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Abstract. Let G be the group of rational points of a quasi-split p-adic special orthogonal, sym-
plectic or unitary group for some odd prime number p. Following Arthur and Mok, there are an
integer N > 1, a p-adic field E and a local functorial transfer from isomorphism classes of irre-
ducible smooth complex representations of G to those of GLN .E/. By fixing a prime number `
different from p and an isomorphism between the field of complex numbers and an algebraic clos-
ure of the field of `-adic numbers, we obtain a transfer map between representations with `-adic
coefficients. Now consider a cuspidal irreducible `-adic representation � of G: we can define its
reduction mod `, which is a semisimple smooth representation of G of finite length, with coeffi-
cients in a field of characteristic `. Let � 0 be a cuspidal irreducible `-adic representation ofG whose
reduction mod ` is isomorphic to that of � . We prove that the transfers of � and � 0 have reductions
mod ` which may not be isomorphic, but which have isomorphic supercuspidal supports. When G
is not the split special orthogonal group SO2, we further prove that the reductions mod ` of the
transfers of � and � 0 share a unique common generic component.

Keywords: automorphic representation, classical group, congruences mod l, cuspidal
representation, functorial transfer.

1. Introduction

1.1. Let F be a p-adic field for some odd prime number p and G be the group of rational
points of a quasi-split special orthogonal, unitary or symplectic group defined over F .
In the case where G is unitary, let E be the quadratic extension of F with respect to
which G is defined; otherwise, let E be equal to F . According to Arthur [2] for special
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orthogonal and symplectic groups, and to Mok [46] for unitary groups, there is a positive
integerN DN.G/ and a map from isomorphism classes of irreducible (smooth) complex
representations ofG to those of the general linear group GLN .E/, called the local transfer
or base change, which we will denote by t.

1.2. Let us fix a prime number ` different from p and an isomorphism of fields � be-
tween C and an algebraic closure xQ` of the field of `-adic numbers. Replacing form-
ally C by xQ` thanks to �, we get a local transfer between isomorphism classes of irre-
ducible smooth xQ`-representations, denoted by t`. (We describe the dependency of t` on
the choice of � – or equivalently the behaviour of t with respect to automorphisms of C:
see Section 6.4 for unramified representations, and Section 9.2 for discrete series repres-
entations, of G.)

We can now consider irreducible xQ`-representations which are integral – that is,
which carry a stable xZ`-lattice, where xZ` denotes the ring of integers of xQ`. Given such
a representation � , one can define its reduction mod `: this is the semisimplification of
the reduction of any of its stable xZ`-lattices modulo the maximal ideal of xZ`. This is
a smooth representation of finite length with coefficients in xF`, the residue field of xZ`,
denoted by r`.�/. One then can ask whether the map t` preserves the fact of being integ-
ral, and how it behaves with respect to congruences mod `.

Similar questions have already been answered for other local correspondences: see
[12, 16, 65] for the local Langlands correspondence for GLn, as well as [17, 40] for the
local Jacquet–Langlands correspondence between inner forms of GLn, for n > 1. (See
also Section 1.7 below and Appendix A, where we discuss the case of the cyclic local
base change for GLn.) In this paper, we prove the following theorem.

Theorem 1.1. Let �1, �2 be integral cuspidal irreducible xQ`-representations of G, and
assume that

r`.�1/ 6 r`.�2/; (1.1)

that is, r`.�1/ is contained in r`.�2/ as semisimple xF`-representations of G. Then

(1) The local transfer t`.�i / is an integral xQ`-representation of GLN .E/ for each
i D 1; 2.

(2) The irreducible components of the semisimple xF`-representation

r`.t`.�1//˚ r`.t`.�2//

all have the same supercuspidal support (see below for a definition).

(3) Assume that G is not isomorphic to the split special orthogonal group

SO2.F / ' F �:

The semisimple xF`-representations r`.t`.�1// and r`.t`.�2// have a unique generic
irreducible component in common.

As in the case of complex coefficients, an irreducible representation of GLN .E/ on
an xF`-vector space V is said to be generic if V carries a non-zero xF`-linear form ƒ such
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that ƒ.�.u/v/ D �.u/v for all v 2 V and all upper triangular unipotent matrices u of
GLN .E/, where � is the xF`-character

u 7!  .u1;2 C � � � C un�1;n/

and  is a non-trivial xF`-character of F .
An irreducible xF`-representation of GLN .E/ is supercuspidal if it does not occur as

a subquotient of any representation parabolically induced from a proper Levi subgroup.
A supercuspidal support of an irreducible xF`-representation � of GLN .E/ is a pair .M;�/
made of a Levi subgroup of GLN .E/ and a supercuspidal representation � of M such
that � occurs as a subquotient of the normalized parabolic induction of �. It is uniquely
determined up to conjugacy (see [64, §V.4] and [38, Théorème 8.16]).

Note that, unless G is the split special orthogonal group SO2.F / ' F �, the centre
of G is compact. When this is the case, any cuspidal irreducible xQ`-representation of G
is integral. We will discuss the case of the split SO2.F / in detail in Section 9.3.

Also note that if G is not isomorphic to SO2.F / ' F �, then (3) implies (2), since
all irreducible components of the reduction mod ` of an integral irreducible xQ`-represen-
tation of GLN .E/ have the same supercuspidal support [65, §1.3].

Before discussing the other assumptions of Theorem 1.1 (in Section 1.6), let us explain
how we prove it. The general strategy goes back to Khare [32] and Vignéras [65] who
study the congruence properties of the local Langlands correspondence for GLn.F / with
n > 1.

1.3. The first step is to pass from our given local situation to the following global situation
(which is the purpose of Sections 2 to 4).

First, k is a totally real number field, l is either k or a totally imaginary quadratic
extension of k and w is a finite place of k above p, inert in l , such that kw D F and
lw D E (see Section 2.4).

Next, G is a connected reductive group defined over k such that

(1) the group G.F / naturally identifies with G,

(2) the group G.kv/ is compact for any real place v and quasi-split for any finite place v,

(3) the k-group G is an inner form of a quasi-split special orthogonal, unitary or sym-
plectic group G�.

The existence of such a group G is proved in Section 2 (see Theorem 2.1).
Finally, …1 and …2 are irreducible automorphic representations of G.Ak/, where Ak

denotes the ring of adèles of k, such that

(1) …1;w ˝C xQ` is isomorphic to �1 and …2;w ˝C xQ` is isomorphic to �2,

(2) the representations …1;v and …2;v are trivial for any real place v,

(3) for a given finite place u ¤ w of k, the representations …1;u and …2;u are both
isomorphic to some cuspidal irreducible unitary representation � of G.ku/ which is
compactly induced from a compact mod centre, open subgroup of G.ku/,
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(4) there is a finite set S of places of k, containing all real places, such that for all v … S:

(a) the group G is unramified over kv ,
(b) the representations …1;v ˝C xQ` and …2;v ˝C xQ` are unramified with respect

to some hyperspecial maximal compact subgroup of G.kv/,
(c) their Satake parameters (in the sense of Section 3.4) are integral and congruent

mod the maximal ideal of xZ`,

where all tensor products are taken with respect to �. We construct such …1 and …2 in
Sections 3 and 4.

1.4. The next step – which is the purpose of Section 5 – is to associate to…1 and…2 two
cuspidal irreducible automorphic representations z…1 and z…2 of GLN .Al / such that, for
any finite place v, the local transfer of …i;v is isomorphic to z…i;v for i D 1; 2. For this,
we use the results of Taïbi [60] if G� is symplectic or special orthogonal, and Labesse [35]
if G� is unitary. Namely, let z…i be

� the Arthur parameter associated with …i if G� is symplectic or special orthogo-
nal [60],

� the stable base change of …i to GLN .Al / if G� is unitary [35].

In both cases, z…i is algebraic regular and [35, 60] provide z…i with certain local-global
compatibilities at all finite places. In order to ensure that these local-global compatibilities
are what we want, namely, that the local transfer of …i;v is isomorphic to z…i;v at all
finite v, and in prevision of the next step, we need z…i to be cuspidal.

In order to choose …1, …2 so that z…1, z…2 are cuspidal, we use the auxiliary cuspidal
representation � of Section 1.3. More precisely, we prove the following result (see Lem-
ma 9.1).

Proposition 1.2. Given k, w and G as in Section 1.3, the finite place u of k and the re-
presentation � of G.ku/ can be chosen so that the local transfer of � is cuspidal.

If G� is unitary, it suffices to choose u so that G is split over ku. In the symplectic
and special orthogonal cases, this is the purpose of Appendices B and C. (In particular,
the place u has to divide 2 in the symplectic case.)

1.5. We now have two algebraic regular, cuspidal irreducible automorphic representa-
tions z…1 and z…2 of GLN .Al / such that, for i D 1; 2 and all finite places v, the transfer
of …i;v is isomorphic to z…i;v . Besides, it follows from the properties of the transfer
from G.Ak/ to GLN .Al / that the conjugate of the contragredient of z…i by the gener-
ator c of Gal.l=k/ is isomorphic to z…i .

From the properties of …1 and …2 at all places v … S, and from the congruence prop-
erties of the unramified local transfer that we establish in Section 6, it follows that, for all
v … S,

(1) the local components z…1;v and z…2;v are unramified,

(2) the Satake parameters of z…1;v ˝C xQ` and z…2;v ˝C xQ` are integral and congruent
mod the maximal ideal of xZ`.
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We now apply the results of [5], which give us two continuous `-adic Galois repres-
entations

†i W Gal.xQ=l/! GLN .xQ`/; i D 1; 2;

such that, for any finite place v of l not dividing `, the (`-adic) Weil–Deligne repres-
entation associated with z…i;vjdetj.1�N/=2v by the local Langlands correspondence is iso-
morphic to the Frobenius-semisimplification of the Weil–Deligne representation associ-
ated with†i;v , the restriction of†i to a decomposition subgroup of Gal.xQ=l/ at v. (Here
j � jv denotes the absolute value of lv normalized so that the absolute value of any uni-
formizer of lv is the inverse of the cardinality of the residue field of lv .)

Thanks to our local conditions at all v … S, the representations †1;v , †2;v are con-
gruent mod `. A density argument then implies that †1 and †2 are congruent mod `.
In particular, †1;w , †2;w are congruent mod `.

Associated with †i;w , there is a Frobenius-semisimple Weil–Deligne representation
.�i ; Ni /. We show in Section 7 that the fact that †1;w and †2;w are congruent mod `
implies that the smooth semisimple representations �1 and �2 are integral and congruent
mod `. Since �i corresponds to the cuspidal support of z…i;w jdetj.1�N/=2w ˝C xQ` (thanks
to the local-global compatibility at w given by [5]), it follows from the mod ` local Lang-
lands correspondence of Vignéras [65] that

z…1;w jdetj.1�N/=2w ˝C xQ`; z…2;w jdetj.1�N/=2w ˝C xQ`

are integral and have the same mod ` supercuspidal support (which is the supercus-
pidal support of any irreducible component of the reduction mod `): it follows that the
supercuspidal support of the generic irreducible component of the reduction mod ` of
z…i;w jdetj.1�N/=2w ˝C xQ`, denoted by ıi , is independent of i 2 ¹1; 2º. Since a generic
irreducible xF`-representation is uniquely determined by its supercuspidal support, we
deduce that ı1, ı2 are isomorphic. The main Theorem 1.1 now follows from the fact
that z…i;w jdetj.1�N/=2w ˝C xQ` is isomorphic to t`.�i /. We refer to Sections 8 and 9 for
more details.

1.6. Now let us discuss the assumptions of the main theorem.
First, the construction of …1 does not require �1 to be cuspidal: it would be enough

to assume that �1 ˝ xQ` C is a discrete series representation of G (for one, or equivalently
any, choice of the field isomorphism �: see Remark 9.3).

However, in order to construct the representation …2 satisfying our local conditions
at all places v … S by the method of Khare–Vignéras, we need �2 to be cuspidal – even
more precisely, we need �2 to be compactly induced from some open, compact mod centre
subgroup of G, which is true of any cuspidal representation of G, thanks to the work of
Stevens [58] since p is odd. Consequently, both the cuspidality of �2 and (1.1) imply
that �1 should be cuspidal as the parabolic restriction functors commute with reduction
mod `.

For the same reason, we want the auxiliary representation � of G.ku/ to be com-
pactly induced from an open, compact mod centre subgroup.
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Moreover, as has been explained in Section 1.4, we also need � to have a cuspidal
transfer to GLN .ku/. This is why the symplectic group requires a special treatment (see
Appendix C), since no cuspidal representation of a p-adic symplectic group has a cuspidal
transfer when p is odd, and the work of Stevens [58] is not available when p D 2.

On the other hand, we show that part (3) of Theorem 1.1 does not hold in general
for non-cuspidal representations: Remark 6.4 gives an example of integral unramified irre-
ducible xQ`-representations �1 and �2 of SO5.F / such that r`.�1/D r`.�2/ but r`.t`.�1//
and r`.t`.�2// have no irreducible component in common.

Finally, our assumption (1.1) is inspired from Vignéras [65, §3.5]. It is tempting to
conjecturate that the conclusion of Theorem 1.1 still holds when (1.1) is replaced by the
weaker condition “r`.�1/ and r`.�2/ have a component in common”, but we have no
evidence that such a conjecture should be true.

1.7. In Appendix A, we discuss the case of the local base change from GLn.F / to
GLn.K/ for a cyclic extension K of F , denoted by bK=F .

As in Section 1.2, choosing a field isomorphism �WC ! xQ` gives an `-adic local
base change map bK=F;`. By using the properties of the local Langlands correspondence
for GLn with respect to conjugacy by an automorphism of C, we prove that bK=F;` does
not depend on the choice of � (see Proposition A.1). We also use certain results of Zou [69,
§1.10] to prove an analogue of Theorem 1.1 for bK=F;` (see Section A.4), and give an
example of integral cuspidal xQ`-representations �1, �2 of GL2.F / such that r`.�1/ D
r`.�2/ but r`.b`.�1// ¤ r`.b`.�2// (Section A.5).

Notation

Throughout the paper, let p be a prime number, let Qp be the field of p-adic numbers
and let xQp be an algebraic closure of Qp . By a p-adic field, we mean a finite extension
of Qp in xQp .

2. Globalizing quadratic and Hermitian forms

The purpose of this section is to prove the following result.

Theorem 2.1. Let F be a p-adic field and letG be a quasi-split special orthogonal, unit-
ary or symplectic group over F . There exist a totally real number field k and a connected
reductive group G over k such that

(1) G is an inner form of a quasi-split special orthogonal, unitary or symplectic k-group,

(2) there is a finite placew of k above p such that kw D F and G.F / is isomorphic toG,

(3) the group G.kv/ is compact for any real place v, and quasi-split for any finite place v.

This theorem will be used in Section 4, where we prove the existence of automorphic
representations of G.A/ with prescribed conditions on their local components, where A
denotes the ring of adèles of k.
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In Section 9, we will need a stronger version of Theorem 2.1: in order to transfer
automorphic representations of G.A/ to a general linear group, we will need to realize G
as a pure inner form in the orthogonal and unitary cases, and a rigid inner form in the
symplectic case. This is why, rather than Theorem 2.1, we will prove the stronger Theor-
ems 2.8 and 2.11 below. For the symplectic case, see Section 2.8.

We emphasize that p may be equal to 2 in this section.

2.1. Quadratic forms. In this subsection, k denotes either a p-adic field for some prime
number p, or a real Archimedean local field, or a totally real number field, and q denotes
a (non-degenerate) quadratic form on a k-vector space of dimension d > 2. There exists
a choice of non-zero scalars �1; : : : ; �d 2 k� such that q is equivalent to the quadratic
form �1x

2
1 C � � � C �dx

2
d

on kd . The quantity

ı D ı.q/ D �1 � � ��d mod k�2 2 k�=k�2

does not depend on this choice. It is called the discriminant of q. In the sequel, we assume
that the discriminant ı is fixed. All quadratic forms are assumed to be non-degenerate.

If k is a p-adic field, then q is, up to equivalence, uniquely determined by its Hasse
invariant

".q/ D
Y
i<j

.�i ; �j / 2 ¹�1; 1º;

where .�; �/ is the Hilbert symbol over k (see [54, Chapitre IV, §2.3, Théorème 7] or [29,
Theorem 9.24]).

If k is isomorphic to the field of real numbers, q is, up to equivalence, entirely determ-
ined by its signature .a; b/ with aC b D d and .�1/b D ı. Its Hasse invariant is equal to
.�1/b.b�1/=2. If ı > 0, then b D 2c for some c 2 ¹0; : : : ; bd=2cº and the Hasse invariant
is .�1/c .

Now suppose that k is a totally real number field and ıv > 0 for all real places v. The
Hasse principle (see [53, Theorem 6.6.6]) ensures that q is uniquely determined, up to
equivalence, by all its localizations qv D q

N
k kv , where v ranges over all places of k.

In other words, it is determined by the Hasse invariants ".qv/ for all finite v and the
signatures .d � 2c.qv/; 2c.qv// for all real v.

Conversely, a family

.."v/v finite; .cv/v real/; "v 2 ¹�1; 1º; cv 2
°
0; : : : ;

jd
2

k±
;

corresponds to a (unique) quadratic form of dimension d over k and discriminant ı if and
only if one has "v D 1 for almost all finite places v andY

v finite

"v �
Y
v real

.�1/cv D 1 (2.1)

(see [53, Theorem 6.6.10]). We give more details in Sections 2.2 and 2.3, depending on
the parity of d .
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2.2. The odd orthogonal case. If k is a p-adic field, there are two equivalence classes of
quadratic forms of dimension 2nC 1 and discriminant ı, in bijection with ¹�1;1º through
the Hasse invariant. The special orthogonal groups associated with these quadratic forms
are non-isomorphic. The one with Hasse invariant

.�1;�1/n.nC1/=2 � .�1; ı/n (2.2)

(that is, x1x2C � � � C x2n�1x2nC .�1/nıx22nC1) is split. The other one is non-quasi-split.
If k is isomorphic to the field of real numbers, there are nC 1 equivalence classes of

quadratic forms of dimension 2nC 1 and discriminant ı. The special orthogonal groups
associated with these quadratic forms are non-isomorphic. Exactly one of them is com-
pact: this is the one with signature .2nC 1; 0/ if ı > 0, and .0; 2nC 1/ if ı < 0.

Proposition 2.2. Let k be a totally real number field of degree r , and let ı 2 k�=k�2.
Suppose that ıv > 0 for all real places v. There is a quadratic form q of dimension 2nC 1
and discriminant ı such that SO.q/ is compact at all real places and quasi-split at all
finite places if and only if rn.nC 1/=2 is even. When this is the case, q is unique up to
equivalence.

Proof. A quadratic form q over k of dimension 2n C 1 and discriminant ı is entirely
determined, up to equivalence, by the Hasse invariants ".qv/ 2 ¹�1; 1º for all finite
places v and the signatures .2n C 1 � 2c.qv/; 2c.qv// for all real places v of k. Non-
equivalent quadratic forms define non-isomorphic special orthogonal groups.

