follows from the fact that w�1ŒV0; w� 2 C1.XQ/ for any V0 2
Vb.XQ/. In order to prove (2.21), we observe that ŒV;W �� D V W� �W V� D 0, likewise
ŒV;W �m D 0; moreover, for w WD �sf�if and V D wV0, W D wW0 2 VQ.X/, we have

ŒV;W � D w
�
.w�1ŒV0; w�/W0 � .w

�1ŒW0; w�/wV0
�
2 wVb.XQ/;

which implies the claim.

We make this explicit in various local coordinate systems; we use the notation intro-
duced in (2.1), (2.2), and (2.18).

(1) The intersection of XQ with j Oxj < C is ŒŒ0; 1�m � R� � BI ¹0º � @xR � B� where
B D ¹ Ox 2 OX W j Oxj < C º is a ball. Thus, in the coordinates m; �; Ox, a basis of Q-vector
fields is given by @ Oxj (j D 1; : : : ; n) in the set where � is bounded or even where
j� j � 1 but Q� is bounded, and by Qh@ Oxj when j Q� j & 1 (where Qh is a defining function
of sf).

(2) The intersection of XQ with r > c > 0 is ŒŒ0; 1�m � R� � AI ¹0º � @xR � A� where
A D ¹x 2 X W jxj > cº. A basis of Q-vector fields, in the coordinates m; �; x (or r; !
instead of x), is then for bounded � given by @xj (j D 1; : : : ; n) (or equivalently @r
and spherical vector fields, which we schematically write as @!), and for large j� j by
h@xj (or h@r , h@!).

It remains to consider the subset of XQ where j Oxj > C and r < c.

(3) Near the interior of zf\mf, we have local coordinates � 2R, O�� 0, r � 0, ! 2 Sn�1,
and Q-vector fields are spanned by r@r � O�@ O�, @! .

(4) Near the corner zf \mf \ nfC, local coordinates are h � 0, Qr � 0, O� � 0, ! 2 Sn�1,
and Q-vector fields are spanned by Qr@Qr � O�@ O�, @! .

(5) Near the corner mf\ nfC \ ifC, local coordinates are r � 0, Q� � 0, Q� � 0, !, with Q�
a defining function of ifC, and Q-vector fields are spanned by Q�.r@r � Q�@ Q�/, Q�@! .

(6) Near the corner nfC \ ifC \ sf finally, local coordinates are r � 0, O� � 0, Qh � 0, !,
with O� and Qh being local defining functions of ifC and sf, respectively. Thus, Q-vector
fields are spanned by O� Qh.r@r � O�@ O�/, O� Qh@! .

One can also give a more global description: in j Oxj . 1, resp. j Oxj & 1, Q-vector fields
are spanned by

h

hCm
@ Oxj .j D 1; : : : ; n/; resp.

h

hC r
r@r ;

h

hC r
@! : (2.22)
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Definition 2.19 (Q-bundles). We denote by QTX ! XQ the Q-vector bundle, which is
the vector bundle equipped with a smooth bundle map QTX ! TXQ with the property
that VQ.X/ D C1.XQ;

QTX/. The dual bundle QT �X is the Q-cotangent bundle.

We next study restrictions of Q-vector fields to various boundary hypersurfaces ofXQ.
We use the notation from Appendix A. The following result, based on (2.20), is the reason
for the appearance of the various model problems in uniform singular analysis in the Q-
setting.

Lemma 2.20 (Restriction to boundary hypersurfaces).

(1) Restriction to zf induces a surjective map NzfWVQ.X/! C1.xRIVb. OX// with kernel
�zfVQ.X/.

(2) Restriction to mf�0 induces a surjective map Nmf�0
WVQ.X/ ! Vb. PX/. Restriction

to mf˙;„ induces a surjective map Nmf˙;„ WVQ.X/! Vc„. PX/ .see Section A.2/. The
kernel of

L
�02RNmf�0

is �mfVQ.X/.

(3) Restriction to nf˙;low and nf
˙;Q„

induces surjective maps Nnf˙;low
WVQ.X/! Vsc-b. OX/

.see Section A.3/ andNnf
˙; Q„
WVQ.X/!Vsc;„. OX/ .see Section A.1/, respectively. The

kernel of .Nnf˙;low
; Nnf

˙; Q„
/ is �nf˙VQ.X/.

We could leave mf in one piece; then restriction to mf induces a map from VQ.X/ onto
the space of b-vector fields on ŒR� � PX I@xR� @ PX�which annihilate � and vanish at the lift
of @xR � PX . This target space consists of smooth families of b-vector fields which degen-
erate like semiclassical cone vector fields as j� j ! 1. (An analogous remark applies
to nf˙.) The reason for splitting mf (or nf˙) is that the analysis at high energies j� j !1
(or j Q� j ! 1) will be conceptually different from the analysis at bounded frequencies �
(or Q� ).

Proof of Lemma 2.20. We prove this using the coordinate systems and local spanning
sets of VQ.X/ listed before the statement of Lemma 2.20. Thus, part (1) follows from
the observation that the map Nzf, in the coordinates m; �; Ox, resp. �; O�; r; !, maps @ Oxj to
itself (j D 1; : : : ; n), resp. r@r � O�@ O�, @! to � O�@ O�, @! , with coefficients that are smooth
on R� � OX .

For part (2), consider first the case of bounded � . The conclusion is then clear for
r > c > 0, whereas near mf \ zf and in the coordinates �; O�; r; !, the map Nmf maps
r@r � O�@ O� 7! r@r and @! 7! @! , thus has range equal to smooth families (in � ) of elements
of Vb. PX/. In the coordinates h; Qr; O�; ! near mf \ nf˙ \ zf, with O� a defining function of
mf, the map Nmf takes Qr@Qr � O�@ O� 7! Qr@Qr , @! 7! @! , thus its range consists of c„-vector
fields indeed. This is true also in the coordinates r; Q�;˙Q�; ! near mf \ nf˙ \ if˙ (with
˙Q� defining mf), in which Nmf maps Q�.r@r � Q�@ Q�/ and Q�@! to the same expressions;
since the semiclassical face of PXc„ is defined by Q� D 0, this proves part (2).

For part (3), the maps Nnf˙;low and Nnf˙;Q„
are given by the restriction to nf˙ of

coefficients of Q-vector fields, with respect to the bases listed in the various coordinate
systems prior to the statement of Lemma 2.18. These vector fields are indeed sc-b-vector
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fields on nf˙;low (with scattering behavior at Q� D 0, cf. the coordinate system near
nf˙ \ mf \ if˙), and semiclassical scattering vector fields on nf

˙;Q„
(with Qh the semi-

classical parameter, and with scattering behavior at O� D 0, cf. the coordinate system near
nfC \ ifC \ sf).

Corollary 2.21 (Bundle identifications). The restriction maps of Lemma 2.20 induce
bundle isomorphisms

QTzfX Š xR �
bT OX .as bundles over zf D xR � OX/;

QTmf�0
X Š bT PX; QTmf˙;„X Š

c„T PX;

QTnf˙;low
X Š sc-bT OX; QTnf

˙; Q„
X Š scQ„T OX;

and QTnf Q�0
X Š scT OX , where �0 2 R and Q�0 2 R n ¹0º.

Definition 2.22 (Q-differential operators). Form2N0, we denote by DiffmQ .X/ the space
of locally finite sums of up to m-fold compositions of elements of VQ.X/ (a 0-fold com-
position is, by definition an element of C1.XQ/). Given a collection ˛D .˛H / of weights
˛H 2 R for H D zf;mf; nf; if; sf, we denote more generally

Diffm;˛Q .X/ D
�Y
H

�
�˛H
H

�
DiffmQ .X/ D

°�Y
H

�
�˛H
H

�
AWA 2 DiffmQ .X/

±
:

Analogously to Q-vector fields, Q-differential operators A 2 DiffmQ .X/ are smooth
families .m; �/ 7! Am;� 2 Diffm.X/ of differential operators on X which degenerate in
a particular fashion as m! 0, j� j ! 1, and/or r ! 0. Note that elements of DiffQ.X/

commute with multiplication by m and � , with

m 2 Diff0;.�1;�1;�1;�1;0/Q .X/; � 2 Diff0;.0;0;1;1;1/Q .X/: (2.23)

Thus, for instance, it suffices to restrict in Definition 2.22 to the case ˛mf D ˛nf D 0. We
also remark that a � -independent q-differential operatorA 2Diffmq .X/ defines an element

A 2 Diffm;.0;0;0;m;m/Q .X/; this is a consequence of the fact that V 2 Vq.X/, regarded as a
� -independent vector field on XQ, satisfies V 2 ��1if �

�1
sf VQ.X/, as follows directly from

the definition. Recalling (2.4), this implies that, regarding an operator on X as an m- and
� -independent operator on Xq and XQ,

Diffm.X/ � ��mzfq
Diffmq .X/ � Diffm;.m;0;m;m;m/Q .X/: (2.24)

The principal symbol Qσ1.V / of V 2VQ.X/, defined as mapping � 2 QT �X to i�.V /,
is a fiber-linear function. The property (2.21) implies that the principal symbol extends to
a multiplicative family of maps Qσm with the property that

0!�sf�ifDiffm�1Q .X/,!DiffmQ .X/
Qσm

���!Pm.QT �X/=�sf�ifP
m�1.QT �X/!0 (2.25)
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is a short exact sequence. By Lemma 2.20, we get multiplicative normal operator maps

NzfWDiffmQ .X/! C1.xRIDiffmb . OX//;

Nmf�0
WDiffmQ .X/! Diffmb . PX/; Nmf˙;„ WDiffmQ .X/! Diffmc„. PX/;

Nnf˙;low
WDiffmQ .X/! Diffmsc-b.

OX/; Nnf
˙; Q„
WDiffmQ .X/! Diffm

scQ„
. OX/;

(2.26)

as well as similar maps on spaces of weighted operators (with the weight at H required
to be 0 in the definition of NH ). Moreover, the principal symbol of Nzf.P / is given
by the restriction of Qσm.P / to QT �zfX Š

xR � bT � OX via Corollary 2.21, and similarly
for the principal symbols of the other normal operators. Note also that the vanishing of
Nzf.P /, resp. Nmf�0

.P / for all �0, resp. Nnf˙;low
.P / and Nnf

˙; Q„
.P / implies that P van-

ishes to leading order the appropriate boundary hypersurface, i.e. P 2 �zfDiffmQ .X/, resp.
P 2 �mfDiffmQ .X/, resp. P 2 �nf˙DiffmQ .X/. Together with Qσm.P /, these normal oper-
ators thus capture P to leading order in all six senses (corresponding to the six orders in
Definition 2.22).

Furthermore, we can restrict to level sets ��1.�0/ or Q�. Q�0/ for �0 2R or Q�0 2R n ¹0º.
This gives normal operator homomorphisms

N�0 WDiffmQ .X/! Diffmq .X/; Nnf Q�0
WDiffmQ .X/! Diffmsc .

OX/:

See Section 3.3 for the way in which the spectral family of interest in Theorem 1.1
fits into this framework of Q-analysis.

2.4. Q-pseudodifferential operators

The microlocal analysis of Q-differential operators relies on a corresponding Q-pseudo-
differential algebra, which we proceed to define; analogously to Q-differential operators,
a Q-ps.d.o. A will be a smooth family R � .0; 1� 3 .�;m/ 7! A�;m of ordinary ps.d.o.s
on a manifold X without boundary.

Definition 2.23 (Q-double space). Recall the q-double space X2q of X and its submani-
folds zfq;2 Š OX

2
b , mfq;2 Š PX

2
b , lbq;2, rbq;2, and diagq from Definition 2.6. The Q-double

space of X is then defined as the resolution of R� �X2q given by

X2Q WD Œ
xR �X2q I @xR � zfq;2I @xR � diagqI

@xR � .diagq\mfq;2/; @xR � lbq;2; @xR � rbq;2I @xR �mfq;2�: (2.27)

We label its boundary hypersurfaces as follows:

(1) zf2 is the lift of xR � zfq;2;

(2) mf2 is the lift of xR �mfq;2;

(3) nf2 is the lift of @xR � zfq;2;

(4) if2 is the lift of @xR � .diagq\mfq;2/, and if02 is the lift of @xR �mfq;2;

(5) sf2 is the lift of @xR � diagq, and sf02 is the lift of @xR �X2q ;
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(6) lb2, resp. rb2, is the lift of xR � lbq;2, resp. xR � rbq;2;

(7) tlb2, resp. trb2, is the lift of @xR � lbq;2, resp. @xR � rbq;2.

We denote by nf2;˙ the connected components of nf2 corresponding to the value of
� D ˙1, and similarly for if2;˙, if02;˙, sf2;˙, sf02;˙, tlb2;˙, trb2;˙. Furthermore, we
write, for �0 2 R and Q�0 2 R n ¹0º,

mf2;�0 WD mf2 \ ��1.�0/; mf2;˙;„ WD mf2;˙ \ ��1.˙Œ1;1�/;

nf2;˙;low WD nf2;˙ \ Q��1.˙Œ0; 1�/; nf
2;˙;Q„

WD nf2;˙ \ Q��1.˙Œ1;1�/;

and nf2;Q�0 WD nf2 \ Q��1. Q�0/. Finally, diagQ denotes the lift of xR � diagq.

In (2.27), note that @xR � lbq;2, @xR � rbq;2, and @xR � .diagq \mfq;2/ are disjoint, and
hence they can be blown up in any order.

Lemma 2.24 (b-fibrations from the Q-double space). The left .resp. right/ projection
R� .0; 1��X �X 3 .�;m; x; x0/ 7! .�;m; x/ 2 R� .0; 1��X , resp. .�;m; x0/, lifts to
a b-fibration �L, resp. �RWX2Q ! XQ.

Proof. We only discuss the case of the left projection. Using Lemma 2.7, we start with
the fact that the left projection lifts to a b-fibration Q�LW xR � X2q ! xR � Xq; the relevant
preimages of the centers in (2.16) are

Q��1L .@xR � zfq/ D .@xR � zfq;2/ [ .@xR � lbq;2/;

Q��1L .@xR �mfq/ D .@xR �mfq;2/ [ .@xR � rbq;2/: (2.28)

From the first line and [74, Proposition 5.12.1], we deduce that the lift of Q�L to

ŒxR �X2q I @xR � zfq;2I @xR � lbq;2�! ŒxR �XqI @xR � zfq�

is a b-fibration. Since this is b-transversal to the lift of @xR � diagq (which is mapped
diffeomorphically to a copy of Xq), it lifts to a b-fibration

ŒxR �X2q I @xR � zfq;2I @xR � diagq; @
xR � lbq;2�! ŒxR �XqI @xR � zfq�:

By (2.28), the preimage of the lift of @xR �mfq under this map is the union of the lifts of
@xR �mfq;2, @xR � .diagq\mfq;2/, and @xR � rbq;2. By [74, Proposition 5.11.2], the lift

ŒxR �X2q I @xR � zfq;2I @xR � diagq; @
xR � lbq;2I @xR � rbq;2I

@xR � .diagq\mfq;2/I @xR �mfq;2�! XQ

is therefore a b-fibration. This finishes the proof.

Definition 2.25 (Q-pseudodifferential operators). Let s 2R and ˛D .˛H /where ˛H 2R
for H D mf; zf; nf; if; sf. Then ‰s;˛Q .X/ consists of all smooth families

A D .Am;� /m2.0;1�; �2R
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of bounded linear operators on C1c .X/ whose Schwartz kernels are elements of

�
�˛zf
zf2 �

�˛mf
mf2 �

�˛nf
nf2 �

�˛if
if2 �

�˛sf
sf2 Im�1=2.X2Q; diagQI�

�
R

Q�X/ (2.29)

which are conormal down to all boundary hypersurfaces ofX2Q and vanish to infinite order
at all boundary hypersurfaces other than mf2, zf2, nf2, if2, sf2 (and the lift of m�1.1/).
The subspace of operators whose Schwartz kernels are classical conormal at zf2;mf2; nf2
is denoted ‰s;˛Q;cl.X/.

Remark 2.26 (Defining functions). Note that ��1L .zf/ D zf2 [ lb2, and indeed the defin-
ing function zf lifts to X2Q under �L to a product of defining functions of zf2 and lb2. In
view of the infinite order of vanishing of Schwartz kernels of Q-ps.d.o.s at lb2, we can
therefore replace the weight �zf2 in (2.29) by (the left lift of) �zf. Similarly,

��1L .mf/ D mf2 [ rb2; ��1L .nf/ D nf2 [ tlb2;

��1L .if/ D if2 [ if02 [ trb2; ��1L .sf/ D sf2 [ sf02:

Similar statements hold for �R in place of �L. Together, they imply that ‰s;˛Q .X/ is
invariant under conjugation by weights

Q
�
�˛H
H on XQ.

For local coordinate descriptions, we shall use the smooth functions on X2Q obtained
by lifting coordinates on XQ to the left or right factor; the left lift will be denoted by the
same symbol, and the right lift with the primed symbol. For example, Ox and Ox0 denote the
left and right lifts of the function on XQ denoted Ox in (2.2).

For bounded � , Q-ps.d.o.s are smooth families (in � ) of q-ps.d.o.s, for which a local
coordinate description was given in (2.9). Consider next the region j Oxj; j Ox0j . 1 for � & 1.
Near ¹1º � .diagq \ zfıq;2/ � xR � X

2
q , we can then use local coordinates h � 0, m � 0,

Ox0, and y WD Ox � Ox0, with the diagonal defined by y D 0. Upon blowing up h D m D 0,
the lift of h D 0 is defined by h

hCm
D 0; upon passing to the subsequent blow-up of the

lift of @xR � diagq, coordinates near the Q-diagonal are thus

yQ WD
y

h=.hCm/
;

and therefore a typical element of ‰s;˛Q .X/ is given by

.OpQ;m;h�1.a/u/. Ox/ D .2�/
�n

Z
exp

�
i
Ox � Ox0

h=.hCm/
� �

�
�.j Ox � Ox0j/a.h;m; Ox; �/ d�;

(2.30)

where a is a symbol, or more precisely a is conormal on XQ � Rn with order ˛H at
H � Rn for H D zf; nf; sf, and order s at Xq � @Rn; and � 2 C1c ..�1

2
; 1
2
// is iden-

tically 1 near 0. Thus, (2.30) is essentially a semiclassical ps.d.o. with semiclassical
parameter h

hCm
. We also note that the left lift of the basis h

hCm
@ Oxj of VQ.X/ in this

coordinate system (see (2.22)) is given by @
y
j
Q

, which is transversal to diagQ D y
�1
Q .0/.

Working in the region j Oxj; j Ox0j & 1 for � & 1, we can use as smooth coordinates near
¹1º � diagq �

xR � X2q the functions h � 0, m=r 0 � 0, r 0 � 0, !0 2 Rn�1, z D r�r 0

r 0
,
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wD ! �!0 2Rn�1 where we fix local coordinates on Sn�1. Upon blowing up @xR� zfq;2

(given by h D r 0 D 0), the lift of h D 0 is given by h
hCr 0

D 0; passing to the subsequent
blow-up of the lift of @xR � diagq, coordinates transversal to the lifted diagonal are thus

.zQ; wQ/ WD
.z; w/

h=.hC r 0/
:

These coordinates remain transversal to the lift of the diagonal to the subsequent blow-ups
in (2.27). Thus, an element of ‰s;˛Q .X/ is given by

.OpQ;m;h�1.a/u/.r; !/ D .2�/
�n

“
exp

�
i

�
r � r 0

r 0 h
hCr 0

� C
! � !0

h=.hC r 0/
� �

��
� �

�ˇ̌̌̌
r � r 0

r 0

ˇ̌̌̌�
�.j! � !0j/a.h;m; r; �; �/ d� d�; (2.31)

where a is conormal on XQ �Rn
.�;�/

with order ˛H atH � xRn for all boundary hypersur-

faces H � XQ, and order s at XQ � @Rn.�;�/. Since the second spanning set of Q-vector
fields in (2.22) lifts to the left factor of X2Q as @zQ , @wQ , we conclude that also in this
region the left lift of VQ.X/ is transversal to diagQ.

As a consequence of the two transversality statements, we obtain a bundle isomor-
phism QTX Š TdiagQX

2
Q=T diagQ D N diagQ given by the left lift, and therefore

N � diagQ Š
QT �X: (2.32)

Moreover, for m 2 N0, we conclude that Diffm;˛Q .X/ � ‰
m;˛
Q .X/ consists of those oper-

ators whose Schwartz kernels are Dirac distributions at diagQ. Generalizing (2.25), the
principal symbol map Qσs;˛ on ‰s;˛Q .X/ fits into the short exact sequence

0! �if�sf‰
s;˛
Q .X/ ,! ‰

s;˛
Q .X/

Qσs;˛

����! .S s;˛=�if�sfS
s�1;˛/.QT �X/! 0:

Finally, we conclude that pushforward along �L is a continuous map from ‰sQ.X/, resp.
‰sQ;cl.X/, into A0.XQ/, resp. C1.XQ/; thus, Q-ps.d.o.s define bounded linear maps on
A0.XQ/, or on C1.XQ/ for classical ps.d.o.s.

We may allow for the orders s, ˛if, ˛sf to be variable; in this paper we only need to
consider the case where the if-order is variable,

αif 2 C1.QT �if X/;

while s; ˛sf are constant; for ˛ D .˛zf; ˛mf; ˛nf;αif; ˛sf/, the principal symbol map then
takes values in .S s;˛=�1�2ıif �sfS

s�1;˛/.QT �X/ for any ı > 0.
In order to study the normal operators of Q-ps.d.o.s, we need the following result,

which is the double space analogue of Lemma 2.20.

Proposition 2.27 (Boundary hypersurfaces ofX2Q). We have the following natural diffeo-
morphisms:
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(1) zf2 Š xR � OX2b ;

(2) mf2;�0 Š PX
2
b . for �0 2 R/;

(3) mf2;˙;„ Š PX2c„ .see Section A.2/ with semiclassical parameter h D j� j�1;

(4) nf2;˙;low Š OX
2
sc-b .see Section A.3/ with spectral parameter Q� D m� ;

(5) nf
2;˙;Q„

Š OX2sc;„ .see Section A.1/ with semiclassical parameter Qh D jQ� j�1.

That is, the local coordinates �; Ox; Ox0 restrict to a map zf ı2 !R�Rn
Ox
�Rn

Ox0
which extends

by continuity to the diffeomorphism in part (1), and similarly for the other diffeomor-
phisms.

Proof. We obtain zf2 by first blowing up @xR � zfq;2 � xR � zfq;2, which thus does not
change the smooth structure of xR� zfq;2; the lifts of the remaining submanifolds in (2.27)
to ŒxR �X2q I @xR � zfq;2� are disjoint from the lift of xR � zfq;2. This proves part (1).

Next, mf2 arises from xR � mfq D xR � PX2b (see Lemma 2.9) by first blowing up its
intersection @xR � ffb with @xR � zfq;2, where ffb denotes the front face of PX2b ; then one
blows up the intersection with the lift of @xR � diagq, which is equal to the intersec-
tion with the lift of @xR � .diagq \mfq;2/ and thus given by the lift of @xR � diagb to
ŒxR � PX2b I @xR � ffb�. This blow-up thus produces

ŒxR � PX2b I @xR � ffbI @xR � diagb�:

The intersection of this space with the lift of @xR � lbq;2 is @xR � lbb, and similarly for the
right boundary; hence blowing up both of these lifts produces

ŒxR � PX2b I @xR � ffb; @xR � lbb; @xR � rbb; @xR � diagb�: (2.33)

The intersections of this space with the lift of @xR � .diagq \mfq;2/ or with the lift of
@xR � mfq;2 are both boundary hypersurfaces, hence their blow-up does not affect the
smooth structure. Upon intersecting the space (2.33) with ��1.�0/ or ��1.˙Œ1;1�/, we
thus obtain the isomorphisms stated in parts (2) and (3).

Finally, we consider nf2;C. Let Œ0; "/�zfq;2
� zfq;2 be a collar neighborhood of

zfq;2 � X
2
q . We take �zfq;2 D

p
m2 C jxj2 C jx0j2 for concreteness. Then the front face

of ŒxR�X2q I ¹1º � zfq;2� is that of ŒŒ0; 1�h � Œ0; "/�zfq;2
� zfq;2I ¹0º � ¹0º � zfq;2�, and thus

equal to
nf02;C WD Œ0;1� Qh0 � zfq;2 D Œ0;1� Qh0 �

OX2b ;
Qh0 WD h=�zfq;2 :

The intersections of the lifts of

¹1º � diagq; ¹1º � .diagq\mfq;2/; ¹1º � lbq;2; ¹1º � rbq;2; ¹1º �mfq;2

with nf02;C are given by

¹0º � diagb; ¹0º � @ diagb; ¹0º � lbb; ¹0º � rbb; ¹0º � ffb;

respectively; we need to blow these up in the listed order. In fact, the first two blow-
ups can be performed after the third and fourth (since the first/second and third/fourth
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submanifolds are disjoint); then, since @diagb D diagb\ ffb, one can blow up ¹0º � diagb,
¹0º � @ diagb, and ¹0º � ffb in the order ¹0º � ffb, ¹0º � @ diagb, ¹0º � diagb. Thus,

nf2;CD
�
Œ0;1� Qh0 �

OX2b I ¹0º � lbb; ¹0º � rbbI ¹0º � ffbI ¹0º � @diagbI ¹0º � diagb

�
: (2.34)

To analyze this space, we introduce O�tot WD .1Cj Oxj
2Cj Ox0j2/�1=2D O�lbb O�ffb O�rbb , which

is a total boundary defining function of OX2b . We then claim that the change of coordinates
map . Qh0; Ox; Ox0/ 7! . Q�; Ox; Ox0/ with Q� D .1C j Oxj2 C j Ox0j2/�1=2= Qh0 D O�tot= Qh

0 induces a dif-
feomorphism13

�
Œ0;1� Qh0 �

OX2b I ¹0º � lbb; ¹0º � rbbI ¹0º � ffb
��

Œ0;1�Q� � OX
2
b I ¹0º � ffbI ¹0º � lbb; ¹0º � rbb

�
: (2.35)

(See Figure 2.5.) This is clear over the interior . OXı/2 of OX2b . We have ffb Š Œ0;1�s �

.@ OX/2 where s D O�= O�0 with O� D j Oxj�1 D O�lbb O�ffb and O�0 D j Ox0j�1 D O�rbb O�ffb for suitable
defining functions O�lbb , O�ffb , O�rbb of lbb, ffb, rbb � OX

2
b , so

s D O�lbb= O�rbb :

Thus, a collar neighborhood of ffb � OX
2
b is given by Œ0; "/ O�ffb

� Œ0;1�s � .@X/
2. Upon

dropping the factor .@X/2, the claim (2.35) thus reads�
Œ0;1� Qh0 � Œ0; "/ O�ffb

� Œ0;1�sI ¹0º � Œ0; "/ � ¹0º; ¹0º � Œ0; "/ � ¹1ºI

¹0º � ¹0º � Œ0;1�
�

Š
�
Œ0;1�Q� � Œ0; "/ � Œ0;1�I ¹0º � ¹0º � Œ0;1�I

¹0º � Œ0; "/ � ¹0º; ¹0º � Œ0; "/ � ¹1º
�

(2.36)

via the change of coordinates map �W . Qh0; O�ffb ; s/ 7! . O�lbb O�ffb O�rbb=
Qh0; O�ffb ; s/, where we

put O�lbb D
s
sC1

and O�rbb D
1
sC1

. The proof of (2.36) proceeds by explicit calculations in
local coordinate systems, and is pictorially given in Figure 2.5. Upon using the diffeo-
morphism (2.35) in (2.34), we then find that

nf2;C D
�
Œ0;1�Q� � OX

2
b I ¹0º � ffbI ¹0º � lbb; ¹0º � rbbI Œ0;1� � @ diagbI ¹1º � diagb

�
:

This implies parts (4) and (5). The proof is complete.

