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Regular nilpotent partial Hessenberg varieties
Tatsuya Horiguchi

Abstract. Let G be a complex semisimple linear algebraic group. Fix a subset ® of simple roots.
Given a lower ideal / in positive roots, one can define the regular nilpotent Hessenberg variety
Hess(N, 1) in the full flag variety G/B. For a ®-ideal I (which is a special lower ideal), we
can define the regular nilpotent partial Hessenberg variety Hessg (N, 1) in the partial flag vari-
ety G/P. In this manuscript we first provide a summand formula and a product formula for the
Poincaré polynomial of regular nilpotent partial Hessenberg varieties. It is a well-known result from
Bernstein—Gelfand—Gelfand that the cohomology ring of the partial flag variety G/ P is isomorphic
to the invariants in the cohomology ring of the full flag variety G/ B under an action of the parabolic
Weyl group Wg generated by ®. We generalize this result to regular nilpotent partial Hessenberg
varieties. More concretely, we give an isomorphism between the cohomology ring of a regular nilpo-
tent partial Hessenberg variety Hessg (N, 1) and the Wg-invariant subring of the cohomology ring
of the regular nilpotent Hessenberg variety Hess(NV, I'). Furthermore, we provide a description of
the cohomology ring for a regular nilpotent partial Hessenberg variety Hessg (X, /) in terms of
the Wg-invariants in the logarithmic derivation module of the ideal arrangement 47, which is a
generalization of the result by Abe—Masuda—Murai—Sato with the author.

1. Introduction

Hessenberg varieties are subvarieties of (full) flag varieties introduced by F. De Mari,
C. Procesi, and M. A. Shayman in [13, 14]. This subject lies in a fruitful intersection of
algebraic geometry, combinatorics, topology, and representation theory. Particular exam-
ples are Springer fibers, Peterson varieties, and toric varieties associated with weight
polytopes. We refer the reader to [3] for a survey of Hessenberg varieties. Two specific
classes of Hessenberg varieties, called regular nilpotent and regular semisimple Hessen-
berg varieties, are related to other research areas such as hyperplane arrangements and
graph theory. In fact, Tymoczko constructed an action of symmetric groups on the coho-
mology of regular semisimple Hessenberg varieties in type A, which is called the dot
action [33]. Shareshian and Wachs conjectured in [29] a relationship between the dot
action and a graded version of the Stanley’s chromatic symmetric functions of incom-
parability graphs of natural unit interval orders. This conjecture was proved by Brosnan
and Chow [12], and soon after, Guay—Paquet gave an alternative proof [19]. On the other
hand, the cohomology rings of regular nilpotent Hessenberg varieties can be described in
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terms of the logarithmic derivation modules of ideal arrangements [5]. By using this rela-
tionship, we obtain an explicit presentation for the cohomology rings of regular nilpotent
Hessenberg varieties [5, 15]. We remark that the cohomology rings of regular nilpotent
Hessenberg varieties in type A was explicitly described in [2] by a localization technique.
Furthermore, it is known that the cohomology ring of regular nilpotent Hessenberg vari-
eties is the trivial part of the dot action on the cohomology ring of regular semisimple
Hessenberg varieties [2,5,7, 12]. We remark that most generalization of this result is given
by [7].

Kiem and Lee generalized the now-settled Shareshian—Wachs conjecture to regular
semisimple partial Hessenberg varieties, which are subvarieties of partial flag varieties
[24]. It is natural to ask how we can generalize the relation with hyperplane arrangements
to regular nilpotent partial Hessenberg varieties. In this paper we describe the cohomol-
ogy rings of regular nilpotent partial Hessenberg varieties in terms of the invariants of the
parabolic Weyl group action on the logarithmic derivation modules of ideal arrangements.
For this purpose, we connect the cohomology ring of regular nilpotent partial Hessenberg
varieties with that of regular nilpotent Hessenberg varieties. We also give a summation
formula and a product formula for the Poincaré polynomial of regular nilpotent partial
Hessenberg varieties. Throughout this manuscript, all cohomology will be taken with
rational coefficients unless otherwise specified.

Let G be a semisimple linear algebraic group over C. Fix a Borel subgroup B of
G and a maximal torus 7' of G in B. The Lie algebras of T C B C G are denoted by
t C b C g. We write @ for the root system of t in g, and ®T and A stand for the set of
positive roots and the set of simple roots in ®, respectively. If I is a lower ideal in ®*,
i.e., a lower closed subset of ®* with respect to the usual partial order < on ®*, then
Hr =0 ® (P, e; 3—«) is a b-submodule of g containing b. Here, g, denotes the root
space associated to a root « € ®. Conversely, any b-submodule of g containing b is of the
form H; for some lower ideal I/ C ®*. For x € g and a lower ideal I C ®7T, we define
the Hessenberg variety Hess(x, I) by

Hess(x,1) = {gB € G/B | Ad(g H(x) € HI}.

