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Abstract. We study the length statistics of the components of a random multicurve on a closed sur-
face of genus at least 2. This investigation was initiated by Mirzakhani in a paper published in 2016
where she studied the case of random pants decompositions. We prove that as the genus tends
to infinity these statistics converge in law to the Poisson–Dirichlet distribution with parameter 1/2.
In particular, the mean lengths of the three longest components converge to 75.8%, 17.1% and 4.9%
of the total length, respectively.
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1. Introduction

1.1. Lengths statistics of random multicurves in large genus

LetX be a closed Riemann surface of genus g � 2 endowed with its conformal hyperbolic
metric of constant curvature�1. A simple closed curve is a homotopically non-trivial con-
nected closed curve which has no self-intersection. In the free homotopy class of a simple
closed curve 
 on X , there exists a unique geodesic representative with respect to the
hyperbolic metric X . We denote by `X .
/ the length of this geodesic representative.

A multicurve on X is a multiset of disjoint simple closed curves on X . Given a mul-
ticurve 
 , a component of 
 is a maximal family of freely homotopic curves in 
 . The
cardinality of a component is called its multiplicity and the length of a component is the
sum of the lengths of the simple curves belonging to the component (or equivalently its
multiplicity multiplied by the length of any simple closed curve in the component). A mul-
ticurve is called primitive if all its components have multiplicity one. We denote by `#X .
/
the vector of the lengths of each component sorted in descending order, by mult.
/ the
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multiset of the multiplicities of the components of 
 , and by mult.
/ the maximum
of mult.
/. Neither mult.
/ nor mult.
/ depends on the hyperbolic structure of X .
We write `X .
/ for the sum of the entries of `#X .
/ and define its normalized length
vector to be

ỳ#
X .
/ WD

`
#

X .
/

`X .
/
:

We denote by MLX .Z/ the set of free homotopy classes of multicurves on X . This
notation is explained by the fact that multicurves are the integral points of the space of
measured laminations usually denoted by MLX .

In order to make sense of convergence, we need all normalized vectors to belong to
the same space. For an integer k � 1 and a real number r > 0, let us define

�k�r WD ¹.x1; x2; : : : ; xk/ 2 Œ0;1/
k
W x1 C x2 C � � � C xk � rº;

�1�r WD ¹.x1; x2; : : : / 2 Œ0;1/
N
W x1 C x2 C � � � � rº;

where N WD ¹1; 2; : : : º. For k1 � k2, an injection �k1�r ! �
k2
�r is naturally defined by

completing vectors with zeros. The infinite simplex �1�r is the inductive limit of these
injections, and we always identify �k�r as a subspace of �1�r . In particular, each vec-
tor ỳ#X .
/ can be seen as an element of �1�1 by completing its coordinates with infinitely
many zeros.

As our aim is to study convergence of random infinite vectors, let us mention that�1�1
is a closed subset of Œ0; 1�N endowed with the product topology. This topology coincides
with the topology of the inductive limit. When we consider convergence in distribution
on �1�1, we mean convergence in the space of Borel probability measures on �1�1 which
is a compact set.

The following result is a consequence of the works [4, 19].

Theorem 1.1. Let g � 2 and m 2 N [ ¹1º. There exists a random variable L.g;m/# D
.L.g;m/#1; : : : ; L

.g;m/#
3g�3/ on �3g�3�1 with the following property. For any Riemann

surface X of genus g, as R!1, we have the following convergence in distribution:

1

sX .R;m/

X

2MLX .Z/
`X .
/�R

mult.
/�m

ı ỳ#
X
.
/ ����!

R!1
L.g;m/#;

where ı ỳ#
X
.
/ is the Dirac mass at the vector ỳ#X .
/ and sX .R;m/ WD #¹
 2MLX .Z/ W

`X .
/ � R and mult.
/ �mº is the number of multicurves on X of length at most R and
multiplicity at most m.

We actually prove a more precise version of the above statement, Theorem 3.2, in
which the law of L.g;m/# is made explicit. Remark that the limit depends only on the
genus of X and not on its hyperbolic metric.

The Poisson–Dirichlet distribution is a probability measure on �1�1. The simplest
way to introduce it is via the stick-breaking process. Let � > 0 and let U1; U2; : : : be
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independent and identically distributed random variables with law Beta.1; �/ (i.e., they
are supported on .0; 1� with density �.1 � x/��1). Consider the random sequence

V WD .U1; .1 � U1/U2; .1 � U1/.1 � U2/U3; : : :/:

Informally, the components of V are obtained by starting from a stick of length 1 identi-
fied with Œ0; 1�. At the first stage, U1 determines where we break the first piece, and we
are left with a stick of size 1�U1. We then repeat the process ad libitum. The law of V is
the Griffiths–Engen–McCloskey distribution with parameter � , which we shall denote by
GEM.�/. The Poisson–Dirichlet distribution with parameter � , denoted by PD.�/, is the
distribution of V #, the vector V whose entries are sorted in decreasing order. For more
details, we refer the reader to Section 5.2. The distribution PD.1/ is the limit distribu-
tion of the orbit length of uniform random permutations. The distribution PD.�/ appears
when considering the Ewens distribution with parameter � on the symmetric group. See
Section 1.2.2 below for a more detailed discussion on permutations.

Our main result is the following.

Theorem 1.2. For any m 2 N [ ¹1º, the sequence .L.g;m/#/g�2 converges in distribu-
tion to PD.1=2/ as g!1.

The most interesting cases of this convergence are m D 1 (primitive multicurves) and
m D 1 (all multicurves). Let us insist that both L.g;1/# and L.g;1/# converge to the
same limit as g!1.

All marginals of the Poisson–Dirichlet law can be computed; see, for example, [5,
Section 4.11]. In particular, if V D .V1; V2; : : :/ � PD.�/, then

E..Vj /
n/ D

�.� C 1/

�.� C n/

Z 1
0

.�E1.x//
j�1

.j � 1/Š
xn�1e�x��E1.x/ dx;

where E1.x/ WD
R1
x
e�yy�1 dy. The formulas can be turned into a computer program,

and values were tabulated in [12, 13]. For � D 1=2, we have

E.V1/ � 0:758; E.V2/ � 0:171; and E.V3/ � 0:049:

Therefore, Theorem 1.2 implies that, informally, the average lengths of the first three
largest components of a random multigeodesic on a closed hyperbolic surface of high
genus are approximately 75:8%, 17:1%, and 4:9% of the total length, respectively.

Moreover, we prove that, on a large genus surface, all macroscopic components of
a random multicurve are primitive with high probability.

For a multicurve 
 D m1
1 C � � � Cmk
k , define

pX .
/ WD
1

`X .
/

X
1�i�k
miD1

mi`X .
i /:

In other words, pX .
/ stands for the proportion of the total length contributed by primitive
components.
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Theorem 1.3. For any g � 2 andm 2Z�1 [ ¹1º, there exists a random variable P .g;m/

on Œ0; 1� such that for any Riemann surface X of genus g, when R !1, we have con-
vergence in distribution

1

sX .R;m/

X

2MLX .Z/
`X .
/�R

mult.
/�m

ıpX .
/ ����!
R!1

P .g;m/;

and for any " > 0, we have

lim
g!1

P .P .g;m/ � 1 � "/ D 1:

In particular, a long component is more likely to be “visually” long than to have a huge
multiplicity.

1.2. Further remarks

1.2.1. Square-tiled surfaces. In this section, we give an alternative statement of The-
orem 1.2 in terms of square-tiled surfaces. The correspondence between statistics of
multicurves and statistics of square-tiled surfaces is developed in [3, 7], and we refer
the reader to these two references.

A square-tiled surface is a connected surface obtained from gluing finitely many unit
squares Œ0; 1� � Œ0; 1� along their edges by translation z 7! z C u or “half-translation”
z 7! �zC u. Combinatorially, one can label the squares by ¹1; : : : ;N º and then a square-
tiled surface is encoded by two involutions .�; �/ of ¹˙1;˙2; : : : ;˙N º without fixed
points. More precisely, � encodes the horizontal gluings: Ci and �i are respectively the
right and left sides of the i -th square. The orbits of � with different signs are glued by
translations and the ones with same signs are glued by half-translations. And � encodes the
vertical gluings:Ci and �i are the top and bottom sides of the i -th squares, respectively.
The labelling is irrelevant in our definition and two pairs .�1; �1/ and .�2; �2/ encode the
same square-tiled surface if there exists a permutation ˛ of ¹˙1;˙2; : : : ;˙N º so that
˛.�i/ D �˛.Ci/, �2 D ˛ ı �1 ı ˛�1 and �2 D ˛ ı �1 ı ˛�1.

A square-tiled surface comes with a conformal structure and a quadratic form coming
from the conformal structure of the unit square and the quadratic form dz2 (both are being
preserved by translations and half-translations). This quadratic form might have simple
poles, and we denote by Qg.Z/ the set of holomorphic square-tiled surfaces of genus g.

A square-tiled surface comes equipped with a filling pair of multicurves .
h; 
v/ com-
ing from the gluings of the horizontal segments Œ0; 1� � ¹1=2º and vertical segments
¹1=2º � Œ0; 1� of each square, respectively. Conversely, the dual graph of a filling pair
of multicurves in a surface of genus g defines a square-tiled surface in Qg.Z/. Our nota-
tion comes from the fact that holomorphic square-tiled surfaces can be seen as integral
points in the moduli space of quadratic differentials Qg . A component of the multic-
urve 
h corresponds geometrically to a horizontal cylinder. For a square-tiled surface M ,
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we denote by A#.M/ the normalized vector of areas of these horizontal cylinders sor-
ted in decreasing order and by height.M/ the maximum of their heights. Here as in the
introduction, normalized means that we divide by the sum of entries of a vector which
coincides with area.M/. The following is a particular case of [7, Theorem 1.29] using the
explicit formulas for L.g;m/ given in Theorem 3.2.

Theorem 1.4 ([7]). Let g � 2 and m 2 N [ ¹1º. Let L.g;m/ be the random variable
from Theorem 1.1. Then, as N ! 1, we have the following convergence in distribu-
tion:

1

#¹M 2 Qg.Z/ W height.M/ � m; area.M/ � N º

X
M2Qg.Z/

height.M/�m
area.M/�N

ıA#.M/ ! L.g;m/#:

An important difference to notice between Theorems 1.1 and 1.4 is that in the former
(hyperbolic) metric, X is fixed and we sum over the multicurves 
 while in the latter we
sum over the discrete set of holomorphic square-tiled surfaces M .

Using Theorem 1.4, our Theorem 1.2 admits the following reformulation.

Corollary 1.5. The vector of normalized areas of horizontal cylinders of a random
square-tiled surface of genus g converges in distribution to PD.1=2/ as g!1.

