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Abstract. We present a new aspect of the study of higher derived limits. More precisely, we intro-
duce a complexity measure for the elements of higher derived limits over the directed set � of
functions from N to N and prove that cocycles of this complexity are images of cochains of roughly
the same complexity. In the course of this work, we isolate a partition principle for powers of
directed sets and show that whenever this principle holds, the corresponding derived limit limn is
additive; vanishing results for this limit are the typical corollary. The formulation of this partition
hypothesis synthesizes and clarifies several recent advances in this area.

Keywords: coherent family, derived limit, Hechler forcing, L.R/, measurable partition, n-cofinal,
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1. Introduction

The first explicit treatments of the derived limits limn of the inverse limit functor were
a cluster of works appearing around 1960 [10, 29, 31, 35, 46]. (Higher derived limits did,
however, implicitly figure in earlier works by, most notably, both Steenrod [39] and Car-
tan and Eilenberg [7].) Milnor’s [29] may have been the most influential, for his isolation
therein of a lim1 term in the cohomology of a mapping telescope foreshadowed this func-
tor’s role in a wide range of (co)limit phenomena of greater later prominence in algebraic
topology—in the study of localizations and completions, homotopy (co)limits, and phan-
tom maps, for example [5,27,28]. Eilenberg and Moore established the first derived limit’s
importance for spectral sequence computations at around the same time [10], and con-
nections of the higher derived limits limn to the homological dimensions of rings were
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discovered very soon thereafter [32]. They have formed a fundamental part of mathemati-
cians’ toolkits ever since [43].

Within just a few years, the relevance of set-theoretic considerations to derived limits
had grown conspicuous [14, 30, 32]. This relevance has manifested itself in more recent
decades as growing literature on the set theory of derived limits of inverse systems indexed
by the partial order !! (see [4, Section 1] for a brief survey). A major stimulus for much
of this work was the formulation in [25] of a necessary condition for the additivity of
strong homology in terms of such limits, together with the reformulation of the most
basic instance of this condition in terms of the triviality of certain coherent families of
functions indexed by !!. This last condition was promptly shown to be independent of
the ZFC axioms [9,25,41], leaving open for the next three decades the question of whether
the additivity of strong homology on any robust class of topological spaces might be
independent of the ZFC axioms as well.

This question was answered in [1] by developing the aforementioned implications into
a more general circuit of equivalences, or near-equivalences, between

(1) the commutativity of the limn and colim functors,

(2) the additivity of strong homology,

(3) the triviality of higher-dimensional coherent families of functions,

each on suitably restricted domains. The third of these items has recently been shown to
be consistent relative to a weakly compact cardinal in [4]; it followed that item (2) on
the category of locally compact separable metric spaces and, equivalently, item (1) for
countable discrete diagrams of inverse sequences of finitely generated abelian groups (in
the category of pro-abelian groups) were both consistent relative to a weakly compact
cardinal as well. The solution, in short, consisted in a reduction of the questions of (1)
and (2) to the more combinatorial question of (3), together with a solution to the latter.

The present work takes this reduction one step further: here we introduce a family of
purely set-theoretic hypotheses PHn on partitions of powers of !! and show that these
hypotheses lie at the heart of the rather technical arguments of [1, 4]. More precisely, we
distill those arguments into an initial step establishing the simultaneous consistency of the
principles PHn for all n 2 !, followed by a ZFC deduction from the latter of conditions
(1) through (3) above.

This decomposition carries a number of benefits. To begin, it fully disentangles the
combinatorial and algebraic components of arguments whose hybridity has hitherto been
an impediment to their comprehension. It thereby facilitates a much closer analysis of the
set-theoretic content of these arguments, and this, indeed, is our work’s main contribu-
tion: we show that, in the presence of a suitable large cardinal assumption, the partition
hypotheses PHn hold for all universally Baire partitions of powers of !!. This carries
the corollary that, modulo a mild large cardinal hypothesis, for all n 2 ! all universally
Baire n-coherent families of functions indexed by !! are trivial, answering Questions 6
and 7.12 of [2] and [3], respectively, and generalizing a main result of [42]. Moreover,
the associated trivializations can themselves be taken to have low complexity relative to
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the n-coherent family; in particular, in the presence of suitable large cardinal hypotheses,
they are universally Baire.

The partition hypotheses PHn, moreover, are clearly of some interest in their own
right. For example, they readily generalize to any directed partial order ƒ and to the
ordinals !n in particular. In our penultimate section, we record several basic but intriguing
recognitions about the latter. We show, for example, that the hypothesis PHn.!n/ fails for
all n 2 !. We also describe, for each n, conditions implying the principle PHn.!nC1/.
Already when nD 1, however, these conditions carry considerable large cardinal strength,
while for n > 1 they are not even known to be consistent with the ZFC axioms.1

Organization of this paper

Section 2 contains a review of standard notation, definitions, and set-theoretic concepts
which will be used throughout the paper. It also contains a list of references which give
more detailed introductions to the different topics in set theory and algebraic topology
which we will need. In Section 3, we formulate the Partition Hypotheses PHn which are
our main object of study. Sections 4 and 5 together comprise our descriptive set-theoretic
analysis of these principles. In Section 4 we introduce refinements of the standard topo-
logical and Baire measurability structures on powers of !! and in Section 5 we show
that the hypotheses PHn hold for partitions which are measurable with respect to these
structures. We obtain as an immediate corollary a negative answer (modulo a large car-
dinal hypothesis) to the question, appearing in both [2] and [3], of whether a nontrivial
n-coherent family may be analytic.

Sections 6 and 7 together show how the hypotheses PHn effect a decomposition of
recent consistency results on the additivity of strong homology, and of limn, into two
distinct steps. Section 6 shows that these hypotheses hold in any generic extension by a
finite-support iteration of Hechler forcings of weakly compact length. This is the only
explicit appearance of forcing in our arguments; readers who are not proficient in this
technique may take Theorem 6.1 as a black box at no cost to their comprehension of
any other section of the paper. Section 7 deduces additivity conclusions for limn from
PHn. Section 8 treats the two most natural generalizations of these hypotheses, namely
to arbitrary products of directed posets, and to the ordinals. After showing that the first
of these carries the additivity implications for higher limits that one would hope for, we
record the results on the ordinals !n mentioned above; we then reconnect these results
to our main focus, partition hypotheses on powers of !!. In a third subsection, we show
that partition hypotheses admit succinct formulation within the framework of simplicial
sets, formulations in which they figure, suggestively, as only minor variations on classical
partition relations. We conclude with a number of open questions.

1Added in proof: See footnote following Problem 9.5.
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2. Notation and preliminaries

Although this paper is intended to be self-contained, we begin by listing some standard
references which some readers may find helpful, depending on their background. General
information about set theory, including forcing, can be found in Kunen’s [20]. Kechris’s
[19] is the standard reference for descriptive set theory (e.g. Borel, †1

1-sets, …1
1-sets).

Kanamori’s [18] is an encyclopedic account of large cardinals (e.g. weakly compact,
supercompact, measurable, x]), including their history and motivation. It also includes
some additional results in descriptive set theory which will be needed (Shoenfield abso-
luteness, Martin–Solovay absoluteness). An introduction to the notion of a universally
Baire set can be found in [12]. Relevant background material on homological algebra and
on higher derived limits can be found in Mardešić’s [24]. Finally, many of the proofs in
the present paper have their roots in [1, 4].

We now turn to our review. As is standard, the symbol ! will denote the set of finite
ordinals, a set which coincides with the nonnegative integers. All counting and indexing
will begin at 0 unless otherwise indicated. If X is a set and n 2 !, we will write Xn to
denote the set of n-tuples of elements of X . We will identify X1 with X and Xn � X
withXnC1. Also, if f is a function defined on a subset ofXn and .x0; : : : ; xn�1/ is in the
domain of f , we will write f .x0; : : : ; xn�1/ instead of f ..x0; : : : ; xn�1//. In particular,
if f is a function defined on a subset of XnC1, x D .x0; : : : ; xn�1/ 2 Xn, and y 2 X , we
will write f .x; y/ for f .x0; : : : ; xn�1; y/, which in turn is really f ..x0; : : : ; xn�1; y//.
By convention the 0-tuple, also known as the null sequence, is the empty set ¿.

We will use� to denote the collection of all strictly increasing functions from ! to !,
and † to denote all finite strictly increasing sequences of elements of !. If s 2 †, let
Œs� denote the set of all elements of � which extend s. This is a basic clopen set in the
Polish topology on�. If x;y 2�, we will write x _ y and x ^ y for their coordinatewise
maximum and minimum respectively. Borel will always refer to the metric topology on
� and its powers unless specified otherwise.

Recall that a quasi-order is a set P equipped with a reflexive transitive relation; we will
also use quasi-order to refer to the relation itself. We will say that P is a quasi-lattice if
there exist associative operations^ and_ on P such that the following conditions are met:

� x ^ y � x; y and for all z, if z � x; y then z � x ^ y.

� x; y � x _ y and for all z, if x; y � z then x _ y � z.

If P is a quasi-order and n � 0, P Œn� consists of those elements of Pn whose coordi-
nates occur in (weakly) increasing order (P Œ0� D P0 consists only of the null sequence).
We will write P�n to denote

Sn
iD1 P i and P Œ�n� to denote

Sn
iD1 P Œi� (note that i D 0

is excluded in both cases). If x; y 2 P�n, we will write x E y to denote that x can be
obtained from y by deleting coordinates.

Let P ŒŒn�� �
Qn
iD1P i consist of all � which areE-increasing. If F W��n!� is such

that x E y implies F.x/ � F.y/, then define F � W �ŒŒn�� ! �Œn� by

F �.�/ WD F ı � D .F.�.i// j 1 � i � n/:

We note here that by our convention, both P ŒŒ1�� and P Œ1� are identified with P .



A descriptive approach to higher derived limits 5001

The quasi-order of primary interest in this paper is � equipped with the order of
eventual dominance. For all k 2 ! we equip � [ † with the quasi-order �k defined by
x �k y if dom.y/ � dom.x/ and x.i/ � y.i/ for all i 2 dom.y/ with k � i . If x; y 2 �,
we define x �� y to mean x �k y for some k. We will write � for �0, noting that in this
case � is antisymmetric and hence a partial order. If k > 0, both �k and �� fail to be
antisymmetric. Notice that the operations x ^ y WD min.x; y/ and x _ y WD max.x; y/
witness that .�;�k/ is a quasi-lattice for each k and that .�;��/ is a quasi-lattice. If
an implicit reference is made to a quasi-order on �, it refers to ��. For instance, �Œn�

consists of tuples which are ��-increasing.
Section 6 assumes the reader is proficient in forcing. As noted, a standard treatment

of forcing can be found in [20]; we will also utilize the “dot convention” for denoting
names for elements of generic extensions—see, e.g., [16]. Recall that Hechler forcing is
the partially ordered set H consisting of all pairs pD .sp; xp/ 2†�� for which sp � xp .
We call sp the stem of xp . The order on H is defined by q � p if and only if sp � sq and
xq � xp . Following standard forcing terminology, elements of H will be referred to as
Hechler conditions or simply conditions. It should be noted that while only Section 6 will
require knowledge of forcing, .H;�/ is closely tied to the topology � on � appearing in
Section 4. Moreover, the elementary definitions and arguments of Section 4 are informed
by the perspective of forcing.

Recall that a Polish space is a topological space which is separable and completely
metrizable. The class of Polish spaces is closed under countable products and taking
closed subspaces. In particular, H � † � !! is a Polish space, where † is equipped
with the discrete topology. Also, if X is a countable set, then P.X/ is a compact Polish
space when given the topology generated by the following sets, for x 2 X :

¹A 2P.X/ j x 2 Aº; ¹A 2P.X/ j x 62 Aº:

The Borel sets in a Polish space are the elements of the smallest � -algebra which con-
tains the open sets. The projective hierarchy of †1

n- and …1
n-sets is defined recursively as

follows. The †1
0-sets are the Borel sets. The …1

n-sets are those sets whose complement
is †1

n. The †1
nC1-sets are those sets which are a continuous image (e.g. a projection) of

a …1
n-set. †1

1-sets are often referred to as analytic sets; …1
1-sets are often referred to as

coanalytic sets. By a result of Souslin, the Borel sets are precisely those sets which are
both analytic and coanalytic. A function is Borel (or …1

1, †1
2) if its graph is. We note that

the †1
nC1-functions include the …1

n-functions and are closed under composition. Borel
functions coincide with those functions with the property that preimages of open sets are
Borel.

In order to demonstrate that a set is projective, one typically examines the logical
structure of the description of the set. For instance Borel sets are closed under quantifica-
tion over countable sets: if X is Polish, S is countable, and B � X � S is Borel, then so
are the sets

¹x 2 X j 9s 2 S ..x; s/ 2 B/º;

¹x 2 X j 8s 2 S ..x; s/ 2 B/º:
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Similarly, if n � 1, the †1
n-sets are closed under existential quantification over a Polish

space, while the …1
n-sets are closed under universal quantification over a Polish space.

Furthermore, if Z � X � Y , X and Y are Polish and Z is …1
n, then

¹x 2 X j 9y 2 Y ..x; y/ 2 Z/º

is a †1
nC1-set.

At several points in our argument, we will need the Kondô–Novikov Uniformization
Theorem for …1

1-sets.

Theorem 2.1 (see [19, 36.14]). Suppose thatX and Y are Polish spaces andR � X � Y
is a …1

1-relation. There is a …1
1-function ' � R with the same domain as R.

Recall that a subset A of a topological space X has the property of Baire in X if there
is an open subset U ofX such that the symmetric difference betweenA and U is a meager
subset of X .

Definition 2.2. A subset A of a Polish spaceX is universally Baire if for every Hausdorff
topological space Y and every continuous map f W Y ! X , the preimage f �1.A/ has
the property of Baire in Y . A function f W A! B is universally Baire if A and B are
universally Baire subsets of Polish spaces and the graph of f is universally Baire.

The collection of subsets of a given Polish space which are universally Baire forms a
� -algebra. Moreover, all †1

1- and …1
1-sets are universally Baire. In the presence of large

cardinals, the universally Baire sets enjoy much stronger closure properties.

Theorem 2.3 ([12,45]). Suppose either that there exists a supercompact cardinal or that
there exists a proper class of Woodin cardinals. If X;Y 2 L.R/ are Polish spaces, A � X
is universally Baire, and B � Y is in L.R; A/, then B is universally Baire. In particular,
every †1

2-set is universally Baire and the class of universally Baire functions is closed
under composition.

Here L.R/ is the minimum model of ZF which contains all of the reals and ordinals;
if A � R, L.R; A/ is the minimum model of ZF which contains all of the reals, ordinals,
and the set A. Notice that the assumption that the Polish spaces X and Y are in L.R/ is a
superficial one: any Polish space is homeomorphic to a closed subspace of RN and L.R/
contains all such subspaces.

3. A Partition Hypothesis for �n

We now define our main object of study.