The relationship between the semiclassical, resp. doubly semiclassical, cone algebras
of [55] and the Q-algebra in the intermediate semiclassical regime j� j �m�1 (mentioned
in the discussion of the very large frequency regime in Section 1.4), resp. fully semiclas-
sical regime j� j � m�1, is described in Appendix B.

We now switch to a less cumbersome notation for the weights, writing l D ˛zf,

 D ˛mf, l 0 D ˛nf, r D ˛if, b D ˛sf.

13This is the analogue, in the double space setting, of the isomorphism (2.19).
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Fig. 2.5. Illustration of (the proof of) the diffeomorphism (2.36). Left: The space on the left in (2.36).
Right: The space on the right in (2.36). Also shown are matching local coordinate systems near the
various boundary faces; in the listed coordinate systems, we have O�tot � O�lbb O�ffb , and we also recall
that Q� D O�tot= Qh

0.

Corollary 2.28 (Normal operators). Restricting Schwartz kernels of classical Q-ps.d.o.s
to the boundary hypersurfaces zf2, mf2;˙;„, nf2;˙;low, and nf

2;˙;Q„
defines surjective nor-

mal operator maps

NzfW‰
s;.0;
;l 0;r;b/
Q;cl .X/! C1.xRI‰s;
b . OX//;

Nmf˙;„ W‰
s;.l;0;l 0;r;b/
Q;cl .X/ ! ‰

s;l;l 0;r
c„ . PX/;

Nnf˙;low
W‰

s;.l;
;0;r;b/
Q;cl .X/ ! ‰

s;r;
;l
sc-b . OX/;

Nnf
˙; Q„
W‰

s;.l;
;0;r;b/
Q;cl .X/ ! ‰

s;r;b

scQ„
. OX/:

Moreover, for �0 2R and Q�0 2R n ¹0º, restriction to ��1.�0/, ��1.�0/\mf2, and nf2;Q�0
defines surjective maps

N�0 W‰
s;.l;
;l 0;r;b/
Q .X/! ‰s;.l;
/q .X/;

Nmf�0
W‰

s;.l;0;l 0;r;b/
Q .X/! ‰

s;l
b . PX/;

Nnf Q�0
W‰

s;.l;
;0;r;b/
Q .X/ ! ‰s;rsc .

OX/;

respectively. All statements hold also for variable if-orders r 2 C1.QT �if X/.

Since ‰sQ;cl.X/ acts boundedly on C1.XQ/ and is invariant under conjugation by

weights, these normal operators can be defined via testing: for A 2 ‰s;.0;
;l
0;r;b/

Q;cl .X/, the
operatorNzf.A/ can be defined viaNzf.A/u WD .A Qu/jzf where Qu2C1.XQ/ is any smooth
extension of u 2 PC1.zf/; likewise for the other normal operators. In particular, the above
normal operator maps are homomorphisms under composition, where we compose Q-
ps.d.o.s as operators between spaces of weighted smooth functions (i.e. classical conormal
distributions) on XQ.
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We finally show that the spaces ‰Q.X/ and ‰Q;cl.X/ are closed under composi-
tion. This can be done in a straightforward but tedious manner using the local coor-
dinate descriptions (2.30)–(2.31) (while residual operators, i.e. those with orders s, ˛if,
˛sf D �1, are handled directly on the level of Schwartz kernels). Keeping in line with
the presentation thus far, we instead sketch the proof based on an appropriate triple space.

We use the notation for the q-triple space X3q from Definition 2.10, and furthermore
write

@xR �mfq;S=C D ¹@xR �mfq;S ; @xR �mfq;C º;

and similarly @xR � bfq;F=S=C , etc.

Definition 2.29 (Q-triple space). The Q-triple space of X is the resolution

X3Q WD Œ
xR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @

xR � diagq;F=S=C I

@xR � .diagq;F=S=C \mfq;F=S=C /I @xR �mfq;F=S=C I

@xR � .diagq;F=S=C \mfq;3/I @xR �mfq;3�:

Lemma 2.30 (b-fibrations from the Q-triple space). The projection R� � Œ0; 1�m � X3

! xR � Œ0; 1� �X2 to the first and second factors of X , given by

.�;m; x; x0; x00/ 7! .�;m; x; x0/;

lifts to a b-fibration �F WX3Q ! X2Q, and similarly for the lifts �S , �C WX3Q ! X2Q of the
projections to the second and third, resp. first and third, factors of X3.

Proof. Denote the lifted projection from Lemma 2.7 by �q;F . We make use of the descrip-
tion (2.12) of the preimages of boundary hypersurfaces of X2q under �q;F . We start with
the b-fibration Id��q;F W xR � X3q ! xR � X

2
q . By [74, Proposition 5.12.1], this map lifts

to a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F �! ŒxR �X2q I @xR � zfq;2�:

We next blow up @xR� lbq;2 and @xR� rbq;2 in the image; blowing up the preimages in the
domain—see (2.12)— thus gives a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR �mfq;S=C �

! ŒxR �X2q I @xR � zfq;2I @xR � .lbq;2 [ rbq;2/�:

We have used here the fact that @xR �mfq;S and @xR � bfq;S are disjoint to commute their
blow-ups. Next, we blow up @xR� diagq in the range and correspondingly @xR� diagq;F in
the domain; we may subsequently also blow up @xR � diagq;3 in the domain, as the lifted
projection is b-transversal to this. This produces a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @
xR � diagq;F I @

xR �mfq;S=C �

! X2Q;[ WD Œ
xR �X2q I @xR � zfq;2I @xR � diagq; @

xR � .lbq;2 [ rbq;2/�: (2.37)
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Here we use @xR � diagq;3 � @
xR � diagq;F , which implies that we can switch the order

of their blow-ups; and moreover mfq;S and mfq;C are disjoint from diagq;3 and diagq;F ,
hence their blow-ups can be commuted through to the end.

In the domain, we next blow up @xR � .diagq;� \mfq;�/ for � D S; C (whose lifts
get mapped diffeomorphically onto the lifts of @xR � lbq;2 and @xR � rbq;2); they can be
commuted through the blow-ups of their supersets @xR � mfq;S=C . We thus obtain a b-
fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @
xR � diagq;F I

@xR � .diagq;S=C \mfq;S=C /I @xR �mfq;S=C �! X2Q;[: (2.38)

We can then blow up @xR� diagq;S in the domain; this blow-up can be commuted through
that of @xR �mfq;� for � D S (since the intersection @xR � .diagq;S \mfq;S / is blown up
before) and also for � D C (by disjointness), and then it can be commuted further through
its subset @xR� .diagq;S \mfq;S /. Arguing similarly for the blow-up of @xR� diagq;C , the
map (2.38) thus lifts to a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @
xR � diagq;F=S=C I

@xR � .diagq;S=C \mfq;S=C /I @xR �mfq;S=C �! X2Q;[: (2.39)

Next, blowing up @xR � .diagq \mfq;2/ in the range, and using (2.12) to deduce that
we need to blow up @xR � .diagq;F \mfq;F / and @xR � .diagq;F \mfq;3/ in the domain,
we infer that the map (2.39) lifts further to a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @
xR � diagq;F=S=C I

@xR � .diagq;F=S=C \mfq;F=S=C /I @xR �mfq;S=C I @xR � .diagq;F \mfq;3/�

! X2Q;] WD Œ
xR �X2q I @xR � zfq;2I

@xR � diagq; @
xR � .diagq\mfq;2/; @xR � .lbq;2 [ rbq;2/�:

For the commutation of blow-ups, we use here the fact that diagq;F is disjoint from
mfq;S=C . To restore some symmetry, we then blow up @xR � .diagq;� \mfq;3/ in the
domain for � D S; C ; these get mapped diffeomorphically onto the lift of @xR � mfq;2.
Thus, we get a b-fibration

ŒxR �X3q I @xR � zfq;3I @xR � bfq;F=S=C I @xR � diagq;3I @
xR � diagq;F=S=C I

@xR � .diagq;F=S=C \mfq;F=S=C /I @xR �mfq;S=C I @xR � .diagq;F=S=C \mfq;3/�

! X2Q;]:

Finally, we again use [74, Proposition 5.12.1] to lift this map to a b-fibration under
the blow-up of @xR � mfq;2 in the range (producing X2Q) and of the lifts of its preimages
@xR�mfq;F and @xR�mfq;3 (in this order) in the domain; the resulting domain is naturally
diffeomorphic to X3Q, since the blow-up of @xR �mfq;F can be commuted through that of



Mode stability of Kerr–de Sitter black holes away from extremality 4933

@xR � .diagq;� \mfq;3/ for � D F (since the set @xR � .diagq;F \mfq;F / containing their
intersection is blown up earlier) and for � D S; C (by disjointness). This finishes the
proof.

Proposition 2.31 (Composition of Q-ps.d.o.s). Let Aj 2 ‰
sj ; j̨
Q .X/, j D 1; 2. Then

A1 ı A2 2 ‰
s1Cs2;˛1C˛2
Q .X/. The same holds true when working with ‰Q;cl instead.

Proof. The proof is similar to that of Proposition 2.12. By Remark 2.26, it suffices to
consider the case ˛1 D ˛2 D .0; 0; 0; 0; 0/. Write the Schwartz kernel � of A1 ı A2 in
terms of the Schwartz kernels �1; �2 of A1; A2 as

� D .�1�2/
�1.�C /�.�

�
F �1 � �

�
S�2 � �

�
C �1 � �

��2/

where 0 < �1 2C1.XQI
Q�X/ is an arbitrary q-density, and �2D dm

m
d�
h�i

is a b-density on
R� � Œ0; 2/m with � WX3Q ! xR � Œ0; 1� denoting the lifted projection. One can then check
that the term in parentheses is a bounded conormal section of ��F

Q�X ˝ ��S
Q�X ˝

��C
Q�X ˝ ��b�xR�Œ0;1�.

xR � Œ0; 2// which vanishes to infinite order at the boundary
hypersurfaces of X3Q which map to if02, sf02, lb2, rb2, tlb2, or trb2 under �C ; thus, it is
a bounded conormal section of b�X3Q which vanishes at the aforementioned boundary
hypersurfaces. The conclusion then follows using pullback and pushforward results for
conormal distributions.

2.5. Q-Sobolev spaces

We now assume that X is compact. We can define weighted Sobolev spaces (corre-
sponding to the Lie algebra VQ.X/) of integer differential order in the usual manner,
analogously to Definition 2.5; we leave it to the reader to spell this out. Here, we instead
immediately record the definition for general orders, allowing in particular also for vari-
able orders at if.

Definition 2.32 (Weighted Q-Sobolev spaces). Fix any positive weighted Q-density �
on XQ, i.e. an element � D .

Q
�
�H
H /�0 where 0 < �0 2 C1.XQ;

Q�X/ and �H 2 R, and
H ranges over the boundary hypersurfaces zf;mf; nf; if; sf. Thus, the restriction �m;� is a
smooth positive density on X for any m 2 .0; 1�, � 2 R. Let s 2 R and l; 
; l 0; r; b 2 R;
put w WD �lzf�



mf�

l 0

nf�
r
if�
b
sf. Then for s � 0, and for m 2 .0; 1� and � 2 R, we put

H
s;.l;
;l 0;r;b/
Q;m;� .X; �/ D H s.X/ (2.40a)

with .m; �/-dependent norm

kuk2
H
s;.l;
;l0;r;b/
Q;m;� .X;�/

WD kw�1uk2
L2.X;�m;� /

C kw�1Am;�ukL2.X;�m;� /
; (2.40b)

where A D .Am;� / 2 ‰
s
Q.X/ is any fixed Q-ps.d.o. with elliptic principal symbol. For

s < 0, we define the space (2.40a) as a Hilbert space by letting it be the dual space (with
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respect to the inner product on L2.X; �m;� /) ofH�s;.�l;�
;�l
0;�r;�b/

Q;m;� .X; �/.14 Finally, for

variable orders r 2 C1.QT �if X/, we define the norm on H s;.l;
;l 0;r;b/
Q;m;� .X; �/ D H s.X/ to

be
kuk2

H
s;.l;
;l0;r;b/
Q;m;� .X;�/

WD kuk2
H
s;.l;
;l0;r0;b/

Q;m;� .X;�/
C kAuk2

L2.X;�m;� /

where r0 D min r, and where A 2 ‰s;.l;
;l
0;r;b/

Q .X/ is a fixed elliptic operator.

We claim that any A 2 ‰0Q.X/ is uniformly (for m 2 .0; 1� and � 2 R) bounded
on L2.X; �/ when 0 < � 2 C1.XQ;

Q�X/ is a positive Q-density. As in Section 2.1,
the proof can be reduced, using Hörmander’s square root trick, to the case of A 2
‰
�1;.0;0;0;�1;�1/
Q .X/; thus, the Schwartz kernel � of A is a bounded conormal right Q-

density on X2Q which vanishes to infinite order at all boundary hypersurfaces except zf2,
mf2, and nf2. The pushforward along the projection X2Q ! XQ (see Lemma 2.24) is thus
bounded (on m�1.Œ0; 1�/) and conormal onXQ (and vanishes to infinite order at if and sf).
The Schur test implies the claim. Directly from Definition 2.32, one can then show that for
any orders s; Qs 2R, l; Ql;
; Q
; l 0; Ql 0; r; Qr;b; Qb 2R, any elementAD .Am;� /2‰

s;.l;
;l 0;r;b/
Q .X/

defines a uniformly bounded (as m; � ranges over .0; 1� �R) family of maps

Am;� WH
Qs;.Ql; Q
;Ql 0;Qr; Qb/
Q;m;� .X; �/! H

Qs�s;.Ql�l; Q
�
;Ql 0�l 0;Qr�r; Qb�b/
Q;m;� .X; �/;

and similarly when the if-order is variable.
We next show how to relate Q-Sobolev spaces (and their norms) to b-, sc-b-, c„-, and

semiclassical scattering Sobolev spaces near the various boundary hypersurfaces of XQ;
see Proposition 2.15, Definition 2.16, and equation (2.20). We restrict attention to a certain
class of � -independent densities �, which are lifts of weighted q-densities on Xq along
the projection off the � -coordinate.

Proposition 2.33 (Relationships between Sobolev spaces). Fix a � -independent density
� onXQ which is of the form � D �

n=2
zfq �0, 0 < �0 2 C1.X; q�X/, as in Proposition 2.13.

Let r 2 C1.QT �if X/ be an order function which in jxj < r0 . for some r0 > 0/ is invariant
under the lift to QT �X of the dilation action . Q�;m; x/ 7! . Q�; �m; �x/.

(1) Put �zfWR� .0;1�� OXı 3 .�;m; Ox/ 7! .�;m;m Ox/2XQ, and let �2C1.XQ/ be iden-
tically 1 near zf and supported in a collar neighborhood thereof. Then for m 2 .0; 1�

and � 2 R, we have a uniform equivalence .in the same sense as in Proposition 2.13/

k�uk
H
s;.l;
;l0;r;b/
Q;m;� .X/

� h�il
0�lmn=2�l

k��zf.�u/j�;mkH s;
�lb . OX;jd Oxj/: (2.41)

14Equivalently, fixing an elliptic operator A 2 ‰�sQ .X/, it is the space of all distri-
butions of the form u D u0 C Au1 where u0; u1 2 wL

2.X/, equipped with the norm
infuDu0CAu1 kw

�1u0kL2.X;�m;� /
C kw�1u1kL2.X;�m;� /

; cf. [77, Appendix A] for a general
discussion of the underlying functional analysis.
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(2) Put �mf;˙;„W .0; 1� � .0; 1� � PX
ı 3 .h; m; x/ 7! .˙h�1; m; x/ 2 XQ, and let

� 2 C1.XQ/ be identically 1 near mf and supported in a collar neighborhood
thereof. Then, uniformly for m 2 .0; 1� and h 2 .0; 1�, we have

k�uk
H
s;.l;
;l0;r;b/

Q;m;˙h�1
.X/
� m�
k��mf;˙;„.�u/jh;mkH s;l�
;l

0�
;r�

c;h . PX;�c/

; (2.42)

where �c is the lift of a smooth positive density on X to PX as in Proposition 2.13 (2).

(3) Put �nf˙;low
W ˙.0; 1� � .0; 1� � OX 3 . Q�;m; Ox/ 7! . Q�=m;m;m Ox/ 2 XQ, and let � 2

C1.XQ/ be identically 1 near nf˙ and supported in a collar neighborhood thereof.
Then, uniformly for Q� 2 .0; 1� and m 2 .0; 1�,

k�uk
H
s;.l;
;l0;r;b/

Q;m;˙h�1
.X/
� mn=2�l 0

k��nf˙;low
.�u/jQ�;mkH s;r�l

0;
�l0;l�l0

sc-b; Q� . OX;jd Oxj/
: (2.43)

(4) Put �nf
˙; Q„
W .0; 1� � .0; 1� � OX 3 . Qh;m; Ox/ 7! .˙. Qhm/�1;m;m Ox/ 2 XQ, and let � 2

C1.XQ/ be as in part (3). Then, uniformly for Qh 2 .0; 1� and m 2 .0; 1�,

k�uk
H
s;.l;
;l0;r;b/

Q;m;˙. Qhm/�1
.X/
� mn=2�l 0

k��nf
˙; Q„
.�u/j Qh;mkH s;r�l

0;b

sc; Qh
. OX;jd Oxj/

: (2.44)

We remark that the invariance assumption on r is only used in parts (3)–(4) and made
there for simplicity; note that the assumption depends on the choice of local coordinates
x 2 Rn around 0 2 X . (Without this assumption, one gets slightly lossy two-sided esti-
mates mirroring those in [53, Corollary 3.7 (2)]; these would still be sufficient for our
application.)

Proof of Proposition 2.33. It suffices to consider the case where all constant weights
l , 
 , l 0, b are equal to 0; furthermore, one can restrict to the case s � 0 since the case
of s < 0 then follows by duality. The L2-case s D 0 follows, for all four parts, as in
Proposition 2.13.

Part (1) for s > 0 is then a parameter-dependent version of the estimate (2.13), and
the proof proceeds in the same manner: one extends the Schwartz kernel of an elliptic
b-ps.d.o. A0 2 ‰sb. OX/ via dilation-invariance (in .m; x; x0/) and translation-invariance
(in � ), and cuts off the resulting kernel to a collar neighborhood of zf2 to obtain a Q-ps.d.o.
A which is elliptic near zf and can thus be used to compute H s

Q.X/-norms in (2.40b).
For part (2), we fix an operator A0 2 ‰

s;0;0;r
c„ . PX/ with elliptic principal symbol. By

Corollary 2.28, this is the mf˙;„-normal operator of some A 2 ‰s;.0;0;0;r;0/Q .X/, and in
fact we can take the Schwartz kernel of A to be given by the pushforward of the Schwartz
kernel of A0 (considered as an m-independent distribution) along �mf;˙;„, cut off in both
factors to a collar neighborhood of mf2. The uniform equivalence (2.42) then follows by
arguments completely analogous to those in the proof of Proposition 2.13.

The proof of parts (3)–(4) is similar. The assumption on the order function r ensures
that the cutoff (to a collar neighborhood of nf in both factors on the level of the Schwartz
kernel) of the dilation-invariant extension off nf2 of an elliptic operator in ‰s;r;0;0sc-b . OX/ lies
in ‰s;.0;0;0;r;0/Q .X/.
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Finally, when � � XQ is an open set, and writing ˛ D .l; 
; l 0; r; b/, we denote by

PH
s;˛
Q;m;� .

x�/ D ¹u 2 H
s;˛
Q;m;� .X/W suppu � x�º; NH

s;˛
Q;m;� .�/ D ¹uj�Wu 2 H

s;˛
Q;m;� .X/º

(2.45)

the spaces of supported, resp. extendible, distributions in Hörmander’s notation [64,
Appendix B]. The former space carries the subspace topology, and the latter the quo-
tient topology of H s;˛

Q;m;� .X/=
PH
s;˛
Q;m;� .XQ n�/. In our application, we will take, in some

fixed local coordinates x 2 Rn around 0 2 X ,

� D XQ \ ¹m < r < 2º D XQ \ ¹Or > 1; r < 2º;

and the relationships recorded in Proposition 2.33 remain valid upon using extendible
Q-Sobolev spaces on � as well as extendible (b-, sc-b-, and semiclassical scattering)
Sobolev spaces on O� D OX \ ¹Or > 1º in (2.41), (2.43), (2.44).

3. Quasinormal modes of massless and massive scalar waves

In this section, we will prove Theorems 1.1 and 1.5. As discussed in Section 1.3, we may
fix ƒ D 3. Moreover, we fix the ratio

Oa WD a=m 2 .�1; 1/:

All estimates in this section will be uniform in the parameter Oa 2 Œ�1C "; 1 � "� for any
fixed " > 0.

In Section 3.1, we fix some notation for the degenerating family of Kerr–de Sitter
spacetimes with parameters .ƒ;m; a/ D .3;m; Oam/, with m & 0. In Section 3.2, we
recall the notions of generalized resonant states and the multiplicity of resonances; these
feature in the detailed version of Theorem 1.1, see Theorem 3.8. As a preparation for the
proof of Theorem 3.8, we show in Section 3.3 how the spectral family of the wave operator
on the degenerating Kerr–de Sitter spacetimes fits into the framework of Q-analysis. The
remaining sections 3.4–3.9 contain the proof of Theorem 3.8; an outline is provided at the
end of Section 3.3. In Section 3.10, we explain the minor modifications needed for the
analysis of the Klein–Gordon equation, and thus prove Theorem 1.5.

3.1. Limits of Kerr–de Sitter metrics

Since the quantities involved in the definition (1.3) of the KdS metric depend only on m

via .ƒ;m; a/ D .3;m; Oam/, we denote them by

�m.r/ WD .r
2
C Oa2m2/.1 � r2/ � 2mr; bm WD 1C Oa

2m2;

cm.�/ WD 1C Oa
2m2 cos2 �; %m.r; �/ WD r

2
C Oa2m2 cos2 �:

As we shall prove momentarily, for m > 0 sufficiently small, the parameters .3;m; Oam/

are subextremal. We denote the roots of �m by

r�m < rCm < rem < rcm:
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Lemma 3.1 (Roots of �m). Define OrC WD 1 �
p
1 � Oa2 and Ore WD 1 C

p
1 � Oa2. For

sufficiently small m0 > 0 .depending on Oa/, and writing C1 D C1.Œ0;m0�/, we have

r�m � �1 mod mC1; rCm � m OrC mod m2C1;

rem � m Ore mod m2C1; rcm � 1 mod mC1:

Proof. The simple roots of�0.r/D r2.1� r2/ at r D˙1 extend to real analytic functions
r�m D �1CO.m/ and rcm D 1CO.m/ for small real m. Note next that

m�2�m.m Or/ D Or
2
� 2 Or C Oa2 �m2. Or2 C Oa2/ Or2

extends smoothly to m D 0, and at m D 0 it has two simple roots at Or D OrC ; Ore . These
extend to real analytic functions OrCm ; Or

e
m for small m, giving rise to the roots rCm D m OrCm ,

rem D m Orem of �m.

We use the coordinates .t�; r; �; ��/ (see (1.5)), which we define using

F3;m; Oam.r/ D Fm.r/ WD ��
e

�
r � rem

m

�
C �c.r � rcm/; (3.1)

where �e 2 C1c .R/ and �c 2 C1c ..�1;1// are both equal to 1 at 0. (Thus, the functions
t�; �� defined with respect to the choice of Fm here differ from those defined using the
choice of F3;m; Oam in Section 1 by the addition of smooth functions of r .) We fix �e; �c

in Lemma 3.2 below. The KdS metric gm WD g3;m; Oam takes the form

gm D �
�m.r/

b2m%
2
m.r; �/

.dt� � Oam sin2 � d��/2 �
2Fm.r/

bm
.dt� � Oam sin2 � d��/dr

C %2m.r; �/
1�Fm.r/

2

�m.r/
dr2 C %2m.r; �/

d�2

cm.�/

C
cm.�/ sin2 �
b2m%

2
m.r; �/

�
.r2 C . Oam/2/ d�� � Oam dt�

�2
: (3.2)

The dual metric is

g�1m D %m.r; �/
�2

�
�
b2m.1 � Fm.r/

2/

�m.r/

�
.r2 C . Oam/2/@t� C Oam@��

�2
C �m.r/@

2
r

C cm.�/@
2
� � 2bmFm.r/

�
.r2 C . Oam/2/@t� C Oam@��

�
˝s @r

C
b2m

cm.�/ sin2 �
.@�� C Oam sin2 � @t�/

2

�
: (3.3)

Lemma 3.2 (Choice of time function). There exist smooth functions �e 2 C1c .R/ and
�c 2 C1c ..�1;1// with �e.0/ D 1 and �c.0/ D 1 such that dt� is .past/ timelike with
respect to gm on Rt� � Œm; 2�r � S2

�;��
when m 2 .0;m0� with m0 > 0 sufficiently small.

