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Abstract. Let F be a number field and G an even orthogonal or unitary group over a number field.
Based on the method used by Gan and Ichino (2018), we prove Arthur’s multiplicity formula for
the generic part of the automorphic discrete spectrum of G by using the theta lift. Enhancing this
method, we also obtain a description of the full automorphic discrete spectrum of G of F -rank � 1.
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1. Introduction

Let F be a number field, A the adele ring of F , andG a reductive group over F . A central
question in representation theory is to determine completely the spectral decomposition of
L2.G.F /nG.A// as a unitary representation of G.A/. By some results in number theory
and functional analysis, we have a decomposition

L2.G.F /nG.A// D L2disc.G/˚ L
2
cts.G/:

Here L2disc.G/ is called the “discrete spectrum”, because it decomposes discretely, and
L2cts.G/ is called the “continuous spectrum”. Furthermore, by Langlands [44], the contin-
uous spectrum of G can be described in terms of the discrete spectrum of Levi subgroups
of G using Eisenstein series. Therefore, the question is reduced to studying the discrete
spectrum L2disc.G/. In his monumental book [4], Arthur obtained a description of the
discrete spectrum L2disc.G/ for quasi-split special orthogonal and symplectic groups G.
Roughly speaking, the classification can be divided into two steps:

Step I: Decompose L2disc.G/ into a direct sum of so-called “near equivalence classes”
(“NEC” for short), and show that each NEC can be represented by an ellipticA-parameter
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(in the sense of weak transfer to a certain general linear group). For an ellipticA-parameter
 of G, we denote by L2 .G/ the summand of L2disc.G/ represented by  .

Step II: Establish Arthur’s multiplicity formula (“AMF” for short), which gives a further
decomposition of L2 .G/ for each  .

Following Arthur’s work, many papers have appeared:

� Mok [61] established AMF for quasi-split unitary groups.

� Kaletha–Mínguez–Shin–White [39] studied the case of inner forms of unitary groups,
and obtained AMF for the generic part of the automorphic discrete spectrum of these
groups.

� Gee–Taïbi [28] proved AMF for GSp4.

� Taïbi [73] also studied certain inner forms of classical groups. For such a group G, he
proved AMF for automorphic representations of G with algebraic regular infinitesimal
character at Archimedean places.

� B. Xu [78, 79] established AMF for the generic part of the automorphic discrete spec-
trum of quasi-split similitude symplectic and similitude even orthogonal groups.

� Ishimoto [33] established AMF for the generic part of the automorphic discrete spec-
trum of non-quasi-split odd special orthogonal groups.

All these works use the stable trace formula as the main tool.
On the other hand, theta correspondence provides a way to transfer AMF from one

group to another. Let .G;H/ be a reductive dual pair over F such that .G;H/ is in the
stable range and G is the smaller group. For a unitary representation � of G.A/, we
denote by mdisc.�/ the multiplicity of � in A2.G/. Likewise, for a unitary representation
� of H.A/, we can define mdisc.�/. J.-S. Li [49] proved that

mdisc.�/ � mdisc.�
abs.�//;

where � abs.�/ is the (placewise) theta lift of � . In [22, Section 4], Gan–Ichino observed
that when � belongs to a generic NEC, J.-S. Li’s inequality is indeed an equality. Based on
this observation, they established AMF for the generic part ofL2disc.Mp2n/ by transferring
it from L2disc.SO2rC1/ with r sufficiently large. Using the same idea, but combined with
some other results, they were also able to describe in [24] the full automorphic discrete
spectrum of Mp4. We should also mention that W.-W. Li [50] established AMF for the
whole L2disc.Mp2n/ by combining the stable trace formula and the theta correspondence.

In this paper we follow Gan–Ichino’s method and try to deduce some results on AMF
for even orthogonal or unitary groups. Our goal is two-fold. First, we prove AMF for the
generic part of L2disc.G/ when G is an even orthogonal or unitary group by transferring
it from L2disc.H/, where H is a large symplectic or quasi-split unitary group. This part
is almost parallel to [22]. Second, we enhance this method using a new observation and
deduce a description of the full automorphic discrete spectrum of even orthogonal or
unitary groups of F -rank � 1. A case worth noting is when G is a unitary group and
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Gv ' U1;n�1 at one real place v. In this case, the description of L2disc.G/ might have
some arithmetic applications to Shimura varieties of type U1;n�1.

Since some of the results in this article have already been proved elsewhere and we
also rely on part of these results, here we list the results we are using in this work and
compare the results we obtain with others.

� Our work relies on Arthur [4] and Mok [61] for the description of the discrete spectrum
L2disc.G/ for quasi-split symplectic and unitary groups. However, certain key statements
such as the twisted weighted fundamental lemma and the local intertwining relation
(“LIR” for short) are not proved in [4, 61]. LIR is now established by the joint work of
Atobe, Gan, Ichino, Kaletha, Mínguez and Shin [10].

� Our results for unitary groups are independent of [39]. We obtain the same results
as [39] on AMF for the generic part of the automorphic discrete spectrum of pure
inner forms of unitary groups. However, we also obtain AMF for the full automorphic
discrete spectrum of unitary groups with F -rank � 1, which is not covered by [39].

� Our results partially overlap with the work of Taïbi [73], but our proof is independent
of his.

We now give a summary of each section. In the first part of this paper (Sections 2–6),
we follow the structure of Gan–Ichino [22].

� In Section 2, we first recall some basic notions and results for even orthogonal and
unitary groups, and then formulate two of our main theorems. The first (Theorem 2.1)
concerns the existence of weak transfers to certain general linear groups; it is in full
generality and has no restrictive conditions. The second (Theorem 2.6) is AMF for the
generic part of the automorphic discrete spectrum of even orthogonal groups or unitary
groups. For the even orthogonal group case, this result is new; for the unitary group,
we provide an alternative approach to [39].

� In Section 3, after recalling some basic notions on theta correspondence, we review the
endoscopic classification for quasi-split groups, which will serve as the input of our
later proofs. We also highlight several works due to Howe and J.-S. Li. It is their works
that suggested the possibility of transferring AMF.

� In Section 4, we prove Theorem 2.1. The proof is actually the same as that of [22,
Theorem A]: combining the local unramified calculations and some results on partial
L-functions, one can show that the (abstract) theta lift realizes certain functoriality.
Then the desired theorem for our target group G follows from the same result for the
auxiliary quasi-split group H .

� Section 5 is the core of this paper. In this section, we first recall Gan–Ichino’s obser-
vation, and then illustrate how to use their key equality to transfer AMF from the
auxiliary quasi-split group H to G. Although Gan–Ichino’s observation is only for
generic NEC, we shall work in a general setting. Let  be an elliptic A-parameter
for G. Locally, we define certain packets …�

 v
.Gv/ of G at each place v of F using

the theta lift between .G;H/. Globally, we “glue” these local packets using the canon-
ical sign character � defined by Arthur (Section 5.3), and define the global packet
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…�
 .G; � /. These local and global packets are possible candidates for (conjectural)

A-packets for our target group G, and we call them “theta packets” to distinguish
various notions of packets. By the key equality of Gan–Ichino, when  D � is generic,
L2�.G/ will decompose according to the associated global theta packet …�

�.G; ��/

(Proposition 5.6).

� Section 6 is the most technical section in this paper. In this section, we study those
theta packets where  D � is generic. In this case, we prove that the local theta packets
…�
�v
.Gv/ are equal to the localL-packets…L

�v
.Gv/. The proof of this local comparison

result is also the main difference from [22]. Gan–Ichino proved similar local com-
parison results mainly using the global method. Since they assumed AMF for both
quasi-split and non-quasi-split special odd orthogonal groups, they could use theta lifts
to two Witt towers to obtain the desired information. In our case, we only assume
AMF holds for symplectic groups and quasi-split unitary groups, so essentially we
only have one Witt tower to do theta lifts and cannot simply apply Gan–Ichino’s argu-
ments. We overcome this difficulty by combining local and global arguments. Firstly
we use Prasad’s conjecture and the induction principle to prove a comparison result
for a large class of parameters and representations. With these special cases at hand,
we then appeal to the global method to prove the comparison result for the remaining
cases.

At this point, we will have already completed the proofs of the two theorems stated in
Section 2. The second part of this paper (Section 7) is devoted to generalizing some results
to the non-generic case. This part is short but perhaps more novel than the first part.

� In Section 7 we try to enhance Gan–Ichino’s method by using some other observations.
As suggested above, as long as one has the multiplicity preservation

mdisc.�/ D mdisc.�
abs.�//;

one can play the same game as in Section 5.3. We venture to conjecture that all repre-
sentations in global theta packets only have square-integrable automorphic realizations
(Conjecture 7.1). A trivial but noteworthy observation is that when G is anisotropic, all
automorphic forms on G are automatically cuspidal. This implies that our conjecture
holds in this case. Using the square-integrability criterion, we also prove the conjec-
ture when G is of F -rank 1. With this conjecture at hand, the desired multiplicity
preservation is then granted. Thus, we get a description of the full automorphic discrete
spectrum of G of F -rank � 1 (Theorem 7.7).

In Appendix A, we define local Langlands correspondence for real full even orthogonal
groups and discuss the so-called Prasad’s conjecture in this case. In Appendix B, we
prove some result on the irreducibility of a certain parabolic induction. In Appendices
C and D, we prove some results on irreducible self-dual or conjugate self-dual Galois
representations. Finally, in Appendix E, we discuss the existence of certain number fields.
These appendices supplement the main results of the paper.

We end up this introduction with a remark on a companion work. A disadvantage of
Gan–Ichino’s method is that, a priori, AMF for G we get might depend on the auxiliary
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group H . One would also like to prove that AMF is actually independent of the choice
of H . By the local-global structure of AMF, the problem can be reduced to studying the
local theta packets …�

 v
.Gv/ of G at each place v. It is predicted by Adams’ conjec-

ture [1, Section 4] that the theta packets …�
 v
.Gv/ should be exactly the (conjectural)

local A-packets …A
 v
.Gv/ of Gv . In [12], we prove that these packets …�

 v
.Gv/ are

independent of the choice of H , and compare them with the local A-packets …A
 v
.Gv/

when Gv is quasi-split. In fact, a large part of this has been studied by Mœglin [53]; see
Remark 7.9.

2. Statement of results in the generic case

In this section, we formulate two of our main results. Let F be a local or global field of
charactersitic zero, and E either F itself or a quadratic field extension of F . Let

c D

´
the identity of F if E D F;

the non-trivial element in Gal.E=F / if ŒE W F � D 2:

For convenience, we denote by CF (resp. CE ) the multiplicative group F � (resp. E�) or
F �nA� (resp. E�nA�E ), depending on whether F is local or global. When ŒE W F � D 2,
we denote by !E=F the quadratic character of CF by class field theory. Let V D V.n/
be a finite-dimensional vector space over E equipped with a non-degenerate Hermitian
c-sesquilinear form

h�; �iV W V � V ! E:

We consider the following three cases:8̂̂<̂
:̂

Case O: E D F and dimV D 2n;

Case U0: ŒE W F � D 2 and dimV D 2n;

Case U1: ŒE W F � D 2 and dimV D 2nC 1;

where n � 0 is an integer. Sometimes, when we want to deal with Cases U0 and U1 at the
same time, we shall simply write “Case U”. Let G D G.V / be the group of elements g in
GL.V / such that

hgv; gwiV D hv;wiV for v;w 2 V:

If dim V D 0, we interpret G D G.V / and its pure inner form as the trivial group. Now
assume that dimV > 0. Let discV D .�1/n � det.V / be the discriminant of V . In Case O,
we let

�V W CF ! C� (2.1)

be the quadratic character associated to disc V by class field theory, and �.V / be the
(normalized) Hasse–Witt invariant of V [68, pp. 80–81]. In Case U, we define the sign
�.V / D !E=F .discV /.
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Sometimes we also need to consider pure inner forms of G D G.V /. It is well known
that all pure inner forms ofG arise in the formG0 DG.V 0/ for some space V 0. We briefly
describe the classification of V 0 in both local and global situations. If F is a local field,
then all these spaces V 0 are classified by some invariants.

When F is non-Archimedean:

� In Case O, the V 0 are orthogonal spaces of the same dimension and discriminant as V .
There are at most two such spaces, distinguished by their (normalized) Hasse–Witt
invariant �.V /. We shall denote by V C the one with Hasse–Witt invariant C1 (which
always exists), and by V � the one with Hasse–Witt invariant �1 (which exists unless
n D 1 and �V is trivial). Since V C has the maximal possible Witt index, V C must be
isometric to

V C ' V.d;c/ CHn�1

for some d; c 2 F �, where

V.d;c/ D F ŒX�=.X
2
� d/

is a two-dimensional vector space over F equipped with the quadratic form

aC bX 7! c � .a2 � b2d/;

and H is the (orthogonal) hyperbolic plane. We fix such a tuple .d; c/ and the isometry,
and we shall say that V C is of type .d; c/. Notice that the tuple .d; c/ is not unique.

� In Case U, the V 0 are Hermitian spaces of the same dimension as V . There are exactly
two such spaces, distinguished by their sign �.V /D !E=F .discV /. We shall denote by
V C the one of signC1, and by V � the one of sign �1.

When F is real:

� In Case O, the space V is determined by its signature .p; q/. In this case, the spaces V 0

are classified by their signatures .p0; q0/ such that

p0 C q0 D 2n and p0 � p mod 2:

We shall denote by V C the one with Hasse–Witt invariantC1 and maximal Witt index.

� In Case U, the V 0 are classified by their signatures .p0; q0/ satisfying p0 C q0 D dimV .
We shall denote by V C the one of signC1 and with maximal Witt index.

When F is complex:

� There is only one such space V 0 (up to isometry) with given dimension, and we shall
denote it by V C.

With these local classifications at hand, we can now describe the classification of V 0 when
F is a global field.

� In Case O, the V 0 are orthogonal spaces of the same dimension and discriminant as V .
Let d D disc.V /. The local-global principle for orthogonal spaces [68, p. 225, Theo-
rem 6.10] implies that, whenever we are given a collection ¹V 0vºv of local orthogonal
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spaces over Fv for all places v of F , such that dimV 0v D 2n, disc.V 0v/D dv , �.V 0v/D 1
for almost all v, and Y

v

�.V 0v/ D 1;

there exists a global orthogonal space V 0 with these localizations. Moreover, these
spaces V 0 are classified by such coherent data ¹V 0vºv .

� In Case U, the V 0 are Hermitian spaces of the same dimension as V . The local-global
principle for Hermitian spaces [68, p. 377, Theorem 6.9] implies that, whenever we are
given a collection ¹V 0vºv of local Hermitian spaces over Ev for all places v of F , such
that dimV 0v D dimV , �.V 0v/ D 1 for almost all v, andY

v

�.V 0v/ D 1;

there exists a global Hermitian space V 0 with these localizations. Moreover, these
spaces V 0 are classified by such coherent data ¹V 0vºv .

Given V and G D G.V /, we let V C be the space such that for each place v of F , V Cv is
(isometric to) the space we have defined in local situations, i.e. .V C/v ' .Vv/C. In all the
cases above, G� D G.V C/ is quasi-split, and we refer to it as the quasi-split pure inner
form of G.

2.1. Near equivalence classes and Arthur parameters

Let F be a number field. We first describe the decomposition of L2disc.G/ into near equiv-
alence classes of representations. We say two irreducible representations � D

N
v �v

and � 0 D
N
v �
0
v of G.A/ are nearly equivalent if �v and � 0v are equivalent for almost

all places v of F . The decomposition into near equivalence classes will be expressed in
terms of elliptic A-parameters. Recall that a (global) A-parameter for G is nothing but a
formal finite sum

 D
X
i

�i � Sdi ; (2.2)

where

� �i is an irreducible (conjugate) self-dual cuspidal automorphic representation of
GLni .AE /;

� Sdi is the di -dimensional irreducible representation of SL2.C/;

�
P
i nidi D dimV ;

� if di is odd, then �i is 8̂̂<̂
:̂

orthogonal in Case O;

conjugate symplectic in Case U0;

conjugate orthogonal in Case U1I
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� if di is even, then �i is 8̂̂<̂
:̂

symplectic in Case O;

conjugate orthogonal in Case U0;

conjugate symplectic in Case U1I

� in Case O, if we denote the central character of �i by !i , thenY
i

!
di
i D �V :

Following Arthur, we make the following definitions:

� if there is only one term in the summation .2.2/, i.e.  D �1 � Sd1 , then we say that  
is simple;

� if .�i ; di / ¤ .�j ; dj / for all i ¤ j , then  is elliptic;

� if di D 1 for all i , then  is generic (or tempered).

Note that an (elliptic)A-parameter forG is also an (elliptic)A-parameter forG�, and vice
versa. We denote the set of all elliptic A-parameters of G by ‰ell.G

�/. One can formally
associate to  a free Z=2Z-module

� D
Y
i

.Z=2Z/ei

with a canonical basis ¹eiºi , where each ei corresponds to the summand �i � Sdi . We
shall call � the global component group of  .

For each place v of F , one can also define local A-parameters and local component
groups for Gv . First suppose that we are either in Case O, or in Case U and v is not split
in E. Then there is a unique place of E above v, which we shall still denote by v. Let

LEv D

´
the Weil group of Ev if v is Archimedean;

the Weil–Deligne group of Ev if v is non-Archimedean:

A local A-parameter for Gv is a representation

 v D
X
i

mi � �i;v � Sdi (2.3)

of LEv � SL2.C/, where

� �i;v � Sdi are pairwise inequivalent irreducible (conjugate) self-dual representations of
LEv � SL2.C/ with multiplicities mi ;

� as a representation of LEv � SL2.C/,  v is8̂̂<̂
:̂

orthogonal in Case O;

conjugate symplectic in Case U0;

conjugate orthogonal in Case U1I

� in Case O, det. v/ D �V;v .
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By [19, Section 8], the component group � v has an explicit description of the form

� v D
Y
j

.Z=2Z/ej

with a canonical basis ¹ej º, where the product ranges over all j such that �j;v � Sdj is
(conjugate) self-dual of the same parity as  v . For e D ej1 C � � � C ejr 2 � , we put

 ev D �j1;v � Sdj1
C � � � C �jr ;v � Sdjr :

Next suppose that we are in Case U, and v is split into two places ¹w; xwº in E.
In this case the local A-parameter for Gv can be similarly defined as a formal sum as
in (2.3), but now each �i;v is an irreducible conjugate self-dual representation of some
GLni .Ev/ ' GLni .Ew/ � GLni .E xw/. Indeed, if we identify Fv ' Ew ' E xw , then the
conjugate self-duality of each �i;v will imply that

�i;v ' �i;w � �_i;w

for some irreducible representation �i;w of GLni .Ew/. Regarding these �i;w as represen-
tations of LEw by using the local Langlands correspondence for general linear groups
(see [29, 30, 46, 69]), we get a local A-parameter for Gv ' GL.Vw/,

 w D
X
i

mi � �i;w � Sdi ;

in the usual sense. In this case the component group � v is trivial. In both cases, if further
di D 1 for all i , i.e. the restriction of  v to SL2.C/ is trivial, then we say that  v is an L-
parameter for Gv . Again following Arthur, we shall use ‰.Gv/ (resp. ˆ.Gv/) to denote
the set ofA-parameters (resp.L-parameters) ofGv with bounded image on the Weil group,
and also‰C.Gv/ (resp.ˆC.Gv/) for the set of A-parameters (resp. L-parameters) ofGv .

Now given an elliptic A-parameter  D
P
i �i � Sdi of G, let  v D

P
i �i;v � Sdi

be the localization of  at v. Here each �i;v is an irreducible representation of GLni .Ev/,
and we shall also regard it as an L-parameter via LLC for general linear groups. Then by
definitions,  v gives rise to an A-parameter for Gv . We associate to  v an L-parameter
� v by the formula

� v .w/ D  v

�
w;

�
jwj1=2

jwj�1=2

��
: (2.4)

Our first theorem shows that each NEC has a weak transfer to a certain general linear
group.