Definition 3.1. Suppose that P is a directed quasi-order. A function F W P�n ! P is
n-cofinal if

� x � F.x/ for all x 2 P ,

� if x E y are in P�n, then F.x/ � F.y/.
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Definition 3.2. For all n 2 !, define the Partition Hypothesis associated to PnC1 and a
cardinal � to be the following statement:

PHn.P ; �/ For all c W PnC1 ! � there is an .nC 1/-cofinal F W P�nC1 ! � such that
c ı F � is constant.

PHn will denote PHn.�; !/.

Our interest will be exclusively in the special case P D � and � D ! for much of the
paper; we will return to the general setting in Section 8.

Several observations are now in order. First, the values of c on elements of �nC1

which are not ��-increasing are not relevant—i.e., PHn is really a statement about parti-
tions of �ŒnC1�. Second, notice that partition hypotheses grow in strength with n, in the
sense that PHnC1 implies PHn for all n 2 !. In Section 8 we record partition hypotheses
of order n which are consistent, but whose order-.nC 1/ instances are not. Third, PH0 is
a ZFC theorem. In fact, something formally stronger is true: since the�� ordering on� is
� -directed, for any f W�! ! there exists an i 2 ! such that ‡ WD f �1.i/ is ��-cofinal
and consequently �k-cofinal in � for some k 2 ! (see [1, Lemma 3]). Let F W �! ‡

be such that x �k F.x/ for all x 2 �; this F then witnesses PH0 not only with respect to
the �� ordering, but with respect to the �k ordering on � as well.

The principle at work here implies the following more general lemma.

Lemma 3.3. Fix n 2 ! and a function c W �nC1 ! !. For any ��-cofinal ‡ � � and
.nC 1/-cofinal function F W ‡�nC1 ! � extending the identity map for which the com-
position c ı F � is constant, there exists an .nC 1/-cofinal NF W ��nC1! � extending F
with c ı NF � constant. Moreover, if there is a k such that F is .nC 1/-cofinal with respect
to �k then for some ` 2 !, NF may be taken to be .n C 1/-cofinal with respect to the
ordering �`; similarly, if F maps into ‡ then NF may be taken to map into ‡ as well.

Proof. Suppose that n, F , and ‡ are as in the statement of the lemma and F is .nC 1/-
cofinal with respect to �k . Again observe that ‡ is �m-cofinal in� for somem 2 !. Let
` D max.k;m/. Fix a function g W �! ‡ with g�‡ D id and x �` g.x/ for all x 2 �.
Define NF by setting NF .x0; : : : ; xj / WD F.g.x0/; : : : ; g.xj //. It is easily checked that NF is
an .nC 1/-cofinal function as in the lemma’s conclusion.

This “concentration on some�k” phenomenon holds for our partition hypotheses very
generally. More precisely, by modifying c in the statement of PHn, we may assume that
whenever x is in�Œn�, c.x/ records (in addition to its original data) the least k such that the
coordinates of x are �k-increasing. If F is an .nC 1/-cofinal function such that c ı F �

is constant, then for some k, F.x/ �k F.y/ for each x E y. Moreover, since .�;��/ is
� -directed, there is an ` such that ‡` WD ¹x j x �` F.x/º is ��-cofinal and hence �m-
cofinal for somem. Extending F�‡` to all of�Œn� as in Lemma 3.3 yields an NF which is
.nC 1/-cofinal with respect to the order �max.m;k;`/. In consequence, in any application
of PHn below, we may assume that the witnessing function F is .n C 1/-cofinal with
respect to �k for some k.
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4. A notion of measurability associated to �Œn�

In this section, we introduce variants of the standard topological and Baire measurability
structures on �Œn� which will be instrumental in the argument of our main results.

A topology on �

In addition to the Polish topology on�, we will also utilize the stronger topology � which
is generated by the basic open sets

Nk.x/ WD ¹y 2 � j x � y and x�k D y�kº:

This topology (already considered in [41]) is first countable, Choquet, and has a � -
centered base (although it is nonseparable). Notice that there is a natural order isomor-
phism between the Hechler poset H and the basic open sets in � ordered by containment:
p 7! Njsp j.xp/; we will let Np denote Njsp j.xp/. If p 2H! , defineW.p/D

S1
nD0Np.n/.

Clearly W.p/ is Borel and � -open. We will now isolate a sufficient criterion on p 2 H!

to ensure that W.p/ is dense.
Define S W H! ! P.†/ by S.p/ WD ¹sp.n/ j n 2 !º and note that S is a Borel

function—its graph is a Borel subset of the Polish space H! �P.†/. To see this, observe
that .p; A/ is in the graph of S if and only if

.8n 2 ! .sp.n/ 2 A// ^ .8s 2 † 9n 2 ! ..s 62 A/ _ .s D p.n////:

Since the set of triples .p; A; n/ such that sp.n/ 2 A is clopen and hence Borel, the set of
.p;A/ such that 8n 2 ! .sp.n/ 2 A/ is Borel (in fact it is closed). Similarly, the set of pairs
.p; A/ such that

8s 2 † 9n 2 ! ..s 62 A/ _ .s D p.n///

is Borel (in fact Gı ). It follows that the graph of S is Borel. (This is an illustration of
complexity computation mentioned in Section 2.)

Definition 4.1. A subset S0 of † is strongly dense if for all .s; x/ 2 H, there is a t 2 S0
extending s such that x � t . We will let S denote the collection of all strongly dense
subsets of †.

Lemma 4.2. If p 2 H! and S.p/ is strongly dense, then W.p/ is dense. Moreover, if
S0 � † is strongly dense and U � � is dense and open with respect to � , then there is a
p 2 H! such that S.p/ � S0, W.p/ � U , and S.p/ is strongly dense.

Proof. First suppose that S.p/ is strongly dense for some p 2 H! . Let Nk.x/ be an
arbitrary basic open set. Since S.p/ is strongly dense, there is an n 2 ! such that sp.n/
extends x�k and x � sp.n/. Define y D x _ xp.n/ and observe that y 2 Nk.x/ \W.p/
with y 2 W.p/ witnessed by n.

Now suppose that U and S0 are given as in the statement of the lemma. Let S1 be
the set of all s 2 S0 such that for some x 2 � extending s, Njsj.x/ � U . Let p 2 H! be
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such that S.p/ D S1 and such that if .s; x/ is in the range of p, then Njsj.x/ � U . Since
S.p/ � S0 and W.p/ � U , it suffices to show that S1 is strongly dense.

To this end, let q 2H be arbitrary. Since U \Nq is nonempty, it contains a basic open
set Nq0 . Since S0 is strongly dense, there is a t 2 S0 which extends sq0 such that xq0 � t .
If y 2 � extends t and xq0 � y, then Njt j.y/ � U and therefore t 2 S1, t extends sq , and
xq � t as desired.

Define yG WD .H!/! and let G � yG be the set of sequences G such that for all n 2 !,
S.G.n// 2S . If G 2 yG , defineW.G/ WD

T1
nD0W.G.n//; note thatW.G/ is a Borel set

which is Gı with respect to � . Furthermore, if G 2 G , then W.G/ is dense. We now turn
to some complexity calculations.

Lemma 4.3. S and G are …1
1-sets and there are …1

1-functions g W G � H ! � and
Qg W G <! �H! � such that

g.G; p/ 2 W.G/ \Np; Qg.G0; : : : ; Gn�1; p/ 2
\
i<n

W.Gi / \Np

whenever G 2 G , .G0; : : : ; Gn�1/ 2 G <! , and p 2 H.

Proof. Define T to be the set of all .S0; s; x/ 2P.†/�†�� such that there is a t 2 S0
which extends s with x �jsj t . Since T is Borel (it is metrically open), it follows that

S D ¹S0 2P.†/ j 8.s; x/ 2 † �� ..S0; s; x/ 2 T /º

is …1
1 (S is the complement of the projection of the complement of T ; we can also

see this by appealing to the fact that the …1
1-sets include the Borel sets and are closed

under universal quantification over Polish spaces). Since the …1
1-sets are closed under

taking preimages by Borel functions [19, 32A], it follows that the preimage of S under
S is …1

1. Since G � .H!/! consists of those sequences .pn j n 2 !/ such that for all
n, S.pn/ 2 S , G is an intersection of countably many …1

1-sets and hence is …1
1 (see

[19, 32A]).
Now consider the relationR � yG �H�� consisting of all .G;p;y/ such thatG 2 G

and y 2 W.G/ \ Np . Since the set of all .G; p; y/ such that y 2 W.G/ \ Np is a Borel
set, R is …1

1. By Theorem 2.1, there is a …1
1-function g W G �H!� such that the graph

of g is contained inR. Now ifG D .G0; : : : ;Gn/ 2 G <! , define zG 2 G by zG.k/DGm.i/
if k D mnC i ; if G is the null sequence, define zG to be the constant sequence with value
the greatest element of H (corresponding to the trivial open set �). Define Qg.G; p/ D
g. zG;p/, noting that Qg is also a …1

1-function.

We will fix, for the remainder of the paper, …1
1-functions g and Qg satisfying the con-

clusion of Lemma 4.3.

Hn-measurability

We will now develop an abstract higher-dimensional analog of Baire measurability with
respect to � which we will call Hn-measurability. We will prove that, in the presence of
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a large cardinal hypothesis, the Partition Hypothesis holds for Hn-measurable partitions
of �Œn� and that universally Baire subsets of �Œn� are Hn-measurable. While it seems
possible to show that Hn-measurability is Baire measurability with respect to a suitable
topology on �Œn�, this would introduce unnecessary complications and we choose not to
pursue this. We note that if one is willing to make a stronger large cardinal assumption,
it is possible to prove the results of this section using the general framework provided by
[47, Section 5.1].

Define H to be the collection of all Borel sets of the form Nk.x/ n E such that E
is � -meager. The stem of Nk.x/ n E is x�k. This is well-defined since every nonempty
� -open set is nonmeager and since the basic open sets Nk.x/ are both closed and open. If
n � 0, Z � �ŒnC1�, and x D .x0; : : : ; xn�1/ 2 �Œn�, define

Zx WD ¹y 2 � j .x0; : : : ; xn�1; y/ 2 Zº:

Note that if n D 0, then �Œ0� D ¹¿º and Z¿ D Z modulo our convention of identifying
Z and Z1. We will now recursively define Hn for n � 0 as well as define what the stem
of an element of Hn is.

Definition 4.4. Set H0 D ¹�
Œ0�º; the stem of �Œ0� is ¿. Define HnC1 to consist of all

Borel sets Z � �ŒnC1� such that for some s 2 †,

� X WD ¹x 2 �Œn� j Zx ¤ ¿º is in Hn,

� for all x 2 �Œn� either Zx 2 H with stem s or Zx D ¿.

The stem of Z is the element of †nC1 whose first n entries are the stem of X and whose
final entry is s.

Observe that if A � B are in Hn, then the stem of A extends the stem of B coordi-
natewise. Also, H1 coincides with H modulo our convention of identifying �Œ1� and �.

There are two natural notions of smallness associated to each Hn. We will ultimately
show that they coincide if we assume a large cardinal hypothesis.

Definition 4.5. A subset X of �Œn� is Hn-nowhere dense if for every A 2 Hn there is a
B � A nX in Hn; X is Hn-meager if it is a countable union of Hn-nowhere dense sets.
Similarly one defines H -nowhere dense and H -meager.

Definition 4.6. Define I to be the � -ideal of � -meager subsets of� and define I0 WD ¹¿º
to be the trivial ideal on�Œ0�. Define InC1 to consist of all I ��ŒnC1� such that for some
Borel set Z � �ŒnC1�, I � Z and

¹x 2 �Œn� j Zx 62 Iº 2 In:

It is easily verified that each In is closed under taking countable unions. It will be
useful to work with certain elements of In having a particularly nice form.

Definition 4.7. A set I in InC1 is full if

� I is Borel,
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� either n D 0 or ¹x 2 �Œn� j Ix 62 Iº is full,

� if x 2 �Œn� and Ix 62 I, then Ix D �.

The utility of this definition comes from the fact that if B 2 Hn and E 2 In is full,
then B n E is in Hn. We also have the following lemma relating In and the Hn-meager
sets.

Lemma 4.8. Every element of In is contained in a full element of In. In particular, every
element of In is Hn-nowhere dense.

Proof. The proof is by induction on n. By convention, ¿ is a full element of I0. Suppose
now thatZ 2 InC1 is given. By replacingZ by a superset, we may assume thatZ is Borel.
Let X be a full set in In which contains ¹x 2�Œn� j Zx 62 Iº. It follows that Z [ .X ��/
is a full element of InC1 containing Z.

We are now ready to define the notion of Hn-measurability.

Definition 4.9. A subset X if �Œn� is Hn-measurable if there is a Borel set B such that
B4X WD .B nX/ [ .X n B/ is Hn-meager.

Notice that the Hn-measurable sets form a � -algebra which includes the Borel sets
and the Hn-meager sets. We will prove below that in the presence of a suitable large
cardinal hypothesis, all †1

2-sets are Hn-measurable. This assertion itself will be needed
as a hypothesis in some of our results.

Notation 4.10. (�n) denotes the hypothesis that if m � n, then every †1
2-subset of �Œm�

is Hm-measurable. (�) denotes the assertion that (�n) holds for all n.

Much of the relevance of †1
2-sets and their measurability comes via the following

complexity computation.

Lemma 4.11. If Z � �ŒnC1� is Borel, then both

¹x 2 �Œn� j Zx 2 Iº

and its complement are †1
2-sets.

Proof. By Lemma 4.2, Zx 2 I is equivalent to

9G 2 yG 8x 2 �
�
.G 2 G / ^

�
.z 2 W.G//! .z 62 Zx/

��
:

By Lemma 4.3, G is a …1
1-set and hence ¹x 2 �Œn� j Zx 2 Iº is a †1

2-set (see discussion
in Section 2).

Next observe that since Z is Borel, each Zx has the Baire property with respect to � .
Thus Zx 62 I is equivalent to

9p 2 H 9G 2 yG 8z 2 �
�
.G 2 G / ^

�
.z 2 W.G/ \Np/! .z 2 Zx/

��
:

It follows that ¹x 2 �Œn� j Zx 62 Iº is †1
2.
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We will view each collection Hn as being ordered by containment. It will be helpful
to borrow the following terminology from forcing.

Definition 4.12. Two elements of Hn are compatible if their intersection contains an
element of Hn; otherwise they are incompatible.

Lemma 4.13. For all n, every family of pairwise incompatible elements of Hn is count-
able.

Proof. It suffices to show that if Z0 and Z1 are in Hn and have the same stem, then
Z0 \Z1 is in Hn and has the same stem as them both. This is proved by induction on n.
If n D 0, this is trivial. Suppose now that it is true for n and Z0; Z1 2 HnC1 have the
same stem .s0; : : : ; sn/. Set

Xi WD ¹x 2 �Œn� j .Zi /x ¤ ¿º:

By our inductive assumption,X0 \X1 is in Hn and has stem .s0; : : : ; sn�1/. Now suppose
that x 2 X0 \ X1. Observe that .Z0 \ Z1/x D .Z0/x \ .Z1/x. By assumption .Zi /x D
Nk.yi / n Ei for y0; y1 2 � and Ei � � is � -meager such that sn D y0�k D y1�k.
We are finished with the observation that Nk.y0/ \ Nk.y1/ D Nk.y0 _ y1/ and hence
.Z0 \Z1/x D Nk.y0 _ y1/ n .E0 [E1/.

