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Abstract. We look for minimal conditions on a two-dimensional metric surface X of locally finite
Hausdorff 2-measure under which X admits an (almost) parametrization with good geometric and
analytic properties. Only assuming thatX is locally geodesic, we show that Jordan domains inX of
finite boundary length admit a quasiconformal almost parametrization. If X satisfies some further
conditions, then such an almost parametrization can be upgraded to a geometrically quasiconformal
homeomorphism or a quasisymmetric homeomorphism. In particular, we recover Rajala’s recent
quasiconformal uniformization theorem in the special case that X is locally geodesic as well as
Bonk–Kleiner’s quasisymmetric uniformization theorem. On the way, we establish the existence of
Sobolev discs spanning a given Jordan curve in X under nearly minimal assumptions on X and
prove the continuity of energy minimizers.

Keywords: uniformization problem, quasiconformal maps, metric surfaces, Sobolev maps in
metric spaces, harmonic maps.

1. Introduction and statement of main results

1.1. Background

Every smooth Riemann surface is conformally diffeomorphic to a surface of constant
curvature by the classical uniformization theorem. The uniformization problem for metric
spaces, widely studied in the field of analysis in metric spaces and of importance also in
other areas, asks to find conditions on a given metric space X , homeomorphic to some
model spaceM , under which there still exists a homeomorphism fromX toM with good
geometric and analytic properties.

In this paper, we consider the uniformization problem for metric spaces homeomor-
phic to a two-dimensional surface and of locally finite Hausdorff 2-measure. In this
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setting, two outstanding uniformization results were proved in [3, 38]. Bonk–Kleiner [3]
showed that an Ahlfors 2-regular metric space X homeomorphic to the standard two-
sphere S2 admits a quasisymmetric homeomorphism to S2 if and only if X is linearly
locally connected. Ahlfors 2-regular means that the Hausdorff 2-measure of balls of
radius r is comparable to r2, and a quasisymmetric homeomorphism is a homeomorph-
ism that distorts shapes in a controlled manner. We refer to Section 3 for the defini-
tions of quasisymmetric homeomorphism and linear local connectedness. More recently,
Rajala [38] gave a characterization of metric planes admitting a geometrically quasicon-
formal homeomorphism to a Euclidean domain. His characterization involves a condi-
tion called reciprocality. A geometrically quasiconformal map is a homeomorphism that
leaves the (conformal) modulus of curve families invariant up to a multiplicative constant.
Rajala’s result in particular gives a new approach to the Bonk–Kleiner quasisymmet-
ric uniformization theorem. The results in [3, 38] have been extended, for example, in
[4, 17, 31, 47, 48]. In [29], Lytchak and the second author provided a further approach to
the Bonk–Kleiner theorem which relies on results about the existence and regularity of
energy and area minimizing discs in metric spaces admitting a quadratic isoperimetric
inequality developed in [26, 28].

While we work with metric surfaces of locally finite Hausdorff 2-measure in this
paper, the uniformization problem has also been studied for fractal spaces, see, for exam-
ple, [25, 32, 33, 39, 40]. The aim of our paper is to establish the existence of parametriz-
ations or almost parametrizations with good properties under nearly minimal conditions
onX . The properties are such that they upgrade to geometrically quasiconformal paramet-
rizations under Rajala’s reciprocality condition and to quasisymmetric parametrizations
under the condition of Ahlfors 2-regularity and linear local connectedness. On the way to
prove our parametrization results, we establish the existence of Sobolev discs spanning
a given Jordan curve under nearly minimal assumptions on X and regularity of energy
minimizers.

1.2. Parametrization results

We now turn to a rigorous discussion of our results. Let X be a metric space homeo-
morphic to a two-dimensional surface and assume that X has locally finite Hausdorff
2-measure. The modulus of a family � of curves in X is defined by

mod.�/ WD inf
�

Z
X

�2 dH2;

where the infimum is taken over all Borel functions �WX ! Œ0;1� for which
R


� ds � 1

for every 
 2 � , see Section 2. A homeomorphism uWD! � from the unit discD � R2

to a domain � � X is called geometrically quasiconformal if u leaves the modulus of
curve families quasi-invariant, thus there exists K � 1 such that

K�1 �mod.�/ � mod.u ı �/ � K �mod.�/
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for every family � of curves in D. Here, u ı � denotes the family of curves u ı 
 with

 2 � . By Rajala’s recent uniformization result [38], � admits a geometrically quasicon-
formal parametrization if and only if� satisfies a certain reciprocality condition described
below. It is natural to wonder to what extent one can weaken this condition and still obtain
an (almost) parametrization of � with suitable properties which can then be upgraded to
a geometrically quasiconformal homeomorphism when X is reciprocal. Our main res-
ult shows that the reciprocality condition can be dropped completely, at least when the
underlying metric space X is locally geodesic.

Theorem 1.1. Let X be a locally geodesic metric space homeomorphic to R2 and of
locally finite Hausdorff 2-measure. If��X is a Jordan domain of finite boundary length,
then there exists a continuous, monotone surjection uW xD ! x� such that

mod.�/ � K �mod.u ı �/ (1.1)

for every family � of curves in xD, where K D 4
�

.

The map u is called monotone if u�1.x/ is connected for every x 2 X ; equivalently,
u is the uniform limit of homeomorphisms unW xD ! x�. Notice that in the generality of
Theorem 1.1, there need not exist a homeomorphism satisfying (1.1), see Example 3.2.
When u is a homeomorphism, then (1.1) is equivalent to the so-called analytic definition
of quasiconformality by [49]. Theorem 1.1 answers a question of Rajala and the second
author stated, e.g., in [18, Question 1.1] in the special case of locally geodesic metric
spaces. The factor K D 4

�
appearing in Theorem 1.1 is optimal in general, see [42],

and the condition that X be locally geodesic can be weakened, see Remark 6.1 below.
Theorem 1.1 also implies an analogue in which the Jordan domain � is replaced by any
open simply connected subset of X with compact closure, see Corollary 6.2.

We now describe conditions on X under which a map u as in the theorem can be
upgraded to a homeomorphism, to a geometrically quasiconformal homeomorphism, or
to a quasisymmetric homeomorphism. Given subsets E, F and G of the metric space X ,
we denote by mod.E; F I G/ the modulus of the family of curves joining E and F
in G. Let u be a map as in Theorem 1.1. If for every x 2 X and every R > 0 with
X n B.x;R/ 6D ; we have

lim
r!0

mod.B.x; r/; X n B.x;R/I xB.x;R// D 0; (1.2)

then u is a homeomorphism, see Proposition 3.1. If, moreover, there exists � > 0 such
that every closed topological square Q � X with boundary edges �1, �2, �3, �4 in cyclic
order satisfies

mod.�1; �3IQ/ �mod.�2; �4IQ/ � �; (1.3)

then the map u is geometrically quasiconformal, as follows from the arguments in [38],
see Proposition 3.3 below. Theorem 1.1 thus yields the following result, which is vari-
ant for locally geodesic metric surfaces of Rajala’s uniformization theorem [38, The-
orem 12.1].
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Corollary 1.2. Let X be a locally geodesic metric space homeomorphic to R2 and of
locally finite Hausdorff 2-measure. If X satisfies conditions (1.2) and (1.3), then for every
Jordan domain� � X , there exists a homeomorphism uW xD! x� which is geometrically
quasiconformal.

