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Abstract. In his influential paper on quantum modular forms, Zagier developed a conjectural
framework describing the behavior of certain quantum knot invariants under the action of the
modular group on their arguments. More precisely, when JK;0 denotes the colored Jones poly-
nomial of a knot K, Zagier’s modularity conjecture describes the asymptotics of the quotient
JK;0.e

2�i
.x//=JK;0.e
2�ix/ as x !1 along rationals with bounded denominators, where 
 2

SL.2;Z/. This problem is most accessible for the figure-eight knot 41, where the colored Jones
polynomial has a simple explicit expression in terms of the q-Pochhammer symbol. Zagier also
conjectured that the function h.x/ D log.J41;0.e

2�ix/=J41;0.e
2�i=x// can be extended to a func-

tion on R which is continuous at irrationals. In the present paper, we prove Zagier’s continuity
conjecture for all irrationals for which the sequence of partial quotients in the continued frac-
tion expansion is unbounded. In particular, the continuity conjecture holds almost everywhere
on the real line. We also establish a smooth approximation of h, uniform over all rationals, in
accordance with the modularity conjecture. As an application, we find the limit distribution (after
a suitable centering and rescaling) of log J41;0.e

2�ix/, when x ranges over all reduced rationals
in .0; 1/ with denominator at most N , as N !1, thereby confirming a conjecture of Bettin and
Drappeau.

Keywords: quantum modular forms, quantum knot invariants, colored Jones polynomial, Kashaev
invariant, Sudler products, continued fractions.

1. Introduction

The colored Jones polynomials JK;n, n� 2, and the Kashaev invariants hKiN ,N � 2, are
two quantum knot invariants that have been intensively studied in the mathematical and
theoretical physics literature. The two invariants are related via hKiN D JK;N .e2�i=N /.
Among their most interesting features are the connection with quantum field theory and
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the link to the hyperbolic geometry of knot complements via the volume conjecture.
For more basic background, see, for example, [12, 15, 27, 31].

The colored Jones polynomial JK;n can be defined as a certain Laurent polynomial
arising from Skein relations of the knot (for n � 2), and by periodicity, it can be extra-
polated backward to give JK;n also for n � 0. We do not give a more detailed general
definition, since in the present paper we will only be concerned with J41;0, which has the
explicit representation

J41;0.q/ D

1X
nD0

j.1 � q/.1 � q2/ � � � .1 � qn/j2; (1.1)

defined for all complex roots of unity q. Note that the series in this definition is actually
finite at roots of unity. In the formulas above, “41” is the Alexander–Briggs notation for
the figure-eight knot, which is the only knot with crossing number four, and in many
regards the simplest hyperbolic knot. Using the q-Pochhammer symbol .qI q/n, one can
write

J41;0.q/ D

1X
nD0

j.qI q/nj
2;

which hints at a connection with enumerative combinatorics and (mock) modular forms
(cf., for example, [4]). We note in passing that for other hyperbolic knots JK;0 has a some-
what similar, but more complicated representation in terms of q-Pochhammer symbols.

The volume conjecture concerns the exponential growth rate of the Kashaev invariant,
and asserts that

lim
N!1

2� log jhKiN j
N

D Vol.K/;

where Vol.K/ denotes the hyperbolic volume of the complement of K. Writing JK.x/ D
JK;0.e

2�ix/ throughout this paper, the volume conjecture can also be written in terms
of JK since hKiN D JK.1=N /. The volume conjecture has been generalized to the arith-
meticity conjecture, which predicts the full series expansion of jJK.1=N /j as N !1.
Both conjectures have been proved for knots with a small number of crossings, including
the figure-eight knot, for which

Vol.41/ D 4�
Z 5=6

0

log.2 sin.�x// dx � 2:0299; (1.2)

but they remain open for general knots K.
In his seminal paper on quantum modular forms [32], Zagier mentions the colored

Jones polynomial as the “most mysterious and in many ways the most interesting” among
the examples listed in the paper (even if it, strictly speaking, does not satisfy his defi-
nition of a quantum modular form). For fixed N , the numbers JK.a=N /, 1 � a � N ,
gcd.a; N / D 1, are the Galois conjugates of hKiN in Q.e2�i=N /. Zagier’s modularity
conjecture is a vast generalization of the volume and arithmeticity conjectures, address-
ing the Galois invariant spreading of the Kashaev invariant on the set of complex roots
of unity. The modularity conjecture has also been proved for all hyperbolic knots with
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a small number of crossings, including the figure-eight knot [8], but remains open for
general K. We do not replicate the statement of the modularity conjecture in full gener-
ality here, and refer to [32] instead. Roughly speaking, the modularity conjecture makes
a detailed prediction about the asymptotic expansion of the quotient JK.
.x//=JK.x/ as
x!1 along rationals x with bounded denominators, where 
 2 SL.2;Z/. In the special
case when x runs along the positive integers and 
.x/ D �1=x, this leads back to the
arithmeticity conjecture.

In the present paper, we will be concerned with the case of K D 41 and 
.x/ D
�1=x, whence the quantity considered in Zagier’s modularity conjecture (after taking
a logarithm and switching a sign) becomes

h.x/ D log
J41
.x/

J41
.1=x/

; x 2 Qn¹0º:

This function h will be the central object of study in the present paper. Note that J41
.x/

is easily seen to be invariant under the map x 7! x C 1, and that the two maps 
.x/ D
x C 1 and 
.x/ D �1=x together generate the full modular group. Note also that h.x/ D
�h.1=x/ and h.x/ D h.�x/, so it is sufficient to understand h on the interval .0; 1/.
Zagier’s paper [32] contains several plots of h, including one similar to our Figure 1 below
(the “global” plot), as well as plots showing the behavior of h near rationals with small
denominators and near badly approximable irrationals, similar to our Figures 3 and 4.
He observes that the “global” plot misleadingly suggests that h could be monotonically
decreasing, which is not actually the case; compare the comment after Figure 2 below.
Furthermore, he writes that the experimental evidence is

“. . . seeming to indicate that the function h.x/ is continuous but in general not
differentiable at irrational values of x”.

Since h.x/ is only defined over the rationals, the continuity at irrationals is of course to
be understood with respect to the real topology; in other words, Zagier suggests that h.x/
can be extended to a function on R (rather than Q) that is continuous at irrationals.
In the present paper, we prove that indeed this is the case, with the possible exclusion
of irrationals which are badly approximable in the sense of Diophantine approximation.
Recall that the badly approximable numbers are exactly those which have bounded par-
tial quotients in their continued fraction expansions. (Some background on Diophantine
approximation is given at the beginning of Section 2.)

Theorem 1.1. Assume that ˛ is an irrational whose sequence of partial quotients in the
continued fraction expansion is unbounded. Then limx!˛ h.x/ exists and is finite.

It is well known that the set of badly approximable numbers has vanishing Lebesgue
measure. Thus Theorem 1.1 implies that the answer to Zagier’s continuity problem is
positive almost everywhere.

Corollary 1.2. The function h.x/ can be extended to an almost everywhere continuous
function on R.
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Fig. 1. The function h.x/, evaluated at all rationals in .0; 1/ with denominator at most 80 (black
graph with jumps). For comparison, the plot also shows the function Vol.41/=.2�x/ � .3=2/ log x
(gray solid line), which is suggested as a continuous approximation to h.x/ by formula (1.3).

Our more technical Theorem 5.1, which will be stated in Section 5.1, gives quan-
titative upper bounds for the maximal fluctuation of h on intervals defined in terms of
a joint initial segment of the continued fraction expansion. This can be read as establish-
ing a modulus of continuity for h at ˛, which takes into account the size of the partial
quotients in the continued fraction expansion of ˛.

Theorem 1.1 leaves the continuity of h at badly approximable irrationals open. It will
be seen that our argument crucially relies on the existence of an unbounded subsequence
of partial quotients, so some essential new ideas will be necessary to treat the case of
badly approximable ˛. Some partial results for quadratic irrational ˛ (when the sequence
of partial quotients is eventually periodic) are contained in our earlier paper [1]. In this
case, Zagier’s continuity problem might be more tractable than in the general case, due to
the additional structure coming from the periodicity of the continued fraction expansion.
The case of general badly approximable ˛ (with no particular structure in the sequence of
partial quotients) seems to be even more challenging.

Zagier’s modularity conjecture in the special case of h.x/ implies in particular that

h.x/ D
Vol.41/
2�x

�
3 log x
2
�

log 3
4
C o.1/ (1.3)

as x! 0C along rationals with bounded numerators; this is in accordance with the numer-
ical data (cf. Figure 1), which in fact seems to suggest that the same holds as x! 0C along
all rationals. Defining

 .x/ WD h.x/ �
Vol.41/
2�x

C
3 log x
2

; x 2 .0; 1/ \Q;

the function  seems to capture very well the local “irregular” aspects of h, such as the
jumps at rationals, and certain self-similarity properties (see Figure 2). It seems that so far
hardly anything was known about the (maximal) size of  . For example, while the plots
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Fig. 2. The function  .x/ D h.x/ � Vol.41/=.2�x/ C .3=2/ log x, evaluated at all rationals in
.0; 1/ with denominator at most 80. Note the apparent self-similar structure of  . Note also the
isolated function values at rationals with small denominators such as x D 1=2 or x D 1=3, and that
limx!0 .x/ appears to be �.log 3/=4��0:275 and limx!1 .x/ appears to be 0, in accordance
with the arithmeticity and modularity conjectures.

clearly indicate that Zagier’s function h.x/ should be bounded on .0; 1/ as long as one
stays away from x D 0, we believe that nothing of that sort was known so far. Here we
will prove the following bound.

Theorem 1.3. We have

h.x/ D
Vol.41/
2�x

CO.1C jlog xj/

for all rationals x 2 .0; 1/, with a universal implied constant.

In particular, h is locally bounded on .0; 1/. We conjecture that Theorem 1.3 can
actually be improved to

h.x/ D
Vol.41/
2�x

�
3 log x
2
CO.1/; (1.4)

or equivalently that  is bounded on .0; 1/, as suggested by Figure 2.
Zagier’s continuity problem is interesting in its own right, but as observed in [8],

it also has implications on the value distribution of log J41
.x/ as x ranges over all ratio-

nals with their denominators bounded by a given threshold. More precisely, [8] contains
a detailed prediction for the limit distribution of a suitably centered and rescaled version
of log JK.x/, and in [8, Theorem 4] it was shown that a positive answer to the conjecture
in equation (1.4) above, together with a positive answer to Zagier’s continuity problem,
would imply the validity of this prediction for K D 41. It turns out that our Theorems 1.1
and 1.3, together with a result of Bettin and Drappeau [7] on the distribution of sums of
partial quotients of random rationals, are sufficient to establish unconditionally Bettin and
Drappeau’s conjecture on the value distribution of log J41

.
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Fig. 3. The function  .x/, evaluated at all rationals with denominator at most 600 in a small
neighborhood of x D 1=10. Note the isolated function value at x D 1=10, and the very regular
behavior when approaching 1/10 from the left or from the right. Note also that the “global” plot
in Figure 2 might seem to indicate that  consists of a continuous increasing component which is
interceded by a discrete decreasing component, and that the values of  at rationals are always situ-
ated between the corresponding left and right limits, i.e., limx!r�  .x/ >  .r/ > limx!rC  .x/.
However, as this figure indicates, this is probably not true for some (small?) rationals, where actu-
ally limx!r�  .x/ <  .r/, i.e., an initial upward jump is followed by a downward jump. It might
still be the case that limx!r�  .x/ > limx!rC  .x/ at all rationals r 2 .0; 1/; at least we have
not found a counterexample.

Theorem 1.4. Let FN denote the set of all reduced rationals in .0; 1/ with denominator
at most N . There exists a constant D such that for every interval Œa; b� � R,

lim
N!1

1

#FN
#
°
x 2 FN W

� log J41
.x/

.3 Vol.41/=�2/ logN
�
2

�
log logN �D

�
2 Œa; b�

±
D

Z b

a

g.y/ dy;

where

g.y/ D
1

2�

Z 1
�1

e�ity�jt j.1C.2i=�/ sgn.t/ log jt j/ dt

is the density function of the standard stable law with stability parameter 1 and skewness
parameter 1.

Many properties of the functions h and  remain mysterious. A conjecture stated
in [32] would imply in particular that the left and right limits limx!r� h.x/ and
limx!rC h.x/ exist at all rationals r 2 .0;1/ (or equivalently, that these limits exist for ).
This would be in accordance with the impression given by Figure 3, but remains unproved.
Supposing that these limits exist, the actual size of the jumps from left to right limit also
remains unclear, as well as the relation of the left and right limits to the actual function
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Fig. 4. The function  .x/, evaluated at all rationals with denominator at most 600 in a small neigh-
borhood of x D 1=

p
2. When compared to Figure 3 above, one can see the different behavior of  

near rationals with small denominators and near badly approximable irrationals (note that the scal-
ing is the same in both plots, making them directly comparable).

value h.r/. As Figures 1 and 2 indicate, there seem to be larger jumps at rationals with
small denominators, but we are lacking a detailed understanding of this phenomenon.

Before continuing with the proofs and the underlying heuristics, we describe the struc-
ture of the remaining parts of the paper. In Sections 2.1 and 2.2, we will introduce certain
shifted trigonometric products and shifted cotangent sums, which are the key objects
appearing throughout the proofs. The heuristic principles underlying the proof of the
continuity problem can only be explained after introducing these auxiliary objects, and
we will consequently present the heuristic reasoning in Section 2.3 below. In particular,
we will show why it is necessary to have unbounded partial quotients in the continued
fraction expansion of ˛, as a consequence of a natural approximate “factorization” of J41

arising from the Ostrowski representation of positive integers. This factorization will be
made precise in Section 3. In Section 4, we show that the “tail” in this approximate
factorization is (surprisingly) well behaved, which allows us to prove Theorem 1.1 in
Section 5.1. In Section 5.2, we prove Theorem 1.3, and in Section 6, we prove Theo-
rem 1.4.

