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Abstract. In this paper we reconcile several different approaches to Ricci flow through singulari-
ties that have been proposed over the last few years by Kleiner–Lott, Haslhofer–Naber and Bamler.
Specifically, we prove that every noncollapsed limit of Ricci flows, as provided by Bamler’s pre-
compactness theorem, as well as every singular Ricci flow of Kleiner–Lott, is a weak solution in
the sense of Haslhofer–Naber. We also generalize all path-space estimates of Haslhofer–Naber to
the setting of noncollapsed Ricci limit flows. The key step to establish these results is a new hit-
ting estimate for Brownian motion. A fundamental difficulty, in stark contrast to all prior hitting
estimates in the literature, is the lack of lower heat kernel bounds under Ricci flow. To overcome
this, we introduce a novel approach to hitting estimates that compensates for the lack of lower heat
kernel bounds by making use of the heat kernel geometry of space-time.
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1. Introduction

A family .gt /t2I of Riemannian metrics, say on a closed n-dimensional manifold M ,
evolves by Ricci flow if

@tgt D �2Ric.gt /: (1.1)

In a recent breakthrough [1–3], Bamler established a precompactness and partial reg-
ularity theory. The limits provided by his precompactness theorem are so-called metric
flows. A metric flow

X D
�
X; t; .dt /t2I ; .�xIs/x2X;s2I;s�t.x/

�
; (1.2)

is given by a set X, a time-function t WX!R, complete separable metrics dt on the time-
slices Xt D t�1.t/, and probability measures �xIs 2 P .Xs/ such that the Kolmogorov
consistency condition and a certain sharp gradient estimate for the heat flow hold (see
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Section 3.1 for details). In particular, any smooth Ricci flow can of course be viewed as
metric flow by choosing X DM � I , defining t as the projection on I , letting dt be the
induced metrics on time slices, and setting �xIs to be the conjugate heat kernel measure
based at x D .p; t/, i.e.

d�.p;t/Is.q/ D K.p; t I q; s/ dVolgs .q/; (1.3)

where K.p; t I q; s/ is the heat kernel of the Ricci flow (specifically, K solves the for-
wards heat equation as a function of .p; t/ and the conjugate heat equation as a function
of .q; s/).

Under the noncollapsing assumption that the Nash entropy is bounded below, which
is of course perfectly natural in light of Perelman’s monotonicity formula [9], Bamler
proved that the singular set � �X of the limit flow has parabolic �-Minkowski dimension
at most n � 2.

In a different direction, a notion of weak solutions for the Ricci flow has been proposed
a few years earlier by Naber and the second author. Specifically, it has been shown in [6]
that a smooth family .gt /t2I of Riemannian metrics evolves by Ricci flow if and only if
the sharp infinite-dimensional gradient estimate

jrpE.p;t/ŒF �j � E.p;t/Œjr
kF j� (1.4)

holds for all cylinder functions F on the path-space of its space-time. Here, E.p;t/ denotes
the expectation with respect to the Wiener measure of Brownian motion starting at .p; t/,
and rk denotes the parallel gradient, which is defined via a suitable stochastic parallel
transport. Based on this characterization it has been proposed that a possibly singular
space equipped with a time-function and a linear heat flow should be called a weak solu-
tion of the Ricci flow if and only if the sharp infinite-dimensional gradient estimate on
path-space holds for almost every point .p; t/.

The goal of the present paper is to reconcile these two approaches. As we will explain
in detail in Section 3.2, any noncollapsed Ricci limit flow X can be canonically equipped
with a notion of Brownian motion and stochastic parallel transport. For now, let us just
mention that Brownian motionX� starting at x 2X is simply characterized by the formula

Px ŒX�1 2B1; : : : ;X�k 2Bk �D

Z
B1�����Bk

d�xIt.x/��1.x1/ : : :d�xk�1It.x/��k .xk/: (1.5)

Using these notions, we can now state our main theorem:

Theorem 1.1 (Ricci limit flows and weak solutions). Given any noncollapsed Ricci limit
flow X, for any regular point x D .p; t/ we have the infinite-dimensional gradient esti-
mate

jrpE.p;t/ŒF �j � E.p;t/Œjr
kF j� (1.6)

for all cylinder functions F . In particular, any noncollapsed limit of Ricci flows, as pro-
vided by Bamler’s precompactness theorem, is a weak solution of the Ricci flow in the
sense of Haslhofer–Naber.
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In fact, our argument applies to any noncollapsed metric flow that satisfies the partial
regularity properties from [2] and solves the Ricci flow equation on its regular part. In
particular, viewing any singular Ricci flow of Kleiner–Lott [8] as a metric flow as in
[1, Section 3.7], we can confirm a prediction from [6]:

Corollary 1.2 (Singular Ricci flows and weak solutions). Every singular Ricci flow in the
sense of Kleiner–Lott is a weak solution of the Ricci flow in the sense of Haslhofer–Naber.