For SO.q/ to be compact at all real places and quasi-split at all finite places, q must
have invariants cv D 0 for all real v and "v D .�1;�1/

n.nC1/=2
v � .�1; ıv/

n
v for all finite v,

where .�; �/v is the Hilbert symbol with respect to kv . By (2.1), such a q exists if and
only if Y

v finite

.�1;�1/n.nC1/=2v �

Y
v finite

.�1; ıv/
n
v D 1:

Thanks to the Hilbert reciprocity law [48, Chapter VII], the left-hand side is equal toY
v real

.�1;�1/n.nC1/=2v �

Y
v real

.�1; ıv/
n
v D .�1/

rn.nC1/=2

(since ıv > 0 for all real v), which gives the expected result.

Remark 2.3. Given any k, let q be a quadratic form of dimension 2nC 1 and discrim-
inant 1 over k. Then, for any ı 2 k�, the quadratic form ıq has discriminant ı and
SO.ıq/ D SO.q/.

2.3. The even orthogonal case. In this subsection, we assume that the dimension of q
is 2n. It will be convenient to use the normalized discriminant ˛ D .�1/nı.

Suppose first that k is a p-adic field.

� If n D 1, there is only one equivalence class of quadratic forms of dimension 2
and normalized discriminant ˛ D 1. Its Hasse invariant is 1. The special orthogonal
group associated with it is isomorphic to GL1.k/.
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� Suppose that n > 2 or ˛ ¤ 1. There are two equivalence classes of quadratic forms
of dimension 2n and discriminant ı, characterized by their Hasse invariant. The spe-
cial orthogonal groups associated with them are non-isomorphic if and only if ˛ D 1.
When this is the case, the one with Hasse invariant .�1; �1/n.n�1/=2 (that is, the
quadratic form x1x2 C � � � C x2n�1x2n) is split, and the other one is non-quasi-split.
Otherwise, let l be the quadratic extension of k generated by a square root of ˛: if q
is a quadratic form of dimension 2n and discriminant ı over k, then �q has same
discriminant and opposite Hasse invariant for any scalar � 2 k� which is not an l=k-
norm, and SO.�q/ D SO.q/.

If k is isomorphic to the field of real numbers, there are n C 1 equivalence classes
of quadratic forms of dimension 2n and discriminant ı. Quadratic forms with signatures
.a; b/ and .a0; b0/ define isomorphic special orthogonal groups if and only if one has
b0 2 ¹a; bº. If ı < 0, there is no compact special orthogonal group. If ı > 0, there is exact-
ly one compact special orthogonal group: this is the one with b 2 ¹0; 2nº.

Proposition 2.4. Let k be a totally real number field of degree r , and let ı 2 k�=k�2.
Suppose that ıv > 0 for all real places v.

(1) There is a quadratic form q of dimension 2n and discriminant ı such that SO.q/
is compact at all real places and quasi-split at all finite places if and only if either n
is odd, or ı ¤ .�1/n, or rn.n � 1/=2 is even.

(2) Assume that ı ¤ .�1/n. For any finite place w such that ıw ¤ .�1/n and any
" 2 ¹�1; 1º, there is a quadratic form q as in .1/ satisfying the extra condition
".q ˝ kw/ D ".

Proof. A quadratic form q over k of dimension 2n and discriminant ı is entirely determ-
ined, up to equivalence, by the Hasse invariants ".qv/ 2 ¹�1; 1º for all finite places v and
the signatures .2n � 2c.qv/; 2c.qv// for all real places v. A quadratic form f with same
dimension and discriminant as q defines a special orthogonal group isomorphic to SO.q/
if and only if they have the same Hasse invariants for all finite v such that ˛v D 1, and
c.fv/ 2 ¹n � c.qv/; c.qv/º for all real places v.

For SO.q/ to be compact at all real places and quasi-split at all finite places, q must
have invariants cv 2 ¹0; nº for all real places v and "v D .�1;�1/

n.n�1/=2
v for all finite

places v such that ˛� D 1. (Recall that ˛ D .�1/nı.) By (2.1), such a q exists if and
only if Y

v finite
˛�¤1

"v �
Y
v finite
˛�D1

.�1;�1/n.n�1/=2v � .�1/ns D 1;

where s is the number of real places such that cv D n. If n is odd, we may adjust s 2
¹0; : : : ; rº so that this product is 1. If ˛ ¤ 1, we may adjust the signs "v for the finite v
such that ˛� ¤ 1 so that this product is 1. (Since the number of such v is at least 2, we may
even assume that "w is equal to a given sign " for a given w as in (2).) If n is even and
˛ D 1, the condition is Y

v finite

.�1;�1/n.n�1/=2v D 1
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and Hilbert’s reciprocity law says that the left-hand side is equal toY
v real

.�1;�1/n.n�1/=2v D .�1/rn.n�1/=2;

which gives the expected result.

2.4. Globalizing the base field. The following lemma will be useful in the remainder of
this section.

Lemma 2.5. Let F be a p-adic field.

(1) There exists a totally real number field k of even degree such that kw D F for some
finite place w of k dividing p.

(2) If p ¤ 2, we may further assume that there exists a finite place u of k such that
ku ' Q2.

Proof. We follow the proof of [2, Lemma 6.2.1]. Let us write F D Qp.ˇ/ for some root
ˇ 2 F of a monic irreducible polynomial f of degree r D ŒF W Qp� with coefficients
in Qp . Given a field E, we identify the space of monic polynomials of degree r with
coefficients in E with Er .

By Krasner’s lemma (see [50, Chapter 3, §1.5]), there is an open neighbourhood Up
of f in Qr

p such that any g 2 Up has a root ˇ0 2 xQp such that Qp.ˇ
0/ D F . Let U1 be

the open subset of Rr made of all monic polynomials with r distinct real roots. Since the
diagonal image of Qr in Rr �Qr

p is dense, the intersection

Qr
\ .U1 � Up/

is non-empty. We may replace f by a polynomial in this intersection, which we still
denote by f . The number field k D Q.ˇ/ is totally real, and kw D F for some fini-
te place w of k dividing p. If the degree of k is even, we are done. Otherwise, we choose
a monic irreducible polynomial g of degree 2 over Q which splits over R and Qp , whose
existence can be proven in the same way as above. Then replace k by k.
/, where 
 is
a root of g in Qp .

Suppose now that p ¤ 2, and let U2 be the open subset of Qr
2 made of all monic

polynomials with r distinct roots in Q2. We may replace f by a polynomial in Qr \

.U1 � Up � U2/, which we still denote by f . The number field k D Q.ˇ/ is totally real,
kw D F for some finite place w of k dividing p, and 2 is totally split in k. If the degree
of k is even, we are done. Otherwise, we choose a monic irreducible polynomial g of
degree 2 over Q which splits over R, Qp and Q2, then replace k by k.
/, where 
 is
a root of g in Qp .

Remark 2.6. With a similar argument, one can prove in addition to part (1) of Lemma 2.5
that, if E is a quadratic extension of F in xQp , there is a totally imaginary quadratic
extension l of k such that lw D E.

Remark 2.7. Part (2) of Lemma 2.5 will be needed in Section 9, in the symplectic case,
in order to apply the results of Appendix C.
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2.5. Proof of Theorem 2.1 in the special orthogonal case. We prove Theorem 2.1 in the
case whereG is special orthogonal, that is, there is a quadratic formQ over F such thatG
is isomorphic to SO.Q/. We will prove the following stronger result.

Theorem 2.8. Let Q be a quadratic form over F such that SO.Q/ is quasi-split. There
exist a totally real number field k and a quadratic form q over k such that

(1) there is a finite place w of k dividing p such that

(a) the field kw is equal to F ,

(b) the quadratic forms q ˝ F and Q are equivalent,

(2) the group SO.q ˝ kv/ is compact for all real v, and quasi-split for all finite v.

Proof. By Lemma 2.5, there exists a totally real number field k of even degree such
that kw and F are equal for some finite place w of k dividing p. Fix a 
 2 F � such that
the discriminant of Q is 
F �2, and fix a ı 2 k� such that 
�1ıw 2 F �2 and ıv > 0 for
all real v.

By Proposition 2.2 when Q has odd dimension and Proposition 2.4 when Q has even
dimension, there is a quadratic form q of discriminant ı satisfying (2). Moreover, the
quadratic forms q ˝ F and Q have the same discriminant and define quasi-split special
orthogonal groups.

If Q has odd dimension, or if Q has dimension 2n and 
 D .�1/n, they are thus
equivalent.

Otherwise, use Proposition 2.4 (2) with " D ".Q/ to ensure that q ˝ F and Q have
the same Hasse invariant: they are thus equivalent.

Remark 2.9. In addition to Theorem 2.8, there is always a finite place u ¤ w of k such
that the group SO.q ˝ ku/ is split: one can choose

(1) any finite place different from w in the odd orthogonal case,

(2) any finite place u ¤ w such that .�1/nıu 2 k�2u in the even orthogonal case.

2.6. Hermitian forms. In this subsection, l is a separable quadratic k-algebra (where k is
as in Section 2.1) and h is a (non-degenerate) l=k-Hermitian form on an l-vector space
of dimension n > 1. There exists a choice of non-zero scalars �1; : : : ; �n 2 k� such
that h is equivalent to the l=k-Hermitian form �1Nl=k.x1/ C � � � C �nNl=k.xn/ on ln.
The quantity

ı D ı.h/ D �1 � � ��n mod Nl=k.l�/ 2 k�=Nl=k.l�/

does not depend on this choice. It is called the discriminant of h. Fix an ˛ 2 k� such
that l is isomorphic to the k-algebra kŒX�=.X2 � ˛/. The image of ˛ in k�=k�2 will still
be denoted ˛.

Up to equivalence, h is uniquely determined by its trace form t , that is, the quadratic
form of dimension 2n over k obtained by seeing ln as a k-vector space [53, Theo-
rem 10.1.1].
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If l is split, that is, if l ' k � k, then Nl=k.l�/ D k� and we may choose ˛ D 1.
There is, up to equivalence, a unique l=k-Hermitian form of dimension n. Its discrim-
inant is trivial, and the unitary group associated with it is (non-canonically) isomorphic
to GLn.k/. More precisely, if one fixes an isomorphism l ' k � k of k-algebras, h iden-
tifies with a non-degenerate bilinear form on kn � kn, the group GLn.l/ identifies with
GLn.k/ � GLn.k/ and there is an isomorphism

GLn.k/ ' U.h/; g 7! .g; g�/; (2.3)

where g� is the contragredient of g 2 GLn.k/ with respect to h. (Note that changing
the isomorphism l ' k � k has the effect of exchanging g and g� in (2.3).) Also, the
trace form t of h is maximally isotropic, that is, it is the sum of n hyperbolic planes.

If l is a quadratic extension of k, a quadratic form of dimension 2n over k is the trace
form of an l=k-Hermitian form if and only if q ˝k l is maximally isotropic [53, Theo-
rem 10.1.2].

If l=k is a quadratic extension of p-adic fields, there are two equivalence classes of
l=k-Hermitian forms of dimension n, in bijection with k�=Nl=k.l�/ through the dis-
criminant.

� If n is odd, the unitary groups associated with these Hermitian forms are isomorphic.
More precisely, if ˛¤ 1 and h is a Hermitian form of odd dimension over k, then ıh is
unequivalent to h for any ı 2 k� such that ı … Nl=k.l�/, and the group U.ıh/D U.h/
is quasi-split.

� If n is even, the unitary group corresponding to the discriminant .�1/n=2 is quasi-
split, and the other one is non-quasi-split. The trace form t of h has discriminant
.�˛/n and Hasse invariant

".t/ D .˛; ı/ � .�˛;�1/n.n�1/=2:

If l=k is isomorphic to C=R, the Hermitian form h is uniquely determined, up to equi-
valence, by its signature .a; b/ with aC b D n. Its discriminant is .�1/b . Its trace form t

has discriminant 1 and signature .2a; 2b/. The unitary group U.h/ is compact if and only
if b 2 ¹0; nº.

If l is a totally imaginary quadratic extension of a totally real number field k (thus
˛v < 0 for all real places v of k), then h is uniquely determined, up to equivalence, by
any one of the following data:

(1) the equivalence class of its trace form t ,

(2) the Hasse invariants ".tv/ for all finite v and the integers b.tv/ for all real v,

(3) the equivalence classes of its localizations hv D h˝k kv for all v,

(4) the discriminants ı.hv/ for all finite v and the integers b.hv/ for all real v.

We have just seen that (3) and (4) are equivalent, and we have seen that (1) and (2) are
equivalent in Section 2.1. Now the fact that (2) and (3) are equivalent follows from the
formulas

".tv/ D .˛v; ı.hv//v � .�˛v;�1/
n.n�1/=2
v for finite v, b.tv/ D 2b.hv/ for real v,
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the first one including the case where lv D l ˝k kv splits over kv (as ˛v D 1 in this case)
and the fact that, when ˛v ¤ 1, the map x 7! .˛v; x/v is a bijection from k�v =Nlv=kv .l

�
v /

to ¹�1; 1º. Conversely, a family

..ıv/v finite; .bv/v real/; ıv 2 k
�
v =Nlv=kv .l

�
v /; bv 2 ¹0; : : : ; nº; (2.4)

corresponds to an l=k-Hermitian form of dimension n if and only if there exists a ı 2
k�=Nl=k.l�/ such that ı � ıv mod Nlv=kv .l

�
v / for all v (where we have put ıv D .�1/bv

at all real places v), and when it is the case such a Hermitian form is unique. Indeed, this
is certainly a necessary condition and, when it is satisfied, the family

.."v/v finite; .2bv/v real/; "v D .˛v; ıv/v � .�˛v;�1/
n.n�1/=2
v ; (2.5)

satisfies "v D 1 for almost all finite places v together withY
v finite

"v �
Y
v real

.�1/bv D
Y
v real

.˛v; ıv/v �
Y
v real

.�˛v;�1/
n.n�1/=2
v �

Y
v real

.�1/bv

D

Y
v real

.�1;�1/bvv �
Y
v real

.�1/bv

which is equal to 1 (thanks to the fact that ˛v < 0 and ıv D .�1/bv for all real v). Thus
there is a unique quadratic form of dimension 2n over k and discriminant .�˛/n with
local invariants (2.5). One can verify that it is maximally isotropic over l (as it is max-
imally isotropic over lv for all v). It is thus the trace form of an l=k-Hermitian form of
dimension n, as expected.

Proposition 2.10. Let k be a totally real number field of degree r and l be a totally
imaginary quadratic extension of k.

(1) There is a Hermitian form h of dimension n such that U.h/ is compact at all real
places.

(2) There is a Hermitian form h of dimension n such that U.h/ is compact at all real
places and quasi-split at all finite places if and only if either n is odd, or n and rn=2
are both even.

(3) Assume that n is odd. For any finite place w and any " 2 k�w=Nlw=kw .l
�
w/, there is

a Hermitian form h as in .2/ satisfying the extra condition

ı.h˝ kw/ D ":

Proof. Assertion (1) is verified by any Hermitian form h of dimension n over k such that
we have b.hv/ 2 ¹0; nº at all real places v.

Assume now that n D 2m for some m > 1. A Hermitian form h of dimension n and
discriminant ı satisfies (2) if and only if b.hv/ 2 ¹0; nº and ıv > 0 for all real v, and
ıv D .�1/

m for all finite v. Such a ı 2 k�=Nl=k.l�/ exists if and only if ıv 2 Nlv=kv .l
�
v /

for almost all finite v, and Y
v

.˛v; ıv/v D 1:
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The first condition is satisfied since lv is either split over kv or an unramified extension
of kv for almost all finite v. The second condition follows fromY

v

.˛v; ıv/v D
Y
v finite

.˛v;�1/
m
v D

Y
v real

.˛v;�1/
m
v D .�1/

rm

thanks to the Hilbert reciprocity law and the fact that ˛v < 0 for all real v.
Assume now that n is odd. A Hermitian form h of dimension n and discriminant ı

satisfies (2) if and only if b.hv/ 2 ¹0; nº at all real places v, and satisfies (3) if and only if
b.hv/ 2 ¹0; nº at all real places v and ı"�1 2 Nlw=kw .l

�
w/. Fix a finite place y ¤ w and

a � 2 l�y . We claim that such an h exists, with the extra conditions

� b.hv/ D 0 for all real places v,

� ı 2 Nlv=kv .l
�
v / for all places v … ¹w; yº and ı��1 2 Nly=ky .l

�
y /.

Arguing as in the case when n is even, it suffices to choose a � … Nly=ky .l
�
y /, which is

possible as soon as y has been chosen such that ˛y ¤ 1.

2.7. Proof of Theorem 2.1 in the unitary case. We prove Theorem 2.1 in the case whereG
is unitary, that is, there are a quadratic extension E of F and an E=F -Hermitian form H

over F such that G is isomorphic to U.H/. We will prove the following more precise
theorem.

Theorem 2.11. Let H be an E=F -Hermitian form such that U.H/ is quasi-split. There
exist a totally real number field k, a totally imaginary quadratic extension l of k and an
l=k-Hermitian form h such that

(1) there is a finite place w of k above p such that

(a) one has kw D F and lw D E,

(b) the Hermitian forms h˝ F and H are equivalent,

(2) the group U.h˝ kv/ is compact for all real v, and quasi-split for all finite v.

Proof. By Lemma 2.5 and Remark 2.6, there are a totally real number field k of even
degree and a totally imaginary quadratic extension l of k such that

kw D F and lw D E

for some finite place w of k dividing p.
By Proposition 2.10, there exists an l=k-Hermitian form h satisfying (2). Moreover,

the Hermitian forms h˝ F and H define quasi-split unitary groups.
If H has even dimension, they are thus equivalent. If H has odd dimension, one

uses Proposition 2.10 (3) with " D ı.H/ to ensure that h ˝ F and H have the same
discriminant: they are thus equivalent.

Remark 2.12. In addition to Theorem 2.11, there is always a finite place u ¤ w of k
such that U.h ˝ ku/ is split: it suffices to choose any finite place u ¤ w such that
lu ' ku � ku.
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2.8. The symplectic case. We now consider the case where G is a symplectic group,
that is, there exists a non-degenerate symplectic form A over F such that G D Sp.A/.
By Lemma 2.5, there exists a totally real number field k of even degree such that kw D F
for some finite placew of k dividing p. (Moreover, when p is odd, we may further assume
that there is a finite place u of k such that ku ' Q2.) In this case, Theorem 2.1 is given
by [59, §2.1.1]. See also [60, Proposition 3.1.2], where the inner form G is realized as
a rigid inner form of Sp2n over k.

3. Congruences of automorphic forms of definite groups

In this section, we fix a prime number `. Let xQ` be an algebraic closure of the field
of `-adic integers, xZ` be its ring of integers and xF` be its residue field. We fix a field
isomorphism

�W C ! xQ` (3.1)

and a number field k. We denote by A D Af �A1 the ring of adèles of k.
Given a locally compact, totally disconnected group G, an open subgroup K of G,

a commutative ring R and a smooth R-representation � of K, we denote by

HR.G; �/

the endomorphism R-algebra of the compact induction of � to G, called the Hecke R-
algebra of G relative to �. When � is the trivial R-character of K, it naturally identifies
with the convolution R-algebra made of K-bi-invariant, compactly supported R-valued
functions on G, and we denote it by HR.G;K/.