Lemma 4.13 has the following important consequence.

Lemma 4.14. If X ��Œn� is Hn-measurable, then there are Borel sets A;B ��Œn� such
that A � X � B and both X n A and B nX are Hn-meager.

Proof. We begin with a pair of claims which will also be needed later.

Claim 4.15. If A � Hn is a maximal family of pairwise incompatible sets, then the set
�Œn� n

S
A is Borel and Hn-nowhere dense.

Proof. By Lemma 4.13, A is countable and hence Y WD�Œn� n
S

A is a Borel set. To see
that Y is Hn-nowhere dense, let B 2 Hn be arbitrary and let A 2 A be such that A \ B
contains some C 2 Hn. Then C � A and hence is disjoint from Y . Since C � B and B
was arbitrary, we are done.

Claim 4.16. Every Hn-nowhere dense set is contained in a Borel Hn-nowhere dense set.

Proof. Let Z � �Œn� be Hn-nowhere dense and A � Hn be a maximal collection with
the properties that

S
A \ Z D ¿ and that A is pairwise incompatible. To see that A is

moreover maximal with respect to being pairwise incompatible, suppose that B 2Hn and
let C � B be in Hn and disjoint from Z. Since C is compatible with some element of A,
so is B . It now follows from Claim 4.15 that Y WD �Œn� n

S
A is a Borel Hn-nowhere

dense set which contains Z.

Observe that we have also established that every Hn-meager set is contained in a
Borel Hn-meager set. Now let X be as in the statement of Lemma 4.14 and let C � �Œn�
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be a Borel set such that X4C is Hn-meager. Let E � �Œn� be a Borel Hn-meager set
which containsX4C . It follows that A WD C nE and B WD C [E satisfy the conclusion
of the lemma.

When combined with (�), Lemma 4.14 also allows us to reduce the complexity of
†1
2-functions at the cost of removing an Hn-meager set.

Lemma 4.17. Assume .�n/. If f is a partial †1
2-function from�Œn� to �, then there is a

Borel B � dom.f / such that f �B is Borel and dom.f / n B is Hn-meager.

Proof. Let f be as in the statement of the lemma. Observe that for each s 2 †,

f �1.Œs�/ D ¹x 2 �Œn� j 9y 2 Œs� ..x; y/ 2 f /º

is †1
2. By our hypothesis and Lemma 4.14, there is a Borel set Bs � f �1.Œs�/ such that

f �1.Œs�/ n Bs is Hn-meager. Define

B D

1\
nD0

[
jsjDn

Bs

and observe that B � dom.f / and the set

dom.f / n B �
[
s2†

f �1.Œs�/ n Bs

is Hn-meager. Furthermore, B \ f �1.Œs�/D B \Bs is a Borel set for each s. Thus f �B
is Borel.

Lemma 4.18. .�n/ The HnC1-meager sets coincide with InC1. Moreover:

(1) The HnC1-meager and HnC1-nowhere dense sets coincide.

(2) No element of HnC1 is HnC1-meager.

(3) If Z is a Borel HnC1-nonmeager set, then Z contains an element of HnC1.

Proof. The proof is by induction on n. To see the base case n D 0, observe that the H -
meager sets coincide with the collection I of all � -meager sets. Since every � -meager
set is contained in a Borel � -meager set, every H -meager set is contained in a Borel H -
meager set. It follows that every H -meager set is H -nowhere dense. Since � is Choquet
and hence Baire, no element of H is H -meager. Finally, if Z is a Borel H -nonmeager
set, then Z has the Baire property with respect to � and therefore contains an element
of H . This establishes the base case of the lemma via our convention of identifying �
with �Œ1�.

Now suppose n > 0. By Lemma 4.8, we know that every element of InC1 is HnC1-
nowhere dense. We will first prove that if Z is a Borel set not in InC1, then Z is not
HnC1-nowhere dense. Toward this end, suppose thatX WD ¹x2�Œn� jZx 62 Iº is not in In.
By our induction hypothesis, X is Hn-nonmeager. Define R to consist of all .x; p; G/ 2
�Œn� �H � yG such that for all z 2 �,
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� G 2 G ,

� if z 2 Np \W.G/, then .x; z/ 2 Z.

Observe that for x 2�Œn�, x 2X if and only if there exist p andG such that .x;p;G/ 2R.
Since R is a …1

1-relation, by Theorem 2.1 there is a …1
1-function  W X ! H � G whose

graph is contained in R. Let s 2 † be such that the set

Xs WD ¹x 2 X j 9y 2 � 9G 2 yG . .x/ D ..s; y/; G//º

is Hn-nonmeager. Since Xs is †1
2, (�n) implies that Xs is Hn-measurable. By Lemmas

4.14 and 4.17 and our induction hypothesis, Xs contains an A 2 Hn such that  �A is
Borel. Define B to be all .x; z/ 2 �ŒnC1� such that x 2 A and if  .x/ D .p; G/, then
z 2 Np \W.G/. To see that B is Borel, observe that it is both †1

1 and …1
1:

� .x; z/ 2 B if and only if there is a .p; G/ 2 H � yG such that .x; p; G/ 2  �A and
z 2 Np \W.G/,

� .x; z/ 2 B if and only if for all .p; G/ 2 H � yG , if .x; p; G/ 2  �A, then z 2 Np \
W.G/.

It follows that B 2 HnC1 and B � Z. In particular, Z is not HnC1-nowhere dense.
Notice that we have established (by way of contraposition) that if Z � �ŒnC1� is

Borel and HnC1-nowhere dense, then Z 2 InC1. By Claim 4.16 and countable additivity
of InC1, it follows that every HnC1-meager set is in InC1. Since every element of InC1
is HnC1-nowhere dense, this also establishes the first auxiliary conclusion of the lemma.
Since no element of HnC1 is HnC1-nowhere dense, it also follows that no element of
HnC1 is HnC1-meager. To see the remaining auxiliary conclusion of the lemma, suppose
that Z is Borel and HnC1-nonmeager. We have established that Z 62 InC1 and therefore
there is a B � Z in HnC1.

We will need the following generalization of the classical Banach–Mazur game
(see [19]). If F is a collection of nonempty sets ordered by containment and X �

S
F ,

then the Banach–Mazur game associated to .X;F / is defined as follows. Two players
Nonempty and Empty alternately play a �-decreasing sequence of elements of F , with
Nonempty making the first move. Nonempty wins a play of the game if the intersection
of the sequence of plays has nonempty intersection with X .

Lemma 4.19. A subset X of �Œn� is Hn-nonmeager if and only if Empty does not have a
winning strategy in the Banach–Mazur game played on .X;Hn/.

Proof. This follows the standard proof for the case of the ideal of meager subsets of a
topological space. For example, if X is the union of a sequence Xk .k < !/ of Hn-
nowhere dense sets, Empty’s winning strategy at stage l is to play a set in Hn which
is disjoint from

S
k�l Xk . Conversely, if � is a strategy of Empty, we build a sequence

Ak .k < !/ of maximal antichains of Hn so that AkC1 refines Ak for all k and so that
to every branch B of the tree .

S1
kD0 Ak ;�/ there corresponds a play of the Banach–

Mazur game on .X;Hn/ in which Empty uses � . This in particular means that we have
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.
T

B/ \ X D ¿ for every branch B of .
S1
kD0 Ak ;�/. It follows that X is covered by

the collection °
�Œn� n

[
Ak

ˇ̌̌
k 2 !

±
;

which, by Claim 4.15, consists of Hn-nowhere dense sets.

Proposition 4.20. .�n�1/ Every universally Baire subset of �Œn� is Hn-measurable.

Proof. Fix a universally Baire subsetZ of�Œn�. Let B be the Boolean algebra of all Borel
subsets of �Œn� modulo the Hn-meager sets. For any Borel set B � �Œn�, write ŒB� for
the element of B it represents. Since B is c.c.c. by Lemmas 4.13 and 4.18 and since it is
countably complete, it is a complete Boolean algebra. By Lemmas 4.13 and 4.18, every
positive element of B is of the form ŒB� for some B which is a countable union of sets
in Hn.

Let K be the Stone space consisting of all ultrafilters on B. Define X � K to consist
of all p 2 K such that for some f .p/ 2 �Œn�, ŒU � 2 p whenever U � �Œn� is a metrically
open set containing f .p/. Equivalently, p is in X if and only if for every � > 0, there
is a Borel B � �Œn� with diameter less than � such that ŒB� 2 p (here we have fixed a
complete, compatible metric on�Œn�). Notice that, for a given p 2 X , f .p/ is necessarily
unique and the function f W X ! �Œn� is continuous. Observe that, for any � > 0, �Œn�

can be covered by countably many Borel sets of diameter at most �. Since the ideal of
Hn-nonmeager sets is countably additive, Lemma 4.18 implies that every Borel subset B
of �Œn� which is not Hn-meager contains an element of Hn of arbitrarily small diameter
(which is itself not Hn-meager by Lemma 4.18 (2)). Thus any positive element of B is
contained in a filter F such that for every � > 0, there is a B 2Hn of diameter less than �
such that ŒB� 2 F . Since any ultrafilter extending F is in X , it follows that X is dense.
Since Z is universally Baire, the preimage Y WD f �1.Z/ has the property of Baire in X .
Fix a regular open subset V of K such that M WD Y4.V \ X/ is meager in X . Since
B is complete, V corresponds to an element of B. Let A � Hn be a countable pairwise
disjoint family such that V D Œ

S
A�.

It suffices to show that Z differs from the Borel set
S

A by an Hn-meager set. Sup-
pose for contradiction that one of the sets

S
A n Z or Z n

S
A is not Hn-meager. IfS

A nZ is not Hn-meager, then for some A 2 A the set A nZ is not Hn-meager. Then
using Lemma 4.18, we can find a run of the Banach–Mazur game on Hn�.A n Z/ with
intersection x such that f �1.x/ is disjoint from M . This would show that V \ X has a
point belonging to neither Y nor M , a contradiction. On the other hand, if Z n

S
A is

not Hn-meager, we could find B 2 Hn incompatible with every member of A such that
B \Z is not Hn-meager. Applying the Banach–Mazur argument again, we find a point x
in B \Z whose preimage f �1.x/ is disjoint from M . This yields a point of Y that does
not belong to either of the sets V or M , a contradiction.

Proposition 4.21. If for every a � !, a] exists, then (�) holds. In particular, (�) follows
from the existence of a measurable cardinal.
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Remark 4.22. Brendle and Löwe [6] have shown that (�1) is equivalent to the assertion
that @1 is an inaccessible cardinal in LŒr� for any r � !.

Proof of Proposition 4.21. We will verify (�n) inductively. Notice that (�0) is a vacuous
statement. Given (�n), Theorem 4.20 implies that all universally Baire subsets of �ŒnC1�

are HnC1-measurable. By [12, Theorem 3.4], every †1
2-set subset of�ŒnC1� is universally

Baire and therefore (�nC1) holds.

Corollary 4.23. If there is a supercompact cardinal or a proper class of Woodin cardi-
nals, then every subset of �Œn� belonging to the inner model L.R/ is Hn-measurable.

Proof. In [44] (see also [12]), Woodin showed that either large cardinal hypothesis
implies that every subset of �Œn� belonging to the inner model L.R/ is universally Baire.
Since either hypothesis implies that for every x � !, x] exists, the corollary follows from
Propositions 4.20 and 4.21.

Thus, assuming a standard large cardinal axiom, the inner model L.R/ is a natural
model of the statement that all subsets of�Œn� are Hn-measurable. However, as in the case
of Lebesgue measurability, if we are interested just in the consistency of this statement, we
can reduce the large cardinal assumption considerably (still, the large cardinal assumption
is more substantial than in the case of Lebesgue measurability).

Proposition 4.24. If � is a measurable cardinal and � < � is inaccessible, then in every
generic extension by the Levy collapse Coll.!; �/, all subsets of �Œn� definable from an
!-sequence of ordinals are Hn-measurable.

Proof. Let ON denote the class of ordinals. While we will need to utilize the measurable
cardinal to ensure that Hn and In are sufficiently absolute and that (�) holds in various
generic extensions, we will otherwise closely follow the modern expositions of Solovay’s
original proof [38] for Lebesgue measurability of such sets in the Levy collapse forcing
extension (see, for example, [18]). Let G be the generic filter of Coll.!; �/. Note that
by [22], any intermediate generic extension of V ŒG� by Coll.!; ı/ for ı < � has the
property that � is a measurable cardinal and therefore that (�) holds by Proposition 4.21.

If B � �Œn� is a Borel set, then both B and its complement are projections of trees on
!n � !. We say that this pair of trees is the code of B . We will always view Borel sets in
a given model as being constructed using their code. So, for instance, V ŒG� ˆ B 2 Hn

is the assertion that the Borel set described by B’s code is in V ŒG�’s interpretation of
the definable set Hn. Notice that while codes for a given Borel set are not unique, the
interpretation does not depend on the choice of code.

Claim 4.25. Suppose that a 2 ON! \ V ŒG� and B � �Œn� is a Borel set coded in V Œa�.
The following are true:

(1) V Œa� ˆ B 2 In if and only if V ŒG� ˆ B 2 In;

(2) if V Œa� ˆ B 2 Hn, then V ŒG� ˆ B 2 Hn.
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Proof. Observe that for a given B , since V Œa� ˆ .�/, the reverse implication in (1) fol-
lows from the forward implication in (1) together with (2): if V Œa� ˆ B 62 In, then by
Lemma 4.18, V Œa�ˆ 9A 2Hn .A�B/, which by (2) implies V ŒG�ˆ 9A 2Hn .A�B/

and thus by Lemma 4.18, V ŒG�ˆA 62 In and hence V ŒG�ˆB 62 In. With this in mind, we
will prove the claim by induction on n. Notice that the case n D 0 is vacuously true. Now
suppose that the claim holds for n and B ��ŒnC1� is coded in V Œa�. If V Œa�ˆ B 2 InC1,
then there is a Borel set A coded in V Œa� such that

V Œa� ˆ .A 2 In/ ^ 8x 2 �Œn� Œ.x 62 A/! .Bx 2 I/�:

By our induction hypothesis, V ŒG� ˆ A 2 In. Also

8x 2 �Œn� Œ.x 62 A/! .Bx 2 I/�

is a …1
2-sentence with parameters in V Œa�. It follows from Shoenfield’s absoluteness the-

orem [36] (see also [18, 13.15]) that

V ŒG� ˆ 8x 2 �Œn� Œ.x 62 A/! .Bx 2 I/�

and hence V ŒG� ˆ B 2 InC1.
Next suppose that

V Œa� ˆ B 2 HnC1 with stem .s0; : : : ; sn/:

Let A be the Borel set with code in V Œa� such that

V Œa� ˆ .A D ¹x 2 �Œn� j Bx ¤ ¿º/ ^ .A 2 Hn/:

By our induction hypothesis, V ŒG� ˆ A 2 Hn. Observe that Bx 2 H is equivalent to

9y 9k 9G 8z Œ.z 2 W.G//! ..z 2 Nk.y//$ .z 2 Bx//�

(with quantifier ranges as in the proof of Lemma 4.11). Thus

8x 2 �Œn� Œ.x 62 A/! .Bx 2 H with stem sn/�

is a …1
3-sentence. Since Coll.!; �/ has cardinality less than a measurable cardinal, the

Martin–Solovay absoluteness theorem [26] (see also [18, 15.6]) implies this sentence is
satisfied by V ŒG� and therefore V ŒG� ˆ B 2 HnC1.