This can be proved directly by adapting the arguments of [107, Section 6.1] to the
present parameter-dependent setting. After the proof of Lemma 3.11 below, we present
an alternative proof in which the timelike nature of dt�, for suitable �e; �c , with respect
to gm follows for small m > 0 by continuity from its timelike nature with respect to the
two limiting (de Sitter and Kerr) metrics.
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In r > r0 for any r0 > 0, the metric gm converges, as m& 0, to the metric

gdS WD �.1 � r
2/dt2� � 2 Q�

c.r/dt� dr C
1 � Q�c.r/2

1 � r2
dr2 C r2=g;

g�1dS D �
1 � Q�c.r/2

1 � r2
@2t� � 2 Q�

c.r/@t� ˝s @r C .1 � r
2/@2r C r

�2
=g
�1; (3.4)

where Q�c.r/ WD �c.r � 1/, and =g WD d�2C sin2 � d�2� is the standard metric on S2. Thus,
gdS is the de Sitter metric15—a nondegenerate Lorentzian metric on

Rt� �X; X WD B.0; 3/ D ¹x 2 R3W jxj < 3º; (3.5)

with .r; �; ��/ denoting polar coordinates on X . (We stress that gdS is in fact smooth
across x D 0, though the geometry, resp. analysis of the limit m& 0, do see a remnant
of the disappeared KdS black hole in the form of a conical singularity, resp. b-Sobolev
spaces with weights at r D 0.)

On the other hand, if we set Ot� WDmt� and Or WDmr and express gm in the coordinates
.Ot�; Or; �; ��/, then for Or in any closed subinterval of . OrC ;1/, the rescaled metric m�2gm

converges, as m& 0, to the metric

Og D �
O�. Or/

O%2.r; �/
.dOt� � Oa sin2 � d��/2 C 2 Q�e. Or/.dOt� � Oa sin2 � d��/ d Or

C O%2
1 � Q�e. Or/2

O�.r/
d Or2 C O%2. Or; �/d�2 C

sin2 �
O%2. Or; �/

.. Or2 C Oa2/d�� � Oa dOt�/2;

O�. Or/ WD Or2 � 2 Or C Oa2; O%2. Or; �/ WD Or2 C Oa2 cos2 �; Q�e. Or/ D �e. Or � Ore/; (3.6a)

of a Kerr black hole with mass 1 and angular momentum Oa.16 The dual metric is

Og�1 D O%. Or; �/�2
�
�
1 � Q�e. Or/2

O�. Or/
.. Or2 C Oa2/@Ot� C Oa@��/

2
C O�. Or/@2

Or C @
2
�

C 2 Q�e. Or/.. Or2 C Oa2/@Ot� C Oa@��/˝s @ Or C
1

sin2 �
.@�� C Oa sin2 � @Ot�/

2

�
: (3.6b)

This is a smooth nondegenerate Lorentzian metric on

ROt� � . Or
C ;1/ Or � S2�;�� : (3.6c)

The wave operators associated with the metrics gm, gdS, and Og have as principal sym-
bols the respective dual metric functions:

Definition 3.3 (Dual metric functions). Let zXm D zX3;m; Oam (see (1.6)). The dual metric
function Gm 2 C1.T �.Rt� �

zXm// of gm is defined as

Gm.�/ D j�j
2
gm.z/�1

; z D .t�; x/ 2 Rt� �
zXm; � 2 T �z .Rt� �

zMm/:

15If we change coordinates via t D t�C TdS.r/where T 0dS.r/D
Q�c.r/

1�r2
, then gdS D�.1� r

2/dt2�
C .1 � r2/�1dr2 C r2=g is the de Sitter metric in static coordinates.

16A coordinate change in Ot� and �� brings (3.6a) into Boyer–Lindquist form.
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The analogously defined dual metric functions of gdS and Og are denoted

GdS 2 C1.T �.Rt� �X//; resp. OG 2 C1
�
T �.ROt� � . Or

C ;1/ � S2/
�
:

When m0 > 0 is sufficiently small, then Lemma 3.1 implies that rCm < m < rem <

rcm < 2 for all m 2 .0;m0� when m0 > 0 is sufficiently small. Put

�m WD .m; 2/r � S2: (3.7)

Then, in the notation of (1.2) and (1.6), the manifold Rt� � �m � zMm WD zM3;m; Oam

contains a neighborhood of the closure of MDOC
3;m; Oam

.

3.2. Resonances, multiplicity, and the main theorem

We now prepare the precise statement of Theorem 1.1.

Definition 3.4 (Spectral family). For � 2 C, we define17

�gm.�/ 2 Diff2.�m/

to be the unique operator with�gm.e
�i�t�u/D e�i�t��gm.�/u for u 2 C1c .�m/. With

�dS WD B.0; 2/ � X D B.0; 3/, we similarly define the spectral family of�gdS , denoted

�gdS.�/ 2 Diff2.�dS/; � 2 C:

We finally denote by

� Og. Q�/ 2 Diff2.Œ1;1/ Or � S2/; Q� 2 C;

the spectral family of� Og , so� Og.e�i Q� Ot�u/ D e�i Q� Ot�� Og. Q�/u for u 2 C1c ..1;1/ � S2/.

Informally,�gm.�/,�dS.�/, resp.� Og. Q�/, is obtained from�gm ,�gdS , resp.� Og , by
replacing @t� , resp. @Ot� , by �i� , resp. �i Q� . Thus, the spectral families are polynomials
(hence holomorphic) in � , resp. Q� .

Definition 3.5 (Space of resonant states). For � 2 R, we define

Resm.�/ � C1.Rt� ��m/

as the space of all generalized resonant states u D u.t�; x/ of �gm at frequency � ,
i.e. solutions u of �gmu D 0 which for some n 2 N0 can be written as u DPn
kD0 t

k
� e
�i�t�uk.x/ where uk 2 C1.�m/. The multiplicity of � is

mm.�/ WD dim Resm.�/:

We similarly define ResdS.�/ � C1.Rt� ��dS/ and mdS.�/ with respect to�gdS .

17The more usual notation would be b�gm.�/. We do not use a hat here, however, to avoid
overloading the notation.
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Thus, � 2 QNM.m/ WD QNM.3;m; Oam/ if and only if Resm.�/ ¤ ¹0º, i.e. mm.�/

¤ 0.18 For sufficiently small m, the Fredholm theory of [107, Section 6] can be shown to
apply to �gm.�/ (see also (3.52) below), and thus �gm.�/

�1 is a meromorphic family
of operators on C1.�m/. As shown in [59, Section 5.1.1], an equivalent definition of
Resm.�/ is then

Resm.�/ D
®
res�D�

�
e�i� t��gm.�/

�1p.�/
�
Wp.�/ is a polynomial

with values in C1.�m/
¯
; (3.8)

and the multiplicity can be computed via

mm.�/ D
1

2�i
tr
I
�

�gm.�/
�1@��gm.�/ d� (3.9)

where
H
�

is the contour integral over a circle enclosing � counterclockwise which contains
no resonances other than � . (The integral is a finite rank operator on C1.�m/, and hence
its trace is well-defined.) There are analogous expressions for ResdS.�/ and mdS.�/.

Definition 3.6 (Quasinormal modes with multiplicity). For m 2 .0;m0�, we put

QNM�.m/ WD ¹.�;mm.�// 2 C �NWmm.�/ � 1º � C �N;

QNM�dS WD ¹.�;mdS.�// 2 C �NWmdS.�/ � 1º � C �N:

Furthermore, QNM.m/ D QNM.3;m; Oam/ is the projection of QNM�.m/ to the first
factor, and QNMdS is the projection of QNM�dS to the first factor.

Lemma 3.7 (QNMs of de Sitter space). We have QNMdS D �iN0, and

QNM�dS D ¹.�i`;m/W ` 2 N0; m D mdS.�i`/º

where

mdS.�i`/ D

´
1; ` D 0;

`2 C 2; ` � 1:
(3.10)

Proof. This follows from [61, Proposition 2.1] upon setting � D 0, thus ��.�/ D 0 and
�C.�/ D 3 in the notation of the reference. Indeed, for l 2 N0, the space of generalized
resonant states with angular dependence given by a degree l spherical harmonic is non-
trivial exactly at all spectral parameters �i` for ` 2 .l C 2N0/ [ .3C l C 2N0/, and at
each such resonance has dimension 2l C 1. This gives

mdS.�i`/ D
X
l2N0

`�l2.2N0/[.3C2N0/

.2l C 1/ D .2`C 1/C

`�2X
kD0

.2k C 1/:

For ` D 0, resp. 1, this evaluates to 1, resp. 3 D 12 C 2. For ` � 2 the second sum is
.` � 1/2 D `2 � 2`C 1. This gives (3.10).

18Note that the existence of a smooth resonant state is independent of the choice of the function
Fm in (3.1) or Fƒ;m;a in (1.5), as long as these functions equal �1, resp.C1, at the event horizon,
resp. cosmological horizon.
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Theorem 3.8 (Quasinormal modes of KdS black holes away from extremality: detailed
version). Let C1 > 0 be such that Im� ¤�C1 for all � 2 QNMdS. Let " > 0 be such that
for each �� 2 QNMdS with Im �� � �C1, the only � 2 QNMdS with j� � ��j � 2" is ��
itself.19 Then there exists m1 > 0 such that the following statements hold:

(1) If m 2 .0;m1� and � 2 QNM.m/, Im � � �C1, then there exists �� 2 QNMdS such
that j� � ��j � ".

(2) The total multiplicity of QNMs near �� 2 QNMdS with Im �� � �C1 is independent
of m, that is,

mdS.��/ D
X

�2QNM.m/
j����j�"

mm.�/; m 2 .0;m1�:

(3) The only resonance � 2 QNM.m/ with j� j � " is � D 0, with mm.0/ D 1, and
Resm.0/ consists of all constant functions on Rt� ��m.

(4) LetK D Œr0; 2�� S2, and let �� 2QNMdS with Im�� ��C1. Then for all sufficiently
small r0 > 0, the space°

ujŒ0;1�t��K Wu 2
X

�2QNM.m/
j����j�"

Resm.�/
±

(3.11)

has dimensionmdS.��/ and converges to ¹ujŒ0;1��K Wu2ResdS.��/º in the topology of
C1.Œ0; 1� �K/. .That is, there exists an m-dependent basis um;1; : : : ; um;mdS.��/ of
the space (3.11) which converges in C1.Œ0; 1� �K/ to a basis of ResdS.��/jŒ0;1��K ./

Parts (1) and (2) together give a precise meaning to the statement that the quasinormal
modes of Kerr–de Sitter space with parameters .ƒ;m; a/ D .3;m; Oam/ converge with
multiplicity to those of de Sitter space in any half-space Im � � �C1 as m& 0.

3.3. The spectral family as a Q-differential operator

As the starting point for the proof of Theorem 3.8, we now place�gm.�/ into the context
of q- and Q-analysis. We use the terminology of Section 2, with two small modifica-
tions: (1) the mass m will be restricted to a short interval Œ0;m0� (rather than Œ0; 1�)
where m0 > 0 is chosen according to the requirement stated before (3.7); and (2) we shall
write �0 for the real parameter that was previously denoted � in Sections 2.4–2.5. We
reserve the symbol � for the spectral parameter (which might be complex).

Let X denote a 3-dimensional torus; we work in a local coordinate chart B.0; 3/ near
a point 0 2 X as in (3.5). (We make X compact merely so that Sobolev spaces are well-
defined.) At fixed (or more generally for bounded) frequencies � 2 C, our analysis will
take place in the domain

�q WD ¹Or > 1; r < 2º \Xq: (3.12a)

19Thus, one can take any " < 1=2. The present formulation generalizes without change to the
case of the Klein–Gordon equation.
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Thus, �q resolves
F

m2.0;m0�
¹mº ��m in the singular limit m& 0, and we have

O� WD �q \ zfq D ¹Or > 1º \ zfq; P� WD �q \ mfq D Œ0; 2/r � S2: (3.12b)

(Here, O� is a subset of the spatial manifold in (3.6c); the radius 1 is chosen for notational
convenience.) We denote by �q D ¹Or � 1; r � 2º \ Xq and xO� D ¹Or � 1º \ zfq the
closures of �q and O� inside Xq. See Figure 3.1.

Ωq

1
Ω̂

Ω̇ r2

r̂

m

Fig. 3.1. The domains �q, O�, and P� � Xq defined in (3.12a) and (3.12b), without the factor S2.

On the Q-single space XQ, we shall work on the lift of R�0 ��q,

�Q WD ¹Or > 1; r < 2º \XQ: (3.12c)

We need to analyze also nonreal frequencies � . For now, we work in strips
¹jIm � j � C1º for arbitrary fixed C1 > 0, and the total space of our analysis is therefore

Œ�C1; C1� ��Q � Œ�C1; C1� �XQ:

(The modifications needed to treat all of ¹Im � � �C1º will be discussed in Section 3.9.)
The total spectral family .m; �/ 7! �gm.�/, where m 2 .0;m0� and � D �0 C i�1 with
�0 2 R, �1 2 Œ�C1; C1�, defines an element20

�.� C i�1/ 2 Diff2.�Q \ ¹m > 0º/;

with smooth dependence on �1. The following key result puts the total spectral family
into the Q-analytic framework developed in Section 2, and is indeed the motivation for
the development of this framework.

Proposition 3.9 (Properties of the total spectral family). The total spectral family
�.� C i�1/ satisfies

�.� C i�1/ 2 Diff2;.2;0;2;2;2/Q .�Q/ D �
�2
zf �

0
mf�
�2
nf �
�2
sf �
�2
if Diff2Q.�Q/; (3.13)

and depends smoothly on �1 2 Œ�C1; C1�. Moreover, in the notation of Corollary 2.28:

20That is, the restriction of �.� C i�1/ to the subset where the spectral parameter is �0 C i�1
and the black hole mass is m is precisely the operator�gm.�0 C i�1/. In the notation for the total
spectral family�.� C i�1/, we thus do not include �0 or m as an argument or subscript.
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(1) The Q-principal symbol of�.� C i�1/ is G.� C i�1;�I�;�/, given by

GW .�;mI x; �/ 7! Gmjx.�� dt� C �/ (3.14)

where x 2 �m, � 2 T �x �m, and � D �0 C i�1, in the sense that the function
Qσ2;.2;0;2;2;2/.�.� C i�1// is given by the equivalence class of G.� C i�1/ in

.S2;.2;0;2;2;2/=S1;.2;0;2;1;1//.QT �
�Q
X/:

(2) We have Nzf.m
2�.� C i�1// D � Og.0/ .regarded as a �0-independent operator on

R�0 �
xO� � zf, cf. Proposition 2.15 (1)/.

(3) For Q�0 2 R n ¹0º, we have Nnf Q�0
.m2�.� C i�1// D � Og. Q�0/.

(4) For �0 2 R, we have Nmf�0
.�.� C i�1// D �gdS.�/ where � D �0 C i�1.

One can prove this by direct calculation using the form (3.2) of the KdS metric. We
instead give a conceptual proof, which highlights the relevant structural properties of the
family of metrics gm.21 To begin, we define

M WD Rt� �X;
PM WD Rt� �

PX; OM WD ROt� �
OX;

and identifyX with ¹0º �X �M , likewise PX � PM and OX � OM . Smooth stationary met-
rics on M can be identified with smooth sections of S2T �XM ! X , likewise for PM , OM .

Denote now by
�qWXq ! X; �QWXQ ! X

the lifts of the projection maps Œ0;m0��X 3 .m; x/ 7! x 2X and xR� Œ0;m0��X!X ,
respectively. The pullback bundle ��q TXM !�q will play two roles. Firstly, it is a bundle
in (the tensor powers of) which geometric objects are valued (see Lemma 3.11 below).
Secondly, in m> 0 its sections are smooth families of horizontal vector fields; in the latter
regard, we note the following result.

Lemma 3.10 (Bundle isomorphisms). Let P̌Wmfq D PX D ŒX I ¹0º�! X denote the blow-
down map. Then the identity map .��q TXM/j.0;x/D TxM D Tx PM for x 2X n ¹0º extends
to a bundle isomorphism

.��q TXM/jmfq D
P̌�T PX

PM: (3.15)

Moreover, the map .��q TX/j.m;x/ D TxX 3 V 7! mV 2 qT.m;x/X . for m 2 .0;m0�/

extends by continuity to a smooth bundle map on Xq and then restricts to zfq D OX as an
isomorphism

�W .��q TX/jzfq Š
scT OX .via ‘multiplication by m’/: (3.16)

21This route is longer, but it has the advantage of allowing for straightforward generalizations of
Proposition 3.9 to spectral families of other geometric operators—even if in the present paper we
do not discuss such generalizations.
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Proof. For (3.15), simply note that both bundles have, as smooth frames, the vector
fields @t� and @xj (j D 1; 2; 3). For (3.16), note that m@xj D @ Oxj (j D 1; 2; 3) is a
frame of scT OX .

We shall also write � for tensor powers of the isomorphism (3.16) or its adjoint. Writ-
ing R D OX �R for the trivial bundle, we furthermore define the map

z�W .��q TXM/jzfq

Š
�! T0ROt� ˚

scT OX; @t� 7! @Ot� ; V 7! �.V /: (3.17)

(This is ‘multiplication by m’ for tangent vectors on the spacetime M .) Tensor powers
of z� or its adjoint are denoted by the same symbol.

Lemma 3.11 (The family gm on the q-single space). For m 2 .0;m0� and x 2�m, define
the symmetric 2-tensor g.m; x/ 2 .��q S

2T �XM/j.m;x/ D S2T �xM to be equal to gmjx .
Then

g 2 C1.�qI .�
�
q S

2T �XM/j�q
/; g�1 2 C1.�qI .�

�
q S

2TXM/j�q
/:

Moreover, gjmfq D gdS .under the identification (3.15)/ and z��1.gjzfq/D Og. Furthermore,
jdgj D jdt�j jdgX j where jdgX j 2 C1.�qI .�

�
q �XM/j�q

/. .Explicitly, we have

jdgX j D b2%2 sin � jdr d� d��j

where b.m/ D bm and %.m; r; �/ D %m.r; �/./

Proof. On �q, the 1-forms dt�, dr , r d� , and r d�� are smooth and nonzero sections of
��q T

�
XM . It thus suffices to show that the coefficients of gm in (3.2) (expressed in terms

of symmetric tensor products of these 1-forms) are elements of C1.�q/. On �q, smooth
coordinates are given by O� D m=r 2 Œ0; 1�, r � 0, and �; ��, and we then note that

�m.r/

b2m%
2
m.r; �/

D
.1C Oa2 O�2/.1 � r2/ � 2 O�

.1C Oa2 O�2r2/.1C Oa2 O�2 cos2 �/

is indeed smooth in these coordinates, and similarly for the other coefficients of gm;
note in particular that Fm D ��

e. O��1/ C �c.r/ is smooth. The membership of g�1

follows similarly by inspection of the coefficients of g�1m in (3.3) in the basis @t� , @r ,
r�1@� , r�1@�� .

The computation of gjmfq was already performed in (3.4). The computation of the
metric ��1.gjzfq/ amounts to taking the limit of m�2gm as m& 0 for bounded Or D j Oxj,
which was done in (3.6a).

We can now give a simple proof of Lemma 3.2.

Proof of Lemma 3.2. Using (3.4) and writing Q�c.r/ D 1C .1 � r2/f .r/, we compute

jdt�j2g�1dS
D �

1 � .1C .1 � r2/f .r//2

1 � r2
D 2f .r/C .1 � r2/f .r/2:
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Note that in any region r � r1 < 1, this is negative for f .r/ D � 1
1�r2

(in which case
Q�c D 0). More generally, in r < 1, resp. at r D 1, we have jdt�j2

g�1dS
< 0 provided� 2

1�r2
<

f .r/ < 0, resp. f .1/ < 0. For 1 < r � 3, it is enough to ensure f .r/ < 0. We can thus
use a partition of unity to construct a smooth f such that dt� is past timelike for gdS, and
Q�c.r/ D 0 for r � 1=2.

Next, using (3.6b) and writing Q�e. Or/ D 1C O�. Or/ Of . Or/, we compute

O%. Or; �/2jdOt�j2Og�1 D �
1 � .1C O�. Or/ Of . Or//2

O�. Or/
. Or2 C Oa2/2 C Oa2 sin2 �

� O�. Or/. Or2 C Oa2/2 Of . Or/2 C 2. Or2 C Oa2/2 Of . Or/C Oa2:

When Of . Or/ D � O�. Or/�1 (so Q�e D 0), the right hand side evaluates to � . Or
2COa2/2

O�. Or/
C Oa2

which is negative when O�. Or/ > 0 (since upon multiplication by O�. Or/, this is �. Or2 C Oa2/2

C Oa2. Or2 C Oa2 � 2 Or/ D �Or4 � Oa2 Or2 � 2 Oa2 Or). At Or D Ore , we require Of . Or/ < Oa2

2. Or2COa2/2
.

Where O�. Or/¤ 0, the set of allowed values of Of . Or/ is a nonempty open interval (depending
continuously on Or). We can thus find an appropriate Of . Or/ such that moreover Q�e. Or/ D 0
for Or � 3, say.

Having fixed Q�c ; Q�e and thus �c ; �e in (3.1) in this manner, the past timelike nature
of dt� with respect to gm now follows by continuity for all sufficiently small m > 0 in
view of Lemma 3.11.

Proposition 3.12 (Spectral family of the connection of g). For m 2 .0;m0� and � 2 C,
denote by rgm.�/ 2 Diff1.�mI T�m

M; T �
�m
M ˝ T�m

M/, � 2 C, the spectral family
of the Levi-Civita connection of gm, defined analogously to Definition 3.4. Denote by
rg.� C i�1/W .0;m0� �R 3 .m; �0/ 7! rgm.�0 C i�1/ the total spectral family. Then

r
g.� C i�1/ 2 Diff1;.1;0;1;1;1/Q

�
�QI .�

�
QTXM/j�Q

; .��Q.T
�
XM ˝ TXM//j�Q

�
: (3.18)

Its principal symbol is Qσ1;.1;0;1;1;1/.rg.� C i�1//.�0;m; x; �/D .�� dt� C �/˝ .�/,22

where � D �0 C i�1.23 Moreover,

Nzf.mr
g.� C i�1// D r

Og.0/; (3.19a)

Nnf Q� .mr
g.� C i�1// D r

Og. Q�/; (3.19b)

Nmf�0
.rg.� C i�1// D r

gdS.�/; � D �0 C i�1; (3.19c)

22It is irrelevant here which (rescaled) cotangent bundle � lies in. For example, if we take
� 2 QT �X of unit size (with respect to any fixed positive definite fiber metric), then � has size
.�zf�nf�if�sf/

�1 as an element of ��Q.T
�
X
M/.

23The term�� dt� only contributes to the principal symbol in the high frequency regime jRe� jD
j�0j � 1, where in view of the boundedness of �1 the contribution of �i�1 dt� is subprincipal and
therefore does not, in fact, contribute to the principal symbol. When relaxing the assumption that
Im � be bounded, the imaginary part of � does matter, however; see Section 3.9.
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where we use the isomorphism z� from (3.17) in the first two lines .to identify the bundles
.��QTXM/jzf�0

D .��QTXM/jnf Q�0
D .��q TXM/jzfq with T0ROt� ˚

scT OX , likewise for their
duals/, and the identification (3.15) in the third line.

Analogous statements hold for the spectral family of the exterior derivative d, resp.
the gradient rg .with d.� C i�1/ a map from complex-valued functions to sections of
��QT

�
XM , resp. ��QTXM , over �Q/; see (3.20a)–(3.20c) below for the case of d.

Proof. Consider first the exterior derivative du D .@t�u/dt� C dXu, where, with R D
X �R denoting the trivial bundle, dX 2 Diff1.X IR; T �X/ is the spatial exterior deriva-
tive. From (2.23)–(2.24) we then deduce that

d.�/ D �i� dt� C dX

2 Diff0;.0;0;1;1;1/Q .X IR; ��QT
�
XM/C Diff1;.1;0;1;1;1/Q .X IR; ��QT

�
XM/

D Diff1;.1;0;1;1;1/Q .X IR; ��QT
�
XM/;

now with R D XQ �R. This explicit expression implies

Nmf�0
.d.� C i�1// D Pd.�/ (3.20a)

where Pd is the exterior derivative operator on PM D Rt� �
PX . The principal symbol

at .�0;m; x; �/ is �. Considering the rescaling md.�/ D �im� dt� C mdX , note that
�.dXu/ D

P3
jD1.@xj u/d Ox

j and m@xj D @ Oxj , and therefore

Nzf.md.� C i�1// D Od.0/ (3.20b)

with Od the exterior derivative on OM D ROt� �
OX . When � D Q�=m, then md.�/ D

�i Q� dt� CmdX ; thus,
Nnf Q�0

.md.� C i�1// D Od. Q�/: (3.20c)

The analogous statements about the gradient rg on functions follow from (3.20a)–
(3.20c) and the description of g�1 in Lemma 3.11.

The analysis of the Levi-Civita connection rgm is similar. In terms of local coordi-
nates x D .x1; x2; x3/ onX and the corresponding coordinates .t�; x1; x2; x3/ onM , the
Christoffel symbols ����.gm/ satisfy

����.gm/ D
1
2
.g�1m /��

�
@�.gm/�� C @�.gm/�� � @�.gm/��

�
2 ��1zfq

C1.�q/ � �
�1
zf �
�1
nf C1.�Q/

in view of (2.4) and Lemma 3.11. Now, rgm.u�@�/ D .@�u
�/dx� ˝ @� C u�����dx�

˝ @�. Passing to the spectral family amounts to replacing @0 by �i� , and we therefore
obtain (3.18) as in the discussion of d above; also (3.19c) follows directly by taking the
limit as m& 0 in r > r0 > 0.

When analyzing the normal operators of mrgm.�/ at zf and nf, one works with the
coordinates .Ot�; Ox/D .t�;x/=m and identifies the vector u�@� with u�@ O� (where @ O0D @Ot�
and @ Oj D @ Oxj , j D 1; 2; 3); note also that the differential operator m@� for � D 1; 2; 3
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is equal to @ O� , while the spectral family of m@0 D m@t� D @Ot� is �im� D �i Q� . To
obtain (3.19a)–(3.19c), it then remains to note that for bounded Ox, Lemma 3.11 implies

lim
m&0

m����.gm/ D �
O�
O� O�. Og/:

Proof of Proposition 3.9. Since �.� C i�1/ D trg.rg.� C i�1/ ı rg.� C i�1// in the
notation of Lemma 3.11, we only need to appeal to Proposition 3.12 and use the mul-
tiplicativity of the principal symbol and normal operator maps.