If x is a regular nilpotent element N in g, then we call Hess(N, I) a regular nilpotent
Hessenberg variety.

A parabolic subgroup P of G containing B is of the form Pg for some ® C A (see
Section 2 for the definition of Pg). We denote by p = pg the Lie algebra of P. Let @g be
the set of positive roots which are linear combinations of roots in ®. We introduce a partial
order <@ on ® with respect to ® in a natural way. A lower ideal I C ®¥ is a ©-ideal if I
is an upper closed subset of ®T with respect to the partial order < on ®* and I includes
@g. Then Hj is a p-submodule of g containing p. Conversely, every p-submodule of g
containing p is of the form H; for some ©-ideal I C ®™. See Section 2.2 for the details.
For x € g and a @-ideal I C ®™, we define the partial Hessenberg variety Hessg (x, I) by

Hessg(x,]) = {gP € G/P | Ad(g”")(x) € Hy}.
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If ® is the empty set, then P = B. In this case we denote Hessg(x, /) by Hess(x, /) for
simplicity. If we take a regular nilpotent element N in g, then Hessg (N, I) is called a
regular nilpotent partial Hessenberg variety. We will study a geometry and a topology of
Hessg (N, I).

Tymoczko proved that Hess(x, I) is paved by affines for arbitrary x € g in type A4 in
[31] and Hess(N, 1) is paved by affines for classical Lie types by [32]. These results are
generalized to arbitrary Lie types by Precup [26]. Fresse gives an affine paving in a more
general setting in [16], which includes the case of regular nilpotent partial Hessenberg
varieties. We give an alternative and simple proof for an affine paving of Hessg (N, /) in
all Lie types by using Precup’s result. We also give a summation formula for the Poincaré
polynomial of Hessg (N, 1) as follows. Let W be the Weyl group of G. Let Wg be the
subgroup of the Weyl group W generated by s, for « € ® where s, denotes the reflection
associated to a root . We write W © for the minimal left coset representatives, i.e., we =
{weW | £(w) <f(wsy) for all « € ®}. Then the Poincaré polynomial of Hessg (N, I) is

Poin (Hesse(N. 1), \/q) = Z gV @ntl (1.1
wew®
wl(A)C(=DUd
where N (w) is the set of positive roots « such that w(«) is a negative root. This formula
can be written as follows. Let W/ be the Weyl type subsets of a lower ideal I C ®%. See
Section 3.2 for the definition. For a ®-ideal I C &1, we set

Wwhe =1y e w | Y nof = 0).

Then the summation formula in (1.1) can be written as follows.

Theorem 1.1. Let N be a regular nilpotent element in g and I a ©-ideal in ®T. Then the
Poincaré polynomial of Hessg (N, I) is given by

Poin (Hesse(N. 1), \/q) = Z gl

Y ewl.©

We also provide a product formula for the Poincaré polynomial of Hessg (N, 7). We
first show that the natural projection 7 : Hess(N, I) — Hessg (N, I) is a fiber bundle
with fiber P/B. Applying the Leray—Hirsch theorem, we obtain

1_qht(a)+1
Poin (Hesso(N.1). vq) = || — (1.2)

1 — ght@®
acl\dF 4

where ht(«) denotes the height of a root «. We can also describe a product formula for
Poin(Hessg (N, I'), ./q) in terms of the height distribution as follows. For a ©®-ideal I C
®*, we define

A8
i

A =|{e e I\ ®§ | hi(@) =i}| forl <i <r:=max{ht(a)|acl\d}.
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+ . . . e, 1\of
Note that I D &g since [ is a ©-ideal. We call a sequence (4, A, e

the height distribution in I \ @g. We set an integer

L)

.
A%

(\c:bg _ A(\cpg B Al\tbg

; ; it forl <i<r

. . 9§
with the convention A, ,;® = 0.

Theorem 1.2. Let N be a regular nilpotent element in g and I a ®-ideal in ®T. In the
setting above, the Poincaré polynomial of Hessg (N, I) is equal to

r . ned
Poin (Hesse(N. 1), \/q) = 1_[(1 +q+q*+-+g)m
i=1
Note that the right-hand side of the equality in Theorem 1.2 seems to be a rational func-
tion, but it is a polynomial in the variable ¢ since the left-hand side is a polynomial. We will
see an explicit polynomial description for the product formula of Poin(Hesse (N, 1), \/q)
for type A in Section 4.3. Theorems 1.1 and 1.2 yield the following corollary.