2. Trigonometric products and cotangent sums

Throughout this paper, we make heavy use of concepts and results from Diophantine
approximation and the theory of continued fractions. Among the standard textbooks on
these subjects are the books of Bugeaud [10], Cassels [11], Khinchin [22], Rockett and
Szüsz [28] and Schmidt [29]. Below, we state a few basic facts on continued fractions,
which can all be found in each of the textbooks mentioned above.
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Throughout the paper, ˛ denotes a real number. If ˛ is rational, then it can be repre-
sented as a (finite) continued fraction in the form

˛ D a0 C
1

a1 C
1

a2 C
: : :

C
1

aL�1 C
1

aL

(2.1)

for a suitable number L (called the length of the continued fraction), a suitable inte-
ger a0, and suitable positive integers a1; : : : ; aL (which are called the partial quotients
of ˛). For each rational ˛ there is a unique form of such a representation for which
aL > 1, and throughout the paper it is understood that always this form of the contin-
ued fraction expansion is used. We will write all continued fractions in the form ˛ D

Œa0I a1; a2; : : : ; aL�, which is just a shorthand version of (2.1). The numbers p`=q` D
Œa0Ia1; : : : ;a`�, 0� `�L, are called the (continued fraction) convergents to ˛. If ˛ is irra-
tional, then its continued fraction expansion is infinite, and we write ˛ D Œa0I a1; a2; : : :�
with the convention that L D 1 and qL D 1. Irrationals whose sequence of partial
quotients is bounded are called badly approximable; as noted before the statement of
Corollary 1.2, the set of badly approximable numbers has vanishing Lebesgue measure
(but full Hausdorff dimension).

We denote the distance from the nearest integer function by k � k, and the fractional
part function by ¹�º. Among the fundamental facts from the theory of continued fractions,
which will be frequently used in this paper, are the recursive formulas

q`C1 D a`C1q` C q`�1 and kq`C1˛k D �a`C1kq`˛k C kq`�1˛k;

the identities

q`p`�1 � p`q`�1 D .�1/
` and q`kq`�1˛k C q`�1kq`˛k D 1;

and the estimate

1

a`C1 C 2
� q`kq`˛k �

1

a`C1
:

Furthermore, a key basic ingredient in our proofs is the fact that every integer 0�N < qL
has a unique Ostrowski expansion N D

PL�1
`D0 b`.N /q`, where 0 � b0.N / < a1 and

0 � b`.N / � a`C1 are integers which satisfy the extra rule that b`.N / D 0 whenever
b`C1.N / D a`C2. We use the convention b`.N / D 0 for ` � L.

Throughout the paper, IR denotes the indicator of a relation R, and C > 0 a universal
constant whose value changes from line to line. By convention, empty sums equal 0, and
empty products equal 1.
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2.1. Shifted trigonometric products

Throughout the paper, we write PN for the trigonometric product

PN .˛/ WD

NY
nD1

j2 sin.�n˛/j; N 2 N:

This is called Sudler product, and has a long history going back at least to a paper of Erdős
and Szekeres [14]. See [1–3,16–21,30] for recent papers concerned with the (asymptotic)
behavior of such products. Note that

PN .˛/ D j.1 � e
2�i˛/.1 � e2�i2˛/ � � � .1 � e2�iN˛/j;

so that in accordance with (1.1), the value of the colored Jones polynomial at a reduced
rational p=q can be written as

J41

�p
q

�
D

q�1X
ND0

PN

�p
q

�2
:

We will also need a shifted form of the Sudler product, namely

PN .˛; x/ WD

NY
nD1

j2 sin.�.n˛ C x//j; N 2 N; x 2 R:

One of our main tools is the product form [1, 16]

PN .˛/ D

L�1Y
`D0

b`.N/�1Y
bD0

Pq`

�
˛; .�1/`

bq`kq`˛k C "`.N /

q`

�
; (2.2)

where

"`.N / WD q`

L�1X
mD`C1

.�1/`Cmbm.N /kqm˛k: (2.3)

In fact, "`.N / only plays a role if b`.N / � 1, otherwise it does not appear in the product
form (2.2). The following simple facts were observed in [1, 2]; for the sake of complete-
ness, we include the short proof.

Lemma 2.1. For any 0 � ` < L such that b`.N / � 1, we have

�q`kq`˛k C q`kq`C1˛k � "`.N / � q`kq`C1˛k:

If b`C1.N / � .1 � ı/a`C2 with some ı > 0, then

"`.N / � �
�
1 �

ı

3

�
q`kq`˛k:

If b`C2.N / � .1 � ı/a`C3 with some ı > 0, then

"`.N / �
�
1 �

ı

3

�
q`kq`C1˛k:
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Proof. Keeping only the nonnegative terms in definition (2.3) of "`.N /, we obtain the
upper bound

"`.N / � q`.b`C2.N /kq`C2˛k C b`C4.N /kq`C4˛k C � � � /

� q`.a`C3kq`C2˛k C a`C5kq`C4˛k C � � � /

D q`..kq`C1˛k � kq`C3˛k/C .kq`C3˛k � kq`C5˛k/C � � � /

D q`kq`C1˛k;

as claimed. Similarly, keeping only the nonpositive terms and using the fact that b`.N /�1
implies b`C1.N / < a`C2, we obtain the lower bound

"`.N / � q`.�b`C1.N /kq`C1˛k � b`C3.N /kq`C3˛k � � � � /

� q`.�.a`C2 � 1/kq`C1˛k � a`C4kq`C3˛k � � � � /

D q`.kq`C1˛k C .kq`C2˛k � kq`˛k/C .kq`C4˛k � kq`C2˛k/C � � � /

D �q`kq`˛k C q`kq`C1˛k;

as claimed. An obvious modification of the argument leads to the last two estimates.

2.2. A shifted cotangent sum

A close connection between the Sudler product and certain cotangent sums was first
observed by Lubinsky [25], and more recently in [1, 2, 8]. In our proofs, we will use
a cotangent sum estimate of Lubinsky, or more precisely, a generalization of such an esti-
mate to a shifted version of the same sum. For further related results, we refer to [5, 6].

Lemma 2.2. Let 1 � ` � L and 0 � N < q`. For any real jxj < kq`�1˛k,ˇ̌̌̌ NX
nD1

cot.�.n˛ C x//
ˇ̌̌̌
� q`

� 1

1 � jxj=kq`�1˛k
C log max

1�m�`
am

�
:

For any real jxj < 1=q`,ˇ̌̌̌ NX
nD1

cot
�
�
�np`
q`
C x

��ˇ̌̌̌
� q`

� 1

1 � q`jxj
C log max

1�m�`
am

�
:

The implied constants are universal.

Proof. Let F.x/ WD
PN
nD1 cot.�.n˛ C x// denote the shifted cotangent sum in the first

formula. Lubinsky [25, Theorem 4.1] proved the estimate

jF.0/j � q`.1C log max
1�m�`

am/

for the unshifted sum. The derivative of F.x/ satisfies

jF 0.x/j D

ˇ̌̌̌ NX
nD1

��

sin2.�.n˛ C x//

ˇ̌̌̌
�

NX
nD1

1

kn˛ C xk2
:
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Since 1 � n � N < q` by assumption, the best rational approximation property gives
kn˛k � kq`�1˛k. Thus by the triangle inequality for k � k,

kn˛ C xk � kn˛k � jxj � kn˛k
�
1 �

jxj

kq`�1˛k

�
;

and so

jF 0.x/j �
1

.1 � jxj=kq`�1˛k/2

q`�1X
nD1

1

kn˛k2
�

q2
`

.1 � jxj=kq`�1˛k/2
:

The last inequality follows from a classical method based on the pigeonhole principle,
see, e.g., [9] for a detailed proof. Therefore,

jF.x/j � jF.0/j C

ˇ̌̌̌ Z x

0

F 0.y/ dy
ˇ̌̌̌
� q`

� 1

1 � jxj=kq`�1˛k
C log max

1�m�`
am

�
;

as claimed. The second formula of the lemma follows from the first formula applied to
a suitable sequence of ˛’s converging to p`=q`, say ˛ D Œa0I a1; : : : ; a`; M � as
M !1.

2.3. The heuristic picture

Let r 2 .0; 1/ be a rational with continued fraction expansion r D Œ0I a1; a2; : : : ; aL�.
We are interested in the value of J41

.r/ and want to relate it to J41
.1=r/, where it

plays a crucial role that the continued fraction expansion of 1=r very similar to the
one of r , namely 1=r D Œa1I a2; a3; : : : ; aL�. By the periodicity of the trigonometric
functions involved, we can discard the integer part of 1=r , and consider r 0 WD ¹1=rº D
Œ0I a2; a3; : : : ; aL� instead. So we will be concerned with

h.r/ D log
J41
.r/

J41
.r 0/

;

and try to figure out how the absence of the first partial quotient a1 in r 0 affects this
expression. In the end, we will let r ! ˛ for some fixed irrational ˛ (which is assumed to
have unbounded partial quotients).

Let p`=q`, 0� `�L, denote the convergents to r ; in particular, r D pL=qL. As noted
in Section 2.1, we have

J41
.r/ D

qL�1X
ND0

PN .r/
2;

where PN .r/ has the factorization

PN .r/ D

L�1Y
`D0

b`.N/�1Y
bD0

Pq`

�
r; .�1/`

bq`kq`rk C "`.N /

q`

�
(2.4)
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in terms of the Ostrowski representation of N . By a rough approximation, we have

q`kq`rk �
1

a`C1
: (2.5)

A general identity1 says that for any reduced rational p=q,ˇ̌̌
2 sin

�
�
x

q

�ˇ̌̌
Pq�1

�p
q
;
x

q

�
D j2 sin.�x/j:

This identity suggests that since r � p`=q`, we can expectˇ̌̌
2 sin

�
�
x

q`

�ˇ̌̌
Pq`�1

�
r;
x

q`

�
� j2 sin.�x/j: (2.6)

Upon identifying j2 sin.�x=q`/j � j2 sin.�.q`r C x=q`//j as essentially being the q`-th
factor of the shifted Sudler product, we end up with

Pq`

�
r;
x

q`

�
� j2 sin.�x/j

as a rough approximation. Under appropriate circumstances, this is not far from the truth;
cf. [2, Figure 1 and Theorem 5]. When using this heuristics in (2.4), together with (2.5)
and for the moment ignoring the numbers "`.N /, we obtain

logPN .r/2 �
L�1X
`D0

b`.N/�1X
bD0

2 log
ˇ̌̌
2 sin

� �b
a`C1

�ˇ̌̌
:

Interpreting the inner sum as a Riemann sum, we thus have

logPN .r/2 �
L�1X
`D0

a`C1‰
�b`.N /
a`C1

�
with

‰.y/ D 2

Z y

0

log j2 sin.�x/j dx:

The function ‰.y/ is maximized at y D 5=6, reflecting the fact that 2 sin.5�=6/ D 1.
By (1.2), the maximal value is

‰
�5
6

�
D

Vol.41/
2�

;

which explains how Vol.41/ enters into formulas such as (1.3).
The argument above allows us to identify those N for which PN .r/ is particularly

large as essentially being thoseN which have many of their Ostrowski coefficients satisfy

1We thank Michael Henry (TU Graz) for pointing out to us that this is Kubert’s functional
equation with parameter 1, written in multiplicative form. See [23,26] for a proof and further appli-
cations.
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b` � .5=6/a`C1 (in particular, for those ` for which a`C1 is large). Taking a sum over
all N , we obtain

J41
.r/ D

qL�1X
ND0

PN .r/
2
�

X
.b0;b1;:::;bL�1/

L�1Y
`D0

exp
�
a`C1‰

� b`

a`C1

��
; (2.7)

where the last sum is meant as a sum over all admissible Ostrowski expansions .b0; b1;
: : : ; bL�1/ of an integerN <qL. We will factorize this sum over all .b0; b1; : : : ; bL�1/ into
a sum over only the first k Ostrowski coefficients .b0; : : : ; bk�1/, multiplied with a sum
over the remaining ones .bk ; bkC1; : : : ; bL�1/, and for reasons which will be explained
later, we have to do so at a position k such that the partial quotient akC1 is “large”.
Assuming that the first and second segment of all such potential Ostrowski expansions
are “independent”, the last expression in (2.7) should be roughly

X
.b0;b1;:::;bk�1/

k�1Y
`D0

exp
�
a`C1‰

� b`

a`C1

��
�

X
.bk ;:::;bL�1/

L�1Y
`Dk

exp
�
a`C1‰

� b`

a`C1

��
: (2.8)

Repeating this procedure for logPN .r 0/2 yields a decomposition into
P
.b1;:::;bk�1/

andP
.bk ;:::;bL�1/

similar to the one above, but now with the “digit” b0 missing in the first
sum since the partial quotient a1 is missing in the continued fraction expansion of r 0.
This extra digit in J41

.r/ can contribute a factor of size roughly a1 maxy2.0;1/ ‰.y/ D
a1Vol.41/=.2�/; since a1 � 1=r for small r , this explains why h.r/ � Vol.41/=.2�r/
in first approximation. When finally considering log J41

.r/ � log J41
.r 0/ as r ! ˛ with

some irrational ˛, the effect of this extra digit a1 will “stabilize” as k increases, and the
second part of (2.8) will asymptotically be the same for J41

.r/ and J41
.r 0/ since it arises

from the part of the continued fraction expansion which is the same for r and r 0, thereby
leading to an overall convergent behavior of log J41

.r/ � log J41
.r 0/ as r ! ˛.

There are many challenges when trying to implement this approach. First, (2.6) is not
an equality, since r ¤ p`=q`, but rather r D p`=q` C �` for some (small) �`. For the
Sudler product, we thus have, after taking logarithms,

logPq`
.r/ D

qX̀
nD1

log
ˇ̌̌
2 sin

�
�n
�p`
q`
C �`

��ˇ̌̌
;

and a similar formula holds for the shifted Sudler products; using the linearization
log j2 sin.�n.p`=q` C �`//j � log j2 sin.�np`=q`/j C �n cot.�np`=q`/�` we are led
to the cotangent sums that were introduced in Section 2.2. Detailed estimates for such
cotangent sums form a key technical ingredient in this paper.