Let Qn be the poset consisting of all Borel subsets of �Œn� which are not in In.
Observe that if a 2 ON! \ V ŒG�, then since V Œa�ˆ .�/, Theorem 4.18 implies that V Œa�
satisfies “Hn � Qn is a dense suborder”. By Claim 4.25, Q

V Œa�
n D Q

V ŒG�
n \ V Œa�.

Now letX in V ŒG� be a subset of�Œn� definable from a 2ON! . Mimicking Solovay’s
argument, find a formula '.a;x/ such that V ŒG�ˆ x 2X if and only if V Œa;x�ˆ '.a;x/
(see, e.g., [18, Theorem 11.12]). Since In is a � -ideal generated by Borel sets and since
In \ V Œa� is countable in V ŒG�, E WD

S
.In \ V Œa�/ is a Borel set in I

V ŒG�
n . From this

point forward, Qn will always be interpreted in V Œa�.
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Claim 4.26. V ŒG� satisfies “for any x 2 �Œn� nE,

Hx WD ¹B 2 Qn j x 2 Bº � Qn

is a V Œa�-generic filter”.

Proof. To see thatHx is a filter, suppose that A;B 2Hx . Since x 2 A\B , it follows that
A \ B 62 In \ V Œa� and therefore A \ B 2 Qn is a lower bound for A;B . Next suppose
that A�Qn is a maximal antichain in V Œa�. By Claim 4.15, E0 WD�Œn� n

S
A is a Borel

Hn-nowhere dense set. By Lemma 4.18, E0 2 In and since E0 2 V Œa�, we have E0 � E.
Since x 62 E0, it follows that x 2 A for some A 2 A. Thus A 2 Hx \A and we have
shown that Hx is V Œa�-generic.

Claim 4.27. Every condition of Qn forces that the intersection of the generic filter is a
singleton.

Proof. For each k, define Dk �Qn to consist of all B such that for all x;y 2B and i < n,
xi�k D yi�k. Any element B of Qn is a countable union of sets in Dk [ In. Since In
is closed under taking countable unions, at least one of these sets must be in Dk . Thus B
has a subset in Dk and since B was arbitrary, it follows that Dk is dense. Hence every
condition of Qn forces that the intersection of the generic filter has at most one element.

If B 2 Qn is any condition, let x 2 B n E. Then Hx � Qn is V Œa�-generic filter
containing B such that

T
Hx D ¹xº ¤ ¿. Thus B cannot force that the intersection of

the generic filter is empty. Since no condition forces that the intersection of the generic
filter is empty, every condition must force that it is nonempty.

Now let A � Qn \ V Œa� be a maximal antichain consisting of A such that A decides
'. La; Px/ where Px is the name for the unique element of the intersection of the V Œa�-generic
filter for Qn. Let Y be the union of those elements of A which force '. La; Px/. Since A is
countable, Y is Borel. It therefore suffices to show that X4Y � E. To see this, suppose
that x 2�Œn� nE. By Claim 4.26,Hx is V Œa�-generic, and in particular there is an A 2A

with x 2 A. It follows that x 2 X if and only if V Œa�Œx� ˆ '.a; x/ if and only if A forces
'. La; Px/ if and only if x 2 A � Y .

5. The Partition Hypothesis for measurable partitions

Our goal in this section is to prove that the Partition Hypothesis holds for partitions which
are Hn-measurable. In fact, the n-cofinal function which witnesses the conclusion of the
Partition Hypothesis can be taken to be †1

2.

Theorem 5.1. .�/ Suppose n � 0 and X � �Œn� is Hn-measurable and not Hn-meager.
If c W X ! ! is Hn-measurable, then there is an n-cofinal function F W ��n ! � which
is †1

2 such that the range of F � is contained in X and c ı F � is constant.
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Proof. The proof is by induction on n. The bulk of the work will be in establishing the
following claim, whose proof will utilize the induction hypothesis of the theorem.

Claim 5.2. .�/ Suppose n � 0. IfZ ��Œn� is Borel and Hn-nonmeager, then there is an
n-cofinal function F which is †1

2 such that the range of F � is contained in Z.

Proof. If n D 0, we note that �Œn� consists only of the null sequence and �Œ�n� WDSn
kD1�

Œk� is empty. Thus the base case of the theorem is vacuously true.
Next suppose that n D 1 and Z � � D �Œ1� is Borel and nonmeager. Since Z is

Borel, it has the Baire property with respect to � and there exist G 2 G and p 2 H such
that Np \W.G/ � Z. Set k D jspj and for each z 2 �, let y D y.z/ 2 � be defined by

y.i/ WD

´
xp.i/ if i < k;

max.xp.i/; z.i// if i � k:

Observe that y W �! Np is continuous and y�Np is the identity. Set

F.z/ WD g.G; .sp; y.z///:

Since g is …1
1, F is †1

2. Moreover, it is vacuously true that F is increasing with respect
to E. Since g.G; .sp; y.z/// is in Nk.y.z//, we have z �k y.z/ �0 F.z/ and hence
z �k F.z/. Finally, �Œ�1� D .�Œ1�/1, which we have identified with �. If z 2 �, then
F �.z/ D F.z/ D g.G; .sp; y.z/// is in Nk.y.z// \W.G/ � Z.

Now suppose that the theorem is true for a given n � 1. Let Z � �ŒnC1� be Borel and
HnC1-nonmeager. By Lemma 4.18, the set

¹x 2 �Œn� j Zx is H -nonmeagerº

contains a Borel set X0 which is Hn-nonmeager. Define R � X0 �H � G to consist of
all .x; p; G/ such that x 2 X0 and for all y 2 �, y 2 Np \ W.G/ implies .x; y/ 2 Z.
Since X0 and Z are Borel, R is …1

1. Observe that since Borel sets are Baire measurable
with respect to � , if x 2 X0 then there exist p and G such that .x; p;G/ 2 R.

By Theorem 2.1, there are functions Np W X0 ! H and NG W X0 ! G such that x 7!
. Np.x/; NG.x// is …1

1 and for all x 2 X0,

.x; Np.x/; NG.x// 2 R:

Observe that this implies Np and NG are †1
2-functions. By Lemma 4.17, we may find a

Borel set X � X0 which is Hn-nonmeager such that Np�X and NG�X are Borel functions.
By the inductive hypothesis for the theorem, there is a †1

2-function NF W ��n ! � and
k 2 ! and s 2 † such that

� NF is n-cofinal with respect to �k ,

� the range of NF � is contained in X ,

� the first coordinate of Np ı NF � is constant, taking the value s.
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For x 2 �nC1, let �0.x/; : : : ; �m.x/ list the elements of

¹� 2 �ŒŒn�� j �.n � 1/ E xº D ¹� 2 �ŒŒn�� j .�; x/ 2 �ŒŒnC1��º:

Here we choose the order of the �j .x/’s to be increasing with respect to some suitable lex-
icographic order so that the maps x 7! �j .x/ are each continuous. Define F W��nC1!�

by setting F���n WD NF and

F.x/ WD Qg
��
NG. NF �.�0.x///; : : : ; NG. NF �.�m.x///

�
;
�
s;max

j
x
Np. NF �.�j .x//

��
:

Observe that since the first coordinate of Np ı NF � is constantly s, it follows that s is an
initial part of x

Np. NF �.� i .x/// for each i and U WD
Tm
iD0N Np. NF �.� i .x/// is a nonempty � -open

set which contains F.x/.
We now wish to show that F satisfies the conclusion of the theorem. Since F is

obtained by composing †1
2-functions, it is †1

2. Since n � 1, F�� D NF�� and therefore
x �k F.x/ whenever x 2 �.

In order to see F is increasing, it suffices to show that if x 2 �nC1 and 0 � i � n,
then F.xi / D NF .xi / � F.x/ where xi is the result of removing the i th least element of x.
Fix i and let j �m be such that �j .x/ contains xi . Observe that the maximum (and final)
coordinate of NF �.�j .x// is NF .xi /. By definition, F.x/ is an element of N

Np. NF �.�j .x///.
For each y 2 �n, since x Np.y/ is in W. NG/ \N Np.y/, it is in Zy and in particular dominates
each coordinate of y. It follows that F.xi / � F.x/ and F is increasing.

Finally, we will show that if � is in �ŒŒnC1��, then F �.�/ is in Z. Let x be the final
coordinate of � and let j � m be such that � D .�j .x/; x/. By hypothesis, NF �.�j .x// is
in X . By definition, F.x/ is an element of

N
Np. NF �.�j .x/// \W

�
NG. NF �.�j .x///

�
:

Recall thatW. NG. NF �.�j .x//// was selected so that any element y of this intersection had
the property that . NF �.�j .x//; y/ is in Z. Thus letting y D F.x/, we find that F �.�/ D
. NF �.�j .x//; y/ is in Z and we are done.

To complete the proof of Theorem 5.1, suppose that c W X ! ! is as in its statement.
Since Hn-meager sets are closed under taking countable unions, there is a k such that
c�1.k/ is not Hn-meager. By Lemma 4.14, c�1.k/ contains a Borel set X which is Hn-
nonmeager. By Claim 5.2, there is an F satisfying the conclusion of the theorem.

As noted, a corollary of Theorem 5.1 answers a question appearing in both [2] and [3].
We pause to review this question’s main notions. If x 2 �, define

I.x/ WD ¹.i; j / j j � x.i/º:

For any x 2 �n let
V

x denote the meet of the coordinates of x and set I.x/ WD I.
V

x/.
The following definition appears in [2]; all sums and comparisons therein are taken over
the intersections of the relevant functions’ domains.
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Definition 5.3. Fix n > 0. A collection ˆ D ¹'x j x 2 �nº with each 'x 2 ZI.x/ is
n-coherent if

nX
iD0

.�1/i'xi�I.x/ D� 0 for all x 2 �nC1,

whereD� denotes equality mod finite. The collection ˆ is trivial if either

� n D 1 and there exists a  W !2 ! Z such that

'x D
�  �I.x/ for all x 2 �,

or

� n > 1 and there exists a ‰ D ¹ x j x 2 �n�1º such that

'x D
�

n�1X
iD0

.�1/i xi�I.x/ for all x 2 �n.

It will sometimes be useful to view an element of ZI.x/ as an element of P WD Z!�!

via the convention that a function takes the value 0 outside of its domain. Thus any col-
lection ˆ as in Definition 5.3 is naturally viewed as a subset of the product of �n with
the Polish space P , and it was in exactly this sense that Todorcevic [42] showed that
any analytic 1-coherent family ˆ is trivial. The question appearing in both [2] and [3]
was whether an analytic n-coherent family could be nontrivial for any n > 1. The next
corollary provides a strong answer to this question under the hypothesis (�).

Corollary 5.4. .�/ Every analytic n-coherent family of functions ˆ admits a †1
2 trivial-

ization.

Proof. For any partial function ' from !2 to Z, write sŒ'� for the restriction of ' to its
support. The map ' 7! sŒ'� is Borel. Define c on �nC1 by

c.x/ WD sŒdˆ.x/� D s
h nX
iD0

.�1/i'xi�I.x/
i
:

Since ˆ is analytic, so is c. Since ˆ is n-coherent, the range of c is contained in the
collection of finite partial functions from !2 into Z and in particular is countable. By
Theorem 5.1, there exists an n-cofinal F W ��nC1 ! � which is †1

2 such that c ı F � is
constant. The existence of such an F is sufficient for standard trivialization constructions
which we will review in a more general setting in Section 7. More precisely, F will
witness exactly that instance of PHn which is applied in the trivialization argument of
Theorem 7.5 below, within which the triviality of families likeˆ figures as a special case.
Since the trivialization constructed therein is composed of ˆ, the function F , sums, and
the operations � and d (also defined in the proof of Theorem 7.5), the conclusion of the
corollary follows from the closedness of the †1

2-functions under composition.

A modification of this proof also yields the following corollary.
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Corollary 5.5. .�/ Every universally Baire n-coherent family of functions admits a uni-
versally Baire trivialization.

Proof. The proof is the same as for Corollary 5.4 except for a few minor modifications:

� The function c is a composition of universally Baire functions and hence is universally
Baire under the hypothesis.

� By Proposition 4.20, universally Baire subsets of �Œn� are Hn-measurable.

� Under the hypothesis, †1
2-functions are universally Baire [12].

Corollary 5.5 admits the following interpretation: the families ˆ and ‰ of Defi-
nition 5.3 correspond to cocycles and coboundaries of the standard cochain complex
K.B=A/ for computing the derived limits of a well-studied inverse system termed A
in the literature (see [2, 4, 25]). Combining Corollary 5.5 with Theorem 2.3, we have the
following result.

Corollary 5.6. Suppose there is a supercompact cardinal or a proper class of Woodin
cardinals. The model L.R/ satisfies limn A D 0 for all n.

As the proof of Corollary 5.4 suggests, we will soon follow [1] in adopting more gen-
eral notions of n-coherence than those of Definition 5.3; as these general notions indeed
subsume the classical ones, there is no danger of terminological confusion. These notions
apply to a broad class of inverse systems indexed by �, and although it seems reasonable
to expect a statement like that of Corollary 5.5 to hold for this more general class of sys-
tems, the tasks both of framing and arguing such a statement appear to be nontrivial. They
will likely include the main work of answering Question 9.12 of our conclusion below.

6. Forcing the Partition Hypothesis

The arguments of [4] and [1] both invoke strong combinatorial properties of the weakly
compact Hechler model of Theorem 6.1 below. In this and the following section, we show
that these properties may be more simply regarded as the assertion that PHn holds for
every n 2 !. Since we will utilize and adapt the results and proofs of [4] and [1], we will
follow the style and notational conventions of those papers even when they differ from
the present article.

Theorem 6.1. If � is a weakly compact cardinal and H� is the length-� finite support
iteration of Hechler forcing, then any generic extension by H� satisfies PHn.

As noted in Section 3, PH0 is a ZFC theorem. To argue the n > 0 instances of Theo-
rem 6.1 it will suffice to define “partial witnesses” F to PHn in the sense of Lemma 3.3;
this will be our approach. Underlying these functions’ domains will be ��-cofinal sub-
collections ‡ of the Hechler reals added by the iteration H� . Letting H˛ more generally
denote the length-˛ finite support iteration of Hechler posets, the elements of H� are finite
partial functions p from � for which ˛ 2 dom.p/ implies that p.˛/ is a nice H˛-name for
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a Hechler condition. For each ˛ < � let Pz˛ be an H�-name for the ˛th Hechler real added
by H� .