The plan of the remainder of this section is as follows:

� In Section 3.4, we work exclusively with the principal (and subprincipal) symbol of
�.� C i�1/; this is enough to deduce the absence of extremely high energy resonances
(j� j � m�1); see Remark 3.14. The same methods also prove the invertibility of the
nf
˙;Q„

-normal operator of�.� C i�1/ at high energies; see Proposition 3.17.

� In Section 3.5, we study the inverse of the spectral family of the wave operator on a
Kerr spacetime at small and bounded (real) energies; cf. Proposition 3.9 (3). We first
prove uniform bounds on its inverse away from zero energy (Proposition 3.18)—which
suffices to obtain the absence of very high energy resonances (j� j � m�1)—before
proving uniform bounds down to zero energy (Lemma 3.19 and Proposition 3.21).

� Having inverted all normal operators that are related to the singular Kerr limit, we then
turn in Section 3.6 to the inversion of the spectral family on de Sitter space at high
energies. This then implies the absence of high energy resonances (j� j � h�10 � 1) for
all sufficiently small m; see Corollary 3.24.

� In Section 3.8, we finally control the resonances in the compact subset of C� to which
they have been constrained at this point.

� In Section 3.9, we explain the modifications necessary to treat the singular limit m& 0

not just in a strip of frequencies � , but in a half-space Im� � �C1. This will complete
the proof of Theorem 3.8 (and thus of Theorem 1.1).

� The minimal modifications necessary to treat the Klein–Gordon equation are discussed
in Section 3.10.

Throughout, we will use the (m-dependent) spatial volume density jdgX j on Xq, its
restriction jd.gdS/jX j to mfq (which is the spatial volume density for the de Sitter metric,
i.e. jdgdSj D jdt�j jd.gdS/jX j), and the spatial volume density

0 < jd Og OX j D O%
2 sin � jd Or d� d��j 2 C1.

xO�I sc�xO�
OX/ (3.21)

of the Kerr metric on OM D ROt� �
OX , defined via jd Ogj D jdOt�j jd Og OX j.

3.4. Symbolic analysis

In this section, we exploit the information given by Proposition 3.9 (1). The symbolic
estimates for�.� C i�1/ on the Q-characteristic set are microlocal propagation estimates
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which are well-established in the literature.24 Concretely, we shall use radial point esti-
mates over the event and cosmological horizons following [107, Section 2.4] as well as
at spatial infinity for the Kerr model operators following [83, 112], and estimates at nor-
mally hyperbolic trapping [31]. The Q-algebra is furthermore related to the semiclassical
cone algebra developed in [53, 55], and we use the radial point estimates established in
[53, Section 4.4] at the cone point @ PX in the high frequency regime (in the terminol-
ogy of Section 1.4). There are further radial sets lying over if \ nf (thus in the very high
frequency regime) where we will prove Q-microlocal estimates by means of standard
positive commutator arguments.

We denote by
† � QT �

�Q
X

the characteristic set of �.� C i�1/ (which is independent of �1), i.e. the closure of the
zero set of .�zf�nf�sf�if/

2G in the notation of Proposition 3.9; more precisely, † is the
union of the characteristic sets of�.� C i�1/ lying in

QT �sfX;
QT �if X;

QS�X; (3.22)

where QS�X � QT �X denotes the boundary at fiber infinity. In this section, we show the
following proposition.

Proposition 3.13 (Symbolic estimates). Let s; 
; l 0; b 2 R, and let r 2 C1.QT �if X/. Sup-
pose that s > 1=2CC1, and that r� l 0 >�1=2, resp. r� l 0 <�1=2 at the incoming, resp.
outgoing, radial set over if \ nf .see (3.29), (3.32a), (3.32c) below/. Suppose moreover
that r is nonincreasing along the flow of the Hamiltonian vector field HG of the principal
symbol G of�.� C i�1/. Then for any s0 2 R, r0 2 C1.QT �if X/, and b0 2 R, there exists
C > 0 such that for all �0 2 R, m 2 .0;m0�, and �1 2 Œ�C1; C1�, we have

kuk
NH
s;.l;
;l0;r;b/
Q;�0;m

.�Q/

� C
�
k�gm.�0 C i�1/uk NH s�1;.l�2;
;l

0�2;r�1;b/
Q;�0;m

.�Q/
C kuk

NH
s0;.l;
;l

0;r0;b0/
Q;�0;m

.�Q/

�
: (3.23)

The loss of one order in the Q-differential and if-decay sense (s and r) arises from real
principal type or radial point propagation results, while the loss of two sf-orders (b) arises
at the trapped set.25

Remark 3.14 (Absence of very high energy resonances). For sufficiently small Qh D
jQ� j�1 > 0, the second, error, term on the right in (3.23) is smaller than 1=2 times the
left hand side. We conclude that any u 2 NH s.�m/ with�gm.�0 C i�1/u D 0 must van-
ish, provided Q� WD m�0 is sufficiently large in absolute value, and m > 0 is sufficiently
small.

24The positive commutator arguments used for their proofs only make use of the principal sym-
bol, and hence work in the Q-calculus as well.

25Any loss in the sf-order bigger than 1 would be sufficient for the validity of this estimate, but
we do not need a sharp estimate in what follows.
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In the proof of Proposition 3.13, we work our way systematically through the bound-
ary faces (3.22) (over which the principal symbol is a well-defined function): first we
work in QT �sfX and QT �if X , and then at fiber infinity QS�X � QT �X . Since we work over
the domain�Q where r �m (which we will henceforth not state explicitly anymore), the
function r is a defining function of zf [ nf. Since in � > 1, the function h D j� j�1 is a
defining function of nf [ sf [ if, we conclude that

h

hC r
is a defining function of sf [ if:

Furthermore, by the second part of (2.22), smooth fiber-linear coordinates on QT �
�Q
X are

given in polar coordinates .r; !/ on X by writing the canonical 1-form as

�Q
hC r

h

dr
r
C
hC r

h
�Q; �Q 2 R; �Q 2 T

�S2: (3.24)

At radial and trapped sets, the subprincipal symbol of�.� C i�1/ enters.

Lemma 3.15 (Imaginary part). The operator

Im�.� C i�1/ WD
1

2i

�
�.� C i�1/ ��.� C i�1/�

�
2 Diff1;.2;0;1;1;1/Q .X/ (3.25)

has principal symbol .�0;mI x; �/ 7! 2.Im �/g�1m jx.�dt�;�.Re �/ dt� C �/ where � D
�0 C i�1.

Proof. Since�gm is a symmetric operator on Rt� ��m with respect to the volume form
jdgmj, we have�gm.�/

� D �gm. N�/.
For fixed �1, we have Im�.� C i�1/ 2 Diff1;.2;0;2;1;1/Q .X/ since the principal symbol

of �.� C i�1/ is real-valued; but since the nfQ�0 -normal operators are symmetric (as they
involve only real frequencies), we obtain an order of improvement at nf, leading to (3.25).

Write Im�gm.�0 C i�1/ D Re
R �1
0
@��gm.�0 C i�/ d� . Now,

@��gm.�/ D @� .e
i�t��gme

�i�t�/ D ei�t�.i t��gm ��gm i t�/e
�i�t�

is the spectral family �.i Œ�gm ; t��/.�/ of �i Œ�gm ; t��, the principal symbol of which at
z D .0; x/ 2 �m � M and � D �� dt� C � 2 T �z M (where � 2 T �x X ) is �HGm t� D

@�Gm. Note that @�Gm.z; �/ D 2g�1m jz.�dt�; �/ (where z D .t�; x/ and � 2 T �XM ),
and therefore the principal symbol of �.i Œ�gm ; t��/.�/ is 2g�1m .�dt�;�� dt� C �/. This
implies the lemma.

Notation 3.16 (Arbitrary orders). In the arguments below, some orders of symbols on
QT �X will be arbitrary by virtue of the symbols being supported away from some bound-
ary hypersurfaces; in this case, we write ‘�’ instead of specifying (arbitrary) orders at
those boundary hypersurfaces. As an example, the lift of a compactly supported smooth
function in Or to XQ is an element of S0;.0;�;0;�;0/.QT �X/ (i.e. with the orders at mf and
if arbitrary). We use the same notation for Q-ps.d.o.s and Sobolev spaces.
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3.4.1. Estimates near if. We work at (large) positive frequencies �0 > 1 and indeed near
sfC [ ifC; the analysis in �0 < �1 is completely analogous. Consider the semiclassical
rescaling h D j� j�1, z D h� ,

G„;z.h;m; x; �/ WD j� j
�2G.�;m; x; �/ D Gmjx.�z dt� C h�/; � 2 T �x �m:

By Proposition 3.9 (1) and the membership (2.23), the symbol G 2 S2;.2;0;0;0;0/ is a qua-
dratic form on the fibers of QT �X which is smooth down to sfC [ ifC. Since jIm� j � C1,
we have jz � 1j � Ch, and therefore we can replace G„;z.h;m; x; �/ by

G„.h;m; x; �/ WD G„;1.h;m; x; �/ D Gmjx.�dt� C h�/ (3.26)

without changing its principal part, i.e. with changing its equivalence class modulo the
space S1;.2;0;0;�1;�1/.QT �X/.

Let us consider a neighborhood of ifC. There, we have h . r , and thus h=r is a joint
defining function of ifC [ sfC; replacing h

hCr
by h

r
in (3.24), we write Q-covectors as

h�1.� dr C r�/; � 2 R; � 2 T �S2; (3.27)

with �; � giving smooth fiber-linear coordinates. In terms of these, we have

G„ D Gm.�dt� C � dr C r�/:

At m D 0, this is the dual metric function GdS of the de Sitter metric, so from (3.4) we
find

G„jifC D GdS D .1 � r
2/�2 C j�j2

=g�1
C 2 Q�c.r/� �

1 � Q�c.r/2

1 � r2
: (3.28)

The structure of the characteristic set of (3.28) (in slightly different coordinates), as
well as the dynamics of the null-bicharacteristic flow, was studied in detail in [107, Sec-
tion 4], with the caveat that now r D 0 is resolved, i.e. blown up. (Recall here that
ifC D Œ0;1�Q� � PX from Proposition 2.15 (4).) We begin by noting that the Hamiltonian
vector field in the coordinates (3.27) takes the form

rh�1Hp D .@�p/.r@r � �@�/ � ..r@r � �@�/p/@� C .@�p/@! � .@!p/@�;

as can be seen by changing variables from the standard variables .�0; �0/ (with covec-
tors written as �0 dr C �0, thus Hp D .@�0p/@r � .@rp/@�0 C .@�0p/@! � .@!p/@�0 )
to .�; �/ D .h�0; hr

�1�0/. Thus, if 1
2
h�1HGdSr D .1 � r2/� C Q�c.r/ D 0 on †, then

0 D GdS D j�j
2

=g�1
�

1
1�r2

forces r < 1 when .�; �/ is finite, and then

1
2
.h�1HGdS/

2r D .1� r2/h�1HGdS� D 2r
�1.1� r2/

�
r2�2C j�j2

=g�1
C

r2

.1 � r2/2

�
> 0:

Therefore, the level sets of r in .0; 1/ are null-bicharacteristically convex.
At r D 0 on the other hand, where Q�c.r/ D 0, we have GdS D �

2 C j�j2
=g�1
� 1. The

restriction of 1
2
rh�1HGdS , as a b-vector field on QT �X , to the characteristic set over r D 0

is given by �.r@r � �@�/C j�j2
=g�1

@� C � � @! (at the center of =g-normal coordinates !),
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which on the characteristic set is radial (i.e. vanishes as a vector field) only at

RifC;˙ D ¹r D 0; � D ˙1; � D 0º \
QT �ifCX: (3.29)

The linearizations of 1
2
rh�1HGdS at these radial sets are

˙.r@r � �@�/; (3.30)

and inside the characteristic set over r D 0, the rh�1HGdS -flow flows from the source
at � D �1 to the sink at � D C1. This can be translated into an estimate by means of
a standard symbolic positive commutator argument at radial sets; we sketch this near
� D �1. Thus, using the local defining functions

�mf D
m

hCm
; �nf D r; �if D

hCm

r
; �sf D

h

hCm
;

we consider a commutant (with constant orders, and recalling Notation 3.16)

a D �
�2

mf ��2l

0C2
nf ��2rC1

if ��2bC1sf �.� C 1/�.j�j2
=g�1

/�.r/�.h=r/�.m=r/

2 S�;.�;2
;2l
0�2;2r�1;2b�1/.QT �X/

where � 2 C1c .Œ0; 2ı// is identically 1 on Œ0; ı� for some fixed small ı > 0, and satisfies
�0 � 0. The cutoffs localize to a neighborhood (in QT �X ) of r D 0, � D �1, � D 0

over ifC. Denote by A D A� 2 ‰�;.�;2
;2l
0�2;2r�1;2b�1/

Q .X/ a Q-quantization of a (with
Schwartz kernel supported in both factors in Or > 1, r < 2), and consider the L2-pairing

2 Im h�.� C i�1/u; Aui D hCu; ui; C WD i Œ�.� C i�1/; A�C 2.Im�.� C i�1//A:
(3.31)

Thus, c D Qσ.C/ 2 S�;.�;2
;2l
0;2r;2b/, with the second summand of C contributing an ele-

ment of S�;.�;2
;2l
0�1;2r;2b/ by Lemma 3.15, which is thus of lower order at nf. By (3.30),

the rescaled symbol ��2
mf ��2l
0

nf ��2r
if ��2bsf c is a positive multiple of �2r C 2l 0 � 1 at the

radial set RifC;�; if r; l 0 are such that this is negative, then differentiation of �.j�j2/ along
�@� gives a contribution of the same sign (i.e. nonpositive, and strictly negative where
�0 < 0), and so does differentiation of �.m=r/ along �r@r when ı > 0 is sufficiently
small, whereas differentiation of �.r/ produces a nonnegative contribution which neces-
sitates an a priori control assumption on u on supp a \ supp �0.r/. Therefore, in order to
propagate Q-regularity from r > 0 into the radial set, we need26

r > �1=2C l 0 at RifC;�: (3.32a)

Under this assumption, we thus obtain a uniform (for �0 2 R, m 2 .0;m0�, and �1 2
Œ�C1; C1�) estimate

kBuk
H
�;.�;
;l0;r;b/
Q;�0;m

� C
�
k�gm.�0 C i�1/ukH�;.�;
;l

0�2;r�1;b�1/
Q;�0;m

C kEuk
H
�;.�;
;l0;r;b/
Q;�0;m

C kuk
H
�;.�;
;l0;r0;b0/
Q;�0;m

�
(3.32b)

26This threshold condition is completely analogous to [53, Theorem 4.10], where the notation
b; ˛ is used instead of r; l 0.
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for arbitrary r0 < r, b0 < b, for appropriate operators B; E 2 ‰0Q microlocalized in a
neighborhood of ifC, whereB (quantizing a symbol arising from the elliptic leading order
term of c at RifC;�) is elliptic at RifC;� andE (quantizing a symbol arising from the term
from differentiation of �.r/ above) can be taken to have operator wave front set contained
in r > 0.

Similarly, one can propagate regularity near RifC;C from the a priori control regions
m=r > 0 and a punctured neighborhood of RifC;C inside of r D 0 into RifC;C itself,
together with a uniform estimate that takes the same form, except now E controls u on
these changed a priori control regions; the requirement on the orders is

r < �1=2C l 0 at RifC;C: (3.32c)

(Thus, an if-order r satisfying both (3.32a) and (3.32c) must be variable. For real principal
type propagation in between the two radial sets, one moreover needs r to be nonincreasing
along the direction of propagation; see e.g. [108, Section 4.1].) We remark that if we
restrict to bounded subsets of Q� 2 Œ0;1/, then the sf-order b becomes irrelevant, and thus
the a priori control term in m=r > 0 (where also the if-order is irrelevant) is bounded
by the overall error term (the last term in (3.32b)). This corresponds to the fact that the
Q-calculus is not symbolic for finite Q-momenta away from if[ sf; instead, control at nfQ�
requires the inversion of a model operator (see Section 3.5 below).

The (microlocal) propagation estimates near ifC but over r > 0 are the same as those
proved in [107, Section 4], except now the if-order r is variable—which, under the afore-
mentioned monotonicity assumption on r, does not necessitate any changes in the proofs
of the propagation results. We sketch the computation of the null-bicharacteristic dynam-
ics and of the positive commutator estimates in order to determine the relevant threshold
conditions. To wit, we shall work near fiber infinity of the conormal bundle of the cos-
mological horizon r D 1 of de Sitter space; we work in � < 0 and with the coordinates
�1 D j�j

�1, O� D �=� near fiber infinity. We may replace GdS by the simpler expression
G0 D .1 � r

2/�2 C j�j2
=g�1

, for which one finds

�1rh
�1HG0 D �2.1 � r

2/.r@r � O�@ O�/C 2.r C r
�1
j O�j2/.�1@�1 C O�@ O�/:

At the radial set w WD r � 1 D 0, �1 D 0, O� D 0, the linearization of this vector field is

4w@w C 2�1@�1 C 2 O�@ O�;

and therefore this radial set is a source for the rescaled Hamiltonian flow. Thus, HG0 is
to leading order at the radial set given by ��11 h.4w@w C 2�1@�1 C 2 O�@ O�/. Since we are
working near r D 1, we can take as local defining functions

�mf D
m

h
; �if D hCm; �sf D

h

hCm
:

Consider the commutant

a D ��2sC11 �
�2

mf ��2rC1

if ��2bC1sf �.�1/�.w
2/�.j O�j2

=g�1
/�.m/�.h/
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with � as before, and let A D A� denote a Q-quantization of a. The rescaled symbol
�2s1�

2

mf �

2r
if �

2b
sf

Qσ.C/ of the operator C in (3.31) is now a sum of three types of terms: the
first type arises from differentiating the weights of a, giving �2.2s � 1/ at the radial set;
the second arises from differentiating the cutoffs in �1, w2, j O�j2

=g�1
, which give nonposi-

tive terms; and the third arises from the skew-adjoint part and at the radial set contributes
(using Lemma 3.15) twice 2�1g�1dS .�dt�;�dr/, so �4�1. In order to propagate regularity
out of the radial set, we thus need �2.2s � 1/ � 4�1 < 0, or equivalently

s > 1=2 � �1;

which in view of �1 ��C1 holds provided s > 1=2CC1. Propagation out of the opposite
radial set (at r D 1 and � > 0, ��1 D 0, O� D 0) requires the same threshold condition.

Finally, near r D 2, say in r 2 Œ3=2;2� for definiteness, we need to use energy estimates
in order to deal with the presence of a Cauchy hypersurface at r D 2; note that dr is past
timelike in this region. We can thus apply the semiclassical energy estimates of [107,
Section 3.3], extended to general orders s, r using microlocal propagation results in a
manner completely analogous to [56, Section 2.1.3], in order to estimate u in NH s;.�;
;�;r;b/

Q;�0;m
near r D 2 in terms of its norm near r D 3=2.

To summarize, we can propagate Q-Sobolev regularity from the radial sets over the
cosmological horizon towards the conic point r D 0 and into RifC;�. For finite Q� , this
can be propagated further into RifC;C and then outwards into r > 0, at which point we
have microlocal control on the whole Q-phase space over ifC \ ¹r < 2º; energy estimates
near r D 2 then give uniform control down to r D 2. In order to complete the proof of
the estimate (3.23) for finite Q� , it thus remains to control Q-regularity for bounded Or and
r ' 1, which is done in Section 3.4.3.

In the semiclassical regime Q� !1, we cannot yet propagate into the outgoing radial
set RifC;C since this requires control on its unstable manifold also over nfı \ sf—which
requires the analysis of the nf-normal operator, i.e. the spectral family of the Kerr wave
operator, at high energies. This is the subject of Section 3.4.2 below. We remark that
the radial point estimates at RifC;˙ are, from the perspective of nf, semiclassical scat-
tering estimates in asymptotically Euclidean scattering; such estimates were first proved
by Vasy–Zworski [112] for high energy potential scattering on asymptotically Euclidean
Riemannian manifolds.

3.4.2. Estimates near sf \ nf. Since the analysis in Section 3.4.1 covers (an open neigh-
borhood of) the corner sf \ nf \ if, we may work in a region Or < Or0 for an arbitrary
large Or0; moreover, we work at large j Q� j D Qh�1, so local boundary defining functions are

�nf D m; �sf D Qh D h=m:

Our local coordinate system Qh;m; Or; ! is disjoint from the other boundary hypersurfaces
of XQ. We introduce smooth fiber-linear coordinates on QT �X by writing the canonical
1-form as

Qh�1.� d Or C Or�/; � 2 R; � 2 T �S2: (3.33)
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In these coordinates, the semiclassically rescaled principal symbol G„ (see (3.26)) is,
using the notation of Definition 3.3, at m D 0 given by

G„ D OGj Ox.�dOt� C � d Or C Or�/: (3.34)

Indeed, this is the limit as m & 0 (for bounded Ox) of Gmjm Ox.�d.mOt�/ C
h Qh�1.� d Or C Or�//. But (3.34) is the semiclassical principal symbol of the spectral fam-
ily Qh2� Og. Qh�1/; a full description of its characteristic set and null-bicharacteristic flow in
the black hole exterior Or > Ore can be found in [30, Sections 3.1–3.2]. We in particular
note that the trapped set of Gm lies over a fixed compact subset of radii Or as m & 0;
this follows from [30]. For us, it is convenient to use the fact that the trapped set depends
smoothly on m down to m D 0.27 This is a consequence of the explicit description in
[13, Theorem 3.2], and by using this fact, one can apply the proof of [31, Theorem 1] at
once for the smooth family of trapped sets of gm. (For a direct positive commutator proof
of these trapping estimates, albeit not in a semiclassical setting, see [52, Section 3].) Near
the event horizon Or D Ore on the other hand, we can follow [107, Sections 4.6 and 6.4],
which applies in the present subextremal Kerr context (see also [54, Lemma 4.3] and
[45, Theorem 4.3]).

Since the spectral parameter Q� is real (and thus � Og. Q�/ is formally symmetric), the
threshold regularity at the radial set at fiber infinity of the conormal bundle of the event
horizon Or D Ore is equal to 1=2. For the same reason, the skew-adjoint part of� Og. Q�/ at the
trapped set has vanishing principal symbol, and hence the estimates of [31] apply. (See
[57, Theorem 4.7] for an explicit statement.)

Combining the trapping, radial point, microlocal propagation, elliptic regularity, and
wave propagation (in Or < Ore) results proves Proposition 3.13 at extremely high frequen-
cies. We also record the following consequence of these estimates together with the radial
point estimates proved in the previous section (cf. Proposition 2.33 (4)):

Proposition 3.17 (Estimates for the Kerr spectral family at high energies). There exists
Qh0 > 0 such that the following holds. Let r 2 C1.scT �

@ OX
OX/ be a variable order function

such that r > �1=2, resp. r < �1=2, at the semiclassical incoming, resp. outgoing, radial
set over @ OX , and such that r is monotone along the Hamilton flow inside the characteristic

27Using this fact runs counter to our insistence that only the Kerr model needs to be analyzed
explicitly, whereas the Kerr–de Sitter wave operators are exclusively treated perturbatively. One
may instead use that the trapping on subextremal Kerr spacetimes is k-normally hyperbolic (for
any fixed k), as proved in [115] and [30, Section 3.2], together with the structural stability of such
trapping [62], and note that the microlocal estimates [31] at the trapped set only require some
large but finite amount of regularity of the defining functions for the stable and unstable manifolds;
see [31, Remark after Theorem 2]. Using the structural stability, the symbols of the semiclassical
ps.d.o.s involved in the proofs of these estimates typically only depend continuously on the parame-
ter m, which is inconsequential for the standard semiclassical calculus (with continuous dependence
on m 2 Œ0;m0�). The resulting uniform semiclassical estimates are then equivalent to estimates on
Q-Sobolev spaces in the extremely high frequency regime under consideration here.
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set.28 Suppose s > 1=2. Then there exists C > 0 so that

kuk NH s;r
sc; Qh

. O�/
� C Qh�2k Qh2� Og.˙ Qh�1/uk NH s�1;rC1

sc; Qh
. O�/
; 0 < Qh � Qh0:

In our application to the uniform analysis of �.� C i�1/, we shall apply Proposi-
tion 3.17 with r � l 0 in place of r (in particular, the threshold conditions here match those
of Proposition 3.13).

3.4.3. Nonsemiclassical estimates near the horizons. Note that the only parts of the char-
acteristic set † not covered by the previous arguments are the conormal bundles over the
cosmological horizon near mf and the event horizon near zf, as well as their flowouts.
The radial point estimates at the conormal bundles were however already discussed in the
(more delicate) semiclassical setting in the previous two sections, as were the propagation
estimates (including energy estimates to deal with the Cauchy hypersurfaces at Or D 1 and
r D 2). This completes the proof of Proposition 3.13.

3.5. Estimates for the nf˙-normal operator

We now turn to estimates for the various normal operators of�.� C i�1/which were com-
puted in Proposition 3.9 (2)–(4). The symbolic estimates proved in Section 3.4 restrict to
symbolic estimates for all model operators, in the sense that e.g. for positive commuta-
tor arguments the same commutants can be used (with fewer localizers, corresponding to
working on a boundary hypersurface of XQ); on the level of function spaces, this relies
on Proposition 2.33.

Proposition 3.18 (Uniform bounds on Kerr at bounded nonzero energies). Let c 2 .0; 1/,
s > 1=2, and let r be as in Proposition 3.17.29 Then there exists C > 0 such that for all
Q� 2 R with j Q� j 2 Œc; c�1�,

kuk NH s;rsc . O�/
� Ck� Og. Q�/uk NH s�1;rsc . O�/

: (3.35)

Proof. The same symbolic arguments as in the previous section give the estimate

kuk NH s;rsc . O�/
� C

�
k� Og. Q�/uk NH s�1;rsc . O�/

C kuk NH�N;�Nsc . O�/

�
(3.36)

for any N , which we take to satisfy �N < min.s; r/; thus, the embedding NH s;r
sc .
O�/ ,!