Another critical problem is that the decomposition from line (2.7) to (2.8) is very
delicate. Avoiding the coarse approximation of Pq`

by ‰ which led to (2.7), but still
using (2.5), we try to factorize

qL�1X
ND0

L�1Y
`D0

b`.N/�1Y
bD0

Pq`

�
r; .�1/`

b=a`C1 C "`.N /

q`

�
(2.9)
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into a sum over all admissible Ostrowski coefficients .b0; : : : ; bk�1/ times a sum over
all admissible .bk ; : : : ; bL�1/. There are two crucial “dependence” effects to consider
here. On the one hand, the “digits” in the Ostrowski expansion are not independent in the
appropriate stochastic sense. This is in marked contrast with other numeration systems
such as the decimal system, where the digits are stochastically independent. In the case
of the Ostrowski numeration system, the situation is made more complicated by the extra
rule that b` D 0whenever b`C1 D a`C2, consequently the stochastic structure is described
by a Markov chain (see [13] for details). Even though there is no true independence, the
degree of dependence between b` and b`C1 decreases when the maximal possible value
of b`C1 (i.e., the number a`C2) becomes larger; this comes from the fact that the necessity
of applying the extra rule becomes less likely. Thus the factorization of the sum in (2.9)
at a certain position k into two sums over .b0; : : : ; bk�1/ (resp. .bk ; : : : ; bL�1/) requires
that akC1 (i.e., the maximal possible value of bk) is large – this is one place where our
assumption on the existence of large partial quotients is of crucial use.

On the other hand, there is another source of dependence, which comes from the fact
that the numbers "` for `� k � 1 (in the first part of the desired factorization) depend also
on the values of bk ; : : : ; bL�1 (in the second part of the factorization); cf. the definition
of "` in (2.3). This is not the same effect as the one described in the previous paragraph,
which was only concerned with the inherent dependence of the Ostrowski numeration
system – now we have another source of dependence which comes from the specific
definition of our products PN .

The strategy for the solution is the following. The value of J41
.r/ is a sum over qL

different products PN .r/2, but only relatively few of them actually make a contribution
of significant size. As indicated above, a significant contribution comes only from those
numbersN for which the most relevant Ostrowski coefficients, namely b` for which a`C1
is large, satisfy b` � .5=6/a`C1. In particular, if we know that akC1 is large (k being the
index where we try to split the summation in (2.9), as in (2.8)), then we can show that there
is a significant contribution to J41

.r/ only from those N for which bk.N / � .5=6/akC1.
Knowing the size of bk allows us to obtain good estimates for "`, ` � k � 1, since the
effect of bkC1; : : : ; bL�1 on these "`’s can be shown to be small – all of that provided
akC1 is “large”, so again we need to use the existence of large partial quotients.

Assume that (2.9) can thus be decomposed into

X
.b0;b1;:::;bk�1/

k�1Y
`D0

b`�1Y
bD0

Pq`

�
r; .�1/`

b=a`C1 C "`

q`

�
�

X
.bk ;:::;bL�1/

L�1Y
`Dk

b`�1Y
bD0

Pq`

�
r; .�1/`

b=a`C1 C "`

q`

�
; (2.10)

which we can write as Ak.r/ � Bk.r/. In a similar way, we can decompose J41
.r 0/ into

Ak.r
0/ � Bk.r

0/, and we need to study

h.r/ � log
Ak.r/Bk.r/

Ak.r 0/Bk.r 0/
:
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Assume that r ! ˛ and that accordingly r 0 ! ˛0 D ¹1=˛º. Note that Ak is composed
of Sudler products Pq`

for ` � k � 1. In all these products, we can replace r by ˛ up
to a very small error, so that instead of the quotient Ak.r/=Ak.r 0/, which depends on k
as well as on r , we now have a quotient which depends only on k and ˛. It remains to
show that this quotient converges as k!1, which essentially means that the influence of
the initial partial quotient a1 contributing to Ak.r/ “stabilizes” as the length of the prod-
ucts increases. This will follow from an application of the Cauchy convergence criterion.
Furthermore, it turns out that Bk.r/=Bk.r 0/! 1 as r ! ˛ and r 0 ! ˛0 (somewhat sur-
prisingly without the need for any further technical assumptions on the sequence r). This
convergence crucially relies on the fact that the continued fraction expansion of r 0 arises
from that of r by a simple shift to the left, which implies that the Ostrowski numeration
systems generated by r and r 0 are structurally very similar. Thus we can relate a Sudler
product PN .r/ for some N to a corresponding Sudler product PN 0.r 0/ for a suitable N 0

in such a way that the Ostrowski expansion of N 0 (with respect to r 0) is obtained from
the one of N (with respect to r) by a simple shift to the left. In other words, there is an
(asymptotic) shift-invariance of the Sudler product, when the same shift is applied to the
(continued fraction expansion of the) argument as well as to the (Ostrowski expansion of
the) index. This effect is captured in Proposition 4.1 below.

We will carry out the steps sketched above in the following order. In Section 3.1, we
obtain a precise version of the observation that PN .r/2 contributes significantly to J41

.r/

only if bk � .5=6/akC1 whenever akC1 is large (Proposition 3.1). In Section 3.2, we show
that the Sudler product PN .r/ can be factorized into two components associated with
.b0; : : : ; bk�1/ and .bk ; : : : ; bL/ respectively, provided that akC1 is large and that bk �
.5=6/akC1 (Lemma 3.3). In other words, this result takes care of the dependence caused
by the presence of the "`’s. In Section 3.3, we factorize J41

as sketched in (2.10), again
assuming that akC1 is large, thus eliminating the dependence caused by the Ostrowski
numeration system (Proposition 3.4). In Section 4, we consider the “tail” part of the fac-
torization, i.e., the quotient Bk.r/=Bk.r 0/ in the terminology from above. In Section 5,
we combine these ingredients and settle the continuity problem.

3. Approximate factorization of J41

3.1. The local 5=6-principle

In our previous paper [2], we observed that PN .˛/ is maximized when the overwhelming
majority of the Ostrowski digits b`.N / are close to the “optimal” value .5=6/a`C1, and
found the precise asymptotics of PN .˛/ in terms of the deviation of the Ostrowski digits
from this optimum. The main results of [2], however, apply only under the regularity
condition .1C log ak/� akC1 on the partial quotients of ˛; most crucially, this is not
satisfied by almost all ˛ in the sense of Lebesgue measure, and thus such a restriction
would not allow us to arrive at Corollary 1.2. In this paper, we prove a “local” form of
the 5=6-principle which is concerned with the effect of one particular digit taking a value
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away from the optimum; our result holds without any regularity condition on the partial
quotients.

Proposition 3.1 (Local 5=6-principle). Let 0 � k < L be such that akC1 � 7, and set
b�
k
WD b.5=6/akC1c. Let 0 � N < qL.

(i) If bkC1.N / < akC2, then N � D N C .b�
k
� bk.N //qk satisfies

logPN�.˛/ � logPN .˛/ � 0:2326
.b�
k
� bk.N //

2

akC1

� C
� jb�

k
� bk.N /j

akC1
.1C log max

1�m�k
am/

C I¹bk.N/�1ºI¹bkC1.N/>0:99akC2º
log akC2 C

1

q2
k

�
with a universal constant C > 0.

(ii) If bkC1.N / D akC2, then N � D N C b�
k
qk � qkC1 satisfies

logPN�.˛/ � logPN .˛/ � 0:1615akC1
� C

�
1C log max

1�m�k
am C log akC2

C I¹akC2D1ºI¹bkC2.N/>0:99akC3º
akC3

�
with a universal constant C > 0.

We use the convention log max1�m�k am D 0 if k D 0.

Remark. Note that in (i),N � is obtained fromN by replacing the Ostrowski digit bk.N /
by b�

k
. In (ii), the assumption bkC1.N / D akC2 forces bk.N / D 0, and N � is obtained

from N by reducing the Ostrowski digit bkC1.N / D akC2 to akC2 � 1, and increasing
bk.N / D 0 to b�

k
. In both (i) and (ii), we arrive at a valid Ostrowski expansion for N �.

Simply put, Proposition 3.1 states a Gaussian upper bound toPN .˛/=PN�.˛/ in terms
of the deviation of the Ostrowski digit bk.N / from the optimum b�

k
. In (i) (resp. (ii)),

we could have used any numerical value less than

9Vol.41/
25�

D 0:23260748 : : :
�

resp.
Vol.41/
4�

D 0:16153297 : : :
�
:

These values are actually sharp, although they will not play any special role here. The
precise decay of PN .˛/=PN�.˛/ is in fact non-Gaussian [2], but for our purposes an
upper bound will suffice.

Proof of Proposition 3.1. For the sake of readability, set f .x/ D j2 sin.�x/j. We give
a detailed proof for k � 1, and indicate at the end how to modify the proof for k D 0.

Let

V`.x/ WD

q`�1X
nD1

sin
�
�
nkq`˛k

q`

�
cot
�
�
n.�1/`p` C x

q`

�
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be the cotangent sum first introduced in [2]. Observe that V`.x/ is decreasing on the
interval .�1; 1/. Lemma 2.2 and summation by parts yield

jV`.x/j � q`kq`˛k
� 1

1 � jxj
C log max

1�m�`
am

�
; x 2 .�1; 1/: (3.1)

A key result in our previous paper [2, Proposition 12] states that for any 1 � ` < L such
that b`.N / � 1,

b`.N/�1X
bD0

logPq`

�
˛; .�1/`

bq`kq`˛k C "`.N /

q`

�
D

b`.N/�1X
bD1

logf .bq`kq`˛k C "`.N //C
b`.N/�1X
bD0

V`.bq`kq`˛k C "`.N //

C log.2�.b`.N /q`kq`˛k C "`.N ///CE`.N /; (3.2)

where E`.N / � C=.a`C1q`/. A porism of [2, Proposition 12] shows that if in addition
b`.N /=a`C1 is bounded away from 1 and a`C1 is large enough (e.g., b`.N / � .5=6/a`C1
and a`C1 � 7 suffice), then we also have the lower boundE`.N /��C.1=a`C1C 1=q2` /.

(i) Assume that bkC1.N / < akC2, and let N � D N C .b�
k
� bk.N //qk . In particular,

bk.N
�/ D b�

k
and b`.N �/ D b`.N / for all ` ¤ k. By definition (2.3) of "`,

"`.N
�/ � "`.N / D .�1/

kC`q`.b
�
k � bk.N //kqk˛k; 0 � ` < k; (3.3)

and "`.N �/ D "`.N / for k � ` < L. The product form (2.2) thus gives

logPN�.˛/ � logPN .˛/ D
� b�k�1X
bD0

�

bk.N/�1X
bD0

�
logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N /

qk

�
C

k�1X
`D0

.g`."`.N
�// � g`."`.N ///; (3.4)

where

g`.x/ WD

b`.N/�1X
bD0

logPq`

�
˛; .�1/`

bq`kq`˛k C x

q`

�
D

b`.N/�1X
bD0

qX̀
nD1

logf
�
n˛ C .�1/`

bq`kq`˛k C x

q`

�
D

b`.N/�1X
bD0

qX̀
nD1

logf
�
.nC bq`/˛ C .�1/

` x

q`

�
D

b`.N/q`X
nD1

logf
�
n˛ C .�1/`

x

q`

�
:
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We claim that the second line in (3.4) is negligible. Since b`.N /q` <q`C1, Lemma 2.2
yields that for any real jxj < q`kq`˛k,

jg0`.x/j D

ˇ̌̌̌
.�1/`�

q`

b`.N/q`X
nD1

cot
�
�
�
n˛ C .�1/`

x

q`

��ˇ̌̌̌
�

q`C1

q`

� 1

1 � jxj=.q`kq`˛k/
C log max

1�m�`C1
am

�
:

Note that by Lemma 2.1, j"`.N �/j < q`kq`˛k and j"`.N /j < q`kq`˛k. Observing that g0
`

is decreasing, we have

g`."`.N
�// � g`."`.N // D

Z "`.N
�/

"`.N/

g0`.x/ dx � �jg0`."`.N
�//j � j"`.N

�/ � "`.N /j

regardless of whether "`.N �/ or "`.N / is greater. From the previous two formulas and
from (3.3), we thus deduce

g`."`.N
�// � g`."`.N //

� �C
jb�
k
�bk.N /j

akC1
�
q`C1

qk

� 1

1 � j"`.N �/j=.q`kq`˛k/
C log max

1�m�`C1
am

�
: (3.5)

First, let 0 � ` � k � 3. Lemma 2.1 implies that here

1 �
j"`.N

�/j

q`kq`˛k
� min

°
kq`C1˛k

kq`˛k
; 1 �

kq`C1˛k

kq`˛k

±
�
kq`C2˛k

kq`˛k
�

q`C1

q`C3
;

and we obtain

k�3X
`D0

.g`."`.N
�// � g`."`.N /// � �C

jb�
k
� bk.N /j

akC1
�
1

qk

k�3X
`D0

q`C3.1C log max
1�m�`C1

am/

� �C
jb�
k
� bk.N /j

akC1
.1C log max

1�m�k�2
am/:

Next, consider the ` D k � 2 term. Since b�
k
� .5=6/akC1, Lemma 2.1 gives the better

upper bound "k�2.N �/ � .17=18/qk�2kqk�1˛k. Therefore,

1 �
j"k�2.N

�/j

qk�2kqk�2˛k
� min

°
kqk�1˛k

kqk�2˛k
; 1 �

17kqk�1˛k

18kqk�2˛k

±
�
kqk�1˛k

18kqk�2˛k
�

qk�1

qk
;

and (3.5) leads to

gk�2."k�2.N
�// � gk�2."k�2.N // � �C

jb�
k
� bk.N /j

akC1
.1C log max

1�m�k�1
am/:

Finally, consider the ` D k � 1 term. Lemma 2.1 now gives the better lower bound
"k�1.N

�/ � �.17=18/qk�1kqk�1˛k. The assumption akC1 � 7 ensures that

qk�1kqk˛k �
17

18
qk�1kqk�1˛k:
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Therefore,

1 �
j"k�1.N

�/j

qk�1kqk�1˛k
�
1

18
;

and (3.5) yields

gk�1."k�1.N
�// � gk�1."k�1.N // � �C

jb�
k
� bk.N /j

akC1
.1C log max

1�m�k
am/:

We have thus proved that

k�1X
`D0

.g`."`.N
�// � g`."`.N /// � �C

jb�
k
� bk.N /j

akC1
.1C log max

1�m�k
am/;

and it remains to estimate the first line in (3.4).
Applying (3.2) to both N and N � gives� b�k�1X

bD0

�

bk.N/�1X
bD0

�
logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N /

qk

�
D

� b�k�1X
bD1

�

bk.N/�1X
bD1

�
logf .bqkkqk˛k C "k.N //

C

� b�k�1X
bD0

�

bk.N/�1X
bD0

�
Vk.bqkkqk˛k C "k.N //

C log
b�
k
qkkqk˛k C "k.N /

bk.N /qkkqk˛k C "k.N /
CEk.N

�/ �Ek.N /;

provided that bk.N /� 1; an obviously modified formula holds when bk.N /D 0. Accord-
ing to the porism mentioned after (3.2), the assumption akC1 � 7 ensures that Ek.N �/ �
�C.1=akC1 C 1=q

2
k
/, thus

Ek.N
�/ �Ek.N / � �C

� 1

akC1
C

1

q2
k

�
:

It is also easy to see that

log
b�
k
qkkqk˛k C "k.N /

bk.N /qkkqk˛k C "k.N /
� �C

jb�
k
� bk.N /j

akC1
:

Formula (3.1) and the facts that Vk.x/ is decreasing and that b�
k
qkkqk˛k C "k.N / is

bounded away from 1 show that� b�k�1X
bD0

�

bk.N/�1X
bD0

�
Vk.bqkkqk˛k C "k � �jb

�
k � bk.N /j � jVk.b

�
kqkkqk˛k C "k.N //j

� �C
jb�
k
� bk.N /j

akC1
.1C log max

1�m�k
am/
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regardless of whether bk.N / or b�
k

is greater. The sum of log f .bqkkqk˛k C "k.N // is
finally compared to the corresponding Riemann integral. Note that bqkkqk˛kC "k.N /D
b=akC1 CO.1=akC1/, and in particular b�

k
qkkqk˛k C "k.N / D 5=6CO.1=akC1/.