Theorem 2.1. There exists a decomposition

L2disc.G/ D
M

 2‰ell.G�/

L2 .G/;

whereL2 .G/ is a full near equivalence class of irreducible representations � inL2disc.G/

such that the L-parameter of �v is � v for almost all places v of F .

Note that at this point, L2 .G/ could be zero for some  2 ‰ell.G
�/.
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2.2. Local Langlands correspondence

Our next goal is to describe the near equivalence class L2 .G/ when  is generic. For this
purpose, we need to make use of the (Vogan version) local Langlands correspondence
(“LLC” for short), which provides a bijection between irreducible representations of Gv
and enhanced L-parameters. Here are some existing results.

When v is Archimedean: LLC was proved in [46] for connected reductive groups. How-
ever, since we need to deal with the disconnected group O2n in Case O, we need to extend
LLC for special even orthogonal groups to full even orthogonal groups. When F is com-
plex, there is only one orthogonal space of dimension 2n, and the corresponding even
orthogonal group is quasi-split. In this case LLC is already provided by Arthur’s results;
see the remark below. When F is real, we provide LLC for full even orthogonal groups
in Appendix A using theta lifts.

When v is non-Archimedean: LLC was proved in [4, 8] when G is a quasi-split even
orthogonal group; in [61] when G is a quasi-split unitary group; and in [39] when G is an
inner form of a unitary group. Also, in our previous papers [13, 14], we established LLC
for pure inner forms of even orthogonal groups and unitary groups over non-Archimedean
fields using theta lifts.

Remark 2.2. In fact, Arthur [4] also established a weak version of LLC for quasi-split
special even orthogonal groups over Archimedean fields. According to [8, Theorem 3.10],
Arthur’s results also implicitly imply LLC for quasi-split full even orthogonal groups,
though he did not highlight it. We can show that our extension of LLC for real full even
orthogonal groups coincides with Arthur’s when the group is quasi-split, by appealing to
the global method. We sketch the proof at the end of Appendix A.

Now we briefly recall the above results. Assume F is local for a moment. There is a
canonical finite-to-one surjection

L W
G
G0

Irr.G0/! ˆC.G/;

where the disjoint union is taken over all pure inner forms of G. For each L-parameter �,
we denote

…L
� .G

0/ D L�1.�/ \ Irr.G0/

and we call it theL-packet ofG0 associated to �. There is a canonical bijection (depending
on the choice of a Whittaker datum W of G�)

JLW W
G
G0

…L
� .G

0/!c�� ; (2.5)

where the disjoint union is again taken over all pure inner forms of G. Furthermore, the
bijection JLW is compatible with the Kottwitz isomorphism [40, Theorem 1.2], and this
property characterizes the image of …L

� .G
0/ under JLW . We shall denote by �.�; �/ the



Arthur’s multiplicity formula for even orthogonal and unitary groups 4779

irreducible representation of some G0 with L-parameter � and corresponding to �. We
may also regard the L-packet …L

� .G
0/ as a representation of �� �G

0 by letting

…L
� .G

0/ D
M
�

JLW .�/ � �;

where the summation on the RHS is over all irreducible representations in…L
� .G

0/. Some-
times we will adopt this point of view.

Remark 2.3. Let �� be the character of �� defined by the formula

��.e/ D .�1/
dim�e (2.6)

for e 2 �� .

(1) In Case O, for any irreducible representation � D �.�; �/ of G, we have

� ˝ det D �.�; � � ��/:

When F is non-Archimedean, this property is proved for example in [13, Theo-
rem 4.4]. When F is real, see Remark A.2. When F is complex, this follows from
the compatibility of LLC for full even orthogonal groups with LLC for special even
orthogonal groups [8, Desideratum 3.9(8)].

(2) In Case U1, if F is non-Archimedean, we can take V � D a � V C for some a in
F �nNmE=F .E

�/. Then G.V C/ and G.V �/ are physically equal as subgroups of
GL.V C/. For any irreducible representation � D �.�; �/ of G.V C/, if we consider
it as a representation of G.V �/, then we have

� D �.�; � � ��/:

The readers can consult [14, Theorem 2.5.5] for a more detailed discussion of this
property.

Remark 2.4. In Case U, we simply use LLC for general linear groups at split places.

2.3. Multiplicity formula

We now assume that F is a number field, and  D � a generic elliptic A-parameter of G,
i.e. � is a multiplicity-free sum

� D
X
i

�i

of irreducible (conjugate) self-dual cuspidal automorphic representations �i of GLni .AE /
with appropriate parity. Fix a global Whittaker datum W of G�. At each place v of F , we
have a localization map

�� ! ��v :
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We define a global packet

…�.G/ D
O0

v

…L
�v
.Gv/

D

°
� D

O0

v

�v

ˇ̌̌
�v 2…

L
�v
.Gv/; �v unramified with L-parameter �v for almost all v

±
:

We then have a map

JW W …�.G/!c�� ; � 7! JW .�/; JW .�/.x/ WD
Y
v

JLWv .�v/.xv/;

where x 2 �� and xv is the localization of x at v.

Remark 2.5. According to the main local theorems of [4, 61], if Gv and �v are both
unramified, then JLWv .�v/ is the trivial character 1. Hence JW is well-defined.

Let �� D 1 be the trivial character of �� . We put

…�.G; ��/ D ¹� 2 …�.G/ j JW .�/ D ��º:

Our second theorem is the following.

Theorem 2.6. Let � be a generic elliptic A-parameter for G. Then we have the decom-
position

L2�.G/ D
M

�2…�.G;��/

�:

In particular, L2�.G/ is multiplicity-free.

Remark 2.7. (1) Suppose that V D V C. Then G D G� is quasi-split. Hence, by the
results of [4,8] (for Case O), and [61] (for Case U), Theorem 2.6 holds for G. Our results
generalize these works to the case of (not necessarily quasi-split) pure inner forms.

(2) We should mention that in [4], Arthur only formulated and proved his results
for quasi-split special even orthogonal groups SO.V C/. His results do not distinguish
between a square-integrable automorphic representation � and its twist by the outer
automorphism corresponding to an element of O.V / n SO.V /. Therefore, in AMF for
SO.V C/, some multiplicity 2 phenomenon occurs. In [8], Atobe–Gan formulated AMF
for quasi-split even orthogonal groups O.V C/ precisely and explicated that Arthur’s
results in [4] already implied Theorem 2.6 for O.V C/.

2.4. A special case

We first deal with a special case of Theorem 2.6, which will be used in later proofs. In this
subsection, suppose that we are in Case U1, and F is a totally imaginary number field.

In this case, we take a 2 F �, so that a is in the same NmE=F .E
�/-orbit as disc.V /.

Then by [68, Corollary 6.6], we have V C ' a � V . This implies that G ' G� as abstract
groups. Therefore

L2 .G/ D L
2
 .G

�/
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for any elliptic A-parameter  of G. However, to establish Theorem 2.6 for G, we need
to consider G not only as an abstract group, but also as a pure inner form of G�, i.e. the
Hermitian form V should also be taken into consideration. When  D � is generic, we
need to distinguish …L

�v
.Gv/ and …L

�v
.G�v / at some places. To be more precise, let v be

a place of F . There are two cases:

� If av 2 NmEv=Fv .E
�
v /, then Vv ' V Cv , and hence …L

�v
.Gv/ D …

L
�v
.G�v / as represen-

tations of ��v �Gv . Note that all complex places satisfy this condition.

� If av …NmEv=Fv .E
�
v /, then Vv 6' V Cv . According to Remark 2.3 (2), as representations

of ��v �Gv , we have
…L
�v
.Gv/ D …

L
�v
.G�v /˝ ��v :

Note that by the local-global principle for Hermitian forms, the number of places v
satisfying this condition is even.

Therefore, it is not hard to check that

…�.G; ��/ D …�.G
�; ��/

as sets of representations of G.A/. We deduce the following.

Proposition 2.8. Suppose we are in Case U1, and F is a totally imaginary number field.
Then the conclusion of Theorem 2.6 holds.

This proposition will be used in the later proof of Theorem 2.6.

3. Preliminaries

In this section, we recall some preliminaries we will need in the proof of our main theo-
rems.

3.1. Theta lifts

Fix a trace zero element ı 2 E�. Let W D W.r/ be a vector space over E which is8̂̂<̂
:̂
2r-dimensional in Case O;

.2r C 1/-dimensional in Case U0;

.2r C 2/-dimensional in Case U1;

(3.1)

and equipped with a non-degenerate skew-Hermitian c-sesquilinear form

h�; �iW W W �W ! E;

such that W is split (in Case U0 we require that the anisotropic kernel of W is the one-
dimensional skew-Hermitian space represented by ı). Let H D H.W / be the group of
elements h in GL.W / which preserve the form:

hhv; hwiW D hv;wiW for v;w 2 W:
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Note that H is quasi-split. The pair .G;H/ is then an example of a reductive dual-pair.
We fix a pair of characters .�V ; �W / of CE as follows:

�V D

´
the quadratic character associated to V in Case O;

a character of CE such that �V jCF D !
dimV
E=F

in Case U;

�W D

´
the trivial character of F � in Case O;

a character of CE such that �W jCF D !
dimW
E=F

in Case U:

Assume F is local for a moment. With respect to a non-trivial additive character  F
of F and the auxiliary data .�V ;�W /, one can define the Weil representation ! ofG �H .
For any irreducible representation � of G, the maximal �-isotypic quotient of ! is of the
form

� �‚.�/

for some smooth representation ‚.�/ of H of finite length. Then by Howe duality [26,
27, 76], the maximal semisimple quotient �.�/ of ‚.�/ is either zero or irreducible.
Similarly, for any irreducible representation � of H , we can define ‚.�/ and �.�/.

Suppose next that F is a number field. Fix a non-trivial additive character  F of
F nA, and also characters .�V ; �W /. We define an abstract irreducible representation of
� of G.A/ as a tensor product of irreducible representations �v of Gv , which is at almost
all places unramified. We write � D

N
v �v . At each place v of F , we can form the

local theta lift �.�v/ with respect to . F;v; �V;v; �W;v/. Assume that they are all non-
vanishing. Then �.�v/ is irreducible for all v and is unramified for almost all v. Hence,
we may define an abstract irreducible representation

� abs.�/ D
O
v

�.�v/

of H.A/. We call � abs.�/ the abstract theta lift of � to H.A/. On the other hand, if � is
an irreducible cuspidal automorphic representation ofG.A/, then we can define its global
theta lift ‚aut.�/ as the subspace of A.H/ spanned by all automorphic forms of the form

�.f; '/.h/ D

Z
G.F /nG.A/

�.f /.g; h/'.g/ dg

for f 2 ! and ' 2 � . Here ! is the Weil representation of G.A/�H.A/ and �.f / is the
theta function associated to f . According to [43], if ‚aut.�/ is non-zero and contained in
A2.H/, then ‚aut.�/ is irreducible and

‚aut.�/ ' � abs.�/:

3.2. Unitary representations of low rank

The notion of rank for unitary representations was first introduced by Howe [31] for sym-
plectic groups and was extended to other classical groups by J.-S. Li [47]. Following [47],
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we say that an irreducible unitary representation of H D H.W.r// is of low rank if its
rank is less than r . Such representations can be described using theta lifts as follows.

Assume dimV < r , so that the reductive dual pair .G;H/ is in the stable range (see
[48, Definition 5.1]). If F is local, then for any irreducible representation � ofG, its theta
lift �.�/ toH is non-vanishing. Moreover, if � is unitary, then by [48], so is �.�/. In [47],
J.-S. Li showed that this theta lift provides a bijectionG

V 0

IrrunitG.V
0/ � ¹Characters of H ºx?y

¹Irreducible unitary representations of H of rank dimV º:

where the disjoint union is taken over all isometry classes of vector spaces V 0 over E of
the same dimension as V , and equipped with a non-degenerate Hermitian c-sesquilinear
form. The map sends a pair .�; �/ in the first set to a representation �.�/˝ � ofH . Note
that in Case O, � is always trivial since H is simple.

This result has a global analog. Let F be a number field and � D
N
v �v an irreducible

unitary representation of H.A/ that occurs as a subrepresentation of A.H/. Then, by
[48, Lemma 3.2], the following are equivalent:

� � is of rank dimV ;

� �v is of rank dimV for all v;

� �v is of rank dimV for some v.

Suppose that � satisfies the above equivalent conditions. Then [49, Proposition 5.7]
asserts that there exists some G D G.V 0/ with dimV 0 D dimV , together with an abstract
representation � D

N
v �v of G.A/, and an automorphic character � of H.A/, such that

� ' � abs.�/˝ �:

3.3. Some inequalities

Finally, we recall a result of J.-S. Li, which allows us to lift square-integrable automor-
phic representations of G.A/ to H.A/. For any irreducible representation � of G.A/, we
define its multiplicities m.�/ and mdisc.�/ by

m.�/ D dim HomG.A/.�;A.G//;

mdisc.�/ D dim HomG.A/.�;A
2.G//:

Obviously,mdisc.�/ � m.�/. Similarly, if � is an irreducible representation ofH.A/, we
have its multiplicities m.�/ and mdisc.�/. By [49, Theorem A], we have the following.

Theorem 3.1. Assume that dimV < r . Let � be an irreducible unitary representation of
G.A/ and � abs.�/ its abstract theta lift to H.A/. Then

mdisc.�/ � mdisc.�
abs.�// � m.� abs.�// � m.�/:
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3.4. Review of results for quasi-split groups

We review some results in [4, 61].
First, let F be a local field. Recall that by our definition, H D H.W.r// is either a

symplectic group or a quasi-split unitary group. Similarly to Section 2.1, one can also
define the local A-parameter and the component group for H . Following Arthur, we use
‰.H/ to denote the set of local A-parameters for H with bounded images on the Weil
group. Let  2 ‰.H/ be an A-parameter for H . If we write

 D
X
i

mi � �i � Sdi

with pairwise inequivalent irreducible subrepresentations �i � Sdi of  , then by [19,
Section 8], we have

� D
Y
j

.Z=2Z/ej and � D � =hz i;

where the product is taken over all j such that �j � Sdj is (conjugate) self-dual of the
same parity as  , and z D

P
j mj � ej . We shall call � or � the component group

associated to  . To such a  , Arthur [4] and Mok [61] assigned a finite multi-set… .H/

of irreducible unitary representations of H , together with a canonical map (after fixing a
Whittaker datum W 0 of H )

JW 0 W … .H/!
c
� :

They proved that … .H/ and the assignment � 7! JW 0.�/ have the following two prop-
erties:

(1) If both H and � are unramified, then JW 0.�/ D 1.

(2) Let � be the L-parameter associated to  as in (2.4). Then the A-packet … .H/

contains the L-packet …L
� 
.H/ as a subset. We have a commutative diagram

…L
� 
.H/

b
�� 

… .H/
c
� 

JL
W 0

JW 0

where the left vertical arrow is the natural inclusion and the right one is induced by the
surjection � ! �� . Moreover, if  D � is a tempered L-parameter, then … .H/

is multiplicity-free and coincides with the L-packet …L
� .H/.

Besides these two properties, the packet … .H/ also satisfies the so-called “endoscopic
character identity”, but we will not use this fact in this paper.

Let ‰C.H/ be the set of local A-parameters, whose elements do not necessarily
have bounded images on the Weil group. Due to the potential failure of the generalized
Ramanujan conjecture for general linear groups, for the purpose of the global classi-
fication, Arthur and Mok also defined the local A-packet … .H/ and the canonical
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map JW 0 for  2 ‰C.H/ by using parabolic inductions. These local A-packets … .H/

and maps JW 0 also have the two properties listed above. In Section 6.2, we will discuss
this issue in more detail.

Now we turn to the global classification, so F is now a number field. Let  be an
elliptic A-parameter for H and write

 D
X
i

�i � Sdi

as in (2.2). Let
� D

Y
i

.Z=2Z/ei and � D � =hz i

be the global component groups of �, where z D
P
i ei . For each place v of F , the local-

ization  v of  at v gives rise to a local A-parameter for Hv . We also have a localization
map

� ! � v .or � ! � v /:

Fix a global Whittaker datum W 0 of H . Given an elliptic A-parameter  , we define the
global packet … .H/ associated to  as the restricted tensor product of the local A-
packets … v .Hv/:

… .H/ D
O0

v

… v .Hv/

D

°
� D

O0

v

�v

ˇ̌̌
�v 2… v .Hv/; �v unramified with L-parameter � v for almost all v

±
:

We then have a map

JW 0 W … .H/!
c
� ; � 7! JW 0.�/; JW 0.�/.x/ WD

Y
v

JW 0v .�v/.xv/;

where x 2 � and xv is the localization of x at v.

Remark 3.2. According to the main local theorems of [4, 61], if Hv and �v are both
unramified, then JW 0v .�v/ is the trivial character 1. Hence JW 0 is well-defined.

Let � 2 c� be the canonical sign character defined by Arthur [4, p. 47] and Mok
[61, p. 29]. Put

… .H; � / D ¹� 2 … .H/ j JW 0.�/ D � º:

Then the main global theorems in [4, 61] assert the following.

Theorem 3.3. There exists a decomposition

L2disc.H/ D
M

 2‰ell.H/

L2 .H/;

whereL2 .H/ is a full near equivalence class of irreducible representations � inL2disc.H/

such that the L-parameter of �v is � v for almost all places v of F .
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Theorem 3.4. Let  be an elliptic A-parameter for H . Then we have the decomposition

L2 .H/ D
M

�2… .H;� /

�:

Our Theorem 2.1 is an analog of Theorem 3.3 for the group G, and our Theorem 2.6
is an analog of Theorem 3.4 for generic elliptic A-parameters of G.

3.5. Remarks on Whittaker data

In the rest of this paper, we will prove Theorems 2.1 and 2.6 by using the theta lift between
G and H . Since the local and global classifications of both G and H depend on the
choices of Whittaker data, and the theta lift also depends on the choice of an additive
character, we need to specify the data we are using and their relation. Here we are follow-
ing [6, Conjecture 4.4, 4.6] and [21, Sections 4.4, 4.6], as we will use their results in later
proofs (see Theorem 6.11). We now briefly describe the way we choose these data.

When F is a local field, we first fix a non-trivial additive character  F of F . We also
need some auxiliary data in different cases:

� in Case O, we fix an isometry

V C ' V.d;c/ CHn�1

for some d; c 2 F �, as described at the beginning of Section 2;

� in Case U, we fix a trace zero element ı 2 E�.

We define a Whittaker datum W D W F of G� D G.V C/ as follows.

Case O: In this case, recall that we have fixed an isometry

V C ' V.d;c/ CHn�1;

where H is the (orthogonal) hyperbolic plane. We denote by e; e0 the images of 1; X 2
F ŒX� in V.d;c/ respectively. For 1 � k � n � 1, we define the k-th hyperbolic plane
H D Fvk C Fv

�
k

with

hvk ; vkiV D hv
�
k ; v
�
kiV D 0 and hvk ; v

�
kiV D 1;

and we set

Xk D Fv1 C � � � C Fvk and X�k D Fv
�
1 C � � � C Fv

�
k :

Let B D T U be the F -rational Borel subgroup of G� stabilizing the complete flag

X1 � � � � � Xn�1;

where T is the F -rational torus stabilizing the lines Fvi for 1 � k � n � 1. We define a
generic character �c of U by

�c.u/ D  F
�
huv2; v

�
1 iV C � � � C huvn�1; v

�
n�2iV C hue; v

�
n�1iV

�
: (3.2)
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Let W D .V C; B; T; �c/. Here the notion of Whittaker datum is slightly different from
the usual one: the datum is not only associated to the group G�, but rather the orthogonal
space V C is part of the datum. Moreover, this datum W is indeed independent of the
choice of the additive character  , and only depends on the choice of c 2 F �. The readers
may consult [8, Section 2.2] for a discussion of this.