1.2.2. Permutations and multicurves. Given a permutation � in Sn, we denote by Kn.�/
the number of orbits it has on ¹1; 2; : : : ; nº or equivalently the number of cycles in its dis-
joint cycle decomposition. The Ewens measure with parameter � on Sn is the probability
measure defined by

Pn;� .�/ WD
�Kn.�/

Zn;�
; where Zn;� WD

X
�2Sn

�Kn.�/:

Then under Pn;� , as n!1, we have that

� the random variable Kn behaves as a Poisson distribution Poi.� log.n// of para-
meter � log.n/ (e.g., by means of a local limit theorem),

� the normalized sorted vector of cycle lengths of � tends to PD.�/,

� the number of cycles of length k of � converges to Poi.�=k/.

See, for example, [5].
By analogy, let us denote by K.g;m/ the number of non-zero components of L.g;m/.

In [8], it is proven that K.g;m/ behaves as a Poisson distribution with parameter log.g/=2
(by means of a local limit theorem) independently of m. In other words, it behaves as the
number of cycles Kg.�/ for a random permutation � under Pg;1=2.

Theorem 1.2 provides another connection between L.g;m/ and Pg;1=2. Namely,
L.g;m/# is asymptotically close to the normalized sorted vector of the cycle lengths of �
under Pg;1=2.
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Finally, let us mention that components of L.g;m/ of the order of o.1/ are invisible
in the convergence towards PD.1=2/. It is a consequence of Theorem 1.2 that the macro-
scopic components of the order of a constant carry the total mass. Building on the intuition
that in the large genus asymptotic regime random multicurves on a surface X of genus g
behave like the cycles of a random permutation in the symmetric group Sg , one should
expect to have a Poisson limit for components of order g�1 and that there is no component
of order g�1�". In a work in progress, we provide an affirmative answer to this intuition.
However, because lengths are continuous parameters, the limit is a continuous Poisson
process and not a discrete one supported on N as in the permutation case.

1.3. Proof overview and structure of the paper

The first step of the proof consists in writing an explicit expression for the random variable
L.g;m/# that appears in Theorem 1.1. See Theorem 3.2 in Section 3. The formula follows
from the work of Mirzakhani on pants decompositions [20] and the result of Arana-
Herrera [4] and Liu [19] on length distribution for each fixed topological type of mul-
ticurves. The expression of L.g;m/# can be seen as a refinement of the formula for the
Masur–Veech volume of the moduli space of quadratic differentials from [7].

The formula for L.g;m/# involves a super-exponential number of terms in g (one term
for each topological type of multicurve on a surface of genus g). However, in the large
genus limit only O.log.g// terms contribute. This allows us to consider a simpler random
variable zL.g;m;�/# which, asymptotically, coincides with L.g;m/#. See Theorem 4.1 in
Section 4. This reduction is very similar to the one used for the large genus asymptotics
of Masur–Veech volumes in [1, 8].

The core of our proof consists in proving the convergence of moments of the simpler
variable zL.g;m;�/#. We do not use directly zL.g;m;�/# but its size-biased version zL.g;m;�/�.
The definition of size bias and the link with the Poisson–Dirichlet distribution are ex-
plained in Section 5. In Section 6, we show that the moments of zL.g;m;�/� converge to the
moments of GEM.1=2/ which is the size-biased version of the Poisson–Dirichlet process
PD.1=2/; see Theorem 6.1.

2. Background material

In this section, we introduce notations and state results from the literature that are used in
our proof.

2.1. Multicurves and stable graphs

Recall from the introduction that a multicurve on a closed hyperbolic surfaceX of genus g
is a finite multiset of free homotopy classes of disjoint simple closed curves. We denote
by MLX .Z/ the set of multicurves on X . The homotopy classes that appear in a multi-
curve 
 are called components. A multicurve on a closed surface of genus g has at most
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3g � 3 components. The multiplicity of a component is the number of times it is repeated
in 
 , and 
 is primitive if multiplicities of all components are 1.

Let us also recall our notations:

� `X .
/ is the total length of 
 ,

� `
#

X .
/ is the vector of the lengths of the components of 
 sorted in descending order,

� ỳ#
X .
/ is the (unit) vector of the normalized lengths of the components of 
 sorted in

descending order,

� mult.
/ is the maximum multiplicity of the components in 
 ,

� mult.
/ is the multiset of multiplicities of the components in 
 .

The mapping class group Mod.X/ of X acts on multicurves. The topological type
of a multicurve 
 is its equivalence class Œ
� under the Mod.X/-action. For each fixed
genus g, there are finitely many topological types of primitive multicurves and countably
many topological types of multicurves. They are conveniently encoded by respectively
stable graphs and weighted stable graphs that we define next. Informally, given a mul-
ticurve 
 with components 
1; : : : ; 
k and multiplicities m1; : : : ; mk , we build a dual
graph � as follows:

� we add a vertex for each connected component of the complementX X .
1 [ � � �[
k/;
the vertex v carries an integral weight the genus g.v/ of the corresponding component,

� we add an edge for each component 
i of the multicurve between the two vertices cor-
responding to the connected components bounded by 
i ; this edge carries a weightmi .

More formally, a stable graph � is a 5-tuple .V;H; �; �; g/, where

� V is a finite set called vertices,

� H is a finite set called half-edges,

� �WH ! H is an involution without fixed points on H ; each pair ¹h; �.h/º is called an
edge, and we denote by E.� / the set of edges,

� � WH ! V is a surjective map (�.h/ is the vertex at which h is rooted),

� g is a map from V to Z�0,

such that

� (connectedness) for each pair of vertices u; v 2 V , there exists a sequence of edges,
¹x1; y1º, ¹x2; y2º, . . ., ¹xn; ynº such that �.x1/D u, �.yn/D v and �.yi /D �.xiC1/,
for i 2 ¹1; : : : ; n � 1º,

� (stability) for each vertex v 2 V , we have

2g.v/ � 2C deg.v/ > 0;

where deg.v/ WD j��1.v/j is the degree of the vertex v.

Given a stable graph � , its genus g.� / is defined by

g.� / WD jEj � jV j C 1C
X
v2V

g.v/:
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An isomorphism between stable graphs

�1 D .V1;H1; �1; �1; g1/ and �2 D .V2;H2; �2; �2; g2/

is a pair of bijections 'WV1 ! V2 and  WH1 ! H2 such that

�  ı �1 D �2 ı  (in other words,  maps an edge to an edge),

� ' ı �1 D �2 ı  ,

� for each v 2 V1, we have g2.'.v// D g1.v/.

Note that  determines ' but it is convenient to record the automorphism as a pair .'; /.
We denote by Aut.� / the set of automorphisms of � and by Gg the finite set of isomorph-
ism classes of stable graphs of genus g.

A weighted stable graph is a pair .�;m/, where � is a stable graph and m 2 NE.� /

is a map which assigns a positive integral weight m.e/, sometimes written as me , to
each edge e of � . An isomorphism between two weighted stable graphs .�1;m1/ and
.�2;m2/ is an isomorphism .';  / between �1 and �2 such that for each edge e of �1,
we have m1.e/ D m2. .e// (where we use  .e/ to denote ¹ .x/;  .y/º for the edge
e D ¹x; yº � H1). We denote by Aut.�;m/ the set of automorphisms of the weighted
graph .�;m/. There is a one-to-one correspondence between topological types of multic-
urves and weighted stable graphs. Primitive multicurves correspond to the case where all
edges carry weight 1.

2.2.  -classes and Kontsevich polynomial

The formula for the random variable L.g;m/# that appears in Theorem 1.1 involves inter-
section numbers of -classes that we introduce now. These rational numbers are famously
related to the Witten conjecture [22] proven by Kontsevich [18].

We denote by xMg;n the Deligne–Mumford compactification of the moduli space
of smooth complex curves of genus g with n marked points. There exist n so-called
tautological line bundles L1; : : : ;Ln !

xMg;n over xMg;n such that the fiber of Li at
.C I x1; : : : ; xn/ 2 xMg;n is the cotangent space of C at the i -th marked point xi . The
i -th psi-class  i is defined as the first Chern class of the i -th tautological line bundle
c1.Li / 2 H

2. xMg;n;Q/. We use the following standard notation

h�d1 � � � �dnig;n WD

Z
xMg;n

 
d1
1 � � � 

dn
n ;

where
d1 C � � � C dn D dimC

xMg;n D 3g � 3C n:

All these intersection numbers are positive rational numbers and can be computed by
recursive equations from

h�30 i0;3 D 1 and h�1i1;1 D
1

24
I

see, for example, [16].
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For our purposes, it will be convenient to consider the Kontsevich polynomial Vg;n 2
QŒx1; : : : ; xn� that gathers the intersection number into a symmetric polynomial on n
variables. More precisely,

Vg;n.x1; : : : ; xn/ WD
1

23g�3Cn

X
.d1;:::;dn/2Zn

�0

d1C���CdnD3g�3Cn

h�d1 � � � �dnig;n

d1Š � � � dnŠ
� x
2d1
1 � � � x2dnn

D

Z
xMg;n

exp
� nX
iD1

 i

2
x2i

�
:

For later use, we gather the list of small Kontsevich polynomials below:

V0;3.x1; x2; x3/ D 1;

V0;4.x1; x2; x3; x4/ D
1

2
.x21 C x

2
2 C x

2
3 C x

2
4/;

V1;1.x1/ D
1

48
x21 ;

V1;2.x1; x2/ D
1

192
.x21 C x

2
2/
2:

2.3. Random multicurves

Mirzakhani proved the polynomial growth of the number of multicurves on hyperbolic
surfaces with respect to its length. This result and some extensions of it are nicely presen-
ted in the book of Erlandsson and Souto [10].