Assume first that jb�
k
� bk.N /j � akC1=100. Then for all b between b�

k
and bk.N /,

the points bqkkqk˛k C "k.N / are bounded away from 0 and 1. Since log f .5=6/ D 0,
each term also satisfies jlogf .bqkkqk˛k C "k/j � jb�k � bk.N /j=akC1. We thus obtain

� b�k�1X
bD1

�

bk.N/�1X
bD1

�
logf .bqkkqk˛k C "k.N //

D akC1

Z b�
k
=akC1

bk.N/=akC1

logf .x/ dx CO
� jb�

k
� bk.N /j

akC1

�
:

The concavity of logf .x/ implies that

inf
y2Œ0;1�
y¤5=6

1

.5=6 � y/2

Z 5=6

y

logf .x/ dx D
1

.5=6/2

Z 5=6

0

logf .x/ dx D
9Vol.41/
25�

:

The first line in (3.4) thus satisfies� b�k�1X
bD0

�

bk.N/�1X
bD0

�
logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N /

qk

�
�
9Vol.41/
25�

�
.b�
k
� bk.N //

2

akC1
� C

� jb�
k
� bk.N /j

akC1
.1C log max

1�m�k
am/C

1

q2
k

�
;

and the claim follows.
Next, assume that jb�

k
� bk.N /j > akC1=100. By Lemma 2.1,

bqkkqk˛k C "k.N / � .akC1 � 1/qkkqk˛k C qkkqkC1˛k � 1 �
1

akC1 C 2
;

bqkkqk˛k C "k.N / � qkkqkC1˛k �
1

akC1akC2
:

Hence each term satisfies j log f .bqkkqk˛k C "k.N //j � log.akC1akC2/, and by com-
paring the sum to the corresponding integral, we obtain� b�k�1X

bD1

�

bk.N/�1X
bD1

�
logf .bqkkqk˛k C "k.N //

D akC1

Z b�
k
=akC1

bk.N/=akC1

logf .x/ dx CO.log.akC1akC2//

�
9Vol.41/
25�

�
.b�
k
� bk.N //

2

akC1
� C log.akC1akC2/:
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If bk.N / � 2, then the term b D 1 does not appear in the previous formula, and we have
the better lower bound

bqkkqk˛k C "k.N / � 2qkkqk˛k C "k.N /�
1

akC1
:

If bkC1.N / � 0:99akC2, then Lemma 2.1 gives the better lower bound

bqkkqk˛k C "k.N / � 0:001qkkqk˛k �
1

akC1
:

Therefore, in these two cases the error term logakC2 can be removed. The first line in (3.4)
thus satisfies� b�k�1X

bD0

�

bk.N/�1X
bD0

�
logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N /

qk

�
�
9Vol.41/
25�

�
.b�
k
� bk.N //

2

akC1
� C

�
1C log akC1

C I¹bk.N/�1ºI¹bkC1.N/>0:99akC2º
log akC2 C log max

1�m�k
am C

1

q2
k

�
:

After an arbitrarily small reduction in the value of 9Vol.41/=.25�/, the error term logakC1
can be removed, and the claim follows. This finishes the proof of (i) when k � 1.

(ii) Assume that bkC1.N /D akC2 (hence bk.N /D 0), and letN � DN C b�
k
qk � qkC1.

In particular, bk.N �/ D b�
k

, bkC1.N �/ D akC2 � 1 and b`.N �/ D b`.N / for all ` ¤
k; k C 1. By definition (2.3) of "`,

"`.N
�/ � "`.N / D .�1/

kC`q`.b
�
kkqk˛k C kqkC1˛k/; 0 � ` � k � 1;

"k.N
�/ � "k.N / D qkkqkC1˛k;

and "`.N �/ D "`.N / for k C 1 � ` < L. The product form (2.2) thus gives

logPN�.˛/ � logPN .˛/

D � logPqkC1

�
˛; .�1/kC1

.akC2 � 1/qkC1kqkC1˛k C "kC1.N /

qkC1

�
C

b�
k
�1X

bD0

logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N
�/

qk

�
C

k�1X
`D0

.g`."`.N
�// � g`."`.N ///; (3.6)

where g`.x/ is as before. The same arguments as in the proof of (i) yield

k�1X
`D0

.g`."`.N
�// � g`."`.N /// � �C.1C log max

1�m�k
am/
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and
b�

k
�1X

bD0

logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N
�/

qk

�
�

Vol.41/
4�

akC1 � C
�
1C log.akC1akC2/C log max

1�m�k
am C

1

q2
k

�
;

and it remains to estimate the first line in (3.6).
A special case of a general estimate in our previous paper [2, Proposition 11 (ii)] states

that the point x D .akC2 � 1/qkC1kqkC1˛k C "kC1.N / satisfies

logPqkC1

�
˛; .�1/kC1

x

qkC1

�
� log

�
f
�
kqkC1˛k C

x

qkC1

� f .x/

f .x=qkC1/

�
C VkC1.x/C

C

a2
kC2

qkC1
;

with the convention that f .x/=f .x=qkC1/ D qkC1 in the case x D 0. Here

log
�
f
�
kqkC1˛k C

x

qkC1

� f .x/

f .x=qkC1/

�
� log

�
f
�
kqkC1˛k C

x

qkC1

�
qkC1

�
� C:

Assume first that x � 0. Then (3.1) and the fact that VkC1 is decreasing give

VkC1.x/ � VkC1.0/ � C.1C log max
1�m�kC1

am/:

Next, assume that x < 0. Then akC2 D 1. The general identity from the theory of contin-
ued fractions

1

qkC1kqkC1˛k
D ŒakC2I akC3; : : : �C Œ0I akC1; ak ; : : : � � 1C

1

akC3 C 1

and Lemma 2.1 show that

"kC1.N / � �qkC1kqkC1˛k � �
akC3 C 1

akC3 C 2
:

Formula (3.1) now gives

VkC1.x/ � C
� 1

1C x
C log max

1�m�kC1
am

�
� C.akC3 C log max

1�m�kC1
am/:

On the other hand, if bkC2.N /� 0:99akC3, then Lemma 2.1 yields the better lower bound
"kC1.N / � �0:999qkC1kqkC1˛k, and (3.1) similarly leads to

VkC1.x/ � C.1C log max
1�m�kC1

am/:

The first line in (3.6) thus satisfies

� logPqkC1

�
˛; .�1/kC1

.akC2 � 1/qkC1kqkC1˛k C "kC1.N /

qkC1

�
� �C.1C I¹akC2D1ºI¹bkC2.N/>0:99akC3º

akC3 C log max
1�m�kC1

am/:
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After an arbitrarily small reduction in the value of Vol.41/=.4�/, the error term log akC1
can be removed, and the claim follows. This finishes the proof of (ii) when k � 1.

We now indicate how to modify the proof for k D 0. In (i) (resp. (ii)), formula (3.4)
(resp. (3.6)) still holds with

k�1X
`D0

.g`."`.N
�// � g`."`.N /// D 0

being an empty sum. Since now qk D q0 D 1, we have Pqk
.˛; x/ D f .˛ C x/. Instead

of applying (3.2) to N and N �, we can simply use� b�k�1X
bD0

�

bk.N/�1X
bD0

�
logPqk

�
˛; .�1/k

bqkkqk˛k C "k.N /

qk

�
D

� b�k�1X
bD0

�

bk.N/�1X
bD0

�
logf ..b C 1/˛ C "0.N //;

and compare the right-hand side to the corresponding Riemann integral as in the case
k � 1 above. This finishes the proof of (i) and (ii) when k D 0.

Corollary 3.2. Let 0 � k < K � L be such that

1C log max1�m�k amp
akC1 log.1C akC1/

� A (3.7)

with a suitably small universal constant A > 0, and set b�
k
WD b.5=6/akC1c. ThenX

0�N<qK

jbk.N/�b
�
k
j�10
p
akC1 logakC1

PN .˛/
2
� a�20kC1

X
0�N<qK

PN .˛/
2; (3.8)

and also X
0�N<qK

b0.N/Db1.N/D���Dbk�1.N/D0

jbk.N/�b
�
k
j�10
p
akC1 logakC1

PN .˛/
2
� a�20kC1

X
0�N<qK

b0.N/Db1.N/D���Dbk�1.N/D0

PN .˛/
2: (3.9)

Proof. Let
S WD

X
0�N<qK

PN .˛/
2;

and consider the sets

H`.b/ WD ¹0 � N < qK W b`.N / D bº;

H`;`0.b; c/ WD ¹0 � N < qK W b`.N / D b; b`0.N / D cº:

Let B > 0 be a suitably small universal constant. We consider 3 cases depending on the
sizes of akC2 and akC3.
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Case 1. Assume that akC2 >BakC1. For any 0:99akC2 < b � akC2, the mapN 7!N C

.b�
kC1
� b/qkC1 is an injection from HkC1.b/ to HkC1.b�kC1/; here as before b�

kC1
WD

b.5=6/akC2c. Choosing A small enough in terms of B , condition (3.7) ensures that akC2
dominates logmax1�m�kC1 am. Since 0:2326 � 0:992>0:2279, Proposition 3.1 (i) applied
with k C 1 thus shows thatX
N2HkC1.b/

PN .˛/
2
�

X
N2HkC1.b

�
kC1

/

exp.�0:2279akC2/PN .˛/2 � exp.�0:2279akC2/S:

Summing over 0:99akC2 < b � akC2 leads toX
0�N<qK

bkC1.N/>0:99akC2

PN .˛/
2
� akC2 exp.�0:2279akC2/S � a�100kC1 S:

For any b, c with jb � b�
k
j � 10

p
akC1 log akC1 and 0 � c � 0:99akC2, the map N 7!

N C .b�
k
� b/qk is an injection from Hk;kC1.b; c/ to Hk;kC1.b�k ; c/. Condition (3.7)

ensures that the main term

0:2326
.b�
k
� b/2

akC1
� 23:26 log akC1

dominates the error term in Proposition 3.1 (i), thusX
N2Hk;kC1.b;c/

PN .˛/
2
�

X
N2Hk;kC1.b

�
k
;c/

a�23:26kC1 PN .˛/
2:

Summing over b, c leads to X
0�N<qK

jbk.N/�b
�
k
j�10
p
akC1 logakC1

bkC1.N/�0:99akC2

PN .˛/
2
� a�22:26kC1 S;

and (3.8) follows.

Case 2. Assume that akC2 � BakC1 and akC3 > BakC1. Choosing A small enough in
terms of B ensures that akC3 dominates log max1�m�kC2 am. Proposition 3.1 (i) applied
with k C 2 now leads toX

0�N<qK

bkC2.N/>0:99akC3

PN .˛/
2
� akC3 exp.�0:2279akC3/S � a�100kC1 S:

Since the error term log akC2 is negligible, using Proposition 3.1 (i) and (ii) we similarly
deduce X

0�N<qK

jbk.N/�b
�
k
j�10
p
akC1 logakC1

bkC2.N/�0:99akC3

PN .˛/
2
� a�22:26kC1 S;

and (3.8) follows.
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Case 3. Assume that akC2 � BakC1 and akC3 � BakC1. Choosing B small enough, the
error terms log akC2 and akC3 are now negligible. Items (i) and (ii) of Proposition 3.1
directly give X

0�N<qK

jbk.N/�b
�
k
j�10
p
akC1 logakC1

PN .˛/
2
� a�22:26kC1 S;

as claimed in (3.8).
A straightforward modification of the proof leads to (3.9).

3.2. Factoring the Sudler product

Lemma 3.3. Let 1 � k < L be such that akC1 � 150, and set b�
k
WD b.5=6/akC1c. Let

0 � N < qL, and set

N1 WD

k�1X
`D0

b`.N /q` and N2 WD

L�1X
`Dk

b`.N /q`:

If jbk.N / � b�k j � akC1=10, then

PN .˛/ D PN1

�
˛; .�1/k

5=6

qk

�
PN2

.˛/ exp
�
O
� jbk.N / � b�k j C 1

akC1
.1C log max

1�m�k
am/

��
with a universal implied constant.

Remark. Note that N1 contains the initial segment of the Ostrowski digits of N , and N2
contains the final segment. Roughly speaking, the lemma says that we can decompose PN
into two products PN1

and PN2
such than PN1

only depends on the Ostrowski represen-
tation ofN up to digit k � 1, and PN2

depends only on the Ostrowski representation from
the k-th digit onwards; the error in this decomposition is small provided that akC1 is large
and bk is close to b�

k
. From Corollary 3.2, we know that whenever akC1 is large, then only

those N with bk � b�k make a significant contribution towards the value of J41
. Together

Corollary 3.2 and Lemma 3.3 will allow us to obtain the desired factorization of J41
in

the next section.