As another important consequence of Theorem 1.1 all other path-space estimates for
smooth flows from [6] generalize to the path-space of noncollapsed Ricci limit flows as
well:

Corollary 1.3 (Estimates on path-space of Ricci limit flows). The following estimates
hold on the path-space of any noncollapsed Ricci limit flow X:

� For every cylinder function F the induced martingale F� for almost every .p; t/ 2 X

satisfies the quadratic variation estimate

E.p;t/

�
dŒF���

d�

�
� 2E.p;t/Œjr

k
�F j

2�: (1.7)

� For almost every .p; t/ 2X the Ornstein–Uhlenbeck operator on path-space, L�1;�2 DR �2
�1
r
k�
� r

k
� d� , satisfies the log-Sobolev inequality

E.p;t/Œ.F
2/�2 log .F 2/�2 � .F

2/�1 log .F 2/�1 � � 4E.p;t/ŒhF;L�1;�2F i�: (1.8)

� For almost every .p; t/ 2 X the Ornstein–Uhlenbeck operator on path-space satisfies
the spectral gap estimate

E.p;t/Œ.F�2 � F�1/
2� � 2E.p;t/ŒhF;L�1;�2F i�: (1.9)

Indeed, once the gradient estimate (1.6) is established, all other path-space estimates
follow by arguing similarly to [6, Section 4].

The key for proving Theorem 1.1 is a new hitting estimate for the Ricci flow. For
exposition sake, let us first discuss this estimate in the context of smooth Ricci flows. To
this end, let .gt /t2.t0�2r2;t0� be a Ricci flow on a closed n-dimensional manifold M , and
recall that the Nash entropy based at .p0; t0/ is defined by

N.p0;t0/.�/ WD �

Z
M

logK.p0; t0I �; t0 � �/ d�.p0;t0/It0�� �
n

2
.1C log.4��//: (1.10)

Recall also that, given any " > 0, the quantitative singular set is defined by

�" D ¹.p; t/ W rRm.p; t/ � "º; (1.11)

where rRm.p; t/ is the largest r such that jRmj � r�2 on the backward parabolic ball
P�.p; t I r/.
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Theorem 1.4 (Hitting estimate for the Ricci flow). For all Y < 1, ı > 0, and r0 2
.0; r=2/, there exists a constant C D C.n; Y; ı; r0; r/ <1 such that if .gt /t2.t0�2r2;t0�
is a Ricci flow with N.p0;t0/.r

2
0 / � �Y and rRm.p0; t0/ � r0, then Brownian motion X�

starting at .p0; t0/ satisfies

P.p0;t0/
�
X� hits �" \ P

�.p0; t0I r/ for some � 2 Œ0; r2�
�
� C"2�ı (1.12)

for all " > 0.

Heuristically, one can of course easily guess the (almost) quadratic dependence on " in
light of Bamler’s codimension-4 partial regularity result and the intuition that the image of
Brownian curves is 2-dimensional. Indeed, hitting estimates in related easier situations go
back all the way to the classical work of Kakutani [7]. A sharp hitting estimate for Brow-
nian motion in Euclidean space has been obtained by Benjamini–Pemantle–Peres [4].
Recently, in [5] we generalized the Benjamini–Pemantle–Peres estimate to the setting of
spaces with Ricci curvature bounded below.

A fundamental new difficulty in the context of Ricci flow, in stark contrast to all
prior hitting estimates in the literature, is that the heat kernel only has upper bounds, but
no lower bounds. To overcome this, we introduce a novel approach to hitting estimates.
Roughly speaking, we compensate for the lack of lower heat kernel bounds by making
use of the heat kernel geometry as introduced in [3], including in particular the properties
of Hn-centers and P � parabolic balls (see Section 2.1 for a discussion of these notions).

Our proof of the hitting estimate also carries through in the more general setting of
noncollapsed Ricci limit flows. In particular, we obtain the following result:

Corollary 1.5 (Brownian motion on Ricci limit flows). If X is a noncollapsed Ricci limit
flow, and x 2R �X is a regular point, then the Wiener measure Px of Brownian motion
starting at x concentrates on the space of continuous space-time curves that stay entirely
in the regular part R.

Using these results, we can then establish the infinite-dimensional gradient estimate on
path-space by adapting the argument from [6] to our setting. Specifically, we first consider
the On-frame bundle � W F ! R over the regular part. Recalling that this bundle comes
with a distribution of horizontal .nC 1/-planes induced by Hamilton’s space-time con-
nection, we can then construct a process U� 2 F as unique horizontal lift of the Brownian
motion X� 2 R. Thanks to Corollary 1.5 the process U� does not explode. This enables
us to define the stochastic parallel transport map

P� WD U0U
�1
� W TX�Rt.x/�� ! TxRt.x/; (1.13)

which in turn allows us to define the parallel gradient of any cylinder function F.X/ D
f .X�1 ; : : : ; X�k / by

r
kF.X/ D

kX
iD1

P�i grad.i/gt.x/��i
f .X�1 ; : : : ; X�k /: (1.14)
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Another key step is to show that if v is a heat flow, then its gradient at any regular point
x 2 R is given by the Feynman–Kac type representation formula

gradgt v.x/ D Ex ŒPt�s gradgt�s vjRs �; (1.15)

where t D t.x/. To show this, we localize on X n �" via a suitable cutoff function, and
then take the limit "! 0 using Theorem 1.4. Finally, after this is established, we check
that the rest of the argument from [6] goes through with minor adaptions.