Rajala’s reciprocality condition [38] mentioned above consists of (1.2) and (1.3) as
well as a lower bound on the product in (1.3). It has recently been shown in [41] that the
lower bound is always satisfied, see also [6]. Notice that reciprocality is also a necessary
condition for the existence of geometrically quasiconformal homeomorphisms. This is
because R2 satisfies (1.2) and (1.3) and they are preserved under geometrically quasicon-
formal homeomorphisms. The optimal geometric quasiconformality constants were ob-
tained in [42]. It was shown in [38, Theorem 1.6] that if there exists C > 0 such that

H2.B.x; r// � Cr2 (1.4)

for every x 2 X and r > 0, then X is reciprocal. It follows from [29, Theorem 2.5] that
if u is a map as in Theorem 1.1 and if X satisfies (1.4), then u is a quasisymmetric
homeomorphism if and only if x� is linearly locally connected. In particular, Theorem 1.1
recovers the Bonk–Kleiner quasisymmetric uniformization theorem [3] for metric discs
(see Corollary 6.3 below) and, by a quasisymmetric gluing argument as in [29], also for
metric spheres.

1.3. Methods of proof and other results

We now describe the ingredients in the proof of Theorem 1.1. As in the classical existence
proof of conformal parametrizations of smooth surfaces, we will obtain a quasiconformal
almost parametrization u as an energy minimizing disc in X spanning @�. This is similar
to the approach taken in [29]. The proofs in [29] heavily use regularity properties and the
intrinsic structure of energy minimizers in spaces with a quadratic isoperimetric inequality
established in [26, 28]. Such results are not available in our setting.

Let X be a complete metric space and let N 1;2.D; X/ be the space of Newton–
Sobolev maps from D to X in the sense of [15]. For a map u 2 N 1;2.D;X/, we denote
by tr.u/ the trace of u and by E2C.u/ its (Reshetnyak) energy. If � � X is a Jordan curve,
we denote by ƒ.�; X/ the possibly empty family of maps u 2 N 1;2.D; X/ whose trace
has a continuous representative which is a weakly monotone parametrization of � . See
Section 2 for the definitions of these concepts.

Theorem 1.3. Let X be a locally geodesic metric space homeomorphic to xD and let
� � X be a Jordan curve. If u 2 ƒ.�; X/ minimizes the Reshetnyak energy E2C among
all maps in ƒ.�; X/, then u has a representative which is continuous and extends con-
tinuously to the boundary.

Notice that the regularity results for energy minimizers proved in [26] cannot be
applied here since metric spaces as in Theorem 1.3 need not admit a quadratic isoperi-
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metric inequality for curves. In general, the familyƒ.�;X/ in Theorem 1.3 can be empty.
However, we can prove the following theorem.

Theorem 1.4. Let X be a locally geodesic metric space homeomorphic to R2, xD, or S2.
IfX has locally finite Hausdorff 2-measure, thenƒ.�;X/ 6D ; for every rectifiable Jordan
curve � � X .

Theorem 1.1 now easily follows from Theorems 1.3 and 1.4 together with the res-
ults on the existence and structure of area and energy minimizers established in [26, 29].
Indeed, one easily reduces the theorem to the special case that X is geodesic, homeo-
morphic to xD, and x� D X . Since the boundary circle @X of X has finite length, The-
orem 1.4 shows that the family ƒ.@X; X/ is not empty. By [26], there exists an energy
minimizer u in ƒ.@X; X/. By Theorem 1.3, any such u (has a representative which)
is continuous up to the boundary and it thus follows from [29, Theorem 1.2] that u is
monotone. Finally, by [26] energy minimizers are infinitesimally quasiconformal in the
sense that

.gu.z//
2
� K � J.mduz/ (1.5)

with K D 4
�

for almost every z 2 D, where gu denotes the minimal weak upper gradient
of u and J.md uz/ is the Jacobian of u, see Section 2. This implies that u satisfies (1.1),
see Section 3, and thus the outline of the proof of Theorem 1.1 is complete. Notice that
a homeomorphism uW xD ! X is quasiconformal according to the analytic definition if u
belongs to N 1;2.D;X/ and satisfies (1.5), see Section 3.

We mention the following consequence of Theorem 1.4.

Corollary 1.5. Let X be a locally geodesic metric space homeomorphic to R2. If X
has locally finite Hausdorff 2-measure, then X contains a 2-rectifiable subset of positive
Hausdorff measure.

An example showing that X need not be countably 2-rectifiable is given in [44,
Theorem A.1]. Corollary 1.5 also holds for compact metric spaces of any topological
dimension n and finite Hausdorff n-measure with positive lower density almost every-
where. This was proved in [5] using a deep result of Bate [2] about purely unrectifiable
metric spaces.

The paper is structured as follows. In Section 2, we collect the necessary definitions
and some results on Newton–Sobolev maps that will be used later. In Section 3, we show
how quasiconformal almost parametrizations can be upgraded under additional condi-
tions on the underlying space. We prove Theorem 1.3 in Section 4; Theorem 1.4 and
Corollary 1.5 are established in Section 5. In the final Section 6, we discuss the proofs of
the parametrizations results as well as some consequences and generalizations.

Subsequent to the submission of our paper on the arXiv in June 2021, the paper [35]
appeared on the arXiv and has been published in the mean time. In [35], Ntalampekos and
Romney prove a variant of Theorem 1.1 for simply connected geodesic metric surfacesX
of locally finite Hausdorff 2-measure using an approach based on approximating X by
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polyhedral surfaces. In [34], they were able to extend the result to all metric surfaces of
locally finite Hausdorff 2-measure. See also [30] for a generalization of Theorem 1.1 to
compact geodesic metric surfaces of finite Hausdorff 2-measure and of higher topology
following the approach used in this work.

2. Preliminaries

2.1. Basic notation

We denote the open and closed unit discs in the Euclidean plane R2 byD and xD, respect-
ively; that is,

D WD ¹z 2 R2 j jzj < 1º; xD WD ¹z 2 R2 j jzj � 1º;

where jvj denotes the Euclidean norm of the vector v 2 R2. Let .X; d/ be a metric space.
The open and closed balls in X centred at some point x0 of radius r > 0 are

B.x0; r/ WD ¹x 2 X j d.x; x0/ < rº; xB.x0; r/ WD ¹x 2 X j d.x; x0/ � rº:

Let cW I ! X be a curve defined on some interval I � R. The length of c is denoted
by `.c/. If c is absolutely continuous, then c has a metric derivative almost everywhere,
thus the limit

jc0.t/j WD lim
s!t

d.c.s/; c.t//

js � t j

exists for almost every t 2 I , and moreover `.c/ D
R
I
jc0.t/j dt , see [22]. A curve cW

Œa; b� ! X is called geodesic if `.c/ D d.c.a/; c.b//. The metric space X is called
geodesic if any pair of points inX can be joined by a geodesic. It is called locally geodesic
if every point x 2 X has a neighbourhood U such that any two points in U can be joined
by a geodesic in X .