Proof of Lemma 3.3. We write f .x/ WD j2 sin.�x/j. Using

N2˛ � .�1/
k bk.N /qkkqk˛k C "k.N /

qk
.mod 1/;

we deduce

PN .˛/ D PN2
.˛/

N1Y
nD1

f .n˛ CN2˛/

D PN2
.˛/

N1Y
nD1

f
�
n˛ C .�1/k

bk.N /qkkqk˛k C "k.N /

qk

�
:
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It will thus be enough to estimate

PN .˛/

PN1
.˛; .�1/k.5=6/=qk/PN2

.˛/
D

N1Y
nD1

f .n˛ C .�1/k.bk.N /qkkqk˛k C "k.N //=qk/

f .n˛ C .�1/k.5=6/=qk/

D

N1Y
nD1

j1CRCQnj; (3.10)

where, by trigonometric identities,

R WD cos
�
�.�1/k

bk.N /qkkqk˛k � 5=6C "k.N /

qk

�
� 1;

Qn WD sin
�
�.�1/k

bk.N /qkkqk˛k � 5=6C "k.N /

qk

�
cot
�
�
�
n˛ C .�1/k

5=6

qk

��
:

Clearly,

0 � b�kqkkqk˛k �
5

6
�
.5=6/akC1 � 1

akC1 C 2
�
5

6
� �

8=3

akC1
;

hence the assumptions akC1 � 150, jbk.N / � b�k j � akC1=10 and Lemma 2.1 lead to

jbk.N /qkkqk˛k � 5=6C "k.N /j

qk

�
jbk.N / � b

�
k
jqkkqk˛k C jb

�
k
qkkqk˛k � 5=6j C j"k.N /j

qk

�
jbk.N / � b

�
k
j C 11=3

akC1qk

�
28

225qk
:

By the general inequality 1 � cos.�t/ � .�2=2/t2, we thus have

jRj �
�2

2

� jbk.N / � b�k j C 11=3
akC1qk

�2
�
�2

2

� 28

225qk

�2
<
0:08

q2
k

:

Observe also that for all 1 � n � N1,


n˛ C .�1/k 5=6
qk




 D 


npk
qk
C .�1/k

5=6C nkqk˛k

qk





�

�1
6
�

1

akC1

�


npk
qk




 � 4

25




npk
qk




:
Therefore, by the general inequality jcot.�t/j � 1=.�ktk/,

jQnj � �
jbk.N / � b

�
k
j C 11=3

akC1qk
�

25

4�knpk=qkk
�

28

225qk
�

25

4knpk=qkk
< 0:78:
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In particular, jRCQnj � 0:86, and so each factor 1C RCQn in (3.10) is bounded
away from zero. Using the fact that et�2t

2
� 1C t � et for jt j � 0:86, we obtain

exp
� N1X
nD1

.RCQn/ �

N1X
nD1

2.RCQn/
2

�
�

N1Y
nD1

j1CRCQnj � exp
� N1X
nD1

.RCQn/

�
:

Here

N1jRj �
jbk.N / � b

�
k
j C 1

akC1
and N1R

2
�
jbk.N / � b

�
k
j C 1

akC1

are negligible, and so is

N1X
nD1

Q2
n �

jbk.N / � b
�
k
j C 1

akC1

qk�1X
nD1

1

q2
k
knpk=qkk2

�
jbk.N / � b

�
k
j C 1

akC1
:

Finally, the fact qkkqk�1˛k � 1 � 1=akC1 � 149=150 > 5=6 and Lemma 2.2 yieldˇ̌̌̌ N1X
nD1

Qn

ˇ̌̌̌
�
jbk.N / � b

�
k
j C 1

akC1qk

ˇ̌̌̌ N1X
nD1

cot
�
�
�
n˛ C .�1/k

5=6

qk

��ˇ̌̌̌
�
jbk.N / � b

�
k
j C 1

akC1
.1C log max

1�m�k
am/;

and the claim follows.

3.3. Factoring J41

We now prove the key result of this section. In the special case of ˛ 2 Q and K D L,
the following proposition states an approximate factorization of J41

.˛/ with a negligible
multiplicative error provided that akC1 dominates a1; : : : ; ak . Observe that the first factor
in this factorization depends only on a1; : : : ; ak ; this will play a crucial role in the proof
of Theorem 1.1.

Proposition 3.4. Let 1 � k < K � L be such that

�k WD

p
log.1C akC1/
p
akC1

.1C log max
1�m�k

am/ � A

with a suitably small universal constant A > 0. ThenX
0�N<qK

PN .˛/
2
D

� X
0�N<qk

PN

�pk
qk
; .�1/k

5=6

qk

�2�
�

� X
0�N<qK

b0.N/Db1.N/D���Dbk�1.N/D0

PN .˛/
2

�
.1CO.�k//

with a universal implied constant.
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Proof. Corollary 3.2 givesX
0�N<qK

PN .˛/
2
D .1CO.a�20kC1//

X
0�N<qK

jbk.N/�b
�
k
j<10
p
akC1 logakC1

PN .˛/
2:

Let us now apply Lemma 3.3 to each term of the sum on the right-hand side. Letting N1,
N2 be as in Lemma 3.3, observe that the map N 7! .N1; N2/ is a bijection from

¹0 � N < qK W jbk.N / � b
�
k j < 10

p
akC1 log akC1º

to the product set

Œ0;qk/� ¹0�N<qK W b0.N /D � � �D bk�1.N /D 0; jbk.N /� b
�
k j<10

p
akC1log akC1º:

This leads to the factorizationX
0�N<qK

PN .˛/
2
D

� X
0�N<qk

PN

�
˛; .�1/k

5=6

qk

�2�
�

� X
0�N<qK

b0.N/Db1.N/D���Dbk�1.N/D0

jbk.N/�b
�
k
j<10
p
akC1 logakC1

PN .˛/
2

�
.1CO.�k//:

Corollary 3.2 shows that the condition jbk.N / � b�k j < 10
p
akC1 log akC1 can be re-

moved from the second sum, and it remains to replace ˛ by pk=qk in the first sum on the
right-hand side.

The so-called transfer principle for shifted Sudler products [2, Proposition 11 (i)]
shows that for any 0 � N < qk ,

log
PN .˛; .�1/

k.5=6/=qk/

PN .pk=qk ; .�1/k.5=6/=qk/

D

NX
nD1

sin
�
�
nkqk˛k

qk

�
cot
�
�
n.�1/kpk C 5=6

qk

�
CO.a�2kC1/:

Lemma 2.2 and summation by parts yieldˇ̌̌̌ NX
nD1

sin
�
�
nkqk˛k

qk

�
cot
�
�
n.�1/kpk C 5=6

qk

�ˇ̌̌̌
� qkkqk˛k.1C log max

1�m�k
am/� �k :

Hence for all 0 � N < qk ,

PN

�
˛; .�1/k

5=6

qk

�
D PN

�pk
qk
; .�1/k

5=6

qk

�
.1CO.�k//;

and the claim follows.
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4. A tail estimate

Throughout this section, let 0 < ˛ < 1 be a real number, and let ˛0 WD ¹1=˛º. We write
their continued fraction expansions as in Section 2: ˛ D Œ0I a1; a2; : : : ; aL� and ˛0 D
Œ0Ia2; a3; : : : ; aL� in the rational case, whereas ˛D Œ0Ia1; a2; : : : � and ˛0 D Œ0Ia2; a3; : : : �
in the irrational case. Let p`=q` D Œ0I a1; a2; : : : ; a`� and p0

`
=q0
`
D Œ0I a2; a3; : : : ; a`� be

the convergents to ˛ and ˛0, respectively. In particular,

q0` D p` and p0` D q` � a1p`: (4.1)

To any 0 � N < qL whose Ostrowski expansion N D
PL�1
`D0 b`.N /q` with respect to ˛

satisfies b1.N / < a2, let us associate 0 � N 0 < q0L defined as

N 0 WD

L�1X
`D1

b`.N /q
0
`:

Observe that this is a valid Ostrowski expansion of N 0 with respect to ˛0. We will apply
the mapping N 7! N 0 three times, namely once in the proof of Theorem 5.1 and twice in
the proof of Theorem 1.3, and we will always ensure that it is only applied to numbers N
for which indeed b1.N / < a2 (the domain and codomain of the mapping will be chosen
in such a way that the mapping is bijective).

The product form (2.2) then gives

PN .˛/

PN 0.˛0/
D

b0.N/�1Y
bD0

Pq0

�
˛;
bq0kq0˛k C "0.N /

q0

�
�

L�1Y
`D1

b`.N/�1Y
bD0

Pq`
.˛; .�1/`.bq`kq`˛k C "`.N //=q`/

Pq0
`
.˛0; .�1/`�1.bq0

`
kq0
`
˛0k C "0

`
.N //=q0

`
/
; (4.2)

where "0
`
.N / WD q0

`

PL�1
mD`C1.�1/

`Cm�1bm.N /kq
0
m˛
0k. The main result of this section is

a tail estimate for the previous formula.

Proposition 4.1. Let 1 � ` < L, and assume the following two conditions:

(i) a`C1 � .q
0
`
/1=100 or b`.N / � 0:99a`C1,

(ii) a`C2 � .q0`C1/
1=100 or b`C1.N / � 0:99a`C2.

Then

b`.N/�1Y
bD0

Pq`
.˛; .�1/`.bq`kq`˛k C "`.N //=q`/

Pq0
`
.˛0; .�1/`�1.bq0

`
kq0
`
˛0k C "0

`
.N //=q0

`
/

D exp
�
O
� .a2 C � � � C a`/3=4

.q0
`
/3=4

C
log.a1 C 1/

q0
`

��
with a universal implied constant.



C. Aistleitner, B. Borda 5072

We give the proof of Proposition 4.1 after two preliminary lemmas. As before, we
write f .x/ WD j2 sin.�x/j.

Lemma 4.2. For any x; x0 2 R, we have the explicit formulas

Pq`

�
˛; .�1/`

x

q`

�
D f

�
kq`˛k C

x

q`

� f .z/

f .z=q`/

q`�1Y
nD1

f ..n � yn � z/=q`/

f ..n � z/=q`/
;

and similarly

Pq0
`

�
˛0; .�1/`�1

x0

q0
`

�
D f

�
kq0`˛

0
k C

x0

q0
`

� f .z0/

f .z0=q0
`
/

q0
`
�1Y

nD1

f ..n � y0n � z
0/=q0

`
/

f ..n � z0/=q0
`
/

;

where

yn WD
�°nq`�1

q`

±
�
1

2

�
q`kq`˛k and y0n WD

�°nq0
`�1

q0
`

±
�
1

2

�
q0`kq

0
`˛
0
k;

z WD x C
q`kq`˛k

2
and z0 WD x0 C

q0
`
kq0
`
˛0k

2
:

(4.3)

Proof. By peeling off the last factor,

Pq`

�
˛; .�1/`

x

q`

�
D f

�
q`˛ C .�1/

` x

q`

� q`�1Y
nD1

f
�
n˛ C .�1/`

x

q`

�
D f

�
kq`˛k C

x

q`

�q`�1Y
nD1

f
�np`
q`
C .�1/`

�° n
q`

±
�
1

2

�
kq`˛k C .�1/

` x C q`kq`k=2

q`

�
:

The mapping n 7! nq`�1 is a bijection on the set of nonzero residues modulo q`, which
sends np` to .�1/`C1n as a consequence of p`�1q` � p`q`�1 D .�1/`. Using this bijec-
tion to reorder the product in the previous formula, by the symmetry of f , we obtain

Pq`

�
˛; .�1/`

x

q`

�
D f

�
kq`˛k C

x

q`

� q`�1Y
nD1

f
�n � yn � z

q`

�
:

The simple identity [2, Proposition 9]

q�1Y
nD1

f
�n � t

q

�
D

8<:
f .t/

f .t=q/
if t=q 62 Z;

q if t=q 2 Z;
q 2 N; t 2 R;

further shows that

Pq`

�
˛; .�1/`

x

q`

�
D f

�
kq`˛k C

x

q`

� f .z/

f .z=q`/

q`�1Y
nD1

f ..n � yn � z/=q`/

f ..n � z/=q`/
;

as claimed. The proof for ˛0 is entirely analogous.
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Lemma 4.3. Let 1 � ` � m < L. If either m � 2, or m D 1 and a2 > 1, then

jq`kqm˛k � q
0
`kq
0
m˛
0
kj �

2

q`C1q
0
mC1

:

Proof. The case m D 1, a2 > 1 can be checked “by hand”. Assume that m � 2, and let
r D ŒamC1I amC2; : : : �. Using (4.1) and the identities kqm˛k D 1=.rqm C qm�1/ and
kq0m˛

0k D 1=.rq0m C q
0
m�1/ from the theory of continued fractions, we deduce

q`kqm˛k � q
0
`kq
0
m˛
0
k D

rq`qm.pm=qm � p`=q`/C q`qm�1.pm�1=qm�1 � p`=q`/

.rqm C qm�1/.rq0m C q
0
m�1/

:

Note that amC1 � r � amC1 C 1. If m D `, then

jq`kqm˛k � q
0
`kq
0
m˛
0
kj D

1

.rq` C q`�1/.rq
0
`
C q0

`�1
/
�

1

q`C1q
0
`C1

;

as claimed. If m D `C 1, then

jq`kqm˛k � q
0
`kq
0
m˛
0
kj D

r

.rq`C1 C q`/.rq
0
`C1
C q0

`
/
�

1

q`C1q
0
`C2

;

as claimed. If m � ` C 2, then somewhat roughly we have jpm=qm � p`=q`j � 2 �
j˛ � p`=q`j and jpm�1=qm�1 � p`=q`j � 2j˛ � p`=q`j, which gives

jq`kqm˛k � q
0
`kq
0
m˛
0
kj �

.rq`qm C q`qm�1/2j˛ � p`=q`j

.rqm C qm�1/.rq0m C q
0
m�1/

D
2kq`˛k

rq0m C q
0
m�1

�
2

q`C1q
0
mC1

;

as claimed.