This article is organized as follows. In Section 2, we prove Theorem 1.4. In Section 3,
we prove Theorem 1.1.

2. Hitting estimate for Ricci flow

2.1. Notation and preliminaries

Let .gt /t2I be a Ricci flow on a closed n-dimensional manifold M . The heat kernel
K.p; t I q; s/, where p; q 2M and s < t in I , is defined by

.@t ��gt /K.�; �I q; s/ D 0; lim
t&s

K.�; t I q; s/ D ıq : (2.1)

By duality, as a function of the last two variables this solves the conjugate problem

.�@s ��gs CRgs /K.p; t I �; �/ D 0; lim
s%t

K.p; t I �; s/ D ıp: (2.2)

The conjugate heat kernel measure is defined by

d�.p;t/Is.q/ D K.p; t I q; s/dVolgs .q/; d�.p;t/It D ıp: (2.3)

Note that this is a probability measure. We often write

d�.p;t/Is.q/ D .4��/
�n=2e�f.p;t/.q;s/dVolgs .q/; (2.4)

where � D t � s. In terms of the potential f.p;t/ the pointed Nash entropy is given by

N.p;t/.�/ D

Z
f.p;t/.�; t � �/ d�.p;t/It�� �

n

2
: (2.5)

By Perelman’s monotonicity formula [9], the function � 7! �N.p;t/.�/ is concave. We also
recall from [3, Proposition 5.2] that � 7!N.p;t/.�/ is nonincreasing, and hence N.p;t/ � 0,
and

d

d�
N.p;t/.�/ � min

q2M
R.q; t0 � �/ �

n

2�
: (2.6)

Next, we recall the well known fact (see e.g. [3, Lemma 2.7]) that under Ricci flow
the 1-Wasserstein distance between conjugate heat kernel measures is monotone, namely

s 7! dW1.gs/.�.p1;t1/Is; �.p2;t2/Is/ is nondecreasing: (2.7)
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Here, by Kantorovich duality, the 1-Wasserstein distance between probability measures is
given by

dW1.g/.�1; �2/ D sup
Z
M

f d�1 �

Z
M

f d�2; (2.8)

where the supremum is taken over all bounded 1-Lipschitz functions f W .M; g/! R.
Motivated by this, Bamler pointed out that instead of considering conventional parabolic
balls

P.p0; t0I r/ WD Bgt0 .p0I r/ � Œt0 � r
2; t0 C r

2�; (2.9)

it is often more useful to consider so-called P � parabolic balls defined by

P �.p0; t0I r/ WD
®
.p; t/ 2M � Œt0 � r

2; t0 C r
2� W

dW1.gt0�r2 /
.�.p0;t0/It0�r2 ; �.p;t/It0�r2/ < r

¯
: (2.10)

By [3, Proposition 9.4], P � parabolic balls satisfy containment principles similar to those
for conventional parabolic balls, in particular:

.p1; t1/ 2 P
�.p2; t2I r/ H) P �.p2; t2I r/ � P

�.p1; t1I 2r/;

.p1; t1/ 2 P
�.p2; t2I r/ H) P �.p1; t1; r

0/ � P �.p2; t2I r C r
0/:

(2.11)

Moreover, by [3, Theorem 9.8], there is some universal C <1 such that if Œt0 � 2r2; t0�
� I , then for all t 0 2 Œt0 � r2; t0 C r2� the volume of the time t 0-slices is bounded by

Volgt0 .P
�.p0; t0I r/ \ ¹t D t

0
º/ � CeN.p0;t0/.r

2/rn: (2.12)

We will also need the covering result from [3, Theorem 9.11], which says that there is a
universal constant C <1 with the following significance: If Œt0 � 2r2; t0� � I , then for
any X � P �.p0; t0I r/ and any � 2 .0; 1/, we can find points .q1; s1/; : : : ; .qN ; sN / in X
such that

X �

N[
iD1

P �.qi ; si I�r/ and N � C��.nC2/: (2.13)

Now, assuming Œt0 � 2r2; t0� � I and N.p0;t0/.r
2/ � �Y , if we consider the quantitative

singular set
�" D ¹.p; t/ W rRm.p; t/ � "º; (2.14)

where rRm.p; t/ is the largest r such that jRmj � r�2 on P�.p; t I r/ D Bgt .pI r/ �

Œt0 � r
2; t0�, then by Bamler’s quantitative parabolic �-Minkowski codimension-4 bound

[2, Theorem 2.25] we can find points .q1; s1/; : : : ; .qN ; sN / 2 �" \ P
�
�.p0; t0I r/ such

that

�" \ P
�
�.p0; t0I r/ �

N[
iD1

P �.qi ; si I "/ and N � C"�.n�2/�ı ; (2.15)

where C <1 is a constant that only depends on n;Y; r and ı. Note that for smooth flows
we could equally well work with two-sided parabolic balls, but for the generalization
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to noncollapsed limit flows it is better to use backwards parabolic balls P ��.p0; t0I r/ D
P �.p0; t0I r/ \ ¹t � t0º.