Let X be a hyperbolic surface of genus g. We define

sX .R/ WD #¹� 2MLX .Z/ W `X .�/ � Rº;

sX .R; 
/ WD #¹� 2 Mod.X/ � 
 W `X .�/ � Rº:

Theorem 2.1 ([20, Theorems 1.1, 1.2, 3.1 and 5.3]). Let X be a hyperbolic surface. For
any multicurve 
 2MLX .Z/, there exists a positive rational constant c.
/ such that we
have, as R!1,

sX .R/ � B.X/ �R
6g�6; sX .R; 
/ � B.X/ �

c.
/

bg
�R6g�6;

where B.X/ is the Thurston volume of the unit ball in the space of measured laminations
MLX with respect to the length function `X , and

bg WD

Z
Mg

B.X/ dX D
X

Œ
�2MLX .Z/=Mod.X/

c.
/:

The above theorem allows us to give sense to the notion of a random multicurve.
Namely, we endow the set of topological types of multicurves MLX .Z/=Mod.X/ with
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Multicurve Stable graph Polynomial F�

1a xaV1;2.xa; xa/ D
x5a
48

1 1a xaV1;1.xa/V1;1.xa/ D
x5a
2304

0a b xaxbV0;4.xa; xa; xb ; xb/ D x
3
axb C xax

3
b

0 1a b
xaxbV0;3.xa; xa; xb/V1;1.xb/ D

xax
3
b

48

0 0a cb xaxbxcV0;3.xa; xa; xb/V0;3.xb ; xc ; xc/ D xaxbxc

0 0

a
b
c

xaxbxcV0;3.xa; xb ; xc/V0;3.xa; xb ; xc/ D xaxbxc

Tab. 1. The list of topological types of primitive multicurves of genus 2, their associated stable
graphs, and their corresponding polynomial F� . The labels on edges are used as variable indices
in F� .

the probability measure which assigns c.
/=bg to Œ
�. We now provide the explicit expres-
sion for this probability. For a stable graph � 2 Gg , we define the polynomial F� on the
variables xE WD ¹xe W e 2 E.� /º by

F� .xE / WD
Y

e2E.� /

xe �
Y

v2V.� /

Vgv ;nv .xv/: (2.1)

Here xv is the multiset of variables xe.h/, where h 2H.� / runs over the set of half-edges
incident to v and e.h/ 2 E.� / stands for the edge that contains h (so xe appears twice
if e is a self-loop), gv WD g.v/ (see the definition of a stable graph), nv is the cardinality
of xv , and Vgv ;nv is the Kontsevich polynomial defined in Section 2.2. In Table 1, we list
the stable graphs � of genus 2 together with their associated polynomial F� .

Remark 2.2. The polynomial F� appeared first in Mirzakhani’s work [20]; see in partic-
ular Theorem 5.3. It was related to square-tiled surfaces and Masur–Veech volumes in [7]
though with a different normalization; see equation (1.12) and Remark 2.5. Namely, the
polynomial P� from [7] is related to F� by

P� D 2
4g�2 .4g � 4/Š

.6g � 7/Š

1

jAut.� /j
F� :

The normalization of F� is identical to the conventions used in [2] and simplifies the
computations of the present article.
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Following [7], for a weighted stable graph .�;m/, we denote by

YmW QŒ¹xe W e 2 E.� /º�! Q

the linear operator defined on monomials

Ym

� Y
e2E.� /

xnee

�
WD

Y
e2E.� /

neŠ

m.e/neC1
; (2.2)

and for m 2 N [ ¹1º, set

Zm WD
X

m2NE.� /
me�m
e2E.� /

Ym:

We derive the following directly from [7].

Theorem 2.3. Let 
 be a multicurve of genus g and .�;m/ the dual weighted stable
graph. Then

c.
/ D
1

.6g � 6/Š

Ym.F� /

jAut.�;m/j
: (2.3)

Furthermore, for any m 2 N [ ¹1º,

bg;m WD
X

Œ
�2MLX .Z/=Mod.X/
mult.
/�m

c.
/ D
1

.6g � 6/Š

X
� 2Gg

Zm.F� /

jAut.� /j
: (2.4)

Note that bg;1 D bg defined in Theorem 2.1. The list of values Ym.F� / for the stable
graphs of genus 2 is shown in Table 2.

Remark 2.4. We warn the reader that the constant denoted by bg;m in this article has
nothing to do with the analogue of bg in the context of surfaces of genus g with n bound-
aries which is denoted by bg;n in [7, 21].

Remark 2.5. In Theorem 2.3, we fix a misconception in [7] about automorphisms of
multicurves (or equivalently weighted stable graphs). Indeed, the way we defined auto-
morphisms of stable graphs and weighted stable graphs in Section 2.1 makes it so that the
following formula is validX

�

Z1.F� /

jAut.� /j
D

X
.�;m/

Ym.F� /

jAut.�;m/j
;

where the sums are taken over isomorphism classes of stable graphs of genus g and
weighted stable graphs of genus g, respectively.

Proof of Theorem 2.3. Taking into account the correction of Remark 2.5, this is exactly
[7, Theorem 1.22] (see Remark 2.2 for the difference between P� and F� ).
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Stable graph � Value of Ym.� / Stable graph � Value of Ym.� /

1a
5

2
�
1

m6a
0 1a b

1

2
�

1

m2am
4
b

1 1a
5

96
�
1

m6a
0 0a cb

1

m2am
2
b
m2c

0a b 24
� 1

m4am
2
b

C
1

m2am
4
b

�
0 0

a
b
c

1

m2am
2
b
m2c

Tab. 2. The list of topological types of primitive multicurves of genus 2 and the associated values
Ym.F� / that is proportional to c.
/ (see Theorem 2.3).

2.4. Asymptotics of  -correlators and bg

Our proof of Theorem 1.2 uses crucially the asymptotics of  -intersections and Masur–
Veech volumes from [1] that were further developed in [8].

Theorem 2.6 ([1, Theorem 1.5]). For g; n 2 N and d D .d1; : : : ; dn/ 2 Zn�0 with d1 C
� � � C dn D 3g � 3C n, let ".d/ be defined by the equation

h�d1 � � � �dnig;n D
.6g � 5C 2n/ŠŠ

.2d1 C 1/ŠŠ � � � .2dn C 1/ŠŠ

1

gŠ � 24g
� .1C ".d//:

For ı > 0, write

D.g; ı/ WD ¹d D .d1; : : : ; dn/ 2 Zn�0 W d1 C � � � C dn D 3g C n � 3 and n < ı
p
gº:

Then
lim
ı!0

lim
g!1

max
d2D.g;ı/

".d/ D 0:

For m 2 N [ ¹1º and � 2 R>0, we define

zbg;m;� WD
1

.6g � 6/Š

X
� 2Gg
jV.� /jD1

jE.� /j��.log.6g�6//=2

Zm.F� /

jAut.� /j
: (2.5)

As we have fewer terms in this definition, zbg;m;� � bg;m.
We will use the asymptotic results of [1, 8] in the following form.

Theorem 2.7. Let m 2 N [ ¹1º and � > 1. Then, as g!1, we have

bg;m � zbg;m;� �
1

�

1

.6g � 6/ � .4g � 4/Š

r
m

mC 1

�4
3

�4g�4
: (2.6)
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Proof. By [8, Theorem 3.1] (see also [1, Theorem 1.7] for the m D1 case), we have, as
g!1, X

� 2Gg
jV.� /jD1

Zm.F� /

jAut.� /j
�
1

�

.6g � 7/Š

.4g � 4/Š

r
m

mC 1

�4
3

�4g�4
:

Next, by [8, Proposition 4.2] and [8, Proposition 4.3] ([1, Proposition 8.4] and [1,
Proposition 8.5] for the case m D 1), the contribution of the stable graphs with at least
two vertices in (2.4) is negligible. More precisely,X

� 2Gg
jV.� /j�2

Zm.F� /

jAut.� /j
� C

.logg/24
p
g

X
� 2Gg
jV.� /jD1

Zm.F� /

jAut.� /j
(2.7)

for some constant C > 0. This proves the asymptotic formula for bg;m.
Now we turn to zbg;m;� . We denote by �g;k the stable graph of genus g with a vertex

of genus g � k and k self-loops. Next, as in [8, (3.52)], for 1 � k � g let p.1/g;m.k/ denote
the relative contribution of the one vertex graph with k self-loops

p.1/g;m.k/ WD
Zm.F�g;k /Pg

kD1
Zm.F�g;k /

:

By [8, Corollary 3.28], the sequence of probability distributions .p.1/g;m/g�2 converges
mod-Poisson with parameter

�g D
1

2
log
� 2m

mC 1
� .3g � 3/

�
;

radius R D 2, and limiting function �.1=2/=�.x=2/. As a consequence, by [8, The-
orem 3.13], based on Hwang’s works [14, 15], we obtain that for any � > 1 and g large
enough, we have X

k>.�=2/ log..3g�3/.2m/=.mC1//

p.1/g;m.k/ < exp.�".�/g/ (2.8)

for some constant ".�/ > 0.
Now, it follows from (2.7) and (2.8) that bg;m and zbg;m;� are asymptotically equivalent

(using the fact that 2m=.mC 1/ � 2 for all m 2 N [ ¹1º).

3. Length vectors of random multicurves

The aim of this section is to state and prove a refinement of Theorem 1.1 that provides
an explicit description of the random variable L.g;m/#. The latter involves two layers of
randomness. The first layer is the choice of the topological type of the multicurve which
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is a discrete random variable with values in the set of weighted stable graphs .�;m/.
Next, for each fixed .�;m/ one has an explicit length distribution of the components of
a multicurve of type .�;m/.

The description of L.g;m/# involves a slight modification of the polynomials F�
introduced in (2.1) from Section 2.3. Let .�;m/ be a weighted stable graph. We define
a polynomial in QŒ¹xe W e 2 E.� /º� by

f�;m..xe/e2E.� // WD
.6g � 7/Š

Ym.F� /
�

Y
e2E.� /

1

me
� F�

�� xe
me

�
e2E.� /

�
; (3.1)

where Ym is defined in (2.2).
We endow �k�r with the restriction of the Lebesgue measure on Rk that we denote

by �k�r . We define the slice �kDr inside �k�r as

�kDr WD ¹.x1; : : : ; xk/ 2 Œ0;1/
k
W x1 C � � � C xk D rº:

On �kDr which is contained in a hyperplane in Rk , we consider the Lebesgue measure
induced by any choice of k � 1 coordinates among x1; : : : ; xk . The latter measure is well
defined (since the change of variables between different choices has determinant ˙1),
and we shall denote it by �kDr . We denote similarly by �E.� /�r and �E.� /Dr the Lebesgue
measures on the associated simplices in RE.� /. We have the following elementary result
whose proof is postponed to Section 5.2.

Lemma 3.1. The polynomial f�;m defined by formula (3.1) is the density of a probability
measure on �E.� /D1 .

For each g � 2, we consider a family of independent random variables ¹U .�;m/º.�;m/
indexed by (isomorphism classes of) weighted stable graphs of genus g, whereU .�;m/ has
density given by (3.1). We denote by U .�;m/# the random variable on �jE.� /jD1 obtained
from U .�;m/ by sorting its entries in descending order. We slightly abuse notation and
still denote by U .�;m/# the image in any �kD1 for k � jE.� /j by completing the last
k � jE.� /j variables with zeros.

In order to define L.g;m/# on �3g�3D1 , we need an auxiliary discrete variable Gg;m
independent of the family ¹U .�;m/º with values in the weighted stable graphs with multi-
plicities at most m defined as

P .Gg;m D .�;m// WD
1

.6g � 6/Š bg;m

Ym.F� /

jAut.�;m/j
; (3.2)

where bg;m is given by (2.4) and Ym by (2.2). By Theorem 2.3, this is a well-defined
probability measure. Moreover, by Theorems 2.1 and 2.3, the distribution of Gg;m is the
asymptotic distribution of topological types of random multicurves with multiplicities
bounded by m on any hyperbolic surface of genus g.