Proof of Proposition 4.1. For any 0 � b � b`.N / � 1, let

x WD bq`kq`˛k C "`.N / and x0 WD bq0`kq
0
`˛
0
k C "0`.N /;

and let yn, y0n, z, z0 be as in (4.3); for the sake of readability, the dependence of x, x0,
z, z0 on b is suppressed. The explicit formulas in Lemma 4.2 give

b`.N/�1Y
bD0

Pq`
.˛; .�1/`.bq`kq`˛k C "`.N //=q`/

Pq0
`
.˛0; .�1/`�1.bq0

`
kq0
`
˛0k C "0

`
.N //=q0

`
/

D

b`.N/�1Y
bD0

f .kq`˛k C x=q`/.f .z/=f .z=q`//

f .kq0
`
˛0k C x0=q0

`
/.f .z0/=f .z0=q0

`
//

�

b`.N/�1Y
bD0

Qq`�1
nD1 f ..n � yn � z/=q`/=f ..n � z/=q`/Qq0
`
�1

nD1 f ..n � y
0
n � z

0/=q0
`
/=f ..n � z0/=q0

`
/
: (4.4)
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We may assume that either ` � 2, or ` D 1 and a2 > 1; indeed, otherwise the assumption
b1.N / < a2 ensures that the left-hand side of (4.4) is 1, and we are done. Observe first
that by Lemma 4.3, we have

jx � x0j � bjq`kq`˛k � q
0
`kq
0
`˛
0
kj C j"`.N / � "

0
`.N /j

� bjq`kq`˛k � q
0
`kq
0
`˛
0
kj C

L�1X
mD`C1

bm.N /jq`kqm˛k � q
0
`kq
0
m˛
0
kj

�
2b

q`C1q
0
`C1

C

L�1X
mD`C1

amC1
2

q`C1q
0
mC1

�
b C 1

q`C1q
0
`C1

: (4.5)

Similarly, jz � z0j � .b C 1/=.q`C1q
0
`C1

/. Lemma 2.1 gives

.b � 1/q`kq`˛k C q`kq`C1˛k � x � q`kq`�1˛k � .a`C1 � b/q`kq`˛k;

and similar inequalities hold for x0.
We will use the following elementary estimate several times. Given a fixed parameter

0 < ı < 1=2, one readily checks that

et�4.log1=ı/t2
� 1C t � et for all t � �1C ı; (4.6)

and consequently

exp
�U � V

V
�

�
4 log

1

ı

��U � V
V

�2�
�
U

V
� exp

�U � V
V

�
for all

U

V
� ı: (4.7)

Let us now estimate the first line in (4.4). Standard trigonometric identities and esti-
mates yield

f
�
kq`˛k C

x

q`

�
D f

� z
q`
C
kq`˛k

2

�
D 2

ˇ̌̌
sin
�
�
z

q`

�
C cos

�
�
z

q`

�
�
kq`˛k

2

ˇ̌̌
CO

�
kq`˛k

2f
� z
q`

�
C kq`˛k

3
�
;

and so

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/

D

ˇ̌̌
1C cot

�
�
z

q`

�
�
kq`˛k

2

ˇ̌̌
f .z/CO

�
kq`˛k

2f .z/C kq`˛k
3q`

�
D jx C q`kq`˛kj

f .z/

jzj
CO

��
kq`˛k

2
C
kq`˛k

q2
`

�
f .z/C kq`˛k

3q`

�
:

We now turn the additive error into a multiplicative one. If b � 1, then by checking that
1 � jx C q`kq`˛kj=jzj � 2, f .z/� 1=a`C1 and

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/

�
jx C q`kq`˛kj

f .z/

jzj

��1
�

1

a`C1
;
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estimate (4.7) with ı � 1=a`C1 gives

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/
D jx C q`kq`˛kj

f .z/

jzj
exp

�
O
� 1

a`C1q
2
`

��
:

If b D 0, then f .z/=jzj � 1, f .z/� 1=a`C1 and

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/

�
jx C q`kq`˛kj

f .z/

jzj

��1
� 1;

hence (4.7) with ı � 1 gives

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/

D jx C q`kq`˛kj
f .z/

jzj
exp

�
O
� 1

a2
`C1

q2
`
.q`kq`˛kC"`.N //

��
:

Here q`kq`˛k C "`.N /� 1=.a`C1a`C2/. On the other hand, if b`C1.N / � 0:99a`C2,
then Lemma 2.1 yields the better lower bound q`kq`˛k C "`.N /� 1=a`C1. Combining
all these cases and using assumption (ii), we thus have

f
�
kq`˛k C

x

q`

� f .z/

f .z=q`/

D jx C q`kq`˛kj
f .z/

jzj
exp

�
O
� I¹b�1º
a`C1q

2
`

C I¹bD0º
1C I¹b`C1.N/>0:99a`C2º

a`C2

a`C1q
2
`

��
D jx C q`kq`˛kj

f .z/

jzj
exp

�
O
� I¹b�1º
a`C1q

2
`

C
I¹bD0º

q0:99
`C1

q`

��
:

An identical proof gives

f
�
kq0`˛

0
k C

x0

q0
`

� f .z0/

f .z0=q0
`
/

D jx0 C q0`kq
0
`˛
0
kj
f .z0/

jz0j
exp

�
O
� I¹b�1º

a`C1.q
0
`
/2
C

I¹bD0º

.q0
`C1

/0:99q0
`

��
;

therefore

b`.N/�1Y
bD0

f .kq`˛k C x=q`/.f .z/=f .z=q`//

f .kq0
`
˛0k C x0=q0

`
/.f .z0/=f .z0=q0

`
//

D exp
�
O
� 1

.q0
`
/1:99

�� b`.N/�1Y
bD0

jx C q`kq`˛kj.f .z/=jzj/

jx0 C q0
`
kq0
`
˛0kj.f .z0/=jz0j/

: (4.8)

Lemma 4.3 and inequality (4.5) show that here

x C q`kq`˛k D x
0
C q0`kq

0
`˛
0
k CO

� b C 1

a2
`C1

q`q
0
`

�
:
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If b � 1, then b=a`C1 � x C q`kq`˛k � b=a`C1 and the same holds for ˛0, hence (4.7)
with ı � 1 gives

jx C q`kq`˛kj

jx0 C q0
`
kq0
`
˛0kj
D exp

�
O
� 1

a`C1q`q
0
`

��
:

If b D 0, then (4.7) with ı � I¹b`C1.N/�0:99a`C2º
1=a`C1 C 1=.a`C1a`C2/ and assump-

tion (ii) yield

jx C q`kq`˛kj

jx0 C q0
`
kq0
`
˛0kj
D exp

�
O
� 1

a2
`C1

q`q
0
`
.q`kq`˛k C "`.N //

C
1C log a`C1 C I¹b`C1.N/>0:99a`C2º

log.a`C1a`C2/

a4
`C1

q2
`
.q0
`
/2.q`kq`˛k C "`.N //2

��
D exp

�
O
�1C I¹b`C1.N/>0:99a`C2º

a`C2

a`C1q`q
0
`

C
log a`C1 C I¹b`C1.N/>0:99a`C2º

a2
`C2

log.a`C1a`C2/

a2
`C1

q2
`
.q0
`
/2

��
D exp

�
O
� 1

.q0
`
/1:99

��
:

The previous two formulas show that

b`.N/�1Y
bD0

jx C q`kq`˛kj

jx0 C q0
`
kq0
`
˛0kj
D exp

�
O
� 1

.q0
`
/1:99

��
: (4.9)

Note that z; z0 2 .�1=2; 1/, and the function f .t/=jt j is Lipschitz on .�1=2; 1/. It is
easy to see that f .z/=jzj � .a`C1 � b/=a`C1, and (4.5) also shows that

f .z/

jzj
D
f .z0/

jz0j
CO

� b C 1

a2
`C1

q`q
0
`

�
:

Estimate (4.7) with ı � 1=a`C1 thus gives

f .z/=jzj

f .z0/=jz0j
D exp

�
O
� b C 1

.a`C1 � b/a`C1q`q
0
`

C
.b C 1/2.1C log a`C1/
.a`C1 � b/2a

2
`C1

q2
`
.q0
`
/2

��
;

and using assumption (i), we get

b`.N/�1Y
bD0

f .z/=jzj

f .z0/=jz0j
D exp

�
O
�1C I¹b`.N/>0:99a`C1º

log a`C1
q`q
0
`

��
D exp

�
O
� log q0

`

.q0
`
/2

��
:

The previous formula, (4.8) and (4.9) show that the first line in (4.4) satisfies

b`.N/�1Y
bD0

f .kq`˛k C x=q`/.f .z/=f .z=q`//

f .kq0
`
˛0k C x0=q0

`
/.f .z0/=f .z0=q0

`
//
D exp

�
O
� 1

.q0
`
/1:99

��
:



A conjecture of Zagier and the value distribution of quantum modular forms 5077

Next, we estimate the second line of (4.4). We give a detailed proof of the case when
q0
`
� 3, and then indicate at the end how to modify the proof for q0

`
< 3.

Note that jynj � q`kq`˛k=2, and �1=2 < z < 1. By standard trigonometric identities,

f ..n � yn � z/=q`/

f ..n � z/=q`/
D

ˇ̌̌
cos
�
�
yn

q`

�
� sin

�
�
yn

q`

�
cot
�
�
n � z

q`

�ˇ̌̌
: (4.10)

For any integer jnj � 2, here

cos
�
�
yn

q`

�
� cos

��
6

�
and

ˇ̌̌
sin
�
�
yn

q`

�
cot
�
�
n � z

q`

�ˇ̌̌
�
jynj

jn � zj
�
1

2
:

Let 1 �  ` < q0`=2 be a parameter to be chosen. Applying (4.6) with ı � 1 leads toY
 `<n�q`=2

f ..n � yn � z/=q`/

f ..n � z/=q`/

D exp
�
�

X
 `<n�q`=2

sin
�
�
yn

q`

�
cot
�
�
n � z

q`

�
CO

� 1

a2
`C1

 `

��
:

Since q`�1=q` D Œ0I a`; a`�1; : : : ; a1�, a classical estimate [24, p. 126] states that the
discrepancy of the sequence ¹nq`�1=q`º, 1 � n � N is� .N=q0

`
C a2 C � � � C a`/=N .

Koksma’s inequality [24, p. 143] thus yieldsˇ̌̌̌ NX
nD1

sin
�
�
�°nq`�1

q`

±
�
1

2

�
kq`˛k

�ˇ̌̌̌
�

�N
q0
`

C a2 C � � � C a`

�
kq`˛k; 1 � N �

q`

2
;

and summation by parts leads toˇ̌̌̌ X
 `<n�q`=2

sin
�
�
yn

q`

�
cot
�
�
n � z

q`

�ˇ̌̌̌
� q`kq`˛k

�1C log q`
q0
`

C
a2 C � � � C a`

 `

�
�

log.a1 C 1/
a`C1q

0
`

C
a2 C � � � C a`

a`C1 `
:

Estimating the factors �q`=2 < n < � ` is entirely analogous, therefore we have
q`�1Y
nD1

f ..n � yn � z/=q`/

f ..n � z/=q`/
D exp

�
O
� log.a1 C 1/

a`C1q
0
`

C
a2 C � � � C a`

a`C1 `

��
�

Y
0<jnj� `

f ..n � yn � z/=q`/

f ..n � z/=q`/
: (4.11)

An identical proof gives

q0
`
�1Y

nD1

f ..n � y0n � z
0/=q0

`
/

f ..n � z0/=q0
`
/
D exp

�
O
�a2 C � � � C a`

a`C1 `

��
�

Y
0<jnj� `

f ..n � y0n � z
0/=q0

`
/

f ..n � z0/=q0
`
/

: (4.12)

We emphasize that we use the same cutoff  ` for both ˛ and ˛0.
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Consider now the ratio of the factors 2 � jnj �  ` in the previous two formulas. For-
mula (4.10) and its analog for ˛0 are still bounded away from zero. Therefore, (4.7) with
ı � 1 gives

f ..n � yn � z/=q`/=f ..n � z/=q`/

f ..n � y0n� z
0/=q0

`
/=f ..n � z0/=q0

`
/
D

cos.�yn=q`/ � sin.�yn=q`/ cot.�.n � z/=q`/
cos.�y0n=q

0
`
/ � sin.�y0n=q

0
`
/ cot.�.n � z0/=q0

`
/

D exp
�
O
�ˇ̌̌

sin
�
�
yn

q`

�
cot
�
�
n � z

q`

�
� sin

�
�
y0n
q0
`

�
cot
�
�
n � z0

q0
`

�ˇ̌̌
C

1

a2
`C1

.q0
`
/2

��
:

Standard trigonometric estimates and (4.5) show that hereˇ̌̌
sin
�
�
yn

q`

�
cot
�
�
n � z

q`

�
� sin

�
�
y0n
q0
`

�
cot
�
�
n � z0

q0
`

�ˇ̌̌
D

ˇ̌̌ yn
n � z

�
y0n

n � z0

ˇ̌̌
CO

� 1

a3
`C1

.q0
`
/2
C

n2

a`C1.q
0
`
/3

�
�
jyn � y

0
nj

jnj
C

b C 1

a3
`C1

n2q`q
0
`

C
1

a3
`C1

.q0
`
/2
C

n2

a`C1.q
0
`
/3
:

Observe that the function .¹ntº � 1=2/=jnj consists of linear segments of slope ˙1 with
jumps at the points j=n, j 2 Z. Recalling (4.1), we haveˇ̌̌q`�1

q`
�
q0
`�1

q0
`

ˇ̌̌
D

1

q`q
0
`

;

whereas the distance from q`�1=q` to any jump j=n isˇ̌̌q`�1
q`
�
j

n

ˇ̌̌
�

1

jnjq`
:

Hence there is no jump between q`�1=q` and q0
`�1
=q0
`
, and using also Lemma 4.3, we

obtain

jyn � y
0
nj

jnj
�

ˇ̌̌q`�1
q`
�
q0
`�1

q0
`

ˇ̌̌
q`kq`˛k C

1

2jnj
jq`kq`˛k � q

0
`kq
0
`˛
0
kj �

1

a`C1q`q
0
`

:

After discarding negligible error terms, the previous estimates yieldY
2�jnj� `

f ..n � yn � z/=q`/=f ..n � z/=q`/

f ..n � y0n � z
0/=q0

`
/=f ..n � z0/=q0

`
/

D

Y
2�jnj� `

exp
�
O
� 1

a`C1.q
0
`
/2
C

n2

a`C1.q
0
`
/3

��
D exp

�
O
�  `

a`C1.q
0
`
/2
C

 3
`

a`C1.q
0
`
/3

��
: (4.13)
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Finally, let n D ˙1. Under the assumptions

q`kq`˛k=2

jn � zj
� 1 �

1

c
;

q0
`
kq0
`
˛0k=2

jn � z0j
� 1 �

1

c
;

jn � zj �
1

d
; jn � z0j �

1

d

(4.14)

with some c � 2 and d � 1, it is not difficult to see that

1

c
�

f ..n � yn � z/=q`/

f ..n � z/=q`/
� 1;

and the same holds for ˛0. Following the steps in the previous paragraph, we also deduceˇ̌̌f ..n � yn � z/=q`/
f ..n � z/=q`/