Corollary 1.3. For arbitrary ©-ideal I in ®*, we obtain

+

r AL
Z qm ZH(1+q+q2+...+ql)mi . (1.3)
Yewloe i=1

We remark that if ® is the empty set, then the equality in (1.3) was posed as a
conjecture by Sommers and Tymoczko in [30] and they proved this equality for types
A, B, C, F4, E¢, and G,. Also, Schauenburg confirmed Sommers—Tymoczko conjecture
for types Ds, Dg, D7, and E7 by direct computation, and Rohrle proved the conjecture
for type D4 and Eg in [28]. For arbitrary Lie types, Abe, Masuda, Murai, Sato with the
author completely proved Sommers—Tymoczko conjecture by a classification-free argu-
ment in [5]. The equality in (1.3) is a generalization of the equality.

We next study the cohomology rings of regular nilpotent partial Hessenberg varieties.
For this, we recall the cohomology rings of partial flag varieties. The flag variety G/B
admits an action of the Weyl group W, so we obtain the W -action on H*(G/B). The natu-
ral projection 7 : G/ B — G/ P induces the homomorphism 7 * : H*(G/P) — H*(G/B).
It is known from [8] that 77* is injective and its image coincides with H*(G/B)"e where
H*(G/B)"e denotes the invariants in H*(G/B) under the action of Wg. In particular,
7*: H*(G/P) — H*(G/B) induces the isomorphism of graded Q-algebras

H*(G/P) =~ H*(G/B)"®. (1.4)
We generalize this result to regular nilpotent partial Hessenberg varieties.

Theorem 1.4. Let N be a regular nilpotent element in g and I a ©-ideal in ®. Then the
following holds.

(1) The Wg-action on G/ B preserves Hess(N, I).
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(2) The homomorphism wty : H*(Hessg(N, 1)) — H™*(Hess(N, I)) induced from the
natural projection ry : Hess(N, I) — Hessg (N, I) is injective.

(3) Theimage of wy : H* (Hesse(N, 1))~ H™*(Hess(N, I)) coincides with the invari-
ant subring H*(Hess(N, I1))"e. In particular, nt} yields the isomorphism

H*(Hesse (N, 1)) = H*(Hess(N, 1))"®

as graded Q-algebras.

Note that if / C ®7 is a ©-ideal, then the Wg-action on G/B preserves Hess(x, 1)
for arbitrary x € g (not necessarily a regular nilpotent element). See Lemma 5.3 for the
detail.

There is an interesting connection between regular nilpotent Hessenberg varieties and
certain hyperplane arrangements called ideal arrangements. The connection was first stud-
ied by Sommers and Tymoczko in [30], and Abe, Masuda, Murai, Sato with the author
found a concrete connection in [5]. We generalize the connection to regular nilpotent par-
tial Hessenberg varieties. For this purpose, we explain the work of [5].

Let t7 be a lattice which is identified with the character group of 7. We set ta =
t7 ®z Q and its symmetric algebra R = Symtg,. The W-action on tg, naturally extends
a W-action on R. To each « € t7;, we assign the line bundle L, over the flag variety G/B.
The mapping which sends a € t7 to the first Chern class ¢1 (L) of the dual line bundle
L7 yields the ring homomorphism

¢:R—> H*(G/B); awrci(L})

which doubles the grading on . The map ¢ is a surjective W-equivariant map and its
kernel is the ideal (eﬂf) generated by the W-invariants in R with zero constant term by
Borel’s theorem [9]. In particular, this induces an isomorphism of graded QQ-algebras

H*(G/B) = R/(RY).

Let I C ®* be a lower ideal. We write ¢; for the composition of ¢ and the restriction
map induced from the inclusion Hess(N, I) C G/B. By the result of [5] the restriction
map H*(G/B) — H*(Hess(N, I)) is surjective, so the map ¢y is also surjective, i.e.,

g1 : R — H*(G/B) - H*(Hess(N,1)).

In [5] the kernel of ¢j is described in terms of the logarithmic derivation module of the
ideal arrangement, as explained below. The derivation module Der R of R is the collection
of all derivations of &R over Q. For a lower ideal I C ®*, we define the ideal arrangement
A as the set of hyperplanes orthogonal to o € I. The logarithmic derivation module
D(Aj) of the ideal arrangement <A is defined by

D(A;) = {w eDerR | Y(x) e Raforalla e I},
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which is an J2-module. Take a W-invariant non-degenerate quadratic form Q € Symz(ta)W.
Then we define an ideal a(/) of R by

a(l) = {¥(Q) € R | ¥ € D(A;)}, (1.5)

which is independent of a choice of Q. By the result of [5] the kernel of the surjective
map ¢y coincides with a(7). In particular, we have an isomorphism of graded (Q-algebras

H*(Hess(N, 1)) = R/a(I).