Let F be a p-adic field for some p ¤ `, G be the group of F -rational points of
a reductive group defined over F and � be an irreducible (smooth) representation of G
on a xQ`-vector space V . It is said to be integral if V carries a G-stable xZ`-lattice. Given
such a lattice L, the representation of G on the xF`-vector space L˝ xF` (where xF` is the
residue field of xZ`) is smooth and has finite length, and its semisimplification does not
depend on the choice of L [66, Theorem 1]. This semisimplification is denoted by r`.�/,
and called the reduction mod ` of � . One defines similarly the reduction mod ` of an
irreducible xQ`-representation of a compact, open subgroup of G.

3.1. Let G be a connected reductive group defined over k. We assume that G is definite,
that is, the group G.A1/ is compact. We embed diagonally G.k/ in G.Af / and set

Y D G.k/nG.Af /:

The quotient Y is compact [49, §5] and hence Y=K is finite for any open subgroup K
of G.Af /.

We denote by A.G/ the space of functions G.k/nG.A/! C which are square integ-
rable with respect to a Haar measure on G.A/. It is endowed with the natural unitary
C-representation of G.A/.
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3.2. Given an open subgroup K of G.Af /, let Alg.G;K/ be the free Z-module of finite
rank made of all functions Y ! Z which are invariant under right translations by K
[65, §3.3]. We consider the Z-module

Alg.G/ D C1.Y;Z/ D
[

K

Alg.G;K/

(where K ranges over all open subgroups of G.Af /) of locally constant functions Y! Z,
called trivial-at-infinity algebraic automorphic forms for G (see Section 3.3 below). This
module is endowed with the natural Z-representation of G.Af /. Given any commutative
ring R, we write

AlgR.G/ D Alg.G/˝Z R; AlgR.G;K/ D Alg.G;K/˝Z R:

The natural R-representation of G.Af / on AlgR.G/ is admissible [65, §3.3.2].
If R is the field xQ`, the representation of G.Af / on Alg xQ`.G/ is semisimple and

any of its irreducible components has an OE -structure for some finite extension E of Q`

in xQ` [65, §3.3.2].

3.3. Let K be an open subgroup of G.Af / and R be a commutative ring. The Hecke
R-algebra of G.Af / relative to K is the convolution R-algebra

HR.G;K/ D HR.G.Af /;K/

made of K-bi-invariant, compactly supported functions G.Af /! R. It naturally acts on
the R-module AlgR.G;K/.

As G is definite, there is, by [21, Proposition 8.5], an explicit isomorphism

AlgC.G;K/ ' A.G/K�G.A1/

of HC.G;K/-modules (see [21, (8.4) and Proposition 8.3]). In particular, there is a bijec-
tion

‚$ … (3.2)

between

� the irreducible subrepresentations ‚ of AlgC.G/ such that the space ‚K of K-fixed
vectors in ‚ is non-zero,

� the irreducible automorphic representations … D …f ˝…1 of G.A/ D G.Af / �
G.A1/, that is, the irreducible subrepresentations of A.G/ such that …1 is trivial
and …K

f
is non-zero.

3.4. Let us fix an irreducible automorphic representation … of G.A/ which is trivial
on G.A1/. By (3.2), we can see … as an irreducible subrepresentation of AlgC.G/, thus
as an irreducible factor of Alg xQ`.G/ via the isomorphism � fixed in (3.1).

We fix two finite places w and u of k not dividing ` and a finite set S of finite places
of k such that
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(1) the set S contains w, u and all finite places above `,

(2) for any finite place v … S, the group G is unramified over kv , and the local com-
ponent …v is unramified with respect to some hyperspecial maximal compact sub-
group Kv of G.kv/.
Any finite place v … S thus defines a character

�vW H xQ`.G.kv/;Kv/!
xQ` (3.3)

which we call the Satake parameter of …v .
Recall that… is admissible and has an OE -structure for some finite extensionE of Q`

in xQ`. Let us write … D ….`/ ˝…
.`/, where ….`/ is the tensor product of all …v such

that v divides ` and ….`/ is the restricted tensor product of all …v such that v is finite
and does not divide `. By [65, Appendix A.3], both ….`/ and ….`/ have an OE -structure.
By applying [65, Appendix A.4] to ….`/, we get that each …v , for v … S finite, has an
OE -structure. Fixing such an OE -structure, the OE -algebra HOE .G.kv/;Kv/ acts on it
through the character �v , which thus has values in OE . It follows that the restriction of �v
to HxZ`.G.kv/;Kv/ has values in xZ`.

3.5. We now make the following assumptions on the representation … of Section 3.4:

� the local component …w is cuspidal, and is compactly induced from an irreducible
representation of some compact open subgroup Kw of G.kw/,

� the local component …u is cuspidal, and is compactly induced from an irreducible
representation � of some compact mod centre open subgroup Ku of G.ku/.

For any finite place v 2 S such that v … ¹u; wº, we fix a compact open subgroup Kv
of G.kv/ such that…v has a non-zero Kv-invariant vector. Recall that, for any finite place
v … S, we have fixed a hyperspecial maximal compact open subgroup Kv of G.kv/ in
Section 3.4. We define

K D
Y
v finite

Kv:

This is an open subgroup of G.Af /.
Given an irreducible representation � of Kw , we define an irreducible representation

ƒ D ƒ.�/ of K by
ƒ D

O
v finite

ƒv

with ƒw D �, ƒu D �, and ƒv is the trivial character of Kv for v … ¹w; uº.
We denote by Alg xQ`.G; ƒ/ the subrepresentation of Alg xQ`.G/ generated by its ƒ-

isotypic component, that is, the subrepresentation formed by the irreducible factors ‚
such that

� the local component ‚w contains �,

� the local component ‚u contains �,

� the local component ‚v has a non-zero Kv-invariant vector for all finite v … ¹w; uº.
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This amounts to considering the space

V D V.�/ D HomK.ƒ;Alg xQ`.G//

seen as a module over the endomorphism xQ`-algebra H xQ`.G; ƒ/ D H xQ`.G.Af /;ƒ/ of
the compact induction of ƒ from K to G.Af /. We have an H xQ`.G; ƒ/-module decom-
position

V D
M
‚

HomK.ƒ;‚/; (3.4)

where ‚ ranges over the irreducible factors of Alg xQ`.G;ƒ/, and each HomK.ƒ;‚/ is of
finite dimension as‚ is admissible. By admissibility again, the number of‚ contributing
to the direct sum of (3.4) is finite.

Denote by X the set of finite places of k. For any non-empty subset T of X and any
irreducible factor ‚ contributing to the right-hand side of (3.4), we write

KT D
Y
v2T

Kv; ƒT D
O
v2T

ƒv; ‚T D
O
v2T

‚v:

We thus have K D KS � KXnS, ƒ D ƒS ˝ƒXnS and ‚ is isomorphic to ‚S ˝‚XnS.
Accordingly, we have an isomorphism of xQ`-algebras

H xQ`.G; ƒ/ ' H xQ`.G.AS/;KS/˝H xQ`.G.AXnS/;ƒXnS/; (3.5)

where AS and AXnS have their obvious meaning, and an isomorphism of H xQ`.ƒ/-mod-
ules

HomK.ƒ;‚/ ' HomKS.ƒS; ‚S/˝ .‚XnS/
KXnS

via (3.5). The factor .‚XnS/
KXnS has dimension 1 over xQ`, and H xQ`.G.AXnS/;KXnS/

acts on this line via a character that we denote by �S.‚/. Let dS.‚/ be the dimension
of HomKS.ƒS; ‚S/. Denoting by VS the restriction of V to H xQ`.G.AXnS/;KXnS/, we
therefore have an isomorphism

VS '
M
‚

dS.‚/ � �S.‚/ (3.6)

of H xQ`.G.AXnS/;KXnS/-modules.

3.6. Assume now that � is integral. Fix a Ku-stable xZ`-lattice L� of � with semisimple
reduction (by [15, Lemma 6.11]). Since Kw is compact, � is integral. We also fix a Kw -
stable xZ`-lattice L� of � with semisimple reduction. If v is a finite place different from
u, w, let Lv D xZ` be the natural lattice of ƒv D xQ`. Tensoring these ƒv altogether,
we obtain a K-stable xZ`-lattice Lƒ of ƒ. Set

Vı D HomK.Lƒ;AlgxZ`.G//:

It is a module over HxZ`.G.Af /;Lƒ/. Set xƒ D Lƒ ˝xZ`
xF`. By [65, Lemme 3.7.3] (which

we can apply since K satisfies [65, (3.5.1)] by [65, Lemme 3.8]), the xZ`-module Vı is
a xZ`-lattice of V and

Vı ˝xZ`
xF` ' HomK.xƒ;AlgxF`.G//:
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Denote the left-hand side by xV and continue to see it as a module over HxZ`.G.Af /;Lƒ/.
Note that xV is semisimple and depends only on r`.�/, the reduction mod ` of �.

3.7. We now assume that G.kw/ is isomorphic to a special orthogonal, unitary or sym-
plectic group. We do not assume that it is quasi-split, but we assume that it is not iso-
morphic to the split special orthogonal group SO2.kw/ ' k�w . Equivalently, we assume
that it has compact centre [41, §4.2]. Consequently, any cuspidal irreducible xQ`-represen-
tation of G.kw/ is integral. In the rest of this section, we will prove the following theorem.

Theorem 3.1. Assume that G.kw/ is isomorphic to a special orthogonal, unitary or
symplectic group with compact centre, and that w does not divide 2. Let … be an irredu-
cible automorphic representation of G.A/ such that

� …1 is trivial,

� …w is cuspidal (and integral),

� …u is integral and compactly induced from a compact mod centre, open subgroup
of G.ku/.

Let � 0 be an (integral) irreducible cuspidal xQ`-representation of G.kw/ such that

r`.…w/ � r`.�
0/: (3.7)

There is an irreducible automorphic representation …0 of G.A/ such that

(1) the Archimedean component …01 is trivial,

(2) the local component …0w is isomorphic to � 0,

(3) the local components …0u and …u are isomorphic,

(4) for any finite place v … S, the local component …0v is Kv-unramified, with Satake
parameter �0vWHxZ`.G.kv/;Kv/!

xZ`, and �v , �0v are congruent mod the maximal
ideal of xZ`.

Remark 3.2. Since … is integral, it automatically follows from [65, Appendices A.3
and A.4] that the representation …u is integral. However, for clarity, we added the integ-
rality assumption in the hypotheses of Theorem 3.1.

Proof of Theorem 3.1. We follow the argument of Khare [32] and Vignéras [65]. We start
with following lemma, which we will prove in Section 3.8.

Lemma 3.3. Let p be a prime number different from 2, let F be a p-adic field and G be
a special orthogonal, unitary or symplectic group over F . Suppose that G has compact
centre, that is, G is not isomorphic to the split special orthogonal group SO2.F / ' F �.
Let � and � 0 be (integral) cuspidal xQ`-representations of G such that

r`.�/ 6 r`.�
0/:

There are a compact open subgroup J of G and irreducible xQ`-representations � and � 0

of J such that � is isomorphic to the compact induction of � to G and � 0 is isomorphic
to the compact induction of � to G0 and r`.�/ 6 r`.� 0/.
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Remark 3.4. It is known [58] that any cuspidal xQ`-representation of G is isomorphic to
the compact induction of an (irreducible) representation of some compact open subgroup
ofG. The point here is that one can choose the same compact open subgroup for � and � 0.

Applying Lemma 3.3 to the group G.kw/ and the cuspidal xQ`-representations …w

and � 0, we obtain a compact open subgroup Kw of G.kw/ and irreducible representa-
tions � and � 0 of Kw such that …w is isomorphic to the compact induction of � to G.kw/
and � 0 is isomorphic to the compact induction of � 0 to G.kw/. Since Kw is compact,
� and � 0 are integral.

Let � be an irreducible representation of a compact mod centre, open subgroup Ku
of G.ku/ such that the compact induction of � to G.ku/ is isomorphic to …u. Since …u

is integral, the representation � is integral. Thus… satisfies the conditions of Sections 3.5
and 3.6.

As in Section 3.5, we define ƒ D ƒ.�/ and V D V.�/. Associated with a choice of
Kw -stable xZ`-lattice of � with semisimple reduction, there are Vı and xV. Similarly, repla-
cing � by � 0, we define ƒ0, V0, V0ı and xV0. Recall that xV and xV0 are semisimple. The key
point is that the space xV is non-zero and contained in xV0, since we have r`.�/ 6 r`.� 0/ by
Lemma 3.3.

The character �S.…/ of HxZ`.G.AXnS/;KXnS/ defined by … occurs in VıS. By reduc-
tion, we get a character x�S of HxF`.G.AXnS/;KXnS/ occurring in xVS, and therefore in xV0S.

According to Deligne–Serre’s lemma [19, Lemma 6.11], there is a character �0S of
HxZ`.G.AXnS/;KXnS/ occurring in V0ıS such that its reduction equals x�S.

Therefore, there is an irreducible factor …0 of Alg xQ`.G/ contributing to V0S such
that �S.…

0/ and �0S coincide on H xQ`.G.AXnS/;KXnS/. Such a …0 satisfies the conditions
of the theorem.

3.8. In remains to prove Lemma 3.3.

Proof of Lemma 3.3. According to [58, Theorem 7.14] (and [41, Appendix A]), there are
a compact open subgroup J ofG and an irreducible xQ`-representation � of J such that �
is isomorphic to the compact induction of � to G. More precisely, the pair .J; �/ can
be chosen among cuspidal types of G in the sense of [41, Appendix A]. It then has the
following properties:

� There is a normal pro-p-subgroup J 1 of J such that J=J 1 is isomorphic to the group
of rational points of a reductive group G (whose neutral component is denoted by Gı)
defined over the residue field of F .

� The representation � decomposes as � ˝ �, where � is a representation of J whose
restriction to J 1 is irreducible and � is an irreducible representation of J whose
restriction to J 1 is trivial.

� More precisely, � is a beta-extension [58, §4.1] of a skew semisimple character �
[58, §3.1] defined with respect to a skew semisimple stratum Œƒ;ˇ� [58, §2.1] and � is
the inflation of a representation of J=J 1 whose restriction to the rational points of Gı

is cuspidal.
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� The centre of the centralizerGE ofE D F Œˇ� inG is compact, and the parahoric sub-
group P ı.ƒE / of GE associated with Œƒ; ˇ� (see [58, §2.1]) is a maximal parahoric
subgroup of GE .

Lemma 3.5. The character � occurs in � 0.

Proof. By definition, � is a character of an open pro-p-subgroup H 1 D H 1.ƒ; ˇ/ of G.
Since � occurs in the restriction of � to H 1, its reduction mod ` occurs in r`.� 0/jH1 .
Let V be an irreducible summand of � 0jH1 such that r`.V / contains r`.�/. Since H 1 is
a pro-p-group, V is isomorphic to � .

Now let C denote the set of pairs .Œƒ0; ˇ�; � 0/ made of a skew semisimple stratum
Œƒ0; ˇ� and a skew semisimple character � 0 2 C.ƒ0; ˇ/ occurring in � 0 such that

P ı.ƒ0E / � P
ı.ƒE /;

and Cmin denote the subset of C made of all .Œƒ0; ˇ�; � 0/ such that P ı.ƒ0E / is minimal
among all parahoric subgroups of GE occurring this way.

Let us prove that Cmin D C. Let .Œƒ0; ˇ�; � 0/ 2 Cmin. Then [58, §7.2] (in particular,
Lemma 7.4) and [41, Appendix A] imply that � 0 contains a cuspidal type .J 0; �0 ˝ � 0/,
where J 0 D J.ƒ0; ˇ/ for some skew semisimple stratum Œƒ0; ˇ� and �0 is any beta-ex-
tension of � 0. By definition of a cuspidal type, P ı.ƒ0E / is a maximal parahoric subgroup
of GE . It is thus equal to P ı.ƒE /.

It follows that .Œƒ; ˇ�; �/ 2 Cmin. We thus may choose

.Œƒ0; ˇ�; � 0/ D .Œƒ; ˇ�; �/

(hence J 0 D J ) and �0 D � in the paragraph above. Thus � 0 contains a cuspidal type
.J;�˝ � 0/. It follows from [58, Corollary 6.19] that the compact induction of � 0 D �˝ � 0

from J to G is isomorphic to � 0.
The representation � is integral (since the group J is compact) and its reduction

mod ` is irreducible (by [34, Remark 6.3]). Applying the functor HomJ 1.�; �/ from
representations of G to representations of J which are trivial on J 1, which is compat-
ible to reduction mod `, we deduce from [34, Corollary 8.5] that r`.�/ 6 r`.� 0/, thus
r`.�/ 6 r`.� 0/.

4. Globalizing representations

In this section, we fix a p-adic field F and a quasi-split special orthogonal, unitary or
symplectic group G over F . Let k, w and G be as in Theorem 2.1, and | WG.F / ' G be
an isomorphism of locally compact groups which we use to identify G.F / with G.

Let ` denote a prime number different from p, and fix a field isomorphism � as in (3.1).
Let u be a finite place of k different from w, not dividing `.

In Section 4.2 only, the prime number p will be assumed to be odd.
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4.1. The next proposition is the first step towards Theorem 4.4. (See also Section 1.3.)

Proposition 4.1. Let � be a unitary cuspidal irreducible complex representation of G,
and let � be a unitary cuspidal irreducible complex representation of G.ku/. There is an
irreducible automorphic representation … of G.A/ such that

(1) the local component …u is isomorphic to �,
(2) the local component …w is isomorphic to � ,
(3) the local component …v is the trivial character of G.kv/ for any real place v of k.

Remark 4.2. When the centre ofG is compact, any cuspidal irreducible representation �
of G is unitarizable. The only case when G has a non-compact centre is when it is iso-
morphic to the split special orthogonal group SO2.F / ' F � (see [41, §4.2]).

Proof of Proposition 4.1. Let Z be the centre of G. We start the proof by the following
lemma.

Lemma 4.3. There is a unitary automorphic character �WZ.A/=Z.k/! C� such that

(1) the local component �u is equal to the central character !� of �,
(2) the local component �w is equal to the central character !� of � ,
(3) the local component �v is the trivial character of Z.kv/ for any real place v of k.

Proof. Let U denote the subgroup Z.ku/ � Z.kw/ � Z.A1/ of Z.A/. The intersection
U \ Z.k/ is trivial, thus U identifies with a locally compact subgroup of Z.A/=Z.k/.
By Pontryagin duality, any unitary character of U extends to Z.A/=Z.k/. (Note that !�
and !� are unitary.)

We now follow the proof of [24, Appendice 1]. Let�WZ.A/=Z.k/! C� be a unitary
automorphic character as in Lemma 4.3. Let y be a finite place different from u and w.

Let us choose coefficients fu and fw of � and � , respectively, which are non-zero
at 1.

For all real places v of k, let fv be the constant function equal to 1 on G.kv/. As this
group is compact, fv is smooth and compactly supported.

For all finite places v ¤ y such that G is unramified over kv and �v is unramified,
let fv be the complex function on G.kv/ supported on Z.kv/Kv such that fv.zg/ D
�v.z/ for all z 2 Z.kv/ and all g in a fixed hyperspecial maximal compact subgroup Kv
of G.kv/.

For any other place x, we choose a smooth complex function fx on G.kx/, non-zero
at 1, compactly supported modulo Z.kx/ with restriction to this later group equal to �x .