�
f ..n � y0n � z

0/=q0
`
/

f ..n � z0/=q0
`
/

ˇ̌̌
D

ˇ̌̌̌ˇ̌̌
cos
�
�
yn

q`

�
�sin

�
�
yn

q`

�
cot
�
�
n�z

q`

�ˇ̌̌
�

ˇ̌̌
cos
�
�
y0n
q0
`

�
�sin

�
�
y0n
q0
`

�
cot
�
�
n�z0

q0
`

�ˇ̌̌ˇ̌̌̌
�

d

a`C1.q
0
`
/2
C

d2

a2
`C1

.q0
`
/2
:

Estimate (4.7) with ı � 1=c thus gives

f ..n � yn � z/=q`/=f ..n � z/=q`/

f ..n � y0n � z
0/=q0

`
/=f ..n � z0/=q0

`
/

D exp
�
O
� cd

a`C1.q
0
`
/2
C

cd2

a2
`C1

.q0
`
/2
C
c2d2 log c
a2
`C1

.q0
`
/4
C
c2d4 log c
a4
`C1

.q0
`
/4

��
: (4.15)

Consider the factor n D �1. If b � 1, then z > 0; in particular, (4.14) is satisfied with
c D 2 and d D 1. If b D 0, then the general fact

q`kq`˛k �
1

a`C1 C 1=.a`C2 C 1/
� 1 �

1

a`C2 C 2

and its analog for ˛0 show that (4.14) is satisfied with c D a`C2 C 2 and d D 2. On the
other hand, if b`C1.N / � 0:99a`C2, then by Lemma 2.1 we have the better lower bound
"`.N / � �0:999q`kq`˛k, and consequently

z D
q`kq`˛k

2
C "`.N / � �0:499q`kq`˛kI

in particular, (4.14) holds with c � 1 and d D 2. By combining all these cases, for-
mula (4.15) gives

f ..�1 � y�1 � z/=q`/=f ..�1 � z/=q`/

f ..�1 � y0�1 � z
0/=q0

`
/=f ..�1 � z0/=q0

`
/

D exp
�
O
� I¹b�1º

a`C1.q
0
`
/2
C I¹bD0º

1C I¹b`C1.N/>0:99a`C2º
a`C2

a`C1.q
0
`
/2

C I¹bD0º
I¹b`C1.N/>0:99a`C2º

a2
`C2

log a`C2
a2
`C1

.q0
`
/4

��
:



C. Aistleitner, B. Borda 5080

Simplifying the error using assumption (ii) shows

b`.N/�1Y
bD0

f ..�1 � y�1 � z/=q`/=f ..�1 � z/=q`/

f ..�1 � y0�1 � z
0/=q0

`
/=f ..�1 � z0/=q0

`
/
D exp

�
O
� 1

.q0
`
/1:99

��
: (4.16)

Consider the factor n D 1. By Lemma 2.1, we have

j1 � zj D 1 �
��
b C

1

2

�
q`kq`˛k C "`.N /

�
� q`�1kq`˛k C

�
a`C1 � b �

1

2

�
q`kq`˛k �

1

a`C1
;

and
q`kq`˛k=2

j1 � zj
�

1=2

q`�1=q` C a`C1 � b � 1=2
�

1

2q`�1=q` C 1
:

Repeating the same estimates for ˛0, we see that (4.14) is satisfied with c � a` and
d � a`C1. On the other hand, if b`.N / � 0:99a`C1, then (4.14) is satisfied with c � 1

and d � 1. By combining these cases, (4.15) gives

f ..1 � y1 � z/=q`/=f ..1 � z/=q`/

f ..1 � y01 � z
0/=q0

`
/=f ..1 � z0/=q0

`
/
D exp

�
O
� 1

a`C1.q
0
`
/2
C
I¹b`.N/>0:99a`C1º

q0
`�1
q0
`

��
:

Simplifying the error using assumption (i) shows

b`.N/�1Y
bD0

f ..1 � y1 � z/=q`/=f ..1 � z/=q`/

f ..1 � y01 � z
0/=q0

`
/=f ..1 � z0/=q0

`
/
D exp

�
O
� 1

q0
`�1
.q0
`
/0:99

��
: (4.17)

By (4.11)–(4.13), (4.16) and (4.17), the second line of (4.4) satisfies

b`.N/�1Y
bD0

Qq`�1
nD1 f ..n � yn � z/=q`/=f ..n � z/=q`/Qq0
`
�1

nD1 f ..n � y
0
n � z

0/=q0
`
/=f ..n � z0/=q0

`
/

D exp
�
O
� log.a1 C 1/

q0
`

C
a2 C � � � C a`

 `
C

 `

.q0
`
/2
C

 3
`

.q0
`
/3
C

1

q0
`�1
.q0
`
/0:99

��
:

The optimal choice is
 ` � .a2 C � � � C a`/

1=4.q0`/
3=4;

which is easily seen to satisfy the required bounds 1 �  ` < q0`=2. Discarding negligible
error terms, we finally obtain

b`.N/�1Y
bD0

Qq`�1
nD1 f ..n � yn � z/=q`/=f ..n � z/=q`/Qq0
`
�1

nD1 f ..n � y
0
n � z

0/=q0
`
/=f ..n � z0/=q0

`
/

D exp
�
O
� log.a1 C 1/

q0
`

C
.a2 C � � � C a`/

3=4

.q0
`
/3=4

��
:
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This finishes the estimation of the second line of (4.4), and the proof of the proposition in
the case when q0

`
� 3.

We now indicate how to modify the estimate of the second line of (4.4) if q0
`
< 3. First

of all, note that if q` D 2, then

y1 D
�°q`�1

q`

±
�
1

2

�
q`kq`˛k D 0;

since we necessarily have q`�1 D 1. Similarly, q0
`
D 2 implies y01 D 0. In particular,Qq0

`
�1

nD1 f ..n � y
0
n � z

0/=q0
`
/=f ..n � z0/=q0

`
/ D 1, as the product is either empty, or con-

sists of the single factor n D 1. We may thus assume that q` � 3, otherwise the second
line of (4.4) equals 1, and we are done.

Following the steps above with  ` D 1, as an analog of (4.11) we deduce

q`�1Y
nD1

f ..n � yn � z/=q`/

f ..n � z/=q`/
D exp

�
O
� log.a1 C 1/

a`C1

�� Y
n2¹˙1º

f ..n � yn � z/=q`/

f ..n � z/=q`/
:

Clearly,

f
�n � yn � z

q`

�
D f

�n � z
q`

�
CO

� 1

a`C1q`

�
:

Under the assumptions

q`kq`˛k=2

jn � zj
� 1 �

1

c
and jn � zj �

1

d

with some c � 2 and d � 1, we have f ..n � z/=q`/� 1=.dq`/ and f ..n � yn � z/=q`/=
f ..n � z/=q`/� 1=c, thus (4.7) gives

f ..n � yn � z/=q`/

f ..n � z/=q`/
D exp

�
O
� d

a`C1
C
d2 log c
a2
`C1

��
:

Choosing c, d optimally for n D �1 as above, we deduce

f ..�1 � y�1 � z/=q`/

f ..�1 � z/=q`/

D exp
�
O
�
I¹b�1º

1

a`C1
C I¹bD0º

� 1

a`C1
C
I¹b`C1.N/>0:99a`C2º

a`C2

a2
`C1

���
;

hence by assumption (ii),

b`.N/�1Y
bD0

f ..�1 � y�1 � z/=q`/

f ..�1 � z/=q`/
D exp.O.1//:

Choosing c, d optimally for n D 1 as above, we deduce

f ..1 � y1 � z/=q`/

f ..1 � z/=q`/

D exp
�
O
� 1

a`C1
C I¹b`.N/>0:99a`C1º

.1C log a`/
��
;
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hence by assumption (i),

b`.N/�1Y
bD0

f ..1 � y1 � z/=q`/

f ..1 � z/=q`/
D exp.O.1C log a`//:

Here either ` D 1, or a` � q0` < 3. Combining the previous estimates, the second line
of (4.4) thus satisfies

b`.N/�1Y
bD0

Qq`�1
nD1 f ..n � yn � z/=q`/=f ..n � z/=q`/Qq0
`
�1

nD1 f ..n � y
0
n � z

0/=q0
`
/=f ..n � z0/=q0

`
/
D exp.O.1C log a1//:

This finishes the estimation of the second line of (4.4) and the proof of the proposition
when q0

`
< 3.

5. Zagier’s function h.x/

5.1. Continuity

Let ˛ D Œ0Ia1; a2; : : : � be irrational with convergents p`=q` D Œ0Ia1; a2; : : : ; a`�, and let

�k WD

p
log.1C akC1/
p
akC1

.1C log max
1�m�k

am/:

Let
IkC1 WD ¹Œ0I c1; c2; : : : � W cm D am for all 1 � m � k C 1º

denote the set of real numbers in Œ0; 1� whose first k C 1 partial quotients are the same
as those of ˛. Recall that IkC1 is an interval with rational endpoints pkC1=qkC1 and
.pkC1 C pk/=.qkC1 C qk/, so for every k the irrational ˛ is an interior point of IkC1.

Theorem 5.1. Let k � A�1 log log.a1 C 2/ be such that �k � A with a suitably small
universal constant A > 0. Then

sup
r2IkC1\Q

h.r/ � inf
r2IkC1\Q

h.r/� �k C
.a2 C � � � C ak/

3=4

.qk=a1/3=4
C

log.a1 C 1/
qk=a1

with a universal implied constant.

Note that here the last two terms in the upper bound converge to 0:

lim
k!1

� .a2 C � � � C ak/3=4
.qk=a1/3=4

C
log.a1 C 1/
qk=a1

�
D 0:

If supk�1 ak D 1, then �k ! 0 along a suitable subsequence, consequently h can be
extended to Q [ ¹˛º so that it is continuous at ˛. This establishes Zagier’s continuity
conjecture at all non-badly approximable irrationals, and proves Theorem 1.1. If ˛ is
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badly approximable, then letting a WD lim supk!1 ak denote the largest integer which
appears in its continued fraction expansion infinitely many times, Theorem 5.1 gives

lim sup
x!˛

h.x/ � lim inf
x!˛

h.x/�
.log a/3=2
p
a

;

a weaker form of the conjecture which falls short of implying continuity at ˛.

Proof of Theorem 5.1. Let ˛0 WD ¹1=˛º D Œ0I a2; a3; : : : �. Let r D Œ0I c1; c2; : : : ; cL� 2

IkC1 \ Q be arbitrary with convergents xp`=xq` D Œ0I c1; c2; : : : ; c`�, and define r 0 WD
¹1=rº D Œ0Ic2; c3; : : : ; cL�with convergents xp0

`
=xq0
`
D Œ0Ic2; c3; : : : ; c`�. By the assumption

r 2 IkC1, we have xp`=xq` D p`=q` and xp0
`
=xq0
`
D p0

`
=q0
`

for all ` � k C 1.
Let us apply Proposition 3.4 to r and to r 0:X

0�N<xqL

PN .r/
2
D

� X
0�N<qk

PN

�pk
qk
; .�1/k

5=6

qk

�2�
�

� X
0�N<xqL

b0.N/Db1.N/D���Dbk�1.N/D0

PN .r/
2
�
.1CO.�k//;

and X
0�N<xq0

L

PN .r
0/2 D

� X
0�N<q0

k

PN

�p0
k

q0
k

; .�1/k�1
5=6

q0
k

�2�
�

� X
0�N<xq0

L

b0
1
.N/Db0

2
.N/D���Db0

k�1
.N/D0

PN .r
0/2
�
.1CO.�k//:

Note that here N D
PL�1
`D0 b`.N /xq` denotes the Ostrowski expansion of an integer 0 �

N < xqL with respect to r , whereasN D
PL�1
`D1 b

0
`
.N /xq0

`
denotes the Ostrowski expansion

of an integer 0 � N < xq0L with respect to r 0. Hence

h.r/ D log

P
0�N<xqL

PN .r/
2P

0�N<xq0
L
PN .r 0/2

DMk.˛/C log

P
0�N<xqL

b0.N/Db1.N/D���Dbk�1.N/D0

PN .r/
2P

0�N<xq0
L

b0
1
.N/Db0

2
.N/D���Db0

k�1
.N/D0

PN .r 0/2
CO.�k/; (5.1)

where

Mk.˛/ WD log

P
0�N<qk

PN .pk=qk ; .�1/
k.5=6/=qk/

2P
0�N<q0

k
PN .p

0
k
=q0
k
; .�1/k�1.5=6/=q0

k
/2
:

The crucial observation is thatMk.˛/ does not depend on r , but only on the first k partial
quotients which are the same throughout IkC1. It remains to estimate the second term
in (5.1) uniformly in r .
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Let H denote the set of all integers 0 � N < xqL such that b0.N / D b1.N / D � � � D
bk�1.N /D 0, and b`.N /� 0:99c`C1 for every k � `�L� 1 such that c`C1 > .xq0`/

1=100.
Similarly, let H 0 denote the set of all integers 0 � N < xq0L such that b01.N / D b

0
2.N / D

� � � D b0
k�1

.N / D 0, and b0
`
.N / � 0:99c`C1 for every k � ` � L � 1 such that c`C1 >

.xq0
`
/1=100. Note that 0:2326 � .5=6� 0:99/2 >0:005, and that by choosingA small enough,

1C log max1�m�` cm is negligible compared to .xq0
`
/1=100. Applying Proposition 3.1 to

all k � ` � L � 1 such that c`C1 > .xq0`/
1=100 thus shows thatX

0�N<xqL

b0.N/Db1.N/D���
Dbk�1.N/D0

PN .r/
2
D

�
1CO

� X
k�`�L�1

c`C1>.xq
0
`
/1=100

c`C1e
�0:005c`C1

�� X
N2H

PN .r/
2

D .1CO.q0ke
�0:005.q0

k
/1=100

//
X
N2H

PN .r/
2;

and similarly X
0�N<xq0

L

b0
1
.N/Db0

2
.N/D���Db0

k�1
.N/D0

PN .r
0/2 D .1CO.q0ke

�0:005.q0
k
/1=100

//
X
N2H 0

PN .r
0/2:

The map N D
PL�1
`D0 b`.N /xq` 7! N 0 WD

PL�1
`D1 b`.N /xq

0
`
, as introduced in Section 4,

is a bijection from H to H 0 (note that for N 2 H we have b1.N / D 0, so the mapping
N 7! N 0 is indeed well defined). By the product form (4.2) and Proposition 4.1, for any
N 2 H we have

PN .r/

PN 0.r 0/
D

L�1Y
`Dk

b`.N/�1Y
bD0

Pxq`
.r; .�1/`.bxq`kxq`rk C x"`.N //=xq`/

Pxq0
`
.r 0; .�1/`�1.bxq0

`
kxq0
`
r 0k C x"0

`
.N //=xq0

`
/

D

L�1Y
`Dk

exp
�
O
� .c2 C � � � C c`/3=4

.xq0
`
/3=4

C
log.c1 C 1/

q0
`

��
D exp

�
O
� .a2 C � � � C ak/3=4

.q0
k
/3=4

C
log.a1 C 1/

q0
k

��
:

Consequently,P
0�N<xqL

b0.N/Db1.N/D���Dbk�1.N/D0

PN .r/
2P

0�N<xq0
L

b0
1
.N/Db0

2
.N/D���Db0

k�1
.N/D0

PN .r 0/2
D .1CO.q0ke

�0:005.q0
k
/1=100

//

P
N2H PN .r/

2P
N2H 0 PN .r

0/2

D exp
�
O
� .a2 C � � � C ak/3=4

.q0
k
/3=4

C
log.a1C1/

q0
k

��
;

and (5.1) simplifies to

h.r/ DMk.˛/CO
�
�k C

.a2C � � � Cak/
3=4

.q0
k
/3=4

C
log.a1 C 1/

q0
k

�
:
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Here q0
k
� qk=a1, and Mk.˛/ does not depend on r , leading to the upper bound for the

oscillation of h.r/ on IkC1 \Q in the claim.