We define

L.g;m/# WD U Gg;m#: (3.3)
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Note that L.g;m/# does not admit a density on �3g�3D1 : it is a convex combination of
probability measures supported on subsimplices�kD1��

3g�3
D1 . Indeed, for each weighted

stable graph .�;m/ the random variable U .�;m/# supported on �jE.� /jD1 has a density.
The refinement of Theorem 1.1 is the following.

Theorem 3.2. For any g � 2 and anym 2N [ ¹1º, we have convergence in distribution

1

sX .R;m/

X

2MLX .Z/
`X .
/�R
mult
�m

ı ỳ#
X
.
/ ����!

R!1
L.g;m/#; (3.4)

where L.g;m/# is defined in (3.3) and

sX .R;m/ WD #¹
 2MLX .Z/ W `X .
/ � R; mult.
/ � mº

is the number of multicurves on X of length at most R and multiplicity at most m.

The study of the length vector of (ordered) multicurves of a given topological type
was initiated by Mirzakhani in [21]. She studied the special case of a maximal multicurve
corresponding to a pants decomposition. The general case that we present now was proved
independently in [4, 19].

Let X be a closed hyperbolic surface of genus g and .�;m/ be a weighted stable
graph of genus g. A .�;m/-labelled multicurve is a multicurve 
 on X of topological
type .�;m/ together with two bijections: one between the complements of 
 in X and
the vertices of � , the other between the components of 
 and the edges of � , such that
under these bijections .�;m/ is the dual of 
 . More precisely, for each component of 

associated to an edge e, its multiplicity is me , and the vertices corresponding to the two
components bounding this component are the endpoints of e. Given a .�;m/-labelled
multicurve 
 , we denote by 
e the component of 
 corresponding to the edge e 2 E.� /.
We also denote by ỳX .
/ the vector .me`X .
e/=`X .
//e2E.�/ (where we do not make
.�;m/ appear in the notation ỳX even though it depends on it).

Theorem 3.3 ([4,19]). Let g� 2, and letX be a closed hyperbolic surface of genus g and
.�;m/ be a weighted stable graph of genus g. Then we have the following convergence
of probability measures on the simplex �E.� /D1 :

1

jAut.�;m/j � sX .R; .�;m//

X

 .�;m/-labelled
`X .
/�R

ı ỳ
X .
/
����!
R!1

U .�;m/;

where sX .R; .�;m// stands for the number of .�;m/-labelled multicurves of length at
most R on X and U .�;m/ has density given in (3.1), and where the length ỳX .
/ of
a .�;m/-labelled multicurve 
 is considered as an element of RE.� /.

In the formula above, jAut.�;m/j accounts for the number of possible labellings of
a multicurve 
 of type .�;m/. In other words, jAut.�;m/j � sX .R; .�;m// is the number
of .�;m/-labelled multicurves of length at most R.

We start with a measure-theoretic lemma.
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Lemma 3.4. Let .�n;i /n;i2N and .�i /i2N be sequences of finite measures on �1�1 such
that for any i 2 N, �n;i converges to �i as n!1. If

lim
n!1

X
i2N

�n;i .�
1
�1/ D

X
i2N

�i .�
1
�1/ <1;

then
P
i2N �n;i converges to

P
i2N �i as n!1.

Proof. This can be seen as an application of the fact that vague and weak convergences
of measures are the same under the assumption of tightness (working on �1�1 �N rather
than�1�1). It could also be deduced from Fatou lemma in the following way. Suppose that
f W�1�1! R is a continuous function and letM WD kf k1. Write fnŒi � for

R
�1
�1
f d�n;i

and f Œi � for limn!1 fnŒi �. It follows from Fatou’s lemma thatX
i2N

f Œi � D
X
i2N

lim inf
n!1

fnŒi � � lim inf
n!1

X
i2N

fnŒi �:

On the other hand, applying again Fatou’s lemma to M�n;i .�1�1/ � fnŒi �, we find that

M
X
i2N

�i .�
1
�1/ �

X
i2N

f Œi � D
X
i2N

lim inf
n!1

.M�n;i .�
1
�1/ � fnŒi �/

�M
X
i2N

�i .�
1
�1/C lim inf

n!1

�
�

X
i2N

fnŒi �
�
;

and therefore,

lim sup
n!1

X
i2N

fnŒi � �
X
i2N

f Œi �:

This completes the proof.

Proof of Theorem 3.2. The left-hand side of (3.4) can be decomposed asX
.�;m/
me�m

sX .R; .�;m//

sX .R;m/

1

sX .R; .�;m//

X

 of type .�;m/
`X .
/�R

ı ỳ#
X
.
/: (3.5)

A multicurve 
 with topological type .�;m/ has exactly jAut.�;m/j ways of being
labelled. We thus obtain that the inner sum in (3.5) satisfies

1

sX .R; .�;m//

X

 of type .�;m/
`X .
/�R

ı ỳ#
X
.
/

D
1

jAut.�;m/j � sX .R; .�;m//

X

 .�;m/-labelled
`X .
/�R

ı ỳ#
X
.
/
����!
R!1

U .�;m/#;

where we applied Theorem 3.3 and the fact that convergence of measures implies the
convergence of their reordering (see [9, Theorem 3]).
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Now, recall that it follows from Theorems 2.1 and 2.3 that the ratio sX .R; .�;m//=
sX .R; m/ converges to c.
/=bg;m, where 
 denotes any multicurve of type .�;m/, and
c.
/ and bg;m are defined in (2.3) and (2.4), respectively.

Now ifm¤1, there is only a finite number of topological types .�;m/with multipli-
cities at mostm, and we can conclude directly by applying (2.3) and Theorem 2.1. For the
case m D1, we apply Lemma 3.4 using the following consequence of Theorem 2.1:X

.�;m/

lim
R!1

sX .R; .�;m//

sX .R/
D 1;

where the sum is over all weighted stable graphs .�;m/ of genus g.

4. Reduction in the asymptotic regime

The random variable L.g;m/ appearing in Theorem 3.2 is delicate to study because it
involves a huge number of terms. Using Theorem 2.7, we show that we can restrict to
a sum involving only O.log.g// terms associated to non-separating multicurves.

We denote by �g;k the stable graph of genus g with a vertex of genus g � k and k
self-loops. To simplify the notation, we fix a bijection between the edges of �g;k and
¹1;2; : : : ;kº so that F�g;k can be seen as a polynomial in QŒx1; : : : ;xk �. Note that because
the edges in �g;k are not distinguishable, the polynomial F�g;k is symmetric.

We now define a simplification of L.g;m/ as follows. Let g � 2, m 2 N [ ¹1º,
and � > 1. Let zGg;m;� be a random variable independent from the U .�;m/ with distri-
bution

P . zGg;m;� D .�g;k ;m// WD
1

.6g � 6/Š � zbg;m;�

Ym.F�g;k /

jAut.�g;k ;m/j
; (4.1)

where k � � log.6g� 6/=2 and zbg;m;� is defined in (2.5). Note that zGg;m;� is a conditional
expectation of Gg;m defined by (3.2). Now define zL.g;m;�/ as

zL.g;m;�/ WD U
zGg;m;� ; (4.2)

where U .�;m/ is as in Section 3. Contrarily to L.g;m/#, we are allowed to consider a non-
sorted version zL.g;m;�/. Indeed, U �g;k has a density which is symmetric and hence can
be considered as an element of �kD1.

We have the following result.

Theorem 4.1. For any m � 1, any � > 1 and any function h 2 L1.�1�1/, we have, as
g!1,

E.h.L.g;m/#// � E.h.zL.g;m;�/#//:

Proof. By Theorem 2.7, a random multicurve of high genus is almost surely non-separat-
ing with less than �.log.6g � 6//=2 edges. As h is bounded, we obtain the result.
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5. Size-biased sampling and Poisson–Dirichlet distribution

All our convergences are happening on the infinite simplex

�1�r WD ¹.x1; x2; : : :/ 2 Œ0;1/
N
W x1 C x2 C � � � D rº;

where the topology is inherited from the product topology on Œ0; r�N and hence compact.
By analogy with the finite-dimensional case, one could also consider �1Dr . The latter
is however dense in �1�r . For this reason, it is more convenient to work with measures
on �1�r even though they are ultimately supported on �1Dr .

5.1. Size-biased reordering

The components of a multicurve are not ordered in any natural way. In Theorem 1.1,
we solve this issue by considering a sorted variable L.g;m/# on �3g�3�1 . In this section,
we introduce another natural way of ordering the entries: the size-biased ordering. Con-
trarily to the decreasing order, it is a random ordering. The size-biased ordering turns out
to be convenient in the proof of Theorem 1.2.

We work with vectors xD .x1; : : : ;xk/ in�k�1. A reordering of x is a random variable
of the form .x�.1/; : : : ; x�.k//, where � is a random permutation in Sk . We aim to define
the size-biased reordering x� D .x�.1/; : : : ; x�.k// of x.

First, let us illustrate the idea with an example. Consider k D 4 and

x D .x1; x2; x3; x4/ D .0:2; 0:1; 0:5; 0:1/:

The first coordinate x�1 of x’s size-biased reordering x� D .x�1 ; x
�
2 ; x
�
3 ; x
�
4 / can be any of

its four coordinates, each with probability

P .x�1 D xi / D
xi

x1 C x2 C x3 C x4
;

for i D 1; 2; 3; 4. In other words, the probability of picking xi in the first round is propor-
tional to its size. Then for the second entry x�2 , define

P .x�2 D xi j x
�
1 D xi / D 0 and P .x�2 D xj j x

�
1 D xi / D

xj

x1 C x2 C x3 C x4 � xi
;

for i; j 2 ¹1; 2; 3; 4º and j ¤ i . That is to say, if xi has been picked as x�1 , then x�2
should be chosen between xj ’s where j ¤ i , and again, the probability of picking each
is proportional to its size. The other probabilities P .x�3 D xk j x

�
1 D xi ; x

�
2 D xj / are

defined similarly, and so on so forth.
Formally, each x 2 �k�s defines a random permutation � 2 Sk , namely a probability

measure Px on Sk , in the following recursive way. If xi D 0 for all i , then � 2 Sk is the
identity with probability 1. If not, write s WD x1 C � � � C xk ; for any 1 � i1 � k, set

Px.�.1/ D i1/ D
xi1
s
;
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and for any n � 1, set

Px.�.nC 1/ D inC1 j �.1/ D i1; : : : ; �.n/ D in/

to be

� xinC1=.s � xi1 � � � � � xin/ if i1; : : : ; inC1 are distinct and s � xi1 � � � � � xin > 0,

� 1 if s D xi1 C � � � C xin and inC1 D nC 1,

� 0 otherwise.