Finally, in general there is no containment between P and P � parabolic balls. How-
ever, if we assume rRm.p; t/ � r then by [3, Corollary 9.6] we have

P�.p0; t0I �r/ � P
�
�.p0; t0I r/ and P ��.p0; t0I �r/ � P�.p0; t0I r/; (2.16)

where � > 0 is a universal constant.
Next, by an important discovery of Bamler [3, Corollary 3.7], under Ricci flow

s 7! Vargs .�.p1;t1/Is; �.p2;t2/Is/CHns is nondecreasing: (2.17)

Here, Hn D �2.n � 1/=2 C 4, and the variance between two probability measure on
.M; g/ is defined as

Varg.�1; �2/ D
“
M�M

d2g .x1; x2/ d�1.x1/ d�2.x2/: (2.18)

Motivated by this, as in [3, Definition 3.10] a point .q; s/ is called an Hn-center of .p; t/
if s � t and

Vargs .ıq; �.p;t/Is/ � Hn.t � s/: (2.19)

As a direct consequence of (2.17), given any .p; t/ and s � t , there always exists at
least one Hn-center .q; s/ of .p; t/ and the distance between any two such Hn-centers is
bounded by

ds.q; q
0/ � 2

p
Hn.t � s/: (2.20)

Here and below, ds denotes the metric distance induced by the Riemannian metric gs .
Moreover, as a direct consequence of the definitions, for any A <1 one has

�.p;t/Is.Bgs .q;
p
AHn.t � s// � 1 � A

�1: (2.21)

Finally, in general there is no universal bound on the distance fromHn-centers to the base
point p. However, if we assume for instance rRm.p; t/� r , then by [3, proof of Proposition
9.5] there is a universal C <1 such that for allHn-centers .q; s/with s 2 Œt �C�1r2; t /,

ds.q; p/ � C
p
t � s: (2.22)

To conclude this subsection, let us discuss heat kernel bounds. By [3, Theorem 7.2],
if R � Rmin and Œt � �; t � � I , then for some C D C.� � Rmin/ <1 we have the upper
bound

K.p; t I q; t � �/ �
C

�n=2
e�N.p;t/.�/e�

dt�� .pt�� ;q/
2

10� ; (2.23)

where .pt�� ; t � �/ is any Hn-center of .p; t/. In general, there are no corresponding
lower bounds.

2.2. Proof of the hitting estimate

In this subsection, we prove Theorem 1.4. By time translation and parabolic rescaling we
may assume that t0 D 0 and r D 1, i.e. it suffices to prove the following.
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Theorem 2.1 (Hitting estimate for the Ricci flow; restated). For all Y <1, ı > 0, and
r0 2 .0; 1=2/, there exists a constant C D C.n; Y; ı; r0/ <1, such that if .gt /t2.�2;0�
is a Ricci flow with N.p0;0/.r

2
0 / � �Y and rRm.p0; 0/ � r0, then Brownian motion X�

starting at .p0; 0/ satisfies

P.p0;0/
�
X� hits �" \ P

�.p0; 0I 1/ for some � 2 Œ0; 1�
�
� C"2�ı (2.24)

for all " > 0.

Proof. To begin with, let us observe that since the flow is defined on the interval .�2; 0�,
the maximum principle for the evolution of scalar curvature under Ricci flow implies

R � �n=2 for t 2 Œ�1; 0�: (2.25)

Together with (2.6) and the assumption N.p0;0/.r
2
0 / � �Y this yields

N.p0;0/.1/ � �C.r0; Y /: (2.26)

Hence, we have all the estimates from the previous subsection, which depend on a lower
scalar bound and/or a lower entropy bound, at our disposal. In the following, we will
simply write C for constants that only depend on n;Y; ı and r0, and are allowed to change
from line to line. Also, we can assume throughout that " � r0=10, since otherwise there
is nothing to prove.

As above, denote by X� Brownian motion on our Ricci flow starting at .p0; 0/. Given
any closed subset A �M � Œ�1; 0�, we consider the hitting time

�A WD inf ¹� > 0 W X� 2 Aº 2 Œ0;1�: (2.27)

Note that �A ^ 1 WD min.�A; 1/ is a stopping time. Let � be the distribution of X�A^1,
i.e. set

�.A0/ WD P.p0;0/ŒX�A^1 2 A0� (2.28)

for any Borel set A0 � A. Observe that

P.p0;0/ŒX� 2 A for some 0 � � � 1� D �.A/: (2.29)

In the following, we write A0s WDA0 \ ¹t D sº for the time-slices. Our first goal is to show
the following:

Claim 2.1 (Hitting distribution). The hitting distribution measure � satisfiesZ 0

�1

Z
A0s

Z
A\¹t�sº

K.p; t I q; s/ d�.p; t/ dVolgs .q/ ds

�

Z 0

�1

Z
A0s

C

.�s/n=2
e�

ds.ps;q/
2

10.�s/ dVolgs .q/ ds; (2.30)

where .ps; s/ is any Hn-center of .p0; 0/.
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Proof of Claim 2.1. Consider the expected occupancy time

E.p0;0/

�Z 1

0

1¹X�2A0º d�

�
D

Z 0

�1

Z
A0s

K.p0; 0I q; s/ dVolgs .q/ ds: (2.31)

By the upper heat kernel bound (2.23), remembering also (2.25) and (2.26), we can esti-
mate

E.p0;0/

�Z 1

0

1¹X�2A0º d�

�
�

Z 0

�1

Z
A0s

C

.�s/n=2
e�
�ds.ps;q/

2

10.�s/ dVolgs .q/ ds; (2.32)

where .ps; s/ is any Hn-center of .p0; 0/. On the other hand, we can also compute the
expected occupancy time of A0 by conditioning on X�A^1. Specifically, observing that
X.�A^1/C� is a Brownian motion with initial distribution �, and using the strong Markov
property, we infer that

E.p0;0/

�Z 1

0

1¹X�2A0º d�

�
�

Z
A

Z t

�1

Z
A0s

K.p; t I q; s/ dVolgs .q/ ds d�.p; t/: (2.33)

Changing the order of integration, and combining the above inequalities, the claim fol-
lows.