Case U0: In this case, the Witt index of V C is n. We choose a basis ¹vi ; v�i j i D 1; : : : ; nº
of V C such that

hvi ; vj iV D hv
�
i ; v
�
j iV D 0 and hvi ; v

�
j iV D ıi;j

for 1 � i; j � n. We set

Xk D Ev1 C � � � CEvk and X�k D Ev
�
1 C � � � CEv

�
k

for 1 � i; j � n. We denote by B D T U the F -rational Borel subgroup of G� stabilizing
the complete flag

X1 � � � � � Xn;

where T is the F -rational torus stabilizing the lines Evi for 1 � k � n. We define a
generic character � of U by

�.u/ D  F
�
1
2

TrE=F
�
ı � .huv2; v

�
1 iV C � � � C huvn; v

�
n�1iV C huv

�
n ; v
�
niV /

��
:

Let W D .U; �/.

Case U1: In this case, there is a unique Whittaker datum W of G�.

Then we define a Whittaker datum W 0 D W 0 F of H D H.W / as follows.

Case O: In this case W is the 2r-dimensional symplectic space. We choose a basis
¹wi ; w

�
i j i D 1; : : : ; rº of W such that

hwi ; wj iW D hw
�
i ; w

�
j iW D 0 and hwi ; w

�
j iW D ıi;j

for 1 � i; j � r . We set

Yk D Fw1 C � � � C Fwk and Y �k D Fw
�
1 C � � � C Fw

�
k

for 1� i; j � r . We denote by B 0 D T 0U 0 the F -rational Borel subgroup ofH stabilizing
the complete flag

Y1 � � � � � Yr ;

where T 0 is the F -rational torus stabilizing the lines Fwi for 1 � k � r . We define a
generic character �0 of U 0 by

�0.u/ D  F
�
huw2; w

�
1 iW C � � � C huwr ; w

�
r�1iW C chuw

�
r ; w

�
r iW

�
: (3.3)

Let W 0 D .U 0; �0/.
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Case U0: In this case W is a split .2r C 1/-dimensional skew-Hermitian space. There is
a unique Whittaker datum W 0 of H .

Case U1: In this case W is a split 2r-dimensional skew-Hermitian space. We choose a
basis ¹wi ; w�i j i D 1; : : : ; rº of W such that

hwi ; wj iW D hw
�
i ; w

�
j iW D 0 and hwi ; w

�
j iW D ıi;j

for 1 � i; j � r . We set

Yk D Fw1 C � � � C Fwk and Y �k D Fw
�
1 C � � � C Fw

�
k

for 1� i; j � r . We denote by B 0 D T 0U 0 the F -rational Borel subgroup ofH stabilizing
the complete flag Y1 � � � � � Yr , where T 0 is the F -rational torus stabilizing the lines Fwi
for 1 � k � r . We define a generic character �0 of U 0 by

�0.u/ D  F
�
1
2

TrE=F
�
huw2; w

�
1 iW C � � � C huwr ; w

�
r�1iW C huw

�
r ; w

�
r iW

��
:

Let W 0 D .U 0; �0/.

When F is a number field, after fixing an additive character  F of A=F (and also
some auxiliary data as in the local case), we can define (global) Whittaker data W DW F

and W 0 DW 0 F ofG� andH using the same formulas as above. By our definitions, these
Whittaker data satisfy the local-global property, in the sense that

Wv D W F;v and W 0v D W 0 F;v

for all places v of F .

4. Weak transfer to the general linear group

From now on we assume that dim V < r , hence the reductive dual pair .G; H/ is in
the stable range. In this section, we prove Theorem 2.1, which shows that each NEC in
L2disc.G/ has a weak transfer to the general linear group GL.V /, where V is the standard
representation of the dual group yG of G.

4.1. Attaching Arthur parameters

Let F be a number field. Let C be a near equivalence class in L2disc.G/. Then C gives rise
to a collection of L-parameters

�v W LFv !
LG

for almost all v, such that for any irreducible summand � of C , the L-parameter of �v
is �v for almost all v.

Proposition 4.1. There exists a unique elliptic A-parameter  for G such that � v D �v
for almost all v.
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Proof. The strategy of the proof is the same as that of [22, Proposition 3.1]. For the
convenience of the reader, we sketch the proof. Let � be any irreducible summand of C ,
and consider the theta lift between .G;H/. Sincemdisc.�/ � 1, we deduce from J.-S. Li’s
inequality (Theorem 3.1) that

mdisc.�
abs.�// � 1:

Therefore, Theorem 3.3 attaches an elliptic A-parameter �. / to � abs.�/.
Next we show that �. / contains �V � S2r�2nC1 as a direct summand. Consider

the partial L-function LS .s; � abs.�/ � ��1V / associated to � abs.�/ and ��1V . Here S is
a sufficiently large finite set of places of F such that for any place v outside S , the L-
parameter of �v is �v , and Gv; Hv;  F;v; �V;v; �W;v; �v are all unramified. If we write
�. / D

P
i �i � Sdi as in (2.2), then

LS .s; � abs.�/ � ��1V / D
Y
i

diY
jD1

LS
�
s C

di C 1

2
� j; �i�

�1
V

�
: (4.1)

It follows from [36, Lemma 4.4, Theorem 5.3] that LS .s; �i��1V / is holomorphic for
<.s/ > 1 for all i , and it has a pole at s D 1 if and only if �i D �V is an automorphic
character of GL1.AE /. On the other hand, by local theta correspondence for unramified
representations [67, Theorem 6.1], for all v … S , the L-parameter of �.�v/ is

�v�
�1
W;v�V;v C

� r�nM
jDn�r

j � j
j
�
�V;v: (4.2)

Hence

LS .s; � abs.�/ � ��1V / D L
S .s; � � ��1W /

r�nY
jDn�r

�S .s C j /; (4.3)

where LS .s; � � ��1W / is the partial L-function associated to � and ��1W . By [81, Theo-
rem 9.1], we know that the partial L-function LS .s; � � ��1W / is holomorphic when

<.s/ >

8̂̂<̂
:̂
n in Case O;

nC 1
2

in Case U0;

nC 1 in Case U1:

It follows from (4.3) that LS .s; � abs.�/ � ��1V / is holomorphic for <.s/ > r � nC 1 but
has a simple pole at s D r � n C 1. This and (4.1) imply that �. / contains �V � St
as a direct summand for some t . Let t be the largest integer with this property. Then
LS .s; � abs.�/ � ��1V / has a largest pole at s D tC1

2
. So we have t D 2r � 2nC 1. Thus

we may write
�. / D  ��1W �V C �V � S2r�2nC1

for some elliptic A-parameter  2 ‰ell.G
�/. This and (4.2) imply that � v D �v for

almost all v. The uniqueness of  follows easily from the strong multiplicity one theorem
for general linear groups [35].
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Now we denote by L2 .G/ the near equivalence class C with the associated A-param-
eter  . Then we have a decomposition

L2.G/ D
M

 2‰ell.G�/

L2 .G/:

This completes the proof of Theorem 2.1.

5. A key equality: Generic case

Let F be a number field, and G an even orthogonal or unitary group over F as in the
setting of Section 2. In this section, we study the structure of L2�.G/ for a generic elliptic
A-parameter �.

5.1. Gan–Ichino’s observation

For any irreducible representation � of G.A/, we define the multiplicity mcusp.�/ by

mcusp.�/ D dim HomG.A/.�;Acusp.G//:

Obviously,
mcusp.�/ � mdisc.�/ � m.�/:

The following observation due to Gan–Ichino is the core of this work.

Proposition 5.1. Let � be a generic elliptic A-parameter for G. Let � be an irreducible
representation of G.A/ such that the L-parameter of �v is �v for almost all v. Then

mcusp.�/ D mdisc.�/ D m.�/:

Proof. The proof is the same as that of [22, Proposition 4.1].

5.2. Multiplicity preservation

Consider the theta lift between .G;H/with respect to a datum . F ;�V ;�W / as described
in Section 3.1. Let � be an irreducible representation of H.A/. We say � is relevant to G
if there is an irreducible unitary representation � ofG.A/ and an automorphic character �
of H.A/ such that

� ' � abs.�/˝ �:

As a consequence of the previous proposition, we deduce the following corollary.

Corollary 5.2. Let � be a generic elliptic A-parameter for G. Suppose that

L2�.G/ D
M
�

m��:
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Let �.�/ D ���1W �V C �V � S2r�2nC1 be an elliptic A-parameter for H . Then

L2�.�/.H/ D
�M
�

m��
abs.�/

�
˚

�M
�

m��
�
;

where the second summation on the RHS is over all � with A-parameter �.�/ and not
relevant to G.

Proof. It follows from Theorem 3.1 and Howe duality that there is an injectionM
�

m��
abs.�/ ,! L2�.�/.H/:

It remains to show that for any irreducible summand � of L2
�.�/

.H/ relevant to G,
there is an irreducible summand � of L2�.G/ such that � ' � abs.�/ and mdisc.�/ D

mdisc.�
abs.�//.

So now suppose that � is relevant to G. By definition there is a unique irreducible
unitary representation � of G.A/ and a unique automorphic character � of H.A/ such
that

� ' � abs.�/˝ �:

It follows from J.-S. Li’s results [49, Proposition 5.7] that � and � satisfying this condition
are unique. By Theorem 3.3, we know that the L-parameter of �v is

�v�
�1
W;v�V;v C

� r�nM
jDn�r

j � j
j
�
�V;v (5.1)

for almost all v. Then it follows from the local theta lift for unramified representations
that

�v ' �.�
0
v/

for almost all v, where � 0v is the unramified representation of Gv with L-parameter �v .
Therefore, by the uniqueness of � and �, the L-parameter of �v is �v and �v is trivial for
almost all v. Since � is automorphic, it must be trivial, so that � ' � abs.�/. Moreover,
since the L-parameter of �v is �v for almost all v, we have

mdisc.�/ D mdisc.�
abs.�//

thanks to Theorem 3.1 and Proposition 5.1. This completes the proof.

Remark 5.3. As explicated at the beginning of Section 2, all pure inner forms of G arise
in the form G0 D G.V 0/ for some space V 0. Suppose that for G0 we have the decomposi-
tion

L2�.G
0/ D

M
� 0

m� 0�
0:

Consider the theta lift between .G0;H/ for all suchG0 simultaneously. For any irreducible
summand � of L2

�.�/
.H/, at almost all places v of F the localization �v is unramified
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with L-parameter as in (5.1). Hence by using the same argument as in the proof of Corol-
lary 5.2, one can show that � is of the form � abs.� 0/ for a unique summand � 0 of L2�.G

0/,
where G0 is a pure inner form of G. This implies that

L2�.�/.H/ D
M
G0

�M
� 0

m� 0�
abs.� 0/

�
;

where the first summation on the RHS is over all pure inner forms of G.

5.3. Transferring the multiplicity formula

In this subsection we define some notions and “transfer” AMF from H to G. We shall
work in a general setting first, and then specialize to the generic case.

Let  D
P
i �i � Sdi be an elliptic A-parameter for G, and

�. / D  ��1W �V C �V � S2r�2nC1

be an elliptic A-parameter for H . Then

� D
Y
i

.Z=2Z/ei and ��. / D
�Y
i

.Z=2Z/e0i

�
� .Z=2Z/a;

where ei corresponds to �i � Sdi �  , e0i corresponds to �i��1W �V � Sdi � �. /, and
a corresponds to �V � S2r�2nC1 � �. /. The composition

` W � ! ��. / ! ��. /

is an isomorphism, where the first map sends ei to e0i , and the second is the natural projec-
tion. Recall that Arthur [4, p. 47] and Mok [61, p. 29] have defined the so-called canonical
sign characters � and ��. / of � and ��. /. We first give an explicit description of these
characters.

Proposition 5.4. We have

� .ei / D
Y
j¤i

�
�
1
2
; �i � �

_
j

�min ¹di ;dj º:

A similar formula holds for ��. /.

Proof. For Case O, this is proved in [15, Proposition-Definition 8.3.7]. So we will only
consider Case U. To make the proof more streamlined, we shall make use of hypothet-
ical global Langlands groups LF and LE . However, we should mention that these two
groups are not necessary: one can introduce the substitutes L and L =E as in [61, p. 19,
(2.4.3)], and our proof still works after some slight modifications.

By the global Langlands conjecture, there is a one-to-one correspondence between
irreducible cuspidal representations of GLk.E/ and irreducible k-dimensional represen-
tations of LE . Therefore each �i corresponds to an irreducible representation of LE ,
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which we shall still denote by �i . For each i , let  i D �i � Sdi be an irreducible rep-
resentation of LE � SL2.C/. Then the global A-parameter  can be regarded as the
direct sum of these  i , and the conjugate self-duality of  allows us to extend it to an
L-homomorphism

z W LF � SL2.C/! LG:

Using this L-homomorphism, the global component group � can be identified with the
centralizer of Im. z / in yG. To define the character � , we need to consider the adjoint
representation of LG on the Lie algebrabg of the Langlands dual group yG. Let

� W � �LF � SL2.C/! GL.yg/

be the representation given by the formula

� .x; g; h/ D Ad.x � z .g; h//

for x 2 � , g 2 LF and h 2 SL2.C/. If this representation � is decomposed as

� D
M
˛

�˛ � �˛ � �˛

for some irreducible representations �˛ , �˛ , �˛ of � , LF and SL2.C/ respectively, then
the character � is defined by

� .ei / D
Y0

˛

det.�˛.ei //;

where
Q0
˛ denotes the product over the indices ˛ such that �˛ is symplectic and �.1

2
; �˛/

D �1. By some elementary computations, we know that the representation � can be
decomposed as

� '
�X
i

"2i As˙. i /
�
˚

�X
i<j

"i"j � IndLF�SL2.C/
LE�SL2.C/

. i ˝  
_
j /
�
;

where "i is the character of � defined by

"i W � ! ¹˙1º; ej 7!

´
C1 if j D i;

�1 if j ¤ i;

and As˙1 are the Asai representations defined in [19, Section 7]. Also note that

IndLF�SL2.C/
LE�SL2.C/

. i ˝  
_
j / D

min ¹di ;dj ºX
kD1

IndLF
LE
.�i ˝ �

_
j / � SdiCdj�2kC1:

Therefore by the definition we have

� .ei / D
Y
j¤i

�
�
1
2
; IndLF

LE
.�i ˝ �

_
j /
�min ¹di ;dj º

D

Y
j¤i

�
�
1
2
; �i � �

_
j

�min ¹di ;dj º:

Here in the last equality we use the inductivity of the epsilon factors.

Remark 5.5. When  D � is generic, for any indices i and j , both �i and �j are
(conjugate) self-dual of the same parity. By [4, Theorem 1.5.3] (for Case O) and [61,
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Theorem 2.5.4] (for Case U), we have �.1
2
; �i � �

_
j / D 1. This implies that

�� D 1: (5.2)

Next we compare the character � and the pull back of ��. / along the map ` using
this description.

Lemma 5.6. We have
� D `

�.��. //:

Proof. By Proposition 5.4,

��. /.e
0
i / D

�Y
j¤i

�
�
1
2
; �i�V �

�1
W � �

_
j �
�1
V �W

�min ¹di ;dj º
�
� �

�
1
2
; �i�V �

�1
W � �

�1
V

�di
D

�Y
j¤i

�
�
1
2
; �i � �j

�min ¹di ;dj º
�
� �

�
1
2
; �i�

�1
W

�di
D � .ei / � �

�
1
2
; �i�

�1
W

�di : (5.3)

If �i has the same parity as  , then it also has the same parity as �W . By [4, Theo-
rem 1.5.3] (for Case O) and [61, Theorem 2.5.4] (for Case U), we have �.1

2
; �i�

�1
W / D 1.

On the other hand, if �i and  have different parities, then di must be even. Therefore we
always have �.1

2
; �i�

�1
W /

di D 1. The desired conclusion then follows from (5.3).

Locally, for each place v of F , we also have the natural map of component groups

`v W � v ! ��. v/ ! ��. v/:

Again `v is an isomorphism. We regard the localA-packet…�. v/.Hv/ as a representation
of ��. v/ �Hv by setting

…�. v/.Hv/ D
M
�

JW 0.�/ � �;

where the summation on the RHS is over all irreducible unitary representations of Hv in
…�. v/.Hv/. Let

…�
 v
.Gv/ D

M
�

`�v.JW 0.�// � �.�/:

Note that �.�/ could be zero. We shall discard those � being mapped to zero under the
theta lift. We regard …�

�v
.Gv/ as a (multi-) set equipped with a map

J�v W …
�
 v
.Gv/! � v ; �.�/ 7! `�v.JW 0.�//:

Define a global packet

…�
 .G/ D

O0

v

…�
 v
.Gv/

D

°
�D

O0

v

�v

ˇ̌̌
�v 2…

�
 v
.Gv/; �v unramified with L-parameter � v for almost all v

±
:
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We then have a map

J� W …�
 .G/!

c� ; � 7! J� .�/; J� .�/.x/ WD
Y
v

J�v .�v/.xv/;

where x 2 � and xv is the localization of x at v. It is easy to check that

J� .�/ D `�.JW 0.�
abs.�///:

We put
…�
 .G; � / D ¹� 2 …

�
 .G/ j J

� .�/ D � º:

Next we specialize to the generic case. As a direct consequence of Corollary 5.2 and
Lemma 5.6, we have the following result.

Proposition 5.7. Let  D � be a generic elliptic A-parameter for G. Then there is a
decomposition

L2�.G/ D
M

�2…��.G;��/

�:

Hence, to complete the proof of Theorem 2.6, it remains to describe…�
�v
.Gv/ in terms

of LLC for Gv . This will be established in the next section.

6. Local comparison

In this section we let F be a local field of characteristic zero. We will compare the packets
…�
�.G/ and …L

� .G/ for almost all tempered L-parameters � of G.

6.1. Main local theorem

We first recall several notions. Let � be a local L-parameter for G. As explained in [19,
Section 8], � can be regarded as a (conjugate) self-dual representation of LE of a certain
parity. If we write � as

� D
X
i

mi�i

for some positive integers mi and some pairwise distinct irreducible representations �i
of LE , we say that

� � is of good parity if �i is (conjugate) self-dual of the same parity as � for all i ;

� � is tempered if �i is tempered (i.e. has bounded image on the Weil group WE ) for
all i ;

� � is almost tempered if �i D �0i j � j
si for some tempered representation �0i of LE and

some si 2 R with jsi j < 1=2, for all i .

Note that if � is of good parity, then it is tempered.
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Remark 6.1. In fact, the Ramanujan conjecture predicts that all localizations of global
generic elliptic A-parameters are tempered. However, we still need to deal with a larger
class of L-parameters and not only the tempered ones, since the Ramanujan conjecture
has not been proved in general. Thanks to the work of Jacquet–Shalika [36, Corollary 2.5],
for our purpose, it is sufficient to do the comparison for almost tempered L-parameters.

Let � be an almost tempered L-parameter for G D G.V /. Assume that dim V < r

and let
�.�/ D ���1W �V C �V � S2r�2nC1: (6.1)

Then �.�/ is a local A-parameter for H D H.W.r//. Recall that there is an isomorphism
between component groups

` W �� ! ��.�/ ! ��.�/:

In the light of Proposition 5.7 and Remark 6.1, to complete the proof of Theorem 2.6, all
we need is the following two theorems.

Theorem 6.2. The local A-packet …�.�/.H/ is multiplicity-free. Hence we can regard
…�.�/.H/ as a subset of Irr.H/.

Theorem 6.3. There is a commutative diagram

…�.�/.H/
1
��.�/

F
…L
� .G

0/ c��
JW 0

� `�V

JLW

(6.2)

where the disjoint union is taken over all pure inner forms of G, and the arrow � is a
bijection given by the theta lift. More precisely, for � 2 …�.�/.H/, we have:

(1) There exists a unique pure inner form G0 of G such that the theta lift � D �.�/ of �
to G0 is non-vanishing.