Note that if i1; : : : ; in 2 ¹1; : : : ; kº are distinct and s � xi1 � � � � � xin > 0, then

Px.�.1/ D i1; : : : ; �.n/ D in/ D
xi1 � � � xin

s.s � xi1/ � � � .s � xi1 � � � � � xin�1/
: (5.1)

Now let X W�! �k�1 be a random variable. In order to define its size-biased reorder-
ing X�W� ! �k�1, we consider for each x 2 �k�1 independent random variables �x
distributed according to Px as defined above which are furthermore independent from X .
We then define for each ! 2 �,

X�.!/ WD �X.!/ �X.!/;

where � � x D .x�.1/; : : : ; x�.k//.

Lemma 5.1. Let X be a random variable on �kD1 with density fX W�kD1 ! R. Let 1 �
r � k. Then the r-th marginal of the size-biased reordering of X , which is to say the
density of the vector .X�1 ; : : : ; X

�
r /, is

f.X�
1
;:::;X�r /

.x1; : : : ; xr /

D
1

.k � r/Š

x1 � � � xr

.1 � x1/ � � � .1 � x1 � � � � � xr�1/

�

Z
�k�r
D1�x1�����xr

X
�2Sk

fX .x�.1/; : : : ; x�.k// d�k�rD1�x1�����xr .xrC1; : : : ; xk/:

Proof. Let us define g.x1; : : : ; xk/ WD
P
�2Sk

f .x�.1/; : : : ; x�.k//.
We first consider the case r D k. Since X admits a density, almost surely all compon-

ents are positive and distinct. Hence, one can use (5.1) to write its density as

fX�.x1; : : : ; xk/ D
x1 � � � xk

.1 � x1/ � � � .1 � x1 � � � � � xk�1/
g.x1; : : : ; xk/:

In the above formula, we used the fact that the sum of X is s D 1 almost surely.
Now, for 1 � r � k � 1, the r-th marginal is obtained by integrating the free variables

f.X�
1
;:::;X�r /

.x1; : : : ; xr / D

Z
�k�r
D1�s

fX�.x1; : : : ; xk/ d�k�rD1�s.xrC1; : : : ; xk/; (5.2)

where sD x1C � � �C xr . For a permutation � 2S.¹r C 1; : : : ;kº/ of the set ¹r C 1; : : : ;kº,
we define the subsimplex

�k�rD1�sI� WD ¹.xrC1; : : : ; xk/ 2 �
k�r
D1�s W x�.rC1/ > x�.rC2/ > � � � > x�.k/º:
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We can decompose integral (5.2) as a sum over these subsimplices

f.X�
1
;:::;X�r /

.x1; : : : ; xr /

D
x1 � � � xr

.1 � x1/ � � � .1 � x1 � � � � � xr�1/.1 � s/

�

X
�2S.¹rC1;:::;kº/

Z
�k�r
D1�sI�

xrC1 � � � xkg.x1; : : : ; xk/ d�k�rD1�s.xrC1; : : : ; xk/
.1 � s � xrC1/ � � � .1 � s � xrC1 � � � � � xk�1/

:

Using the fact that g is symmetric, we can rewrite it by means of a change of variables on
the standard simplex �k�r

D1�sIid

f.X�
1
;:::;X�r /

.x1; : : : ; xr /

D
x1 � � � xr

.1 � x1/ � � � .1 � x1 � � � � � xr�1/.1 � s/

�

Z
�k�r
D1�sIid

X
�2S.¹rC1;:::;kº/

x�.rC1/ � � � x�.k/g.x1; : : : ; xk/ d�k�rD1�s.xrC1; : : : ; xk/
.1 � s � x�.rC1// � � � .1 � s � x�.rC1/ � � � � � x�.k�1//

:

Using the facts thatX
�2S.¹rC1;:::;kº/

x�.rC1/ � � � x�.k/

.1 � s � x�.rC1// � � � .1 � s � x�.rC1/ � � � � � x�.k�1//
D 1 � s

and Z
�k�r
D1�sIid

X
�2Sk

f .x�.1/; : : : ; x�.k// d�k�rD1�s.xrC1; : : : ; xk/

D
1

.k � r/Š

Z
�k�r
D1�s

X
�2Sk

f .x�.1/; : : : ; x�.k// d�k�rD1�s.xrC1; : : : ; xk/;

we obtain the result.

We finish this section by mentioning that the size-biased reordering extends to infinite
vectors that are elements of �1�1.

5.2. Poisson–Dirichlet and Griffiths–Engen–McCloskey distributions

Recall that the GEM.�/ distribution was defined in the introduction via the stick-breaking
process. We also defined the PD.�/ as the sorted reordering of GEM.�/. The Poisson–
Dirichlet distribution admits an intrinsic definition in terms of the Poisson process first
introduced by Kingman [17]. We refer to [5, Section 4.11] for this definition. Instead, we
concentrate on the simpler Griffiths–Engen–McCloskey distribution.

In the introduction, we passed from GEM.�/ to PD.�/. The following result formal-
izes the equivalence between these two distributions.
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Theorem 5.2 ([9, Theorem 5]). Let � > 0. If a random variable X 2 �1D1 is distributed
according to PD.�/, then its size-biased permutation X� follows GEM.�/.

The following result is a direct consequence of [9, Theorems 1, 2 and 5].

Corollary 5.3 ([9]). Let X .n/ be a sequence of random variables with values in�1D1 and
let � > 0. Then the sorted sequence X .n/# converges in distribution to PD.�/ if and only
if the size-biased sequence X .n/� converges in distribution to GEM.�/.

In order to prove convergence towards GEM, we will need the explicit description of
its marginals.

Proposition 5.4 ([9]). Let X D .X1; X2; : : : / be a random variable with distribution
GEM.�/. Then the distribution of the r-first components .X1;X2; : : : ;Xr / ofX supported
on �r�1 admits a density given by

� r .1 � x1 � � � � � xr /
��1

.1 � x1/.1 � x1 � x2/ � � � .1 � x1 � � � � � xr�1/
: (5.3)

In order to simplify computations, we consider moments of the GEM distribution
that get rid of the denominator in density (5.3). Namely, for a random variable X D
.X1;X2; : : :/ on�1�1 and an r-tuple of non-negative integers p D .p1; : : : ; pr /, we define

Mp.X/ WD E..1 �X1/ � � � .1 �X1 � � � � �Xr�1/ �X
p1
1 � � �X

pr
r /: (5.4)

These moments of the GEM.�/ can be computed using the following elementary lemma.

Lemma 5.5. Let d1; : : : ; dk 2 R�0. ThenZ
�k�r

x
d1
1 � � � x

dk
k

d�k�r D
d1Š � � � dkŠ

.d1 C � � � C dk C k/Š
� rd1C���CdkCk

and Z
�kDr

x
d1
1 � � � x

dk
k

d�kDr D
d1Š � � � dkŠ

.d1 C � � � C dk C k � 1/Š
� rd1C���CdkCk�1:

Here the factorial of a real number has to be considered by means of the analytic
continuation given by the gamma function: xŠ D �.x C 1/.

Proof. For x 2 R>0 and ˛; ˇ 2 R>1, we have the following scaling of the beta function:Z x

0

t˛�1.x � t /ˇ�1 dt D
�.˛/�.ˇ/

�.˛ C ˇ/
x˛Cˇ�1:

This implies thatZ
�k�r

x
d1
1

d1Š
� � �
x
dk
k

dkŠ
d�k�r D

Z
�k�1�r

x
d1
1

d1Š
� � �

x
dk�1CdkC1

k�1

.dk�1 C dk C 1/Š
d�k�1�r
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and Z
�kDr

x
d1
1

d1Š
� � �
x
dk
k

dkŠ
d�kDr D

Z
�k�1Dr

x
d1
1

d1Š
� � �

x
dk�1CdkC1

k�1

.dk�1 C dk C 1/Š
d�k�1Dr :

The two equations in the statement then follow by induction.

We now show how to deduce Lemma 3.1 using Lemma 5.5.

Proof of Lemma 3.1. From the second equation in the statement of Lemma 5.5, it follows
that

Ym.F� / D .6g � 7/Š

Z
�k
D1

1

m1 � � �mk
F�

� x1
m1
; : : : ;

xk

mk

�
d�kD1.x1; : : : ; xk/:

Indeed, each monomial that appears in F� has k variables and total degree 6g � 6 � k.
Hence, the denominator coming from the formula of Lemma 5.5 compensates the .6g�7/Š
term from (3.1). The numerator in the formula of Lemma 5.5 matches the definition
of Ym.

Lemma 5.6. IfX D .X1;X2; : : : /�GEM.�/ and .p1; : : : ;pr / is a non-negative integral
vector, then the moment Mp.X/ defined in (5.4) has the following value:

Mp.X/ D
� r � �.�/ � p1Š � � �pr Š

�.p1 C � � � C pr C � C r/
:

Proof. By Proposition 5.4, we have

Mp.X/ D

Z
�r
�1

� rx
p1
1 � � � x

pr
r .1 � x1 � � � � � xr /

��1 d�r�1

D � r
Z
�
rC1
D1

x
p1
1 � � � x

pr
r x

��1
rC1 d�rC1D1 :

The last term is an instance of Lemma 5.5 on the simplex �rC1D1 . This completes the
proof.

6. Proof of the main theorem

The aim of this section is to prove the following result.

Theorem 6.1. For g� 2 integral,m2N [¹1º and � > 1 real, let zL.g;m;�/# be as in The-
orem 4.1. Then, as g tends to infinity, zL.g;m;�/� converges in distribution to GEM.1=2/.

Let us first show how to derive our main Theorem 1.2 from Theorem 6.1.

Proof of Theorem 1.2. By Theorem 4.1, the random variablesL.g;m;�/# andL.g;m/# have
the same limiting distribution as g !1. Hence, by Theorem 6.1 and Corollary 5.3, the
random variable L.g;m/� converges in distribution towards GEM.1=2/.

Finally, Corollary 5.3 shows that the convergence in distribution of L.g;m/� towards
GEM.1=2/ is equivalent to the convergence of L.g;m/# towards PD.1=2/. This concludes
the proof of Theorem 1.2.
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6.1. Moments method

Let us recall from equation (5.4) that we defined some specific moments M.p1;:::;pr /.X/

for a random variable X on �1D1. In this section, we show that the convergence of
a sequence of random variables X .n/ is equivalent to the convergence of all the moments
Mp.X

.n//. This strategy called the method of moments is a standard tool in probability;
see, for example, [6, Section 30] for the case of real variables.