Given m � 0, the m-dimensional Hausdorff measure on X is denoted by Hm. The
normalizing constant is chosen so that Hn agrees with the Lebesgue measure on Euc-
lidean Rn. We write jAj for the Lebesgue measure of a subset A � Rn.

2.2. Conformal modulus

Let X be a metric space and � a family of curves in X . A Borel function �WX ! Œ0;1�

is said to be admissible for � if
R


� ds � 1 for every locally rectifiable curve 
 2 � .

See [15] for the definition of the path integral
R


� ds. The modulus of � is defined by

mod.�/ WD inf
�

Z
X

�2 dH2;

where the infimum is taken over all admissible functions for the family � . We emphasize
that throughout this paper, the reference measure onX will always be the two-dimensional



Quasiconformal almost parametrizations of metric surfaces 5139

Hausdorff measure. By definition, mod.�/D1 if � contains a constant curve. A property
is said to hold for almost every curve in � if it holds for every curve in �0 for some family
�0 � � with mod.� n �0/D 0. In the definition of mod.�/, the infimum can equivalently
be taken over all weakly admissible functions, that is, Borel functions �WX ! Œ0;1� such
that

R


� ds � 1 for almost every locally rectifiable curve 
 2 � .

2.3. Metric space valued Sobolev maps

We recall some definitions from the theory of metric space valued Sobolev maps based on
upper gradients [14, 15, 43] as well as two results concerning the existence and structure
of energy minimizing discs established in [26, 29]. Note that the results in [26] are stated
using a different but equivalent definition of Sobolev mappings.

Let .X; d/ be a complete metric space and U � R2 a bounded domain. A Borel
function gWU ! Œ0;1� is said to be an upper gradient of a map uWU ! X if

d.u.
.a//; u.
.b/// �

Z



g ds (2.1)

for every rectifiable curve 
 W Œa; b�! U . If (2.1) only holds for almost every curve 
 ,
then g is called a weak upper gradient of u. A weak upper gradient g of u is called
minimal weak upper gradient of u if g 2 L2.U / and if for every weak upper gradient h
of u in L2.U /, we have g � h almost everywhere on U .

Denote by L2.U; X/ the collection of measurable and essentially separably valued
maps uWU ! X such that the function ux.z/ WD d.u.z/; x/ belongs to L2.U / for some
and thus any x 2 X . A map u 2 L2.U; X/ belongs to the Newton–Sobolev space
N 1;2.U; X/ if u has a weak upper gradient in L2.U /. Every such map u has a minimal
weak upper gradient gu, unique up to sets of measure zero, see [15, Theorem 6.3.20]. The
Reshetnyak energy of a map u 2 N 1;2.U;X/ is defined by

E2C.u/ WD kguk
2
L2.U /

:

If u2N 1;2.U;X/, then for almost every z 2U there exists a unique semi-norm on R2,
denoted by mduz and called the approximate metric derivative of u, such that

ap lim
y!z

d.u.y/; u.z// �mduz.y � z/
jy � zj

D 0;

see [21] and [26, Proposition 4.3]. For the definition of the approximate limit ap lim,
see [7]. The following notion of parametrized area was introduced in [26].

Definition 2.1. The parametrized (Hausdorff) area of a map u 2N 1;2.U;X/ is defined by

Area.u/ D
Z
U

J.mduz/ dz;

where the Jacobian J.s/ of a semi-norm s on R2 is the Hausdorff 2-measure on .R2; s/
of the unit square if s is a norm and zero otherwise.
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The area of the restriction of u to a measurable set B � U is defined analogously.
It is not difficult to show that J.md uz/ � .gu.z//2 for almost every z 2 U , see [26,
Lemma 7.2]. If u is a homeomorphism onto its image, then the Jacobian J.mduz/ agrees
with the Radon–Nikodym derivative (of the absolutely continuous part) of the measure
u�H2.B/ WD H2.u.B// with respect to the Lebesgue measure at almost every point
z 2 U . We emphasize that u need not satisfy Lusin’s property (N).

Definition 2.2. A map u 2 N 1;2.U;X/ is called infinitesimally K-quasiconformal if

.gu.z//
2
� K � J.mduz/

for almost every z 2 U .

If u 2 N 1;2.D;X/, then for almost every v 2 S1 the curve t 7! u.tv/ with t 2 Œ1
2
; 1/

is absolutely continuous. The trace of u is defined by tr.u/.v/ WD limt%1 u.tv/ for almost
every v 2 S1. It follows from [23] that tr.u/ 2 L2.S1; X/. If u is the restriction to D of
a continuous map yu on xD, then tr.u/D yujS1 . Given a Jordan curve � � X , we denote by
ƒ.�;X/ the possibly empty family of maps v 2N 1;2.D;X/whose trace has a continuous
representative which weakly monotonically parametrizes � . Recall that a continuous map
cWS1 ! � is called a weakly monotone parametrization of � if c is the uniform limit of
homeomorphisms ci WS1 ! � .

Theorem 2.3. Let X be a proper metric space and � � X be a Jordan curve. Ifƒ.�;X/
is not empty, then there exists u 2 ƒ.�;X/ satisfying

E2C.u/ D inf¹E2C.v/ j v 2 ƒ.�;X/º;

and any such u is infinitesimally K-quasiconformal with K D 4
�

.

Proof. The existence of an energy minimizer inƒ.�;X/ follows from [26, Theorem 7.6].
Energy minimizers are infinitesimally K-quasiconformal with K D 4

�
by [27], see also

[26, Lemma 6.5].

We will also need the following theorem proved in [29].

Theorem 2.4. Let X be a geodesic metric space homeomorphic to xD and let uW xD ! X

be a continuous map. If u belongs toƒ.@X;X/ and minimizes the Reshetnyak energy E2C
among all maps in ƒ.@X;X/, then u is monotone.

By definition, the boundary circle @X of X is the image of S1 under a homeomorph-
ism from xD to X . Recall that a continuous map uW xD ! X is monotone if u�1.x/ is
connected for every x 2 X . If X is homeomorphic to xD, then u is monotone if and only
if u is the uniform limit of homeomorphisms unW xD ! X , see [50].

3. Upgrading a quasiconformal almost parametrization

The aim of this short section is to summarize some results which show that maps as in
Theorem 1.1 can be upgraded under certain additional conditions on the underlying space.