NH�N;�Nsc . O�/ is compact. The estimate (3.35) (for a different constant C ) then follows

28At positive frequencies, these radial sets are given by RifC;� and RifC;C under the isomor-
phism of Corollary 2.21. In general, in the coordinates (3.33), the incoming, resp. outgoing, radial
set is located at .�; �/ D .�1; 0/, resp. .�; �/ D .1; 0/, over @ OX ; see e.g. [108, Section 4.8] or [83]
for the nonsemiclassical setting, further [112] for a global semiclassical commutator estimate, and
[110, Section 5] for a refined semiclassical estimate.

29For bounded nonzero Q� , one can drop the rescaling of � and � in (3.33), thus writing covectors
simply as � d Or C Or�; the outgoing radial set is then given by .�; �/ D . Q�; 0/ over Or D 1, and the
incoming radial set by .�; �/ D .�Q�; 0/.
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provided we show that any u 2 NH s;r
sc .
O�/ with � Og. Q�/u D 0 necessarily vanishes. We

reduce this to the mode stability result of Whiting and Shlapentokh-Rothman [94, 114],
which we recalled in Theorem 1.7.

Radial point estimates at the conormal bundle of the event horizon, followed by prop-
agation of regularity from there, imply that u is smooth; at spatial infinity, u has infinite
scattering regularity since � Og. Q�/ is elliptic at high scattering frequencies. At the incom-
ing radial set, u has arbitrary scattering decay, and by propagating this to a punctured
neighborhood of the outgoing radial set, we conclude that u 3 NH1;r

0

sc . O�/ where r0 is arbi-
trary except r0 < �1=2 at the outgoing radial set. This can be further improved by means
of module regularity at the outgoing radial set, i.e. stable regularity under application
of Or.@ Or � i Q�/ and spherical vector fields; this goes back to [83, Section 12] and [47],
and is discussed in detail in the present setting in [37, Section 2.4] (see also [6, Propo-
sition 4.4] and [44]). We thus conclude that e�i Q� Oru 2 NH1;l0b . O�/ is conormal at Or D 1
where l0 < �1=2. Taking into account the modified asymptotics of outgoing spherical
waves caused by the black hole mass (here 1), we consider

u0. Or; �; ��/ WD e
�i Q� Or
Or�2i Q�u. Or; �; ��/:

Thus, u0 is conormal at O� D Or�1 D 0, but we need more precise information. To this
end, we observe that the equation satisfied by u0 in the coordinates . O�; !/ 2 Œ0; 1/ � S2

takes the form �
2i Q� O�. O�@ O� � 1/C O�

2L
�
u0 D 0

where L 2 Diff2b.Œ0; 1/ O� � S2/ (see [54, Definition 2.1, Lemma 2.7, and Section 4]).
Rewriting this as . O�@ O� � 1/u0 D O�L0u0 for a new operator L0 2 Diff2b , the conormal-
ity of u0 at O� D 0 can be upgraded by an iterative procedure, based on the inversion of
O�@ O� � 1, to the fact that u0 2 O�C1.Œ0; 1/ O� � S2/. We can now apply Theorem 1.7 (for real
nonzero spectral parameters, for which we already proved it in Section 1.2) to conclude
that u0 D 0 (and thus u D 0) in Or � Ore .

This then implies the vanishing of u in Or < Ore as well: this can be shown by consid-
ering the projections of u to its separated parts eim��S.�/R. Or/ and noting (by inspection
of the dual metric (3.6b)) thatR then satisfies an ODE which upon multiplication by O�. Or/
has a regular-singular point at Or D Ore; hence the infinite order vanishing ofR at Ore implies
R � 0 also in Or < Ore . The proof is complete.

Uniform estimates near zero energy require, first of all, an estimate for the zero energy
operator.

Lemma 3.19 (Zero energy operator on Kerr). Let s > 1=2 and 
 2 .�3
2
;�1

2
/. Then

kuk NH s;
b . O�/
� Ck� Og.0/uk NH s�1;
C2b . O�/

: (3.37)

Recall from Proposition 3.9 (2) that the zf-normal operator of �.� C i�1/ is indepen-
dent of �1 2 Œ�C1; C1� and �0 2 xR, and equal to the Kerr zero energy operator � Og.0/;
thus, Lemma 3.19 proves the invertibility of Nzf.�.� C i�1//.
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Proof of Lemma 3.19. Combining the symbolic estimates proved in Section 3.4—or
rather their restrictions to zf \ nf, cf. Proposition 2.33—with elliptic b-theory near
O� D Or�1 D 0, we obtain the estimate

kuk NH s;
b . O�/
� C

�
k� Og.0/uk NH s�1;
C2b . O�/

C kuk NH�N;�Nb . O�/

�
:

(The b-analysis at O� D 0 uses that � Og.0/ is, to leading order as a b-operator, the
Euclidean Laplacian O�2.. O�D O�/2 C i O�D O� C�=g/. Upon separation into spherical harmon-
ics, this is a rescaling of the regular-singular ODE . O�@ O�/2 � O�@ O� � `.`C 1/, with ` 2 N0

labeling the degree of the spherical harmonic; the indicial solutions are O�`C1 and O��`,
and the choice of weight 
 ensures that the weighted L2-space NH 0;


b . O�/ contains, for
all `, the solution O�`C1 but not O��`. See also [41, Theorem 2.1].) Since the inclusion
NH
s;

b . O�/ ,! NH

�N;�N
b . O�/ is compact, it remains to prove the triviality of ker� Og.0/.

This can be checked using explicit computations with special functions (as remarked in
[88, 101]), but we give a softer proof here, following [46].

In view of (3.6b) and (3.21), the operator� Og.0/ is explicitly given by

O%2� Og.0/ D D Or O�.r/D Or C�=g �
1 � �e. Or/2

O�.r/
.aD��/

2
C
�
�e. Or/D Or CD Or�

e. Or/
�
aD��

D D Or O�. Or/D Or C�=g �
a2

O�. Or/
D2
�

where in the second line we passed to � D �� Cˆ. Or/ with ˆ0. Or/ D �a�e. Or/
O�. Or/

; note that

ˆ. Or/ D �
a

ˇ
log. Or � Ore/C Q̂ . Or/; ˇ WD O�0. Ore/ D Ore � Orc D 2

p

1 � Oa2; (3.38)

with Q̂ smooth down to Or D Ore . We may also arrange that ˆ. Or/ D 0 for large Or .
Let now u 2 ker� Og.0/. First of all, we have u 2 NH1;
b . O�/: conormality at, and

smoothness near, spatial infinity follows from the ellipticity (for large Or) of � Og.0/ as
a weighted b-differential operator, whereas smoothness near the ergoregion and in the
black hole interior follows by combining radial point estimates at the event horizon and
propagation estimates in the ergoregion and in the black hole interior Or < Ore . Sobolev
embedding for u 2 NH1;
C3=2b . O�; j d Or

Or
d=gj/ implies that jDj

Or
uj DO. Or�
�3=2�j /D o. Or�j /

for any j 2 N0 as Or !1.
Upon projecting u.r; �; ��/ in the angular variables to a fixed spherical harmonic

Y`m.�; ��/ D e
im��S`m.�/, where ` 2 N0 and m 2 Z \ Œ�`; `�, we obtain a separated

solution
v�. Or/Y`m.�; ��/ D v. Or/Y`m.�; �/; v. Or/ D e�imˆ. Or/v�. Or/; (3.39)

where v� 2 C1.Œ1;1/ Or / satisfies jv�j D o.1/ as Or ! 1, and v (which equals v� for
large Or) satisfies �

D Or O�D Or �
a2m2

O�
C `.`C 1/

�
v D 0: (3.40)
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This is a regular-singular ODE at Or D 1, with indicial solutions Or` (which does not
decay as Or !1) and Or�`�1, and therefore we have jvj D O. Or�`�1/ and thus jDj

Or
vj D

O. Or�`�1�j / for all j 2 N0.
We first study the case ma D 0, i.e. a D 0 or m D 0. Then v is smooth on Œ Ore;1/;

upon multiplying (3.40) by Nv and integrating over Or 2 . Ore;1/, we may integrate by parts
in view of jvj D O. Or�1/ and jv0j D O. Or�2/ as Or ! 1. For ` D 0, we obtain v0 D 0,
hence v is constant and therefore must vanish since v is required to decay at infinity; for
` � 1, we obtain v D 0 directly.

When m;a ¤ 0, the rescaling of (3.40) by O� is of regular-singular type at O� D 0, and
by (3.38) and (3.39), we have v. Or/ D . Or � Ore/ima=ˇw. Or/ where w. Or/ is smooth down to
Or D Ore . The Wronskian

W WD Im
�
v. Or/�D Or Nv. Or/

�
is constant, but decays to zero as Or ! 1, and hence W D 0. On the other hand, by
evaluating its limit as Or & Ore , one finds W D m Oajw. Ore/j2; thus, w. Ore/ D 0, and since
the other indicial root of (3.40) is �ima=ˇ … ima=ˇ �N0, we conclude that w vanishes
identically, and therefore so does v� in Or � Ore .

Having shown that v� D 0 on Œ Ore;1/, we obtain v� D 0 also on Œ1; Ore� since v�. Or/
vanishes to infinite order at Or D Ore and satisfies 0 D O� O%2� Og.0/.v�Y`m/, which is a
regular-singular ODE at Or D Ore .

Next, the transition between zero and nonzero frequencies is governed by a model
operator on an exact cone; for purely imaginary spectral parameters, this was introduced
in [41], while in the present context of real spectral parameters, this model operator was
introduced in [43, Section 5]; see also [111, Definition 2.4, Section 5]. In the following
result, we work on the transition face tf � OXsc-b, which (recalling the coordinates (2.2)
and (2.18)) is

tf D Œ0;1�Qr � S2; Qr D jQ� j Or

by Proposition 2.15 (3). Concretely, the tf-normal operator of Q��2� Og. Q�/ is

�tf.1/ WD Ntf.� Og.�// D Q�C 1; Q� D D2
Qr �

2i

Qr
DQr C Qr

�2�=g (3.41)

(see [109, Sections 4.1 and 6]).30 On tf, we work with the volume density Qr2jd Qr d=gj, and
with Sobolev spaces

H
s;r;l
sc;b .tf/;

which are scattering Sobolev spaces near Q� D 0 (with variable decay order r) and
b-Sobolev spaces near Qr D 0 (with decay order l there). Note that

�tf.1/ 2 Diff2;0;2sc;b .tf/ D
�
Qr

Qr C 1

��2
Diff2sc;b.tf/

30This is the conjugation of the model operator in [54, Definition 2.20] by ei Qr . We remark that
in [54], which is based on [111], the analytic setup focuses on precise second microlocal/module
regularity at the outgoing radial set, whereas in the present paper variable order estimates are suffi-
cient.
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is an unweighted scattering operator near Q�D 0, and a weighted b-operator near Qr D 0. The
b-normal operator of Qr2�tf.1/ at Qr D 0 is . QrDQr /2 � i QrDQr C�=g , with indicial solutions
Or�`�1Y`m and Or`Y`m; the range .1

2
; 3
2
/ of weights in Lemma 3.20 disallows the former,

more singular, solution. The outgoing and incoming radial sets are as usual the graphs at
Q� D Qr�1 D 0 of d Qr and �d Qr , respectively.

Lemma 3.20 (Estimates for the tf-normal operator). Let s 2 R, l 2 .1
2
; 3
2
/, and suppose

r 2 C1.sc;bT �
O��1.0/

tf/ is a variable order function which is monotone along the flow of the
Hamiltonian vector field of the principal symbol of �tf.1/, and which satisfies r > �1=2,
resp. r < �1=2, at the incoming, resp. outgoing, radial set. Then there exists a constant
C > 0 such that

kuk
H
s;r;l
sc;b .tf/

� Ck�tf.1/ukH s�2;rC1;l�2sc;b .tf/: (3.42)

Proof. Radial point estimates at the scattering end Q� D 0, and elliptic b-estimates at the
small end Qr D 0 of the cone tf, give the estimate (3.42) except for the presence of an addi-
tional, relatively compact, error termCkuk

H
�N;�N;�N
sc;b .tf/ on the right. The estimate (3.42)

thus follows from the nonexistence of outgoing elements in the kernel of �tf.1/, which
is standard; it can be proved upon separation into spherical harmonics using Wronskian
arguments, or by inspection of the asymptotic behavior of the explicit (Bessel function)
solutions as done in [41, Sections 3.4–3.5] or [53, Lemma 5.10].

Lemmas 3.19 and 3.20 provide the normal operator estimates for the uniform low
energy analysis of � Og.�/ 2 Diff2;0;2;0sc-b .

xO�/ � ‰
2;0;2;0
sc-b .

xO�/ on the sc-b-transition-Sobolev
spaces NH s;r;
;l 0

sc-b;Q� .
O�/ introduced in Section A.4, with 
 and l 0 the weights at tf and zf,

respectively, and r 2 C1.sc-bT �scf
OX/ denoting a variable scattering decay order function.

Near scf � OXsc-b, a defining function of scf is Q� D Qr�1, and thus we can write sc-b-
covectors (cf. (A.4)) as

��
d Q�
Q�2
C
�

Q�
D � d Qr C Qr� D jQ� j.� d Or C Or�/

where � 2 T �S2. For Q� > 0, the outgoing (resp. incoming) radial set is then given by
� D 1 (resp. � D �1), � D 0, O� D 0, and the signs are reversed when Q� < 0.

Proposition 3.21 (Uniform bounds on Kerr near zero energy). Let s > 1=2, l; 
 2 R, and
suppose 
 � l 2 .�3

2
;�1

2
/. Suppose r is a variable order function that is monotone along

the Hamiltonian flow of the principal symbol of�tf.1/, and which satisfies r > 1=2, resp.
r < �1=2, at the incoming, resp. outgoing, radial set. Then there exists C > 0 such that,
for Q� 2 ˙Œ0; 1�, we have

kuk NH s;r;
;lsc-b; Q� .
O�/
� Ck� Og. Q�/uk NH s�1;rC1;
C2;lsc-b; Q� . O�/

: (3.43)

These estimates are closely related to those proved by Vasy [111]; but whereas Vasy
uses a second microlocal algebra which allows for precise module regularity control at
the outgoing radial set (roughly speaking allowing the order r to be constant—and thus
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high—except for a jump right at the outgoing radial set), we prove a less precise esti-
mate on variable order spaces here. Thus, using the simpler sc-b-ps.d.o. algebra already
introduced by Guillarmou–Hassell [41], we are still able to prove uniform low energy
resolvent estimates.

Proof of Proposition 3.21. Via multiplication by j Q� jl , one may reduce to the case of l D 0.
When j Q� j is bounded away from 0, the estimate (3.43) is the content of Proposition 3.18.
Symbolic estimates (which at the incoming radial set only require r > �1=2) give

kuk NH s;r;
;0sc-b; Q� . O�/
� C

�
k� Og. Q�/uk NH s�1;rC1;
C2;0sc-b; Q� . O�/

C kuk
NH
s0;r0;
;0
sc-b; Q� . O�/

�
for any s0 < s and r0 < r; we shall take s0 2 .1=2; s/, and choose r0 < r� 1with r0 >�1=2
at the incoming radial set and monotone along the Hamiltonian flow. Let � D �. Q�= O�/ D
�. Qr/ 2 C1c .Œ0; 1// denote a cutoff, identically 1 near 0, to a neighborhood of zf. Then by
writing uD �. Q�/uC .1� �. Q�//u, with the second summand supported away from zf, we
have

kuk
NH
s0;r0;
;0
sc-b; Q� . O�/

� k�. Q�/uk
NH
s0;r0;
;0
sc-b; Q� . O�/

C Ckuk
NH
s0;r0;
;�N
sc-b; Q� . O�/

for any fixed N ; we take N D 1. Moreover, uniformly for Q� 2 Œ0; 1�,

k�. Q�/uk
NH
s0;r0;
;0
sc-b; Q� . O�/

� Ck�. Q�/uk NH s0;
b . O�/
:

(In fact, the norms on both sides, in the presence of the cutoff �. Q�/, are uniformly equiv-
alent; see (A.6a).) Using Lemma 3.19, we obtain

k�. Q�/uk NH s0;
b . O�/

� C
�
k�. Q�/� Og.0/uk NH s0�1;
C2b . O�/

C kŒ� Og.0/; �. Q�/�uk NH s0�1;
C2b . O�/

�
� C

�
k�. Q�/� Og.0/uk NH s0�1;�;
C2;0sc-b; Q� . O�/

C kŒ� Og.0/; �. Q�/�uk NH s0�1;�;
C2;0sc-b; Q� . O�/

�
� C

�
k� Og. Q�/uk NH s0�1;�;
C2;0sc-b; Q� . O�/

C kuk
NH
s0;�;
;�1

sc-b; Q� . O�/

�
;

tol where the ‘�’ indicates that the order is arbitrary; we use �. Q�/.� Og. Q�/ � � Og.0// 2
Diff1;0;2;�1sc-b . O�/ and Œ� Og.0/; �. Q�/� 2 Diff1;�1;2;�1sc-b . O�/.

We have now obtained the improved estimate

kuk NH s;r;
;0sc-b; Q� . O�/
� C

�
k� Og. Q�/uk NH s�1;rC1;
C2;0sc-b; Q� . O�/

C kuk
NH
s0;r0;
;�1
sc-b; Q� . O�/

�
:

The next step is to strengthen this further by weakening the weight of the error term
at tf. To this end, we fix a cutoff  2 C1. OXsc-b/ which is supported in a small collar
neighborhood of tf � OXsc-b and identically 1 near tf; then for any ı 2 .0; 1� and N 2 R,
we have

kuk
NH
s0;r0;
;ı
sc-b; Q� . O�/

� k uk
NH
s0;r0;
;ı
sc-b; Q� . O�/

C Ckuk
NH
s0;r0;�N;ı
sc-b; Q� . O�/

:
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We can estimate the first term, using (A.6b) and Lemma 3.20, via pullback along the
coordinate change �W . Q�; Q�;!/ 7! . Q�; Q� Q�;!/ 2 Œ0; 1� � Œ0; 1/ O� � S2! , similarly to above by

j Q� jıC3=2k��. u/k
H
s0;r0;�
Cı
sc;b .tf/

� C j Q� jıC3=2
�
k��. /�tf.1/.�

�u/k
H
s0�2;r0C1;�
Cı�2
sc;b .tf/

C kŒ�tf.1/; �
�. /���uk

H
s0;r0;�
Cı
sc;b .tf/

�
� C

�
k � Og. Q�/uk NH s0�2;r0C1;
C2;ısc-b; Q� . O�/

C kuk
NH
s0;r0C1;
�1;ı
sc-b; Q� . O�/

�
(3.44)

where we fix ı > 0 so small that �
 C ı 2 .1
2
; 3
2
/. Here, we have used the fact that

 .� Og. Q�/ � ��. Q�2�tf.1/// 2 Diff2;0;�3;0sc-b . O�/;

which is nothing but the statement that Q�2�tf.1/ is the tf-normal operator of� Og. Q�/.
Altogether, increasing the tf-order of the final term in (3.44) to 
 � ı (thus making

this term larger) for convenience, we have shown

kuk NH s;r;
;0sc-b; Q� . O�/
� C

�
k� Og. Q�/uk NH s�1;rC1;
C2;0sc-b; Q� . O�/

C kuk
NH
s0;r0C1;
�ı;ı
sc-b; Q� . O�/

�
� Ck� Og. Q�/uk NH s�1;rC1;
C2;0sc-b; Q� . O�/

C C j Q� jıkuk
NH
s0;r0C1;
;0
sc-b; Q� . O�/

:

Since s0 < s and r0 C 1 < r, the second term, for sufficiently small j Q� j, can be absorbed
into the left hand side. The proof is complete.

3.6. Estimates for the mf˙;„-normal operator

Having proved estimates for all normal operators related to the Kerr model, we now turn
to the de Sitter model at mf and prove high energy estimates. Since the de Sitter model
involves, analytically and geometrically, a cone point due to the blow-up of the spatial
manifold X at 0 2 X , these estimates do not follow from [107, Section 4]. Rather, they
involve propagation estimates on semiclassical cone spaces; indeed, one can cite [53,
Theorem 4.10]. The details are as follows. By Proposition 3.9 (4), the mf-normal operator
of �.� C i�1/ is the operator family �0 7! �gdS.�0 C i�1/. In the high energy regime
h D j�0j

�1 � 1,˙�0 > 0, we rescale this to

h 7! h2�gdS.˙h
�1
C i�1/: (3.45)

Near the lift sf of h D 0 to PXc„ � mf, we have coordinates Qh D h=r , r , and ! 2 S2, and
Q-covectors can be written as h�1.� dr C r�/, � 2 R, � 2 T �S2, as in (3.27). In view
of (3.4), the semiclassical cone principal symbol of (3.45) is then

.1 � r2/�2 C j�j2
=g�1
�

1

1 � r2
:

The outgoing and incoming radial sets were computed already in Section 3.4.1; see (3.29).
(Indeed, in view of Corollary 2.21, we have QTmfC;„\ ifCX Š

c„T �sf
PX .) Furthermore, the
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tf-model operator of (3.45) only depends on the metric gdS at the point 0 where it is the
Minkowski metric on Rt� �X , and therefore the model operator is

�tf.1/ D D
2
Qr �

2i

Qr
DQr C Qr

2�=g C 1; Qr D
r

h
:

This is of course the same operator as in (3.41), since it is the restriction of h2�.� C i�1/
to the boundary face mf \ nf (see also Figure 2.3). Notice how what here is a model
problem at high energy right at the conic singularity of the spatial de Sitter manifold
blown up at 0 is the same as a model problem at low energy at spatial infinity of the
asymptotically flat spatial Kerr manifold.

Proposition 3.22 (High energy estimates on de Sitter space). There exists h0 > 0 so that
the following holds. Let s > 1=2 C C1, l 2 .1

2
; 3
2
/, l 0 2 R and r 2 C1.c„T �sf

PX/, and
assume that r is monotone along the Hamiltonian flow of the semiclassical cone principal
symbol of �gdS.�0C i�1/ .with hD˙��10 � 0 the semiclassical parameter/, and so that
r � l 0 > 1=2, resp. r � l 0 < �1=2, at the incoming, resp. outgoing, radial set. Then there
exists C > 0 such that

kuk NH s;l;l
0;r

c;h . P�/
� Ckh2�gdS.˙h

�1
C i�1/uk NH s�1;l�2;l

0;rC1
c;h . P�/

; 0 < h � h0:

.Recall here the notation P� from (3.12b)./

Proof. Via multiplication by hl
0

, we can reduce to the case l 0 D 0. Using the assumptions
on s and r, symbolic estimates (which control elements of semiclassical cone Sobolev
spaces in the sense of regularity s and semiclassical order r) give

kuk NH s;l;0;rc;h . P�/
� C

�
kh2�gdS.˙h

�1
C i�1/uk NH s�1;l�2;0;rC1c;h . P�/

C kuk
NH
�N;l;0;r0
c;h . P�/

�
(3.46)

for any fixedN and r0 < r, which we fix subject to r0 < r� 1, and r0 >�1=2 at the incom-
ing radial set. The error term can then be estimated in terms of the tf-normal operator
�tf.1/ by using Lemma 3.20 in a manner completely analogous to the proof of Propo-
sition 3.21; this is where the assumption l 2 .1

2
; 3
2
/ is used. Thus, the last, error, term

in (3.46) can be replaced by kuk
NH
�N;l;�1;r0C1
c;h . P�/

� Chıkuk NH�N;l;0;rc;h . P�/
if we choose

ı > 0 small enough so that r0 C 1C ı < r still.31 For small h > 0, this error term can then
be absorbed into the left hand side of (3.46), finishing the proof.

3.7. Absence of high energy resonances

By combining the estimates proved in Sections 3.4–3.6, we can now show the following
result.

31The assumption r � l 0 > 1=2 can be weakened to r � l 0 > �1=2 (see the end of the proof of
[53, Theorem 4.10]), but we do not need this precision here.
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Proposition 3.23 (Uniform estimates at high energies). Let s; 
; l 0; b 2 R, and let r 2
C1.QT �if X/ be a variable order. Suppose that s > 3=2CC1, 
 � l 2 .�3

2
;�1

2
/, and that

r � l 0 > 1=2, resp. r � l 0 < �1=2, at the incoming, resp. outgoing, radial set over if \ nf.
Suppose moreover that r is nonincreasing along the Hamiltonian flow of the principal
symbol of �.� C i�1/. Let h0 > 0 be as in Proposition 3.22 .i.e. sufficiently small/. Then
for any fixed s0<s, l0< l , 
0<
 , l 00< l

0, r0< r, b0<b, there exists a constantC >0 such
that for j�0j � h�10 , we have the uniform . for j�0j � h�10 , �1 2 Œ�C1; C1�, m 2 .0;m0�/

estimate

kuk
NH
s;.l;
;l0;r;b/
Q;�0;m

.�Q/

� C
�
k�gm.�0 C i�1/uk NH s�1;.l�2;
;l

0�2;r�1;b/
Q;�0;m

.�Q/
C kuk

NH
s0;.l0;
0;l

0
0
;r0;b0/

Q;�0;m
.�Q/

�
: (3.47)

In the remaining bounded frequency range j�0j � h�10 , we have a uniform . for �0 2
Œ�h�10 ; h

�1
0 �, �1 2 Œ�C1; C1�, m 2 .0;m0�/ estimate

kuk NH s;.l;
/q;m .�q/
� C

�
k�gm.�0 C i�1/uk NH s�1;.l�2;
/q;m .�q/

C kuk
NH
s0;.l0;
/
q;m .�q/

�
: (3.48)

Proof. Analogously to the proof of Proposition 3.21, this can be proved by successively
improving the error term of the symbolic estimate of Proposition 3.13 by means of the
normal operator estimates proved in Sections 3.5–3.6; the function spaces are related via
Proposition 2.33.