(2) � lies in the L-packet …L
� .G

0/, and

JLW .�/ D `
�.JW 0.�//:

Hence …�
�.G/ D …

L
� .G/ as sets and JLW D J� .

Remark 6.4. (1) Theorem 6.2 is largely due to Mœglin [55] when F is non-Archimed-
ean, to Mœglin–Renard [56] when F D C and to Arancibia–Mœglin–Renard [3] and
Mœglin–Renard [57–59] when F D R and � is of good parity. Here we will give a proof
of Theorem 6.2 by using theta lifts.

(2) When we are in Case U, we also need to deal with split places where E ' F � F .
In this case, G.V / and H.W / are isomorphic to general linear groups, and G.V / has no
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pure inner form other than itself. We also know that the local L-packet …L
� .G/ and the

local A-packet …�.�/.H/ are singletons. Therefore, in this case we need to prove that

�.��/ D ��.�/;

where �� and ��.�/ are the irreducible representations of G and H associated to �
and �.�/ respectively. This assertion is an analog of Theorem 6.3 for general linear
groups. When F is non-Archimedean, it has been proved by Mínguez [52]. When F is
Archimedean, it has been proved by Adams–Barbasch [2] for F D C and by Adams [1]
for F D R.

We are going to prove these theorems in the next few subsections.

6.2. Some local packets

In this subsection, we review some information about certain local L-packets and A-
packets. Let � be an almost tempered L-parameter. We may write it as

� D ' C �0 C .'
c/_; (6.3)

where

� �0 is an L-parameter of good parity for G�0 D G.V C0 /, where V C0 is a c-Hermitian
space in the Witt tower containing V C;

� ' is a sum
' D �1j � j

s1 C � � � C �r j � j
sr

for some ki -dimensional irreducible tempered representation �i of LE and non-
negative real numbers si < 1=2, such that for each i 2 ¹1; : : : ; rº, either �i is not
(conjugate) self-dual of the same parity as �, or si is positive.

Without loss of generality, we can rearrange the index set ¹1; : : : ; rº so that

1=2 > s1 � � � � � sr � 0:

We put k D k1 C � � � C kr . There is a natural isomorphism ��0 ' �� . By the inductive
property of LLC for G, we know that …L

� .G/ D ¿ unless the F -rank of G is greater
than or equal to k, in which case there exists an F -parabolic subgroup P of G with Levi
component GLk.E/ �G0, where G0 D G.V0/ and V0 is a c-Hermitian space in the Witt
tower containing V . Let � be the irreducible representation of GLk.E/ associated to '.
Then by [13, Theorem 4.4 (10)], [14, Theorem 2.5.1 (8)] we know that for any � 2c�� ,
� D �.�; �/ is the unique irreducible quotient of

IndGP .� � �0/;

where �0 D �.�0; �/, and we regard � as a character of ��0 through the natural isomor-
phism. In fact, we have more than this:
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Lemma 6.5. The induced representation IndGP .� � �0/ is irreducible for all �0 2
…�0.G0/. Hence

…L
� .G/ D ¹IndGP .� � �0/ j �0 2 …�0.G0/º:

Proof. When � is tempered, the assertion simply follows from the local intertwining
relation for G. So it remains to show the assertion when � is almost tempered but non-
tempered. Let j 2 ¹1; : : : ; rº be the largest integer such that sj > 0. By induction in stages,
we may rewrite IndGP .� � �0/ as a standard module. More precisely, we have

IndGP .� � �0/ D IndGP 0.�
0

� � 00/;

where

� P 0 is a parabolic subgroup of G with Levi component GLk0.E/ �G.V 00/, where V 00 is
a c-Hermitian space in the Witt tower containing V , and k0 D k1 C � � � C kj ;

� � 0 is the irreducible representation of GLk0.E/ associated to the L-parameter

�1j � j
s1 C � � � C �j j � j

sj I

� � 00 is some irreducible tempered representation of G.V 00/ with L-parameter

�00 D .�jC1 C � � � C �r /C �0 C ..�jC1 C � � � C �r /
c/_:

Hence it would be sufficient to show the irreducibility of IndGP 0.�
0

� � 00/. If F is Archim-
edean, then this follows from a result of Speh–Vogan [71, Theorem 1.1]; see also [75,
Section 8]. If F is non-Archimedean, this has been proved in [8, Proposition 6.7] for
Case O and [21, Proposition 9.1, Appendix B] for Case U.

Next we consider certain local A-packets for H . Let

W0 D W.r�k/ and H0 D H.W0/:

Put
�.�0/ D �0�

�1
W �V C �V � S2r�2nC1:

Then �.�0/ is a local A-packet of good parity for H0. According to the decomposition
(6.3) of �, we have a similar decomposition

�.�/ D '��1W �V C �.�0/C ..'�
�1
W �V /

c/_;

as well as the natural isomorphism ��.�0/ ' ��.�/. Let Q be the standard parabolic sub-
group ofH with Levi component GLk.E/�H0. Then by the definition and the inductive
property of local A-packets (see [4, p. 45, (1.5.1)] and [61, p. 28]), we have

…�.�/.H/ D ¹Irreducible constituents of IndHQ .��
�1
W �V � �0/ j �0 2 …�.�0/.H0/º:

The following irreducibility result for these induced representations will be used in later
proofs.
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Lemma 6.6. The induced representation IndHQ .��
�1
W �V � �0/ is irreducible for all irre-

ducible unitary representations �0 in the A-packet …�.�0/.H0/. Hence as a .multi-/ set,

…�.�/.H/ D ¹IndHQ .��
�1
W �V � �0/ j �0 2 …�.�0/.H0/º:

Proof. This assertion has been proved in a more general context by Mœglin in [55, Sec-
tion 3.2], and [54, Section 5.1] when F is non-Archimedean; and by Mœglin–Renard in
[56, Section 6] when F D C. To show the case when F D R, one can appeal to the same
argument as in [23, Proposition 3.4]; for a sketch of proof, see Appendix B.

6.3. Reduction to the case of good parity

We argue by induction on dimV .

Lemma 6.7. Theorems 6.2 and 6.3 hold for dim V D 0, i.e. in Case O or Case U0, and
n D 0.

Proof. When dimV D 0, we have �.�/D �V � S2rC1 (note that if we are in Case O, we
have �V D 1 by convention), and …�.�/.H/ D ¹�1º, where

�1 D

´
the trivial representation in Case O;

� ı det in Case U:

Here in Case U, � is the character of E1 corresponding to �V by LLC for the torus. It is
easy to see that �1 is also the theta lift of the trivial representation of G. This completes
the proof.

From now on, we assume that dimV > 0. We first reduce the proof of Theorems 6.2
and 6.3 to the case of good parity. Given an almost tempered L-parameter � of G, we can
write

� D ' C �0 C .'
c/_;

where �0 is the “good parity part” (see (6.3)).

Lemma 6.8. Assume that Theorems 6.2 and 6.3 hold for �0. Then they also hold for �.

Proof. Let � 2 …�.�/.H/. By Lemma 6.6 we know that

� D IndHQ .��
�1
W �V � �0/

for some �0 2 …�.�0/.H0/. Moreover, if we identify ��.�/ with ��.�0/ via the natural
isomorphism, then JW 0.�/D JW 0.�0/. By our hypothesis, there is exactly one pure inner
form G00 of G�0 such that

� the theta lift of �0 to G00, denoted by �0, is non-vanishing;

� JLW .�0/ D `
�.JW 0.�0//.

Then it follows from the induction principle for local theta correspondence [41], [2, Corol-
lary 3.21], [63, Theorem 4.5.5], [65, Section 5.2] that there exists a non-zero equivariant
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map
! ! IndG

0

P 0 .� � �0/ � IndHQ .��
�1
W �V � �0/;

where G0 is a pure inner form of G, and P 0 is the standard parabolic subgroup of G0 with
Levi component GLk.E/ � G00. Since IndG

0

P 0 .� � �0/ is irreducible by Lemma 6.5, this
implies that the theta lift of � to G0 is

� D IndG
0

P 0 .� � �0/:

Moreover, by LLC for G0, if we identify �� with ��0 via the natural isomorphism, then
JLW .�/ D JLW .�0/. Hence the theta lift between .G0; H/ gives us the desired commu-
tative diagram (6.2). Moreover, it follows from the combination of our hypothesis and
Lemmas 6.5 and 6.6 that the left vertical arrow � is a bijection. In particular, …�.�/.H/

is multiplicity-free. This completes the proof.

6.4. A subdiagram

By the results in the previous subsection, it remains to prove Theorems 6.2 and 6.3 for
L-parameters of good parity. Let � be an L-parameter of good parity for G. Let �.�/
be the A-parameter of H defined in (6.1), and ��.�/ the L-parameter associated to �.�/.
Since � is of good parity, it is also tempered. Hence the L-packet …L

��.�/
.H/ is a subset

of the local A-packet …�.�/.H/, and there is a commutative diagram

…L
��.�/

.H/
1
���.�/

…�.�/.H/
1
��.�/

JL
W 0

JW 0

By abuse of notation, we shall still denote by ` the composition of natural maps

��
`
�! ��.�/ ! ���.�/ :

Remark 6.9. In our later proofs, we shall also use the fact that the A-packet …�.�/.H/

contains the L-packet …L
��.�/

.H/ when � is almost tempered but may not be tempered.
We are not very sure whether this has been verified in [4, 61] or not, but this fact can be
easily shown based on the tempered case, by using Lemma 6.6.

In this subsection, as the first step toward the good parity case, we prove the following
proposition, which will establish a “subdiagram” of Theorem 6.3.

Proposition 6.10. There is a commutative diagram

…L
��.�/

.H/
1
���.�/

F
…L
� .G

0/ c��
JL

W 0

� `�

JLW
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where the disjoint union runs over all pure inner forms of G, and the arrow � is an
injection given by the theta lift. More precisely, for � 2 …L

��.�/
.H/, we have:

(1) There exists a unique pure inner form G0 of G such that the theta lift � D �.�/ of �
to G0 is non-vanishing.

(2) � lies in the L-packet …L
� .G

0/, and

JLW .�/ D `
�.JLW 0.�//:

An ingredient of the proof of this proposition is the so-called Prasad conjecture. It
describes the (almost) equal rank theta lift in terms of LLC. We shall briefly recall it.

LetW0 DW.n/ be as defined in (3.1), andH0 DH.W.n//. We shall use G0 andH 00 to
denote pure inner forms ofG andH0. Consider the theta lift between .G0;H 00/, which is in
the almost equal rank, with respect to the datum . F ; �V ; �W /. To distinguish notations,
we use # to denote the theta lift between .G0; H 00/. As we will need to use LLC for
the group H 00, it is necessary for us to specify which Whittaker datum of H0 we are
using. Following the description in Section 3.5, we can pick up a Whittaker datum of H0
(depending on the choice of the additive character  F ), which we shall also denote by W 0

by abuse of notation. Let
#.�/ D ���1W �V C �V

be a tempered L-parameter for H0. Then Prasad’s conjecture is the following statement.

Theorem 6.11. (1) For any pure inner form H 00 of H0, and any �0 2 …L
#.�/

.H 00/, there
exists a unique pure inner form G0 of G such that the theta lift � of �0 to G0 is
non-zero. Moreover, � is in the L-packet …L

� .G
0/, and

JLW .�/ D JLW 0.�0/j�� : (6.4)

Here we regard �� as a subgroup of �#.�/ via the natural embedding �� ,! �#.�/. In
particular, if we are in Case U, then the map

# W
G
H 0
0

…L
#.�/.H

0
0/!

G
G0

…L
� .G

0/

given by the theta lift # is surjective.

(2) Suppose we are in Case O. Suppose further that �W 6� �. Then for any pure inner
form G0 of G, and any � 2 …L

� .G
0/, both´

the theta lift #.�/ of � to H0 and

the theta lift # 0.� ˝ det/ of � ˝ det to H0

are non-zero.

(3) Suppose we are in Case U, and F is non-Archimedean. Suppose further that �W 6� �.
Let W 00 be the unique skew-Hermitian space over E of the same dimension and the
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opposite sign as W0, and H 00 D H.W
0
0/. Then for any pure inner form G0 of G, and

any � 2 …L
� .G

0/, both´
the theta lift #.�/ of � to H0 and

the theta lift # 0.�/ of � to H 00

are non-zero.

Proof. This theorem was proved by many people in various cases. When F is non-
Archimedean, it is proved by Atobe–Gan [8, Theorem 4.5] in Case O, and by Gan–Ichino
[21, Theorem 4.4] in Case U; when F is real, it is essentially proved by Paul [64, The-
orem 3.4] [65, Theorems 15, 18]; when F is complex, it is proved by Adams–Barbasch
[2, Theorems 2.8, 2.9].

Remark 6.12. (1) In Case U, the proof of Gan–Ichino [21, Theorem 4.4] uses AMF as
input. But one can apply Atobe’s method [6, Section 7.1] to this case to avoid using any
global method. Indeed, except for (6.4), all other statements in Theorem 6.11 follow from
[20, Theorem C.5]. As for (6.4), one can consider the diagram

! ˝ Ind
zH 0
0

Q .�c�cW � �_0 / Ind zG
0

P .��V � �/

! ˝ Ind
zH 0
0

Q .�c�cW � �_0 / Ind zG
0

P .��V � �/

T

1˝R.ew0;�c�c
W

��_
0
/ R.ew;��V ��/

T

constructed in [21, Section 8.2], where � is an irreducible discrete series representation of
some general linear group; zG0, zH 00 are some larger unitary groups; P , Q are maximal
parabolic subgroups of zG0, zH 00; T is a certain explicit map constructed in [21, Sec-
tion 8.1]; and finally R.ew; ��V � �/, R.ew0; �c�cW � �_0 / are normalized intertwining
operators. This diagram commutes up to an explicitly computable constant. Let � run
over all discrete series of general linear groups. By the local intertwining relation one can
recover JLW .�/ from the normalized intertwining operators R.ew; ��V � �/, whereas the
latter can be computed via the diagram above. The readers may also consult our previous
paper [14, Corollary 6.3.2] for a similar argument (but in a slightly different setting).

(2) Here is a caveat: Paul’s results [64, Theorem 3.4] and [65, Theorems 15, 18]
are written in terms of the Harish-Chandra parameters rather than the L-parameters.
Therefore we need a “dictionary” between the two languages, so that we can reformu-
late Paul’s results in the form we need. For Case U, such a dictionary has been provided
by [7, Appendix A] and [80, Section 3.2]. For Case O, the situation is more complicated.
LLC for real even orthogonal groups has not been established in the literature so far, due
to their disconnectedness. In Appendix A we will first prove a weaker version of Theo-
rem 6.11 (see Theorem A.1) using Paul’s results, and then define LLC for real full even
orthogonal groups by using theta lifts. By our construction, Theorem A.1 is upgraded to
Theorem 6.11 automatically.
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(3) Indeed, this theorem also holds for all generic L-parameters. In particular, it holds
for all almost tempered L-parameters.

Now we have three component groups �� , �#.�/, and ���.�/ . The natural embeddings
between them give us a commutative diagram

���.�/

�#.�/

��

..............
..............

..............
..............

..............
..............

........................
............................................................................................................................. .........

...

.......................................................................................................................................................................................................................................................... ............
`

Notice that

��.�/ D .j � j
n�r
C � � � C j � j

�1/�V C #.�/C .j � j
1
C � � � C j � j

r�n/�V :

Hence the natural map �#.�/ ! ���.�/ is indeed an isomorphism. The component group
�#.�/ will serve as a springboard and make our proofs much easier.

Proof of Proposition 6.10. Let � be an irreducible representation in the L-packet

…L
��.�/

.H/, corresponding to the character �� 2
1
���.�/ . Let

��0 D �� j�#.�/ ;

and �0 2 …L
#.�/

.H0/ the irreducible tempered representation corresponding to ��0 . Then
by LLC for H , there is a parabolic subgroup of H , say Q, with Levi component

L ' GL1.E/ � � � � � GL1.E/ �H0;

so that � is the unique irreducible quotient of the standard module

IndHQ .�V jdetjr�n � � � � � �V jdetj1 � �0/:

According to Prasad’s conjecture (Theorem 6.11), there exists a unique pure inner formG0

of G such that the theta lift � of �0 to G0 is non-zero. Moreover, � is in the L-packet
…L
� .G

0/, corresponding to the character

�� D ��0 j�� :

We claim that the theta lift of � to the group H is just � . The assertion of Proposition
6.10 follows from this claim.

Now we prove the claim. Indeed, when F is non-Archimedean, the claim follows
from [26, Proposition 3.2] directly. When F is Archimedean, by the persistence principle
(see [42, Proposition 4.1]) we know that there is a non-zero map

‚.�/! IndHQ0.�V jdetj.n�1�r/=2 � �0/;

where ‚.�/ is the big theta lift of � to H , and Q0 is the standard parabolic subgroup
of H with Levi component GLr�n.E/ �H0. Since the dual pair .G0; H/ is in the stable
range, it follows from [51, Theorem A] that ‚.�/ D �.�/ is irreducible. Therefore the
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map above is injective. Applying both the MVW functor and the contragredient functor
to the above map, we deduce that �.�/ is a quotient of IndHQ0.�V jdetj.r�nC1/=2 � �0/,
which is also the unique quotient of the standard module

IndHQ .�V jdetjr�n � � � � � �V jdetj1 � �0/:

This completes the proof of our claim.

6.5. Globalization

To complete the proof of Theorem 6.3, we need to appeal to some global methods. Let �
be an L-parameter of good parity for G D G.V /. Write

� D
X
i

�i (6.5)

for some (not necessarily distinct) ni -dimensional irreducible (conjugate) self-dual repre-
sentations of LE . We shall globalize � to a generic elliptic A-parameter P�, by globalizing
each �i separately.

We first consider the case when �i is a (conjugate) self-dual character.

Lemma 6.13. Let . PF ; PE/ be a pair of number fields, and u be a place of PF such that
. PFu; PEu/ ' .F; E/. In particular, PE D PF in Case O and PE= PF is a quadratic extension
in Case U. Let T be a finite set of places of PF that contains u. In Case U, we also require
that PE is not split at any place v 2 T . Fix � D ˙1. For each place v 2 T , let �v be a
character of GL1. PEv/ which is´

quadratic in Case O;

conjugate self-dual of parity � in Case U:

Then there exists an automorphic character P� of GL1.A PE /, which is also .conjugate/
self-dual of the same parity as each �v , such that P�v D �v for all v 2 T .

Proof. For Case O, this is a special case of the Grunwald–Wang theorem (cf. [5, Chap-
ter X, Theorem 5]). For Case U, it is proved in [32, Lemma 8.8].

Next, we consider the case where dim�i D m � 2.

Lemma 6.14. Let . PF ; PE/ be a pair of number fields, and u be a place of PF such that
. PFu; PEu/ ' .F; E/. In particular, PE D PF in Case O and PE= PF is a quadratic extension
in Case U. Let T be a finite set of places of PF containing u. In Case U, we also require
that PE is not split at any place v 2 T . Let m � 2 be a positive integer and fix � D ˙1.
For each place v 2 T , let �v be an irreducible m-dimensional´

othogonal representation of L PEv in Case O;

conjugate self-dual representation of L PEv of parity � in Case U:
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Then there exists an irreducible cuspidal automorphic representation P� of GLm.A PE /,
which is also .conjugate/ self-dual of the same parity as each �v , such that P�v D �v
for all v 2 T . Here, we regard �v as an irreducible representation of GLm.Ev/ by LLC
for GLm.

Proof. A similar statement is proved in [33, Lemma 6.7] for Case O and [39,
Lemma 4.3.1] for Case U. Since our setting is slightly different from theirs, we pro-
vide a proof. We first consider the case when m is even in Case O and � D .�1/m�1 in
Case U. Let PV C be the uniquem-dimensional c-Hermitian space satisfying the following
properties:

� in Case O, for all v 2 S , the quadratic character associated to PV Cv is the same as det�v;

� for all places v of PF , the Hasse–Witt invariant (resp. sign) of PV Cv isC1, i.e. �. PV Cv /D 1.