Quasiconformal almost parametrizations of metric surfaces 5141

We first recall the connection with infinitesimally quasiconformal maps. Let X be
a complete metric space and uW xD ! X continuous and monotone. If u 2 N 1;2.D; X/

and u is infinitesimally K-quasiconformal, then

mod.�/ � K �mod.u ı �/ (3.1)

for every family � of curves in xD. Conversely, if u is a homeomorphism onto its image
and satisfies (3.1), then u belongs toN 1;2.D;X/ and is infinitesimallyK-quasiconformal.
See [29, Proposition 3.5] and [49, Theorem 1.1] for a proof.

Proposition 3.1. Let X be a complete metric space satisfying (1.2). Let uW xD ! X be
continuous, monotone, and non-constant. If u satisfies (3.1), then u is a homeomorphism
onto its image.

Proof. This follows exactly as in the proof of [29, Theorem 3.6].

In the setting of Theorem 1.1, there need not exist a homeomorphism satisfying (3.1).
The following example illustrating this appears in [28, Example 11.3], see [38] for other
examples.

Example 3.2. Let T D ¹z 2 D j jzj � 1
2
º and let X D xD=T be the quotient metric

space equipped with the quotient metric. Then X is geodesic, homeomorphic to xD, and
has finite Hausdorff 2-measure. We claim that there does not exist a homeomorphism
uW xD ! X satisfying (3.1). Suppose to the contrary that such u exists. Then u is ana-
lytically quasiconformal by the discussion above, thus u is in N 1;2.D; X/ and is infin-
itesimally quasiconformal. Let � W xD ! X be the quotient map and set p WD �.T /. After
possibly precomposing u with a bi-Lipschitz homeomorphism of xD, we may assume that
u.0/D p. Consider the homeomorphism vWD n ¹0º !D n T satisfying �.v.z//D u.z/
for all z 2D n ¹0º. Since � is a local isometry onD n T , it follows that v is (analytically)
quasiconformal, which is impossible since the punctured disc is not quasiconformally
equivalent to the annulus, see [45, Theorem 39.1]. This contradiction finishes the proof of
the claim.

The next proposition follows from the arguments in [38, Section 11].

Proposition 3.3. Let X be a metric space homeomorphic to xD. Suppose uW xD ! X is
a homeomorphism satisfying (3.1). Then u is geometrically quasiconformal if and only
if X satisfies (1.3) for some �.

Proof. Notice that xD satisfies (1.3). Therefore, if u is geometrically quasiconformal, then
also X satisfies (1.3). Suppose now that X satisfies (1.3) for some �. By the discussion at
the beginning of this section, the map u thus belongs to N 1;2.D; X/ and is infinitesim-
allyK-quasiconformal. Identifying xD with the unit square R WD Œ0; 1�2 via a bi-Lipschitz
homeomorphism, we may view u as an element of N 1;2.R; X/. There exists a Borel set
A � R of full measure such that ujA has Lusin’s property (N), see, e.g., [26, Proposi-
tion 3.2]. Let gu be the weak minimal upper gradient of u. We may assume that gu D1
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on R n A. The Borel function hWX ! Œ0;1� defined by h WD 1
guıu�1 is L2-integrable

since Z
X

h2 dH2
D

Z
u.A/

h2 dH2
D

Z
A

1

g2u.z/
J.mduz/ dz � jRj <1

by the area formula, see [21,22]. Arguing exactly as in the proof of [38, Proposition 11.1],
one shows that there exists C only depending on K and � such that C � h is a weak upper
gradient for u�1. The proof of this relies on a lower bound of the formZ

Q.i;j;k/

h2 dH2
� K�12�2k ; (3.2)

where Q.i; j; k/ D u.Œ2�ki; 2�k.i C 1/� � Œ2�kj; 2�k.j C 1/�/ as well as on an upper
bound of the form

mod.�`.i; j; k// � 3� (3.3)

for suitable path families �`.i; j; k/ defined in the proof of [38, Proposition 11.1]. In our
case, (3.2) follows from the area formula, and (3.3) follows from (3.1) and (1.3). Now
let � be a family of curves in R and let % be an admissible function for � . Since for
almost every curve ˇ D u ı 
 2 u ı � we have

1 �

Z



% ds � C �
Z
ˇ

% ı u�1h ds;

it follows that C% ı u�1h is weakly admissible for u ı � . The area formula yields

mod.u ı �/ � C 2 �
Z
X

h2%2 ı u�1 dH2
� C 2

Z
R

%2.z/ dz;

and taking the infimum over %, we conclude that mod.u ı �/ � C 2 �mod.�/.

We finally describe conditions that imply that u is quasisymmetric. Recall that a home-
omorphism uWM ! X between metric spaces is said to be quasisymmetric if there exists
a homeomorphism �W Œ0;1/! Œ0;1/ such that

d.u.z/; u.a// � �.t/ � d.u.z/; u.b//

for all z; a; b 2M with d.z; a/ � t � d.z; b/.

Proposition 3.4. Let X be a metric space homeomorphic to xD and let uW xD ! X be
a homeomorphism satisfying (3.1). If there exists L > 0 such that

H2.B.x; r// � L � r2

for all x 2 X and r > 0, then u is quasisymmetric if and only if X is linearly locally
connected.

We refer, for example, to the appendix of [29] for a proof of the proposition. Here,
a metric space X is called linearly locally connected if there exists � � 1 such that for
every x 2 X and for all r > 0, every pair of points in B.x; r/ can be joined by a con-
tinuum in B.x; �r/, and every pair of points in X nB.x; r/ can be joined by a continuum
in X n B.x; r

�
/.
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4. Continuity of energy minimizers in locally geodesic metric discs

In this section, we prove Theorem 1.3. For an arbitrary map vWD!X to a metric spaceX
and for z 2 D and ı > 0, set

osc.v; z; ı/ WD inf¹diam.v.A// j A � D \ B.z; ı/ subset of full measureº;

called the essential oscillation of v in the ı-ball around z.

Proposition 4.1. Let X be a locally geodesic metric space homeomorphic to xD and let
� � X be a Jordan curve. Suppose u 2ƒ.�;X/ minimizes the Reshetnyak energy among
all maps in ƒ.�; X/. Then for every " > 0, there exists ı > 0 such that osc.u; z; ı/ < "
for every z 2 D.

The theorem easily follows from this proposition.

Proof of Theorem 1.3. Let A D ¹zn j n 2 Nº � D be a countable dense set. For each
k 2N, apply the proposition with "D 1

k
to obtain ık > 0 and negligible subsetsNk;n �D

such that

diam.u.D \ B.zn; ık/ nNk;n// <
1

k

for all n 2 N. Then the set N WD
S
k;n2N Nk;n is negligible. Let " > 0 and choose k 2 N

such that 1
k
< ". If z; z0 2 D n N satisfy jz � z0j < ık , then there exists n such that

z; z0 2 B.zn; ık/ nNk;n and hence

d.u.z/; u.z0// � diam.u.D \ B.zn; ık/ nNk;n// <
1

k
< ":

This shows that ujDnN is uniformly continuous and hence has a unique continuous exten-
sion xu to xD.

We need the following lemma in the proof of Proposition 4.1.