Thus, we fix s0 < s � 1, r0 < r� 1, and b0 < b � 2 subject to the conditions that s0 >
1=2CC1, and r0 � l 0 >�1=2 at the incoming radial set, and start with the estimate (3.23).
We weaken the error term in (3.23) at zf: let � be a cutoff to a neighborhood of zf as in
Proposition 2.33 (1) then Lemma 3.19 implies (omitting the coordinate change �zf from
the notation)

k�uk
NH
s0;.l;
;l

0;�;�/

Q;�0;m
.�Q/

� C h�il
0�lm3=2�l

k�uk
NH
s0;
�l

b . O�/

� C h�i.l
0�2/�.l�2/m3=2�.l�2/

�
�
k�m�2� Og.0/uk NH s0�1;
�lC2b . O�/

C km�2Œ� Og.0/; ��uk NH s0�1;
�lC2b . O�/

�
� C

�
k��gm.�0 C i�1/uk NH s0�1;.l�2;
;l

0�2;�;�/

Q;�0;m
.�Q/
C kuk

NH
s0C1;.l�1;
;l

0;�;�/

Q;�0;m

�
;

where we have used 
 � l 2 .�3
2
;�1

2
/ in the application of Lemma 3.19, and the fact

that �.�gm.�0 C i�1/ �m�2� Og.0// 2 Diff2;.1;0;2;�;�/Q (from Proposition 3.9 (2)); also

the commutator term m�2Œ� Og.0/; �� 2 Diff1;.�1;0;2;�;�/Q is a fortiori of this class. Since
on the other hand for Q-Sobolev norms of .1 � �/u (which is supported away from zf)
the weight at zf is arbitrary, we can now improve the symbolic estimate (3.23) (as far as
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the zf-weight is concerned) to

kuk
NH
s;.l;
;l0;r;b/
Q;�0;m

.�Q/

� C
�
k�gm.�0 C i�1/uk NH s�1;.l�2;
;l

0�2;r�1;b/
Q;�0;m

.�Q/
C kuk

NH
s0C1;.l�ı;
;l

0;r0;b0/
Q;�0;m

.�Q/

�
for any ı 2 .0; 1�. For any fixed compact interval of �0, this implies the uniform esti-
mate (3.48). (The weight l � ı can be reduced to any l0 using an interpolation argument.)
Note also that we can apply Proposition 3.13 to the error term here and thereby reduce its
differential order back to s0.

We work on the resulting error term kuk
NH
s0;.l�ı;
;l

0;r0;b0/
Q;�0;m

.�Q/
further by inverting the

nf-normal operator, which is m�2� Og.m�/ by Proposition 3.9 (3). Thus, reusing the sym-
bol � to now denote a cutoff to a collar neighborhood of nf which is identically 1 near nf,
we use Propositions 2.33 (3) and 3.21 to estimate, for Q�0 D m�0 with Q�0 2 ˙Œ0; 1�,

k�uk
NH
s0;.l�ı;
;l

0;r0;�/
Q;�0;m

.�Q/

� m3=2�l 0
k�uk

NH
s0;r0�l

0;
�l0;l�ı�l0

sc-b; Q�0
. O�/

� Cm
3
2�.l

0�2/
�
k�m�2� Og. Q�0/uk NH s0�1;r0�l0C1;
�l0C2;l�ı�l0sc-b; Q�0

. O�/

C km�2Œ� Og. Q�0/; ��uk NH s0�1;r0�l0C1;
�l0C2;l�ı�l0sc-b; Q�0
. O�/

�
� C

�

��.� C i�1/uk NH s0�1;.l�2�ı;
;l0�2;r0�1;�/Q;�0;m
.�Q/
C kuk

NH
s0C1;.l�ı;
;l

0�ı0;r0;�/
Q;�0;m

.�Q/

�
:

Here, we fix ı > 0 sufficiently small so that 
 � .l � ı/ 2 .�3
2
;�1

2
/; and ı0 2 .0; 1� can

be chosen arbitrarily. A completely analogous argument, now using Proposition 2.33 (4)
and Propositions 3.17 and 3.18, gives the high energy estimate (for Q�0 2 ˙Œ1;1�)

k�uk
NH
s0;.l�ı;
;l

0;r0;b0/
Q;�0;m

.�Q/

� C
�

��gm.�0 C i�1/uk NH s0�1;.l�2�ı;
;l

0�2;r0�1;b0/
Q;�0;m

.�Q/

C kuk
NH
s0C1;.l�ı;
;l

0�ı0;r0C1;b0C2/
Q;�0;m

.�Q/

�
:

(The semiclassical order b0 C 2 of the error term arises from the fact that �.� C i�1/
differs, near sf, from its nf-normal operator by an operator of class Diff2;.�;�;1;2;2/Q .) On
the other hand, .1 � �/u is supported away from nf, and hence for its Q-Sobolev norms
the order at nf is arbitrary. We have thus established the uniform estimate

kuk
NH
s;.l;
;l0;r;b/
Q;�0;m

.�Q/

� C
�
k�gm.�0 C i�1/uk NH s�1;.l�2;
;l

0�2;r�1;b/
Q;�0;m

.�Q/
C kuk

NH
s0;.l�ı;
;l

0�ı0;r0;b0/
Q;�0;m

.�Q/

�
;

(3.49)
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where we have used the symbolic estimate (3.23) again to reduce the differential and
semiclassical order to s0 and b0 (using b0 C 2 < b).

Finally, for j�0j�1 � h0, we can apply Proposition 3.22 to the localization of the error
term in (3.49) to a collar neighborhood of mf and to these high frequencies; using Propo-
sition 2.33 (2) to pass between Q- and semiclassical cone Sobolev spaces, and using that
l � ı � 
 2 .1

2
; 3
2
/ and .r0 � 
/ � .l 0 � ı0/ > �1=2, resp. < �1=2 at the incoming, resp.

outgoing radial set when ı; ı0 > 0 are sufficiently small, an application of Proposition 3.22
improves (3.49) to the desired estimate (3.47).

Corollary 3.24 (Absence of high energy resonances). There exists m1 > 0 such that
for all m 2 .0;m1�, �0 2 R with j�0j � h�10 , and �1 2 Œ�C1; C1�, we have �0 C i�1 …
QNM.m/.

Proof. For j�0j � h�10 , the final, error, term in the estimate (3.47) is small compared to
the left hand side, since

kuk
NH
s0;.l0;
0;l

0
0
;r0;b0/

Q;�0;m
.�Q/
D mı

kuk
NH
s0;.l0Cı;
0Cı;l

0
0
Cı;r0Cı;b0/

Q;�0;m
.�Q/

;

and l0 C ı < l , 
0 C ı < 
 , l 00 C ı < l 0, r0 C ı < r, and b0 < b for sufficiently small
ı > 0. Thus, when m1 > 0 is sufficiently small, then for m 2 .0;m1�, the estimate (3.47)
implies

kuk
NH
s;.l;
;l0;r;b/
Q;�0;m

.�Q/
� Ck�gm.�0 C i�1/uk NH s�1;.l�2;
;l

0�2;r�1;b/
Q;�0;m

.�Q/
:

This implies the claim.

3.8. Uniform control of bounded frequencies

Having proved that all resonances � 2 QNM.m/ with �1 D Im � 2 Œ�C1; C1� satisfy
jRe �0j < C0 for C0 D h�10 , we may now work with the holomorphic family

B WD Œ�C0; C0�C i Œ�C1; C1� 3 � 7!
�
.0;m0� 3 m 7! �gm.�/

�
2 Diff2;2;0q .�q/

of q-differential operators. For this family, we have the uniform estimate (3.48); for its
mf� -normal operator�gdS.�/, we moreover have uniform estimates

kuk NH s;lb . P�/
� C

�
k�gdS.�/uk NH s�1;l�2b . P�/

C kuk
NH
s0;l0
b . P�/

�
(3.50)

for any fixed s0< s, l0< l when s > 1=2CC1, l 2 .1
2
; 3
2
/. (This follows under the stronger

requirement s > 3=2C C1 from the relationship between q- and b-Sobolev spaces, see
Proposition 2.13 (2); or it follows directly by combining elliptic b-theory in r < 1, and
radial point and propagation estimates in r � 1.)

For the following result, we recall that P̌W PX ! X is the blow-down map (used before
in Lemma 3.10), and we recall �dS WD B.0; 2/ � X from Definition 3.4.
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Lemma 3.25 (Properties of the spectral family on de Sitter space). Let s > 1=2CC1 and
l 2 .1

2
; 3
2
/. Then for all � 2 B , the operator32

�gdS.�/W ¹u 2
NH
s;l
b . P�/W�gdS.0/u 2

NH
s�1;l�2
b . P�/º ! NH

s�1;l�2
b . P�/ (3.51)

is Fredholm and has index 0. Moreover, if u lies in its kernel, then u D P̌�v where
v 2 C1.�dS/.

Proof. We complement (3.50) by an analogous estimate for the adjoint operator on the
dual function spaces,

kvk
PH
�sC1;�lC2
b .

xP�/
� C

�
k�gdS.�/

�vk
PH
�s;�l
b .

xP�/
C kvk

PH
s1;l1
b .

xP�/

�
for any s1 < �s C 1, l1 < �l C 2. This is proved as in [107, Section 4] (see also [119])
using radial point and propagation estimates which propagate in the opposite direction
compared to the proof of (3.50), with the caveat that at the conic singularity r D 0, one
uses elliptic b-theory and �l C 2 2 .1

2
; 3
2
/. Together with (3.50), this implies that (3.51)

is Fredholm.
The high energy estimates of Proposition 3.22 imply that (3.51) is injective when

jRe � j is sufficiently large. One can similarly prove adjoint versions of the high energy
estimates of Proposition 3.22, which imply the triviality of the kernel of the adjoint
�gdS.�/

� on PH�sC1;�lC2b .xP�/. Thus, the operator (3.51) is invertible for large jRe � j,
and therefore Fredholm of index 0 for all � 2 B since the Fredholm index is constant.

If u 2 ker�gdS.�/, then u 2 NH1;lb . P�/ by elliptic regularity and radial point and
propagation estimates. But interpolating between the maps NH 0

b .
P�/ ,! L2.�dS/ and

NH
1;1
b . P�/ ,! NH 1.�dS/ implies that u D ˇ�v where v 2 NH l .�dS/ \ C1.�dS n ¹0º/.

Therefore�gdS.�/v, as an extendible distribution on �dS, has support in ¹0º but Sobolev
regularity � l � 2 (since �gdS.�/ 2 Diff2.�dS/). Since l � 2 > �3=2, we must have
�gdS.�/v D 0, and therefore v is smooth near 0 by elliptic regularity. (One can also prove
this directly by expanding u near r D 0 into spherical harmonics and solving the resulting
family of regular-singular ODEs at r D 0.)

Similarly, we can complement (3.48) by a uniform adjoint estimate

kuk PH�sC1;.�lC2;�
/q;m .�q/
� C

�
k�gm.�0 C i�1/

�uk PH�s;.�l;�
/q;m .�q/
C kuk

PH
s0;.l0;�
/
q;m .�q/

�
for s0 < �s C 1, l0 < �l C 2. For any m > 0, the two estimates together imply that

�gm.�/WH
s
m WD ¹u 2

NH s.�m/W�gm.0/u 2
NH s�1.�m/º ! NH s�1.�m/ (3.52)

is Fredholm; and it is invertible for � D �0 C i�1, �1 2 Œ�C1; C1�, provided jRe �0j
is sufficiently large, as follows from the absence of a kernel in this semiclassical regime

32Note that �gdS.�/ � �gdS.0/ 2 r
�2Diff1b .

xP�/, and therefore the domain in (3.51) can be
defined equivalently using�gdS.�/ in place of�gdS.0/.
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(proved in Corollary 3.24) and of a cokernel (proved by means of an adjoint version of the
estimate (3.47)). Thus, the map (3.52) has Fredholm index 0 and a meromorphic inverse.

The following two complementary results describe KdS QNMs for small masses as
perturbations of dS QNMs.

Proposition 3.26 (Absence of QNMs away from de Sitter QNMs). Suppose �� 2 B is
such that C1.�dS/ \ ker�gdS.��/ is trivial. Then there exists " > 0 such that for all
m 2 .0; "� and � 2 R with j� � ��j � ", we have � … QNM.m/.

By Lemma 3.7, the assumption on �� is equivalent to �� … �iN0.

Proof of Proposition 3.26. In view of the uniform Fredholm estimates for the spectral
family of �gdS , the assumption is satisfied for an open set of �� (see [107, Section 2.7]
for the relevant functional analysis). Thus, if " > 0 is sufficiently small, then for � 2 B
with j� � ��j � ", we have

kuk NH s;lb . P�/
� Ck�gdS.�/uk NH s�1;l�2b . P�/

for any fixed s > 1=2C C1 and l 2 .1
2
; 3
2
/. Using this estimate with 1=2C C1 < s0 <

s � 1 and l0 � 
 in place of s; l , we can improve the error term in (3.48) (applied with
s > 3=2C C1) to kuk

NH
s0C1;.l0;
�1/
q;m .�q/

(provided l0 < l is sufficiently close to l so that

l0 � 
 2 .
1
2
; 3
2
/ still) by exploiting the relationship between q- and b-Sobolev spaces

near mfq; see Proposition 2.13 (2). But this new error term is now small when m > 0 is
sufficiently small, and can thus be absorbed into the left hand side of (3.48). The resulting
estimate, for m � ", is

kuk NH s;.l;
/q;m .�q/
� Ck�gm.�/uk NH s�1;.l�2;
/q;m .�q/

; j� � ��j � ":

This implies the triviality of ker�gm.�/ and finishes the proof.

Proposition 3.27 (Kerr–de Sitter QNMs near de Sitter QNMs). Let �� 2 Bı \ QNMdS,
and let "0 > 0 be so small that QNMdS \ ¹j� � ��j � 2"0º D ¹��º. Then for sufficiently
small " 2 .0; "0�, there exists m1 > 0 such that

mdS.��/ D
X

j����j�"

mm.�/; m 2 .0;m1�: (3.53)

Moreover, for all sufficiently small r0 > 0 andK WD Œr0; 2�r � S2, the space of restrictions
of elements of

P
j����j�"

Resm.�/ to Œ0; 1�t� �K converges to ResdS.��/ in the topology
of C1.Œ0; 1� �K/.

Proof. The proof is an elaboration on [61, Theorem 1.1]. Thus, for s > 3=2 C C1 and
l 2 .1

2
; 3
2
/, let

K0 D ker NH s;lb . P�/
�gdS.��/; K�0 D ker

PH
�sC1;�l�2
b .

xP�/
�gdS.��/

�:
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(Note that e�i��t�K0 � ResdS.��/, but equality need not hold.) By Lemma 3.25, the
spaces K0 and K�0 have equal dimension d � 1. Choose r[ > 0 and functions u[j ; u

]
j 2

C1c . P� \ ¹r > r[º/, j D 1; : : : ; d , so that the maps K0 3 u 7! .hu; u[j i/
d
jD1 2 Cd and

K�0 3 u
� 7! .hu�; u

]
j i/

d
jD1 2 Cd are isomorphisms. Define the operators

RCW NH
s;l
b . P�/ 3 u 7! .hu; u[j i/

d
jD1 2 Cd ;

R�WC
d
3 .wj /

d
jD1 7!

dX
jD1

wju
]
j 2 C1c . P� n @ PX/:

Recalling the definition of H s
m from (3.52), the operator

Pm.�/ WD

�
�gm.�/ R�
RC 0

�
WH s

m ˚Cd
! NH

s�1;l�2
b .�m/˚Cd

is Fredholm of index 0.
The uniform estimate (3.48) (with 
 D 0) for�gm.�/ for � 2 B implies

k.u;w/k NH s;.l;0/q;m .�q/˚Cd

� C
�
kPm.�/.u;w/k NH s�1;.l�2;0/q;m .�q/˚Cd

C k.u;w/k
NH
s0;.l0;0/
q;m .�q/˚Cd

�
: (3.54)

But now the mfq-normal operator

PdS.�/ WD

�
�gdS.�/ R�
RC 0

�
has trivial nullspace for � D �� by construction, and thus for j� � ��j � 2" if we shrink
" > 0; we may assume that 2" is smaller than the distance from �� to @B . Therefore, PdS

obeys an estimate

k.u;w/k NH s;lb . P�/˚Cd
� CkPdS.�/uk NH s�1;l�2b . P�/˚Cd

; j� � ��j � 2":

As in the proof of Proposition 3.26, this can then be used to weaken the norm on the error
term in (3.54) to k.u; 0/k

NH
s0C2;.l0;�1/
q;m .�q/˚Cd

; this weakened error term can be absorbed

into the left hand side of (3.54) when m 2 .0;m1� for a sufficiently small m1 > 0, and
for all � 2 C with j� � ��j � 2". (Here, as in the proof of Proposition 3.26, we need to
use s > 3=2C C1 and take 1=2C C1 < s0 < s � 1.) Therefore, the operator Pm.�/ is
injective and thus invertible for such m; � ; we write its inverse as

Pm.�/
�1
D

�
Am.�/ Bm.�/

Cm.�/ Dm.�/

�
; m 2 .0;m1�; j� � ��j � 2":

By the Schur complement formula, �gm.�/ is invertible on C1.�m/ (or, equiva-
lently, as a map (3.52)) if and only if the d � d matrix Dm.�/ is invertible; concretely,
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we have

�gm.�/
�1
D Am.�/ � Bm.�/Dm.�/

�1Cm.�/; (3.55)

Dm.�/
�1
D �RC�gm.�/

�1R�:

Upon setting

m0m.�
0/ WD

1

2�i
tr
I
� 0
Dm.�/

�1@�Dm.�/ d�

these formulas implymm.�
0/ � m0m.�

0/ andm0m.�
0/ � mm.�/, and thereforemm.�/ D

m0m.�
0/. (Since Dm.�/ is an analytic family in � of d � d matrices, mm.�

0/ is the order
of vanishing of detDm.�/ at � D � 0.) We similarly have

PdS.�/
�1
D

�
AdS.�/ BdS.�/

CdS.�/ DdS.�/

�
; mdS.�

0/ D
1

2�i

I
� 0
DdS.�/

�1@�DdS.�/ d�:

Set D0.�/ WD DdS.�/. We then claim that Dm.�/ is continuous in m 2 Œ0;m1� with
values in holomorphic families (in j� � ��j � 3

2
") of d � d matrices; to this end, since

D0.�/ is holomorphic, it suffices to prove the continuity of Dm.�/ in m for any fixed �
with j� � ��j � 3

2
". Thus, let w 2 Cd and consider

.um; wm/ D Pm.�/
�1.0; w/I

we need to show that wm D Dm.�/w ! DdS.�/w as m& 0. But um 2 NH
s;.l;0/
q;m .�q/

and wm 2 Cd are uniformly bounded. Fixing � 2 C1c .Œ0; 1// with � D 1 on Œ0; 1=2�,
this implies in view of Proposition 2.13 (2) that u0m WD �.m=r/um 2 NH

s;l
b . P�/ is uni-

formly bounded. Upon passing to a subsequence of black hole masses mj with mj & 0

as j ! 1, we may assume that u0mj * u0 2 NH
s;l
b . P�/ and wmj ! w0. If mj is so

small that �.mj =r/ D 1 for r > r[, then u0mj jr>r[ D umj jr>r[ and therefore RCu0mj D
RCumj D w; thus, by taking the weak limit of

Pmj .�/.u
0
mj
; wmj / D

�
Œ�gmj

; �.mj =r/�umj ; w
�

as j !1, we obtain

�gdS.�/u0 CR�w0 D 0; RCu0 D w:

But since PdS.�/ is invertible, we must have .u0; w0/ D PdS.�/
�1.0; w/, so that w0 D

DdS.�/w. The weak subsequential limit .u0; w0/ D .BdS.�/w; DdS.�/w/ is therefore
unique, and in particular wm ! DdS.�/w, as claimed. For later use, we note that for any
fixed r0 > 0, this also shows that .Bm.�/w/jr>r0 D umjr>r0 D u

0
mjr>r0 * u0jr>r0 D

.BdS.�/w/jr>r0 in NH s.Œr0; 2� � S2/ as m& 0 (where the second equality holds when
m is so small that �.m=r/ D 1 for r > r0), and since s here is arbitrary, we indeed have
strong convergence

.Bm.�/w/jr>r0 ! .BdS.�/w/jr>r0 in C1.Œr0; 2� � S2/; (3.56)

uniformly in � when j� � ��j � 3
2
".
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As a consequence, if 
 D ¹j� � ��j D "º � B , oriented counterclockwise, then, for
m1 > 0 so small that 
 \ QNM.m/ D ; for all m 2 .0;m1� (such an m1 exists by
Proposition 3.26), we have

mdS.��/ D
X

j����j�"

mdS.�/ D
1

2�i

I



DdS.�/
�1@�DdS.�/ d�

D
1

2�i

I



Dm.�/
�1@�Dm.�/ d� D

X
j����j�"

mm.�/;

as asserted in (3.53).
Finally, we can choose a number r[ > 0 and polynomials pj D pj .�/ with values in

C1c . P� \ ¹r > r[º/ for j D 1; : : : ; mdS.��/ so that ResdS.��/ has as a basis

udS;j .t�; x/ D res�D��
�
e�it���gdS.�/

�1pj .�/
�
; j D 1; : : : ; mdS.��/:

The restrictions of udS;j to Œ0; 1�t� �K remain linearly independent for anyK D Œr0; 2��
S2 when r0 2 .0; 2/ is sufficiently small.33 With 
 as above, we can then set

um;j .t�; x/ D
1

2�i

I



e�it���m.�/
�1pj .�/ d�

D �
1

2�i

I



e�it��Bm.�/Dm.�/
�1Cm.�/pj .�/ d�

2

X
j����j�"

Resm.�/;

where we have used (3.55) and the holomorphicity ofAm.�/ in �. Since the span of pj .�/,
where j and � range over 1; : : : ;mdS.��/ and C respectively, is a fixed finite-dimensional
subspace of C1c . P� \ ¹r > r[º/, one can prove the uniform convergence Cm.�/pj .�/!

CdS.�/pj .�/ in Cd for j� � ��j � 3
2
" using arguments analogous to those leading

to (3.56). Using the already established convergence of Dm.�/ and Bm.�/, we thus
conclude that um;j jŒ0;1��K ! udS;j jŒ0;1��K in C1.Œ0; 1� �K/. In particular, for all suffi-
ciently small m > 0, the span of um;1; : : : ; um;mdS.��/ is mdS.��/-dimensional. But since
we already proved dim

P
j����j�"

Resm.�/ D mdS.��/, the um;j , j D 1; : : : ; mdS.��/,
span the full space

P
j����j�"

Resm.�/. The proof is complete.

In particular, for �� D 0, equation (3.53) gives 1D mdS.0/D
P
j����j�"

mm.�/, and
therefore there exists a single resonance �.m/ 2 QNM.m/ with j�.m/j � ". But since
constant functions on Rt� � �m lie in the nullspace of �gm , we have 0 2 QNM.m/;
therefore, necessarily, �.m/ D 0, with Resm.0/ equal to the space of constant functions.
This proves part (3) of Theorem 3.8.

33Since the udS;j are analytic in an appropriate coordinate system—see [60] for explicit formulas
and [35] for a general argument—the smallness requirement on r0 is in fact unnecessary.
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In order to finish the proof of Theorem 3.8, it now remains to show that there exists
h1 > 0 so that for � 2 QNM.m/ we have Im� � h�11 for all sufficiently small m; that is,
we need to prove uniform estimates not just in strips (as done so far) but also in the full
upper half-plane. We turn to this next.

3.9. Uniform analysis in a half-space

We now work in the complement ¹� 2 CW Im� � 0; j� j � 1º of the unit ball in the closed
upper half-plane; we parameterize this set via

Œ0; ��# � Œ1;1/�0 7! � D ei#�0:

We can then regard the spectral family�m.�/ as a smooth family

Œ0; �� 3 # 7!
�
Œ1;1/ � .0;m0� 3 .�0;m/ 7! �gm.e

i#�0/
�
:

In the Q-single space XQ, we work only in �0 � 1. The analogues of Proposition 3.9 and
Lemma 3.15 in this setting are then the following.

Proposition 3.28 (Properties of the spectral family). We have

�.ei# �/ 2 Diff2;.2;0;2;2;2/Q .�Q/;

with smooth dependence on # 2 Œ0; ��. Moreover,

(1) the Q-principal symbol of �.ei# �/ is given by (3.14) with � D ei#�0;

(2) Nzf.m
2�.ei# �// D � Og.0/;

(3) for Q�0 > 0, we have Nnf Q�0
.�.ei# �// D � Og.ei# Q�0/;

(4) for �0 � 1, we have Nmf�0
.�.ei# �// D �gdS.e

i#�0/;

(5) the principal symbol of Im�.ei# �/ is

.�0;mI x; �/ 7! 2.Im �/g�1m jx.�dt�;�.Re �/dt� C �/; � D ei#�0:

Since we arranged for dt� to be past timelike (see Lemma 3.2), the symbolic estimates
of Section 3.4 apply uniformly for # 2 Œ0; �� (thus Im ei# D sin # � 0), cf. [107, Sec-
tion 7]; for # 2 .0; �/, these are propagation estimates with complex absorption which
permit propagation in the causal future direction along the Hamiltonian flow. In particu-
lar, at the radial points at spatial infinity from the perspective of the Kerr model problems
at nf, the need to obtain uniform estimates in Im � � 0 down to Im � D 0 is what forces
the choice of RifC;� as the incoming and RifC;C as the outgoing radial set (rather than the
other way around). (This is the essence of the scattering microlocal proof of the limiting
absorption principle; see [83, Sections 9, 14], or [108, Proposition 4.13].)

Next, the zf-model problem is unchanged, and we can use the estimates for it given
by Lemma 3.19. For the nf-model problem at frequencies ei# Q�0 with Q�0 bounded away
from 0 and1, one similarly has uniform (in # 2 Œ0; ��) symbolic estimates on the same
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function spaces as in Proposition 3.18; we argue for the triviality of ker� Og.ei# Q�0/ below.
For the uniform low energy estimate (3.43) for Q� D ei# Q�0, Q�0 2 Œ0; 1�, the only additional
ingredient is a uniform estimate

kuk
H
s;r;l
sc;b .tf/

� Ck�tf.e
i#/uk

H
s�2;rC1;l�2
sc;b .tf/; # 2 Œ0; ��;

for the tf-model operator�tf.e
i#/ D Q�C ei# (see (3.41)); this is again a consequence of

uniform symbolic estimates together with the triviality of ker�tf.e
i#/, which for # D 0;�

was proved in Lemma 3.20 and which for # 2 .0; �/ follows via a direct integration by
parts (since tempered elements of ker�tf.e

i#/ are then automatically rapidly decaying
as Qr !1). The uniform high energy estimates of Proposition 3.22 continue to hold for
h2�gdS.h

�1ei#/ when h > 0 is sufficiently small.
We can now complete the proof of Theorem 1.7.