We will require several lemmas from [4]; the following, which appears also in [1,
Lemma 6], combines [4, Lemmas 3.4 and 4.3]. Recall that if A is a set of ordinals, then
ŒA�n denotes the collection of all n-element subsets ofA, and ŒA�<n denotes the collection
of subsets of A of cardinality less than n. Elements of these collections are identified with
their increasing enumerations; if Ę is a finite set of ordinals, we will write ˛i for the i th-
least element of Ę. If Ę is an initial part of Ě we will write Ę v Ě. We denote by D the
dense subset of H� consisting of conditions q such that for all � 2 dom.q/ the stem of
q.�/ is determined by q��; this is the stem we reference as sq Ę .�/ in item (1) below.

Lemma 6.2. Let � be a weakly compact cardinal, n be a positive integer, and let
hq Ę j Ę 2 Œ��

ni be a family of conditions in D � H� . Let u Ę D dom.q Ę/. Then there
is an unbounded set A � �, a family hu Ę j Ę 2 ŒA�<ni, a natural number `, and a set of
stems hsi j i < `i such that:

(1) ju Ę j D ` for all Ę 2 ŒA�n, and if � is the i th element of u Ę then sq Ę .�/ D si .

(2) A and hu Ę j Ę 2 ŒA��ni satisfy

(a) for all Ę 2 ŒA�<n,

(i) if ˇ 2 A and Ę < ˇ, then u Ę < ˇ,

(ii) if Ě 2 ŒA��n satisfies Ę v Ě, then u Ę v u Ě,

(iii) the set ¹u Ę_hˇi j ˇ 2 A n .max. Ę/C 1/º forms a �-system with root u Ę;

(b) for all m � n and all Ę; Ě 2 ŒA�m,

(i) ju Ę j D ju Ěj,

(ii) if Ę and Ě are aligned, then u Ę and u Ě are aligned.2

(3) q Ě�u Ę D qE
�u Ę for all Ę 2 ŒA�<n and Ě; E
 2 ŒA�n such that Ę v Ě and Ę v E
 .

We now turn more directly to the argument that V H� � PHn for all n � 0.

Proof of Theorem 6.1. We have already noted that the conclusion is true when nD 0. Fix
n > 0 and an H�-name Pf and a p 2H� forcing that Pf is a function from P�nC1 to !. Set
A0 WD � n .max.dom.p//C 1/. For all Ę 2 ŒA0�nC1 fix a q Ę � p in D such that

q Ę 
 “ Pz˛0 < � � � < Pz˛n and Pf .¹Pz˛0 ; : : : ; Pz˛nº/ D i. Ę/” (1)

for some i. Ę/ 2 !. Apply the weak compactness of � to thin A0 to a cofinal A1 � � such
that i. Ę/ equals some fixed i for all Ę 2 ŒA1�nC1.

Now apply Lemma 6.2 to hq Ę j Ę 2 ŒA1�nC1i to find an unbounded A � A1 together
with sets hu Ę j Ę 2 ŒA��ni, a natural number `, and stems hsi j i < `i as in the statement

2Two finite sets u and v of ordinals are aligned if juj D jvj and ju \ ˛j D jv \ ˛j for all
˛ 2 u \ v.



N. Bannister, J. Bergfalk, J. Tatch Moore, S. Todorcevic 5020

of Lemma 6.2. Next, define conditions hq Ę j Ę 2 ŒA��ni as follows: for each Ę in ŒA��n let
Ě be an element of ŒA�nC1 such that Ę v Ě and let q Ę D q Ě�u Ę . By Lemma 6.2 (3), these

definitions are independent of all our choices of .nC 1/-tuples Ě. Moreover, the fact that
q¿ D

T
Ę2ŒA�nC1 q Ę implies that q¿ � q.

We claim that q¿ forces the existence of ‡ and F as in Lemma 3.3; in other words,
q¿ forces that the conclusion of PHn holds for the function Pf . Since Pf named an arbitrary
function from P�nC1 to !, showing this will conclude our proof.

We argue this claim by first partitioning A into nC 1 disjoint and unbounded subsets
¹�i j 1 � i � nC 1º. Let PB be an H�-name for the set of ˛ 2 �1 such that qh˛i 2 PG,
where PG is the canonical name for the H�-generic filter. Observe that

q¿ 
 “ PB is unbounded in �”:

To see this, fix an r � q¿ and � < �; it will suffice to find an ˛ 2 �1 n � such that r
and qh˛i are compatible. To this end, note that as huh˛i j ˛ 2 Ai forms a �-system, there
exists an ˛ 2 �1 n � with uh˛i n u¿ \ dom.r/ D ¿. Since qh˛i�u¿ D q¿ and q¿ � r ,
the conditions qh˛i and r are indeed compatible, as desired.

This set PB will index those Hechler reals comprising the ‡ � � upon which we will
define the function F in the generic extension. This definition will depend on one further
lemma; to state it, we adopt the following conventions.

Definition 6.3. For any nonempty � in Œ��<! , a subset-initial segment of � is a sequence
�1 � � � � � �m � � such that

� m � j� j,

� j�i j D i for all i with 1 � i � m.

We write E� C � to indicate that E� is a subset-initial segment of � . When ordinals ˛�i
have been associated to each element of a subset-initial E� C � then we write ĘŒE�� for the
sequence h˛�1 ; : : : ; ˛�mi.

The following appears (together with its proof) [4, Lemma 6.7].

Lemma 6.4. Let � be a weakly compact cardinal and fix � 2 Œ��nC1. The condition q¿

forces the following assertion: whenever 1<m� nC 1 and ¹˛� j � 2 Œ� �<m and � ¤ ¿º
are such that

(1) ˛h
i D 
 for all 
 2 � ,

(2) ˛� < ˛� whenever � is a proper subset of � ,

(3) ˛� 2 �j� j for all nonempty � 2 Œ� �<m,

(4) for any 1� ` <m and any subset-initial segment E� C � of length `, we have q ĘŒE�� 2 PG
.in particular, � 2 PB for all � 2 �/,

then there exists a collection ¹˛� j � 2 Œ� �mº � �m which satisfies

(5) ˛� < ˛� whenever � is a proper subset of � ,

(6) for any subset-initial segment E� C � of length m, we have q ĘŒE�� 2 PG.
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We now fix an H�-generic filter G containing q¿ and work in V ŒG�. We denote
the interpretation of names therein simply by removing their dots and we let ‡ D
¹z˛ j ˛ 2 Bº. Repeated application of Lemma 6.4 will determine a collection of ordi-
nals ¹˛� j � 2 ŒB��nC1 n ¹¿ºº. For any x D .z
0 ; : : : ; z
m/ 2 ‡�nC1 let F.x/ D z˛� ,
where � D ¹
0; : : : ; 
mº. Observe that

� F.x/ D x for all x 2 ‡ ,

� F.x/ � F.y/ for any x E y in ‡�nC1.

The first point follows from item (1) of Lemma 6.4, which entails that F.z
 /D z˛h
i D z

for all 
 2 B . The second point follows from items (2) and (5) of Lemma 6.4, together
with the fact that any � � � in ŒB��nC1 n ¹¿º appears in some length-.n C 1/ subset-
initial E� C � � B such that q ĘŒE�� 2 G. By equation (1) at the beginning of the proof, such
conditions q ĘŒE�� will force the desired inequality, as well as the fact that f ı F � takes the
constant value i .

7. The Partition Hypothesis and the additivity of limn for �-systems

In the course of establishing the main results of [1], the authors isolated a class of inverse
systems of abelian groups indexed by �. These inverse systems are specified by a set of
data called an �-system. In this section, we recall the notion of an �-system and deduce
from the Partition Hypothesis the additivity of derived limits associated to their inverse
systems.

Definition 7.1. An�-system is specified by an indexed collection G D ¹Gn;k j n; k 2 !º

of finitely generated abelian groups together with compatible homomorphisms �n;j;k W
Gn;k ! Gn;j for each n and j � k < !. Such data give rise to the following additional
objects:

� For each x 2 �, set Gx WD
L1
nD0Gn;x.n/ and NGx WD

Q1
nD0Gn;x.n/. We regard Gx as

a subset of NGx .

� For any x � y in � let �x;y W NGy ! NGx denote the product homomorphism

1Y
nD0

�n;x.n/;y.n/:

Write �x;y for these maps’ restrictions Gy ! Gx as well.

We write NG and G for the inverse systems over � whose terms are the groups NGx
and Gx , respectively, and whose bonding maps are �x;y . We denote the nth tower of
groups in an �-system by Gn; more precisely, Gn is the inverse system indexed by !
with .Gn/k D Gn;k . An important point in what follows is that

L
n2! Gn Š G in the

category of pro-abelian groups.

We compute derived limits via the alternating chain complex:
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Definition 7.2. Given an inverse system XD .Xp; �p;q;P / over a quasi-lattice P , we say
that ˆ 2

Q
p0;:::;pn

XVpi is alternating if for any p0; : : : ; pn 2 P and any permutation �
of ¹0; : : : ; nº, ˆ.p0; : : : ; pn/ D sgn.�/ˆ.p�.0/; : : : ; ˆ.p�.n///. We define the cochain
complex C �alt.X/ by

C nalt.X/ WD
°
ˆ 2

Y
p0;:::;pn

XV
i pi

ˇ̌̌
ˆ is alternating

±
with coboundary maps

dnWC nalt.X/! C nC1alt .X/
given by

dn.ˆ/. Ep / WD

nC1X
iD0

.�1/i�V Ep;V Ep i .ˆ. Ep i //
where Ep i D .p0; : : : ; bpi ; : : : ; pnC1/ denotes the omission of the i th coordinate from Ep D
.p0; : : : ;pnC1/. Unless there is need for clarity, we will generally suppress the superscript
on dn.

Definition 7.3. Given an inverse system X D .Xp; �p;q;P /, define limn X to be the nth
cohomology group ker.dn/=im.dn�1/ of C �alt.X/ where d�1 is the zero map.

Observe that for each k, the inclusion map Gk!
L
i Gi ŠG induces inclusion maps

C nalt.Gk/! C nalt.G/ for each n. It is readily checked that, when passing to cohomology,
these induce inclusions limnGk! limnG. As limn is finitely additive, this in turn induces
the inclusion map

L
k limn Gk ! limn G. Our goal in this section will be to prove that

PHn implies that this induced inclusion map
L
k limn Gk ! limn G is an isomorphism.

We will start with the case n D 1, which will be verified directly.

Proposition 7.4. Suppose PH1. The induced inclusion map
L
i lim1 Gi ! lim1 G is an

isomorphism.

Proof. In order to see that the inclusion is a surjection, fix a cocycle ˆ 2 C 1alt.G/ and
define c W �2 ! ! by

c.x; y/ WD min
°
m 2 !

ˇ̌̌
ˆ.x; y/ 2

mM
iD0

Gi;min.x.i/;y.i//

±
:

Let F witness PH1 for c and set m0 as the constant value of c ı F �. By the comments
made following the formulation of PHn, we may assume without loss of generality that
there is an m � m0 such that x �m F.x/ for all x 2 �. Let ‰.x/ be the projection
of ˆ.x; F.x// to

L1
iDm Gi;x.i/ and note ‰ 2 C 0alt.G/. Observe that, after projecting toL1

iDmGi;min.x.i/;y.i//,

0 D dˆ.x; y; F.x; y// � dˆ.x; F.x/; F.x; y//C dˆ.y; F.y/; F.x; y//

D ˆ.y; F.x; y// �ˆ.x; F.x; y//Cˆ.x; y/

�ˆ.F.x/; F.x; y//Cˆ.x; F.x; y// �ˆ.x; F.x//

Cˆ.F.y/; F.x; y// �ˆ.y; F.x; y//Cˆ.y; F.y//

D ˆ.x; y/ � d‰.x; y/ �ˆ.F.x/; F.x; y//Cˆ.F.y/; F.x; y//;
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where the first equality is due to the fact thatˆ is a cocycle, the second is using the defini-
tion of d , and the third is cancelling like terms with opposite signs and using the definition
of d‰. Notice that, by our choice of F , each of ˆ.F.x/; F.x; y// and ˆ.F.y/; F.x; y//
is supported on the first m summands. Therefore, Œˆ� is in the image of the map fromLm�1
iD0 lim 1Gi as ˆ is equal, up to a coboundary, to a cocycle with each coordinate sup-

ported in the first m coordinates.

With a bit more care, the above proof generalizes to higher derived limits.

Theorem 7.5. Suppose PHn. The induced inclusion map
L
i limn Gi ! limn G is an

isomorphism.

Proof. As in the lim1 case, fix a cocycle ˆ representing an element of limn G. Let F
witness the conclusion of PHn for the partition

cˆ.x0; : : : ; xn/ 7! min
°
m 2 !

ˇ̌̌
ˆ.x0; : : : ; xn/ 2

mM
iD0

Gi;
V
xj .i/

±
:

As noted following the formulation of PHn, we may choose F so that for some fixed k,
F is .nC 1/-cofinal with respect to �k and c ı F � is constant with value at most k. Let
Free.X/ denote the free abelian group overX and denote the basis element corresponding
to x by e.x/ (inside the argument of e, for readability we may omit the brackets demarcat-
ing a collection x). Organizing our argument are several interrelated formal expressions.
For 1 � s � n, � 2 �s and � 2 �sC1,

As.�/ denotes an element of Free.¹x j �0 �k x � F.�/ºsC1/;

Cs.�/ denotes an element of Free.¹x j �0 �k x � F.�/ºsC1/;

Ss.�/ denotes an element of Free.¹x j �0 �k x � F.�/ºsC1/:

For any � as above, we define

d WFree.¹x j �0 �k xºsC1/! Free.¹x j �0 �k xºs/

by de.x0; : : : ; xs/ WD
P
i .�1/

ie.x0; : : : ; bxi ; : : : ; xs/. Similarly, for any y 2 � we define
an operation x 7! x � y from Free.¹x j �0 �k x � yºs/ to Free.¹x j �0 �k x � yºsC1/ by
setting e.x0; : : : ; xs�1/ � y WD e.x0; : : : ; xs�1; y/. Together, these two operations satisfy
the relation

d.x � y/ D d.x/ � y C .�1/sx:

The idea of these expressions will be the following: As is the stage-s approximation to a
‰ satisfying d‰ � ˆ D 0 beyond some fixed finite number of coordinates, Ss is (up to
sign) the coboundary of AsC1, and Cs is an error term recording the difference between
the coboundary of As and ˆ. Note that for each �, ˆ determines a map

E
�
ˆ W Free

�°
x
ˇ̌̌ ^

� �k x
±nC1�

! GV�;
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given by first sending e.�/ to ˆ.�/, and then projecting to GV� using zero maps in the
first k coordinates and the �-system’s bonding maps on all subsequent coordinates. For
the base case A1, we set

A1.�/ WD e.�; F.�//

as in the proof of Proposition 7.4. In general, we let

Cs.�/ WD e.�/ �
X
i<sC1

.�1/iAs.�
i /;

Ss.�/ WD d.Cs.�/ � F.�//;

AsC1.�/ WD .�1/
sC1Cs.�/ � F.�/:

The following lemma is the key point ensuring that our approximations converge to a ‰
as above. If � 2 �s , it will be convenient to write � ŒŒs�� for all elements of�ŒŒs�� whose last
coordinate is � .