Lemma 6.2. A sequence of random variables X .n/ D .X .n/1 ;X
.n/
2 ; : : :/ 2�1D1 converges

in distribution to a random variable X .1/ in �1D1 if and only if for all p D .p1; : : : ; pr /
vector of non-negative integers, we have limn!1Mp.X

.n// DMp.X
.1//.

Proof. The infinite-dimensional cube Œ0; 1�N is compact with respect to the product topo-
logy by Tychonoff’s theorem. The set �1�1 is a closed subset of Œ0; 1�N , and is therefore
compact. The signed measures on �1�1 are identified with the dual of real continuous
functions C.�1�1;R/. In particular, we have the convergence of X .n/ towards X .1/ in
distribution if and only if for any continuous function f 2 C.�1�1;R/, we have the con-
vergence of E.f .X .n/// towards E.f .X .1///.

Now let S be the set of functions in C.�1�1;R/ of the form

.1 � x1/.1 � x1 � x2/ � � � .1 � x1 � � � � � xr�1/ � x
p1
1 � � � x

pr
r

with r � 0, p1; : : : ; pr � 0. We claim that the span of S (that is, finite linear combinations
of elements of S ) is dense in C.�1�1;R/.

Indeed, S contains the constant function 1, and the algebra generated by S is equal to
its span.

Now, the set S is a separating subset of C.�1�1;R/, and density follows from the
Stone–Weierstrass theorem.

We will use the following asymptotic simplification of the moments.

Theorem 6.3. For g � 2 integral, m 2 N [ ¹1º and � > 1 real, let zL.g;m;�/� be the
size-biased reordering of the random variable zL.g;m;�/ from Theorem 4.1. Let r � 1
and p1; : : : ; pr 2 N. Then, as g ! 1, the moment Mp.zL.g;m;�/�/ is asymptotically
equivalent to p

.mC 1/=m �
p
�

2 � .6g � 6/p1C���CprCr�1=2

�.log.6g�6//=2X
kDr

1

.k � r/Š

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

kY
iD1

�m.2ji /

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š
;

where

�m.s/ WD

mX
nD1

1

ns

is the partial Riemann zeta function.
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Following [8, (14)], we define

cg;k.d1; : : : ; dk/ WD
gŠ.3g � 3C 2k/Š

.6g � 5C 4k/Š

3g

23g�6C5k
.2d1 C 2/Š � � � .2dk C 2/Š

�

X
d�
i
Cd
C

i
Ddi

d�
i
;d
C

i
�0

1�i�k

h�d�
1
�
d
C

1

� � � �d�
k
�
d
C

k

ig;2k

d�1 Š d
C
1 Š � � � d

�
k
Š dC
k
Š

:

The above coefficients were introduced in [8, Lemma 3.5], and we have for any C > 0

lim
g!1

sup
k�C log.g/

jcg;k.d1; : : : ; dk/ � 1j D 0: (6.1)

This asymptotic result is a direct consequence of Theorem 2.6 of Aggarwal that we stated
in the introduction. We define

zcg;k.j1; : : : ; jk/ WD cg�k;k.j1 � 1; : : : ; jk � 1/: (6.2)

Lemma 6.4. For each k D 1; : : : ; 3g � 3, let U .g;m;k/ be the random variable on �kD1
with density

.6g � 7/Š

Zm.Fg;k/

X
.m1;:::;mk/2Nk

mi�m
i2¹1;:::;kº

Fg;k

� x1
m1
; : : : ;

xk

mk

� 1

m1 � � �mk
; (6.3)

where for simplicity we write Fg;k for the graph polynomial F�g;k defined in (2.1). Then
for any integer r 2 N and p D .p1; : : : ; pr / 2 Nr , we have

Mp.U
.g;m;k/�/ D 0

if r > k, and

Mp.U
.g;m;k/�/ D

wg;k � kŠ

Zm.Fg;k/ � .k � r/Š � .6g � 7C p1 C � � � C pr C r/Š

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

kY
iD1

�m.2ji /

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š
;

wg;k WD
.6g � 5 � 2k/Š � .6g � 7/Š

.g � k/Š � .3g � 3 � k/Š
�
23k�3

3g�k
(6.4)

if 1 � r � k.

Note that expression (6.3) is the density of the conditional expectation E.zL.g;m;�/ j
zGg;m;� D �g;k/, where zL.g;m;�/ was defined in Section 4. It is more precisely the dens-
ity of the asymptotic normalized vector of lengths of random multicurves restricted to
multicurves of type �g;k .
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Proof of Lemma 6.4. It follows from the definition of Mp that

Mp.U
.g;m;k/�/ D 0

if r > k. We assume from now on that r � k. By definition of the stable graph polynomial,
we have

Fg;k.x1; x2; : : : ; xk/ D x1 � � � xk � Vg�k;2k.x1; x1; x2; x2; : : : ; xk ; xk/

D
1

23g�3�k

X
.d�
1
;d
C

1
;:::;d�

k
;d
C

k
/2Z2k
�0

d�
1
Cd
C

1
C���Cd�

k
Cd
C

k
D3g�3�k

h�d�
1
�
d
C

1

� � � �d�
k
�
d
C

k

ig�k;2k

d�1 Šd
C
1 Š � � � d

�
k
ŠdC
k
Š

� x
2.d
C

1
Cd�

1
/C1

1 � � � x
2.d
C

k
Cd�

k
/C1

k
:

Using the coefficients zcg;k defined just above the statement of the lemma, we rewrite the
polynomial Fg;k as

Fg;k D
.6g � 5 � 2k/Š

.g � k/Š � .3g � 3 � k/Š

23k�3

3g�k

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

kY
iD1

x
2ji�1
i

.2ji /Š
:

Hence, the density of U .g;m;k/ in (6.3) can be rewritten as

wg;k

Zm.Fg;k/

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

kY
iD1

�m.2ji /
x
2ji�1
i

.2ji /Š
:

Now, according to Lemma 5.1, the r-th marginal of the sized-biased versionU .g;m;k/�

of U .g;m;k/ is

wg;k � kŠ

Zm.Fg;k/ � .k � r/Š
�

1

.1 � x1/ � � � .1 � x1 � � � � � xr�1/

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

kY
iD1

�m.2ji /

.2ji /Š

rY
iD1

x
2ji
i

�

Z
�k
D1�x1�����xr

x
2jrC1�1

rC1 � � � x
2jk�1

k
d�k�rD1�x1�����xr .xrC1; : : : ; xk/;

where we used the fact that the density of U .g;m;k/ is a symmetric function. Hence, the
sum over all permutations of k elements only pops out a kŠ coefficient. The value of the
integral in the above sum follows from Lemma 5.5 and is equal to

.2jrC1 � 1/Š � � � .2jk � 1/Š

.2jrC1 C � � � C 2jk � 1/Š
.1 � x1 � � � � � xr /

2jrC1C���C2jk�1:
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Now we end up with the following formula for the distribution of the r-th marginal
of U .g;m;k/�:

wg;k � kŠ

Zm.Fg;k/ � .k � r/Š

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

.2jrC1 C � � � C 2jk � 1/Š
�

kY
iD1

�m.2ji /

2ji

�

rY
iD1

x
2ji
i

.2ji � 1/Š

.1 � x1 � � � � � xr /
2jrC1C���C2jk�1

.1 � x1/ � � � .1 � x1 � � � � � xr�1/
:

From the above formula and the definition of the moment Mp in (5.4), Mp.U .g;m;k/�/
equals

wg;k � kŠ

Zm.Fg;k/ � .k � r/Š

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

.2jrC1 C � � � C 2jk � 1/Š

�

kY
iD1

�m.2ji /

2ji

rY
iD1

1

.2ji � 1/Š

�

Z
�r
�1

x
2j1Cp1
1 � � � x2jrCprr .1 � x1 � � � � � xr /

2jrC1C���C2jk�1 d�r�1:

Lemma 5.5 gives the value of the above integralZ
�r
�1

x
2j1Cp1
1 � � � x2jrCprr .1 � x1 � � � � � xr /

2jrC1C���C2jk�1 d�r�1

D

Z
�
rC1
D1

x
2j1Cp1
1 � � � x2jrCprr x

2jrC1C���C2jk�1

rC1 d�rC1D1

D
.2j1 C p1/Š � � � .2jr C pr /Š � .2jrC1 C � � � C 2jk � 1/Š

.6g � 6C p1 C � � � C pr C r � 1/Š
:

Substituting the above value in our last expression forMp.U .g;m;k/�/ gives the announced
formula.

Proof of Theorem 6.3. By definition (4.2) of zL.g;m;�/ and the fact that

jAut.�g;k/j D 2kkŠ;

we have

Mp.zL
.g;m;�/�/ D

1

.6g � 6/Š zbg;m;�

�.log.6g�6//=2X
kD1

Zm.Fg;k/

2kkŠ
�Mp.U

.g;m;k/�/; (6.5)

where zbg;m;� was defined in (2.5).
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Now substituting the formula forMp.U .g;m;k/�/ from Lemma 6.4 and the asymptotic
value of zbg;m;� from Theorem 2.7 in sum (6.5), we have, as g ! 1, the asymptotic
equivalence

Mp.L
.g;m;�/�/ �

.4g � 4/Š � �

.6g � 7/Š � .6g � 7C p1 C � � � C pr C r/Š
�

r
mC 1

m
�

�3
4

�4g�4
�

�.log.6g�6//=2X
kDr

�
1

2k � .k � r/Š
�
.6g � 5 � 2k/Š � .6g � 7/Š � 23k�3

.g � k/Š � .3g � 3 � k/Š � 3g�k

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

kY
iD1

�m.2ji /

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š

�
; (6.6)

where we have used that zcg;k.j1; : : : ; jk/� 1 uniformly in k 2 Œ1;� log.6g� 6/=2�, which
follows from (6.1). By [8, proof of Theorem 3.4, (3.13)], we have

.4g � 4/Š � .6g � 5 � 2k/Š

.6g � 7/Š � .g � k/Š � .3g � 3 � k/Š
� .6g � 6/1=2

1
p
�

28g�6�2k

33g�4Ck
: (6.7)

On the other hand,

.6g � 7/Š

.6g � 7C p1 C � � � C pr C r/Š
�

1

.6g � 6/p1C���CprCr
(6.8)

as g!1. Replacing (6.7) and (6.8) in (6.6), we obtain

Mp.zL
.g;m;�/�/ �

1

2.6g � 6/p1C���CprCr�1=2
�

r
mC 1

m
�
p
� �

�.log.6g�6//=2X
kDr

1

.k � r/Š

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

kY
iD1

�m.2ji /

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š

which is the announced formula.