Proof of Theorem 1.7 for a ¤ 0 and Im � � 0. We once more make the Kerr parameters
m > 0, a 2 .�m;m/ explicit in the notation; moreover, for consistency with the notation
used in Theorem 1.7, we write � for the spectral parameter instead of Q� . With m> 0 fixed,
the aforementioned high energy estimates imply the injectivity of �gm;a.�/ on NH s;r

sc .
O�/

(cf. the function spaces in Proposition 3.18) for all � 2 C with Im � � 0, j� j � C.jaj/,
where C W Œ0;m/! .0;1/ can be taken to be continuous. By the aforementioned uniform
low energy estimates, we have the injectivity of �gm;a.�/ also for 0 < j� j < c.jaj/ for
some continuous function cW Œ0;m/! .0;1/. The injectivity of�gm;a.�/ for � 2R n ¹0º,
proved already in Section 1.2, together with the estimate (3.36), which in view of the argu-
ments above applies for spectral parameters � ¤ 0, Im � � 0, locally uniformly, implies
(via a standard functional-analytic argument using the compactness of NH s;r ,! NH�N;�Nsc )
the injectivity of �gm;a.�/ also for � D �0 C i�1 when �1 � 0 is sufficiently small
(depending on �0 2 R n ¹0º).

Our arguments thus far imply the existence of a continuous function C W Œ0;m/ !
.1;1/ so that all � 2 C, Im � > 0 for which �gm;a.�/ is not injective on NH s;r

sc must
satisfy � 2 U.jaj/ where

U.jaj/ D ¹� 2 CWC.jaj/�1 < Im � < C.jaj/; jRe � j < C.jaj/ºI

and for a D 0 no such � exist. Let now I � .�m;m/ be the set of all a 2 .�m;m/ for
which there do not exist any frequencies � 2U.jaj/ for which�gm;a.�/ is not injective;
in other words, I is the set of angular momenta for which mode stability holds. We have
0 2 I ; it suffices to prove that I is open and closed in .�m;m/.

The openness of I follows from the local uniformity of the estimate (3.36) (for spec-
tral parameters in the punctured upper half-plane, and for subextremal Kerr parameters):
if aj ! a1 2 I , a standard functional-analytic argument (using (3.36)) implies that for �
lying in a fixed compact subset of ¹Im � > 0º, the operator �gm;aj

.�/ must be injective
when j is sufficiently large. Taking this subset to be a compact set containing the closure
of U.ja1j/ in its interior (and thus containing U.aj / for large j ), we deduce that aj 2 I

for large enough j .
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The closedness of I follows from a resonance perturbation argument. For Im � > 0,
the family�gm;a.�/ is a holomorphic family of Fredholm operators

Xa D ¹u 2 NH
s;r
sc .
O�/W�gm;a.0/u 2

NH s�1;r
sc . O�/º ! NH s�1;r

sc . O�/

whose inverse is meromorphic. (Due to the ellipticity at r D 1 of �gm;a.�/ in the scat-
tering algebra, the weight r here is arbitrary; the absence of a shift r C 1 of the weight
in the codomain is likewise due to this ellipticity.) Suppose now a0 2 .�m;m/ n I lies
in the closure of I , and �.a0/ 2 U.ja0j/ is a resonance of �gm;a0

. The arguments in
[51, Appendix A.2] (with the additional scattering behavior at r D1 in the present setting
necessitating only notational changes in the reference) imply the continuous dependence
of resonances in Im� > 0 on the parameter a; thus, for some small 0 < " < m� ja0j, we
obtain a continuous function � W .a0 � "; a0 C "/! U.ja0j/, attaining the value �.a0/ at
the argument a0, so that �.a/ is a resonance of �gm;a for all a 2 .a0 � "; a0 C "/. But
since .a0 � "; a0 C "/ \ I ¤ ;, this is a contradiction. The proof is complete.

As a consequence, ker� Og. Q�/ is trivial for Q� D ei# Q�0 where # 2 Œ0; �� and Q�0 > 0;
therefore, the estimate (3.35) holds also for such Q� .

We can now combine these symbolic and normal operator estimates as in the proof of
Proposition 3.23; this yields, as in Corollary 3.24, the existence of m1 > 0 and h1 > 0

such that for all m 2 .0;m1� and �0 � h�11 we have ei#�0 … QNM.m/ for all # 2 Œ0; ��.
Thus, all quasinormal modes � of�gm , m 2 .0;m1�, satisfy Im� � h�11 . As noted at the
end of Section 3.8, this completes the proof of Theorem 3.8.

3.10. Quasinormal modes of massive scalar fields

From [61, Proposition 2.1], we recall the following analogue of Lemma 3.7:

Lemma 3.29 (QNMs for massive scalar fields on de Sitter space). Let � 2 C and �˙ D
3=2 ˙

p
9=4 � � as in Theorem 1.5. Then the set QNMdS.�/ of quasinormal modes of

�gdS � � is equal to
S
˙.�i�˙ � iN0/, and the multiplicity of � 2 QNMdS.�/ is

mdS.�I �/ D
X
l2N0

i��l2.��C2N0/[.�CC2N0/

.2l C 1/: (3.57)

Formula (3.57) reduces to (3.10) for � D 0; see the proof of Lemma 3.7. Define

QNM.�Im/; mm.�I �/; Resm.�I �/;

and ResdS.�I �/ as in Section 3.2 but now using the operators �gm � � and �gdS � �.
Then Theorem 3.8, except for part (3), remains valid upon adding the parameter � to the
notation throughout. (This also proves Theorem 1.5.)

The proof is the same as that of Theorem 3.8; indeed, the presence of the scalar field
mass term � affects neither the principal symbol of �.� C i�1/ � � nor any of its normal
operators, with the exception of

Nmf�0
.�.� C i�1/ � �/ D �gdS.�/ � �:
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Thus, the invertibility properties of �gdS.�/ � � are what determine the limiting quasi-
normal mode spectrum of�gm.�/ � �.

Appendix A. Geometric and analytic background

We begin by recalling some basic notions of b-analysis; see [40,74] for detailed accounts.
Let M be a smooth n-dimensional manifold with corners whose boundary hypersurfaces
H �M are embedded submanifolds; we writeM1.M/ for the collection of all boundary
hypersurfaces of M . We write C1.M/, resp. PC1.M/, for the space of smooth func-
tions, resp. smooth functions vanishing to infinite order, at all boundary hypersurfaces. A
defining function of H is a smooth function �H 2 C1.M/ such that H D ��1H .0/ and
d�H ¤ 0 on H ; if M is a manifold with boundary, then a defining function of @M is
called a boundary defining function. For a subset H � M1.M/, a function � 2 C1.M/

is called a (joint) defining function for
S
H2H H if it is the product of defining functions

�H , H 2 H . Moreover, we denote by M ı the interior of M .
A boundary face of M is a nonempty intersection of boundary hypersurfaces. A p-

submanifold S �M is a closed submanifold such that around each point in S there exist
local coordinates x1; : : : ; xk � 0, y1; : : : ; yn�k 2 R on M (with k the codimension of
the smallest boundary face containing the point under consideration) so that S is given
by the vanishing of the subset of these coordinates. The blow-up of M along S , denoted
ŒM IS�, is given as a set by

ŒM IS� D .M n S/ t SCNS

where SCNS D CNS=RC is the inward pointing spherical normal bundle; here CNS D
CTSM=TS is the inward pointing normal bundle, with CTqM � TM denoting the closed
orthant of inward pointing tangent vectors (i.e.

Pk
jD1 vj @xj C

Pn�k
jD1 wj @yj with all vj

nonnegative). The manifold S is called the center of the blow-up. The front face of ŒM IS�
is SCNS ; the blow-down map is the map ˇW ŒM IS�!M which is the identity onM n S
and the base projection on the front face. The set ŒM I S� can be given the structure of
a smooth manifold with corners by putting on it the minimal smooth structure in which
lifts of elements of C1.M/ as well as polar coordinates around S are smooth down to
the front face; the blow-down map is then smooth. If T � M is another p-submanifold
so that near points of S \ T , both S and T are given by the vanishing of a subset of
a single local coordinate system on M , then we define the lift ˇ�T of T to ŒM I S� as
follows: if T � S , then ˇ�T D ˇ�1.T /, and otherwise ˇ�T is the closure of ˇ�1.T n S/.
In either case, ˇ�T is a p-submanifold of ŒM I S� and can thus be blown up again; we
denote by ŒM IS IT �D ŒŒM IS�Iˇ�T � the iterated blow-up, and similarly for deeper blow-
ups. The lift of a smooth map f WM ! N between manifolds with corners to ŒM I S�
is the composition f ı ˇW ŒM I S� ! N . It may happen that ŒM I S I T � and ŒM I T I S�
are naturally diffeomorphic in the sense that the identity map on M n .S [ T / extends
to a diffeomorphism ŒM I S I T � Š ŒM I T I S�. In this case, we shall occasionally write
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ŒM IS;T �D ŒM IT;S�. This happens in particular when S � T or T � S , or when S and
T are transversal.

We denote by Vb.M/ the Lie algebra of b-vector fields on M , i.e. those smooth
vector fields which are tangent to all boundary hypersurfaces; in local coordinates
x1; : : : ; xk � 0, y1; : : : ; yn�k 2 R near a point on @M , such vector fields are linear
combinations of xj @xj (j D 1; : : : ; k) and @yj (j D 1; : : : ; n � k) with smooth coeffi-
cients. Thus, Vb.M/ is the space of smooth sections of the b-tangent bundle bTM !M ,
a rank n vector bundle equipped with a bundle map bTM ! TM which is an isomor-
phism over the interior M ı; a local frame of bTM in local coordinates is given by the
aforementioned vector fields xj @xj , @yj . Given V 2 Vb.M/ and a boundary hyper-
surface H � M , we denote by NH .V / 2 Vb.H/ the restriction of V to H , defined as
NH .V /u D .V Qu/jH for u 2 PC1.H/, where Qu 2 C1.M/ is any smooth function with
QujH D u. By Diffmb .M/ � Diffm.M/ we denote the space of b-differential operators of
orderm: these are locally finite sums of up tom-fold compositions of b-vector fields; here
a 0-fold composition is, by definition, multiplication by an element of C1.M/. We write
Diffb.M/ D

L
m2N0

Diffmb .M/.
If M; N are two manifolds with corners, a smooth map F WM ! M 0 is called an

interior b-map if for all H 0 2 M1.M
0/ we have F ��0H 0 D aH 0

Q
H2M1.M/ �

e.H;H 0/
H for

some 0 < aH 0 2 C1.M/ and e.H; H 0/ 2 N0, where �0H 0 2 C1.M 0/ is the defining
function ofH 0. In this case, one can define the b-differential bF�W

bTpM !
bTF.p/M

0 by
continuous extension of the standard differential of F restricted to a map M ı ! .M 0/ı.
The map F is called a b-submersion if bF� is everywhere surjective; if moreover for
each H 2 M1.M/ there exists at most one H 0 2 M1.M

0/ with e.H; H 0/ (i.e. F does
not map any boundary hypersurface into a codimension � 2 corner), then F is called a
b-fibration. Finally, an interior b-map F WM ! M 0 is b-transversal to a p-submanifold
S � M if for each p 2 S , the nullspace of bF�jp �

bTpM is transversal to ¹V.p/W V 2
Vb.M/ is tangent to Sº.

IfM is a manifold with boundary, with boundary defining function � 2 C1.M/, then
Vsc.M/ WD �Vb.M/ D ¹�V W V 2 Vb.M/º is the Lie algebra of scattering vector fields;
we have

ŒVsc.M/;Vsc.M/� � �Vsc.M/: (A.1)

The corresponding scattering tangent bundle scTM ! M has a local frame x2@x , x@yj
(j D 1; : : : ;n� 1) in local coordinates x � 0, y1; : : : ;yn�1 2R near a point on the bound-
ary. We denote by Diffmsc .M/ the corresponding space of scattering differential operators.

Let ˛ D .˛H WH 2 M1.M// be a collection of real numbers, and denote by �H 2
C1.M/ a defining function of H . Then A˛.M/ is the space of all smooth functions
u 2 C1.M ı/ such that for all A 2 Diffb.M/,

Au 2
� Y
H2M1.M/

�
˛H
H

�
L1loc.M/: (A.2)

We say that u is conormal (with weights ˛H ). Given ı D .ıH WH 2 M1.M// where
ıH 2 Œ0; 1=2/, we define more generally A˛

ı
.M/ to consist of all u 2 C1.M ı/ so that for
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allm2N0 andA2Diffmb .M/we haveAu2 .
Q
H2M1.M/ �

˛H�mıH
H /L1loc.M/. More gen-

erally still, if C �M1.M/ is a collection of boundary hypersurfaces, and weights ˛H 2R
and numbers ıH 2 Œ0; 1=2/ are given only for H 2 C , then A˛

C
.M/ and A˛

C ;ı
.M/ are

defined as before, but only taking products over H 2 C , and allowing A 2 Diffm.M/

to be any locally finite sum of up to m-fold compositions of smooth vector fields on M
which are tangent to allH 2C (but not necessarily the other boundary hypersurfaces). We
shall refer to such conormal distributions as smooth down to the boundary hypersurfaces,
M1.M/ n C .

Spaces of conormal functions with ı > 0 arise in particular as follows; for notational
simplicity we only discuss the case where M is a manifold with boundary @M . Suppose
a 2 C1.@M/ is bounded, and let a� D inf a. Let � 2 C1.M/ denote a boundary defining
function. Then Aa.M/ �

T
ı>0 Aa�

ı
.M/ is the space of all functions of the form �Qau0

where u0 2
T
ı>0 A0

ı
.M/, with Qa 2 C1.M/ any smooth extension of a. The relevance

of ı > 0 is that it ensures that �Qa itself lies in Aa.M/.
Suppose next that E ! M is a smooth vector bundle over a manifold with corners.

We denote by NE !M the radial compactification of E; this is a closed ball bundle. The
fiber bundle NE is defined fiberwise by means of the radial compactification of Rk (with k
the rank of E as a real vector bundle), which is defined as

Rk WD
�
Rk t .Œ0;1/� � Sk�1/

�
=�

where we identify 0 ¤ x D r! (in polar coordinates on Rk/ with .�; !/ D .r�1; !/.
A special case is xRD Œ�1;1�DR[¹�1;1º, with the function˙.1;1/3 x 7!˙x�1

extending to a diffeomorphism ˙.1;1�! Œ0; 1/; thus, the function jxj�1 is smooth on
xR n ¹0º, and it is a defining function of @xR D ¹�1;1º. For a 2 R [ ¹�1º, we shall
write Œa;1� for the closure of Œa;1/ inside xR; and we put .a;1� D Œa;1� n ¹aº. The
sets Œ�1; a�, and Œ�1; a/ are defined analogously. The boundary of NE at fiber infinity is
a sphere bundle S NE !M .

We denote byPm.E/�C1.E/ the space of smooth functions which are polynomials
of degree m 2 N0 on each fiber of E. Similarly, S s.E/ � C1.E/ denotes the space of
symbols (of class 1; 0) of order s 2 R on the fibers of E; an equivalent definition is
S s.E/ D A�s. NE/ (with smoothness down to NEj@M ).

Finally, suppose S � M is an interior p-submanifold of an n-dimensional mani-
fold M with corners, meaning that S \M ı ¤ ;. Thus, in suitable local coordinates
x1; : : : ;xk � 0, yD .y0;y00/2Rp �Rn�k�p , the submanifold S is given by y0D 0where
p � 1 is the codimension of S . For s 2 R, we then denote by I s.M; S/ � C�1.M/ D

. PC1.M I�M//� the space of conormal distributions at S of order s; in local coordinates,
such a distribution is given as

u.x; y/ D .2�/�p
Z

Rp
ei�
0�y0a.x; y00; �0/ d�0

where a 2S sCn=4�p=2.Œ0;1/k �Rn�k�pIRp/. (We follow the order convention of [63].)
One can also consider symbols which are merely conormal (with some weight) at x D 0,
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and allow for the presence of parameters ıj 2 Œ0; 1=2/ for j in some subset of ¹1; : : : ; kº
(which in particular allows for variable decay orders along .xj /�1.0/ for these j ). More-
over, by I s.M; S IE/ we denote the space of conormal distributions with values in the
vector bundle E !M . See [64, Section 18] for further details.

A.1. b- and scattering pseudodifferential operators

Let X denote an n-dimensional manifold with boundary. The b-double space of X is

X2b WD ŒX
2
I .@X/2�:

We denote by diagb � X
2
b the lift of the diagonal diagX � X2, by ffb � X

2
b the front

face, and by lbb and rbb the lift of @X �X and X � @X , respectively. See Figure A.1.

x′

x

lbb

rbb
ffb

diagb

Fig. A.1. The b-double space X2b of X D Œ0; 1/.

Furthermore, �RW X2b ! X denotes the right projection, and b�X ! X is the
b-density bundle (i.e. the density bundle associated with bTX ). The space ‰sb.X/ of
b-pseudodifferential operators (or b-ps.d.o.s) then consists of all continuous linear oper-
ators on PC1.X/ whose Schwartz kernels � 2 I s.X2b ; diagbI �

�
R

b�X/ vanish to infinite
order at all boundary hypersurfaces of X2b except ffb, and which are properly supported
when X is noncompact. (See [82] for an extensive discussion.) The principal symbol bσs

fits into a short exact sequence

0! ‰s�1b .X/ ,! ‰sb.X/
bσs

��! S s.bT �X/=S s�1.bT �X/! 0:

Composition of operators is a continuous bilinear map ‰s1b .X/ ı‰
s2
b .X/ � ‰

s1Cs2
b .X/,

and the principal symbol is multiplicative. In local coordinates x � 0, y 2 Rn�1 on X ,
lifted along the left, resp. right, projection to smooth functions x; y, resp. x0; y0, on X2b ,
local coordinates on X2b near diagb are x; y; x�x

0

x0
; y � y0. For � 2 C1c .R/ identically 1

near 0 and supported in a small neighborhood of 0, the operator

.Opb.a/u/.x; y/ WD .2�/
�n

“
R�Rn�1�Œ0;1/�Rn�1

exp
�
i

�
x � x0

x
�b C .y � y

0/ � �b

��
� �

�ˇ̌̌̌
log

x

x0

ˇ̌̌̌�
�.jy � y0j/a.x; y; �b; �b/u.x

0; y0/ d�b d�b
dx0

x0
dy0;



P. Hintz 4978

for a a symbol of order s in .�b; �b/ with support in the local coordinate system, defines
a typical element of ‰sb.X/; it is a quantization of a. (The two factors of � localize to
a neighborhood of diagb.) Every element of ‰sb.X/ is a locally finite sum (on the level
of Schwartz kernels) of such operators, plus an element of ‰�1b .X/. Spaces of weighted
operators are defined by‰s;lb .X/D ��l‰sb.X/ where � 2 C1.X/ is a boundary defining
function (lifted to the left factor of X2b ); one can more generally quantize symbols of
order s in the fibers of bT �X which are conormal with weight ��l down to bT �

@X
X .

Turning to scattering ps.d.o.s, we recall the scattering double space

X2sc D ŒX
2
b I diagb\ ffb�;

with front face denoted ffsc; we write diagsc � X
2
sc for the lift of diagb. See Figure A.2.

x′

x

diagsc

ffsc

Fig. A.2. The scattering double space X2sc.

Schwartz kernels of elements of the space ‰s;rsc .X/ of scattering ps.d.o.s of order
s; r are then elements of ��rI s.X2sc; diagscI �

�
R

sc�X/, with sc�X ! X denoting the
density bundle associated with scTX ! X . Such operators are discussed in [83]. (In the
special caseX DRn, a thorough discussion, including the case of variable orders, is given
in [108]. We note that Vsc.Rn/ is spanned over C1.Rn/—which is equal to the space of
classical symbols of order 0 on Rn—by translation-invariant vector fields on Rn, and the
space ‰s;rsc .R

n/ is equal to the space of quantizations .2�/�n
R
eiz��a.z; �/ d� of smooth

functions a which are symbols of order r , resp. s, in z, resp. �.) In local coordinates on X
as above, a typical element of ‰s;rsc .X/ is given by

.Opsc.a/u/.x; y/

D .2�/�n
ZZZZ

R�Rn�1�Œ0;1/�Rn�1
exp

�
i

�
x � x0

x2
�sc C

y � y0

x
� �sc

��
� �

�ˇ̌̌̌
log

x

x0

ˇ̌̌̌�
�.jy � y0j/a.x; y; �sc; �sc/u.x

0; y0/ d�sc d�sc
dx0

x02
dy0

x0n�1
:

The principal symbol scσs;r fits into the short exact sequence

0! ‰s�1;r�1sc .X/ ,! ‰s;rsc .X/
scσs;r

����! .S s;r=S s�1;r�1/.scT �X/! 0

where S s;r .scT �X/ denotes functions which are conormal on scT �X of order �s at
scS�X (fiber infinity of scT �X/ and of order �r at scT �

@X
X .
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We can more generally consider quantizations of symbols a 2 S s;r.scT �X/ with vari-
able scattering decay order r 2 C1.scT �X/ (i.e. conormal functions on scT �X with
variable order at scT �

@X
X ). The resulting space of operators is denoted ‰s;rsc .X/, and the

principal symbol now takes values in .S s;r=S s�1;r�1C2ı/.scT �X/ for any ı 2 .0; 1=2/.
See also [53, Section 2].

We also use the semiclassical scattering algebra. This algebra was introduced in the
context of high energy estimates for resolvents on asymptotically Euclidean manifolds
by Vasy–Zworski [112]. We discuss this in a slightly nonstandard way, mirroring the
discussion in [53, Section 3.4] for the semiclassical b-algebra. The underlying Lie algebra
of vector fields is

Vsc;„.X/ WD hC1.Œ0; 1�hIVsc.X//;

i.e. in terms of Xsc;„ WD Œ0; 1�h � X this is the space of elements of �Vb.Xsc;„/ which
annihilate h and which vanish at h D 0. Thus, ŒVsc;„.X/; Vsc;„.X/� � h�Vsc;„.X/. In
local coordinates, Vsc;„.X/ is spanned by h�2@� and h�@yj (j D 1; : : : ; n � 1); these
vector fields form a frame for the semiclassical scattering tangent bundle sc;„TX !Xsc;„.
We denote by Diffmsc;„.X/ the corresponding space of m-th order semiclassical scattering
differential operators (which are thus families of scattering operators on X which degen-
erate in a particular manner as h & 0); the principal symbol map gives rise to a short
exact sequence

0! h�Diffm�1sc;„ .X/ ,! Diffmsc;„.X/
sc;„σm

����! Pm.sc;„T �X/=h�Pm�1.sc;„T �X/! 0:

Define the semiclassical scattering double space by

X2sc;„ WD
�
Œ0; 1�h �X

2
scI ¹0º � diagsc

�
with diagsc;„ � X

2
sc;„ denoting the lift of Œ0; 1� � diagsc. See Figure A.3.

x

x′

h
diagsc,ℏ

Fig. A.3. The semiclassical scattering double space X2sc;„.

Then Schwartz kernels of elements of the corresponding space

‰ssc;„.X/
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of semiclassical scattering ps.d.o.s are the elements of I s�1=4.X2sc;„; diagsc;„I�
�
R

sc;„�X/

which vanish to infinite order at all boundary hypersurfaces of X2sc;„ except those which
intersect diagsc;„ nontrivially, and which are smooth down to the lift of h�1.1/. Here �R
is the lift of Œ0; 1� �X �X 3 .h; z; z0/ 7! .h; z0/ 2 Œ0; 1� �X , and sc;„�X ! Xsc;„ is the
density bundle associated with sc;„TX ! Xsc;„. In local coordinates, a typical example of
such an operator is the family Opsc;h.a/, h 2 .0; 1�, of bounded linear operators defined
by

.Opsc;h.a/u/.h; x; y/

D .2�h/�n
ZZZZ

R�Rn�1�Œ0;1/�Rn�1
exp

�
i

�
x � x0

x2
�sc;„ C

y � y0

x
� �sc;„

�
=h

�
� �

�ˇ̌̌̌
log

x

x0

ˇ̌̌̌
=h

�
�.jy � y0j=h/a.h; x; y; �sc;„; �sc;„/u.x

0; y0/ d�sc;„ d�sc;„
dx0

x02
dy0

x0n�1

where a is smooth in h; x; y and a symbol of order s in .�sc;„; �sc;„/. More generally, we
can consider symbols a 2 S s;r;b.sc;„T �X/which are conormal functions on sc;„T �X with
weight�r at xD 0 and weight�b at hD 0; these two orders may be variable, but we shall
only consider the case of variable scattering decay orders r 2 C1.sc;„T �

Œ0;1��@X
Xsc;„/. The

resulting space of operators is denoted

‰
s;r;b
sc;„ .X/;

and the principal symbol map sc;„σs;r;b on it takes values in

.S s;r;b=S s�1;r�1C2ı;b�1/.sc;„T �X/

for any ı > 0.

Remark A.1 (Compact parameter space). Semiclassical operators are usually defined for
parameters h lying in an interval .0; 1/ that is open at 1 (with 1 simply being a convenient
positive number). In this paper, we include the value 1 as well and require smoothness of
Schwartz kernels all the way up to h D 1. The reason is that the main pseudodifferential
algebra in this paper, the Q-algebra, contains at the same time semiclassical and non-
semiclassical algebras (say with parameters h 2 .0; 1� and � 2 .0; 1�) which fit together
smoothly (at ��1 D h D 1).

Remark A.2 (Variable orders). Pseudodifferential operators with variable orders were
already used by Unterberger [103]. For a discussion of variable order b-ps.d.o.s, see [6,
Appendix A]. Semiclassical spaces with variable semiclassical orders (powers of h) are
discussed in [50]; see also [58, Appendix A].