Lemma 7.6. For all s � n and all � 2 �sC1, Cs.�/ is of the form .�1/sC1Ss.�/ plus
terms of the form e.F �.E�// for E� 2 � ŒŒsC1��.

The proof of this lemma will complete our proof of the theorem. Indeed, by this
decomposition of Cn.�/, together with our hypotheses on F and the fact that E

�
ˆ.Sn.�//

D 0 for all � 2�nC1 and all � 2�nC1 (since E
�
ˆ.Sn.�// is a sum of coboundary terms of

ˆ, and ˆ is a cocycle), the family ‰ defined by ‰.�/ WD E
�
ˆ.An.�// satisfies d‰.�/ D

ˆ.�/ once projected onto
L1
iDkC1Gi;

V
�.i/; in particular, Œˆ� is in the image of the map

from
Lk
iD0 limn Gi .

Proof of Lemma 7.6. Observe that Ss can be rewritten as follows:

Ss.�/ D d.Cs.�// � F.�/C .�1/
sC1Cs.�/

D d.e.�// � F.�/ � d
� X
i<sC1

.�1/iAs.�
i /
�
� F.�/C .�1/sC1Cs.�/

D

X
i<sC1

.�1/ie.� i ; F .�// �
X
i<sC1

.�1/i
X
j<sC1

ŒAs.�
i / � F.�/�j„ ƒ‚ …

.�/

C .�1/sC1Cs.�/:

The proof proceeds by induction on s to show that .�/ is a sum of terms of the form
e.F �.E�// for E� 2 � ŒŒsC1��. The sD 1 case was already given in the proof of Proposition 7.4,
noting that S1.x;y/D de.x;y;F.x;y//� de.x;F.x/;F.x;y//C de.y;F.y/;F.x;y//,
an expression used in that proof.

Now assume that s > 1 and the induction hypothesis holds for s � 1. Note that, by the
definition of Ss , for s > 2, .�/ is equal toX

i<sC1

.�1/ie.� i ; F .�// � .�1/s
X
i<sC1

.�1/iSs�1.�
i / � F.�/I
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this is perhaps more apparent from the line above in our earlier calculation plus the obser-
vation that

Ss.�/ D .�1/
sC1d.AsC1.�//:

Note that the induction hypothesis implies that the term .�1/sSs�1.�
i / � F.�/ is of the

form Cs�1.�
i / �F.�/ plus terms of the form e.F �.E�//with E� 2 � ŒŒsC1�� since e.F �.E�// �

F.�/ D e.F �.E�_h�i//, which is of the appropriate form. Thus .�/ reduces to terms of
the form e.F �.E�1// plusX
i<sC1

.�1/ie.� i ; F .�// �
X
i<sC1

.�1/i ŒCs�1.�
i / � F.�/�

D

X
i<sC1

.�1/ie.� i ; F .�// �
X
i<sC1

.�1/i
h
e.� i ; F .�// �

X
j<s

.�1/jAs�1..�
i /j / � F.�/

i
D

X
i<sC1

X
j<s

.�1/iCjAs�1..�
i /j / � F.�/:

The key observation is that for any term with i � j , the term with i 0 D j C 1 and
j 0 D i is the same but with opposite sign, thus showing thatX

i<sC1

X
j<s

.�1/iCjAs�1..�
i /j / � F.�/ D 0;

which completes the proof of the lemma.

Thus the proof of Theorem 7.5 is complete.

The next theorem summarizes this section’s results; for further details of the second
implication, see [1]. It is shown in [1] that (1) implies (3), although the converse is unclear.

Theorem 7.7. If PHn holds for all n 2 !, then each of the following holds as well:

(1) For any �-system G and n 2 !, the inclusion mapM
k2!

limn Gk ! limn G

is an isomorphism. Put differently, in the category of pro-abelian groups, for any
n 2 ! and any countable discrete diagram of inverse sequences of finitely generated
abelian groups, the functors limn and colim commute.

(2) Strong homology is additive and has compact supports on the class of locally compact
separable metric spaces.

(3) Every n-coherent family of functions is n-trivial.

8. Generalizing the Partition Hypothesis

As indicated, notions of n-cofinal functions and associated partition hypotheses make
sense on any directed partial order. Any systematic treatment of these generalizations
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evidently falls beyond the scope of the present work; in this section, however, we do
record a few basic observations about partition hypotheses for arbitrary products of partial
orders and partition hypotheses for ordinals.

Our interest in the latter is motivated in part by connections between the behaviors of
the limn functors on �-indexed inverse systems and their behavior on d-indexed inverse
systems, connections operative in the model V H� of Section 6, for example. (Here d is the
minimum cardinality of a cofinal subset of�.) These hypotheses appear also to be of some
interest in their own right, particularly on the “small” cardinals !n, where they raise mul-
tiple substantial questions which we record in our conclusion. We conclude this section
with a discussion of partition hypotheses within the framework of simplicial sets, which
affords us one further, and surprisingly natural, framing of the principles PHn.P ; �/.

Generalizing to arbitrary quasi-orders

In this section, we will return to the full generality of the partition hypotheses PHn.P ; �/
introduced in Section 3. One value of this generalization is that it allows for a comparison
of partition hypotheses on various quasi-orders.

Lemma 8.1. Suppose P ;Q are directed quasi-orders, PHn.P ; �/ holds, and f WP ! Q
is a monotone map with cofinal image. Then PHn.Q; �/ holds.

Proof. Let gWQ! P be such that f .g.q//� q for each q 2Q. Given c WQŒnC1�! �, let
zx W P ŒnC1�! � be given by zx.p0; : : : ; pn/ WD c.f .p0/; : : : ; f .pn//. Let F W P�nC1! P
be such that zx ı F � is constant. Define NF W Q�nC1 ! Q by

NF .q0; : : : ; qm/ WD f .F.g.q0/; : : : ; g.qn///:

Then NF is .n C 1/-cofinal by our hypotheses on f , g. Moreover, c ı NF is constant by
hypotheses on F and the definition of zx.

Recall that for two directed quasi-orders P and Q, we say that Q is Tukey reducible
to P and write Q �T P if there is a map f W P ! Q mapping cofinal subsets of P to
cofinal subsets of Q, or equivalently, if there is a map g W Q ! P such that for every
p 2 P the set ¹q 2 Q j g.q/ � pº has an upper bound in Q. Notice that if P is a cofinal
subset of Q, then P �T Q and Q �T P . It is natural, particularly in lieu of Lemma 8.1,
to wonder how partition hypotheses may or may not transmit along Tukey reductions; we
record this question in our conclusion.

Remark 8.2. As noted, PHn is an abbreviation of PHn.�; !/, and in Section 5 we have
seen that a measurable version of PHn could hold. What we would like to point out here is
that it makes sense to consider a measurable version of PHn.P ; !/ for any specific Borel
quasi-order P . The Tukey hierarchy of Borel directed orders is a relatively well-developed
theory and the quasi-order � has a special place in it. However, there are other Borel
quasi-orders P that also have special places in this hierarchy and to which, moreover, �
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Tukey reduces (even to the extent that there is a Borel monotone map f W P ! � with
cofinal range in �), and therefore, for which the corresponding hypothesis PHn.P ; !/ is
stronger than PHn. One such special Borel directed quasi-order is the Banach lattice `1.
The proof in [41] shows that, assuming OCAC add.`1/ > @1, if �x .x 2 `1/ is a family
of functions �x W Dx ! Z which cohere mod finite and x � y implies Dx � Dy , then
¹�x j x 2 `

1º is trivial. If ¹�x j x 2 `1º is Borel, then the assertion that ¹�x j x 2 `1º is triv-
ial is equivalent to a †1

2-sentence and hence is absolute. Since OCAC add.`1/ > @1 can
be forced over any model of ZFC, it follows from Shoenfield’s absoluteness theorem [36]
that ZFC proves that all Borel coherent families indexed by `1 (in the above sense) are
trivial. It is natural to ask if this argument can be generalized to higher dimensions and
if the Borel version of PHn.`1/ for n � 1 is true. See [37] and the references therein for
more information on Borel quasi-orders and Tukey reductions.

We now record implications of partition hypotheses for the additivity of derived limits
generalizing those recorded in Section 7. The next definition generalizes the notion of�k .

Definition 8.3. Given a family hPi j i 2 I i of directed posets, S � I , and x;y 2
Q
i2I Pi ,

we write x �S y if x.i/ �Pi y.i/ whenever i 62 S . We write x �� y if x �S y for some
finite S � I .

Theorem 7.5 admits a natural generalization given by the following, with the same
proof.

Theorem 8.4. Let hPi ii2I be posets and suppose that whenever c W
Q
i2I PnC1i ! jI j

is a function, there is an F which is .nC 1/-cofinal with respect to �S for some finite S
such that c ı F � is constant. Then for every collection .Gi /i2I of inverse systems with
each Gi indexed over the corresponding Pi , the inclusion mapM

i2I

limn Gi ! limn
M
i2I

Gi (2)

is an isomorphism.

We note the following generalization of the observation made after defining PHn. Note
that the index set in this case is ! rather than I : although ensuring there is a finite S such
that F.x/ �S F.y/ for x E y is unchanged, constructing a finite S with x �S F.x/ for
each x seems to require a countable index set.

Proposition 8.5. Suppose hPi j i < !i are given and PHn.
Q
i2! Pi ; �/ holds, where

P D
Q
i Pi is given the ordering ��. Then whenever c W PnC1 ! �, there is an F WQ

i P ŒnC1�i ! P which is .nC 1/-cofinal with respect to �k for some k < !.

Finally, it is not difficult to see that the principle PH1.
Q
i2! !1; !/ is false; see [33]

for related failures of the map (2) to be an isomorphism. The results of this section should
help to demarcate which additivity relations are consequences of, or consistent with, or
outright inconsistent with, the ZFC axioms.
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The Partition Hypothesis on the ordinals

For any ordinal " and n 2 !, let PHn."/ denote PHn."; !/. A main goal of this section is
to prove the following result.3

Theorem 8.6. For all n 2 ! the partition hypothesis PHn.!n/ is false.

It will be convenient to precede the proof of Theorem 8.6 with the following lemma.
Call an n-cofinal function F W "�n ! " strictly increasing if F.x/ < F.y/ for all x G y
in "�n.

Lemma 8.7. Let " be a limit ordinal. The partition hypothesis PHn."/ holds if and only if
for every c W "nC1! ! there is a strictly increasing .nC 1/-cofinal F W "�nC1! " such
that c ı F � is constant.

Proof. For the nontrivial implication, fix a c as in the statement of the lemma. Define
the coloring b W "nC1 ! ¹0; 1º by b.x/ D 1 if and only if x D .x0; : : : ; xn/ is a strictly
increasing sequence of ordinals, and define d W "nC1!! � ¹0;1º by d.x/ WD .c.x/;b.x//.
Our assumption PHn."/ implies that there exists an .nC 1/-cofinal F for which d ı F �

is constant; this implies in turn that F is a strictly increasing .nC 1/-cofinal function for
which c ı F � is constant.

Note that the above argument applies mutatis mutandis to any quasi-order without
maximal elements. Note also that to define an F as above, it suffices to define one on the
strictly increasing elements of "�nC1, an observation we will sometimes implicitly apply
below.

To motivate our proof of Theorem 8.6, we turn first to the cases of n D 0; 1, and 2.
Clearly the coloring c0 W i 7! i witnesses the failure of PH0.!/. For the case of PH1.!1/,
fix injections fˇ W ˇ ! ! for each ˇ < !1 and let c1.˛; ˇ/ D c1.ˇ; ˛/ D fˇ .˛/ for all
˛ < ˇ < !1. For any strictly increasing 2-cofinal F W !�21 ! !1 there exist ˛ < ˇ < !1
with F.˛/ < F.ˇ/ < F.˛; ˇ/. It then follows immediately from the fact that fF.˛;ˇ/ is
injective that

c1 ı F
�.˛; .˛; ˇ// ¤ c1 ı F

�.ˇ; .˛; ˇ//:

For the case of PH2.!2/, begin by fixing an injection g
 W 
! !1 for each 
 < !2. Define

c2.˛; ˇ; 
/ WD c1.g
 .˛/; g
 .ˇ//

for all ˛ < ˇ < 
 < !2. Fix an arbitrary strictly increasing 3-cofinal F W !�32 ! !2;
we will show that c2 ı F � is not constant. Note that since F is 3-cofinal, there exist
˛ < ˇ < 
 < !2 such that

F.˛/ < F.ˇ/ < F.˛; ˇ/ < F.
/ < F.˛; 
/ � F.ˇ; 
/ < F.˛; ˇ; 
/:

(It is only perhaps not obvious how to arrange the penultimate inequality; to see this,
fix a sequence a D h˛i j i 2 !i with F.˛i / < j̨ for any i < j < !, and a 
 >
supi<j<! F.˛i ; j̨ /. Observe now that if there did not exist an i < j with F.˛i ; 
/ �

3See also [21, Section 4.1] for another recent proof of this theorem.
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F. j̨ ; 
/ then hF.˛i ; 
/ j i 2 !i would determine an infinite decreasing sequence of
ordinals, a contradiction.) Let ı denote F.˛; ˇ; 
/ and let A collect the ordinals listed
above with the exception of ı. Define an edge relation on A by ¹F.x/; F .y/º 2 EA if and
only if x G y. Note that the graph .A;EA/ contains a cycle, and hence so does its gı -image.
Therefore there exist x0; x1; y0; y1 with

(i) gı.F.x0// < gı.F.x1// < gı.F.y0// D gı.F.y1//,
(ii) ¹F.x0/; F .y0/º and ¹F.x1/; F .y1/º both in EA.

Item (i) implies that

c2.F.x0/; F .y0/; ı/ D c1.gı.F.x0//; gı.F.y0///
¤ c2.F.x1/; F .y1/; ı/ D c1.gı.F.x1//; gı.F.y1///;

and item (ii) implies that the arguments of the two c2 terms above both fall in the image
of F �; this concludes the argument for n D 2.

All the ideas of the proof of Theorem 8.6 are essentially present in this sequence.
Needed for its more general argument, however, is a vocabulary for higher-dimensional
analogs of graphs and higher-dimensional cycles within them.

Definition 8.8. An abstract simplicial complex Y on a set X is a family of nonempty
finite subsets ofX which is closed under the taking of nonempty subsets. The n-faces of Y
are its size-.nC 1/ subsets, and we write ŒY �n for their collection. The dimension of Y
is dim.Y / WD sup ¹n j ŒY �n ¤ ¿º, and Y is pure if its set of �-maximal faces coincides
with ŒY �dim.Y /. If jaj D nC 1 then we write�n.a/ for the abstract n-simplex determined
by a; this is simply P.a/ n ¹¿º viewed as an abstract simplicial complex. Its boundary
P.a/ n ¹¿; aº is denoted @�n.a/. For any v 62 X let Y � v denote the cone over Y by v,
namely Y [ ¹b [ ¹vº j b 2 Y [ ¹¿ºº. If v is an ordinal then Y < v will mean that the
vertex set X underlying Y is a subset of v. The barycentric subdivision sd.Y / of Y is the
abstract simplicial complex on Y whose faces are the nonempty subsets of Y which are
linearly ordered by inclusion.