Lemma 4.2. LetX be a locally geodesic metric space homeomorphic to xD and let " > 0.
Then there is "0 > 0 such that for every x 2 X , there exists a bi-Lipschitz curve T � X
with the following property. Either T is the boundary of a Jordan domain � contain-
ing xB.x; "0/ and with diam� � "; or T is a Jordan arc intersecting @X exactly at its
endpoints, and a component � of X n T contains xB.x; "0/ and satisfies diam� � ".

Proof. Let 0 < " < diamX and let %W xD ! X be a homeomorphism. Choose "0; ı > 0
such that

B.%.z/; 2"0/ � %. xD \ B.z; ı// � B
�
%.z/;

"

3

�
for every z 2 xD. Let x 2 X , set z D %�1.x/ and S D ¹w 2 xD j jz � wj D ıº. We can
approximate the curve %.S/ by a bi-Lipschitz curve T � X with the desired properties as
follows.
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We distinguish two cases and first assume that S does not intersect the boundary of xD
and hence is a circle. Let ˛WS1! S be a constant speed parametrization and let r > 0 be
sufficiently small, to be determined later. Let ¹t0; t1; : : : ; tnº be a fine partition of S1 and
let 
 WS1 ! X be a curve such that 
.tk/ D %.˛.tk// and the restriction of 
 to the short
segment Ik D tktkC1 � S1 is a geodesic for every k. If the partition is chosen sufficiently
fine, we have diam.%�1.
.Ik/// < r

8
for all k. In particular, if s; t 2 S1 are such that


.s/ D 
.t/, then the shorter segment st � S1 is such that %�1.
.st// is contained in
a ball of radius r

2
centred on S and thus homotopic relative to endpoints to the constant

curve inside this ball. It is then not difficult to see that, after deleting a finite number of
subcurves from 
 , we obtain a piecewise geodesic Jordan curve T � X such that %�1.T /
is homotopic to S in the r-neighbourhood of S . Moreover, by applying the claim in the
proof of [29, Lemma 4.2], we may further modify T to be a bi-Lipschitz Jordan curve.
The Jordan domain �0 enclosed by %�1.T / satisfies B.z; ı � r/ � �0. Thus, if r > 0

was chosen small enough, then the Jordan domain � D %.�0/ enclosed by T satisfies
xB.x; "0/ � � � B.x; "

2
/, as desired.

The case that S intersects the boundary of xD is analogous and is left to the reader.

We now prove Proposition 4.1. For this, let u 2 ƒ.�;X/ be an energy minimizer, and
denote by ˛W S1 ! X the continuous representative of the trace of u. Let " > 0 and let
"0 2 .0; "/ be as in Lemma 4.2. Choose ı 2 .0; 1

4
/ so small that 2�2E2C.u/ < ."

0/2jlog ıj
and such that ˛ maps segments of diameter 2

p
ı to sets of diameter at most "0.

Fix z 2 D and for r > 0 let 
r be a constant speed parametrization of the curve
¹p 2 xD j jp � zj D rº. By the Courant–Lebesgue lemma (see, e.g., [26, Lemma 7.3]),
there exists a setA� .ı;

p
ı/ of strictly positive measure such that u ı 
r has an absolutely

continuous representative, denoted again by u ı 
r , of length

`.u ı 
r / � �
�2E2C.u/
jlog ıj

� 1
2

< "0

for every r 2 A. For almost every r 2 A for which 
r intersects S1, the endpoints of the
absolutely continuous curve u ı 
r coincide with ˛.ar / and ˛.br /, where ar , br are the
endpoints of 
r . We furthermore have

tr.ujD\B.z;r// ı 
r D u ı 
r

for almost every r 2A. Fix r 2A such that all of the above hold and setW WDD\B.z;r/.
Since ˛ maps segments of diameter 2

p
ı to sets of diameter at most "0, it follows that the

image of (the continuous representative of) the trace of ujW is contained in xB.x; "0/ for
some x 2 X . By Lemma 4.2, there exist a bi-Lipschitz curve T � X and a set � with
diam.�/ � " and xB.x; "0/ � � such that � is either a Jordan domain and T D @� or T
is a Jordan arc intersecting @X exactly at its endpoints and � is a component of X n T .
We now claim the following assertion.

Lemma 4.3. The set N D ¹w 2 W j u.w/ 2 X n x�º is negligible.
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With this lemma at hand, we can easily finish the proof of the proposition. Indeed,
we have u.W nN/ � x� and therefore

diam.u.W nN// � diam.x�/ � ":

Hence, since jN j D 0, we obtain

osc.u; z; ı/ � osc.u; z; r/ � ":

Since ı > 0 was independent of z, this proves the proposition.
We are left to prove the lemma above.

Proof of Lemma 4.3. Since u is an energy minimizer, it follows that u is infinitesimally
quasiconformal and, by [27, Theorem 1.1], minimizes the inscribed Riemannian area

Area�i .u/ WD

Z
D

J�i .mduz/ dz

among all maps in ƒ.�; X/. Here, the �i -Jacobian J�i .s/ of a semi-norm s on R2 is
given by J�i .s/ D 0 if s is degenerate and J�i .s/ D �

jLj
if s is a norm, where jLj denotes

the Lebesgue measure of John’s ellipse of ¹v 2 R2 j s.v/ � 1º.
In order to prove thatN is negligible, we suppose to the contrary that jN j>0. We then

claim that Area�i .ujN / > 0. In order to prove the claim, we argue as in the proof of
[12, Proposition 7] and decompose W into horizontal curves ˇt . For almost every t , the
composition u ı ˇt has an absolutely continuous representative ct with speed

jc0t .s/j D mduˇt .s/.ˇ
0
t .s//

for almost every s, see [26, Lemma 4.9]. If H1.ˇt \ N/ > 0, then the set c�1t .X n x�/

is nonempty and open, and thus an at most countable disjoint union of open intervals.
Almost every point in such an interval I is contained in N and, as ct jI has endpoints
in x�, it follows that `.ct jI / > 0. We concludeZ

I

mduˇt .s/.ˇ
0
t .s// ds D

Z
I

jc0t .s/j ds D `.ct jI / > 0

and therefore mduˇt .s/.ˇ
0
t .s// cannot vanish for almost every s 2 I . By Fubini theorem,

we thus obtain thatN contains a setA of strictly positive measure such that mduw 6D 0 for
every w 2 A. Since u is infinitesimally quasiconformal, it follows that J�i .md uw/ > 0
for almost every w 2 A and hence Area�i .ujN / > 0. This proves the claim.