A.2. Semiclassical cone operators

Consider a compact n-dimensional manifold X with connected and embedded boundary
@X ¤ 0. (We can allow for X to be noncompact if we require all Schwartz kernels to
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be properly supported.) We recall elements of semiclassical cone analysis on X from
[53, 55]. (This is a semiclassical version of a large parameter calculus developed by
Loya [69]; see also [18,38,39] for variants based on Schulze’s cone calculus [90–92].) The
semiclassical cone single space (or c„-single space), introduced in [55, Section 3.1.1], is
the blow-up34

Xc„ WD
�
Œ0; 1� �X I ¹0º � @X

�
;

with boundary hypersurfaces denoted cf (the lift of Œ0; 1� � @X ), tf (the front face), and
sf (the lift of ¹0º � X ). Denote by h 2 Œ0; 1� the first coordinate on Œ0; 1� � X (identified
with its lift as a smooth function to Xc„). The Lie algebra of c„-vector fields is

Vc„.X/ WD ¹V 2 �sfVb.Xc„/WV h D 0º;

where �sf 2 C1.Xc„/ is a defining function of sf. In particular, restriction to any positive
level set h D h0 > 0 of h gives a surjective map Vc„.X/! Vb.X/. In local coordinates
r � 0, ! 2 Rn�1 near a point in @X , we can take �sf D

h
hCr

, and the space Vc„.X/ is
locally spanned by

h
hCr

r@r ;
h
hCr

@!j .j D 1; : : : ; n � 1/;

over the space of smooth functions of h C r � 0, r�h
rCh
2 Œ�1; 1�, and !. These vector

fields give a local frame for the c„-tangent bundle35 c„TX ! Xc„. Denote by Diffmc„.X/
the space of locally finite sums of up to m-fold compositions of c„-vector fields and
multiplication operators by elements of C1.Xc„/. Since ŒVc„.X/;Vc„.X/� � �sfVc„.X/,
we then have a well-defined principal symbol map c„σm which fits into a short exact
sequence

0! �sfDiffm�1c„ .X/ ,! Diffmc„.X/
c„σm

���! Pm.c„T �X/=�sfP
m�1.c„T �X/! 0:

The front face of Xc„ is the closure tf D CN@X of the inward pointing normal
bundle of @X ; its two boundary hypersurfaces are the zero section (with defining func-
tion �cf D

r
hCr

) and the boundary at fiber infinity (with defining function �sf D
h
hCr

). We
can thus consider the space Vb;sc.tf/ D �sfVb.tf/ of b-scattering vector fields on tf. By
[53, Lemma 3.5], the restriction Ntf of b-vector fields on Xc„ to tf gives rise to a short
exact sequence

0! �tfVc„.X/ ,! Vc„.X/
Ntf
��! Vb;sc.tf/! 0;

and correspondingly to an isomorphism c„TtfX Š
b;scT tf of tangent bundles and

c„T �tf X Š
b;scT �tf (A.3)

of cotangent bundles. The map Ntf extends to a multiplicative map NtfW Diffmc„.X/ !
Diffmb;sc.tf/.

34See Remark A.1 for the reason for including h D 1.
35We write c„TX here, as it is slightly less cumbersome than the notation c„TXc„ used in [53].
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The c„-double space is defined as36

X2c„ WD
�
Œ0; 1� �X2b I ¹0º � ffbI ¹0º � diagb; ¹0º � lbb; ¹0º � rbb

�
:

We denote by ff2, tf2, and df2 the lifts of Œ0; 1� � ffb, ¹0º � ffb, and ¹0º � diagb, respec-
tively, and by tlb2, trb2 and sf2 the lifts of ¹0º � lbb, ¹0º � rbb, and ¹0º �X2b , respectively.
Finally, diagc„ denotes the lift of Œ0; 1� � diagb. See Figure A.4.

ff2

tf2

tlb2

trb2

df2

sf2

x

x′

h
diagcℏ

Fig. A.4. The semiclassical cone double space X2c„ (called the extended semiclassical cone double
space 0X2c„ in [55]).

The space
‰sc„.X/

then consists of smooth (in h 2 .0; 1�) families of continuous linear operators on PC1.X/
whose Schwartz kernels are elements of I s�1=4.X2c„; diagc„I �

�
R

c„�X/ that vanish to
infinite order at all boundary hypersurfaces of X2c„ except for ff2; tf2; df2 and the lift of
h�1.1/. Here c„�X ! Xc„ is the density bundle associated with c„TX ! Xc„, and �R is
the lift of the right projection Œ0; 1� �X �X 3 .h; x; x0/ 7! .h; x0/ 2 Œ0; 1� �X . In local
coordinates as above, a typical element of ‰sc„.X/ is the family of operators Opc;h.a/

defined by

.Opc;h.a/u/.r; !/

WD .2�/�n
ZZZZ

exp
�
i

�
r � r 0

r h
hCr

�c„ C
! � !0

h
hCr

� �c„

��
�

�ˇ̌̌̌
log

r

r 0

ˇ̌̌̌�
�.j! � !0j/

� a.h; r; !; �c„; �c„/u.r
0; !0/ d�c„ d�c„

dr 0

r 0 h
hCr 0

d!0�
h

hCr 0

�n�1 :
36In [55, Definition 3.1], the c„-double space is defined without the blow-up of ¹0º � lbb and

¹0º � rbb. What we call the c„-double space here is the ‘extended c„-double space’ of [55, Defi-
nition 3.7], which is geometrically slightly more complex, but more natural (e.g. the left and right
projections X2c„! Xc„ from the extended c„-double space to the c„-single space are b-fibrations).



Mode stability of Kerr–de Sitter black holes away from extremality 4983

Here a is a symbol of order s in .�c„; �c„/, with smooth dependence on hC r , r�h
rCh

, !
(i.e. on h, r=h, ! in r . h and on r , h=r , ! in h . r).

More generally, we can consider quantizations of symbols a2S s;l;l
0;r .c„T �X/,37

which are conormal functions on c„T �X of differential order s (i.e. have weight �s)
at fiber infinity c„S�X , of b-decay order l at c„T �cfX , of tf-decay order l 0 at c„T �tf X , and
of semiclassical order r at c„T �sfX . The resulting space of operators is denoted

‰
s;l;l 0;r
c„ .X/:

(Restriction of elements of this space to a level set h D h0 > 0 gives a surjective map
to ‰s;lb .X/, whereas restriction in both factors of X in X2c„ to the interior Xı gives a
semiclassical ps.d.o. h�r‰s

„
.Xı/ on Xı.) The differential and semiclassical orders can

moreover be taken to be variable; we only need the case of variable semiclassical orders.
Thus, for r 2 C1.c„T �sfX/, we denote by

‰
s;l;l 0;r
c„ .X/

the corresponding space of operators, defined as the sum of ‰�1;l;l
0;�1

c„ .X/ and finite

sums of quantizations of symbols on c„T �X which are conormal on c„T �X with weights
�s, �l , �l 0, and �r (thus with an arbitrarily small parameter ısf > 0 at sf in the notation
introduced after (A.2)). The principal symbol map in this case is

c„σs;l;l 0;rW‰
s;l;l 0;r
c„ .X/! .S s;l;l

0;r=S s�1;l;l
0;r�1C2ı/.c„T �X/

for any ı 2 .0; 1=2/. (See [53, Section 3.2] for further details.)
For those elements of ‰s;l;0;rc„ .X/ which have Schwartz kernels which are smooth

down to tf2 (as distributions conormal to diagc„), indicated by a subscript ‘cl’, restriction
to tf gives rise to a surjective map

NtfW‰
s;l;0;r
c„;cl .X/! ‰

s;l;r
b;sc .tf/

with kernel �tf‰
s;l;0;r
c„;cl .X/; the restriction of the principal symbol of A 2 ‰s;l;0;rc„;cl .X/ to

c„T �tf X equals the principal symbol of Ntf.A/ under the identification (A.3). This identi-
fication also relates rjc„T �tf X

to a variable scattering decay order rjtf 2 C1.b;scT �tf/.

A.3. Scattering-b-transition algebra

Denote byX a compact n-dimensional manifold with connected and embedded boundary
@X ¤ ;. The final algebra of families of degenerating ps.d.o.s on X that we recall here
was introduced by Guillarmou–Hassell [41] for the purpose of giving a precise uniform
description of the Schwartz kernel of the low energy resolvent on asymptotically conic

37In [53], the slightly more cumbersome notation Ss;l;l
0;r .c„T �Xc„/ is used for the same sym-

bol space.
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spaces as one approaches the spectral parameter 0 from the resolvent set. We only need
the small calculus (i.e. without boundary terms).

We define the sc-b-transition single space to be

Xsc-b WD
�
Œ0; 1� �X I ¹0º � @X

�
;

with the lift of the first coordinate function denoted � . (One can completely analogously
study negative � , in which case Xsc-b D ŒŒ�1; 0� � X I ¹0º � @X�. In the main part of this
paper, it is clear from the context which of the two versions is used.) We denote by scf, tf,
and zf the lift of Œ0; 1�� @X , the front face, and the lift of ¹0º �X , respectively. This is the
resolved space for low energy spectral theory from [54, Definition 2.12] (and denotedXCres
there); a refinement of the corresponding phase space (in the notation introduced below:
the blow-up of sc-bT �X at the zero section over scf) was previously introduced by Vasy
[111]. With �H 2 C1.Xres/ denoting a defining function of H , we set

Vsc-b.X/ WD ¹V 2 �scfVb.Xsc-b/WV� D 0º:

In local coordinates � � 0, ! 2 Rn�1 near a point on X , this space is spanned over
C1.Xsc-b/ by

�

�C �
�@�;

�

�C �
@!j .j D 1; : : : ; n � 1/:

The vector bundle which has these vectors as a local frame is the sc-b-transition tangent
bundle sc-bTX ! Xsc-b; the dual bundle is denoted sc-bT �X ! Xsc-b as usual, with local
frame

�C �

�

d�
�
;

�C �

�
d!j .j D 1; : : : ; n � 1/: (A.4)

The space Vsc-b.X/ is a Lie algebra, and indeed ŒVsc-b.X/;Vsc-b.X/� � �scfVsc-b.X/.
(Thus, while Xsc-b is the same as the c„-single space except for renaming � as h, the Lie
algebras Vsc-b.X/ and Vc„.X/ are different.) The restriction Ntf to tf gives rise to a short
exact sequence

0! �tfVsc-b.X/ ,! Vsc-b.X/
Ntf
��! Vsc;b.tf/! 0

and thus to an identification
sc-bT �tf X Š

sc;bT �tf: (A.5)

We also remark that for each �0 > 0, the restriction of V 2 Vsc-b.X/ to ¹� D �0º Š X
defines an element of Vsc.X/, whereas the restriction to the lift zf Š X of � D 0 lies
in Vb.X/.

We denote the space of m-th order differential operators generated by Vsc-b.X/ by
Diffmsc-b.X/; the principal symbol map sc-bσm fits into the short exact sequence

0! �scfDiffm�1sc-b .X/ ,! Diffmsc-b.X/
sc-bσm

����! Pm.sc-bT �X/=�scfP
m�1.sc-bT �X/! 0:

In order to define the microlocalization of Diffsc-b.X/, we define the sc-b-transition
double space as

X2sc-b WD
�
Œ0; 1� �X2b I ¹0º � ffb; ¹0º � lbb; ¹0º � rbbI Œ0; 1� � @ diagb

�
:
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(This space is denoted M 2
k;sc

in [41].) We let scf2, tf2, and zf2 denote the lifts of Œ0; 1� �
@ diagb, ¹0º � ffb, and ¹0º �X2b , respectively; and we write diagsc-b � X

2
sc-b for the lift of

Œ0; 1� � diagb. See Figure A.5.

x

x′

σ
diagsc-b

tf2

zf2

scf2

Fig. A.5. The scattering-b-transition double space X2sc-b.

Then
‰ssc-b.X/

is the space of smooth families (in � 2 .0; 1�) of linear operators on PC1.X/ whose
Schwartz kernels are elements of I s�1=4.X2sc-b; diagsc-bI�

�
R

sc-b�X/ which vanish to infi-
nite order at all boundary hypersurfaces of X2sc-b except those which have nonempty
intersection with diagsc-b (these are scf2, tf2, and zf2, as well as the lift of ��1.1/). Here
�R is the lift of Œ0; 1� �X �X 3 .�; x; x0/ 7! .�; x0/, and sc-b�X ! Xsc-b is the density
bundle associated with sc-bTX ! Xsc-b. (In [41], the authors call this space of operators
‰s
k
.M/, and they consider operators acting on b-1

2
-densities instead of scalar functions.)

In local coordinates �; �; ! as above, a typical element of ‰ssc-b.X/ is the family of
operators Opsc-b;� .a/ defined by

.Opsc-b;� .a/u/.�; !/

WD .2�/�n
ZZZZ

exp
�
i

�
� � �0

� �
�C�

�sc-b C
! � !0

�
�C�

� �sc-b

��
�

�ˇ̌̌̌
log

�

�0

ˇ̌̌̌�
�.j! � !0j/

� a.�; �; !; �sc-b; �sc-b/u.�
0; !0/ d�sc-b d�sc-b

d�0

�0 �
�C�0

d!0�
�

�C�0

�n�1 :
Here a is a symbol of order s in .�sc-b; �sc-b/, with smooth dependence on � C �, ���

�C�
,

! (i.e. on � , �=� in � . � and on �, �=� in � . �). One can more generally consider
quantizations of symbols a 2 S s;r;
;l .sc-bT �X/ which are conormal on sc-bT �X with dif-
ferential order s (i.e. weight �s at fiber infinity), scattering decay order r (i.e. weight �r
at sc-bT �scfX ), tf-decay order 
 (i.e. weight �
 at sc-bT �tf X/, and zf-order l (i.e. weight �l
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at sc-bT �zfX ); the resulting space of operators is denoted ‰s;r;
;lsc-b .X/. (Restrictions of ele-
ments of ‰s;r;
;lsc-b .X/ to a level set � D �0 > 0 lie in ‰s;rsc .X/.) Moreover, just as in the
scattering calculus, we can generalize this further by allowing s; r to be variable; in this
paper we only need to consider variable scattering decay orders r 2 C1.sc-bT �scfX/ and
the resulting space

‰
s;r;
;l
sc-b .X/:

For those elements of ‰s;r;0;lsc-b .X/ whose Schwartz kernels are smooth down to tf2 (as
distributions conormal to diagsc-b), indicated by the subscript ‘cl’, restriction to tf gives
rise to a surjective map

NtfW‰
s;r;0;l
sc-b;cl .X/! ‰

s;r;l
sc;b .X/

with kernel �tf‰
s;r;0;l
sc-b;cl .X/. The same remains true for variable orders r upon identifying

the restriction of r to sc-bT �tf X with an element of C1.sc;bT �tf/ via (A.5).

A.4. Sobolev spaces

For all calculi introduced, we can define corresponding L2-based Sobolev spaces and
their (possibly parameter-dependent) norms. We assume throughout that the underlying
manifold X is compact. Fixing ˛� 2 R, denote by

� D �˛��0; 0 < �0 2 C1.X; b�X/;

a weighted b-density. All function spaces will be defined relative to the space L2.X; �/.
When the density is clear from the context (as is the case from here on), we shall omit it
from the notation.

Consider first the b-setting; we let H 0
b .X; �/ D L

2.X/. The weighted space

H
s;l
b .X/ D �lH s

b .X/

is then defined for s � 0 as the space of all u 2 H 0;l
b .X/ such that Au 2 H 0;l

b .X/ for
any fixed elliptic A 2 ‰sb.X/; for negative s we can define H s;l

b .X/ D .H
�s;�l
b .X//�

by duality (with respect to the H 0
b .X/-inner product), or equivalently as the space of

all elements of C�1.X/ D PC1.X/� which are of the form u0 C Au1 where u0; u1 2
H
0;l
b .X/, with A 2 ‰�sb .X/ a fixed elliptic operator.

Weighted scattering Sobolev spacesH s;r
sc .X/D �

rH s
sc.X/ are defined in a completely

analogous manner relative toL2.X/. (ForX DRn, the spaceH s;r
sc .X I jdxj/ is equal to the

standard weighted Sobolev space hxi�rH s.Rn/.) If r 2 C1.scT �X/ is a variable decay
order and r0 D inf r, we define

H s;r
sc .X/ D ¹u 2 H

s;r0
sc .X/WAu 2 H 0

sc.X/º

where A 2 ‰s;rsc .X/ is any fixed elliptic operator.



Mode stability of Kerr–de Sitter black holes away from extremality 4987

We next consider c„-Sobolev spaces. The base case is again theL2-spaceH 0
c;h.X/ WD

L2.X/, with the h-independent norm given by the L2.X/-norm. Next, the most general
space we shall need is

H
s;l;l 0;r
c;h .X/

where r 2 C1.c„T �sfX/ is a variable semiclassical order. For each value of h 2 .0; 1�, this
space is equal to H s;l

b .X/ as a set, but with a norm that is not uniformly equivalent as
h& 0. Namely, for s � 0, we fix an elliptic operator A 2 ‰s;l;l

0;r
c„ .X/ and define

kuk2
H
s;l;l0;r
c;h .X/

D k��lcf �
�l 0

tf �� inf r
sf uk2

L2.X/
C kAuk2

L2.X/

where �H 2 C1.Xc„/ is a defining function of H . For s < 0, we can define H s;l;l 0;r
c;h .X/

in any one of the two ways explained above for weighted b-Sobolev spaces.
Finally, we define the weighted sc-b-transition Sobolev space

H
s;r;
;l
sc-b;� .X/:

This is for any fixed � > 0 equal to H s;r
sc .X/ as a set; but for s � 0 it is equipped with the

� -dependent norm

kuk2
H
s;r;
;l
sc-b;� .X/

D k�� inf r
scf �

�

tf �

�l
zf uk

2
L2.X/

C kAuk2
L2.X/

where A 2 ‰s;r;
;lsc-b .X/ is any fixed elliptic operator. The definition for s < 0 is analogous
to the b-setting explained previously. The norm kuk

H
s;r;
;l
sc-b;� .X/

can be related to scattering-
b-Sobolev norms near tf, and to b-Sobolev norms near zf. Concretely, if we fix as a density
on X the scattering density j dx

x2
d!
xn�1
j (or any smooth positive multiple thereof), then for

�D �.�=x/ 2 C1c .Œ0;1//, identically 1 near 0, we have a uniform (for � 2 Œ0; 1�) equiv-
alence of norms

k�uk
H
s;r;
;l
sc-b;� .X/

� j� jlk�uk
H
s;
�l
b .X/

: (A.6a)

(That is, there exists a constant C > 0 such that for all � 2 Œ0; 1�, the left hand side is
bounded by C times the right hand side, and vice versa.) Similarly, for a cutoff  D
 .j� j C x/ 2 C1c .Œ0; "// (for small " > 0, in a collar neighborhood Œ0; "/ � @X of @X ),
identically 1 near 0, we have a uniform equivalence of norms

k uk
H
s;r;
;l
sc-b;� .X/

� j� jn=2�
k uk
H
s;r;l�

sc;b .tf/ (A.6b)

where upon setting Ox WD x=� , we use the density j d Ox
Ox2

d!
Oxn�1
j D j� j�nj dx

x2
d!
xn�1
j on tf.

The equivalences (A.6a)–(A.6b) are easily checked for L2-spaces (s D 0) with constant
scattering decay order r. For general s; r, they follow by using the definition of the respec-
tive norms using elliptic ps.d.o.s. For (A.6a), one notes that the Schwartz kernel of an
elliptic b-ps.d.o. on X is a distribution on zf2 � X2sc-b and as such can be extended, by
� -invariance, to the Schwartz kernel of a sc-b-ps.d.o. which is elliptic near zf. For (A.6b),
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one uses the fact that the Schwartz kernel of an elliptic scattering-b-ps.d.o. on tf is a dis-
tribution on tf2 � X2sc-b which can be extended, by dilation-invariance in .�; x; x0/, to the
Schwartz kernel of a sc-b-ps.d.o. which is elliptic near tf. See the proof of Proposition 2.33
for further details in a similar context.

Appendix B. Very large and extremely large frequency regimes in the Q-setting

Here, we relate Q-analysis in the very large, resp. extremely large, frequency regimes
described in Section 1.4 to semiclassical cone analysis, resp. doubly semiclassical cone
analysis, in the sense of [55].

Proposition B.1 (Intermediate and fully semiclassical regimes). For any fixed Q�0 2
R n ¹0º, the level set X2Q;Q�0 WD X2Q \ Q�

�1. Q�0/ is diffeomorphic, via the coordinates
.m; x; x0/ 2 .0; 1� �X �X , to

X2q„ WD ŒX
2
q I diagq\mfq;2�:

Moreover, X2
Q;˙;Q„

WD X2Q \ Q�
�1.˙Œ1;1�/ is diffeomorphic to

X2
q„Q„
WD
�
Œ0; 1�Q„ �X

2
q„I ¹0º � diagq„

�
where diagq„ � X

2
q„

is the lift of diagq.

Remark B.2 (Relationship to (doubly) semiclassical cone algebras). The space X2q„ car-
ries the Schwartz kernels of an algebra ‰q„.X/ of pseudodifferential operators which
microlocalizes the algebra of differential operators based on the Lie algebra Vq„.X/ WD

¹V 2 �mfqVb.Xq/WVmD 0º. Thus, elements of Vq„.X/ are semiclassical vector fields on
X n ¹0º, with semiclassical parameter m; there is moreover a normal operator at zfq which
is of scattering type at @zfq D zfq \ mfq. Note that the space Vq„.X/ is closely related
to the space Vc„.X/ of semiclassical cone vector fields with semiclassical parameter m,
in that the spaces of restrictions of elements of Vq„.X/ and Vc„. PX/ to the set jxj & m

are equal. One can use such an algebra ‰q„.X/ for uniform analysis as m & 0 in the
frequency regime j� j � m�1 (i.e. j Q� j � 1). The algebra ‰q„.X/ is contained in ‰Q.X/

(in the sense that the space of restrictions of elements of ‰Q.X/ to Q��1. Q�0/ is equal to
‰q0.X/ for any Q�0 2 R n ¹0º), and therefore we do not describe it in detail by itself.
When restricting to Q� 2 I in the case I D ˙Œ Q�0;1� where Q�0 2 .0;1/, Q-ps.d.o.s are
semiclassical versions of q„-ps.d.o.s., with Qh D jQ� j�1 being the semiclassical parameter;
this regime is thus closely related to (and in jxj & m equal to) the doubly semiclassical
cone calculus introduced in [55, Section 4], with m, resp. Qh being the first, resp. second
semiclassical parameter. The difference between the double space X2

q„Q„
defined here and

the doubly semiclassical cone double space of [55, Definition 4.6] stems from the fact
that only in the latter setting there is a cone point at the spatial origin which necessitates
a semiclassical cone resolution at Qh D 0.
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Proof of Proposition B.1. Consider first a neighborhood of ¹1º� .zfq;2/
ı� xR�X2q ; this

has a collar neighborhood Œ0;1/h � Œ0;1�m � . OXı/2. Passing to the blow-up of hDmD 0,
we have local coordinates Qh D h=m, m, Ox, Ox0 near the lift of h D 0. The space resulting
from blowing up the lift ¹0º � Œ0; 1�m � diag OXı of @R � diagq contains Œ0; 1�m � . OXı/2Q„
where . OXı/2

Q„
D ŒŒ0; 1� Qh � .

OXı/2I ¹0º � diag OXı � is the semiclassical double space of OXı.

We shall next analyze a neighborhood of the preimage of Œ0;1�h �mfq;2D Œ0;1�h � PX
2
b

in X2Q, and we in fact restrict attention in the second factor to a collar neighborhood
Œ0; 1/�mfq;2

� Œ0; 1/ P� � Œ0;1�s � .@ PX/
2 of mfq;2, where s D r=r 0 and

�mfq;2 D
m

P� P�L P�R
; P� D r C r 0; P�L D

s

s C 1
; P�R D

1

s C 1
: (B.1)

We drop the factor .@ PX/2 from the notation; thus we have a coordinate chart

Œ0; 1�h � Œ0; 1/�mfq;2
� Œ0; 1/ P� � Œ0;1�s

near Œ0; 1�h � mfq;2 � xR � X2q . In these coordinates, the six submanifolds blown up
in (2.27) take the form38

¹0º � zfq;2 D ¹0º � Œ0; 1/ � ¹0º � Œ0;1�I

¹0º � diagq D ¹0º � Œ0; 1/ � Œ0; 1/ � ¹1º;

¹0º � .diagq\mfq;2/ D ¹0º � ¹0º � Œ0; 1/ � ¹1º;

¹0º � .lbq;2 [ rbq;2/ D ¹0º � Œ0; 1/ � Œ0; 1/ � ¹0;1º;

¹0º �mfq;2 D ¹0º � ¹0º � Œ0; 1/ � Œ0;1�:

Upon blowing up ¹0º � zfq;2, a collar neighborhood of the lift of h D 0 is given by

Œ0;1/ Ph � Œ0; 1/�mfq;2
� Œ0; 1/ P� � Œ0;1�s; Ph WD h= P�:

The lifts of the remaining four submanifolds all involve the factor Œ0; 1/ O�, and therefore,
upon blowing them up, we obtain the open submanifold with corners of X2Q,

Œ0; 1/ P� �
�
Œ0;1/ Ph � Œ0; 1/�mfq;2

� Œ0;1�sI ¹0º � Œ0; 1/ � ¹1º; ¹0º � Œ0; 1/ � ¹0;1ºI

¹0º � ¹0º � ¹1ºI ¹0º � ¹0º � Œ0;1�
�
: (B.2)

See Figure B.1. In particular, if one does not blow up ¹0º � Œ0; 1/ � ¹1º, then a collar
neighborhood of the lift of Ph D 0 is given by

Œ0; 1/ P� � Œ0;1/ Qh �
�
Œ0; 1/�mfq;2

� Œ0;1�sI ¹0º � ¹1º
�

38We combine the ones involving lbq;2 and rbq;2.
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s

ρmfq,2

ḣ

Fig. B.1. The space (B.2) (with the P�-coordinate suppressed), as a subspace of the Q-double space
X2Q. Also shown is the intersection of a level set Q� D Q�0 ¤ 0 with @X2Q.

since Qh D h
m
�

Ph
�mfq;2 P�L P�R

by (B.1). Blowing up the lift of Œ0; 1/ � ¹0º � Œ0; 1/ � ¹1º and

reinserting the factor .@ PX/2, the open submanifold (B.2) of X2Q is thus�
Œ0;1/ Qh �N I ¹0º � diagq„

�
where N � X2q„ is a neighborhood of the preimage of mfq;2 under the blow-down map
X2q„ ! X2q . The proof of the proposition is complete once one performs an analogous
analysis of the geometry of X2Q;Q�0 and X2Q;C;„ near the preimages of Œ0; 1�h � lbq;2 and
Œ0; 1�h � rbq;2; we leave this to the reader.
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