For any Y as above we may consider its simplicial homology with coefficients in
Z=2Z. This is the homology of the chain complex C.Y / of the free Z=2Z-modulesCn.Y /
which are generated by the n-faces a of Y ; writing hai for the generator associated to a,
the boundary maps dn WCn.Y /!Cn�1.Y / of C.Y / are those induced by the assignments
hai 7!

P
b2Œ@�n.a/�n�1

hbi. A homological n-cycle is an x 2 Cn.Y / such that dn.x/ D 0.
The following definitions and proposition are adapted from [8, Definitions 4.1, 4.2,

Proposition 5.1]. A sequence a0; : : : ;ak of elements of ŒY �n is an n-path if jai \ aiC1j D n
for all i < k. If there exists an n-path between any two of its n-faces then Y is n-path
connected. The maximal n-path connected subcomplexes of Y are its n-path components.
For n > 0, an n-cycle is a pure n-dimensional simplicial complex Y such that

� Y is n-path connected,

� every .n � 1/-face of Y belongs to an even number of n-faces of Y .

For n D 0, an n-cycle is simply a set of some even number of vertices.
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Proposition 8.9. If Y is a finite n-cycle with n-faces a0; : : : ; ak then
Pk
iD0hai i is a

homological n-cycle. Conversely, if
Pk
iD0hai i is a homological n-cycle then the n-path

components of the simplicial complex generated by ¹a0; : : : ; akº are n-cycles.

Write Œ"�n for the collection of n-element subsets of ". Observe that the colorings
cn W !

nC1
n ! ! partially defined above may each be regarded as deriving from a coloring

Qcn W Œ!n�
nC1 ! !. Put differently, the ordering of the elements of the argument of cn

was immaterial to, and even a distraction from, our proof of the cases of n D 0; 1 and 2.
Similarly, if F W !�nC1n ! !n is strictly increasing then F � may be viewed as outputting
elements of Œ!n�nC1, since its output consists simply in increasing enumerations of such
elements; below, we will tend to identify finite sets of ordinals with their increasing enu-
merations without further comment.

In other words, in the language of Definition 8.8 the crux of the argument of the nD 1
case above is the fact that Qc1�Œs � F.˛; ˇ/�1 is nonconstant for any 0-cycle s < F.˛; ˇ/
and that ¹F.˛/; F.ˇ/º is just such a 0-cycle s. The crux of the argument of the n D 2

case is that Qc2�Œt � F.˛; ˇ; 
/�2 is nonconstant for any 1-cycle t < F.˛; ˇ; 
/ (because
any such t contains in turn an Œs � x�1 for some 0-cycle s < x) and the collection EA
of edges contains such a 1-cycle t . We will now define the colorings Qcn W Œ!n�nC1 ! !

more generally, show that each is nonconstant on the n-faces of cones over .n� 1/-cycles,
and prove Theorem 8.6 by showing that for any strictly increasing .nC 1/-cofinal F the
F �-image of !ŒŒnC1��n must contain such cones.

The colorings Qcn W Œ!n�nC1 ! ! are defined by recursion on n 2 !; the base cases
of n � 2 were described above. Define QcnC1 from Qcn by fixing injections hˇ W ˇ ! !n
for each ˇ 2 !nC1 and letting QcnC1.¹˛0; : : : ; ˛n; ˇº/ D Qcn.¹hˇ .˛0/; : : : ; hˇ .˛n/º/ for all
˛0 < � � � < ˛n < ˇ < !nC1.

Lemma 8.10. For any n > 0 and .n� 1/-cycle t < ı < !n, the coloring Qcn is nonconstant
on Œt � ı�n.

Proof. The argument is by induction on n; the cases of n D 1 and n D 2 were estab-
lished above. Therefore assume that the lemma holds for some n D m. To show that it
holds for n D m C 1, fix a t < ı < !mC1 as in the statement of the lemma, let 
 D
h�1
ı
.max ¹hı.˛/ j ˛ 2

S
tº/, and let ¹�i j i < kº enumerate the m-faces of t contain-

ing 
 . By [8, Proposition 4.3], ¹�i n ¹
º j i < kº contains an .m � 1/-cycle s, and hence
the hı -image of s (which we will write as hı.s/) is an .m � 1/-cycle below 
 . Since
QcmC1.�i [ ¹ıº/D Qcm.hı“�i / for any i < k, the range of Qcm�Œhı.s/ � 
�m is contained in
the range of QcmC1�Œt � ı�mC1; together with our induction hypothesis, this implies that
the latter function is nonconstant, as claimed.

Proof of Theorem 8.6. We will show that for any n > 0 and any strictly increasing
.n C 1/-cofinal F the F �-image of !ŒŒnC1��n contains a cone Œt � ı�n for some .n � 1/-
cycle t < ı < !n. For any sequence � 2 !nC1n of distinct ordinals, let cn.�/ be Qcn of the
underlying set of � . By Lemmas 8.7 and 8.10, the coloring cn will witness the failure of
PHn.!n/.
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To this end, fix such n and F ; by our work above, we may assume that n > 2. For
some a 2 Œ!n�nC1, the aforementioned .n � 1/-cycle t and cone-point ı will derive from
the .n � 1/-cycle sd.@�n.a// and cone-point a, respectively, in the cone-decomposition
of sd.�n.a// as sd.@�n.a// � a. In particular, ı will equal F.a/. Care is needed in the
choice of a simply to ensure that F maps enough of the vertices of sd.@�n.a// to distinct
ordinals that its F -image remains .n� 1/-cyclic. To sum up, our argument will consist in
two steps:

(1) verifying that sd.@�n.a// is an .n � 1/-cycle for any a 2 Œ!n�nC1,

(2) showing that for well-chosen a this implies that the F -image of this cycle indeed
contains an .n � 1/-cycle t , as desired.

Claim 8.11. For any a 2 Œ!n�nC1, sd.@�n.a// is an .n � 1/-cycle.

Proof. Any .n� 2/-face b of sd.@�n.a// consists of a chain �0 � � � � � �n�2 of elements
of Œa��n. Some j 2 ¹1; : : : ; nº is the cardinality of none of the elements of this chain and
the .n� 1/-faces c of sd.@�n.a// containing b consist precisely of the expansions of this
chain by the addition to it of a � of length j . But for any � 0 � � 00 � a of length j � 1
and j C 1 respectively, exactly two subsets � of a will satisfy � 0 � � � � 00; hence b
belongs to exactly two .n � 1/-faces. It is easy to see that sd.@�n.a// is .n � 1/-path
connected; this follows from the fact that @�n.a/ is path connected, as is the subdivision
of any .n � 1/-simplex, and in particular of any face of @�n.a/.

For any a 2 Œ!n�nC1 define the simplicial complex X.a/ on the vertex set F “Œa��n by
letting ¹F.�0/; : : : ; F .�j /º 2 X.a/ whenever �0 � � � � � �j .

Claim 8.12. There exists an a 2 Œ!n�nC1 such that X.a/ contains as a subcomplex an
.n � 1/-cycle t .

Proof. By Claim 8.11,

dn�1

� X
b2Œsd.@�n.a//�n�1

hbi
�
D 0:

(Recall that our homology computations take coefficients in Z=2Z.) It follows that

dn�1

� X
b2Œsd.@�n.a//�n�1

hF “bi
�
D 0: (3)

Observe then that if some F “b is the image of a unique b 2 sd.@�n.a// then the argument
of dn�1 in (3) is nontrivial and hence corresponds, by Proposition 8.9, to a family of
.n � 1/-cycles within X.a/; any .n � 1/-path component of such a family is then an
.n � 1/-cycle t such as we desire.

It suffices therefore to choose an a 2 Œ!n�nC1 possessing such a b 2 aŒŒn��. We do so as
follows. Let ˛0 D 0. If for some j � n the ordinals ˛i .i < j / have all been defined, then
let j̨ D max ¹F.�/ j � 2 Œ¹˛0; : : : ; j̨�1º�

�j º C 1. Let a D ¹˛0; : : : ; ˛nº. Our procedure
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ensures that
jF �1.F.¹˛0; : : : ; j̨ º// \ Œa�

�nC1
j D 1

for all j � n, and hence b D .¹˛0º; ¹˛0; ˛1º; : : : ; ¹˛0; : : : ; ˛n�1º/ is as desired.

This concludes the proof: by Claim 8.12 together with Lemma 8.10, for any n� 0 and
strictly increasing .nC 1/-cofinal F , the function cn ı F � is nonconstant; in other words,
cn witnesses the failure of PHn.!n/.

Observe that the n D 0 instance of Theorem 8.6 is sharp, in the sense that PH0.!1/—
and, indeed, PH0."/ for any ordinal " of cofinality other than !—is a ZFC theorem. Under
large cardinal assumptions, the nD 1 instance of Theorem 8.6 is sharp as well. Recall that
an ideal I �P.�/ is �-dense if P.�/=I has a dense subset of cardinality �.

Theorem 8.13. If there exists a uniform, countably complete, @1-dense ideal I on !2
then PH1.!2/ holds.

Proof. Fix a coloring c W !22 ! ! and an I as in the premise of the theorem. Using I,
we will define a strictly increasing 2-cofinal F such that c ı F � is constant. Since I is
countably complete, we may begin by fixing for each ˛ 2 !2 an I-positive A˛ and i˛ 2 !
such that c.˛; ˇ/ D i˛ for all ˇ 2 A˛ . Since I is @1-dense, there exists an unbounded
B � !2 and I-positive X � !2 such that X n A˛ 2 I for all ˛ 2 B; by the pigeonhole
principle, there then exists an i 2 ! and unbounded C � B such that i˛ D i for all ˛ 2 C .
For each ˛ in !2 let F.˛/ WD minC n ˛, and for each ˛ < ˇ in !2 let

F.˛; ˇ/ WD min
�
AF.˛/ \ AF.ˇ/ n .F.˛/ [ F.ˇ/C 1/

�
(it is the existence of the set X that ensures that this expression is meaningful). The
composition c ı F � takes the constant value i , as desired.

Remark 8.14. Working from the assumption of a huge cardinal, Foreman [13] constructs
a uniform, countably complete, @1-dense ideal on !2. It is not difficult to see that some
large cardinal assumption is necessary for the conclusion of Theorem 8.13; by Proposi-
tion 8.19 this assumption is at least that of a weakly compact cardinal. We return to the
question of the consistency strengths of PHn.!nC1/ in our conclusion below.

Clearly the argument of Theorem 8.13 will continue to apply with any � and �C

in place of @1 and !2, respectively. A perhaps more interesting generalization of the
argument arises with the question of PH2.!3/. Write add.I/ and dens.IC/ for the com-
pleteness and density, respectively, of an ideal I on � (so that add.I/ D dens.IC/ D @1
for the ideal of [13] invoked above, for example).

Theorem 8.15. If there exist uniform ideals I and J on a cardinal � satisfying

(1) @1 � add.I/,

(2) dens.IC/ < add.J/ � �,

(3) dens.JC/ < �,

then PH2.�/ holds.
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Proof. Fix a coloring c W �3 ! !. We will construct a 3-cofinal F such that c ı F � is
constant. By premise (1), for all ˛ < ˇ in � there exists an i˛ˇ 2 ! with A˛ˇ WD ¹
 2 � j
c.˛; ˇ; 
/ D i˛ˇ º 62 I. Fix a set E of representatives for the elements of a dense subset
of P.�/=I such that jEj D dens.IC/. By premise (2), for each ˛ 2 � there exists a J-
positive B˛ � � and X˛ 2 E and i˛ 2 ! with X˛ nA˛ˇ 2 I and i˛ˇ D i˛ for all ˇ 2 B˛ .
Then there exist X � � and i 2 ! and J-positive C such that X˛ D X and i˛ D i for
all ˛ 2 C . By premise (3), there exists a J-positive Y and unbounded D � C such that
Y n B˛ 2 J for all ˛ 2 D. Now (partially) define F W ��3 ! � as follows:

� let F.˛/ WD min.D n ˛/ for all ˛ 2 �,

� let F.˛; ˇ/ WD min.BF.˛/ \ BF.ˇ/ n .F.˛/ [ F.ˇ/C 1// for all ˛ < ˇ in �,

� let

F.˛; ˇ; 
/ WD min
� \

¿�����¹˛;ˇ;
º

AF.�/;F .�/ n
� [

¿���¹˛;ˇ;
º

F.�/C 1
��

for all ˛ < ˇ < 
 in �.

Again it is the existence of the sets Y and X , respectively, that ensures that the second
and third of these expressions are meaningful. It is now straightforward to see that c ı F �

takes the constant value i , as desired.

Intriguingly, for any accessible cardinal � the consistency of Theorem 8.15’s premises
with the ZFC axioms is unknown.4 In particular, when � D !3 they entail the existence of
an @1-dense ideal on !3, the consistency of which is a well-known open question. Note
also that longer sequences of ideals satisfying premises like those of Theorem 8.15 will
allow for even higher-order versions of the above argument, securing the consistency of
PHn.�/ wherever the premises themselves are.

We close this section with a few observations reconnecting our ordinal analyses with
our paper’s main focus on partition hypotheses on �.

Theorem 8.16. PHn.�/ holds for any weakly compact cardinal � and n 2 !.

Proof. Assume � is weakly compact and suppose that c W �n!!. Letm2! andX � � be
such that jX j D � and whenever Ę 2Xn and has strictly increasing coordinates, c. Ę/D k.
Define F W ��n ! X by letting F.x/ be the least element of X strictly larger than any
coordinate of x or F.y/ for any y C x. It is easily verified that F is an n-cofinal function,
the range of F � consists of strictly increasing n-tuples from X , and hence c ı F � takes
the constant value i .

The connection with our results on partition hypotheses on � is the following: the
length-� iteration of Hechler forcings appearing in both [4] and [1] effectively translates
the partition hypotheses of Theorem 8.16 to the setting of �. Those works’ subsequent
deductions are now encapsulated by Section 7. See the conclusion of [4] for the outline of

4Added in proof: See footnote following Problem 9.5.
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an argument that any length-� finite-support iteration of � -centered posets of cardinality
less than � will achieve the same effect. A more direct translation is the following.

Proposition 8.17. Suppose that b D d D � and PHn.�/. Then PHn.

Proof. A �-scale yields an f W � ! � which is increasing with cofinal range. Lemma 8.1
completes the proof.

Partition hypotheses on� also imply partition hypotheses on the ordinals; these inter-
relationships allow us to compute the exact consistency strengths of the principles PHn
for all n � 0. To this end, we will need one preliminary definition and proposition.

Definition 8.18. For any cardinal � the principle �.�/ is the assertion that there exists a
sequence C D hC˛ j ˛ 2 �i such that

� C˛ is a closed unbounded subset of ˛ for each ˛ 2 �,

� Cˇ \ ˛ D C˛ for every ˇ 2 � and limit point ˛ of Cˇ ,

� no club C � � satisfies C \ ˛ D C˛ at every limit point ˛ of C .