Next, let T and � be as above and notice that there exists a continuous retraction
%0W X ! x� such that %0.X n �/ � T . Since T is a bi-Lipschitz curve, it is locally
Lipschitz n-connected for every n. Moreover, X has Nagata dimension at most 2 by [20].
Hence, by the Lipschitz extension results in [16, 24], we can approximate %0 arbitrarily
closely by a Lipschitz retraction %WX ! x� satisfying %.X n�/� T . (Alternatively, such
a Lipschitz retraction can be constructed using McShane’s extension theorem, see the
proof of [30, Lemma 4.2].) Let vWD ! X be the map which agrees with u on D n W
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and with % ı u on W . Since the trace of ujW has image in �, it follows from the gluing
theorem [23, Theorem 1.12.3] that v 2 N 1;2.D; X/ and tr.v/ D tr.u/; in particular, we
have v 2 ƒ.�;X/. Notice that v agrees with u onD nN and that Area�i .vjN /D 0 since
v.N / � T . It thus follows that

Area�i .u/ D Area�i .ujDnN /C Area�i .ujN / > Area�i .ujDnN / D Area�i .v/;

which contradicts the area minimization property of u. This completes the proof of the
lemma.

5. Non-trivial Sobolev maps in locally geodesic metric surfaces

In this section, we establish Theorem 1.4. In its proof, we will use the fact that every
compact metric space isometrically embeds into an injective metric space which is again
compact. Recall that a metric space E is injective if for every metric space Z, any 1-
Lipschitz map Y ! E, defined on a subset Y �Z, extends to a 1-Lipschitz mapZ! E.
By [19], for every metric space X there exists an injective metric space E.X/ which
contains X and which is minimal in an appropriate sense among injective metric spaces
containing X . Such a space E.X/ is called injective hull of X and is unique up to
isometry. Moreover, if X is compact, then so is E.X/. See [19] for the proof of these
properties.

The following proposition is the main ingredient in the proof of Theorem 1.4.

Proposition 5.1. Suppose that X is a geodesic metric space homeomorphic to xD. If
H2.X/ <1 and `.@X/ <1, then there exists M > 0 with the following property. For
every " > 0, there is a Lipschitz map vW xD!E.X/ with Area.v/�M and such that vjS1

parametrizes @X and the image of v is contained in the "-neighbourhood of X in E.X/.

It is not difficult to prove Theorem 1.4 using this proposition.

Proof of Theorem 1.4. We first assume that X is geodesic, homeomorphic to xD, and
� D @X . By Proposition 5.1, there exist M > 0 and a sequence .vn/ of Lipschitz maps
vnW xD ! E.X/ with Area.vn/ �M and such that vnjS1 parametrizes @X and the image
of vn is contained in the 1

n
-neighbourhood of X for each n 2 N.

By Morrey’s "-conformality lemma [11], there exist diffeomorphisms %n of xD such
that un WD vn ı %n satisfies

E2C.un/ �
4

�
� Area.un/C 1 �

4M

�
C 1

for every n. Let p1; p2; p3 2 S1 and q1; q2; q3 2 @X be distinct points. After precompos-
ing un with a Möbius transformation (this leaves the energy invariant), we may assume
that every un satisfies the 3-point condition un.pi / D qi for i D 1; 2; 3. Thus, the se-
quence .˛n/ of curves ˛n WD unjS1 is equicontinuous by [26, Proposition 7.4]. Therefore,
after passing to a subsequence, we may assume by the Arzelà–Ascoli theorem that .˛n/
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converges uniformly to a curve ˛. As the uniform limit of parametrizations of @X , the
curve ˛ is a weakly monotone parametrization of @X . Finally, after passing to a further
subsequence, we may assume by the Rellich–Kondrachov theorem [23, Theorem 1.13]
that .un/ converges in L2.D;E.X// to some u 2 N 1;2.D;E.X//. Since the image of un
is contained in the 1

n
-neighbourhood of X for every n, it follows that the essential image

of u is contained in X , so we may view u as an element of N 1;2.D;X/. Since the traces
converge in L2.S1;E.X// to tr.u/ by [23, Theorem 1.12.2], it follows that tr.u/D ˛ and
hence that u 2 ƒ.@X;X/. This shows that ƒ.@X;X/ is not empty, which completes the
proof of the special case.

Now, let X and � be as in the statement of the theorem. Then � encloses a Jordan
domain � � X . Denote by d the metric on X and consider the length metric dx� on x�.
The identity map � W .x�;dx�/! .x�;d/ is a homeomorphism, is 1-Lipschitz, and preserves
the lengths of curves and the Hausdorff 2-measures of Borel subsets, see [29, Lemma 2.1].
In particular, the metric space Y D .x�;dx�/ is geodesic, homeomorphic to xD, and `.@Y /
and H2.Y / are finite. It thus follows from the first part of the proof that ƒ.@Y; Y / is not
empty. Let v 2ƒ.@Y;Y /. Then u WD � ı v is an element ofN 1;2.D;X/ with image in the
compact set x�. Since tr.u/ D � ı tr.v/ and tr.v/ has a continuous representative which
is a weakly monotone parametrization of @Y , we see that u 2 ƒ.�; X/. This shows that
ƒ.�;X/ is not empty and completes the proof.

The remainder of this section is dedicated to the proof of Proposition 5.1. We will
need two lemmas.

Lemma 5.2. There is a constant C � 1 with the following property. Let X be a geodesic
metric space homeomorphic to xD. Then for every r > 0, there exist a finite metric simpli-
cial complex † and C -Lipschitz maps  WX ! † and 'W†! E.X/ subject to:

(i) † has dimension � 2 and the metric on † is geodesic and such that every simplex is
a Euclidean simplex of side length r;

(ii) the image of ' is in the Cr-neighbourhood of X and d.x; '. .x/// � Cr for all
x 2 X .

The lemma is a consequence of [20, Theorem 2] and [1, Theorem 1.6]. For the con-
venience of the reader, we sketch the argument.

Proof. The space X has Nagata dimension at most 2 with some universal constant c by
[20, Theorem 2]. Thus, for a given r > 0, there exists a finite cover ¹B1; : : : ; Bkº of X by
sets Bi � X of diameter at most cr and such that every subset of X of diameter at most r
intersects at most three of the Bi ’s. Define 1-Lipschitz functions �i WX ! R by �i .x/ D
max¹ r

2
� d.x; Bi /; 0º. Then for every x, we have x�.x/ WD �1.x/C � � � C �k.x/ � r

2
and

�i .x/> 0 for at most three indices i . Therefore, the map .x/Dx�.x/�1.�1.x/; : : : ; �k.x//
has image in the 2-skeleton of the simplex � D ¹.v1; : : : ; vk/ 2 Rk j vi � 0; v1 C � � � C
vk D 1º. One calculates as in the proof of [24, Theorem 5.2] that

j .x/ �  .y/j � 24r�1d.x; y/
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for all x; y 2 X . Let † be the smallest subcomplex of � containing  .X/ and define
a map 'W†! E.X/ as follows. For each vertex ei 2 †.0/, let '.ei / be a point in Bi .
If ei , ej are adjacent vertices in †, then d.'.ei /; '.ej // � .2c C 1/r jei � ej j. Using
the Lipschitz connectedness of E.X/, we can extend 'j†.0/ to the 1-simplices and 2-
simplices of † and obtain a map ' which is Cr-Lipschitz on each simplex and satisfies
d.x; '. .x/// � Cr for some C only depending on c. Let d† be the length metric on †
and scaled by the factor rp

2
. Then .†; d†/,  , and ' satisfy the properties of the lemma;

see [1, Section 3] for details.