6.2. Asymptotic expansion of a related sum

Let � D .�i /i�1 be a sequence of non-negative real numbers and let p D .p1; : : : ; pr /

be a non-negative integral vector. This section is dedicated to the asymptotics in n of the
numbers

S�;p;n WD

1X
kDr

1

.k � r/Š

X
.j1;:::;jk/2Nk

j1C���CjkDn

� kY
iD1

�i

2ji

�� rY
iD1

.2ji C pi /Š

.2ji � 1/Š

�
; (6.9)

which should be reminiscent of the formula from Theorem 6.3.
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Definition 6.5. Let � D .�j /j�1 be non-negative real numbers and let g� .z/ be the formal
series

g� .z/ WD
X
j�1

�j
zj

j
:

We say that � is admissible if the function g� .z/

� converges in the open disc D.0; 1/ � C centred at 0 of radius 1,

� g� .z/C log.1 � z/ extends to a holomorphic function on D.0;R/ with R > 1.

Theorem 6.6. Let � D .�k/k�1 be admissible, then, as n!1, we have

S�;p;n �

s
eˇ

2
�
p1Š � � �pr Š

2r�1
.2n/p1C���CprCr�1=2

�.p1 C � � � C pr C r C 1=2/
;

where ˇ is the value at z D 1 of g� .z/C log.1 � z/.

The following is essentially [8, Lemma 3.8] which we reproduce for completeness.

Lemma 6.7. For m 2 N [ ¹1º, let

gm.z/ WD
X
j�1

�m.2j /
zj

j
: (6.10)

Then gm.z/ is summable in D.0; 1/ and gm.z/C log.1 � z/ extends to a holomorphic
function on D.0; 4/. In particular, the sequence .�.2j //j�1 is admissible. Moreover,

.gm.z/C log.1 � z//jzD1 D log
� 2m

.mC 1/

�
:

Proof. Since �m.2j / is bounded uniformly in j , the series converges in D.0; 1/. Now,
expanding the definition of the partial zeta function �m and changing the order of summa-
tion, we have for z 2 D.0; 1/

gm.z/ D �

mX
nD1

log
�
1 �

z

n2

�
;

and hence

gm.z/C log.1 � z/ D �
mX
nD2

log
�
1 �

z

n2

�
:

The term log.1 � z=n2/ defines a holomorphic function on D.0; n2/. Sinceˇ̌̌
log
�
1 �

z

n2

�ˇ̌̌
�

4

n2

ˇ̌̌
log
�
1 �

z

4

�ˇ̌̌
;

we have absolute convergence even for m D 1 and gm.z/C log.1 � z/ defines a holo-
morphic function in D.0; 4/.
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Now for the value at z D 1, we obtain

.gm.z/C log.1 � z//jzD1 D �
mX
nD2

log
�
1 �

1

n2

�
D

mX
nD2

.2 log.n/ � log.n � 1/ � log.nC 1//

D log
� 2m

mC 1

�
:

This completes the proof.

Combining Theorem 6.6 and Lemma 6.7, we obtain the following corollary.

Corollary 6.8. Let m 2 N [ ¹1º. For � D .�m.2i//i�1, we have

S�;p;n �

r
m

mC 1
�
p1Š � � �pr Š

2r�1
.2n/p1C���CprCr�1=2

�.p1 C � � � C pr C r C 1=2/
:

Now let us prove Theorem 6.6. For a non-negative integer p, we define the differential
operator on CJzK by

Dp.f / WD z
dpC1

dzpC1
.zpf /:

We start with some preliminary lemmas.

Lemma 6.9. Let � D .�i /i and let g� .z/ be as in Theorem 6.6. Let p D .p1; : : : ; pr / be
a tuple of non-negative integers and let

G�;p.z/ WD exp
�1
2
g� .z

2/
� rY
iD1

Dpi

�1
2
g� .z

2/
�
:

Then, for any n � 0 we have

Œz2n�G�;p.z/ D S�;p;n;

where Œz2n� is the coefficient extraction operator and S�;p;n is the sum in (6.9).

Proof. Let us first note that g� .z2/=2D
P
i �iz

2i=.2i/. We aim to compute the expansion
of Dp.g� .z2/=2/. By linearity, it is enough to compute a single term, and we have

Dp.z
2j / D z

dpC1

dzpC1
.z2jCp/ D

.2j C p/Š

.2j � 1/Š
z2j :

Hence,

Dp

�1
2
g� .z

2/
�
D

1X
jD1

.2j C p/Š

.2j � 1/Š
�j
z2j

2j
:

The lemma follows by expanding the exponential.
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Lemma 6.10. For any p 2 Z�0, we have

1

pŠ
Dp.� log.1˙ z// D

1

.1˙ z/pC1
� 1:

Proof. By Leibniz’s rule,

z

pŠ

dpC1

dzpC1

�
zp log

1

1�z

�
D

z

pŠ

pX
iD0

�
p C 1

i

�
p.p � 1/ � � � .p � i C 1/zp�i

.p � i/Š

.1�z/pC1�i

D �1C

pC1X
iD0

�
p C 1

i

�� z

1 � z

�p�iC1
D �1C

�
1C

z

1 � z

�pC1
D �1C

1

.1 � z/pC1
:

The proof for � log.1C z/ is similar.

Proof of Theorem 6.6. By Lemma 6.9, the sum S�;p;n is the coefficient of z2n in G�;p .
By the conditions in the statement, we can write g� .z2/ D � log.1 � z2/C ˇ C r� .z/,
where r� .z/ is holomorphic on D.0;

p
R/ and r� .1/ D 0. Using Lemma 6.10, we deduce

that, for any p � 0,

Dp.g� .z
2// D

pŠ

.1 � z/pC1
C

pŠ

.1C z/pC1
C r�;p.z/;

where r�;p is holomorphic in D.0;
p
R/. Thus, G�;p.z/ is holomorphic in D.0;

p
R/ X

.Œ1;
p
R/ [ .�

p
R;�1�/ and satisfies, as z ! 1,

G�;p.z/ D exp
�
�
1

2
.log.1 � z/C log.2/�

�
C O.1 � z/

�
�

rY
iD1

pi Š

2

� 1

.1 � z/piC1
C O.1/

�
D

s
eˇ

2
�
p1Š � � �pr Š

2r
1

.1 � z/p1C���CprCrC1=2
.1C o.1//:

Similarly, as z ! �1, we have

G�;p.z/ D

s
eˇ

2
�
p1Š � � �pr Š

2r
1

.1C z/p1C���CprCrC1=2
.1C o.1//:

Now using [11, Theorem VI.5], we obtain

Œz2n�G�;p.z/ � 2 �

s
eˇ

2
�
p1Š � � �pr Š

2r
�

.2n/p1C���CprCr�1=2

�.p1 C � � � C pr C r C 1=2/
:

This completes the proof.
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6.3. Truncation estimates

Recall that Theorem 6.3 provided an expression for the moment Mp.zL.g;m;�/�/ which
involves a sum which is a truncated version of S�;p;n from (6.9). In this section, we
show that the difference between S�;p;n and its truncation is negligible compared to the
asymptotics of Theorem 6.6.

Theorem 6.11. Let � and g� .z/ be as in Theorem 6.6. Then for any real � > 1, we have,
as n!1,

S�;p;n �

�.log.2n//=2X
kDr

1

.k � r/Š

X
.j1;:::;jk/2Nk

j1C���CjkDn

kY
iD1

�i

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š
: (6.11)

Bounding the coefficient in a Taylor expansion is a standard tool in asymptotic ana-
lysis known as the “Big-O transfer” [11, Theorem VI.3]. However, in our situation we
need to bound the n-th Taylor coefficient of a function fn that depends on n. To do so,
we track down the dependencies on the functions inside the transfer theorem.

Lemma 6.12 ([8, Lemma 4.4]). Let � and x be positive real numbers. We have

1X
kDdx�e

�k

kŠ
� exp.��.x log x � x//:

Lemma 6.13. Let h.z/ be a holomorphic function on D.0; R/ X .Œ1; R/ [ .�R;�1�/
such that, as z !˙1, we have

h.z/ D �
1

2
log.1 � z2/C O.1/:

Fix a real � > 1 and non-negative integers p and q. For n � 1, let

fn.z/ D
1

.1 � z/p.1C z/q

1X
kDb�.logn/=2c

h.z/k

kŠ
:

Then, we have, as n!1,

Œzn�fn.z/ D O.nmax¹p;qº�1�.� log ���/=2/:

Proof. Let 0 < � < R � 1 and 0 < � < �=2, and define the contour 
 as the union
�C [ �� [ �% [ �- [ �& [ �. [†C [†� with

�C D ¹z W jz � 1j D 1=n; j arg.z � 1/j � �º;

�� D ¹z W jz C 1j D 1=n; j arg.z � 1/j � � � �º;

�% D ¹z W jz � 1j � 1=n; jzj � 1C �; arg.z � 1/ D �º;

�- D ¹z W jz � 1j � 1=n; jzj � 1C �; arg.z � 1/ D ��º;

�& D ¹z W jz C 1j � 1=n; jzj � 1C �; arg.z C 1/ D � � �º;
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�. D ¹z W jz C 1j � 1=n; jzj � 1C �; arg.z C 1/ D �� C �º;

†C D ¹z W jzj D 1C �; arg.z � 1/ � �; arg.z C 1/ � � � �º;

†� D ¹z W jzj D 1C �; arg.z � 1/ � ��; arg.z C 1/ � �� C �º:

See Figure 1 for a picture of 
 . Since fn is holomorphic onD.0;R/X .Œ1;R/[ Œ�R;�1//,
we have Cauchy’s residue theorem for its coefficients

Œzn�fn.z/ D
1

2�i

Z



fn.z/

znC1
dz: (6.12)

†�

†C

�%

�-

�&

�.

�C�� 0 1�1

Fig. 1. The contour 
 .

Taking absolute values in (6.12), we obtain

jŒzn�fn.z/j �
1

2�

Z



jdzj
jzjnC1

1

j1 � zjpj1C zjq

1X
kDb�.logn/=2c

jh.z/jk

kŠ
: (6.13)

The proof proceeds by analyzing the right-hand side in (6.13) for each piece of the con-
tour 
 .