Recall from [17, 40] that if �.�/ fails at a regular uncountable cardinal � then � is
weakly compact in L.

Proposition 8.19. Suppose that � is a regular uncountable cardinal and �.�/ holds.
Then PHn.�/ fails for all n > 0.

Proof. Fix a �.�/-sequence C D hC˛ j ˛ 2 �i. Let �2 W Œ��2 ! ! be the characteristic
of walks along the sequence defined recursively by �2.˛; ˇ/ D �2.˛;min.Cˇ n ˛//C 1
with the boundary condition �2.˛; ˛/ D 0. We shall need the following two properties of
this characteristic (see [40, 1.14]):

� d.˛; ˇ/ D sup��˛ j�2.�; ˛/ � �2.�; ˇ/j <1 for all ˛ < ˇ < �,

� for any i 2 ! and A;B 2 Œ��� , there exist ˛ 2 A and ˇ 2 B such that �2.˛; ˇ/ > i .

Since d.˛; ˇ/ � �2.˛; ˇ/ for all ˛ < ˇ < � it follows that the function d W Œ��2 ! ! has
the following two properties:

� d.˛; ˇ/ � d.˛; 
/C d.ˇ; 
/ for all ˛ < ˇ < 
 < �,

� for any i 2 ! and A 2 Œ��� , there are ˛; ˇ 2 A such that d.˛; ˇ/ > i .

As before, we may identify d with a partial function �2 ! !; let c denote any total
extension of this function. Let F be a strictly increasing 2-cofinal function and let A D

¹F.˛/ j ˛ 2 �º. The set A is unbounded in the regular cardinal �, hence jAj D �. By the
above, for any i 2 ! there exist F.˛/ < F.ˇ/ such that

2i < c.F.˛/; F.ˇ// � c.F.˛/; F.˛; ˇ//C c.F.ˇ/; F.˛; ˇ//:

In consequence, c ıF � cannot take the constant value i . This shows the failure of PH1.�/,
and since PHn.�/ implies PHm.�/ for all n � m � 0, this completes the proof.

Note that PHn.�/ is equivalent to PHn.cf.�//.
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Proposition 8.20. The partition hypothesis PHn implies PHn.d/. In particular, it implies
that cf.d/ > !n; if n > 0, it implies moreover that cf.d/ is weakly compact in L.

Proof. If hx˛ j ˛ < di is cofinal with respect to ��, then x 7! min ¹˛ j x �� x˛º is
monotone with cofinal image. Lemma 8.1 completes the proof. As we have noted, if
�.cf.d// fails then cf.d/ is weakly compact in L, hence the conclusion for n > 0 follows
from Proposition 8.19.

Corollary 8.21. For all n > 0 the consistency strength of the principle PHn is exactly a
weakly compact cardinal.

Proof. This follows immediately from Theorem 6.1 and Proposition 8.20.

Partition relations and hypotheses from a simplicial perspective

In this section we show that our partition hypotheses admit concise formulation within
the framework of simplicial homotopy theory, and moreover they figure therein as only
very minor variations on classical partition relations.

To do so, we recall some basics from the theory of simplicial sets. For brevity, we will
leave several terms incidental to our ultimate aim only very loosely defined; readers are
referred to [15, Chapters I and III.4] for a much fuller treatment.

Definition 8.22. Write � for the category of finite nonempty ordinals, whose objects
are typically written Œ0� D ¹0º, Œ1� D ¹0; 1º, and so on, and whose morphisms are the
order-preserving maps f W Œm�! Œn�. Among these maps we distinguish two main sorts:

� injections of the form d in W Œn � 1�! Œn�, which omits i 2 Œn� from its image,

� surjections of the form sin W ŒnC 1�! Œn�, which sends i 2 Œn� and i C 1 both to i .

It is easy to see that these maps generate the morphisms of �. In consequence, the cosim-
plicial identities, a short list of the fundamental relations among them (like sind

i
nC1 D id),

fully determines the category �; similarly for its opposite category �op, wherein the sim-
plicial identities play the analogous role [15, p. 4]. As is standard, we will suppress such
maps’ indices n in what follows.

A simplicial set X is a functor S W �op
! Set; put differently, it is

� a family of sets F.Œn�/ D Xn .n 2 !/, together with

� morphisms F.f / WXn!Xm whose relations mirror those among the morphisms in �.

The elements of Xn are sometimes termed the n-dimensional faces of X . Maps of the
form F.d i / or F.si / are termed face maps and degeneracies and written di and si , respec-
tively. An element of the image of the latter is termed degenerate. We write sSet for the
category of simplicial sets; the morphisms therein are the natural transformations.

A shaping intuition for simplicial sets is the following example.

Example 8.23. LetZ be totally ordered and let Y be an abstract simplicial complex onZ.
The order on Z induces a family of face maps di on the sequence Y D ¹ŒY �n j n 2 !º
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which satisfy the relevant simplicial identities; lacking degeneracies, however, Y fails
to define a simplicial set. Nevertheless, there exists a minimal simplicial set xY which
(levelwise) contains Y, and it amounts simply to the closure of Y under the degeneracy
maps si .

Like abstract simplicial complexes, simplicial sets admit geometric realizations—in
fact, there exists a geometric realization functor j � j W sSet! Top which is left adjoint
to the singular functor Sing W Top! sSet, where Sing.Y /n is just the set of continuous
maps from an n-simplex to the topological space Y (this is, of course, the functor under-
lying the singular homology of Y ). The remarkable point is that whatever distortions or
identifications these two functors may introduce, they do respect the fundamental notions
of homotopy (fibrations, cofibrations, weak equivalences) on each side [34]. Moreover,
each of these functors has image within that class of objects best suited for homotopy
operations: the CW complexes in Top; the Kan complexes in sSet.

For our purposes, the crucial example of a simplicial set is the following one.

Example 8.24. For any quasi-order P , letNP denote the nerve of P ; this is the simplicial
set defined by .NP /n WD P ŒnC1� for all n 2 !, with the morphism .NP /n ! .NP /m
associated to any morphism Œm�! Œn� in � being the obvious one.

Remark 8.25. Observe that in the perspective of the previous example, a function c W
Œ��nC1 ! � is just a �-coloring of the nondegenerate n-faces of N�.

The following theorem is folklore; see [23, Tag 002Z] for a proof.

Theorem 8.26. The nerve functor N fully and faithfully embeds the category QO of
quasi-orders into the category sSet of simplicial sets.

Within the framework of sSet, the functor N has one main shortcoming, which is that
the nerve of a (nontrivial) quasi-order is never a Kan complex. More important than Kan
complexes’ definition for our immediate purposes is their analogy with CW complexes:
just as any topological space may be replaced by a weakly equivalent CW complex, any
simplicial set may be converted to a Kan complex via repeated applications of the Ex
functor, which should be thought of as the reverse (or more precisely right adjoint) of
the subdivision functor on simplicial sets (see [15, p. 183]). We will define its levels
after the following example, then proceed directly to this section’s main aim: the parallel
reformulations of classical partition relations and the hypotheses PHn.

Example 8.27. Recall from Definition 8.8 the subdivision sd.Y / of an abstract simplicial
complex Y . Note also that a partial order linearly ordering the vertices of each of the
faces of Y would have sufficed for the construction of Example 8.23. Hence sd.Y / is
well-defined, since Z D .Y;�/ forms such an ordering of the vertices of sd.Y /; in fact, it
is straightforward to see that sd.Y / Š NZ.

Write�n for the simplicial set�n, where�n is, much as in Definition 8.8, the abstract
simplicial complex on N corresponding to the standard n-simplex; this is equivalent to
the more standard definition �n WD Hom�. � ; Œn�/. Define then the subdivision sd of the

https://kerodon.net/tag/002Z
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simplicial set �n by
sd�n WD sd.�n/ Š N.�n;�/:

Definition 8.28. For any simplicial set X , the levels of the Ex-image of X are defined by

.ExX/n D HomsSet.sd�n; X/ for all n 2 !.

Lemma 8.29. For any quasi-order P , the elements of .ExNP /n are exactly the order-
preserving images of .�n;�/ in P .

Proof. By definition, .ExNP /n DHomsSet.sd�n;NP /DHomsSet.N.�n;�/;NP /. By
Theorem 8.26, this in turn equals HomQO..�n;�/;P /, completing the proof.

We require only one further item of notation.

Notation 8.30. For any n � 0 the family of maps vi W Œ0�! Œn� W 0 7! i determines a
family of maps v�i W Xn ! X0. Let

vert.x/ D ¹v�i .x/ j i 2 Œn�º for any x 2 Xn.

Definition 8.31. For any simplicial setX and n>0, say S�Xn spans T �X0 if for every
Nt 2 ŒT �nC1 there exists an s 2 S with vert.s/D Nt . Say S spans T neatly if for each i � n
the vertex map is injective on the collection ¹di .s/ j s 2 Sº of i -faces of elements of S .

We now have the following equivalences, for any infinite regular cardinal �:

� � ! .�/nC1! is equivalent to:

For all c W Œ��nC1! ! there exists a cofinal T � � and a c-monochromatic S � .N�/n
neatly spanning T .

� PHn.�/ is equivalent to:

For all c W �nC1!! there exists a cofinal T � � and a c-monochromatic S � .ExN�/n
neatly spanning T .

� More generally, PHn.P ; �/ asserts for any quasi-order P and cardinal � that:

For all c W PnC1 ! � there exists a cofinal T � P and a c-monochromatic S �
.ExNP /n neatly spanning T .

The first item follows directly from Remark 8.25, and the second and third are similarly
immediate from definitions and Lemma 8.29. In the second item, for example, note that
the requirement that S neatly spans T ensures that the association to each Nt 2 ŒT �kC1

.k � n/ of an order-preserving image of .�k ;�/ in � (one identifying the vertices of �k
with the elements of Nt ) is well-defined. This �-increasing association of values in � to,
for example, the nonempty subsets ¹˛º, ¹ˇº, and ¹˛; ˇº of each ¹˛; ˇº 2 ŒT �2 amounts to
a partial 2-cofinal function T �2 ! �, one which will monochromatically extend to a full
2-cofinal function ��2! � by way of the remark following Lemma 8.7 and (the logic of)
Lemma 3.3. Further details are left to the reader. The fact that in the simplicial language
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outlined above, the formulations of PHn.�/ and of classical partition principles differ by
only four characters, is quite striking.

9. Conclusion

We conclude this work by recording several questions arising out of the analyses above.
First, we do not know whether (�) is needed in the results of Sections 4 and 5. In particular:

Question 9.1. Are Theorem 5.1 or Corollary 5.4 true if the hypothesis of (�) is removed?

It is also unclear whether the measurable cardinal is needed as a hypothesis in Propo-
sition 4.24.

Question 9.2. Does L.R/ satisfy that every subset of �Œn� is Hn-measurable after Levy
collapsing an inaccessible cardinal to !1?

Question 9.3. Is .�/ equivalent to the assertion that @1 is an inaccessible cardinal inLŒr�
for every r � !?

This seems closely related to whether ZFC proves Qn is c.c.c.
Two other conspicuous questions are the following:

Question 9.4. What is the consistency strength of PH1.!2/?

Question 9.5. What is the consistency strength of PH2.!3/?

Here we should acknowledge the possibility of the answer “0 D 1”; in other words,
the possibility exists that PH2.!3/ is inconsistent with the ZFC axioms.5

Returning to the setting of �:

Question 9.6. What is the least value of the continuum compatible with the condition
“PHn for all n 2 !”?

By Proposition 8.20, @!C1 is a lower bound. We note that in [3] it is established that
the vanishing of limn A for all n—a consequence of PHn—is relatively consistent with
ZFC via a model in which the continuum is @!C1. The question of whether this is optimal
depends on answers to the following:

Question 9.7. If n > 1, what is the least value of the continuum compatible with limsA
D 0 for all s � n? What if b D d?

The nD 1 case was settled in [9], which established the consistency of lim1AD 0with
b D d D 2@0 D @2. Note that upper bounds �n .n > 0/ for the first part of the question

5Added in proof: Monroe Eskew announced at BLAST 2024 in Denton, TX that in joint work
with Yair Hayut he has proved that if the existence of a huge cardinal is consistent, then so is the
assertion “For all m < n, there is a uniform countably complete @m-dense ideal on @n.” This last
assertion implies that for all m < n, PHm.!n/.
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are recorded in [3, Theorem 6.1] (under the Generalized Continuum Hypothesis �1 D @2,
�2 D @7, and so on, in a sequence with supremum @!).

As the preceding discussion underscores, the principles PHn are stronger than is
strictly necessary for the conclusions about higher limits that we derive from them. More
precisely, while PHn quantifies over all colorings c W �nC1! !, only a subclass of these
colorings pertain to additivity questions for limn. Useful but more attainable variants
of PHn might amount to restrictions to just this class. Put differently, while we have
shown the consistency strength of PHn to be equal to existence of a weakly compact car-
dinal, it seems likely that the consistency strength of the additivity of the associated limn

functors is significantly less.

Question 9.8. What is the consistency strength of the statement “limn is additive on the
class of �-systems”?

A related calibration of strength is the following question.

Question 9.9. Suppose limn is additive for �-systems in the inner model L.R/. Can we
conclude that !1 is an inaccessible cardinal in L?

Since large cardinals imply that L.R/ models that limn is additive for �-systems, it
is natural to ask if this conclusion can be derived from a determinacy hypothesis.

Question 9.10. Assume the Axiom of Determinacy. Is limn additive for �-systems?

We noted a further question in our discussion of generalized partition hypotheses in
Section 8:

Question 9.11. Let P and Q be directed quasi-orders with P �T Q. Does PHn.Q; �/
imply PHn.P ; �/?

This question is, in spirit, the converse of Lemma 8.1; by that lemma, in fact, this
question is equivalent to that of whether PHn.Q; �/ implies PHn.P ; �/ whenever P is a
cofinal suborder of Q.

Finally, it is natural to ask if results like ours on L.R/ can augment and refine the
treatment and analysis of mathematical obstructions which derived limits tend to organize.
For example, Sections 4 and 5 may be read as evoking a subcomplex of the cochain
complex of Definition 7.2, one consisting only of its measurable cochains. Its cohomology
groups might then be viewed as measurable variants of the functors limn; by the results
of Section 5, these measurable higher limits should be additive, and should even tend
to equal zero. The question is how algebraic a formalization any of this admits: whether
such a family of functors forms a connected sequence of functors in the sense of [7], or
whether, more particularly, they might correspond to a projective class in a category like
inv-.!!/, in the sense of [11].

Question 9.12. Do there exist measurable variants of the limn functors for �-systems?

This question is somewhat open-ended; if the answer is, as suspected, yes, the question
should be read as standing for the task of analyzing such variants and their relation to the



N. Bannister, J. Bergfalk, J. Tatch Moore, S. Todorcevic 5040

classical functors limn. Applications in this case are not difficult to imagine; the existence
of measurable—and by our results, better-behaved—variants of more compound functors
like strong homology, for example, would be likely to follow.
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