The existence of such a space is guaranteed by the local-global principle for orthogonal
and Hermitian spaces. Let PG D G. PV C/0 be the identity component of the isometry group
of PV C, i.e. PG D SO. PV C/ in Case O, and PG D U. PV C/ in Case U. Since the space PV C

is maximally split, the group PG is quasi-split. For each v 2 T , we pick an irreducible
square-integrable representation �v 2 …L

�v
. PGv/. We also pick up a finite place w of PF

outside T such that´
PV C is unramified (see [8, Section 2.3]) in Case O;
PE is split at w in Case U:

In the setting of [70, Theorem 5.13], we take S D T [ ¹wº and choose two finite places
v1; v2 of PF not contained in S . Then by [70, Theorem 5.13], there exists an irreducible
cuspidal automorphic representation P� of PG such that

� for all v 2 T , P�v D �v;

� in Case O, P�w is tempered unramified;

� in Case U, P�w is a supercuspidal representation of PGw ' GLm. PFw/.

Based on the results of Arthur [4] and Mok [61], the cuspidal representation P� has an
elliptic A-parameter P�. The conditions we put on the place w guarantee that P� is generic.
Moreover, we know that

P�v D �v

for all v 2 S , since the localization P�v D �v lies in both …L
P�v
. PGv/ and …L

�v
. PGv/, and

different local L-packets are disjoint from each other. From the irreducibility of �v , we
can further conclude that P� is simple. Therefore, P� is an irreducible cuspidal automorphic
representation of GLm.A PE / that satisfies all our requirements.

Next we consider the case when m is odd in Case O and � D .�1/m in Case U. In
Case U, we choose a conjugate symplectic character �v at each v 2 T . Then we can
globalize �v by globalizing both �v�v (which is of parity � D .�1/m�1 now) and �v
(using Lemma 6.13). Similarly in Case O, we can twist �v by a quadratic character and
assume det�v D 1 for all v 2 T . Then a similar argument to the previous case works by
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replacing PV C by PW C, where PW C is the unique .m � 1/-dimensional symplectic space.
This completes the proof of this lemma.

As an application of the previous two lemmas, we are now able to globalize an L-
parameter � of good parity.

Corollary 6.15. Let � be anL-parameter of good parity forG DG.V /. Then there exists
a tuple of data . PF ; PE; PV ; P�; u1; u2; w/, where

� PF is a number field, and PE is either PF itself or a quadratic extension of PF , according
to our cases; if we are in Case U and F is non-Archimedean, we may choose PF to be
totally imaginary;

� PV is a vector space over PE, equipped with a non-degenerate Hermitian c-sesquilinear
form;

� P� is a generic elliptic A-parameter for PG D G. PV /;

� u1; u2; w are places of PF , and w is finite;

such that the following conditions hold:

(1) . PFu1 ; PEu1 ; PVu1 ; P�u1/ ' . PFu2 ; PEu2 ; PVu2 ; P�u2/ ' .F;E; V; �/;

(2) in Case U, PEw= PFw is a quadratic field extension;

(3) P�w is a discrete L-parameter for PGw D G. PVw/; furthermore, we may choose P�w so
that it does not contain a given character �w of L PEw ;

(4) the localization maps � P� ! � P�u1
and � P� ! � P�u2

agree, and they are surjections;

(5) at the place w, the localization map � P� ! � P�w is an isomorphism.

Proof. Firstly we choose a pair . PE; PF / of number fields, together with three places
u1; u2; w of PF , satisfying the conditions below:

� . PEu1 ;
PFu1/ ' .

PEu2 ;
PFu2/ ' .E; F /;

� in Case O, PFw is a finite extension of Q2 with a sufficiently big residue field;

� in Case U, PFw is a finite extension of Qp for some p ¤ 2 with a sufficiently big
residue field, and PEw is a ramified quadratic field extension of PFw ; if further F is
non-Archimedean, then PF is totally imaginary.

The existence of such a pair of number fields will be proved in Appendix E. We write
� D

P
i �i as in (6.5). By the results in Appendices C and D, there are sufficiently

many irreducible (conjugate) self-dual representations of W PEw . Hence we can pick up
irreducible (conjugate) self-dual representations �w;i of L PEw of the same dimension and
parity as �i for each i , such that �w;i 6' �w;i 0 whenever i ¤ i 0. Moreover, we can further
require that all �w;i are different from a given character �w of L PEw .

Let uD u1 and T D ¹u1; u2;wº. By Lemmas 6.13 and 6.14, we can globalize each �i
to an irreducible cuspidal representation P�i of GLni .A PE /, which is (conjugate) self-dual
of appropriate parity, such that

� . P�i /u1 D .
P�i /u2 D �i ;
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� . P�i /w D �w;i .

Let
P� D

X
i

P�i :

It follows from the local-global principle for orthogonal and Hermitian spaces that there
exists a PV over PE, equipped with a non-degenerate Hermitian c-sesquilinear form, such
that

� PVu1 '
PVu2 ' V ;

� P� is a generic elliptic A-parameter for PG D G. PV /.

Then the tuple of data . PF ; PE; PV ; P�; u1; u2; w/ satisfies all our requirements.

6.6. Multiplicity-freeness

Let � be an L-parameter of good parity forG and �.�/ be the local A-parameter forH as
in (6.1). Recall that Theorem 6.2 asserts that the local A-packet…�.�/.H/ is multiplicity-
free, and it has been proved by Mœglin and many others. In this subsection, we shall give
an independent and self-contained proof by using global methods and theta lifts.

Let . PF ; PE; PV ; P�; u1; u2; w/ be as in Corollary 6.15. In Case U, we fix a trace zero
element ı 2 PE�. Let PW be a c-skew-Hermitian space over PE as in (3.1) which is8̂̂<̂

:̂
2r-dimensional in Case O;

.2r C 1/-dimensional in Case U0;

.2r C 2/-dimensional in Case U1;

and let PH DH. PW /. We also let PW0 be a c-skew-Hermitian space over PE in the Witt tower
containing PW , which is8̂̂<̂

:̂
dimV -dimensional in Case O;

.dimV C 1/-dimensional in Case U when F is non-Archimedean;

.dimV � 1/-dimensional in Case U when F is real:

Let W0 D PW0;u1 . We put PH0 D H. PW0/ and H0 D H.W0/. We will use the symbols
PG0, PH 00, and H 00 to denote pure inner forms of PG, PH0, and H0 respectively.

Let  PF be a non-trivial additive character of A= PF , such that  PF ;u is in the F �2-orbit
of  F for u 2 ¹u1; u2º. We shall use the additive character  PF to fix Whittaker data
W and W 0 of PG and PH (and also PH0), as described in Section 3.5. We also globalize
characters .�V ; �W / of E� to a pair of characters of PE�nA�

PE
as follows:

� PV D

´
the quadratic character associated to PV in Case O;

a character such that � PV jA�PF
D !dimV

PE= PF
in Case U;
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and

� PW D

8<: the trivial character of PF �nA�
PF

in Case O;

a character such that � PW jA�PF
D !dimW

PE= PF
in Case U:

We will consider the theta lift between . PG0; PH/, which is in the stable range case, with
respect to . PF ;� PV ;� PW /. According to Corollary 6.15, we may globalize � suitably so that
P�w does not contain the character � PW ;w , and we will henceforth assume this. Moreover,
we will also consider the theta lift between . PG0; PH 00/, which is in the almost equal rank
case, with respect to some auxiliary data . PF ; �

0
PV
; �0
PW
/. In Case O, there is no flexibility

of choosing such data. However in Case U, we shall choose .�0
PV
; �0
PW
/ suitably in later

proofs depending on our needs. Indeed, the flexibility of choosing .�0
PV
;�0
PW
/ is a key point

in our proof for Case U. To distinguish notations, we use � to denote the theta lift between
. PG0; PH/, and use # to denote the theta lift between . PG0; PH 00/. We first show the following:

Lemma 6.16. Let PG0 be a pure inner form of PG, and P� be an irreducible representation
of PG0.A/ such that

(1) the L-parameter of P�v is P�v for almost all v;

(2) P�w is in the L-packet …L
P�w
. PG0w/.

Then mdisc. P�/ � 1. Moreover, if mdisc. P�/ D 1, then P�u1 2 …
L
� .
PG0u1/.

Proof. If mdisc. P�/ D 0, then our conclusions hold. So we may assume mdisc. P�/ � 1 in
the rest of the proof. Since P� is generic, by Proposition 5.1 we know that

mcusp. P�/ D mdisc. P�/ D m. P�/;

and any realization V of P� in A. PG0/ lies in Acusp. PG
0/. We will prove this lemma by con-

sidering (automorphic) theta lifts between . PG0; PH 00/ for pure inner forms PH 00 of PH0, with
respect to the datum . PF ; �

0
PV
; �0
PW
/. We do it case by case, and the choice of .�0

PV
; �0
PW
/

will be specified later in each case.

Case O: In this case, there is no other pure inner form of PH0, nor the flexibility of choos-
ing the auxiliary datum. By local theta correspondence for unramified representations, we
know that #. P�v/ ¤ 0 for almost all places v of PF . Hence

T 0 D
®
v place of PF j #. P�v/ D 0

¯
is a finite set. Let

T D

´
T 0 if jT 0j is even;

T 0 [ ¹wº if jT 0j is odd

and
P� ˝ detT D P� ˝

O
v2T

detv:

Then
mcusp. P� ˝ detT / D mcusp. P�/ � 1:
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Indeed, any realization V of P� in Acusp. PG
0/ gives a realization

V ˝ detT D
°
f ˝

O
v2T

detv
ˇ̌̌
f 2 V

±
of P� ˝ detT in Acusp. PG

0/, and vice versa. It follows from the conservation relation [72]
that #. P�v ˝ detv/ ¤ 0 for all places v 2 T 0. Moreover, since 1 6� P�w , it follows from
Theorem 6.11 (2) that both #. P�w/ and #. P�w ˝ detw/ are non-zero. Hence

#.. P� ˝ detT /v/ ¤ 0 for all places v of PF :

For any realization V of P� ˝ detT in Acusp. PG
0/, consider the automorphic theta lift

#aut.V/ of V to PH0. Again, since 1 6� P�w , we know that #.�w/ and #.�w ˝ detw/ are the
first occurrences of �w and �w ˝ detw . Hence globally, #aut.V/ is either zero or the first
occurrence of V in the Witt tower containing PW0. This implies that #aut.V/ is cuspidal.
We would like to show that #aut.V/ is indeed non-zero. To show this, we investigate the
L-function L.s; P� ˝ detT /.

By a result of Jacquet–Shalika [34], the (full) L-function L.s; P�/ is holomorphic and
non-zero at s D 1. Since P�v is almost tempered for every place v of PF , we know that the
localL-factorsL.s; P�v/ are holomorphic when<.s/� 1=2. Hence the partialL-functions

LS .s; P� ˝ detT / D LS .s; P�/

are also holomorphic and non-zero at s D 1. Here S is a sufficiently large finite set of
places of PF , and LS .s; P� ˝ detT / is the partial L-function of P� ˝ detT relative to the
standard representation of

L
PG0. On the other hand, since the local L-factors L.s; P�v/

and L.s; P�v ˝ detv/ can never have a zero, the complete L-function L.s; P� ˝ detT / is
also non-zero at s D 1. Finally, we claim that this L-function must be holomorphic at
s D 1. Suppose on the contrary that it has a pole at s D 1. Then [81, Theorem 10.1]
asserts that V has non-zero automorphic theta lift to some symplectic group H. PW�/,
where PW� is a symplectic space of dimension strictly less than PW0. This contradicts the
fact that #.�w/ and #.�w ˝ detw/ are the first occurrences of �w and �w ˝ detw . Hence
L.s; P� ˝ detT / is holomorphic and non-zero at s D 1. It then follows from the Rallis
inner product formula [25, Theorem 1.3], [81, Theorem 10.3] that the automorphic theta
lift #aut.V/ is non-vanishing.

Let P�0 D #abs. P� ˝ detT / be the abstract theta lift to PH 00. Then by multiplicity preser-
vation [18, Proposition 2.6], we have

mdisc. P�0/ � mcusp. P�0/ � mcusp. P� ˝ detT /:

Also, it follows from local theta correspondence for unramified representations that P�0 is
an irreducible summand of L2

#. P�/
. PH0/, where

#. P�/ D P�.�0
PW
/�1�0

PV
C �0

PV
:
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Since #. P�/ is generic, AMF for PH0 (Theorem 3.4) implies that

mdisc. P�0/ D 1:

Thus, combining these (in)equalities, we get mdisc. P�/ D 1. Moreover, by Theorem 3.4,
we also have P�0;u1 2 …

L

#. P�/u1
. PH 00;u1/. It then follows from Theorem 6.11 and Remark

2.3 (1) that P�u1 2 …
L
� .
PG0u1/.

Case U0, and F is non-Archimedean: Recall that in Corollary 6.15, PF is chosen to be a
totally imaginary number field in this case. We let

.�0
PV
; �0
PW
/ D .� PV ; � PW /:

For each place v of PF , by the conservation relation [72], there is a skew-Hermitian space
W 00;v of the same dimension as PW0;v such that

#. P�v/ ¤ 0:

Here #. P�v/ is the theta lift of P�v to H 00;v with respect to . F;v; �0PV ;v; �
0
PW ;v
/. Since

�0
PW ;w
6� P�w , it follows from Theorem 6.11 that we will have two choices of the skew-

Hermitian space W 00;w at the place w. The flexibility at w allows us to pick these local
skew-Hermitian spaces coherently so that they form a global skew-Hermitian space PW 00
over PE. Let PH 00 D H. PW

0
0/.

The rest of the proof in this case is similar to Case O. Let P�0 D #abs. P�/ be the abstract
theta lift to PH 00. Then one can show that

mdisc. P�0/ � mcusp. P�0/ � mcusp. P�/;

and P�0 is an irreducible summand of L2
#. P�/

. PH0/, where

#. P�/ D P�.�0
PW
/�1�0

PV
C �0

PV
:

Applying Proposition 2.8, we get

mdisc. P�0/ D 1:

Combining these (in)equalities, we get mdisc. P�/ D 1. Moreover, by Proposition 2.8,
P�0;u1 2 …

L

#. P�/u1
. PH 00;u1/. It then follows from Theorem 6.11 that P�u1 2 …

L
� .
PG0u1/.

Case U1, and F is non-Archimedean: In this case, PF is a totally imaginary number field.
Then the lemma follows from Proposition 2.8 directly.

Case U, and F is real: In this case, we argue by induction on dimV . Recall that � is an
L-parameter of good parity for G, so it must be of the form

� D m1�1 C � � � Cmr�r ;
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where �i is a conjugate self-dual character of LC D C�, and mi is some positive integer.
Recall that in the proof of Corollary 6.15, to globalize the L-parameter �, we globalized
each irreducible constituent of � separately, and then added them together. Hence P� is a
sum of one-dimensional automorphic characters in this case. We pick up a character P�
such that P� � P�, and set

.�0
PV
; �0
PW
/ D .� PV ; P�/:

Since P� is generic and �0
PW
� P�, we know that the function

LS .s; P� � .�0
PW
/�1/ D LS .s; P�.�0

PW
/�1/

is holomorphic when <.s/ > 1 and has a pole at s D 1, where S is a sufficiently large
finite set of places of PF , and LS .s; P� � .�0

PW
/�1/ is the partial L-function associated

to P� and .�0
PW
/�1. Hence the complete L-function L.s; P� � .�0

PW
/�1/ is also holomorphic

when <.s/ > 1 and has a pole at s D 1, because the local L-factors L.s; P�v � .�0 PW ;v/
�1/

are holomorphic and non-zero when <.s/ > 1=2. It then follows from the Rallis inner
product formula [43, Theorem 7.2.5], [81, Theorem 10.1] that there exists a pure inner
form PH 00 D H.

PW 00/ of PH0 such that for any realization V of P� in Acusp. PG
0/, we have

#aut.V/ ¤ 0;

where #aut.V/ is the automorphic theta lift of V to PH 00. Moreover, #aut.V/ is the first
occurrence of V in the Witt tower containing PW 00. This implies that #aut.V/ is cuspidal.

Let P�0 D #abs. P�/ be the abstract theta lift to PH 00. Then by multiplicity preservation
[18, Proposition 2.6], we have

mdisc. P�0/ � mcusp. P�0/ � mcusp. P�/:

Also, it follows from local theta correspondence for unramified representations that P�0 is
an irreducible summand of L2

#. P�/
. PH0/, where

#. P�/ D . P� � �0
PW
/.�0

PW
/�1�0

PV
:

Since PH 00 is a unitary group of .dim V � 1/-variables, by the induction hypothesis, the
lemma holds for PH 00. Hence

mdisc. P�0/ D 1:

Combining these (in)equalities, we getmdisc. P�/D 1. Moreover, by the induction hypothe-
sis, P�0;u1 2…

L

#. P�/u1
. PH 00;u1/. It then follows from Theorem 6.11 that P�u1 2…

L
� .
PG0u1/.

For any irreducible unitary representation � of H and any character � of ��.�/, we
define the multiplicity m.�; �/ by

m.�; �/ D dim Hom��.�/�H
.� � �;…�.�/.H//:
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Proposition 6.17. (1) Let � be an irreducible unitary representation � of H . Then, for
any character � of ��.�/, we have

m.�; �/ � 1;

with equality for at most one �. Hence …�.�/.H/ is multiplicity-free.

(2) The theta lift between .G0;H/ for all pure inner forms G0 of G defines an injection

� W …�.�/.H/!
G
G0

…L
� .G

0/;

where the disjoint union is taken over all pure inner forms of G.

Proof. Assume that m.�; �/ > 0 for some �. Let P�; � PV ; � PW ; PG and PH be as given at the
beginning of this subsection, and

�. P�/ D P���1
PW
� PV C � PV � S2r�2nC1

be an elliptic A-parameter for PH . Since P� is generic, it follows from Lemma 5.6 and (5.2)
that ��. P�/ is trivial. We define an abstract irreducible representation P� D

N
v P�v of PH.A/

as follows:

� P�u1 D P�u2 D � ;

� at a place v … ¹u1;u2º, P�v is the irreducible representation in theL-packet…L
�
�. P�/v

. PHv/

associated to the trivial character of ��
�. P�/v

.

By Theorem 3.4, we have an embedding� M
�2b��.�/

.m.�; �/� ˝m.�; �/�/
�
˝

� O
v…¹u1;u2º

P�v

�
,! L2

�. P�/
. PH/:

In particular,
mdisc. P�/ �

X
�2b��.�/

m.�; �/2 > 0:

Moreover, it follows from Remark 5.3 that there exists a pure inner form PG0 of PG, and an
irreducible summand P� of L2

P�
. PG0/, such that P� D � abs. P�/, and

mdisc. P�/ D mdisc. P�/:

It follows from our construction and Proposition 6.10 that P�w 2 …L
P�w
. PG0w/. Hence

mdisc. P�/ � 1

by Lemma 6.16. Combining these (in)equalities, we obtain

1 �
X

�2b��.�/
m.�; �/2:

Hence the first statement holds.
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For the second statement, notice that if � 2 …�.�/.H/, Lemma 6.16 also asserts that

�.�/ D P�u1 2 …
L
� .
PG0u1/:

Hence it follows from the conservation relation [72] that the theta lift between .G0; H/
for all pure inner forms G0 of G gives a well-defined map

� W …�.�/.H/!
G
G0

…L
� .G

0/;

where the disjoint union is taken over all pure inner forms of G. By Howe duality, this
map is an injection. This completes the proof.

6.7. The last jigsaw piece

We retain the notations of the last subsection. Having proved Proposition 6.17, we know
that …�

�.G/ � …
L
� .G/ as sets. To finish the proof of Theorem 6.3, we only need to show

the following.