We let f be the product of all these fv . It is smooth and compactly supported on G.A/.
We may and will assume that

� the support of fy is small enough so that

f .g�1/f .
g/ D 0 for all g 2 G.A/, 
 2 G.k/ such that 
 … Z.k/,

� and fv.g/ D fv.g�1/ for all places v of k and all g 2 G.kv/.
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We construct, as in [24], the Poincaré series

Pf .g/ D
X


2Z.k/nG.k/

f .
g/ for g 2 G.A/:

We are in a particular case of the proof of [24, Appendice 1], so this is well defined,
non-zero, square-integrable and even cuspidal. There is thus an irreducible automorphic
representation … of G.A/, with central character �, such that, for each place v of k,
one has Z

Z.kv/nG.kv/
fv.g

�1/…v.g/ dg ¤ 0;

where dg denotes a Haar measure on Z.kv/nG.kv/. In particular, the local components
…u and …w are isomorphic to � and � , respectively. At any real place v, the representa-
tion …v contains a vector which is G.kv/-invariant, so …v is trivial.

4.2. We now assume that p ¤ 2.

Theorem 4.4. Let �1, �2 be integral cuspidal irreducible xQ`-representations of G such
that r`.�1/ 6 r`.�2/. Let � be a unitary cuspidal irreducible complex representation of
G.ku/ which is compactly induced from some compact mod centre, open subgroup of
G.ku/. Assume thatG is not the split special orthogonal group SO2.F /' F �. There are
irreducible automorphic representations …1 and …2 of G.A/ such that

(1) …1;u and …2;u are both isomorphic to �,

(2) …1;w ˝C xQ` is isomorphic to �1 and …1;w ˝C xQ` is isomorphic to �2,

(3) …1;v and …2;v are trivial for any real place v,

(4) there is a finite set S of places of k, containing all real places, such that for all v … S:

(a) the local components …1;v and …2;v are unramified with respect to some hyper-
special maximal compact subgroup Kv of G.kv/,

(b) the restrictions of the Satake parameters of …1;v ˝C xQ` and …2;v ˝C xQ` to
the Hecke xZ`-algebra HxZ`.G.kv/;Kv/ are congruent mod the maximal ideal m

of xZ`.

Remark 4.5. The assumption onG implies that the centre ofG is compact, thus any cus-
pidal irreducible xQ`-representation of G is integral.

Proof of Theorem 4.4. First, let us apply Proposition 4.1 with � D �1 ˝ xQ` C. (Since the
centre of G is compact, the central character of � has finite order, thus � is unitarizable.)
We obtain an irreducible automorphic representation …1 of G.A/ such that

(1) the local component …1;u is isomorphic to �,

(2) the local component …1;w ˝C xQ` is isomorphic to �1,

(3) the local component …1;v is the trivial character of G.kv/ for any real place v.
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We then choose for S a set of finite places of k as in Section 3.4, that is, S contains u, w
and all places dividing `, and, for any finite place v … S, the local component …1;v is
unramified with respect to some hyperspecial maximal compact subgroup Kv of G.kv/.
For such v, this defines a xZ`-character �1;v of HxZ`.G.kv/;Kv/.

We now apply Theorem 3.1 with � 0 D �2. The conditions of Section 3.5 are auto-
matically satisfied for …1;w thanks to [58]. We get an irreducible automorphic represent-
ation …2 of the group G.A/, trivial at infinity, such that

(1) the local component …2;w ˝C xQ` is isomorphic to �2,

(2) the local component …2;u is isomorphic to �,

(3) for all finite places v … S, the local component …2;v ˝C xQ` is Kv-unramified with
associated xZ`-character �2;vWHxZ`.G.kv/;Kv/!

xZ`, and �1;v and �2;v are congru-
ent mod m.

This proves Theorem 4.4.

5. Global transfer

5.1. Quasi-split classical groups. Let k be either a p-adic field for some prime number p,
or a real Archimedean local field, or a totally real number field. We will consider the
following families of quasi-split reductive groups over k:

(1) For n > 1, the (split) symplectic group Sp2n defined as Sp.f /, where f is the altern-
ating form on k2n � k2n defined by

f .x1; : : : ; x2n; y1; : : : ; y2n/ D x1y2n � x2ny1 C � � � C xnynC1 � xnC1yn: (5.1)

(2) For n > 1 and ˛ 2 k�, the (split) special orthogonal group SO2nC1 defined as SO.q/,
where q is the quadratic form on k2nC1 of discriminant .�1/n˛ defined by

q.x1; : : : ; x2nC1/ D x1x2 C � � � C x2n�1x2n C ˛x
2
2nC1: (5.2)

(3) For n > 1 and ˛ 2 k�, the special orthogonal group SO˛2n defined as SO.q/, where q
is the quadratic form on k2n of discriminant .�1/n˛ defined by

q.x1; : : : ; x2n/ D x1x2 C � � � C x2n�3x2n�2 C x
2
2n�1 � ˛x

2
2n: (5.3)

(4) For n > 1 and ˛ 2 k�, the unitary group U˛n defined as U.h/, where h is the l=k-
Hermitian form on ln of discriminant .�1/n.n�1/=2 defined by

h.x1; : : : ; xn/ D x
c
1xn � x

c
2xn�1 C � � � C .�1/

n�1xcnx1; (5.4)

where l is the k-algebra kŒX�=.X2 � ˛/ and c is the non-trivial automorphism of l=k.
If ˛ 2 k�2, the k-group U˛n is thus isomorphic to GLn.

In the even orthogonal and unitary cases, the image of ˛ in k�=k�2 will still be
denoted by ˛.
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5.2. The dual group. In this subsection, k is either a p-adic field or a totally real number
field and G� is one of the quasi-split special orthogonal, unitary or symplectic k-groups
of Section 5.1. We define its dual group

yG D

8̂̂̂̂
<̂
ˆ̂̂:

SO2nC1.C/ if G� D Sp2n;

Sp2n.C/ if G� D SO2nC1;

SO2n.C/ if G� D SO˛2n;

GLn.C/ if G� D U˛n:

In the even orthogonal case, the groups SO2n.C/ � O2n.C/ are defined with respect to
the symmetric bilinear form h�; �i on C2n given by

hei ; ej i D

´
0 if i C j ¤ 2nC 1,

1 otherwise,

where .e1; : : : ; e2n/ is the canonical basis of C2n.

5.3. The local Langlands correspondence. In this subsection, k is a p-adic field and G�

is either the general linear k-group GLn for some n > 1 (whose dual group is GLn.C/) or
one of the quasi-split classical k-groups of Section 5.1. We denote by Wk the Weil group
of xQp over k, and define the semi-direct product LG D yG ÌWk , where

� the action of Wk on yG is trivial when G� is split (that is, when G� is general lin-
ear, symplectic, odd orthogonal, even orthogonal with ˛ D 1 or unitary with ˛ D 1),

� when G� is even orthogonal and ˛ ¤ 1, and if l denotes the quadratic extension
of k in xQp generated by a square root of ˛, the action of Wk on yG factors through
Gal.l=k/, the generator c of which acts by conjugacy by the element w 2 O2n.C/
fixing e1; : : : ; en�1; enC2; : : : ; e2n and exchanging en and enC1 (thus yG Ì Gal.l=k/
identifies with O2n.C/),

� when G� is unitary and ˛ ¤ 1, and if l denotes the quadratic extension of k in xQp

generated by a square root of ˛, the action of Wk on yG factors through the group
Gal.l=k/ whose generator c acts by

g 7! g� D J � tg�1 � J�1;

where tg denotes the transpose of g 2 GLn.C/ and J is the antidiagonal matrix in
GLn.C/ defined by Ji;j D 0 if i C j ¤ nC 1 and Ji;nC1�i D .�1/i�1.

Let WDk DWk � SL2.C/ denote the Weil–Deligne group of k. A (local) Langlands
parameter for G.k/ is a group homomorphism

'W WDk ! yG ÌWk

such that

� its restriction to Wk is smooth,

� its restriction to SL2.C/ is algebraic,
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� the projection of '.Wk/ onto yG is made of semisimple elements, and

� the projection of '.w; x/ onto Wk is equal to w for all .w; x/ 2WDk .

When G� is split, this is the same as a morphism WDk ! yG satisfying the first three
points. In the even orthogonal case with ˛ ¤ 1, this is the same as a morphism WDk !
O2n.C/ satisfying the first three points and whose determinant is the quadratic character

x 7! .˛; x/

of k�, which can be seen as a character of Wk via the Artin reciprocity map of local
class field theory. We say a local Langlands parameter ' is bounded if '.Wk/ is relatively
compact in yG.

Let

� ˆ.G�; k/ be the set of yG-conjugacy classes of local Langlands parameters for G�

over k,

� ….G�.k// be the set of isomorphism classes of irreducible representations of G�.k/.
When G� is the general linear group GLn, the local Langlands correspondence [23,25]

is a bijection from ….GLn.k// to ˆ.GLn; k/.
When G� is classical, the local Langlands correspondence ([2, Theorem 2.2.1], [46,

Theorems 2.5.1 and 3.2.1], see also [4, Theorems 3.2, 3.6 and Remarks 3.3, 3.7]) defines

(1) (symplectic, odd orthogonal and unitary cases) a partition

….G�.k// D
a

'2ˆ.G�;k/

…'.G�.k// (5.5)

into non-empty finite sets …'.G�.k// if G� is symplectic, odd special orthogonal or
unitary,

(2) (even orthogonal case) a partition

….SO˛2n.k// D
a

'2ˆ.SO˛
2n
;k/=O2n.C/

…'.SO˛2n.k//; (5.6)

where each …'.SO˛2n.k// is non-empty, finite and stable under O˛2n.k/-conjugacy.

In each case, we have the following properties:

� …'.G�.k// contains a tempered representation if and only if ' is bounded. When
this is the case, all representations in …'.G�.k// are tempered. (See, for instance, [2,
Theorem 1.5.1] for symplectic and special orthogonal groups, and [31, Theorem 1.6.1]
for unitary groups.)

� …'.G�.k// contains a discrete series representation if and only if ' is bounded and
the quotient of the centralizer of the image of ' in yG by Z.yG/Wk is finite. When
this is the case, all representations in …'.G�.k// are discrete series representations.
(See, for instance, [68, Theorem 2.2] for symplectic and special orthogonal groups,
and [31, Theorem 1.6.1] for unitary groups.)
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5.4. The local transfer. In this subsection, k is a p-adic field and G� is one of the quasi-
split classical k-groups of Section 5.1. If G� is symplectic or special orthogonal, there is
a morphism StdW yG! GLN .C/ with

N D N.G�/ D

´
2n if G� D SO2nC1 or G� D SO˛2n;

2nC 1 if G� D Sp2n;
(5.7)

given by the natural inclusion. We extend it to a morphism StdW yG ÌWk ! GLN .C/ as
follows:

� Std is trivial on Wk when G� is split,

� when G� is even orthogonal and ˛¤ 1, Std is trivial on Wl and Std.c/Dw 2O2n.C/,
thus Std factors through

SO2n.C/ ÌWk� SO2n.C/ Ì Gal.l=k/ ' O2n.C/ � GL2n.C/

(see also [4, §3.2]).

In the unitary case (G� D U˛n), we need to introduce the k-group GL˛n , the restriction
of GLn with respect to l=k. Its dual group is GLn.C/ � GLn.C/, and we define the
semi-direct product

LGL˛n D .GLn.C/ � GLn.C// ÌWk ;

where

� the action of Wk is trivial when l=k is split,

� otherwise, the action of Wk factors through Gal.l=k/ and c acts by .g; h/ 7! .h; g/.

It will be convenient to set
N D N.U˛n/ D n: (5.8)

Let Std be the morphism yG ÌWk ! .GLN .C/ � GLN .C// ÌWk defined by g Ì w 7!
.g; g�/ Ì w.

Given an irreducible representation � 2 ….G�.k//, let ' 2 ˆ.G�; k/ be a Langlands
parameter such that � 2 …'.G�.k//. (In the even orthogonal case, ' is determined up to
O2n.C/-conjugacy only.)

If G� is symplectic or special orthogonal, then, composing with Std, we get a local
Langlands parameter � D Std ı ' 2 ˆ.GLN ; k/, uniquely determined up to GLN .C/-
conjugacy.

If G� is unitary, then, composing with Std, we obtain a Langlands parameter

Std ı 'W WDk ! .GLN .C/ � GLN .C// ÌWk :

� If l is non-split, its restriction to WDl has the form .w;x/ 7! .�.w;x/;�.w;x/�/Ìw
for a local Langlands parameter � 2ˆ.GLN ; l/, uniquely determined up to GLN .C/-
conjugacy.

� If l is split, it is of the form .w; x/ 7! .�.w; x/; �.w; x/�/ Ì w for a local Langlands
parameter � 2 ˆ.GLN ; k/, uniquely determined up to GLN .C/-conjugacy.
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Definition 5.1. The local transfer of � , denoted by t.�/, is the isomorphism class of ir-
reducible representations associated with � through the local Langlands correspondence.
It is

(1) a class of representations of GLN .k/ if G� is symplectic or special orthogonal,

(2) a class of representations of GLN .l/ if G� is unitary,

which is uniquely determined by the isomorphism class of � .

Remark 5.2. If G� is unitary and l is split over k, and if we fix an isomorphism of
k-algebras l ' k � k, which we use to identify U˛n.k/ with GLn.k/ and GLN .l/ with
GLN .k/ � GLN .k/, then

t.�/ D � ˝ �_ (5.9)

(where �_ is the contragredient of �). This does not depend on the choice of l ' k � k.
Indeed, making the other choice twists the isomorphism U˛n.k/ ' GLn.k/ by g 7! g�

(see (2.3) and the explanation thereafter) and the isomorphism GLN .l/ ' GLN .k/ �
GLN .k/ by .g; h/ 7! .h; g/, which gives (5.9) again since g 7! �.g�/ is isomorphic
to �_.

In Section 6, we will describe explicitly the local transfer for unramified representa-
tions when G� is unramified over k, and will describe its congruence properties.

5.5. Arthur parameters in the symplectic and orthogonal cases. In this subsection, k is
a totally real number field and G� is symplectic or quasi-split special orthogonal. We
write A for the ring of adèles of k and N D N.G�/ (see (5.7)).

Definition 5.3. A discrete global Arthur parameter (for G�) is a formal sum

 D …1Œd1�˚ � � � ˚…r Œdr � (5.10)

for some integer r > 1, where, for each i 2 ¹1; : : : ; rº, di is a positive integer and …i is
a self-dual cuspidal automorphic irreducible representation of GLNi .A/ for someNi > 1,
such that

(1) one has N1d1 C � � � CNrdr D N ,

(2) if r > 2 and …i ' …j for some i ¤ j in ¹1; : : : ; rº, then di ¤ dj ,

(3) the self-dual representation …i has the same parity as yG if di is odd, and has the
opposite parity if di is even, where the parity of …i is defined to be orthogonal if
L.s; …i ; Sym2/ has a pole at s D 1, and symplectic if L.s; …i ;^

2/ has a pole at
s D 1,

(4) the character !d1…1 � � �!
dr
…r

is trivial if G� D Sp2n or G� D SO2nC1, and is equal to
the quadratic character

�˛W x 7!
Y
v

.˛v; xv/v 2 ¹�1; 1º

of A�=k� if G� D SO˛2n, where !…i is the central character of …i .
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A discrete global Arthur parameter †1Œe1� ˚ � � � ˚ †sŒes� is said to be equivalent
to (5.10) if we have s D r and there is a permutation " 2 Sr such that ei D d".i/ and
†i ' …".i/ for each i . Let

‰2.G�/

be the set of equivalence classes of discrete global Arthur parameters for G�.
Associated with a discrete global Arthur parameter 2‰2.G�/ given by (5.10), there

are a local Arthur parameter  v and a local Arthur packet … v .G�.kv// for each finite
place v of k: see (5.11) and (5.12) below.

Let v be a finite place of k, and consider the local component …i;v for some i . It is
a unitarisable irreducible representation of GLNi .kv/. Associated with it through the local
Langlands correspondence for GLNi .kv/, there is a local Langlands parameter

�i;vW WDkv ! GLNi .C/;

uniquely determined up to GLNi .C/-conjugacy. Since one does not know whether …i;v

is tempered, the parameter �i;v might not be bounded.
We define a morphism

 v D .�1;v � Sd1/˚ � � � ˚ .�r;v � Sdr /W WDkv � SL2.C/! GLN .C/; (5.11)

where Sd D Symd�1 denotes the unique irreducible algebraic representation of SL2.C/
of dimension d > 1. Recall that we have defined a morphism Std in Section 5.3.
By [2, Theorem 1.4.2], there is a local Arthur parameter �WWDkv � SL2.C/! yG ÌWkv

such that  v is GLN .C/-conjugate to Std ı �. The parameter � is uniquely determined up
to yG-conjugacy, except if G� D SO˛2n and all N1d1; : : : ; Nrdr are even, in which case
there are two yG-conjugacy classes of such �.

Associated with  v , there is a multiset… v .G�.kv// of irreducible smooth represen-
tations of G�.kv/, that is, a map

….G�.kv//! Z>0 (5.12)

with finite support, where ….G�.kv// is the set of isomorphism classes of irreducible
smooth representations of G�.kv/. If  v.Wkv / is relatively compact in GLN .C/, this
comes from [2, Theorems 1.5.1, 2.2.1 ans 2.2.4], and (5.12) is supported in the subset
…unit.G�.kv// of unitarisable representations. Thanks to Moeglin ([43], see also [67, The-
orem 8.12]), it does not take any value > 1, that is, … v .G�.kv// can be regarded as
a finite subset of …unit.G�.kv//.

When  v.Wkv / is not relatively compact, … v .G�.kv// is obtained from the relat-
ively compact case by a parabolic induction process: see [2, §1.5] in the symplectic and
orthogonal cases and [4, §6.5] in the even orthogonal case. For our purpose, it will be
enough to make the following remark.

Remark 5.4. Let v be a finite place of k, and assume that … v .G�.kv// contains a cus-
pidal representation. Then  v.Wkv / is relatively compact in GLN .C/.
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When  v is trivial on the SL2.C/-factor, that is,  v is a local Langlands parameter
for G�.kv/, the local Arthur packet… v .G�.kv// coincides with the L-packet associated
with  v by the local Langlands correspondence in (5.5) and (5.6). (See [4, top of §6.3].)

5.6. Transfer. In this subsection, k is a totally real number field, G� is one of the quasi-
split special orthogonal, unitary or symplectic k-groups of Section 5.1 and G is an inner
form of G� over k such that G.kv/ is compact for any real place v and quasi-split for any
finite place v.

In order to state the following theorem, we need more than the group G. Follow-
ing [60] and [31], we realize G as

� a rigid inner twist of G� in the symplectic case (see Section 2.8),
� a pure inner twist of G� in the special orthogonal and unitary cases, that is, we fix

a quadratic form q such that G D SO.q/ or a Hermitian form h such that G D U.h/.
(See for instance, [33, Sections 29.D and 29.E].)