We now fix
A WD ¹x 2 P ��.p0; 0I 1/ W "=2 � rRm.x/ � "º: (2.34)

Since rRm.p0; 0/ � 10" at the initial point, and rRm D " on the support of �, we see that

�.A/ D P.p0;0/
�
X� hits �" \ P

�.p0; 0I 1/ for some � 2 Œ0; 1�
�
: (2.35)

In the standard proof in the elliptic setting (see e.g. our prior paper [5]), the next step
would be to estimate the capacity-type integral

’
A�A

K d� d�, which however only
works if A is a subset of a fixed space. In our current space-time setting, we consider
instead the averaged quantity

I WD

Z
A

Z
P��.q;sI4�"/

Z
A\¹t�s0º

K.p; t I q0; s0/ d�.p; t/ dVolgs0 .q
0/ds0 d�.q; s/; (2.36)

where � > 0 is a small constant to be chosen below. Using Claim 2.1 we can estimate

I �

Z
A

Z
P��.q;sI4�"/

C

.�s0/n=2
e
�
ds0 .ps0 ;q

0/2

10.�s0/ dVolgs0 .q
0/ ds0 d�.q; s/; (2.37)

where .ps0 ; s0/ is anyHn-center of .p0; 0/ as above. To proceed, we observe that if .q; s/2
spt.�/ and .q0; s0/ 2 P ��.q; sI4�"/, then fixing �D �.n/ small enough we have the bound

1

.�s0/n=2
e
�
ds0 .ps0 ;q

0/2

10.�s0/ � C: (2.38)

Indeed, for sufficiently small �, if �s0 � �r20 then using in particular (2.16) and (2.22) we
see that ds0.ps0 ; q0/ � �r0, and consequently the left hand side of (2.38) is bounded by
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some C D C.r0/ <1. On the other hand, if �s0 � �r20 then the left hand side is clearly
bounded by .�r0/�n=2. Together with the bound (2.12) for the volume of P � parabolic
balls, this yields

I � C"nC2�.A/: (2.39)

Next, we would like to bound our quantity I from below, by estimating the contri-
bution close to the diagonal. Specifically, let us consider P �i D P

�.pi ; ti I �"/ for some
.pi ; ti / 2 A. Recall that if .p; t/ 2 spt.�/, then rRm.p; t/ D ". Together with (2.22), we
thus infer that there is some universal A 2 .1;1/ with the following significance: If
.p; t/; .q; s/ 2 P �i \ spt.�/ satisfy t � s, then for each s0 2 Œt � A�1.�"/2; t � there is an
Hn-center .ps0 ; s0/ of .p; t/ such that

Bgs0 .ps0 ;
p
2Hn.t � s0// � P

�
�.q; sI 4�"/: (2.40)

Combined with (2.21) this impliesZ
P��.q;sI4�"/

K.p; t I q0; s0/ dVolgs0 .q
0/ ds0 �

1

2

Z t

t�A�1.�"/2
ds0 � C�1"2: (2.41)

This yieldsZ
P�
i

Z
P��.q;sI4�"/

Z
P�
i
\¹t�s0º

K.p; t I q0; s0/ d�.p; t/ dVolgs0 .q
0/ ds0 d�.q; s/

� C�1"2
Z
P�
i

Z
P�
i

1¹t�sº d�.p; t/ d�.q; s/ � C
�1 "

2

2
�.P �i /

2: (2.42)

Now, let P �i D P �.pi ; ti I �"/, where .pi ; ti / 2 A for i D 1; : : : ; N , be a covering
of A with minimal covering number N D N.A; �"/, i.e.

N D min
°
n W there are .p1; t1/; : : : ; .pn; tn/ 2 A with A �

[
i

P �.pi ; ti I �"/
±
:

(2.43)

Observe that, thanks to minimality, the covering multiplicity is uniformly bounded.
Indeed, if P �.pi1 ; ti1 I �"/; : : : ; P

�.pim ; tim I �"/ from a minimal covering intersect at
some point .p; t/, then by the containment relations (2.11), these P � parabolic balls are
contained in P �.p; t I 2�"/, and together with the covering result from (2.13) this implies
that m is bounded by some universal constant. Together with (2.42) we thus infer that

I � C�1"2
NX
iD1

�.P �i /
2: (2.44)

Combined with the elementary inequality

�.A/2 �
� NX
iD1

�.P �i /
�2
� N

NX
iD1

�.P �i /
2; (2.45)
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and the upper bound from (2.39), this yields

�.A/ � CN"n: (2.46)

Finally, by Bamler’s quantitative parabolic �-Minkowski codimension-4 bound from
(2.15) we have

N � C"�.n�2/�ı ; (2.47)

and remembering (2.35) we thus conclude that

P.p0;0/
�
X� hits �" \ P

�.p0; 0I 1/ for some � 2 Œ0; 1�
�
� C"2�ı : (2.48)

This finishes the proof of the theorem.