Proposition 6.18. For any pure inner formG0 ofG, and any irreducible representation �
in the L-packet …L

� .G
0/, the theta lift � of � to H lies in the A-packet …�.�/.H/. More-

over,
JLW .�/ D `

�.JW 0.�//:

With the help of Proposition 6.10, we can first prove Proposition 6.18 for a large class
of � 2 …L

� .G
0/.

Lemma 6.19. Let G0 be a pure inner form of G, and � be an irreducible representation
in the L-packet …L

� .G
0/. If the theta lift �0 of � to H0 is non-zero .with respect to the

datum . F ; �V ; �W //, then the conclusion of Proposition 6.18 holds for � . In particular,
if we are in one of the following cases:

� Case O;

� Case U, and F is non-Archimedean,

and �W 6� �, then the conclusion of Proposition 6.18 holds for any � 2 …L
� .G

0/.

Proof. The first assertion can be proved exactly as Proposition 6.10. To prove that Propo-
sition 6.18 holds in the cases listed above, one just needs to note that #.�/ ¤ 0 for any
� 2 …L

� .G
0/ in these special cases (see Theorem 6.11).

Based on this lemma, we now fill in the last jigsaw piece.

Proof of Proposition 6.18. We will argue case by case. To simplify notations, we let

�� D JLW .�/ and �� D JW 0.�/:

Case O: By Lemma 6.19, we only need to consider the case when the theta lift of � toH0
is zero. It then follows from the conservation relation [72] that the theta lift of � ˝ det
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to H0 is non-zero. In particular, Proposition 6.18 holds for � ˝ det. Next we appeal to
the global method to compare the theta lifts �.�/ and �.� ˝ det/ of � and � ˝ det toH .

As in the proof of Proposition 6.17, we define an abstract irreducible representation
P� 0 D

N
v P�
0
v of PH.A/:

� we set P� 0u1 D P�
0
u2
D �.� ˝ det/;

� at a place v … ¹u1;u2º, P� 0v is the irreducible representation in theL-packet…L
�
�. P�/v

. PHv/

associated to the trivial character of ��
�. P�/v

.

By Theorem 3.4, Lemma 5.6 and (5.2), P� 0 is a summand of L2
�. P�/

. PH/. Remark 5.3 then

implies that there exists a pure inner form PG0 of PG, and an irreducible summand P� 0 of
L2
P�
. PG0/, such that P� 0 D � abs. P� 0/. According to the construction, we must have

PG0u1 D
PG0u2 D G

0 and P� 0u1 D P�
0
u2
D � ˝ det :

Now we define another abstract irreducible representation P� of PG0.A/ by setting P� D
P� 0 ˝ detT with T D ¹u1; wº. More precisely,

� at v 2 ¹u1; wº, P�v D P� 0v ˝ detv;

� at a place v … ¹u1; wº, P�v D P� 0v .

Then P� is also an irreducible summand of L2
P�
. PG0/ such that

P�u1 D �:

Let P� D � abs. P�/. We deduce from Corollary 5.2 that P� is a summand of L2
�. P�/

. PH/. Hence
by AMF (Theorem 3.3), we have

� D P�u1 2 …�.�/.H/:

This proves the first assertion of Proposition 6.18 for Case O.
Next we prove the second assertion. By Theorem 3.4, Lemma 5.6 and (5.2), we have

`�.JW 0. P�// D 1; (6.6)

where
`�.JW 0. P�//.x/ D

Y
v

`�v.JW 0v . P�v//.xv/

for x 2 � P� . The character `�v.JW 0v . P�v// can be computed explicitly as follows:

� At a place v … ¹u1; u2; wº, `�v.JW 0v . P�v// is the trivial character of � P�v .

� At the place u2, Proposition 6.18 holds for � ˝ det by hypothesis. Thus

`�u2.JW 0u2
. P�u2// D JLWu2

.� ˝ det/ D �� � �� :

Here we have made use of Remark 2.3 in the last equality.
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� At the place w, since 1 6� P�w , it follows from Lemma 6.19 that Proposition 6.18, and
hence Theorem 6.3, holds for P�w . Thus

`�w.JW 0w . P�w// D JLWw . P�
0
w ˝ detw/ D � P�w :

Here again we have made use of Remark 2.3 in the last equality.

Hence Y
v

`�v.JW 0v . P�v//.x/ D �� .xu1/ � ��.xu2/ � ��.xu2/ � � P�w .xw/ (6.7)

for all x 2 � P� . On the other hand, it is easy to check that

��.xu2/ � � P�w .xw/ D 1 (6.8)

for all x 2 � P� . Combining (6.6)–(6.8), we get

��.xu2/ D `
�
u1
.�� /.xu1/

for all x 2 � P� . Finally, since the localization maps � P� ! � P�u1
and � P� ! � P�u2

agree and
are surjective, we deduce that �� D `�u1.�� /.

This completes the proof in Case O.

Case U0, and F is non-Archimedean: In this case, PF is a totally imaginary field, W0
is a .2nC 1/-dimensional skew-Hermitian space over PE, and H0 D U.W0/. For a pure
inner formG0 ofG and an irreducible tempered representation � in theL-packet…L

� .G
0/,

Lemma 6.19 asserts that if the theta lift of � toH0 (with respect to . F ; �V ; �W /) is non-
zero, then Proposition 6.18 holds for � . Next we appeal to the global method to reduce
the general situation to this known situation.

We pick a pair of characters .�0
PV
; �0
PW
/ such that �0

PW ;v
6� P�v for v 2 ¹u1; wº. Firstly

we use the almost equal rank theta lift to globalize the representation � . As in the proof
of Lemma 6.16, let

#. P�/ D P�.�0
PW
/�1�0

PV
C �0

PV
:

We define an irreducible automorphic subrepresentation P�0 D
N
v P�0;v of L2

#. P�/
. PH0/ as

follows:

� at a place v … ¹u1; wº, P�0;v is the irreducible representation in the L-packet
…L

#. P�/v
. PH0;v/ associated to the trivial character of �#. P�/v ;

� at the place u1, P�0;u1 D #.�/ is the theta lift of � to PH0;u1 , which is non-zero by
Theorem 6.11;

� at the place w, P�0;w is the tempered representation in the L-packet …L

#. P�/w
. PH0;w/

corresponding to the character �0;w , determined by the formulaY
v

�0;v D 1;

where �0;v D JL
W 0v
. P�0;v/, and we regard

Q
v �0;v as a character of the global component

group �#. P�/ through the localization maps.
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By Theorem 3.4 and (5.2), P�0 is a summand of L2
#. P�/

. PH0/. Using the same argument as
in Lemma 6.16, we can show that there exists a pure inner form PG0 of PG such that the
abstract theta lift P� D #abs. P�0/ of P�0 to PG0 is non-zero, and

mdisc. P�/ � mcusp. P�/ � mcusp. P�0/:

Hence P� is a summand in L2
P�
. PG0/, and P�v 2 …L

P�v
. PG0v/ for all places v of PF . By the

conservation relation [72], we know that

. PG0u1 ; P�u1/ ' .G
0; �/:

Also, Theorem 6.11 implies that Y
v

�v.xv/ D 1 (6.9)

for all x 2 � P� , where �v D JLWv . P�v/. This product is well-defined, since �v D 1 for all
places v … ¹u1; wº.

Next we consider the stable range theta lift of P� to extract some other information. Let
P� D � abs. P�/. We deduce from J.-S. Li’s inequality (Theorem 3.1) that P� is a summand of
L2
�. P�/

. PH/. Hence
� D P�u1 2 …�.�/.H/:

Also, it follows from Theorem 3.4, Lemma 5.6 and (5.2) that

`�.JW 0. P�// D 1; (6.10)

where
`�.JW 0. P�//.x/ D

Y
v

`�v.JW 0v . P�v//.xv/

for x 2 � P� . For all places v 62 ¹u1; wº, we have

`�v.JW 0v . P�v// D �v:

Indeed, if P�v is of good parity, then this equality follows from Theorem 6.11 and Lemma
6.19; on the other hand, if P�v is not of good parity, then the equality follows from our
induction hypothesis. At the place w of F , since � PW ;w 6� P�w , it follows from Lemma
6.19 that Theorem 6.3 holds for P�w . Hence

`�w.JW 0w . P�w// D �w : (6.11)

Combining (6.9)–(6.11), we have

��.xu1/ D `
�
u1
.�� /.xu1/:

Since the localization map � P� ! � P�u1
is surjective, the desired conclusion for � holds.
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Case U1, and F is non-Archimedean: The method used in the previous case can also be
applied to this case similarly. In fact, this case is even easier, since Theorem 2.8 allows us
to globalize � 2 …L

� .G
0/ directly. We omit the details.

Case U, and F is real: The method used in the previous two cases cannot be applied here
since the almost equal rank theta lift of � 2 …L

� .G
0/ to the split Witt tower may vanish.

Therefore, we cannot globalize it by using AMF. In this case, we reason by induction
on dim V . Then we can use AMF for some smaller unitary groups to help us make the
globalization step.

When dim V D 0, this follows from Lemma 6.7. Suppose that for all non-negative
integers m < dim V , Proposition 6.18, and hence Theorem 6.3, holds for all real unitary
groups of m variables. Now we show that the desired conclusion also holds for all real
unitary groups of dimV variables.

Recall that � is an L-parameter of good parity for G, so it must be of the form

� D m1�1 C � � � Cmr�r ;

where �i is a conjugate self-dual character of LC D C�, and mi is some positive integer.
For the same reason as in the proof of Lemma 6.16, we may assume that P� is a sum of
automorphic characters. We pick up a pair of characters .�0

PV
; �0
PW
/ such that �0

PW
� P�. Let

#. P�/ D . P� � �0
PW
/.�0

PW
/�1�0

PV
:

For any � 2 …L
� .G

0/, we first use the almost equal rank theta lift to globalize it. By
Theorem 6.11, there exists a pure inner form H 00 D H.W 00/ of H0 such that the theta
lift �0 WD #.�/ of � to H 00 (with respect to . F;v; �0PV ;v; �

0
PW ;v
/) is non-zero. Let PW 00

be the unique .dim V � 1/-dimensional c-skew-Hermitian space such that it is split at
all places of PF except ¹u1; wº, and the localization of PW 00 at u1 is isometric to W 00.
Let PH 00 D H. PW

0
0/. Now we define an abstract irreducible representation P� 00 D

N
v P�
0
0;v

of PH 00.A/:

� at a place v … ¹u1; wº, P� 00;v is the irreducible representation in the L-packet
…L

#. P�/v
. PH 00;v/ associated to the trivial character of �#. P�/v ;

� at the place u1, P� 00;u1 D �0;

� at the place w, P� 00;w is the irreducible representation in the L-packet …L

#. P�/w
. PH 00;w/

corresponding to the character �00;w 22�#. P�/w determined by the formulaY
v

�00;v D 1;

where �00;v D JL
W 0v
. P� 00;v/, and we regard

Q
v �
0
0;v as a character of the global

component group �#. P�/ through the localization maps. The existence of �00;w is guar-
anteed by the local-global principle for skew-Hermitian spaces and LLC for unitary
groups.



R. Chen, J. Zou 4818

Since PH 00 is a unitary group of dim V � 1 variables, by our induction hypothesis, The-
orem 6.3 holds for all localizations of PH 00, hence Theorem 2.6 holds for PH 00. It then
follows that P� 00 is a summand of L2

#. P�/
. PH 00/. For each place v of PF , by the conser-

vation relation [72], there is a Hermitian space V 0v of the same dimension as V such
that

#. P� 00;v/ ¤ 0;

where #. P� 00;v/ is the theta lift of P� 00;v to G0v D G.V 0v/ (again with respect to the datum
. F;v; �

0
PV ;v
; �0
PW ;v
/). Since P�w is discrete, #. P�/w does not contain the character �0

PV ;w
.

Thus we will have two choices of the skew-Hermitian space V 0w at the place w. The flex-
ibility at w allows us to pick these local Hermitian spaces coherently so that they form a
global Hermitian space PV 0 over PE. We let PG0 D G. PV 0/. Let P� D #abs. P� 00/ be the abstract
theta lift to PG0. It follows from the same argument as in Lemma 6.16 that

mdisc. P�/ � mcusp. P�/ � mcusp. P�
0
0/:

Hence P� is a summand in L2
P�
. PG0/, and P�v 2 …L

P�v
. PG0v/ for all places v of PF . Then by the

conservation relation [72], we know that

. PG0u1 ; P�u1/ ' .G
0; �/:

Also, Theorem 6.11 implies that Y
v

�v.xv/ D 1 (6.12)

for all x 2 �#. P�/. Here �v D JLWv . P�v/, and we regard �#. P�/ as a subgroup of � P� via the
natural embedding �#. P�/ ! � P� . Since �v D 1 for all places v … ¹u1; wº, this product is
well-defined.

Next we consider the stable range theta lift of P� to extract some other information. Let
P� D � abs. P�/. We deduce from J.-S. Li’s inequality (Theorem 3.1) that P� is a summand of
L2
�. P�/

. PH/. Hence
� D P�u1 2 …�.�/.H/:

Similar to the previous cases, combining (6.12) and AMF for PH , we get

��.xu1/ D `
�
u1
.�� /.xu1/

for all x 2 �#. P�/. Since the localization map �#. P�/! �#. P�/u1
is surjective, we have proved

that �� and `�u1.�� / are equal on the image of the natural embedding �#. P�/u1
,! �� . Cer-

tainly this embedding �#. P�/u1
,! �� is not necessarily surjective. But there is nothing to

worry about, since we may vary the character �0
PW

. When the character �0
PW

runs over all

irreducible components of P�, the image of �#. P�/u1
will exhaust all elements in �� . Hence

the desired conclusion holds for real unitary groups.

Thus, we have finished proving Theorem 2.6.
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7. Encore: beyond the generic case

Let F be a number field, and G an even orthogonal or unitary group over F as in the
setting of Section 2.1. Let  be an elliptic A-parameter for G, and

�. / D  ��1W �V C �V � S2r�2nC1

an elliptic A-parameter for H . In Section 5.3, we have transferred AMF from L2
�. /

.H/

to L2 .G/ when  D � is generic. Recall that the key step is to show Proposition 5.1,
which implies that J.-S. Li’s inequality (Theorem 3.1) is an equality in the generic case.
In this section, we want to go one step further beyond the generic case. We would like to
propose the following naive conjecture.

Conjecture 7.1. Let G be an even orthogonal or unitary group, and

 D
X
i

�i � Sdi (7.1)

an elliptic A-parameter for G, where �i is a cuspidal representation of GLni .AE /. Let
� be an irreducible representation of G.A/ such that the L-parameter of �v is � v for
almost all v. Then

mdisc.�/ D m.�/:

We have proved this conjecture in Proposition 5.1 when  D � is generic. Actually,
it is easy to generalize this conjecture to a slightly more general case.

Assumption 7.2. Let rV be the Witt index of V . Suppose that in the expression (7.1), for
any i such that di > 1, we have ni > rV .

Under this weird assumption, we can prove Conjecture 7.1 by using an argument
similar to that of Proposition 5.1.

Proposition 7.3. Suppose that G D G.V / and  satisfy Assumption 7.2. Let � be an
irreducible representation of G.A/ such that the L-parameter of �v is � v for almost
all v. Then

mcusp.�/ D mdisc.�/ D m.�/:

Remark 7.4. A case worth noting is when rV D 0, i.e. G D G.V / is anisotropic. In
this case, Assumption 7.2 is automatically satisfied. Indeed, when G is anisotropic, we
have Acusp.G/DAdisc.G/DA.G/. Therefore, Proposition 7.3 holds with no extra work
needed.

Proof of Proposition 7.3. In the spirit of [22, Proposition 4.1], it suffices to show that
for any realization V � A.G/ of � , we have V � Acusp.G/. Suppose on the contrary
that V 6� Acusp.G/ for some such V . By considering the constant term maps, it follows
from [45] that

� � IndG.A/
P.A/ �
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for some proper parabolic subgroup P of G with Levi component M , and some irre-
ducible cuspidal automorphic representation � of M.A/. Suppose that

M '
Y
j

GLkj �G0

for some G0 D G.V0/, where V0 is a space in the Witt tower containing V . Then � is of
the form

� '
�
�
j

�j

�
� �0

for some irreducible cuspidal automorphic representations �j and �0 of GLkj and G0,
respectively. By Theorem 2.1, �0 has a weak transfer �0 to GLn0.A/. Then � has a weak
transfer to GLn.A/ of the form �

�
j

.�j � .�cj /
_/
�

� �0: (7.2)

On the other hand, since the L-parameter of �v is � v for almost all v, it follows that
� has a weak transfer to GLn.A/ of the form

�
i

.�i j � j
.di�1/=2 � � � � � �i j � j

�.di�1/=2/: (7.3)

By the strong multiplicity one theorem [35], the two expressions (7.2) and (7.3) must
agree. Hence �j in the first expression must have the form �ij j � j

sj for some ij and
sj 2

1
2
Z. Note that kj � rV . It then follows from Assumption 7.2 that

kj < ni

for any i such that di > 1. Hence we must have dij D 1; sj D 0. This also implies that

�ij � Sd

is not contained in  for any d > 1. However, �j D �ij occurs with multiplicity at least 2
in (7.2), whereas it occurs with multiplicity 1 in (7.3). This is a contradiction. Hence
V � Acusp.G/ as required.

When the pair .G; / does not satisfy Assumption 7.2, the realizations V � A.G/ of
� may not lie in Acusp.G/. To prove Conjecture 7.1, we need some extra inputs. Thanks
to the square-integrability criterion [60, I.4.11 Lemma ], when G D G.V / is of F -rank 1,
we are able to complete the proof.

Proposition 7.5. Conjecture 7.1 holds if G D G.V / is of F -rank 1, i.e. rV D 1.

Proof. Here we only handle Case O; the proof in Case U is similar.
Let V � A.G/ be an automorphic realization of � . We need to show that V is con-

tained in A2.G/. We may assume that V is not contained in Acusp.G/, otherwise it is
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already contained in A2.G/. Since G is of F -rank 1, the proper standard parabolic sub-
group P DMN of G is unique, with Levi component

M ' GL1 �G0;

where G0 is an anisotropic group. Let �j � js � �0 be a cuspidal support of � along P ,
where � is a unitary automorphic character of GL1, and �0 is a cuspidal automorphic
representation of G0. Then it follows from [45] that

� ,! IndGP .�j � j
s

� �0/:

Consider the weak transfer of � to GL2n.A/. On the one hand, this weak transfer is
represented by the elliptic A-parameter  ; on the other hand, it also has an expression
given by the above embedding. Similar to the proof of Proposition 7.3, by comparing
these two expressions, we find that there exists some i such that

� D �i ; di � 3 and s D ˙
di � 1

2
:

Moreover, the cuspidal automorphic representation �0 is in the NEC represented by the
elliptic A-parameter

 0 D  � � � Sdi C � � Sdi�2: (7.4)

If we can show that s D �.di � 1/=2, then the square-integrability criterion [60, I.4.11
Lemma] will imply that V � A2.G/, which will complete the proof. So next we shall
prove this by contradiction.