If G� is special orthogonal, let q� be the quadratic form (5.2) or (5.3) such that G� D
SO.q�/, and let ˛ D .�1/n.n�1/=2ı.q�/ be its normalized discriminant. Let v be a finite
place of k:

� if q ˝ kv is equivalent to q� ˝ kv , any choice of kv-isomorphism f such that q D
q� ı f defines a group isomorphism | WG.kv/ ' G�.kv/, and changing f changes |
by an inner automorphism, which does not affect isomorphism classes of representa-
tions of these groups;

� if q ˝ kv is not equivalent to q� ˝ kv , which can only happen when G� D SO˛2n with
˛ ¤ 1, there is a � 2 k�v such that q ˝ kv is equivalent to � � .q� ˝ kv/. We thus have
(canonically up to an inner automorphism) G.kv/ ' SO.� � .q� ˝ kv// D G�.kv/.
If G� is unitary, let h� be the l=k-Hermitian form (5.4) such that G� D U.h�/. Let v

be a finite place of k:

� if h˝ kv is equivalent to h�˝ kv , any choice of isomorphism f such that hD h� ı f
defines a group isomorphism | WG.kv/ ' G�.kv/, and changing f changes | by an
inner automorphism, which does not affect isomorphism classes of representations of
these groups;

� if h ˝ kv is not equivalent to h� ˝ kv , which can only happen when G� D U˛2nC1
with ˛ ¤ 1, there is a ı 2 k�v such that h˝ kv is equivalent to ı � .h� ˝ kv/. We thus
have (canonically up to an inner automorphism) G.kv/'U.ı � .h�˝ kv//DG�.kv/.
If G� is the symplectic group Sp2n, then G.k/ is the group made of all g 2 Mn.D/

such that g�gD 1, whereD is a quaternion k-algebra which is split at each finite place and
definite at each real place, and g� is the matrix whose .i; j /-entry is the conjugate of gj i .
(See Section 2.8 and [59, §2.1.1].) Let v be a finite place of k, and fix an isomorphism of
kv-algebras uWD ˝k kv ' M2.kv/. Through u, the group G.kv/ identifies with Sp.fv/
for some alternating form fv on k2nv � k

2n
v . Changing u changes this identification by an

inner automorphism. We thus have (canonically up to an inner automorphism) a group
isomorphism G.kv/ ' G�.kv/.
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In all cases, we have explained how to canonically identify representations of G.kv/
with those of G�.kv/. This thus defines a local transfer for irreducible representations
of G.kv/.

Theorem 5.5. Assume that the group G� is symplectic or special orthogonal. Let �
be an irreducible automorphic representation of G.A/ and suppose that there is a finite
place u of k such that both the local component �u and its local transfer to GLN .ku/ are
cuspidal. There is a unique self-dual cuspidal automorphic representation … of GLN .A/
such that

(1) for all finite places v of k, the local transfer of �v to GLN .kv/ is …v ,

(2) for all real places v of k, the infinitesimal character of …v is algebraic regular.

Proof. First note that, associated with any discrete global Arthur parameter  2 ‰2.G�/
and any finite place v of k, there is a local Arthur packet … v .G�.kv//. We explained
how to canonically identify representations of G.kv/ with those of G�.kv/. It thus defines
a local Arthur packet … v .G.kv//.

Now, as G is compact at all real places and quasi-split at all finite places, [60, The-
orem 4.0.1 and Remark 4.0.2] apply. We thus get a global Arthur parameter  for G�

such that

(1) �v 2 … v .G.kv// for all finite places v of k,

(2) the infinitesimal character of  v is algebraic regular for all real places v of k.

In the remainder of the proof, we follow an argument which has been suggested to us by
A. Moussaoui, whom we thank for this. First, at v D u, we have

�u 2 … u.G.ku//

and it follows from Remark 5.4 that  u.Wku/ is relatively compact in GLN .C/. Associa-
ted with  u in [42, §4.1], there is its extended cuspidal support (or infinitesimal charac-
ter), denoted by �u. It is the N -dimensional representation of Wku defined by

�u.w/ D  u.w; dw ; dw/; dw D

�
jwj1=2 0

0 jwj�1=2

�
2 SL2.C/; w 2Wku ;

where w 7! jwj is the character Wku ! R�C defined by jwj D q�v.w/, where q is the
cardinality of the residue field of ku and v.w/ 2 Z is the valuation of w, normalized so
that any geometric Frobenius element has valuation 1. If we write explicitly

 u D

mM
iD1

�i � Sai � Sbi

for some m > 1, with ai ; bi > 1 and where �i is an irreducible representation of Wku ,
then

�u D

mM
iD1

bi�1M
jD0

ai�1M
kD0

�i j � j
.bi�1/=2C.ai�1/=2�j�k : (5.13)
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On the other hand, by [42, §4.1] again, the extended cuspidal support (or infinitesimal
character) of �u is the representation � of Wku defined by

�.w/ D �.w; dw/

for all w 2Wku , where � D Std ı ' and ' is the Langlands parameter associated with �u
(up to O2n.C/-conjugacy in the even orthogonal case). Given the assumption that we
made on �u, the extended cuspidal support � is irreducible. By [42, Proposition 4.1],
the extended cuspidal supports of  u and �u coincide. It follows that (5.13) is irreducible,
which implies that m D 1 and a1 D b1 D 1. Thus  satisfies r D 1 and d1 D 1.

We thus have D…Œ1� for a uniquely determined self-dual cuspidal automorphic irre-
ducible representation… of GLN .A/. Given a finite place v of k, the local component �v
is in the Arthur packet … v .G.kv//. Since  v is a Langlands parameter (as d1 D 1), this
Arthur packet is an L-packet, thus …v is the local transfer of �v to GLN .kv/.

We now consider the case of unitary groups.

Theorem 5.6. Assume that the group G� is unitary. Let � be an irreducible automorphic
representation of G.A/, and suppose that there is a finite place u of k such that G.ku/ is
split and �u is cuspidal. There exists a unique conjugate-self-dual cuspidal automorphic
representation … of GLN .Al / such that

(1) for all finite places v of k, the local transfer of �v to GLN .lv/ is …v ,

(2) for all real places v of k, the infinitesimal character of …v is algebraic regular.

Proof. Since G is compact at all real places, the assumptions of [35, Corollaire 5.3]
are satisfied (see the paragraph following Remark 5.2 in [35] regarding property .�/).
By [35, Corollaire 5.3], there is an integer r > 1 and, for each i 2 ¹1; : : : ; rº, there
is a conjugate-self-dual discrete automorphic representation …i of GLNi .Al / for some
Ni > 1, such that

� one has N1 C � � � CNr D N ,

� if … is the irreducible automorphic representation of GLN .Al / obtained by parabolic
induction from…1 ˝ � � � ˝…r , then…v is the local transfer of �v for all finite places
v which are either unramified or split. (The local base change of [35] is the same as
the local transfer of Section 5.4: see [35, §4.10].)

In particular, for v D u, the group G.ku/ is split, thus …u is isomorphic to �u ˝ �
_
u

via the choice of a ku-algebra isomorphism lu ' ku � ku (see Remark 5.2). Since �u
is cuspidal, …u is cuspidal as well. It follows that r D 1 and  is cuspidal. By [35,
Théorème 5.9], we get that

� …v is the base change of the trivial character of G.kv/, thus its infinitesimal charac-
ter is algebraic regular, for all real places v of k,

� and the local transfer of �v to GLN .lv/ is …v for all finite places v of k.

This finishes the proof of Theorem 5.6.
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6. Unramified local transfer

In this section, we examine the congruence properties of the local transfer (as defined
in Section 5.4) for unramified representations of unramified classical groups.

6.1. Let F be a non-Archimedean locally compact field of residue characteristic p, andG
be the group of rational points of an unramified reductive group G defined over F . Let S
be a maximal F -split torus in G, T be the centralizer of S in G and K be a hyperspecial
maximal compact subgroup of G corresponding to a hyperspecial point in the apartment
associated with S in the reduced Bruhat–Tits building of .G; F /. Let W be the Weyl
group associated with T D T.F / and� be the Z-lattice T=.T \K/. We have the Satake
isomorphism [52] of C-algebras

CŒKnG=K�! CŒ��W ; f 7!
�
t 7! ı1=2.t/

Z
U

f .tu/ du
�
;

where U is the group of rational points of the unipotent radical of a Borel subgroup
B D TU of G, du is the Haar measure on U giving measure 1 to U \K and ı1=2 is the
square root of the modulus character ı of B D B.F / defined with respect to the positive
square root

p
q 2 R>0 of q, the cardinality of the residue field of F .

The same formula applies when one replaces C by xQ`. We then get a Satake iso-
morphism of xQ`-algebras xQ`ŒKnG=K�! xQ`Œ��

W depending on the choice of a square
root q1=2 of q in xQ`. By [28, §§7.10–15], as this square root and its inverse are contained
in xZ`, this isomorphism induces by restriction an isomorphism

xZ`ŒKnG=K�! xZ`Œ��
W (6.1)

of xZ`-algebras.

6.2. Let � be a K-unramified irreducible xQ`-representation of G, that is, � has a non-
zero K-fixed vector. Recall that its Satake parameter is the character � of xQ`ŒKnG=K�

through which this algebra acts on the 1-dimensional space �K of K-invariant vectors
of � . Through the Satake isomorphism, it defines a character of xQ`Œ��

W . Such a character
is of the form

f 7!

Z
T

f .t/!.t/ dt (6.2)

for some unramified xQ`-character ! of T – which we may consider as a character of � –
uniquely determined up to W -conjugacy. (Here dt is the Haar measure giving measure 1
to T \ K.) By [52], the W -conjugacy class of ! is the cuspidal support of � , that is,
� occurs as an irreducible component of the representation obtained by parabolically
inducing ! to G along B , where parabolic induction is normalized by the same square
root of the xQ`-modulus ı as the one used to define the Satake xQ`-isomorphism.

Now assume that the restriction of � to xZ`ŒKnG=K� has values in xZ`. Thanks to (6.1),
it defines a xZ`-character of xZ`Œ��W , still denoted by �. Let us prove that ! has values
in xZ�

`
. For this, let � be the xQ`-character of xQ`Œ�� defined by (6.2). Its restriction to
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xZ`Œ��
W is equal to �. According to [8, Chapter 5, §1, no. 9, Proposition 22], the ring

xZ`Œ�� is integral over xZ`Œ��W . As � takes values in xZ` on xZ`Œ��W , and as xZ` is integrally
closed, it follows that � takes values in xZ` on xZ`Œ��. By evaluating � at the characteristic
function of any � 2 �, we get !.�/ 2 xZ`. So far, we proved the following result.

Proposition 6.1. Let G be the group of rational points of an unramified group defined
over F , let K be a hyperspecial maximal compact subgroup of G and � be a K-unrami-
fied xQ`-representation of G with Satake parameter �. Then � is integral if and only if �
is integral (that is, it takes integral values on xZ`ŒKnG=K�).

Proof. Indeed, using the notation above, the cuspidal support of � is the W -conjugacy
class of the unramified character ! of T , and � is integral if and only if ! is. (For this
latter fact, see [18, Corollary 1.6].)

Finally, assume that �1 and �2 are congruent xZ`-characters of xZ`ŒKnG=K�. One
can see them via (6.1) as congruent xZ`-characters of xZ`Œ��W , still denoted by �1 and �2.
For i D 1; 2, let�i be a character of xZ`Œ�� extending �i . It takes form (6.2) for a uniquely
determined unramified character !i of T , which is integral thanks to the previous sub-
section. Reducing mod the maximal ideal of xZ`, the characters �1 and �2 define xF`-
characters x�1 and x�2 of xF`Œ�� which, by assumption, coincide on xF`Œ��W . Applying the
corollary of [8, Chapter 5, §2, no. 2, Theorem 2], it follows that the characters r`.!1/
and r`.!2/ are W -conjugate. We thus proved the following assertion.

Proposition 6.2. Let G be the group of rational points of an unramified group defined
over F , let K be a hyperspecial maximal compact subgroup of G, let �1 and �2 be
K-unramified irreducible xQ`-representations of G whose Satake parameters �1 and �2
define congruent xZ`-characters of xZ`ŒKnG=K� and let !1 and !2 be unramified xQ`-
characters of T such that �i occurs in the parabolic induction of !i to G along B , for
i D 1; 2. Then r`.!1/ and r`.!2/ are W -conjugate.

6.3. From now on and until the end of this section, we assume that G is an unramified
special orthogonal, unitary or symplectic group among the groups of Section 5.1. The
associated dual group yG has been defined in Section 5.2. Recall that G D G.F /.

Let � be an integral K-unramified xQ`-representation of G. Its cuspidal support is
the W -orbit of an unramified xZ`-character ! of T . Its Satake parameter is a charac-
ter �W xZ`ŒKnG=K� ! xZ`. They are related through the Satake isomorphism by for-
mula (6.2).

Restriction from T to S D S.F / induces an isomorphism � ' S=.S \ K/, thus
between unramified characters of T and unramified characters of S . The later is the dual
group yS.xQ`/.

Let ˆ be a Frobenius element in the Weil group WF . By [6, §§6.4 and 6.5], the
surjection of yT.xQ`/ onto yS.xQ`/ induces a bijection between

� N -conjugacy classes in yT.xQ`/ Ìˆ, and

� W -conjugacy classes in yS.xQ`/,
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whereN is the inverse image ofW in the normalizer of yT.xQ`/ in yG.xQ`/, and the embed-
ding of yT.xQ`/ in yG.xQ`/ induces a bijection between

� N -conjugacy classes in yT.xQ`/ Ìˆ, and

� yG.xQ`/-conjugacy classes of semisimple elements in yG.xQ`/ Ìˆ.

The W -orbit of ! thus determines the W -conjugacy class of a point s 2 yS.xZ`/, then the
yG.xQ`/-conjugacy class of a semisimple element t Ì ˆ 2 yG.xQ`/ Ì ˆ. We are going to
prove that t Ìˆ may be chosen in yT.xZ`/ Ìˆ � yG.xZ`/ Ìˆ. Let us fix a uniformizer $
of F .

When G is split, we have T D S, thus t D s is in yT.xZ`/ � yG.xZ`/. Explicitly, if we
identify T with .F �/m for some integer m > 1, then ! identifies with the tensor product
of m unramified characters !1; : : : ; !m of F � and t Ìˆ is yG.xQ`/-conjugate to

� diag.!1.$/; : : : ; !m.$/; 1; !m.$/�1; : : : ; !1.$/�1/ 2 GL2nC1.xZ`/ if G D Sp2n,

� diag.!1.$/; : : : ; !m.$/; !m.$/�1; : : : ; !1.$/�1/ 2 GL2n.xZ`/ if G D SO2nC1 or
G D SO12n,

with m D n in all cases.
Now assume that G is non-split, thus either G D SO˛2n or G D U˛n , with ˛ ¤ 1.

� In the even orthogonal case, we have S ' .F �/m and T ' S � SO˛2.F / with m D
n � 1 (see [7, §23.4]), thus yT.xQ`/ ' xQ

mC1
`

surjects onto yS.xQ`/ ' xQ
m
`

through

.t1; t2; : : : ; tmC1/ 7! .t1; t2; : : : ; tm/

and yT.xQ`/ ÌWF embeds into yG.xQ`/ ÌWF through

.t1; t2; : : : ; tn/ Ì w 7! diag.t1 ; : : : ; tn ; t
�1
n ; : : : ; t�11 / Ì w;

thus the image of t Ìˆ in yG.xQ`/ Ìˆ is yG.xQ`/-conjugate to

diag.!1.$/; : : : ; !m.$/; 1; 1; !m.$/�1; : : : ; !1.$/�1/ Ìˆ 2 GL2n.xZ`/ Ìˆ:

� In the unitary case, we have

S ' .F �/m and T ' .E�/m;

where E is the quadratic extension of F generated by a square root of ˛ (note that it
is unramified since G is assumed to be unramified), and m D bn=2c is the Witt index
of G (see [7, §23.9]), thus yT.xQ`/ ' xQ

2m
`

surjects onto yS.xQ`/ ' xQ
m
`

through

.t1; t2; : : : ; t2m/ 7! .t1t2m; t2t2m�1; : : : ; tmtmC1/

and yT.xQ`/ ÌWF embeds into yG.xQ`/ ÌWF through

.t1; t2; : : : ; t2m/ Ì w

7!

´
diag.t1 ; : : : ; tm; t

�1
mC1; : : : ; t

�1
2m/ Ì w if n D 2m is even;

diag.t1 ; : : : ; tm; 1; t
�1
mC1; : : : ; t

�1
2m/ Ì w if n D 2mC 1 is odd;
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thus the image of t Ìˆ in yG.xQ`/ Ìˆ is yG.xQ`/-conjugate to8̂̂̂̂
<̂
ˆ̂̂:

diag.!1.$/1=2; : : : ; !m.$/1=2; !m.$/�1=2; : : : ; !1.$/�1=2/ Ìˆ
if n D 2m is even;

diag.!1.$/1=2; : : : ; !m.$/1=2; 1; !m.$/�1=2; : : : ; !1.$/�1=2/ Ìˆ
if n D 2mC 1 is odd;

which is in GLn.xZ`/ Ìˆ in both cases.

We now define an unramified local Langlands parameter 'WWDF ! yG.xZ`/ÌWF by

� '.ˆ/ D t Ìˆ, and

� ' is trivial on the inertia subgroup IF of WF and on SL2.C/.

It is uniquely determined by the K-unramified representation � , or equivalently by its
Satake parameter �. Composing with Std (or just restricting to WDE in the unitary case),
we get an unramified Langlands parameter � 2 ˆ.GLN ; E/, where E D F in the sym-
plectic and orthogonal cases and E is the quadratic extension of F generated by a square
root of ˛ in the unitary case. This � uniquely determines an unramified xQ`-representation
of GLN .E/, denoted by t`.�/.

In the symplectic and special orthogonal cases, t`.�/ is the unique unramified irredu-
cible component of8̂̂<̂

:̂
!1 � � � � � !n � !

�1
n � � � � � !

�1
1 if G D SO2nC1 or G D SO12n;

!1 � � � � � !n � 1 � !
�1
n � � � � � !

�1
1 if G D Sp2n;

!1 � � � � � !n�1 � 1 � 1 � !
�1
n�1 � � � � � !

�1
1 if G D SO˛2n with ˛ ¤ 1;

where � denotes the parabolic induction to GLN .F / normalized with respect to q1=2.
In the unitary case, the Weil group WE is generated by ˆ2 and IF (since E=F is

unramified), thus � is uniquely determined by �.ˆ2/ D t t� Ìˆ2, with

t t� D

´
diag.!1.$/; : : : ; !m.$/; !m.$/�1; : : : ; !1.$/�1/ if n D 2m is even;

diag.!1.$/; : : : ; !m.$/; 1; !m.$/�1; : : : ; !1.$/�1/ if n D 2mC 1 is odd;

which gives t`.�/ explicitly. Namely, t`.�/ is the unique unramified irreducible compon-
ent of ´

!1 � � � � � !m � !
�1
m � � � � � !

�1
1 if G D U˛2m;

!1 � � � � � !m � 1 � !
�1
m � � � � � !

�1
1 if G D U˛2mC1;

where the symbol � denotes the parabolic induction to GLn.E/ normalized with respect
to .q1=2/2 D q (as E is quadratic and unramified over F ). (See also [37].) We have the
following assertion.

Proposition 6.3. Let G be the group of rational points of an unramified special ortho-
gonal, unitary or symplectic F -group among the groups of Section 5.1. Let K be a hy-
perspecial maximal compact subgroup of G and let �1, �2 be K-unramified irreducible
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xQ`-representations ofG whose Satake parameters �1, �2 define congruent xZ`-characters
of xZ`ŒKnG=K�. Then

(1) the representations t`.�1/ and t`.�2/ of GLN .E/ are integral,

(2) their Langlands parameters are integral and congruent.