Given sets Y , Z, and a map f WZ ! Y , we set for each y 2 Y ,

N.f; y/ WD #¹z 2 Z j f .z/ D yº;

the multiplicity of f at y. If Z is an open subset of Rn and Y D Rn and f is continuous,
then the multiplicity function N.f; �/ is (Lebesgue) measurable, see [37]. We need the
following lemma. See [9, Lemma 7.3], [8], and [46, Lemma A.1] for related results.

Lemma 5.3. Let r > 0 and let † be a finite simplicial complex of dimension at most 2,
equipped with a metric such that each simplex is a Euclidean simplex of side length r . Let
furthermore %W xD ! † be a continuous map such that %.S1/ is contained in the 1-skele-
ton †.1/ of † and

L WD 4 � 3�
1
2 r�2

Z
†

N.%; y/ dH2.y/ <1:

Then there exist disjoint compact balls B1; : : : ; Bm � D for some 0 � m � L, and
a continuous map x%W xD ! † which agrees with % on S1 and has the following prop-
erty. For each i D 1; : : : ; m, there exists a 2-simplex �i � † such that x% maps Bi bi-
Lipschitz homeomorphically onto �i , and x%. xD n

Sm
iD1 int.Bi // � †.1/. Moreover, if %jS1

is Lipschitz, then x% can be taken to be Lipschitz on xD.

Let U � R2 be open and f WU ! R2 continuous. Let A � R2 be the subset of points
y 2R2 such thatN.f;y/ <1. For y 2A and x 2 f �1.y/, we denote by �.f;x/ the wind-
ing number of the curve f ı 
 with respect to y, where 
 WS1 ! R2 is given by 
.z/ D
x C rz and r > 0 is chosen so small that xB.x; r/ � U and xB.x; r/ \ f �1.y/D ¹xº.
Clearly, the winding number of f ı 
 with respect to y is independent of the choice of
such r . It follows from [36, Lemma 5.2] that there exists an at most countable set N � A
such that j�.f; x/j � 1 for each y 2 A nN and every x 2 f �1.y/.

Proof of Lemma 5.3. Denote by �1; : : : ; �n the finitely many 2-simplices of † and notice
that H2.�i / D j�i j D

p
3
4
r2. By the remark after the statement of the lemma, for each

i D 1; : : : ; n there exists yi 2 int.�i / such that

j�i j �N.%; yi / �

Z
�i

N.%; y/ dH2.y/

and j�.%; x/j � 1 for every x 2 %�1.yi /. If %�1.yi / is not empty, then we will write
%�1.yi / D ¹xi;1; : : : ; xi;mi

º, where mi D N.%; yi /, and choose ri > 0 so small that the
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balls xB.xi;j ; 2ri / are contained in %�1.int.�i // and are pairwise disjoint. Let � W† n
¹y1; : : : ; ynº ! †.1/ be the continuous map which is the identity on †.1/ and such that
�j�in¹yi º

is the radial projection onto @�i with projection centre yi .
We let x%W xD! † be the continuous map which agrees with � ı % on the complement

of the balls B.xi;j ; 2ri / and such that x%j xB.xi;j ;2ri /
is defined as follows. If �.%; xi;j / D 0,

then x%j@B.xi;j ;2ri / is contractible in @�i and it therefore has a continuous extension to
xB.xi;j ; 2ri / with image inside @�i . In this case, we may in particular assume that
x%j xB.xi;j ;ri /

is constant. If �.%; xi;j / D ˙1, then x%j@B.xi;j ;2ri / is homotopic inside @�i
to a bi-Lipschitz parametrization of @�i . We define x%j xB.xi;j ;2ri /

n B.xi;j ; ri / to be such
a homotopy, and we let x%j xB.xi;j ;ri /

be a bi-Lipschitz homeomorphism onto �i which
extends x%j@B.xi;j ;ri /. It is clear that x% has all the properties listed in the statement of the
proposition, except the last one.

In order to prove the last statement, suppose %jS1 is Lipschitz continuous. Set � WD
D n

S
i;j B.xi;j ; ri / and notice that x%.x�/ � †.1/ and the restriction of x% to @� is Lip-

schitz. Since †.1/ is locally Lipschitz k-connected for every k � 0, it follows from the
Lipschitz extension results [16, 24] that we can approximate x%jx� arbitrarily closely by
a Lipschitz map with image in †.1/ which agrees with x% on @�. This concludes the
proof.

Proof of Proposition 5.1. Let r > 0 be sufficiently small and let †,  , ' and the con-
stant C be as in Lemma 5.2. Let cW S1 ! X be a constant speed parametrization of @X
and set L WD `.@X/. We first claim that there exist a constant C1 only depending on C
and a continuous map %W xD ! † such thatZ

†

N.%; y/ dH2.y/ � C1.H
2.X/C Lr/

and %jS1 is C1L-Lipschitz with image in†.1/ and d.%.t/; .c.t/// � C1r for all t 2 S1.
Indeed, the CL-Lipschitz curve  ı c is homotopic to a C 0L-Lipschitz curve 
 WS1! †

satisfying 
.S1/ � †.1/ and

d. .c.t//; 
.t// � C 0r

for all t 2 S1 via a Lipschitz homotopy h of area Area.h/�C 0Lr , whereC 0 only depends
on C . Such 
 can be obtained by replacing  ı c on the closure of each component of
. ı c/�1.int.�// by the constant speed shortest curve in @� for every 2-simplex � . The
homotopy h is the straight line homotopy in � . In particular, we obtain from the area
formula that Z

†

N.h; y/ dH2.y/ D Area.h/ � C 0Lr:

By the Jordan–Schoenflies theorem, there is a homeomorphism �W xD ! X which ex-
tends c. The coarea inequality for Lipschitz maps [10, Theorem 2.10.25] impliesZ

†

N. ı �; y/ dH2.y/ D

Z
†

N. ; y/ dH2.y/ � C 2H2.X/:
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The map % given by %.z/ D  .�.2z// when jzj � 1
2

and by h. z
jzj
; 2jzj � 1/ when 1

2
�

jzj � 1 satisfies the claim above for some C1 only depending on C .
Next, let x%W xD ! † be a Lipschitz map as in Lemma 5.3 associated with the map %.

We then have

Area.x%/ �
Z
†

N.%; y/ dH2.y/ � C1.H
2.X/C Lr/:

Moreover, since ˛ WD ' ı x%jS1 is .CC1L/-Lipschitz and satisfies

d.˛.t/; c.t// � d.˛.t/; '. .c.t////C d.'. .c.t///; c.t// � C.C1 C 1/r

for all t 2 S1, the Lipschitz extension property of E.X/ implies that there exists a Lip-
schitz homotopy g from ˛ to c in E.X/ of area bounded by C 00Lr and with image in
the .C 00r/-neighbourhood of c for some C 00 only depending on C . The Lipschitz map
vW xD ! E.X/ given by v.z/ D '.x%.2z// when jzj � 1

2
and by v.z/ D g. z

jzj
; 2jzj � 1/

when 1
2
� jzj � 1 agrees with c on S1; its image is contained in the C2r-neighbourhood

of X , and

Area.v/�Area.' ı x%/CArea.g/�C 2C1.H2.X/CLr/CC 00Lr �C2.H
2.X/CLr/

for some constant C2 only depending on C . The proposition now follows.