Corollary 2.2 (Occupancy time). Under the same assumption as in Theorem 2.1, we have

E.p0;0/

�Z 1

0

1¹X�2�"\P�.p0;0I1/ºd�

�
� C.n; Y; ı; r0/"

4�ı : (2.49)

Proof. By definition of Brownian motion,

E.p0;0/

�Z 1

0

1¹X�2�"\P�.p0;0I1/º d�

�
D

Z
�"\P��.p0;0I1/

K.p0; 0I q; s/ dVolgs .q/ ds:

(2.50)
Similarly to (2.38) we have the estimate

sup
.q;s/2�"\P��.p0;0I1/

K.p0; 0I q; s/ � C: (2.51)

Now, by Bamler’s quantitative parabolic �-Minkowski codimension-4 bound from (2.15)
the set �" \ P

�
�.p0; t0I 1/ can be covered by C"�nC2�ı P � parabolic balls of radius "

centered at .qi ; si / 2 �" \ P
�
�.p0; 0I 1/. Moreover, by (2.12) the space-time volume of

each P � parabolic ball in the covering is bounded by C"nC2. Combining the above facts
yields the assertion.

3. Ricci limit flows and weak solutions

3.1. Preliminaries on Ricci limit flows

As in [1, Definition 3.2] a metric flow over I � R,

X D
�
X; t; .dt /t2I ; .�xIs/x2X;s2I;s�t.x/

�
; (3.1)

consists of a set X, a time-function t W X ! R, complete separable metrics dt on the
time-slices Xt D t�1.t/, and probability measures �xIs 2 P .Xs/, such that

� �xIt.x/ D ıx for all x 2 X, and for all t1 � t2 � t3 in I and all x 2 Xt3 we have the
Kolmogorov consistency condition

�xIt1 D

Z
Xt2

��It1 d�xIt2 I (3.2)
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� for all s < t in I , any T > 0, and any T �1=2-Lipschitz function fs W Xs ! R, setting
vs D ˆ ı fs , where ˆ W R! .0; 1/ denotes the antiderivative of .4�/�1e�x

2=4, the
function

vt W Xt ! R; x 7!

Z
Xs

vs d�xIs (3.3)

is of the form vt D ˆ ı ft for some .t � s C T /�1=2-Lipschitz function ft WXt ! R.

In particular, on any metric flow we always have a heat flow of integrable functions and
a conjugate heat flow of probability measures, which are defined for s � t.x/ via the
formulas

vt.x/.x/ WD

Z
Xs

vs d�xIs; �s WD

Z
Xt

�xIs d�t.x/.x/ : (3.4)

We recall from [1, Definitions 3.30, 4.25] that a metric flow X is called H -concentrated
if for all s � t in I and all x1; x2 2 Xt ,

Var.�x1Is; �x2Is/ � d
2
t .x1; x2/CH.t � s/; (3.5)

and is called future continuous at t0 2 I if for all conjugate heat flows .�t /t2I 0 with finite
variance and t0 2 I 0, the function t 7!

R
Xt

R
Xt
dt d�t d�t is right continuous at t0.

As in [1, Definition 5.1] a metric flow pair over an interval I consists of a metric
flow X over I 0 � I with jI n I 0j D 0, and a conjugate heat flow .�t /t2I 0 on X with
spt.�t / D Xt for all t 2 I 0.

Now, any sequence .M i ; .git /t2I i ;p
i / of pointed Ricci flows on closed n-dimensional

manifolds, where I i D .�T i ; 0� for ease of notation, can be viewed as sequence of metric
flow pairs by considering the associated metric flows Xi D M i � I i and the conjugate
heat flows .�it / D .�.pi ;0/It /t2I i . By Bamler’s compactness theory [1] after passing to
a subsequence we have F -convergence on compact time intervals to a metric flow pair
.X; .�x1It /t2.�T1;0�/, where X is a future continuous, Hn-concentrated metric flow of
full support over .�T1; 0�, and T1 D limi!1 T

i 2 .0;1�.
We will assume throughout that the sequence of Ricci flows is noncollapsed, that is,

there are constants �0 > 0 and Y0 <1 such that

N.pi ;0/.�0/ � �Y0: (3.6)

Then, by Bamler’s partial regularity theory [2] we have the decomposition

X n ¹x1º D R [ � (3.7)

into the regular and singular parts, where the singular part � has parabolic �-Minkowski
dimension at most n� 2. Furthermore, the F -convergence is smooth on the regular part R,
and the regular part can be equipped with a unique structure of a Ricci flow space-time,

R D .R; t; @t; g/; (3.8)

as introduced by Kleiner–Lott [8]. Hence, R is a smooth .n C 1/-manifold, the time-
function t W R ! .�T1; 0/ is smooth without critical points, @t is a vector field on R

satisfying @tt D 1, and g D .gt /t2.�T1;0/ is a smooth inner product on ker.d t/ � TR
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satisfying the Ricci flow equation

L@t
g D �2Ric.g/: (3.9)

3.2. Brownian motion and stochastic parallel transport

In this subsection, we explain that every noncollapsed Ricci limit flow can be canonically
equipped with a notion of Brownian motion and stochastic parallel transport. In the fol-
lowing X denotes any noncollapsed Ricci limit flow, as in the previous subsection. Recall
in particular that its regular part R � X has the structure of a Ricci flow space-time.