Remark 6.4. Note that the reductions mod ` of t`.�1/ and t`.�2/ may not have any
irreducible component in common. However, if �i denotes the unique unramified irre-
ducible component of r`.t`.�i // for i D 1; 2, then �1 and �2 have the same cuspidal
support.

For instance, assume that G D SO5 and ` divides q2 � 1. Let �1 (resp. �2) be the
unramified representation of G D SO5.F / with respect to some hyperspecial maximal
compact group, with cuspidal support the W -conjugacy class of j � j�1=2 ˝ j � j1=2 (resp.
j � j3=2˝ j � j1=2), where j � j is the absolute value ofF �. By assumption, these cuspidal sup-
ports are congruent (for j � j3=2 and j � j�1=2 have the same reduction mod `). Then t`.�1/
is the unique unramified irreducible component of

j � j
�1=2
� j � j

1=2
� j � j

�1=2
� j � j

1=2;

that is, t`.�1/D 12 � 12 (where 12 is the trivial character of GL2.F /). Similarly, t`.�2/ is
equal to jdetj � jdetj (where det is the determinant of GL2.F /). Now assume further that
` ¤ 2 and ` divides q C 1, thus ` does not divide q � 1. Then r`.t`.�1// and r`.t`.�2//
are both irreducible and twists of each other by the non-trivial character j � j, thus non-
isomorphic.

Remark 6.5. Let � be an isomorphism of fields C ! xQ` taking the positive square root
of q in R to the square root q1=2 2 xQ` of Section 6.1. According to Arthur [2, §6.1,
p. 304] and Mok [46, §7.1] (see also Labesse [35, pp. 38–39]), which describe the local
transfer map t of Definition 5.1 for unramified representations of unramified groups, we
have

t.�/˝C xQ` D t`.� ˝C xQ`/

for any K-unramified complex representation � of G, where tensor products are taken
with respect to �. Proposition 6.7 and Remark 6.8 will describe the dependency of t`
on q1=2.

6.4. In this subsection, G is an unramified classical group and K is a hyperspecial max-
imal compact subgroup of G as in Section 6.3.

Unlike Section 6.3 however, we will consider complex representations rather than
xQ`-representations. We examine the dependency of the unramified transfer from G to
GLN .E/ with respect to the choice of a square root of q, and to the action of Aut.C/.
This will be useful in Section 9.2.

Let � be aK-unramified irreducible complex representation ofG. Associated with � ,
there is the W -conjugacy class of an unramified character ! of T , such that � is the uni-
queK-unramified irreducible component of the normalized parabolic induction of ! toG
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alongB . Writing IndGB for unnormalized parabolic induction from T toG alongB and iGB
for normalized parabolic induction, we have

iGB .!/ D IndGB .ı
1=2!/:

Let us write T ' E�m � T0, where

� T0 is trivial if G is split or G ' U˛2m.F / with ˛ ¤ 1,

� T0 D SO˛2.F / if G ' SO˛2n.F / with ˛ ¤ 1,

� T0 D U˛1.F / if G ' U˛2mC1.F / with ˛ ¤ 1.

The character ! can thus be written !1 ˝ � � � ˝ !m ˝ 1, where each !i is an unramified
character of E� and 1 is the trivial character of T0. By [45, Chapter IV, §4, p. 69], the
modulus character of the parabolic subgroup P � B with Levi component GLm.E/� T0
is equal to

�d�m�em ˝ 1;

where �m is the unramified character “absolute value of the determinant” of GLm.E/
and

� d D 2n and e D �1 if G D Sp2n.F /,

� d D 2nC 1 and e D 1 if G D SO2nC1.F /,

� d D 2n and e D 1 if G D SO˛2n.F /,

� d D n and e D 0 if G D U˛n.F / with ˛ ¤ 1.

By using the transitivity property of parabolic induction, we deduce that

ı1=2 D j � j
.d�m�e/=2C.m�1/=2
E ˝ � � � ˝ j � j

.d�m�e/=2�.m�1/=2
E ˝ 1

D j � j
.d�e�1/=2
E ˝ � � � ˝ j � j

.d�e�1/=2�mC1
E ˝ 1;

where j � jE is the absolute value of E. Replacing
p
q by the opposite square root changes

j � jE to �j � jE , where � is the unramified character of E� of order 2. It thus changes !i
to !i�.d�e�1/f , where f is the residual degree of E over F (which is 1 or 2 depending
whether E D F or not).

Similarly, replacing
p
q by its opposite square root has the effect of twisting normal-

ized parabolic induction from E�N to GLN .E/ (along the Borel subgroup made of upper
triangular matrices) by �.1�N/f .

Consequently, considering the explicit formulas of Section 6.3, replacing
p
q by

the opposite square root has the effect of twisting t.�/ by the character �.d�e�N/f .
We have

� d � e �N D 2nC 1 � .2nC 1/ D 0 if G D Sp2n.F /,

� d � e �N D .2nC 1/ � 1 � 2n D 0 if G D SO2nC1.F /,

� d � e �N D 2n � 1 � 2n D �1 if G D SO˛2n.F /,

and f D 2 if G is unitary. The integer .d � e � N/f is thus even, except if G is even
orthogonal.
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Example 6.6. If G D SO12.F / ' F
�, the transfer of any unramified character ! of F �

is the unique unramified irreducible component of ! � !�1. If G is the compact group
SO˛2.F / with ˛ ¤ 1, the transfer of the trivial character of G is 1 � 1. In both cases, the
transfer depends on the choice of a square root of q.

Now consider an automorphism 
 2 Aut.C/. Given a representation � of a group H
on a complex vector space V , we write �
 for the representation of H on V ˝C C
 ,
where C
 is the field C considered as a C-algebra via 
 . Consider the map � 7! t.�


�1
/


from K-unramified irreducible representations of G to irreducible representations of
GLN .E/. It is the unramified local transfer map from G to GLN .E/ with respect to
the square root 
.

p
q/. We thus have the following.

Proposition 6.7. Let G and K be as above, and let � be a K-unramified irreducible
representation of G. Let 
 2 Aut.C/.

(1) If G is not even orthogonal, then t.�
 / D t.�/
 .

(2) IfG is even orthogonal, then t.�
 /D t.�/
 � "
 , where "
 is the unramified character

x 7!
�
.pq/
p
q

�valF .x/

of F �.

Remark 6.8. We now go back to xQ`-representations. We deduce that the map

� 7! t`.�/ (6.3)

from (isomorphism classes of) unramified xQ`-representations of G to those of GLN .E/
is insensitive to the choice of a square root of q in xQ`, except when G is even orthogonal,
in which case changing this square root to its opposite has the effect of twisting (6.3) by �.

7. Representations of local Galois and Weil groups

In this section, F is a p-adic field. We write � for the Galois group Gal.xQp=F / and W
for the associated Weil group, considered as a subgroup of � . It is endowed with a smooth
character w 7! jwj with kernel I , the inertia subgroup of W, taking any geometric Frobe-
nius element to q�1, where q is the cardinality of the residue field of F .

All representations of � and W considered in this section will be finite-dimensional.
Let ` be a prime number different from p.

7.1. For this subsection, the reader may refer to [10, Chapter 7] and [61, §4.2].
If � is a smooth representation of � , then its restriction � jW to W is smooth.
Restriction from � to W induces an injection from isomorphism classes of irreducible

smooth representations of � to isomorphism classes of irreducible smooth representations
of W. The image is made of those representations of W whose determinant has finite order
(see [10, Proposition 28.6]).
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If � is a smooth `-adic representation (that is, xQ`-representation) of W on a vector
space V, and if ˆ 2 W is a Frobenius element, the following assertions are equivalent
(see [10, Proposition 28.7]):

(1) � is semisimple,

(2) �.ˆ/ is a semisimple element in GL.V/,

(3) �.w/ is a semisimple element in GL.V/ for any w 2W.

If � is a continuous `-adic representation of � , its restriction to W is a continuous
`-adic representation of W, which is irreducible if and only if � is irreducible.

Fix a continuous surjective group homomorphism

t W I ! Z`: (7.1)

For the following proposition, see [10, Theorem 32.5] and [55, Appendix].

Proposition 7.1. Let � be a finite-dimensional continuous `-adic representation of W on
a xQ`-vector space V.

(1) There is a unique nilpotent endomorphism N 2 End.V/ such that there is an open
subgroup U of the inertia subgroup I such that �.x/ D et.x/N , x 2 U .

(2) We have �.w/N�.w/�1 D jwj �N for all w 2W.

Note that N D 0 if and only if � is smooth.
The subspaces Ker.N i /, i > 0 of V are stable by � . Thus, if � is irreducible, then

N D 0 and � is smooth. More generally, a semisimple representation of � is smooth, and
its restriction to W is smooth semisimple (see also [61, §4.2.3]).

Fix a Frobenius element ˆ 2 W. Associated with � , there is a smooth `-adic repres-
entation � of W defined by

�.ˆax/ D �.ˆax/e�t.x/N ; a 2 Z; x 2 I:

The pair .�; N / is called the Deligne representation of W associated with � . Up to iso-
morphism, it does not depend on the choices of t and ˆ (see [10, Theorem 32.6]).

The element �.ˆ/ D �.ˆ/ decomposes uniquely in GL.V/ as su D us, with s semi-
simple and u unipotent. Define a smooth `-adic representation �� of W by

��.ˆax/ D sa�.x/; a 2 Z; x 2 I:

This defines a Deligne representation .��; N /, called the Frobenius-semisimplification of
.�;N /. By Section 7.1, the representation �� is a semisimple smooth representation of W.

7.2. In this subsection, if � is a continuous `-adic representation of W or � , we will
write �ss for its semisimplification.

Lemma 7.2. If � is a (finite-dimensional) smooth `-adic representation of W such that �ss

is integral, then � is integral.
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Proof. We prove it by induction on the dimension n of �. If � is irreducible, there is
nothing to prove. Otherwise, let � be an irreducible subrepresentation of �, of dimension
k > 1, and let � be the quotient of � by � , which is of dimension l D n � k. Since
�ss D � ˚ �ss, we may apply the inductive hypothesis to �, from which we deduce that �
is integral. We therefore fix a basis of the vector space of � such that

�.w/ D

�
�.w/ ˛.w/

0 �.w/

�
2 GLn.xQ`/; �.w/ 2 GLk.xZ`/; �.w/ 2 GLl .xZ`/; w 2W;

and ˛WW! Mk;l .xQ`/ satisfies

˛.xy/ D �.x/˛.y/C ˛.x/�.y/ for all x; y 2W:

Since � is smooth, we may consider it as a representation of the discrete group W=U

for some open subgroup U of W. Since this quotient is a finitely generated group, we may
consider � as a representation of the free group F with r generators f1; : : : ; fr for some
r > 1. Assume ˛ is not identically zero, and let �v denote the minimum of the `-adic
valuations of all the entries of all the ˛.fi /. Conjugating � by diag.`v � idt ; idl /, we may
and will assume that v D 0.

We are going to prove that ˛ takes values in Mt;l .xZ`/. We prove it by induction on the
length of the words in F. Given x 2 F, write it yf with f D fi for some i 2 ¹1; : : : ; rº
and the length of y is smaller than that of x. Then

˛.x/ D �.y/˛.f /C ˛.y/�.f / 2 Mk;l .xZ`/

thanks to the inductive hypothesis.

Lemma 7.3. Let � be a (finite-dimensional) continuous `-adic representation of � , with
associated Deligne representation .�;N /. The restriction of � ss to W is equal to �ss.

Proof. Note that semisimplification and restriction from � to W commute, that is,

� ss
jW D .� jW/

ss:

If N is zero, then � is smooth and � is the restriction of � to W, thus � ss is smooth
semisimple, and its restriction to W is smooth semisimple as well. Otherwise, if n D
dim.�/, there is a basis of xQn

`
such that

�.g/ D

�
˛.g/ 
.g/

0 ˇ.g/

�
2 GLn.xQ`/; g 2 �; and N D

�
0 C

0 M

�
;

where

� ˛ is a smooth `-adic representation of � of dimension k D dim.Ker N/,

� ˇ is a continuous `-adic representation of � of dimension l D n � k,

� 
 is a continuous map from � to Mk;l .xQ`/,

� M is nilpotent in Ml .xQ`/ and C is a matrix in Mk;l .xQ`/.
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We have

et.x/N D

�
id ".x/

0 et.x/M

�
with ".x/ D

X
i>1

t .x/i

i Š
CM i�1; x 2 I:

Writing .�1; N1/ for the Deligne representation associated with ˇ, we get N1 DM and

�.w/ D

�
˛.w/ ı.w/

0 �1.w/

�
2 GLn.xQ`/; w 2W;

for some smooth map ı from W to Mk;l .xQ`/ which can be explicitly described by

ı.w/ D .
.w/ � ˛.w/".w//e�t.x/M ; w D ˆax; a 2 Z; x 2 I:

By the inductive hypothesis, we get

� ss
jW D .˛jW/˚ .ˇ

ss
jW/ D .˛jW/˚ �

ss
1 D �

ss:

This proves the lemma.

Corollary 7.4. Let � be a (finite-dimensional) continuous `-adic representation of � ,
with associated Deligne representation .�; N /. Then � is (smooth) integral and r`.�/ D
r`.�/jW.

Proof. Since � is integral (for � is compact), � ssjW is integral. We deduce from Lem-
ma 7.3 that �ss is integral, then from Lemma 7.2 that � is integral. Now write

r`.�/ D r`.�
ss/ D r`.�

ss
jW/ D r`.�

ss/jW D r`.�/jW:

This proves the corollary.

8. Galois representations associated with automorphic representations

Recall that we have fixed an isomorphism of fields �WC ! xQ`. Fix a positive integer N .
Let k be a totally real number field, and l be either k or a quadratic totally imagin-

ary extension of k in an algebraic closure xQ of Q. For any place v of l , let lv denote the
completion of l at v.

For any finite place v, fix a decomposition subgroup �v of Gal.xQ=l/ at v and write Wv

for the associated Weil group. For any finite place v not dividing `, write

� WD.�/ for the Deligne representation of Wv associated with a continuous `-adic
representation � of �v and WD�.�/ for its Frobenius-semisimplification,

� recv for the local Langlands correspondence [23, Theorem A] between irreducible
smooth complex representations of GLN .lv/ and N -dimensional Frobenius-semi-
simple complex Deligne representations of Wv .
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8.1. A cuspidal irreducible automorphic representation … of GLN .Al / is said to be

� polarized if its contragredient …_ is isomorphic to …c , where c is the generator of
Gal.l=k/ (thus …c D … when l D k),

� algebraic regular if the Harish-Chandra module …1 associated with … has the same
infinitesimal character as some irreducible algebraic representation of the restriction
of scalars from l to Q of GLN .

Recall the following result of Barnet-Lamb–Geraghty–Harris–Taylor [5, Theorems 1.1
and 1.2].

Theorem 8.1. Let … be an algebraic regular, polarized, cuspidal irreducible automor-
phic representation of GLN .Al /. There is a continuous semisimple `-adic representation

†W Gal.xQ=l/! GLN .xQ`/

such that, for any finite place v of l not dividing `, we have

WD�.†j�v / ' recv.…v ˝ jdetj.1�N/=2v /˝C xQ`:

Note that the representation † depends on the choice of �.

8.2. The main result of this section is the following. Let m denote the maximal ideal
of xZ`.

Theorem 8.2. Let…1 and…2 be algebraic regular, polarized, cuspidal irreducible auto-
morphic representations of GLn.Al /. Suppose that there is a finite set S of places of l ,
containing all infinite places, such that for all v … S,

(1) the local components …1;v and …2;v are unramified,

(2) the characteristic polynomials of the conjugacy classes of semisimple elements in
GLn.xQ`/ associated with …1;v ˝C xQ` and …2;v ˝C xQ` have coefficients in xZ` and
are congruent mod m.

Then, for any finite place v of l not dividing `, the representations …1;v ˝C xQ` and
…2;v ˝C xQ` are integral, their reductions mod m share a common generic irreducible
component, and such a generic component is unique.

Proof. Applying Theorem 8.1 to …1 and …2, we get continuous `-adic representations

†i W Gal.xQ=l/! GLN .xQ`/; i D 1; 2;

such that, for any finite place v of l not dividing `, we have

WD�.†i;v/ ' recv.…i;v ˝ jdetj.1�N/=2v /˝C xQ`;

where†i;v denotes the restriction of†i to �v and the tensor product over C is taken with
respect to �. For all v … S, the `-adic representation …i;v ˝C xQ` is unramified, generic
and integral, thus

recv.…i;v ˝ jdetj.1�N/=2v /˝C xQ` ' .�i;v; 0/;
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where �i;v is an integral semisimple `-adic representation of Wv trivial on Iv . It is thus
entirely determined by the semisimple matrix

�i;v.ˆv/ 2 GLN .xQ`/;

where ˆv is a Frobenius element in Wv . By assumption, its characteristic polynomial
has coefficients in xZ`, hence, as �i;v.ˆv/ is semisimple, its eigenvalues are in xZ�

`
. That

the nilpotent operator is 0 implies that †i;v is smooth, thus

�i;v D .†i;vjWv /
ss:

Thus †i;v is trivial on the inertia subgroup Iv , that is, †i;v is unramified.
Given v … S and i 2 ¹1; 2º, let Pi;v.T/ be the characteristic polynomial of†i;v.ˆv/˝

xF`, that is, the characteristic polynomial of �i;v.ˆv/ ˝ xF`. By assumption, P1;v.T/ D
P2;v.T/ at all v … S. Applying Deligne–Serre lemma [19, Lemma 3.2] to the semisimple
xF`-representations .†1 ˝ xF`/ss and .†2 ˝ xF`/ss, which at v … S give �1;v ˝ xF` and
�2;v ˝ xF`, respectively, we deduce that .†1 ˝ xF`/ss and .†2 ˝ xF`/ss are isomorphic.
In particular, we deduce that

.†1 ˝ xF`/
ss
j�w ' .†2 ˝

xF`/
ss
j�w ;

thus the continuous `-adic representations †1;w and †2;w of �w are congruent mod `.
Now write WD�.†i;w/ D .�i ; Ni / for i D 1; 2. Thanks to Corollary 7.4, we know

that �1 and �2 are integral and have same reduction mod `. By [65, Theorem 1.6], we
deduce that

�1 D .…1;w ˝ jdetj.1�N/=2w /˝C xQ`; �2 D .…2;w ˝ jdetj.1�N/=2w /˝C xQ`;

are integral and have the same mod ` supercuspidal support, that is, the supercuspidal sup-
port of any irreducible component � of r`.�i / is independent of i (and of the choice of �).

Since �i is generic (as …i;w is a local component of a cuspidal automorphic repre-
sentation of GLn.Al /), the xF`-representation r`.�i / contains a generic irreducible com-
ponent ıi . It occurs in r`.�i / with multiplicity 1, and any generic irreducible repres-
entation occurring in r`.�i / is isomorphic to ıi . Since ıi only depends on the mod `
supercuspidal support of �i [63, §§III.1.11 and III.5.10], we deduce that ı1 and ı2 are
isomorphic.