Suppose on the contrary that s D .di � 1/=2. Then at every unramified place v, we
have

�v ,! IndGvPv .�vj � j
.di�1/=2 � �0;v/: (7.5)

Since �vj � j.di�1/=2 is not self-dual, it follows from [37, Lemma 3.1.3] that �v is the
unique subrepresentation of IndGvPv .�vj � j

.di�1/=2 � �0;v/. Applying both the MVW func-
tor (see [9, Section 2.7]) and contragredient functors, we know that �v is also the unique
quotient of IndGvPv .�vj � j

�.di�1/=2 � �0;v/. Let Kv be a special maximal compact sub-
group of Gv which has good position relative to Pv . Fix a representative wv 2 Kv of the
unique non-trivial element in WMv D NGv .Mv/=Mv . Let

M.s; �v � �0;v; wv/ W IndGvPv .�vj � j
s

� �0;v/! IndGvPv .�vj � j
�s

� �
wv
0;v/

be the unnormalized intertwining operator given by (the meromorphic continuation of)
the integral

M.s; �v � �0;v; wv/f .g/ D

Z
Nv

f .w�1v ng/ dn

for f 2 IndGvPv .�vj � j
s

� �0;v/, where �wv0;v is the representation ofG0;v on the same space
of �0;v with the action given by

�
wv
0;v.m/ D �0;v.w

�1
v mwv/:
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Let fv;s and f 0v;�s be the unramified vectors in the spaces IndGvPv .�vj � j
s

� �0;v/ and
IndGvPv .�vj � j

�s
� �

wv
0;v/ respectively with the normalization

fv;s.1Gv / D f
0
v;�s.1Gv / D 1:

Then by the Gindikin–Karpelevich formula [16, p. 141, Theorem 6.7], we have

M.s; �v � �0; wv/fv;s D
L.s; �0;v � �v/

L.1C s; �0;v � �v/
� f 0v;�s :

If we write
 0;v D

X
j

�j � Sdj

for some unramified characters �j (not necessarily unitary), then

L.s; �0;v � �v/

L.1C s; �0;v � �v/
D

Y
j

L
�
s �

dj�1

2
; �j�v

�
L
�
s C

djC1

2
; �j�v

� : (7.6)

Since 0;v is the localization of the global ellipticA-parameter 0, each�j can be decom-
posed as

�j D �
0
j j � j

s

for some unitary character�0j and real number jsj j<1=2. By (7.4), we have �v �Sdi�2�

 0;v . This implies that the factor (7.6) has a zero at s D �.di � 1/=2. Hence

M.s; �v � �0; wv/fv;sjsD�.di�1/=2 D 0: (7.7)

Moreover, since �v is the unique quotient of

IndGvPv .�vj � j
�.di�1/=2 � �0;v/;

we know that IndGvPv .�vj � j
�.di�1/=2 � �0;v/ is generated by the unramified vector fv;s .

By (7.7) and the Gv-equivariance of M.s; �v � �0; wv/, we deduce that M.s; �v �

�0; wv/ is holomorphic and zero at s D �.di � 1/=2, which is impossible (see [77, The-
orem VI.1.1 & Remark]). This finishes the proof.

Then, by the same proof as for Corollary 5.2, we deduce the following

Corollary 7.6. Suppose that either

(1) .G; / satisfies Assumption 7.2, or

(2) G is of F -rank 1, and  is any elliptic A-parameter for G.

Suppose that
L2 .G/ D

M
�

m��:

Then
L2�. /.H/ D

�M
�

m��
abs.�/

�
˚

�M0

�

m��
�
;

where the second summation on the RHS is over all � with A-parameter �. / and not
relevant to G.
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Recall that in Section 5.3, we have defined local packets …�
 v
.Gv/ for each place v

of F , as well as the global packet …�
 .G; � /. Combining all of these with Lemma 5.6,

we deduce the following result.

Theorem 7.7. Suppose that either

(1) .G; / satisfies Assumption 7.2, or

(2) G is of F -rank 1, and  is any elliptic A-parameter for G.

Then there is a decomposition

L2 .G/ D
M

�2…� .G;� /

�:

Remark 7.8. In particular, when G D G.V / is of F -rank � 1, we obtain a description of
the whole L2disc.G/. A case worth noting is when G is a unitary group and Gv ' U1;n�1
at one real place v. In this case, the description of L2disc.G/ might have some arithmetic
applications to Shimura varieties of type U1;n�1.

These results also motivate us to study these local packets …�
 v
.Gv/ at each local

place v of F . In particular, we want to show that

� these local packets…�
 v
.Gv/ do not depend on the choice of the auxiliary groupHv D

H.Wv/;

� if Gv is quasi-split, then
…�
 v
.Gv/ D …

A
 v
.Gv/

as representations of � �Gv , where…A
 v
.Gv/ is the local A-packet defined by Arthur

[4] and Mok [61].

In [12], we prove these when v is a non-Archimedean place of F .

Remark 7.9. (1) In Case O, a large part of these local comparison results have been
proved by Mœglin already in a much more general context. In [55], she has constructed
a packet …M

 v
.Gv/ explicitly for each  v when v is non-Archimedean. Moreover, she

showed that …M
 v
.Gv/ is multiplicity-free, and

…M
 v
.Gv/ D …

A
 v
.Gv/

as sets if Gv is quasi-split. Using her explicit construction, she studied the Adams conjec-
ture in [53]. It follows from her results that

…�
 v
.Gv/ D …

M
 v
.Gv/

as sets. Hence, compared to her results, the new thing in [12] is that we also compare the
“labelings”, i.e. the map J� .

(2) In Case U, when v is real and the A-parameter  v is Adams–Johnson, these local
comparison results have already been proved in [17]. We expect that the method in [17]
can also be applied to Case O.
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Appendix A. Prasad’s conjecture: real even orthogonal-symplectic case

In this appendix, we shall use theta lifts to establish LLC for real full even orthogonal
groups, based on Paul’s results [65, Theorem 15].

We fix some notation. For ˛ 2 1
2
Z, we denote by �2˛ the character

z 7! .z= Nz/˛

of LC , and by D2˛ the two-dimensional representation of LR induced from the charac-
ter �2˛ of LC . Note that D2˛ is irreducible unless ˛ D 0. We also retain the notations
of Section 6.4. So now V is a 2n-dimensional orthogonal space over R with isometry
group G.V /, and W0 is a 2n-dimensional symplectic space over R with isometry group
H.W0/. Pure inner forms of G.V / will be typically denoted by G.V 0/ for some orthog-
onal space V 0 (see the beginning of Section 2 for the classification of these V 0). We also
denote the special even orthogonal group associated to V by G0.V /, which is an index 2
subgroup in G.V /. By classical Clifford theory, there is a canonical bijection

� W Irr.G.V //=�det ! Irr.G0.V //=�"

given by restriction, where the LHS of the bijection is the set of equivalence classes of
irreducible representations of G.V / up to the determinant twist, and the RHS is the set of
equivalence classes of irreducible representations of G0.V / up to the action of the outer
automorphism corresponding to an element of G.V / nG0.V /. Given � 2 Irr.G.V //, we
shall use Œ��det to denote the equivalence class in Irr.G.V //=�det containing � .

SinceG0.V / andH.W0/ are connected reductive groups over R, by the work of Lang-
lands [46] we have LLC for these two groups, as recalled in Section 2.2. However, instead
of original L-parameters for G0.V /, we prefer to use the so-called weak L-parameters
which we now describe. Modulo the action of the outer automorphism, we obtain a finite-
to-one surjective map

L0
W

G
V 0

Irr.G0.V 0//=�" ! ˆC.G0.V //=�"; (A.1)

from the original LLC for G0.V /, where the disjoint union on the LHS runs over all 2n-
dimensional orthogonal spaces V 0 of the same discriminant as V , and the RHS is the set
of equivalence classes of L-parameters of G0.V / up to LG.V / D O2n.C/ conjugation.
By composing with the standard representation

O2n.C/! GL2n.C/;

the set ˆC.G0.V //=�" can be identified with

ˆC.G.V // WD ¹� W LR ! GL2n.C/ j � is semisimple, orthogonal and det.�/ D �V º:

This is the set of weak L-parameters we will make use of.
Consider the theta lift between .G.V /;H.W0//, with respect to a non-trivial additive

character  R and splitting characters .�V ; �W / as in Section 3.1. Our first goal here is
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to establish a weaker version of Theorem 6.11, which partially describes this theta lift in
terms of (weak) L-parameters for G0.V / and H.W0/.

Theorem A.1. Let � be a tempered weak L-parameter for G0.V /, and � an irreducible
tempered representation of G.V / such that

L0.�.Œ��det// D �:

Suppose that the theta lift #.�/ of � to H.W0/ is non-zero. Then #.�/ is tempered and
lies in the L-packet associated to

#.�/ D ���1W �V C �V :

Moreover, if �W 6� �, then both´
the theta lift #.�/ of � to H.W0/ and

the theta lift #.� ˝ det/ of � ˝ det to H.W0/

are non-zero.

Proof. We first assume that � is a discrete weak L-parameter, i.e. � is multiplicity-free.
We can write it as

� D D2˛1 C � � � CD2˛n

for some non-negative integers ˛1 > � � � > ˛n � 0. Following Paul [65, Section 3.2], if
the Harish-Chandra parameter of � is of the form

� D .a1; a2; : : : I b1; b2; : : :/;

where ai and bj are non-negative integers, a1 > a2 > � � � and b1 > b2 > � � � , then the
infinitesimal character of � is precisely the orbit of � under the Weyl group action. Since
LLC preserves the infinitesimal character, we have

¹˛1 : : : ; ˛nº D ¹a1; a2; : : : ; b1; b2; : : :º :

By [65, Theorem 15], #.�/ is the limit of a discrete series, and the Harish-Chandra param-
eter of #.�/ is of the form

�0 D .a1; a2; : : : I : : : ;�b2;�b1/:

Note that by definition any L-parameter of H.W0/ has trivial determinant. Then again
by considering the infinitesimal character, one can see immediately that the L-parameter
of � must be #.�/ as predicted.

Next we assume that � is tempered but not discrete. It follows from LLC for G0.V /
that any irreducible representation of G0.V / in �.Œ��det/ is tempered but not a discrete
series, and hence so is � . It is well known that � can be embedded into a parabolic
induction of a discrete series representation. Then by the induction principle of local theta
correspondence [65, Section 5.2] and the result in the discrete series case, we know that
the L-parameter of #.�/ is #.�/.
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Finally, we prove the last statement of the theorem. Let W00 be the .2n � 2/-dimen-
sional symplectic space over R, and H.W00/ be the corresponding symplectic group. If
#.�/ D 0, then by the conservation relation [72] the theta lift of � ˝ det to H.W00/ is
non-zero. By using the same argument as above, we can show that �W � �. Likewise
#.� ˝ det/ D 0 also yields �W � �. This completes the proof.

With this theorem at hand, next we extend LLC for real special even orthogonal groups
to full even orthogonal groups using the same idea as in [13, Section 5]. As mentioned
before, LLC depends on the choices of a Whittaker datum W of the quasi-split pure
inner form of G.V /. Since the construction will also involve LLC for H.W0/, we need to
choose a Whittaker datum W 0 of H.W0/ as well. We shall make these choices according
to the additive character  R (and some other auxiliary data) as explicated in Section 3.5.

Let us deal with tempered representations first. Recall that by weak LLC for G0.V /
we have a finite-to-one surjective map L0 as in (A.1). We define a map

L W
G
V 0

Irrtemp.G.V
0//! ˆ.G.V //

by setting L.�/ D L0.�.Œ��det// for � 2 Irrtemp.G.V
0//. It then follows from the proper-

ties of L0 that L is a finite-to-one surjective map. For each L-parameter � 2 ˆ.G.V //,
to give a parametrization of the fibers

…�.G.V
0// WD L�1.�/ \ Irr.G.V 0//;

we appeal to the theta lift. Let � 2 …�.G.V
0//. Consider the theta lift #.�/ of � to

H.W0/. There are two possibilities:

� Case 1: #.�/ is non-zero. Then by Theorem A.1, #.�/ 2…#.�/.H.W0//, and �� can
be regarded as a subgroup of �#.�/. In this case we set

�� WD �#.�/j�� ;

where �#.�/ 2
1
�#.�/ is the character associated to #.�/ by LLC for symplectic groups.

� Case 2: #.�/ is zero. Then by the conservation relation [72], the theta lift #.� ˝ det/
of � ˝ det to H.W0/ is non-zero. Since Œ��det D Œ� ˝ det�det, it is easy to see from the
definition that L.�/ D L.� ˝ det/. In the previous case we have already attached a
character ��˝det 2c�� to � ˝ det. In this case we set

�� WD ��˝det � �� ;

where �� 2c�� is the character defined in (2.6).

Combining these two cases we obtain a map

JLW W
G
V 0

…�.G.V
0//!c��
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by setting JLW .�/ D �� for � 2 …�.G.V
0//. Similar to [13, Proposition 5.10], it fol-

lows from Howe duality and the conservation relation [72] that the map JLW is indeed a
bijection.

Remark A.2. The following two properties of the map JLW are worth noting.

(1) For any � 2 …�.G.V
0//, we have

JLW .� ˝ det/ D JLW .�/ � �� :

Indeed, if #.�/ D 0 or #.� ˝ det/ D 0, this equality is a direct consequence of the con-
struction. The proof of our main local result, Theorem 6.3 (more precisely, the proof of
Proposition 6.18) will only involve this special case. When both #.�/ and #.� ˝ det/ are
non-zero, we can appeal to the strength of Theorem 2.6 as follows. Similar to Section 6.6,
when the L-parameter � is of good parity, one can suitably globalize � to a cuspidal
automorphic representation P� with generic A-parameter P� such that

� at a place v, the localizations of P� and P� are � and �;

� at an auxiliary finite place w, the localization map � P� ! � P�w is an isomorphism.

Let P� 0 be the cuspidal automorphic representation obtained from P� by replacing P�v and
P�w by P�v ˝ det and P�w ˝ det. Then applying Theorem 2.6 to P� and P� 0, one gets

� P�v � � P�w D � P�v˝det � � P�w˝det:

Since the desired equality holds for P�w (see Remark 2.3 (1)), it also holds for � D P�v . For
general � the desired conclusion follows from the compatibility of LLC with parabolic
inductions.

(2) A priori, the map JLW depends on the choice of the additive character  R. How-
ever, as suggested by the notation it only depends on the choice of the Whittaker datum W

of the quasi-split pure inner form of G.V / but not on  R. This is a consequence of the
scaling property of the Weil representation. Similar to [42, II. Corollary 6.2, IV. Proposi-
tion 1.9], an easy computation shows that for any � 2 Irr.G.V //, we have

# R;a.�/ ' # R.�/
ıa :

Here a 2 R�,  R;a WD  R.a � �/ and ıa is an element in GL.W0/ such that

hıa.v/; ıa.v
0/iW0 D a � hv; v

0
iW0

for any v; v0 2 W0. The subscripts “ R;a” and “ R” indicate the additive characters used
in the definition of theta lifts. Let W 0a be the Whittaker datum of H.W0/ determined by
 R;a as in Section 3.5. Then it follows from [38, Theorem 4.3] that

JLW 0.# R.�// D JLW 0a
.# R;a.�//;

and in particular these two characters have the same restriction to �� .
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After furnishing tempered representations with the maps L and JLW , we can extend
these maps to all irreducible representations in a standard manner similar to [11].
Although full even orthogonal groups are disconnected, the Langlands classification is
still valid by [65, Section 3.2]. To be more precise, for any irreducible non-tempered rep-
resentation � 2 Irr.G.V //, there is a standard module

IndG.V /P .�1j � j
s1

� � � � � �r j � j
sr

� �0/

of G.V /, where

� P is a parabolic subgroup of G.V /, with Levi component

L ' GLd1.R/ � � � � � GLdm.R/ �G.V0/;

where V0 is some orthogonal space in the Witt tower containing V ;

� �i is an irreducible (limit of) discrete series of GLdi .R/, and si is a positive real num-
ber;

� ¹�i j � j
si ºi is ordered so that

s1 � � � � � sr > 0I

� �0 is an irreducible tempered representation of G.V0/,

such that � is the unique irreducible quotient of this standard module. Let ��i be the
L-parameter of �i , and �0 D L.�0/. We set

L.�/ D .��1 j � j
s1 C � � � C ��r j � j

sr /C �0 C .��1 j � j
s1 C � � � C ��r j � j

sr /_:

Then as explicated in [19, Section 8], there is a natural isomorphism �� ' ��0 . Let �0 D
JLW .�0/. Under this identification of component groups, we define

JLW .�/ D �0:

Since these P , �i , si and �0 are uniquely determined by � , the L-parameter L.�/ and the
character JLW .�/ 2

c�� are well-defined. We conclude the above discussion as follows.

Theorem A.3. There is a finite-to-one surjective map

L W
G
V 0

Irr.G.V 0//! ˆC.G.V //;

where the disjoint union runs over all 2n-dimensional orthogonal spaces V 0 of the same
discriminant as V . For each L-parameter � 2 ˆC.G.V //, we denote

…�.G.V
0// WD L�1.�/ \ Irr.G.V 0//;

and we call it the L-packet of G0 associated to �. There is a bijection .depending on the
choice of the Whittaker datum W /

JLW W
G
V 0

…�.G.V
0//!c�� :
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From our construction, one can see immediately that the following holds.

Corollary A.4. Under LLC provided by Theorem A.3 for real full even orthogonal
groups, Theorem 6.11 holds for dual pairs .G.V 0/;H.W0//.

Finally, recall that Arthur has already established tempered LLC for quasi-split real
full even orthogonal groups, namely a finite-to-one surjective map

LA
W Irrtemp.G.V

C//! ˆ.G.V C//;

together with a bijection (depending on the choice of the Whittaker datum W )

JAW W …�.G.V
C//!

c
��

on each fiber …�.G.V
C// of � 2 ˆ.G.V C//. We can justify our construction of LLC

for real full even orthogonal groups by comparing it with Arthur’s. Since Arthur’s LLC is
compatible with LLC for G0.V C/, for any � 2 Irrtemp.G.V

C// we have

LA.�/ D L0.�.Œ��det// D L.�/:

For any � 2 ˆ.G.V C// and � 2 …�.G.V
C//, to compare JAW .�/ and JLW .�/, again

we appeal to the global method. When the L-parameter � is of good parity, using the
same argument as in Section 6.6, we can suitably globalize � to a cuspidal automorphic
representation P� of a globally quasi-split even orthogonal group G. PV C/, with generic A-
parameter P�, such that at a place v, the localizations of P� and P� are � and �. Then compar-
ing Arthur’s original multiplicity formula and our version (Theorem 2.6) forL2

P�
.G. PV C//,

we deduce that
JAW .�/ D JLW .�/:

For general � the desired equality follows from the compatibility of LLC with parabolic
inductions.

Appendix B. An irreducibility result for some induced representations

In this appendix, we sketch a proof of Lemma 6.6 for F D R. We have E D R in Case O
and E D C in Case U. We will prove it in a more general context.

Recall that an irreducible representation of LE is said to be almost tempered and
positive if it is of the form �j � js , where � is a representation of LE with bounded image,
and 0 < s < 1=2 is a real number. Let  be a local A-parameter for H . We assume

 D ' C  0 C .'
c/_;

where

�  0 is a local A-parameter for H0 D H.W0/, which is of good parity; here W0 is a
c-skew-Hermitian space in the Witt tower containing W ;
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� ' is a k-dimensional representation of LE whose irreducible summands are either
almost tempered and positive, or tempered but not (conjugate) self-dual with the same
parity as  .

Let � be the irreducible representation of GLk.E/ associated to ', and Q the standard
parabolic subgroup of H with Levi component L ' GLk.E/ �H0. We shall prove the
following theorem.

Theorem B.1. For any irreducible unitary representation �0 in the A-packet … 0.H0/,
the induced representation IndHQ .� � �0/ is irreducible.

In [23], Gan–Ichino proved a similar statement for odd orthogonal groups. Mimicking
their proof, we briefly describe the strategy to prove the theorem; the readers may consult
[23, Section 3I] for full details. An ingredient of the proof is the normalized intertwining
operators. Recall that for a real reductive group G, a parabolic subgroup P of G, and
an irreducible representation � of the Levi component of P , the induced representation
IndGP .�/ is called a standard module for G if � satisfies certain positivity conditions. For
such an induced representation, one can define a (normalized) intertwining operator

R xP jP .�/ W IndGP .�/! IndGxP .�/;

where xP is the parabolic subgroup ofG opposite to P , such that the image ofR xP jP .�/ is
the unique irreducible quotient of IndGP .�/. In the proof of Theorem B.1, we shall realize
the representation IndHQ .� � �0/ as the image of a standard module for H .

Firstly, we decompose the representation � . It follows from our assumptions that we
may write ' as a sum of subrepresentations

' D '1 C � � � C 'r ;

satisfying the following conditions:

– Suppose we are in Case O.