Let us start with the small arc of the circle �C. The change of variables z D 1� ei�=n
yieldsˇ̌̌̌

1

2�i

Z
�C

fn.z/ dz
znC1

ˇ̌̌̌
�
np�1

2�

Z ���

��C�

d�
j1 � ei�=njnC1

1X
kDb�.logn/=2c

jh.1 � ei�=n/jk

kŠ
:

First h.1� ei�=n/D log.n/=2CO.1/ uniformly in � . Hence, by Lemma 6.12, uniformly
in � , as n!1, we have

1X
kDd�.logn/=2e

jh.z/jk

kŠ
� exp

�
�.� log � � �/ �

lognC O.1/
2

�
D O.n�.� log ���/=2/:
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Since 1=j1 � ei�=njnC1 is uniformly bounded in n,ˇ̌̌ 1
2�i

Z
�C

fn.z/ dz
znC1

ˇ̌̌
D O.np�1�.� log ���/=2/:

Similarly, ˇ̌̌ 1
2�i

Z
��

fn.z/ dz
znC1

ˇ̌̌
D O.nq�1�.� log ���/=2/:

Let us now consider the case of �%. Let r be the positive solution of the equation
j1C rei� j D 1C �. Perform the change of variable z D 1C ei� � t=n, we haveˇ̌̌ 1

2�i

Z
�%

fn.z/

znC1
dz
ˇ̌̌
�

np�1

2� � .RC 1/q

Z nr

1

dt � t�p
ˇ̌̌
1C ei�

t

n

ˇ̌̌�n�1
�

1X
kDb�.logn/=2c

jh.1C ei� t=n/jk

kŠ
:

For n large enough and uniformly in t , jh.1C ei� t=n/j D log.n/=2CO.1/. Lemma 6.12
gives

1X
kDb�.logn/=2c

jh.1C ei=� t=n/jk

kŠ
D O.n�.� log ���/=2/:

From the boundedness of j1C ei� t=nj�n�1, it follows thatZ nr

1

t�p
ˇ̌̌
1C ei�

t

n

ˇ̌̌�n�1
dt D O.n�pC1/;

and therefore ˇ̌̌̌
1

2�i

Z
�%

fn.z/ dz
znC1

ˇ̌̌̌
D O.n�.� log ���/=2/:

The same estimate is valid for the integral along the other three segments �-, �&,
and �..

For the large demi-circle †C, we haveˇ̌̌ 1
2�i

Z
†C

fn.z/ dz
znC1

ˇ̌̌
�

1

2�
�

maxz2†C jfn.z/j
.1C �/nC1

� 2�.1C �/ D O..1C �/�n/

which decreases exponentially fast. The integral along †� can be bounded similarly.
We conclude the proof by combining the above estimates.

Proof of Theorem 6.11. Similar to Lemma 6.9, if we write

Gn;�;p.z/ WD

1X
kDb� log.2n/=2c

.g� .z
2/=2/k

kŠ

rY
iD1

Dpi

�1
2
g� .z

2/
�
;
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then Œz2n�Gn;�;p is the complement of the partial sum in the right-hand side of (6.11).
Following the proof of Theorem 6.6, we obtain, as z ! 1,

Gn;�;p.z/ D

1X
kDb� log.2n/=2c

.g� .z
2/=2/k

kŠ

rY
iD1

pi Š

2

� 1

.1 � z/piC1
C O.1/

�
;

where the O.1/ is uniform in n (it only depends on g� .z/). Applying Lemma 6.13, we
obtain

Œz2n�Gn;�;p.z/ D O..2n/p1C���CprCr�1�.� log ���/=2/:

For � > 1, we have �1 � .� log � � �/=2 < �1=2, and the above sum is negligible com-
pared to the asymptotics of the full sum S�;p;n from Theorem 6.6.

6.4. Proof of Theorem 6.1

By Lemma 6.2, it suffices to prove the convergence of the momentsMp.zL.g;m;�/�/ for all
pD .p1; : : : ;pr / towards the moments of the GEM.1=2/ distribution that were computed
in Lemma 5.6.

Now, Theorem 6.3, provides an asymptotic equivalence of Mp.zL.g;m;�/�/ involving
the sum

�.log.6g�6//=2X
kDr

1

.k � r/Š

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

kY
iD1

�m.2ji /

2ji

rY
iD1

.2ji C pi /Š

.2ji � 1/Š
:

The asymptotics of the above sum were then obtained from Corollary 6.8 and The-
orem 6.11. Namely, the above is asymptotically equivalent tor

m

mC 1
�
p1Š � � �pr Š

2r�1
�

.6g � 6/p1C���CprCr�1=2

�.p1 C � � � C pr C r C 1=2/
:

Substituting this value in the formula of Theorem 6.3, we obtain, as g!1,

Mp.zL
.g;m;�/�/ �

p
�

2r
�

p1Š � � �pr Š

�.p1 C � � � C pr C r C 1=2/
:

The above is the value of the momentsMp of the distribution GEM.1=2/ from Lemma 5.6
as � D 1=2 and .� � 1/Š D .�1=2/Š D �.1=2/ D

p
� .

Since the convergence ofMp.zL.g;m;�/�/ holds for all p D .p1; : : : ; pr /, the sequence
zL.g;m;�/� converges in distribution towards GEM.1=2/.

6.5. Proof of Theorem 1.3

The structure of the proof is similar to that of Theorem 1.2. Similar to U .�;m/ defined in
Section 3, we consider a family of independent variables ¹V .�;m/º.�;m/ on Œ0; 1� indexed
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by weighted stable graphs, where V .�;m/ WD s.U .�;m// and sW�E.� /D1 ! Œ0; 1� is given by
the formula

.xe/e2E.� / 7!
X

e2E.� /
meD1

xe:

Then we define
P .g;m/ WD V Gg;m ;

where Gg;m is the random stable graph given in (3.2). Using an argument similar to one
in the proof of Theorem 3.2, we can deduce that

1

sX .R;m/

X

2MLX .Z/
`X .
/�R

mult.
/�m

ıpX .
/ ����!
R!1

P .g;m/;

where pX .
/ was defined just above Theorem 1.3. Now if we were able to show

lim
g!1

E.P .g;m// D 1;

then the result follows from Markov’s inequality. To this end, we fix � > 1 and consider
the random variable

zP .g;m;�/ WD V
zGg;m;� ;

where zGg;m;� is the random stable graph (with one vertex) defined by (4.1). Similar to
Theorem 4.1, it follows from Theorem 2.7 and the boundedness of s defined above that

E.P .g;m// � E. zP .g;m;�//:

Thus, it is sufficient to prove

lim
g!1

E. zP .g;m;�// D 1:

The computation for E. zP .g;m;�// is similar to the one carried out in Section 6.1,

E. zP .g;m;�// D
1

zbg;m;�

� log.6g�6/=2X
kD1

X
.�g;k ;m/

1

.6g � 6/Š

Ym.F�g;k /

jAut.�g;k ;m/j

�

Z
�
E.�g;k/

D1

d�kD1 f�g;k ;m..xe/e2E.�g;k//
X

e2E.�g;k/
meD1

xe

which equals

1

zbg;m;�

� log.6g�6/=2X
kD1

wg;k

.6g � 6/Š jAut.�g;k/j

X
.m1;:::;mk/2Nk

mi�m
i2¹1;:::;kº

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

�

Z
�k
D1

� X
1�i�k
miD1

xi

�� kY
iD1

x
2ji�1
i

m
2ji
i .2ji /Š

�
d�kD1; (6.14)
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where wg;k and zcg;k are defined in (6.4) and (6.2), respectively. Now by partitioning
¹.m1; : : : ; mk/ 2 Nkº into k C 1 subsets according to the number of i such that mi ¤ 1,
the second line of (6.14) can be rewritten as

kX
rD0

�
k

r

� X
.m1;:::;mr /2Nr

2�m1;:::;mr�m

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

�

Z
�k
D1

.xrC1 C � � � C xk/

rY
iD1

1

m
2ji
i

kY
iD1

x
2ji�1
i

.2ji /Š
d�kD1

which is equal to, by Lemma 5.5,

kX
rD0

�
k

r

�
k � r

.6g � 6/Š

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

rY
iD1

.�m.2ji / � 1/

k�1Y
iD1

1

2ji
:

Hence,

E. zP .g;m;�// D
1

zbg;m;�

� log.6g�6/=2X
kD1

wg;k

..6g � 6/Š/22k

kX
rD0

1

rŠ .k � r � 1/Š

�

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

zcg;k.j1; : : : ; jk/

rY
iD1

�m.2ji / � 1

2ji

k�1Y
iDrC1

1

2ji
;

where we have used the fact
jAut.�g;k/j D 2kkŠ:

It follows from (2.6) and (6.7) that, as g!1,

1

zbg;m;�

wg;k

..6g � 6/Š/22k
�

p
�

2

r
mC 1

m
.6g � 6/�1=2;

and hence it is enough to determine the asymptotic behaviour of

� log.6g�6/=2X
kD1

kX
rD0

1

rŠ .k � r � 1/Š

X
.j1;:::;jk/2Nk

j1C���CjkD3g�3

rY
iD1

�m.2ji / � 1

2ji

k�1Y
iDrC1

1

2ji

when g !1. To achieve this, we follow a similar approach as outlined in Section 6.2.
Define for any n � k,

Tm.n/ WD

1X
kD1

kX
rD0

1

rŠ .k � r � 1/Š

X
.j1;:::;jk/2Nk

j1C���CjkDn

rY
iD1

�m.2ji / � 1

2ji

k�1Y
iDrC1

1

2ji
:
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The sum Tm.n/ can be written as

Tm.n/ D Œz
n�

1X
kD1

kX
rD0

1

rŠ .k� r� 1/Š

�1
2
gm.z/ �

1

2
log

1

1� z

�r�1
2

log
1

1� z

�k�r�1 z

1� z

D Œzn�
z

1 � z

1X
kD1

.gm.z/=2/
k�1

.k � 1/Š
D Œzn�

z

1 � z
exp

�gm.z/
2

�
;

where gm is defined by (6.10). Now Lemma 6.7 implies that exp.gm.z/=2/ is holo-
morphic in D.0; 4/ X Œ1; 4/, and when z ! 1 inside D.0; 4/ X Œ1; 4/, we have

exp
�gm.z/

2

�
D

r
2m

mC 1

1
p
1 � z

.1C O.1 � z//:

Therefore, using [11, Theorem VI.4], we obtain

Tm.n/ D Œz
n�

z

1 � z
exp

�gm.z/
2

�
�

r
2m

mC 1

p
n

�.3=2/
:

To conclude, it suffices to show that when n!1,

� log.2n/=2X
kD1

kX
rD0

1

rŠ .k � r � 1/Š

X
.j1;:::;jk/2Nk

j1C���CjkDn

rY
iD1

�m.2ji / � 1

2ji

k�1Y
iDrC1

1

2ji
� Tm.n/:

This can be done by writing the complement sum

1X
kDb� log.2n/=2c

kX
rD0

1

rŠ .k � r � 1/Š

X
.j1;:::;jk/2Nk

j1C���CjkDn

rY
iD1

�m.2ji / � 1

2ji

k�1Y
iDrC1

1

2ji

as

Œz2n�
z2

1 � z2

1X
kDb� log.2n/=2c

.gm.z
2/=2/k�1

.k � 1/Š

and then applying Lemma 6.13. This completes the proof of Theorem 1.3.
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