Definition 3.1 (Brownian motion). Brownian motion ¹X�º�2Œ0;T1�jt.x/j/ starting at
x 2 X is defined by

Px ŒX�1 2B1; : : : ;X�k 2Bk �D

Z
B1�����Bk

d�xIt.x/��1.x1/ : : :d�xk�1It.x/��k .xk/ (3.10)

for any Borel sets Bi � Xt.x/��i and any times 0 � �1 < � � � < �k < T1 � jt.x/j.

Thanks to the Kolmogorov consistency condition (3.2), there indeed exists a unique
such probability measure by the Kolmogorov extension theorem. A priori the probability
measure is defined on the infinite product space

Q
�2Œ0;T1�jt.x/j/

Xt.x/�� , but we will see
now that for x 2 R it actually concentrates on the space of continuous space-time curves
that stay entirely in the regular part:

Lemma 3.2 (Concentration on regular part). For any x 2 R we have

Px
�
X� hits � for some � 2 Œ0; T1 � jt.x/j/

�
D 0: (3.11)

Proof. In the proof of Theorem 1.4 we only used the relation between the Wiener measure
and the heat kernel, which now holds true by Definition 3.1, and Bamler’s estimates that
we recalled in Section 2.1, which as explained in [1,2] hold for limit flows as well. Thus,
the hitting estimate (1.12) holds for Ricci limit flows. In particular, applying (1.12) with
"j D j

�1 yields (3.11).
Let us elaborate on a few technical points: The lower scalar bound (2.25) was only

used to derive the Nash entropy bound (2.26) and to get a uniform constant in the heat
kernel upper bound (2.23). In the setting of this subsection, one has instead a lower scalar
bound along the sequence of smooth flows, and can then pass the Nash entropy bound and
the heat kernel upper bound to the limit flow using the definition of F -convergence and
[2, Theorem 2.10]. Furthermore, recall that we defined rRm by taking the supremum over
backward parabolic balls P�.p; t I r/, which is slightly more restrictive than the defini-
tion of r 0Rm used in [2, Theorem 2.30]. Hence, (2.15) indeed holds for noncollapsed limit
flows.

By Lemma 3.2 the processX� stays entirely in R and can be described in terms of the
smooth geometry of R. In particular, almost surely X� is a continuous space-time curve
satisfying t.X� / D t.x/ � � .
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Our next goal is to construct stochastic parallel transport, by adapting the construction
from [6] to the setting of Ricci flow space-times. Let Y be a spatial vector field over R,
and let x 2 R. The covariant spatial derivative in direction X 2 TxRt.x/ is defined as

rXY D r
gt.x/

X Y; (3.12)

using the Levi–Civita connection of the metric gt.x/. Define the covariant time derivative
by

rtY D @tY C
1
2
L@t

g.Y; �/]g ; (3.13)

and observe that with this definition the connection is metric, namely d
dt
jY j2gD2hY;rtY i.

Next, consider the On-bundle � W F ! R whose fibres Fx are given by the orthogonal
maps u W Rn ! .TxRt.x/; gt.x//, and where On acts from the right via composition. For
any spatial vectorX 2 TxRt.x/ its horizontal liftX� is simply given as horizontal lift with
respect to Levi–Civita connection of the metric gt.x/. In particular, we have n canonical
horizontal vector fields

Hi .u/ D .uei /
�; (3.14)

where u 2 F , and e1; : : : ; en denotes the standard basis in Rn. Furthermore, denote byDt

the horizontal lift of the time vector field @t. Similarly to [6, Lemmas 3.1, 3.3], covariant
derivatives of spatial tensor fields on R can be expressed in terms of horizontal derivatives
of the associated equivariant functions on the frame bundle. For example, identifying spa-
tial vector fields Y on R with equivariant functions QY W F ! Rn via QY .u/D u�1Y.�u/,
we have

ertY D Dt
QY : (3.15)

Now, given any initial frame u 2 Fx , there exists a unique horizontal lift U� of X� , i.e.
a horizontal process U� starting at U0 D u such that �.U� / D X� . Concretely, using the
Eells–Elworthy–Malliavin formalism, similarly to [6, Section 3.2], this process is given
as the solution of the stochastic differential equation

dU� D �Dt.U� /d� C

nX
iD1

Hi .U� / ıdW
i
� ; U0 D u; (3.16)

where ıd denotes the Stratonovich differential, and we use the normalization

dW i
� dW

j
� D 2ıijd�: (3.17)

Since we have seen in Lemma 3.2 that X� stays entirely in the regular part R D �.F /,
the solution of (3.16) does not explode, i.e. we have U� 2 F for all � 2 Œ0; T1 � jt.x/j/.