Remark 8.3. We expect Theorem 8.2 to hold without assuming that …1, …2 are polar-
ized.

9. Proof of the main theorem

9.1. We prove our main Theorem 1.1.
Let p be a prime number different from 2, letF be a p-adic field andG be a quasi-split

special orthogonal, unitary or symplectic group over F . We thus have

� either G D SO.Q/ for some non-degenerate quadratic form Q over F ,
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� or G D U.H/ for some non-degenerate E=F -Hermitian form H ,

� or G D Sp.A/ for some non-degenerate symplectic form A over F .

As usual, we write E D F in the symplectic and orthogonal cases.
In this subsection and the next one, we assume that the group G is not the split

special orthogonal group SO2.F / ' F �. The case of split SO2.F / will be treated in
Section 9.3.

Let �1, �2 be integral cuspidal irreducible xQ`-representations of G such that

r`.�1/ 6 r`.�2/:

First, let k, w, G be as in Theorem 2.1. More precisely, we have

� either GD SO.q/ for a quadratic form q as in Theorem 2.8 ifG is special orthogonal,

� or G D U.h/ for an l=k-Hermitian form h as in Theorem 2.11 if G is unitary,

� or G is as in Section 2.8 if G is symplectic (see also Section 5.6).

In particular, we have kw D F and lw D E, and the group G.F / naturally identifies
with G. As usual, we write l D k in the symplectic and orthogonal cases.

Let G� be the quasi-split inner form of G over k, and write N D N.G�/. We thus
have

� either G� D SO.q�/, where q� is a quadratic form over k as in (5.2) or (5.3),

� or G� D U.h�/, where h� is an l=k-Hermitian form as in (5.4),

� or G� D Sp.f �/, where f � is a symplectic form over k as in (5.1).

Let t be the local transfer from G�.F / to GLN .E/ given by Definition 5.1. We ex-
plained how to canonically identify representations of G.F / with those of G�.F / in
Section 5.6. (In the symplectic case, we identified G.F /with Sp.fw/ for some symplectic
form fw over kw D F .) This gives us a local transfer from G.F / D G to GLN .E/, still
denoted by t.

Lemma 9.1. There is a finite place u of k different from w, not dividing `, such that
there is a unitary cuspidal irreducible complex representation � of G.ku/ with the follow-
ing properties:

(1) � is compactly induced from some compact mod centre, open subgroup of G.ku/,
(2) the local transfer of � to GLN .lu/ is cuspidal.

Proof. If G is special orthogonal, it suffices to choose u ¤ w such that G.ku/ is split
(Remark 2.9), and then apply Proposition B.1.

If G is unitary, it suffices to choose u ¤ w such that G.ku/ is split (Remark 2.12).
If G is symplectic, it suffices to choose a place u such that ku is isomorphic to Q2

(see Lemma 2.5) and then apply Theorem C.1.

Now fix an isomorphism of fields �WC ! xQ`. As in Section 1.2, let t` denote the `-
adic local transfer fromG to GLN .E/ obtained from t thanks to �, that is, t`.V ˝C xQ`/D

t.V / ˝C xQ` for any complex representation V of G, where tensor products are taken
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with respect to �. Let u and � be as in Lemma 9.1. By Theorem 4.4, there are irredu-
cible automorphic representations …1 and …2 of G.A/ such that

(1) …1;u and …2;u are both isomorphic to �,

(2) …1;w ˝C xQ` is isomorphic to �1, and …1;w ˝C xQ` is isomorphic to �2,

(3) …1;v and …2;v are trivial for any real place v,

(4) there is a finite set S of places of k, containing all real places, such that for all v … S,

(a) the group G is unramified over kv , and the local components …1;v and …2;v

are unramified with respect to some hyperspecial maximal compact subgroup Kv
of G.kv/,

(b) the restrictions of the Satake parameters of …1;v ˝C xQ` and …2;v ˝C xQ` to
the Hecke xZ`-algebra HxZ`.G.kv/;Kv/ are congruent mod the maximal ideal m

of xZ`.

Applying Theorems 5.5 and 5.6 to …1, …2, we get algebraic regular, polarized, cuspidal
irreducible automorphic representations z…1; z…2 of GLN .l/ such that, for i D 1; 2 and
all finite places v of k, the local transfer of …i;v to GLN .lv/ is z…i;v . Writing tv for the
local transfer over kv , we thus have z…i;v D tv.…i;v/, or equivalently z…i;v ˝C xQ` D

tv;`.…i;v ˝C xQ`/, where tv;` is obtained from tv thanks to �.
In particular, for all v … S, it follows from Proposition 6.3 that z…1;v and z…2;v are

unramified and that the characteristic polynomials of the conjugacy classes of semisimple
elements in GLn.xQ`/ associated with z…1;v ˝C xQ` and z…2;v ˝C xQ` have coefficients
in xZ` and are congruent mod m.

Now apply Theorem 8.2 at w: the representations z…1;w ˝C xQ` and z…2;w ˝C xQ` are
integral, their reductions mod ` share a common generic irreducible component, and such
a generic component is unique. The result now follows from the fact that…i;w˝C xQ`'�i
for i D 1; 2.

9.2. We now describe how the map t` depends on the choice of �. Equivalently, since any
two isomorphisms �, �0 between C and xQ` give rise to a field automorphism ��1 ı �0 of C,
we will describe the behavior of t under the action of Aut.C/. More precisely, we prove
the following result.

Proposition 9.2. Let � be a cuspidal complex representation of G. Let 
 2 Aut.C/.

(1) If G is not even orthogonal, then t.�
 / D t.�/
 .

(2) IfG is even orthogonal, then t.�
 /D t.�/
 � "
 , where "
 is the unramified character

x 7!
�
.pq/
p
q

�valF .x/
(9.1)

of F �, where q is the cardinality of the residue field of F .

Let � be a cuspidal complex representation of G. As in Lemma 9.1, let u be a finite
place of k different fromw, not dividing `, and � be a unitary cuspidal irreducible complex
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representation of G.ku/ with cuspidal transfer. By Proposition 4.1, we have an irredu-
cible automorphic representation … of G.A/ such that

(1) the local component …u is isomorphic to �,

(2) the local component …w is isomorphic to � ,

(3) the local component …v is the trivial character of G.kv/ for any real place v of k.

Associated with … by Theorems 5.5 and 5.6, there is an algebraic regular, polarized,
cuspidal irreducible automorphic representation z… of GLN .Al / such that z…v D tv.…v/

for all finite places v of k, where tv is as in Section 9.1. Now let 
 2 Aut.C/. Then …


satisfies

(1) the local component …

u is isomorphic to �
 ,

(2) the local component …

w is isomorphic to �
 ,

(3) the local component …

v is the trivial character of G.kv/ for any real place v of k.

Associated with it by Theorems 5.5 and 5.6, there is an algebraic regular, polarized,
cuspidal irreducible automorphic representation z…0 of GLN .Al / such that z…0v D tv .…



v /

for all finite v.
Let S be a finite set of places of k, containing all real places, such that for all v … S

the group G is unramified over kv and the local component…v is unramified with respect
to some hyperspecial maximal compact subgroup of G.kv/.

Assume first thatG is not an even special orthogonal group. For v … S, Proposition 6.7
gives us tv .…



v /D tv.…v/


 , thus z…0 and z…
 coincide at almost all finite places. By strong
multiplicity 1, we deduce that z…0 D z…
 . It follows that

tw.…


w/ D tw.…w/


 ;

that is, t.�
 / D t.�/
 .
Assume now thatG is even special orthogonal (thus l D k). For all finite places v of k,

let t�v be the map � 7! tv.�/jdetj1=2v , where j � jv is the absolute value of k�v and j � j1=2v
is its square root with respect to q1=2v , where qv is the cardinality of the residue field
of kv . An argument similar to that of the non-even orthogonal case gives us z…0jdetj1=2 D
. z…jdetj1=2/
 , where j � j is the absolute value of A�. Looking at the local component
at w, we deduce that t.�
 / D t.�/
 � "
 , where "
 is defined as in (9.1). We have proved
Proposition 9.2.

Remark 9.3. The same argument shows that Proposition 9.2 holds for all discrete series
representations � of G (it suffices to replace Proposition 4.1 by [57, Theorem 5.13]).
Let us explain how this implies that the set of isomorphism classes of discrete series
representations of G is stable under Aut.C/. Let ' be the local Langlands parameter of
a discrete series representation � (up to O2n.C/-conjugacy in the even orthogonal case)
and let � D Std ı ' be the Langlands parameter of t.�/. On the one hand, the fact that �
is a discrete series representation implies that the quotient of the centralizer of the im-
age of � in yG by Z.yG/Wk is finite (see the end of Section 5.3). On the other hand, the
Langlands parameter of t.�
 / is �0 D �
 � �� (where � is the unramified character of F �
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of order 2 and � is either the character "
 defined by (9.1) if G is even orthogonal, or the
trivial character otherwise), which has the same finiteness property. Thus the L-packet
of �
 is discrete. Thus �
 is a discrete series representation.

Remark 9.4. Let us examine how the local transfer map behaves under automorphisms of
the base field F , for discrete series representations. Let � be a discrete series represent-
ation of G, and let � be the Langlands parameter of its transfer t.�/. By Moeglin [44],
an irreducible Langlands parameter � � Sa, where � is an irreducible representation of
dimension k > 1 of WF and a is a positive integer, occurs in � if and only if

(1) the cuspidal representation � of GLk.E/ associated with � by the Langlands corres-
pondence is c-self-dual,

(2) if s is the unique non-negative real number such that the normalized parabolically
induced representation ��s Ì � is reducible, then 2s � 1 is a positive integer and
2s � 1 � a is a non-negative even integer.

Now let ~ 2 Aut.F /, which extends to an automorphism of E still denoted by ~. Then

� the cuspidal representation �~ is ~�1c~-self-dual,

� the irreducible representation of WE associated with it by the Langlands correspon-
dence is �~ (see [26, Propriété 1]),

� the normalized parabolically induced representation �~�s Ì �~ is reducible,

� the representation � � Sa occurs in � if and only if �~ � Sa occurs in �~ .

It follows that the Langlands parameter of t.�~/ is �~ . Applying [26, Propriété 1] again,
�~ is the Langlands parameter of t.�/~ . Thus t.�~/ is equal to t.�/~ .

9.3. In this subsection, we discuss the case of the split special orthogonal group
SO2.F / ' F �.

Let � be a xQ`-character of this group. Its transfer to GL2.F / is

� either the normalized parabolically induced representation � � ��1 when the charac-
ter �2 is different from the absolute value j � j and its inverse j � j�1,

� or the unique character occurring as a component of � � ��1 when �2 2 ¹j � j; j � j�1º.

Properties (1) and (2) of Theorem 1.1 thus hold, since

� an irreducible xQ`-representation of GL2.F / is integral if and only if its cuspidal sup-
port is integral (see [63, Chapter II, §4.14] and [15, Proposition 6.7] ),

� if � is integral, the supercuspidal support of any irreducible component of r`.�� ��1/
is the GL2.F /-conjugacy class of the cuspidal pair .F � � F �; �˝ ��1/.

However, if � is any non-trivial character of F � with values in 1Cm (where m is
the maximal ideal of xZ`) such that �2 … ¹1; j � j�2º, the characters j � j1=2 and �j � j1=2

are congruent, but the transfer of the first one is the trivial character of GL2.F /, which
is not generic. Property (3) thus does not hold. Also, the transfer of the second one is
�j � j1=2 � ��1j � j�1=2, whose reduction mod ` contains the trivial character with multipli-
city 1 (if ` ¤ 2) or 2 (if ` D 2) by [62, Théorème 3].
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Assume further that q has order 2 mod `, that is, ` divides q2 � 1 but not q � 1,
and let � be the unique unramified xQ`-character of order 2 of F �. Then the transfer of
�j � j�1=2 (which is congruent to j � j1=2) is � ı det, whose reduction mod ` is a character of
order 2. We thus have two congruent characters of F � whose transfers to GL2.F / have
reductions mod ` with no component in common.

Appendix A. Cyclic base change

Let F be a p-adic field, and let K be a cyclic finite extension of F of degree d . Fix
an integer n > 1 and write G D GLn.F / and H D GLn.K/. By [3], there exists a map
from isomorphism classes of irreducible (smooth) complex representations of G to those
of H called the local base change, denoted by b D bK=F .

Now let us fix a prime number ` different from p and an isomorphism of fields �
between C and xQ`. Replacing C by xQ` thanks to �, one obtains a local base change
bK=F;` for irreducible smooth xQ`-representations.

In this appendix, we investigate the dependency of bK=F;` on the choice of �, or equi-
valently the behaviour of bK=F with respect to automorphisms of C.

A.1. Let aF denote the local Langlands correspondence from the set of isomorphism
classes of irreducible complex representations ofG to the setˆ.G/ of GLn.C/-conjugacy
classes of local Langlands parameters for G [23, 25].

Replacing C by xQ` thanks to �, one obtains a local Langlands correspondence aF;`
for irreducible xQ`-representations. The dependency of aF;` on �, or equivalently the beha-
viour of aF with respect to automorphisms of C, has been studied in [14, 26]: the map
� 7! aF .�jdetj.1�n/=2/ is insensitive to automorphisms of C. It follows that

aF .�

 / D aF .�/



� �1�nF;
 (A.1)

for all 
 2 Aut.C/ and all irreducible complex representations � of G, where

�F;
 .w/ D
�
.pq/
p
q

��F .w/
(A.2)

for all w 2WF , where �F is the valuation map taking any Frobenius element to 1.

A.2. Let resK=F be the map from ˆ.G/ to ˆ.H/ defined by restricting local Langlands
parameters from WDF to WDK . The local base change bK=F is characterized by the
identity

aK ı bK=F D resK=F ı aF :

Now let us prove that b D bK=F is insensitive to the action of Aut.C/.

Proposition A.1. For all 
 2Aut.C/ and all irreducible complex representations � ofG,
we have bK=F .�
 / D bK=F .�/
 .
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Proof. Let � be an irreducible complex representation of G. We have

aK.bK=F .�

 // D resK=F .aF .�


 // D resK=F .aF .�/


� �1�nF;
 /

D aK.bK=F .�//


� .�F;
 jWK /

1�n

D aK.bK=F .�/

 / � .�K;
 � �F;
 jWK /

1�n:

We are thus reduced to compare �F;
 jWK with �K;
 . Using the explicit formula (A.2),
we get

�F;
 jWK D
�
.pq/
p
q

��F jWK
; �K;
 D

�
.pq0/
p
q0

��K
;

where q0 is the cardinality of the residue field of K. Since q0 D qfK=F and �F jWK D
fK=F �K , we deduce that �F;
 jWK D �K;
 , thus bK=F .�
 / D bK=F .�/
 .

A.3. The map bK=F;` preserves the fact of being integral: this follows from the fact that
an irreducible xQ`-representation � ofG is integral if and only if the restriction of aF;`.�/
to WF is integral [65, §1.4] and that the restriction to WK of an integral xQ`-representation
of WF is integral.

A.4. We now review the congruence properties of bK=F;`, after Zou’s PhD thesis [69,
§1.10].

Associated with an irreducible representation � of GLn.K/, with coefficients in xQ`

or xF`, there is a partition
�.�/ D .k1 > k2 > � � � /

of n defined inductively as follows. Let k1 denote the largest integer k 2 ¹1; : : : ; nº such
that the k-th derivative � .k/ is non-zero. If k1 D n, then �.�/D .n/. Otherwise, .k2 > � � � /
is the partition of n � k1 associated with the representation � .k1/ of GLn�k1.K/.

According to [64, Proposition V.9.2], if � is an integral irreducible xQ`-representation
of GLn.K/, then its reduction mod ` has a unique irreducible component � such that
�.�/ D �.�/. This component is denoted by j`.�/.

Theorem A.2 ([69, Theorem 1.10.17]). Let �1 and �2 be integral irreducible xQ`-repre-
sentations of GLn.F /. If j`.�1/ D j`.�2/, then j`.bK=F;`.�1// D j`.bK=F;`.�2//.

In particular, if �1, �2 are cuspidal, which implies that �.�1/ D �.�2/ D .n/, their
base changes bK=F;`.�1/ and bK=F;`.�2/ are generic. This theorem thus says that, if
r`.�1/ D r`.�2/, then r`.bK=F;`.�1// and r`.bK=F;`.�2// have a unique generic irredu-
cible component in common. This can be seen as an analogue of Theorem 1.1 for the
cyclic base change from G to H .

A.5. In this subsection, we give an example of congruent integral cuspidal xQ`-represen-
tations �1, �2 of G such that bK=F;`.�1/ and bK=F;`.�2/ are not congruent.

First, assume that � is an integral cuspidal irreducible xQ`-representation of G. Let m
denote the cardinality of the set of isomorphism classes of ��, where � runs over the
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characters of F � trivial on NK=F .K�/, and set e D d=m. Then there exists a cuspidal
irreducible representation � of GLn=e.K/ such that

bK=F .�/ D � � �
˛
� � � � � �˛

e�1

;

where ˛ is a generator of Gal.K=F / and � denotes normalized parabolic induction with
respect to a choice of square root of q, the cardinality of the residue field of F (see [3,
Chapter 1, §6.4]).

Now assume that n D 2 and that K is a ramified quadratic extension of F , and let
!K=F be the character of F � with kernel NK=F .K�/. Let �1 be an integral cuspidal
xQ`-representation of G D GL2.F / of level 0. By [13], it is compactly induced from
a representation �1 of F �GL2.OF / whose restriction to GL2.OF / is the inflation of
a cuspidal irreducible representation �1 of the group GL2.k/, where k is the residue field
of F . Associated with �1, there is a character [20]

�1W l
�
! xZ�`

such that �q1 ¤ �1, where l is a quadratic extension of k and q is the cardinality of k.
The representation �1!K=F is isomorphic to �1 if and only if �1!K=F is isomorphic

to �1. As these representations all have the same central character, this is equivalent to
�1� ' �1, where � is the unique character of order 2 of k� (note that the restriction of
!K=F to O�F is the inflation of �), which is equivalent to �1.� ı Nl=k/ D �

q
1 , that is, �q�11

has order 2. Assume that this is the case. Thus e1 D 2 and we may write bK=F .�1/ D
�1 � �

˛
1 for some (tamely ramified, integral) character �1 of K�.

Assume further that ` is a prime divisor of q2 � 1 not dividing q � 1, that is, ` is
an odd prime divisor of q C 1. Let � be a character of l� of order ` and set �2 D �1�.
Since �q2 ¤ �2, there is a cuspidal xQ`-representation �2 of GL2.k/ associated with �2.
Since �2 and �1 are congruent, �2 and �1 are congruent (see, for instance, [39, §2.6]). Let
us inflate and extend �2 to a representation �2 of F �GL2.OF / which is congruent to �1,
then compactly induce �2 to a representation �2 of GL2.F /. This is an integral cuspidal
representation of level 0 which is congruent to �1.

Since �q ¤ �, we have e2 D 1, thus bK=F .�1/ is a cuspidal representation �2 of
GL2.K/. Its reduction mod ` is an irreducible cuspidal xF`-representation of GL2.K/.
It is the unique generic component of r`.�1 � �

˛
1 /.