� Each 'i is of the form �i j � j
�i , where �i is either sgnıi for some ıi 2 Z=2Z, or D2˛i

for some ˛i 2 1
2
Z n ¹0º and �i is a complex number.

� If �i D 0 for some i , then 'i D D2˛i for some ˛i 2 ZC 1
2

.

– Suppose we are in Case U.

� Each 'i is of the form �2˛i j � j
�i for some ˛i 2 1

2
Z and �i 2 C.

� If �i D 0 for some i , then ˛i 2 ZC .dimW /=2.

In both cases, the summation can be ordered so that

1=2 > <.�1/ � � � � � <.�r / � 0:

Let ki D dim 'i , �i be the irreducible representation of GLki .E/ corresponding to 'i by
LLC for general linear groups, and �' D �1 � � � � � �r . It is easy to see that there is a
parabolic subgroup Q' of GLk.E/ with Levi component

L' ' GLk1.E/ � � � � � GLkr .E/
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such that
� ' IndGLk.E/

Q'
.�'/:

Let Q1 be the parabolic subgroup of H with Levi component L1 ' L' �H0 such that
Q1 � Q, and Q1 \ L D Q' �H0. Then by induction in stages, we have

IndHQ .� � �0/ ' IndHQ1.�' � �0/:

Next we deal with the irreducible representation �0. By Langlands’ classification,
�0 is the unique irreducible quotient of a standard module (for H0)

IndH0Q 0
.� 01 � � � � � � 0m � �00/;

where

� Q 0 is a parabolic subgroup of H0 with Levi component

L 0 ' GLd1.E/ � � � � � GLdm.E/ �H00I

here H00 D H.W00/ for some space W00 in the Witt tower containing W0;

� � 0i is an irreducible essentially (limit of) discrete series of GLdi .E/, which is of the
form

� 0i D �
00
i j � j

si

for some irreducible (limit of) discrete series � 00i of GLdi .E/ and si > 0; since �0 lies
in the local A-packet … 0.H0/, we can further conclude that si 2 1

2
Z;

� ¹� 0i ºi is ordered so that
s1 � � � � � sm > 0I

� �00 is a tempered representation of H00.

Moreover, if we let �0; 0 D �
0
1 � � � � � � 0m � �00, and

R xQ 0 jQ 0
.�0; 0/ W IndH0Q 0

.�0; 0/! IndH0
xQ 0

.�0; 0/ (B.1)

is the (normalized) intertwining operator, then �0 is just the image of this operator
R xQ 0 jQ 0

.�0; 0/.

Now we come to the key step. Applying the functor IndHQ1.�' � � / to the intertwining
map (B.1), we get

IndHQ1.1�' �R xQ 0 jQ 0
.�0; 0// W

IndHQ1.�' � IndH0Q 0
.�0; 0//! IndHQ1.�' � IndH0

xQ 0
.�0; 0//:

Let Q2 be the parabolic subgroup of H with Levi component L2 ' L' � L 0 such that
Q2 � Q1 and Q2 \ L1 D L' �Q 0 . Similarly, let Q02 be the parabolic subgroup of H
with the same Levi component as Q2 such that Q02 � Q1 and Q02 \ L1 D L' � xQ 0 .



R. Chen, J. Zou 4832

Then, by induction in stages and properties of (normalized) intertwining operators, we
can rewrite this intertwining map as

RQ0
2
jQ2
.�' � �0; 0/ W IndHQ2.�' � �0; 0/! IndH

Q0
2
.�' � �0; 0/:

Since the functor IndHQ1.�' � �/ is exact, to show that IndHQ1.�' � �0/ is irreducible, it
is sufficient to show that the image of RQ0

2
jQ2
.�' � �0; 0/ is irreducible. Let Q3 be the

parabolic subgroup of H with the same Levi component L3 as Q2 and Q02 such that

<.!'; 0/ 2 xa
�;C
Q3
;

where !'; 0 is the central character of �' � �0; 0 , and xa�;CQ3 is as defined in [23, Sec-
tion 3H]. Then by the properties of (normalized) intertwining operators, we have a com-
mutative diagram

IndHQ2.�' � �0; 0/ IndH
Q0
2
.�' � �0; 0/

IndHQ3.�' � �0; 0/ IndHxQ3.�' � �0; 0/

R
Q0
2
jQ2

RQ3jQ2 R xQ3jQ
0
2

R xQ3jQ3

Similar to [23, Lemma 3.10], we have the following lemma.

Lemma B.2. The .normalized/ intertwining operators

RQ3jQ2.�' � �0; 0/ and R xQ3jQ02
.�' � �0; 0/

are isomorphisms.

Proof. As in [23, proof of Lemma 3.10], the intertwining operator RQ3jQ2.�' � �0; 0/

can be decomposed as the composition of a sequence of intertwining operators

RQ3jQ2 D RRt jRt�1 ı � � � ıRR2jR1 ıRR1jR0 ;

where R0 D Q2; R1; : : : ; Rt D Q3 are parabolic subgroups of H . For each RRk jRk�1
on the RHS, there exist 1 � i � r and 1 � j � m such that RRk jRk�1 is essentially (a
parabolic induction of) the intertwining operator

Ind
GLkiCdj .E/

Pi;j
.�i � � 0j /! Ind

GLkiCdj .E/

xPi;j
.�i � � 0j /;

where Pi;j is a parabolic subgroup of GLkiCdj .E/ with Levi component Mi;j '

GLki .E/ � GLdj .E/. It follows from [71, Theorem 6.19] and the conditions on �i , � 0j

that Ind
GLkiCdj .E/

Pi;j
.�i � � 0j / is irreducible. Then one can conclude that each RRk jRk�1 is

an isomorphism, hence so is their composition RQ3jQ2.�' � �0; 0/. Similarly, one can
prove that R xQ3jQ02.�' � �0; 0/ is also an isomorphism.

Therefore, up to isomorphism, the image of RQ0
2
jQ2
.�' � �0; 0/ is the same as the

image of R xQ3jQ3.�' � �0; 0/. Notice that IndHQ3.�' � �0; 0/ is already very close to a
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standard module for H . In general, by “collapsing the same exponents”, we can find a
parabolic subgroupQ4 ofH with Levi component L4 such thatQ3 �Q4, L3 � L4, and

<.!� / 2 a�;CQ4 ;

where !� is the central character of the irreducible representation

� WD IndL4Q3\L4.�' � �0; 0/:

It follows that IndHQ4.� / is a standard module for H , and up to isomorphism, the image
of R xQ3jQ3.�' � �0; 0/ is the same as the image of

R xQ4jQ4.� / W IndHQ4.� /! IndHxQ4.� /;

hence is irreducible. This completes the proof.

Appendix C. On irreducible self-dual Galois representations

In this appendix, we consider irreducible self-dual representations of the Weil group of a
local field. The results in this appendix supplement our proof of Corollary 6.15 in Case O.

Let F be a non-Archimedean local field with characteristic zero. Let WF be the Weil
group of F . We use Irr?;d .F / (resp. IrrS;d .F /, IrrO;d .F /) to denote the irreducible self-
dual (resp. symplectic, orthogonal) representations of WF of dimension d .

Lemma C.1. Suppose that F is a finite extension of Qp . Let � be a uniformizer of F ,
and k be the residue field of F . Then

F � ' �Z
� k� � �p1.F / � Zdp ;

where �p1.F / is the group of roots of unity of p-power order in F , and d is the degree
of F over Qp .

Proof. See [62, Chapter 2.5].

Lemma C.2. Let E be a finite unramified extension of F , and s D FrobF 2WF . Then E
is a cyclic extension over F , and

WF =WE ' hxsi;

where xs is the image of s in Gal.E=F /. Moreover, the diagram

WE WE

E� E�

Ad.s/

rE rE

xs

commutes, where rE is the reciprocity law homomorphism of class field theory.

Proof. See [74, p. 4].
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Theorem C.3. For any positive integer n, there exist infinitely many symplectic .resp.
orthogonal/ irreducible representations of WF of dimension 2n.

Proof. Let E0 be the unique unramified extension of F of degree n, and E be the unique
unramified quadratic extension of E0. Then E=F is also unramified. We have

E�=NmE=E0.E
�/ ' .Z=2Z/ � .k�E=k

�
E0
/ � .�p1.E/=�p1.E0// � .Z

dn
p � T /;

where T is some finite torsion group. Fix a primitive element x in k�E , and a primitive
.qn C 1/-th root of unity �. Let

X� W k
�
E=k

�
E0
! C�; xx 7! �:

Then for any character � of Zdnp � T ,

sgn �X� � 1 � � .resp. 1 �X� � 1 � �/

gives a character z� of E�, which satisfies

� z�jE�
0
D !E=E0 (resp. 1);

� z�xs
i
¤ z� for any 1 � i < 2n.

Therefore IndWFWE z� is symplectic (resp. orthogonal) and irreducible of dimension 2n. This
construction gives an injection

bZdnp =� ! IrrS;2n.F / .resp. IrrO;2n.F //:

Here we regard a character of Zdnp as a character of Zdnp � T which is trivial on the

torsion group T , and define �1 � �2 if there is some 1 � i � 2n such that z�xs
i

1 D z�2.

Since bZdnp =� is an infinite set, we are done.

Now we consider irreducible self-dual representations of WF with arbitrary dimen-
sion.

Proposition C.4. Suppose F is a finite extension of Qp and p ¤ 2. Then there is no
irreducible self-dual representation of WF with odd dimension greater than 1.

Proof. See [66, Proposition 4].

We now assume that F is a finite extension of Q2 with residue field kF . Let d be the
degree of F over Q2, and du be the degree of kF over F2.

Theorem C.5. Let N be an arbitrary positive integer. Suppose

2d > N:

Then
jIrr?;1.F /j > N:

Proof. Just notice that

F �=.F �/2 ' .Z=2Z/ �
�
�21.F /=.�21.F //

2
�
� .Z=2Z/d :



Arthur’s multiplicity formula for even orthogonal and unitary groups 4835

Theorem C.6. Fix a positive integer n. Let N be an arbitrary positive integer. Suppose

2du � 1

n
> N:

Then
jIrr?;n.F /j > N:

Proof. Let E be the unique unramified extension of F of degree n. Then

E� ' �Z
� k�E � U

1
E

and
U 1E=U

2
E ' kE ; where U iE D 1C �

iOE ;

and OE is the ring of integers of E. Fix x 2 kE such that ¹x;xs.x/;xs2.x/; : : :º is a basis
of kE over kF . Then

kE D k � x C k � xs.x/C � � � C k � xs
n�1.x/;

and the Pontryagin dual of kE can be identified with the set of n-tuples of characters of
kF by

.�1; : : : ; �n/ 7!
�
� � xsi .x/ 7! �i .�/ ; � 2 k

�
:

Under this identification, xs acts on the Pontryagin dual of kE by

xs W .�1; : : : ; �n/ 7! .�n; �1; : : : ; �n�1/:

We have injective maps ckF n ¹1º ! ckE ! cE�;
where the first map is given by � 7! .�;1; : : : ;1/; and the second map is induced by the
natural projection

E� ! U 1E ! U 1E=U
2
E ' kE :

We denote the image of � in cE� by z�. By our construction,

� z� is quadratic;

� z�xs
i
¤ z� for any 1 � i < n.

Therefore IndWFWE z� is self-dual and irreducible of dimension n. This construction gives an
injection

.ckF n ¹1º/=� ! Irr?;n.F /:

Here we define �1 � �2 if there is some 1 � i � n such that z�xs
i

1 D z�2. Notice that there
are at most n elements in each equivalence class. Hence the LHS of this injection has at
least

2du � 1

n

elements. By our assumption, we are done.
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Appendix D. On irreducible conjugate self-dual Galois representations

In this appendix, we consider irreducible conjugate self-dual representations of the Weil
group of a local field. The results in this appendix supplement our proof of Corollary 6.15
in Case U.

Let F be a non-Archimedean local field with characteristic zero, and E be a quadratic
field extension of F . LetWF andWE be the Weil groups of F and E respectively. We fix
an s 2 WF nWE . We use IrrS;dF .E/ (resp. IrrO;dF .E/) to denote the irreducible conjugate
symplectic (resp. conjugate orthogonal) representation of WE of dimension d .

Lemma D.1. Suppose that

(1) F is a finite extension of Qp and p ¤ 2;

(2) E=F is ramified.

Then for any positive integer n, En WD E ˝F Fn is a ramified quadratic field extension
of Fn, where Fn is the unique degree n unramified extension of F .

Proof. By our assumptions, we can choose a uniformizer � of E such that �2 is a uni-
formizer of F . Then

E ' F Œx�=.x2 � �2/:

Notice that for each positive integer n, �2 is also uniformizer of Fn, hence the polynomial
x2 � �2 is also irreducible in Fn. It then follows that En WD E ˝F Fn is a ramified
quadratic field extension of Fn.

In the rest of this appendix, we assume that the local fields F and E satisfy the condi-
tions in this lemma. We also retain the notations in the proof of the lemma. Let �n be the
Galois group of Fn=F , and kn the residue field of both Fn and En. We denote by du the
degree of k1 over Fp . In the spirit of Theorem C.6, we prove the following.

Theorem D.2. Fix a positive integer n. Let N be an arbitrary positive integer. Suppose

pdu � 1

n
> N:

Then, for \ 2 ¹S;Oº, we have
jIrr\;nF j > N:

Proof. By the structure theorem of local fields, we have

E�n ' �
Z
� k�n � U

1
En
; NmEn=Fn.E

�
n / ' �

2Z
� .k�n /

2
� U 1Fn ;

where U 1En and U 1Fn are as in the proof of Theorem C.6. These two isomorphisms are
indeed �n-equivariant. They induce another �n-equivariant isomorphism

E�n =NmEn=Fn.E
�
n / ' .Z=2Z/ � .k

�
n =.k

�
n /
2/ � .U 1En=U

1
Fn
/:
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Notice that U 1Fn � U
2
En

as �n-modules. Hence we obtain a �n-equivariant surjection

U 1En=U
1
Fn
! U 1En=U

2
En
' kEn :

By the same trick as in the proof of Theorem C.6, for any non-trivial character � of kE
we can produce a character z� of E�n as follows: firstly we fix some x 2 kEn such that
¹
.x/ j 
 2 �nº is a basis of kEn over kE , which allows us to identify the Pontryagin dual
of kEn with the set of n-tuples of characters of kE by

.�
 /
2�n 7!
�
� � 
.x/ 7! �
 .�/; � 2 kE

�
I

then, under this identification, � can be regarded as a character of kEn via

� 7! .�;1; : : : ;1/;

which we shall still denote by �; finally, we pull back the character

1 � sgn � � .resp. 1 � 1 � �/

of .Z=2Z/ � .k�n =.k
�
n /
2/ � kEn along the natural projections

E�n ! E�n =NmEn=Fn.E
�
n /! .Z=2Z/ � .k�n =.k

�
n /
2/ � kEn :

We denote the image of � in cE�n by z�. By our construction,

� z� is conjugate symplectic (resp. conjugate orthogonal) with respect to Fn;

� z�
 ¤ z� for any 1 ¤ 
 2 �n.

Therefore IndWEWEn z� is conjugate symplectic (resp. conjugate orthogonal) and irreducible
of dimension n. This construction gives an injection

.ckE n ¹1º/=� ! IrrS;nF .E/ .resp. .ckE n ¹1º/=� ! IrrO;n
F .E//:

Here we define �1 � �2 if there is some 1¤ 
 2 �n such that z�
1 D z�2. Notice that there
are at most n elements in each equivalence class. Hence the LHS of this injection has at
least

pdu � 1

n

elements. By our assumption, we are done.

Appendix E. Existence of certain number fields

In this appendix, we prove the existence of certain number fields. The results in this
appendix are used in the proof of Corollary 6.15. We start with a well known general
result.
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Theorem E.1. Let PF be a number field, and v1; : : : ; vr be inequivalent places of PF . Let
Fi D PFvi , and Ki a finite extension of Fi of degree di . Set

d D max ¹di j 1 � i � rº:

Then there exists a degree d extension PK of PF , and places v0i of PK above vi , such that

PKv0
i
' Ki as extensions of Fi for all i D 1; : : : ; r .

Proof. This is a simple application of Krasner’s lemma and the weak approximation the-
orem. Since we do not know a convenient reference, for completeness we briefly sketch
the proof.

Since we are considering characteristic zero fields, any finite extension is simple. For
each i D 1; : : : ; r , let ˛i 2 Ki be such that Ki D Fi .˛i /, and g0i the minimal polynomial
of ˛i over Fi . Then

Fi Œx�=.g
0
i / ' Ki :

Let ˇ0i;1; : : : ; ˇ
0
i;d�di

2 Fi be distinct and such that g0i .ˇ
0
i;j / ¤ 0 for all 1 � j � d � di .

We put
fi .x/ D .x � ˇ

0
i;1/ � � � .x � ˇ

0
i;d�di

/ � g0i .x/:

By the weak approximation theorem, we can take a monic polynomial f 2 PF Œx� of
degree d such that for all 1 � i � r , the coefficients of f are arbitrarily close to the
coefficients of fi (with respect to the valuation vi ). Then by Krasner’s lemma and some
classical analysis, we can take f so close that for all 1 � i � r ,

� f can be decomposed as

f .x/ D .x � ˇi;1/ � � � .x � ˇi;d�di / � gi .x/

for some ˇi;1; : : : ; ˇi;d�di 2 Fi and gi 2 Fi Œx�;

� there is an isomorphism

Fi Œx�=.gi / ' Fi Œx�=.g
0
i / as Fi -algebras.

Note that there exists i0 2 ¹1; : : : ; rº such that di0 D d . It follows that g0i0 is an irreducible
polynomial of degree d in Fi Œx�. Consequently, f is also irreducible in PF Œx�. Therefore

PK WD PF Œx�=.f /

is a field, and one can easily check that PK satisfies all our requirements.

Now let F be a local field, and let E be either F itself or a quadratic extension of F .
Using the theorem above we can prove the existence of a pair of number fields claimed in
the proof of Corollary 6.15.

Corollary E.2. Given a positive integer d and a prime number p, there exists a pair
. PE; PF / of number fields, together with three places u1; u2; w of PF , such that

(1) . PEu1 ; PFu1/ ' . PEu2 ; PFu2/ ' .E; F /;
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(2) PFw is a finite extension of Qp , and the degree of the residue field kw of PFw over Fp
is greater than d ;

(3) if E is a quadratic extension of F , then PEw is a ramified quadratic field extension
of PFw ; if further F is non-Archimedean, then PF is totally imaginary.

Proof. We shall construct the desired number fields from Q. Let

v D

´
` if F is a finite extension of Q`;

1 if F is Archimedean:

Let PF0 be a finite extension of Q, together with three places u01; u
0
2; w, such that PF0;u0

1

and PF0;u0
2

are subfields of F , and w0 is above p. Such an PF0 clearly exists: we can take
PF0 to be a quadratic or biquadratic extension of Q, depending on whether v equals p or

not, such that v is totally split. Let Fw be a finite extension of PF0;w0 such that

Œkw W Fp� > d;

where kw is the residue field of Fw . By the theorem above, there exists a number field PF ,
together with three places u1; u2; w above u01; u

0
2; w

0, such that

PFu1 '
PFu2 ' F and PFw ' Fw :

If further F is non-Archimedean, we can take PF to be totally imaginary. Indeed, if PF is
not totally imaginary, let R be the set of all real places of PF . Applying the theorem above,
we obtain a quadratic extension PF 0 of PF such that u1; u2; w split in PF 0, and

PF 0u ' C

for all u 2 R. Then PF 0 is a totally imaginary field which satisfies our requirements, and
we may replace PF by PF 0. Finally, if E is a quadratic extension of F , once again it follows
from the theorem above that there exists a number field PE such that

PEu1 '
PEu2 ' E;

and PEw is a ramified extension of PFw .
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