Definition 3.3 (Stochastic parallel transport). The family of isometries

P� WD U0U
�1
� W TX�Rt.x/�� ! TxRt.x/; (3.18)

where U� is the horizontal lift of X� , is called stochastic parallel transport.

Note that, by equivariance under the On-action, P� does not depend on the choice of
u 2 Fx .
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3.3. Gradient estimate on path-space

In this final subsection, we prove that every noncollapsed Ricci limit flow X is a weak
solution in the sense of Haslhofer–Naber. Recall that a cylinder function is a function of
the form

F.X/ D f .X�1 ; : : : ; X�k /; (3.19)

where f W Xt.x/��1 � � � � �Xt.x/��k is a Lipschitz function with compact support, for
some given times 0 � �1 < � � � < �k < T1 � jt.x/j. The parallel gradient rkF.X/ 2
TxRt.x/ is defined by

r
kF.X/ D

kX
iD1

P�i grad.i/gt.x/��i
f .X�1 ; : : : ; X�k /; (3.20)

where grad.i/ denotes the gradient with respect to the i -th entry, andP�i W TX�i Rt.x/��i !

TxRt.x/ denotes stochastic parallel transport (see Definition 3.3). The goal of this sub-
section is to prove the following.

Theorem 3.4 (Gradient estimate). For any x 2 R we have the gradient estimate

jgradgt.x/
Ex ŒF �j � Ex Œjr

kF j� (3.21)

for all cylinder functions F . In particular, X is a weak solution of the Ricci flow in the
sense of Haslhofer–Naber.

Proof. Suppose first k D 1. Then, by the definition of Brownian motion from (3.10), the
expectation on the left hand side is given by the heat flow, namely

Ex ŒF � D v.x/; (3.22)

where v is the heat flow from (3.4) with initial condition f at time t.x/ � �1. Observe
that the gradient of v satisfies

rt gradg v D �g gradg v (3.23)

on R \ t�1..t.x/ � �1; t.x/�/, by virtue of the Ricci flow equation (3.9). The key to
proceed is the following claim:

Claim 3.1 (Feynman–Kac type representation formula). For any x 2 R we have

gradgt.x/
v.x/ D Ex ŒP�1 gradgt.x/��1

f �: (3.24)

Proof of Claim 3.1. Set Y D gradg v, and consider the associated equivariant function
QY .u/ D u�1Y.�u/. Using (3.15) we see that the lift of the evolution equation (3.23) is

given by
Dt
QY D �H QY ; (3.25)

where �H D
Pn
iD1HiHi denotes the horizontal Laplacian.
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Now, for any " > 0, as before denote by �" �X the space-time points with curvature
scale less than ". Let �" W X ! Œ0; 1� be a cutoff function with �" D 1 on X n �" and
�" D 0 on �"=2, and such that

"jr�"j C "
2
jr
2�"j C "

2
j@t�"j � C: (3.26)

Set Q�" WD �" ı � , and consider the truncated function

QY " WD Q�" QY : (3.27)

Similarly to [6, proof of Proposition 3.7] the Ito formula on the frame bundle takes the
form

d'.U� / D

nX
iD1

Hi'.U� /dW
i
� C .�H' �Dt'/.U� /d�: (3.28)

To proceed, recall that by assumption, f is Lipschitz with compact support, and that
thanks to (3.3) this Lipschitz bound is preserved under the flow (see [1, Proposition 3.12]);
namely, jY j � Lip.f /. Together with standard interior estimates we thus get

sup
X

jY j C " sup
Xn�"=2

jrY j � C: (3.29)

Hence, using (3.25) and (3.26), we infer that

d QY ".U� / D

nX
iD1

Hi QY
".U� /dW

i
� C ..

e��" � e@t�"/ QY /.U� /d� C 2

nX
iD1

.Hi Q�"Hi QY /.U� /d�

D martingaleCE" d�; (3.30)

where the error term satisfies

jE"j �
C

"2
1¹X�2�"n�"=2º: (3.31)

This implies

j QY ".u/ � EuŒ QY
".U�1/�j �

C

"2
Ex

�Z �1

0

1¹X�2�"n�"=2º d�

�
: (3.32)

By Corollary 2.2 we have

Ex

�Z �1

0

1¹X�2�"n�"=2º d�

�
� C"4�ı : (3.33)

Moreover, using again Theorem 1.4, and remembering also the Lipschitz estimate from
(3.3), we see that

lim
"!0

EuŒ QY
".U�1/� D EuŒ QY .U�1/�: (3.34)

Also, since u 2 Fx , where x 2 R, we have

lim
"!0

QY ".u/ D QY .u/: (3.35)
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Combining the above facts, we conclude that

QY .u/ D EuŒ QY .U�1/�: (3.36)

Pushing down via � establishes the claim.

Continuing the proof of the theorem, by Claim 3.1 and the definition of the parallel
gradient from (3.20) we thus have

gradgt.x/
Ex ŒF � D Ex Œr

kF �; (3.37)

provided F is a 1-point cylinder function. Arguing by induction on k, similarly to [6,
proof of Theorem 4.2], where we now use Claim 3.1 instead of [6, Proposition 3.36],
we see that the gradient formula (3.37) holds for k-point cylinder functions as well. This
implies the assertion of the theorem.
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