5.2. Asymptotics

Proof of Theorem 1.3. Let r be a rational in .0; 1/, and let r D Œ0I a1; a2; : : : ; aL� be its
continued fraction expansion, with convergents p`=q` D Œ0I a1; a2; : : : ; a`�. Let r 0 WD
¹1=rº D Œ0Ia2; a3; : : : ; aL�, with convergents p0

`
=q0
`
D Œ0Ia2; a3; : : : ; a`�. The Ostrowski

expansion of 0 � N < qL with respect to r will be written asN D
PL�1
`D0 b`.N /q`, while

that of 0 � N < q0L with respect to r 0 as N D
PL�1
`D1 b

0
`
.N /q0

`
. The claim of the theorem

can be equivalently stated as

h.r/ D
Vol.41/
2�

a1 CO.log.a1 C 1//:

Let D > 0 be a suitably large universal constant. Let R denote the set of all inte-
gers 0 � N < qL such that I¹a2>a1CDºb1.N / � 0:99a2 and I¹a2D1ºI¹a3>a1CDºb2.N / �

0:99a3. Applying Corollary 3.2 with k D 1 and k D 2 yields the rough estimateX
0�N<qL

PN .r/
2
�

X
N2R

PN .r/
2:

LettingR0 denote the set of all integers 0�N < q0L such that I¹a2>a1CDºb
0
1.N /� 0:99a2

and I¹a2D1ºI¹a3>a1CDºb
0
2.N / � 0:99a3, we similarly deduceX
0�N<q0

L

PN .r
0/2 �

X
N2R0

PN .r
0/2;

therefore

h.r/ D log

P
0�N<qL

PN .r/
2P

0�N<q0
L
PN .r 0/2

D log
P
N2R PN .r/

2P
N2R0 PN .r

0/2
CO.1/: (5.2)

Set b�0 WD b.5=6/a1c and f .x/ D j2 sin.�x/j, as usual, and let

H`.c/ WD ¹0 � N < qL W b`.N / D cº:

We distinguish between the cases a1 > D and a1 � D.

Case 1. Assume that a1 > D. Corollary 3.2 shows thatX
N2R

PN .r/
2
�

X
N2R

jb0.N/�b
�
0
j<10

p
a1 loga1

PN .r/
2:

Hence in the numerator of (5.2) it is enough to keep those N for which jb0.N / � b�0 j <
10
p
a1 log a1, leading to

h.r/ D log
X
c2N

jc�b�
0
j<10

p
a1 loga1

P
N2H0.c/\R

PN .r/
2P

N2R0 PN .r
0/2

CO.1/: (5.3)



C. Aistleitner, B. Borda 5086

The mapN D
PL�1
`D0 b`.N /q` 7!N 0 WD

PL�1
`D1 b`.N /q

0
`

introduced in Section 4 is a bijec-
tion from H0.c/ \ R to R0, for those c which are in the range of the summation in (5.3).
To see this, note that choosing D sufficiently large and using the fact that a1 > D by
assumption, the condition jc � b�0 j < 10

p
a1 log a1 ensures that c > 0, and consequently

b0.N / > 0whence b1.N / < a2; thus the mappingN 7!N 0 is indeed well defined. By the
product form (4.2) and Proposition 4.1, for any N 2 H0.c/ \R we have

PN .r/

PN 0.r 0/
D

c�1Y
bD0

Pq0

�
r;
bq0kq0rk C "0.N /

q0

�
�

L�1Y
`D1

exp
�
O
� .a2 C � � � C a`/3=4

.q0
`
/3=4

C
log a1
q0
`

��
D

� c�1Y
bD0

f
�
.b C 1/r C "0.N /

��
exp.O.log a1//:

Here .b C 1/r C "0.N / is bounded away from 1. By the definition of R, either a2 � a1
or b1.N / � 0:99a2, therefore Lemma 2.1 gives

.b C 1/r C "0.N / � r C "0.N /�
1

a1
:

Comparing the sum to the corresponding Riemann integral, we thus get

c�1X
bD0

logf ..b C 1/r C "0.N // D a1

Z c=a1

0

logf .x/ dx CO.log a1/:

Here c=a1 D 5=6CO.
p
.log a1/=a1/, hence the Taylor expansionZ y

0

logf .x/ dx D
Z 5=6

0

logf .x/ dx CO..y � 5=6/2/

and definition (1.2) of Vol.41/ show that

c�1X
bD0

logf ..b C 1/r C "0.N // D
Vol.41/
4�

a1 CO.log a1/:

For any N 2 H0.c/ \R, we thus have

PN .r/

PN 0.r 0/
D exp

�Vol.41/
4�

a1 CO.log a1/
�
;

consequently P
N2H0.c/\R

PN .r/
2P

N2R0 PN .r
0/2

D exp
�Vol.41/

2�
a1 CO.log a1/

�
:
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Summing over all c 2 N such that jc � b�0 j < 10
p
a1 log a1, estimate (5.3) simplifies to

h.r/ D
Vol.41/
2�

a1 CO.log a1/;

as claimed.

Case 2. Assume that a1 � D. We first claim thatX
N2R

PN .r/
2
�

X
N2R

b1.N/<a2

PN .r/
2: (5.4)

To any N 2 R such that b1.N / D a2, let us associate N � WD N � q1. Note that N � is
obtained fromN by reducing the Ostrowski digit b1.N /D a2 by 1, i.e., b1.N �/D a2 � 1
and b`.N �/ D b`.N / for all ` ¤ 1. We necessarily have b0.N / D b0.N �/ D 0, and by
definition (2.3), "`.N �/ D "`.N / for all ` � 1. The product form (2.2) thus gives

logPN�.r/ � logPN .r/ D � logPq1

�
r;
.a2 � 1/q2kq2rk C "2.N /

q2

�
:

Following the steps in the proof of Proposition 3.1 (ii), here

� logPq1

�
r;
.a2 � 1/q2kq2rk C "2.N /

q2

�
� �C.1C I¹a2D1ºI¹b2.N/>0:99a3º

a3 C log a1/

� �C;

hencePN .r/�PN�.r/. As the mapN 7!N � is an injection from ¹N 2R W b1.N / D a2º
to ¹N 2 R W b1.N / < a2º, estimate (5.4) follows.

In particular, (5.2) gives

h.r/ D log
a1�1X
cD0

P
N2H0.c/\R;b1.N/<a2

PN .r/
2P

N2R0 PN .r
0/2

CO.1/: (5.5)

The map

N D

L�1X
`D0

b`.N /q` 7! N 0 WD

L�1X
`D1

b`.N /q
0
`

introduced in Section 4 is a bijection from ¹N 2 H0.c/ \R W b1.N / < a2º to R0 (where
the condition b1.N / < a2 ensures that the mappingN 7! N 0 is indeed well defined). The
product form (4.2) and Proposition 4.1 now yield

PN .r/

PN 0.r 0/
D

� c�1Y
bD0

f ..b C 1/r C "0.N //

�
exp.O.1//:

By the definition of R, either a2 � 1 or b1.N / � 0:99a2, therefore Lemma 2.1 gives

.b C 1/r C "0.N / � r C "0.N /� 1:
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The same points are also bounded away from 1:

.b C 1/r C "0.N / � .a1 � 1/r C ka1rk � 1 � r;

therefore 1�
Qc�1
bD0 f ..bC 1/r C "0.N //� 1. In particular, 1� PN .r/=PN 0.r

0/� 1,
and we obtain

1�

P
N2H0.c/\R; b1.N/<a2

PN .r/
2P

N2R0 PN .r
0/2

� 1:

Estimate (5.5) thus simplifies to h.r/ D O.1/, as claimed.

6. Value distribution of J41

In this section, we give the proof of Theorem 1.4. We follow the strategy in [8, Theo-
rem 4]. However, since we will have to work with weaker assumptions than those which
are presupposed there, several modifications of the argument are necessary.

Proof of Theorem 1.4. Let T x D ¹1=xº .x ¤ 0/, T 0 D 0 denote the Gauss map on the
interval Œ0; 1/. Let r 2 .0; 1/ be a rational number with continued fraction expansion
r D Œ0I a1; : : : ; aL�. By definition,

h.x/ D log J41
.x/ � log J41

.T x/ and log J41
.0/ D 0;

hence

log J41
.r/ D

LX
`D1

h.T `�1r/ D

LX
`D1

� Vol.41/
2�T `�1r

C h.T `�1r/ �
Vol.41/
2�T `�1r

�
D

LX
`D1

�Vol.41/
2�

a` C h.T
`�1r/ �

Vol.41/
2�T `�1r

C
Vol.41/
2�

T `�1r
�
�

Vol.41/
2�

r;

where we used that 1=T `�1r D Œa`I a`C1; : : : ; aL� D a` C T `r . Setting

 �.x/ WD h.x/ �
Vol.41/
2�x

C
Vol.41/
2�

x;

this yields

log J41
.r/ D

Vol.41/
2�

LX
`D1

a` C

LX
`D1

 �.T `�1r/ �
Vol.41/
2�

r:

The last term is bounded. By [7, Theorem 9.4 (4)], the limit distribution of

�
PL
`D1 a`

6 logN
�
2 log logN � 2
0 C 2 log.6=�/

�
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(with respect to the normalized counting measure on FN , as N ! 1) is the standard
stable distribution with stability parameter 1 and skewness parameter 1; here 
0 denotes
Euler’s constant.

By Corollary 1.2, the function h.x/ can be extended to a function which is almost
everywhere continuous. Let " > 0 be given, and choose � D �."/ > 0 “small”. By Theo-
rem 1.3, the function  �.x/ is bounded on Œ�; 1�, and thus by the Lebesgue integrability
condition it is Riemann integrable on Œ�; 1�. Consequently, there are step functions f �

and f C such that

f �.x/ �  �.x/ � f C.x/; � � x � 1;

and such that Z 1

�

.f C.x/ � f �.x// dx �
"

2
: (6.1)

By Theorem 1.3, we also have

j �.x/j � cjlog xj

for some sufficiently large constant c. A simple approximation argument then shows that
we can find functions g� and gC such that

� g�.x/ �  �.x/ � gC.x/ for x 2 .0; 1/,

� g�.x/ D c log x and gC.x/ D cjlog xj for x 2 .0; ��,

� g�.x/ and gC.x/ are Lipschitz-continuous on Œ�; 1�,

�
R 1
0
.gC.x/ � g�.x// dx � ", provided that � D �."/ was chosen sufficiently small.

The way to obtain g� and gC is to start with c log x (resp. cjlog xj) on the interval .0; ��
and with f � (resp. f C) on the interval Œ�; 1�, and then combine these parts into a function
that is Lipschitz-continuous on Œ�; 1� by “gluing together” these functions at the disconti-
nuities. This does not cause a problem, as there are only finitely many such discontinuities.
The last property can be satisfied because of (6.1), together with the fact that

R �
0
jlog xjdx

can be made arbitrarily small by choosing � as small as necessary.
For an application of [7, Corollary 3.2], it is necessary to check that

1X
nD1

1

n2

�
sup

x2Œ1=.nC1/;1=n�

jg˙.x/j˛0 C sup
x;y2Œ1=.nC1/;1=n�

jg˙.x/ � g˙.y/j�0

jx � yj�0�0

�
<1 (6.2)

holds true for each of the two functions g� and gC defined above, for some suitable
constants ˛0 > 2 and �0; �0 > 0. This is indeed easily seen to be the case, since by
construction the functions g� and gC are Lipschitz-continuous on Œ�; 1�, and since they
are ˙c log x near zero; we can choose for example the parameters ˛0 D 3, �0 D 1=2,
�0 D 1 in (6.2). An application of [7, Corollary 3.2] thus shows that for

�� WD
12

�2

Z 1

0

g�.x/

1C x
dx
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the limit distribution of PL
`D1 g

�.T `�1r/ � �� logN
p

logN

is normal with mean zero and some variance �2 � 0; consequently with a stronger scaling
factor the limit distribution of PL

`D1 g
�.T `�1r/

logN

is a Dirac measure at ��. A similar result holds for gC and �C in place of g� and ��.
Since Z 1

0

.gC.x/ � g�.x// dx � ";

we have �C � �� � 2". Upon letting "! 0, this implies that the limit distribution of

log J41
.r/

.3Vol.41/=�2/ logN
�
2 log logN

�
C

�
2
0 � 2 log.6=�/

�
C

4

Vol.41/

Z 1

0

 �.x/

1C x
dx
�

„ ƒ‚ …
DWD

is the standard stable distribution with stability parameter 1 and skewness parameter 1,
as claimed.
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