Appendix B. Cuspidal representations of split p-adic orthogonal groups with
irreducible Galois parameter

B.1. Let F be a p-adic field with p ¤ 2, and let G be a split special orthogonal group
over F , that is, G D SO.Q/, where Q is a maximally isotropic quadratic form over F .
Let n be the dimension of Q. In this section, we assume that n ¤ 2. Let m D bn=2c be
the Witt index of Q. With the notation of Section 5.1, we have G D SO2mC1.F / if n is
odd, G D SO12m.F / if n is even. We will prove the following result.
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Proposition B.1. There exists a cuspidal representation of level 0 of G whose transfer to
GLN .F / is cuspidal.

B.2. In this subsection, we refer to [36, §2] (see p. 1090 in particular). Let V be the
n-dimensional F -vector space on which Q is defined. Write

V D V an
˚ V iso;

where V an is anisotropic (thus dim.V an/ 6 1) and V iso is a sum of m hyperbolic planes.
Let q denote the cardinality of the residue field of F . The anisotropic group Gan D

SO.V an/ has a unique (up to conjugacy) maximal parahoric subgroup. Its finite reductive
quotient Gan has neutral component the finite special orthogonal group

SOa.q/

with a D dim.V an/.
For any choice of integers m1; m2 > 0 such that m1 Cm2 D m, there is a maximal

parahoric subgroup J D Jm1;m2 whose finite reductive quotient G D Gm1;m2 has neutral
component

SOaCm1;m1.q/ � SOm2;m2.q/;

where SOu;v.q/ is the special orthogonal group over Fq associated with a quadratic space
of dimension uC v and Witt index v. Choose m2 D 0, so that G has neutral component
SOm;m.q/ if n D 2m, and SOmC1;m.q/ if n D 2mC 1. In other words, Gı is split.

B.3. Let � be a self-dual cuspidal irreducible representation of GL2r .q/ and s 2 F�
q2r

be a parameter corresponding to � . In particular, s has degree 2r over Fq and s�1 D sq
r
.

Its characteristic polynomial P.X/ is thus irreducible, of degree 2r , and self-dual (that is,
reciprocal).

The parameter s can be seen in the dual group Gı;� � GL2r .q/. It then defines a Lusz-
tig series E.Gı; s/.

Lemma B.2. The Lusztig series E.Gı; s/ contains a cuspidal representation.

Proof. If m is odd, see [36, §7.2, p. 1098]. Assume now that m is even. We follow
[36, §7.3]. Consider the group with connected centre zG D GSO˙m of which Gı is a sub-
group. The scalars 1 and�1 are not eigenvalues of s. The centralizer of s is thus connected
and the two Lusztig series associated with s are the same. A cuspidal representation of Gı

associated with s is an irreducible component of the restriction to Gı of a cuspidal repres-
entation of zG associated with a semisimple element zs 2 zG� lifting s. To prove the lemma,
it thus suffices to prove that the Lusztig series E.zG; zs/ contains a cuspidal representa-
tion.

The two groups zG and Gı act naturally on the same space, thus zs and s have the
same characteristic polynomial P.X/. It follows from [36, §7.2, p. 1098] that E.zG; zs/
contains a cuspidal representation.
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B.4. Let � be a cuspidal representation in the Lusztig series E.Gı; s/. Let � be an irre-
ducible representation of J whose restriction to J ı (the preimage of Gı in J ) is a direct
sum of conjugates (under J ) of the inflation of � . Let � be the representation obtained by
compactly inducing � to G. It is a cuspidal irreducible representation of level 0 of G.

As G is split, it follows from Moeglin [44] that the Langlands parameter ' associated
with � is described by the reducibility set Red.�/ and the Jordan set Jord.�/ (see, for
instance, the introduction of [36] for a definition).

In our situation, it follows from [36, §8] that the sets Red.�/ and Jord.�/ are equal
and both reduced to a single element .�; 1/, where � is a self-dual cuspidal representa-
tion of GLN .F / (with N D n � 1 if n is odd and N D n if n is even), which proves
Proposition B.1.

Remark B.3. More precisely, � has level 0, and is obtained by compactly inducing a rep-
resentation of F �GLN .OF / which is trivial on 1 C MN .pF / and whose restriction to
GLN .OF / is the inflation of � .

Appendix C. Cuspidal representations of Sp2n.Q2/ with irreducible Galois
parameter (by Guy Henniart)

C.1. Let p be a prime number and F a finite extension of Qp . Let xF be an algebraic clos-
ure of F and WF the Weil group of xF=F . Let n be a positive integer and � a cuspidal
(complex) representation of Sp2n.F /. Let � be the Galois parameter attached to � by
Arthur [2], which one sees as an orthogonal representation of WF � SL2.C/, of dimen-
sion 2nC 1. The following result is used in the main text, in Section 9.

Theorem C.1. Assume thatF DQ2, and take for � the (unique) simple supercuspidal re-
presentation of Sp2n.F /. Then � is an irreducible representation of WF .

Here simple is in the sense of Gross and Reeder [22]. The point of the result is that �
is compactly induced from a compact open subgroup of Sp2n.F /, as we describe below.
Indeed, when p D 2, there is at least one irreducible orthogonal representation � of WF

of dimension 2nC 1 [11], only one if F DQ2, and by [2] it is the parameter of a cuspidal
representation � of Sp2n.F /, but it is not clear a priori that � is compactly induced.

Our method is inspired by the work of Oi [47]. When p is odd, Oi determines the
parameter � of a simple cuspidal representation � of Sp2n.F /. In his case, � is always
reducible, but a number of techniques and results remains valid when p D 2, and, with
extra information given by Adrian and Kaplan [1] when F DQ2, that is enough for us. It
is quite likely that one can describe � explicitly whenever � is simple cuspidal, not only
when p is odd or F DQ2. Indeed, many of our arguments work more generally, and until
Appendix C.6 we make no special assumption on F , except that in Appendix C.3 we start
assuming that1 p D 2.

1Oi and the author [27] can now extend Theorem C.1 to any 2-adic field F .
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C.2. We now proceed. We use customary notation, OF for the ring of integers of F ,
pF for the maximal ideal of OF . We fix a uniformizer $ of F , and write k for the
residue field OF =pF and q for its cardinality. We also fix a non-trivial character  of k.
If H is an algebraic group over F , we usually put H D H.F /.

We use the usual explicit model of G D Sp2n, see [47, §2.4], so elements of G D
Sp2n.F / are symplectic 2n � 2n matrices. By cuspidal representation of G we mean an
irreducible smooth complex cuspidal representation. We are interested in simple cuspidal
representations of G, in the sense of Gross and Reeder [22]. Let us describe them.

The choice in [22] of a root basis and an affine root basis determines an Iwahori
subgroup I of G, with its first two congruence subgroups IC and ICC. The Iwahori sub-
group I is the subgroup of Sp2n.OF /made out of the matrices which are upper triangular
modulo pF , IC is made out of the matrices which are further upper unipotent modulo pF ,
and ICC is made out of the matrices .xi;j / in IC with xi;iC1 2 pF for i D 1; : : : ; 2n� 1,
and x2n;1 2 p2F . The quotient IC=ICC is isomorphic to a product of nC 1 copies of k,
via the surjective homomorphism

.xi;j / 7! .x1;2 mod pF ; : : : ; xn;nC1 mod pF ; x2n;1=$ mod pF /

from IC to knC1.
A character of IC is simple if it is trivial on ICC, and is the inflation of a character

of knC1 which is non-trivial on each factor k. The normalizer inG of a simple character �
of IC is ZIC, where Z is the centre of G, and ZIC is also the intertwining of � in G,
so that any extension of � to ZIC gives by compact induction to G a cuspidal represent-
ation of G: see [47, §2.4, Proposition 2.6]. Note that when p is 2, the centre Z of G is
actually contained in ICC. The cuspidal representations ofG thus obtained are the simple
cuspidal representations of [22].

The normalizer of IC inG isZI , and I acts on IC=ICC via I=IC; identifying I=IC

with k�n via
.xi;j / 7! .x1;1 mod pF ; : : : ; xn;n mod pF /;

the conjugation action of .�1; : : : ; �n/ 2 k�n on IC=ICC (identified with knC1) sends
the family .u1; : : : ; unC1/ 2 knC1 to

.u1�1�
�1
2 ; u2�2�

�1
3 ; : : : ; un�1�n�1�

�1
n ; un�

2
n; unC1�

�2
1 /:

In particular, when p D 2, a given simple character � of IC can always be conjugated
in I to the character

�.a/W .u1; : : : ; unC1/ 7!  .u1 C � � � C un C aunC1/

for some a in k�, uniquely determined by � . More precisely, if � sends .u1; : : : ; unC1/ to
 .a1u1C � � � C anunC anC1unC1/ for some ai ’s in k�, then a is equal to .a1 � � �an�1/2 �
an � anC1. Thus2 when pD 2, there are only q � 1 isomorphism classes of simple cuspidal

2The referee remarks that one needs to know the “intertwining implies conjugacy” result that
says that if two simple characters � and � 0 of IC intertwine in G, then they are actually conjugate.
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representations of G, whereas, by a similar analysis [47, §2.4], there are 4.q � 1/ such
classes when p is odd. Note that when q D 2, all that is obvious since k has only one
non-trivial character.

C.3. The group Sp2n is split, and its dual group is SO2nC1.C/. To a cuspidal represent-
ation � of G, Arthur attaches the conjugacy class of a discrete parameter, that is, (the
conjugacy class of) a continuous homomorphism from WF � SL2.C/ into SO2nC1.C/
which, as a representation of dimension 2nC 1, is a direct sum of inequivalent irredu-
cible orthogonal representations �1; : : : ; �r with the product det�1 � � � det�r trivial. What
our theorem says is that when F D Q2 and � is simple cuspidal, then r D 1 and �1 is
trivial on SL2.C/, i.e., is in fact a representation of WF . Note that [11] shows that when
p is odd, there is no irreducible orthogonal representation of WF of odd dimension > 1,
contrary to the case p D 2, where [11] gives a complete classification.

From now on we assume p D 2. For a in k�, let us denote by �.a/ the isomorph-
ism class of the representation of G compactly induced from the character �.a/ of IC.
We let �.a/ be the parameter of �.a/, r.a/ the number of irreducible components of
�.a/, and ….a/ the L-packet of �.a/, that is, the set of isomorphism classes of tempered
(in fact, discrete series) representations of G with parameter �.a/; it is known that ….a/
has 2r.a/�1 elements, so one of our goals is to show that r.a/ D 1. Let Gad be the adjoint
group of G, and let � be the quotient map from G to Gad.

Lemma C.2. The class �.a/ is stable under the action of Gad.

Proof. We follow the proof of [47, Proposition 5.2]. As there, one gets a description of
the quotient Gad=�.G/. It is isomorphic to Hom.F �; �2/, itself isomorphic, by Kummer
theory, to F �=F �2. More concretely, if T is the diagonal torus ofG made out of elements

t .b/ D .b; b; : : : ; b; b�1; : : : ; b�1/

(with n times b and n times b�1), then for any b in xF with b2 in F � the image of t .b/
in Gad. xF / is actually in Gad, and the set of such t .b/’s covers Gad=�.G/.

If b2 is a unit in F , then t .b/ actually normalizes I and its congruence subgroups, and
sends �.a/ to the character given by

.u1; : : : ; unC1/ 7!  
�
u1 C � � � C un�1 C b

2un C
a

b2
unC1

�
;

conjugate in I to �.a/. If b2 is the uniformizer $ , t .b/ conjugates I to another Iwahori
subgroup, but if s is the matrix inG with four blocks of size n, first line .0; In/ and second
line .�In; 0/, then st.b/ normalizes I and its congruence subgroups, and sends �.a/ to
the character given by

.u1; : : : ; unC1/ 7!  .u1 C � � � C un�1 C aun C unC1/

The arguments are the same as for proving that the construction of simple cuspidals does give
irreducible representations. The reader can consult [51] for the more general cases of epipelagic
representations.
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(recall that p D 2, so �1D 1 in k), which is conjugate to �.a/. Since the stabilizer in Gad

of �.a/ is a subgroup containing all of �.G/, it follows that it is all of Gad.

An important point is the genericity of simple cuspidal representations. We fix the
same Whittaker datum as Oi [47, §6.3 (2)] to define genericity. By [30, Proposition 5.1],
the Gad-orbit of �.a/ contains a single generic representation, so by the previous lemma
the representation �.a/ is generic. Reasoning as in [47, Corollaries 4.9 and 5.7], we get
the following.

Proposition C.3. The parameter �.a/ is trivial on SL2.C/, every element of ….a/ is
cuspidal, and among them only �.a/ is a simple cuspidal representation.

It only remains to prove that r.a/ D 1.

C.4. Still following [47], we prove the following assertion.

Proposition C.4. The L-packet ….a/ does not contain any level 0 cuspidal representa-
tion.

Proof. By [56, Corollary 9.10], all elements of ….a/ have the same formal degree. If dg
is a Haar measure on G=Z, then the formal degree of �.a/ is dg=vol.IC=Z; dg/ (by [47,
Lemma 5.10]), whereas the formal degree of a level 0 cuspidal representation of G is
strictly smaller, by the following reasoning inspired by loc. cit., Proposition 5.11. A level 0
cuspidal representation � 0 ofG is compactly induced from an irreducible representation �
of a maximal parahoric subgroup P of G, trivial on the pro-p radical PC of P , and
coming via inflation from a cuspidal representation of the finite (connected here) reductive
group xP D P=PC. The formal degree of � 0 is

dim.�/
vol.P=Z; dg/

dg:

One can assume that P contains I and IC contains PC. Since p D 2, the group PC

contains Z, so what we have to prove is that dim.�/ < card.P=IC/. But IC=PC is the
unipotent radical xU of the Borel subgroup xB D I=PC of xP , and obviously dim.�/2 is at
most card. xP /, so it is enough to check card. xP / < card. xP= xU/2 or card. xU/2 < card. xP /,
which is a consequence of the existence of the big cell xBw xU in the Bruhat decomposition
for xP .

Remark C.5. It is highly plausible that for a cuspidal representation � 0 of G which is
not of level 0 and is not a simple cuspidal either, the formal degree of � 0 is bigger than
the formal degree of �.a/. But nothing explicit is known about such � 0.

C.5. Now we compute the character �.a/ of �.a/ at an affine generic element g of IC,
where g generic means that, modulo ICC, g gives an .n C 1/-tuple .u1; : : : ; unC1/
in knC1 with all coordinates non-zero. As in [47, Lemma 2.5], we see that an element y
conjugating g into IC belongs to I , so that by the usual formula for the character of
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compactly induced representations (see, e.g., loc. cit. Theorem 3.2), the character �.a/
of �.a/ at g is the sumX
.�1;:::;�n/2k�n

 .u1�1�
�1
2 C u2�2�

�1
3 C � � � C un�1�n�1�

�1
n C un�

2
n C aunC1�

�2
1 /;

which is a kind of Kloosterman sum, the sumX
.�1;:::;�n/2k�n

 .u1�1 C u2�2 C � � � C un�1�n�1 C un�
2
n C aun�nC1/

with �nC1 given by .�1 � � � �n�1/2�n�nC1 D 1. Noting that  takes only the values 1
and �1, we conclude the following.

Proposition C.6. The value of �.a/ at a generic element g of IC is an odd integer
depending only on g modulo ICC.

C.6. Still following [47, §5.3], we now show the following.

Proposition C.7. We have r.a/ D 1 or 2, and, seen as a representation of WF of dimen-
sion 2nC 1, �.a/ is either irreducible or the direct sum of a character ! with !2 D 1
and an irreducible (orthogonal) representation with determinant !.

Proof. Put s D 2r.a/�1 and enumerate the elements of �.a/ as �1 D �.a/; : : : ; �s , and
let �i be the character of �i . Let g be a generic element of IC. Choose ".i/D 1 or �1 for
i D 1; : : : ; s. Exactly as in the proof of Claim in loc. cit., p. 54, we get that ".1/�1 C � � � C
".s/�s does not vanish at g. Using that the characteristic polynomial of g is irreducible of
degree 2n (loc. cit., Lemma 7.5, still valid when p D 2), the proofs of Theorem 5.1 and
Corollary 5.13 in loc. cit. give the result.

C.7. To get the remaining assertion that r.a/ is in fact 1, we use new information given by
Adrian and Kaplan [1]. Unfortunately, that information is only available presently when
F D Q2, hence the restriction in our main result, but we expect that the computation
in loc. cit. can be carried over to the general case. When F D Q2, there is only a D 1,
so we put � D �.1/. In [1, Theorem 3.13], the authors compute the Rankin–Selberg 
 -
factor 
.� � �;  0/ (a rational function in 2s for a complex parameter s) for any tame
character � of Q�2 with �2 D 1 and a character  0 of Q2 trivial on 2Z2 but not on Z2.
They find


.� � �;  0/ D �.2/21=2�s : (C.1)

On the other hand, if � is the parameter of � , seen as a representation of WF of dimension
2nC 1, and � is the character of WF corresponding to � via class field theory, then


.� � �;  0/ D 
.� ˝ �; 0/; (C.2)

where the right-hand side is the Deligne–Langlands factor.3

3That is to say, Arthur’s correspondence is compatible with Rankin–Selberg 
 -factors. It can be
proved by a local-global argument. Detail will appear in joint work with Oi [27].
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That gives new information on � which, we recall, is by Proposition C.7 either irre-
ducible or the direct sum of a character ! with !2 D 1 and an irreducible representation,
say ˛, with

! det˛ D 1:

But the factor 
.� � �;  0/ has no zero nor pole, so is equal to the factor

".� � �;  0/ D ".� ˝ �; 0/

which has the form
u � 2Art..�˝�/�dim.�˝�//.1=2�s/

for some non-zero complex number u: the exact value of the exponent comes from the
fact that  0 is trivial on 2Z2 but not on Z2. This implies that

Art.� ˝ �/ D 2nC 2;

and taking � trivial yields Art.�/ D 2nC 2.
Assume we are in the case where �D!˚˛. Taking �D! gives a pole to 
.�˝!; /

which contradicts (C.1) if ! is tame (that is, since F DQ2, unramified). Thus ! is wildly
ramified, so its Artin exponent is at least 2, and the Artin exponent of ˛ is at most 2n. That
implies that ˛ is tamely ramified, and in fact Art.˛/ D 2n, Art.!/ D 2. But then det˛ is
also tamely ramified, which contradicts ! det ˛ D 1. That contradiction shows that � is
irreducible, as desired.

C.8. One can describe � explicitly. By the main result of [11], an orthogonal irreducible
representation of WQ2 is induced from an order 2 wildly ramified character ˇ of WK ,
whereK is a totally ramified extension of Q2 degree 2nC 1. Such an extension is unique
up to isomorphism, generated by a uniformizer z with z2nC1 D 2. Let ž be the char-
acter of K� corresponding to ˇ via class field theory. Since Art.�/ D 2nC 2, we have
Art. ž/ D 2, and moreover det.�/ D 1 is the restriction of ž to Q�2 times the determinant
of the representation of WQ2 induced from the trivial character of WK . That determinant
is an unramified quadratic character of WK , computed in [9] as the unramified char-
acter taking value at Frobenius elements the Jacobi symbol of 2 modulo 2n C 1. That
imposes ž.z/, and with Art. ž/ D 2 and ž.1C z/ D �1 it determines ž, hence ˇ.
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