Proof of Corollary 1.5. Let � � X be a Jordan domain with finite boundary length.
Such � can be constructed as in the proof of Lemma 4.2. By Theorem 1.4 and its
proof, there exists u 2 ƒ.@�; x�/. We claim that Area.u/ > 0. Indeed, otherwise the
infimum of energies over all maps inƒ.@�; x�/would be zero by Morrey’s "-conformality
lemma [11]. Hence an energy minimizer, which exists by Theorem 2.3, would have zero
energy and would thus be constant, a contradiction. This proves the claim.

Let A1 � A2 � � � � � D be measurable sets with jD n
S
Ai j D 0 and such that the

restriction ujAi
is Lipschitz for every i , see, e.g., [26, Proposition 3.2]. Since Area.u/ > 0,

there exists i such that Area.ujAi
/ > 0. By the area formula, we have

Area.ujAi
/ D

Z
u.Ai /

N.ujAi
; x/ dH2.x/

and hence H2.u.Ai // > 0. This completes the proof.

6. Finishing the proofs of the almost parametrization results

In this section, we finish the proofs of the almost parametrization results given in the
introduction and discuss some additional consequences.

Proof of Theorem 1.1. Denote by d the metric on X and consider the length metric dx�
on x�. It follows as in the second part of the proof of Theorem 1.4 that the metric space
Y D .x�; dx�/ is geodesic, homeomorphic to xD, and `.@Y / and H2.Y / are finite. Hence,
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ƒ.@Y; Y / is not empty by Theorem 1.4. Therefore, by Theorem 2.3, there exists an
energy minimizer v in ƒ.@Y; Y /, and every such v is infinitesimally 4

�
-quasiconformal.

Theorem 1.3 further implies that v has a continuous representative which continuously
extends to the boundary, denoted by v again. Finally, Theorem 2.4 implies that v is
monotone.

Since the identity � W Y ! .x�; d/ is a homeomorphism, the map uW xD ! x� � X
defined by u WD � ı v is continuous, surjective, and monotone. Since � is 1-Lipschitz
and its restriction to Y n @Y is a local isometry, it follows furthermore that u belongs to
N 1;2.D;X/ and that u is infinitesimally 4

�
-quasiconformal. Thus, u satisfies (1.1) by the

discussion at the beginning of Section 3. This completes the proof.

Remark 6.1. The condition in Theorem 1.1 that the metric space X be locally geodesic
can be relaxed. It suffices to assume that X D .X; d/ is rectifiably connected, the length
metric di induces the same topology, andXi D .X;di / has locally finite Hausdorff 2-mea-
sure. To see that this suffices, we first observe that the family ƒ of maps u 2 N 1;2.D;X/

such that u is the uniform limit of homeomorphisms xD ! x� is not empty. Indeed, by
Theorem 1.1, there exists a quasiconformal almost parametrization v of .x�; di /. Let
� W .x�; di / ! .x�; d/ be the identity map, and notice that the map u WD � ı v is the
uniform limit of homeomorphisms xD ! x�. Since � is 1-Lipschitz, it follows that u
belongs to N 1;2.D; x�/, so ƒ is not empty. Next, one shows that ƒ contains an energy
minimizer. For this, let .un/ � ƒ be an energy minimizing sequence. After precompos-
ing with Möbius transformations, we may assume that the un satisfy a 3-point condition
and so, by [26, Proposition 7.4], the sequence .unjS1/ is equicontinuous. Hence, the
proof of Proposition 4.1 shows that the sequence .un/ is equicontinuous. Thus, after
passing to a subsequence, we may assume that .un/ converges uniformly to a map u.
This map belongs to ƒ and is an energy minimizer in ƒ and thus is infinitesimally
4
�

-quasiconformal by [27]. In particular, u satisfies (1.1), see Section 3.

The following variant of Theorem 1.1 is closer to the statement of the Riemann map-
ping theorem.

Corollary 6.2. Let X be a locally geodesic metric space homeomorphic to R2 and of
locally finite Hausdorff 2-measure. If U � X is an open and simply connected set with
compact closure, then there exists a continuous, monotone surjection uWD! U such that

mod.�/ � K �mod.u ı �/

for every family � of curves in D, where K D 4
�

.

Proof. Let � � X be a Jordan domain containing xU . We can approximate @� by a bi-
Lipschitz Jordan curve as in the proof of Lemma 4.2 and may therefore assume that � is
of finite boundary length. By Theorem 1.1, there exists a continuous, surjective, monotone
map vW xD ! x� such that mod.�/ � 4

�
� mod.v ı �/ for every family � of curves in xD.

Since v is monotone, it follows that V WD v�1.U / �D is also simply connected, see [29,
Section 2.3]. By the Riemann mapping theorem, there exists a conformal diffeomorphism
'WD ! V . Then the map uWD ! U given by u WD v ı ' has the desired properties.
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Proof of Corollary 1.2. Let U � X be a Jordan domain containing x�. Arguing as in the
proof of Corollary 6.2, we may assume thatU has finite boundary length. By Theorem 1.1,
there exists a continuous, surjective, monotone map vW xD ! xU such that mod.�/ �
4
�
�mod.v ı�/ for every family � of curves in xD. It follows from Propositions 3.1 and 3.3

that v is geometrically quasiconformal homeomorphism. Finally, by the Riemann map-
ping theorem, there exists a conformal diffeomorphism D ! �0, where �0 D v�1.�/,
which moreover extends to a homeomorphism %W xD ! �0. The composition u WD v ı

%W xD ! x� is a geometrically quasiconformal homeomorphism.

Another consequence of Theorem 1.1 is the following variant for discs of the Bonk–
Kleiner quasisymmetric uniformization theorem [3], see also [29].

Corollary 6.3. Let X be a geodesic metric space homeomorphic to xD and with finite
boundary length. If there exists L > 0 such that

H2.B.x; r// � Lr2

for all x 2X and r > 0 and ifX is linearly locally connected, then there exists a quasisym-
metric homeomorphism uW xD ! X .

Using a quasisymmetric gluing theorem exactly as in the proof of [29, Proposition 6.4],
one obtains an analogous statement when X is homeomorphic to S2 and thus the Bonk–
Kleiner quasisymmetric uniformization theorem [3].

Proof. By Theorem 1.1, there exists a continuous, monotone surjection uW xD!X satisfy-
ing (1.1). Since the quadratic upper bound for the Hausdorff measure of balls implies (1.2)
by [13, Lemma 7.18], it follows from Proposition 3.1 that u is a homeomorphism. Finally,
u is quasisymmetric by Proposition 3.4.
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