We generalize this result to regular nilpotent partial Hessenberg varieties.
Let I be a ®-ideal in ®*. Considering the Wg-invariants of the map ¢y : R —»
H*(G/B) — H*(Hess(N, I')), we obtain

ol - R%e _» H*(G/B)"e — H*(Hess(N, 1))"°.
It follows from (1.4) and Theorem 1.4 that the map (p}v@ can be written as
gr0: R" — H*(G/P) — H*(Hesso(N, 1)),

where the first map is the composition of (1.4) and " : R¥e — H*(G/B)"e, and
the second map is the restriction map induced from the inclusion Hessg (N, 1) C G/P.
Our goal is to describe the kernel of ¢; @ in terms of Wg-invariants in the logarithmic
derivation module D(s;). The W-action on & = Sym t(a induces a W-action on the
derivation module Der R. We set

(DerR)We = {y e DerR | w- ¢ = ¢ forall w € Wg},

which is an R"e-module. We show that if / C &7 is a @-ideal, then the Wg-action on

Der R preserves the logarithmic derivation module D () (see Proposition 6.3). For a
@-ideal I C ®*, we define an R"e-submodule of (Der R)"® by

D(A7)"® = D(A7) N (Der R)Ve = {y € (DerR)"® | Y(a) € R forallew € I}.

Let Q € Sym? (t(’é)W be a W -invariant non-degenerate quadratic form. Then we define an
ideal a(/)e of R by

a(l)e = {y(Q) € R | y € D(A;)"e}.

Note that ¥ (Q) belongs to R"e for any ¥ € (Der R)"©. We also note that the ideal
a(l)e does not dependend on a choice of Q.

Theorem 1.5. For any @-ideal I C ®™, the kernel of the surjective map ¢y ¢ coincides
with the ideal a(1)e. In particular, ¢1,@ induces the isomorphism

H*(Hesso(N, 1)) = R /a(I)e

as graded Q-algebras.
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The paper is organized as follows. After reviewing the definitions for partial Hessen-
berg varieties and ®-ideals in Section 2, we give a summation formula and a product
formula for the Poincaré polynomial of regular nilpotent partial Hessenberg varieties in
Sections 3 and 4, respectively. In Section 5 we describe the cohomology rings of regular
nilpotent partial Hessenberg varieties as the Wg-invariants in the cohomology rings of
regular nilpotent Hessenberg varieties. We finally provide an expression of the cohomol-
ogy rings for regular nilpotent partial Hessenberg varieties in terms of Wg-invariants in
the logarithmic derivation modules of ideal arrangements in Section 6.

2. Setting

In this section we define partial Hessenberg spaces and partial Hessenberg varieties. Then
we introduce a notion of ®-ideals which are in one-to-one correspondence to partial Hes-
senberg spaces.

2.1. Partial Hessenberg varieties

Throughout the article, we introduce the notation below as explained in Section 1.
* G :asemisimple linear algebraic group over C of rank n.

* B :afixed Borel subgroup of G.

* U : the unipotent radical of B.

e T :amaximal torus of G in B.

* tCb C g:thelLiealgebras of T C B C G respectively.

e u:the Lie algebras of U.

e t*: the dual space of t.

e & C t*:theroot system of t in g.

o &1 :the setof positive roots in , i.e., the set of roots of t in u.

e A =l{og,...,0,}: the set of simple roots.

* g : the root space associated to a root o € .

e FE, :abasisof g4.

* ht(a) : the height of a root a, i.e., ht(e) = Y 7_, ¢; when we write e = Y 7_; ¢; .

o W = Ng(T)/T : the Weyl group of G where Ng(T) = {g € G | gT = Tg} is the
normalizer of T'.
e 5o € W : the reflection associated to a root «.
* 5; € W : the simple reflection associated with the simple root ¢; .
We also frequently write
[n] :=={1,2,...,n}.

A subspace H C g is called a Hessenberg space if H is b-submodule and H contains b.
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For x € g and a Hessenberg space H C g, the Hessenberg variety Hess(x, H) is defined
to be the following subvariety of the flag variety G/ B:

Hess(x, H) := {gB € G/B | Ad(g™")(x) € H}.

An element x € g is nilpotent if ad(X) is nilpotent, i.e., ad(X)¥ = 0 for some k > 0.
An element x € g is regular if its G-orbit of the adjoint action has the largest possible
dimension. If x is a regular nilpotent element N of g, then Hess(N, H) is called a regular
nilpotent Hessenberg variety. We note that any two regular nilpotent Hessenberg varieties
are isomorphic [20, Lemma 5.1].

Fix a subset ® C A and we use the following notation throughout the manuscript.
. CDg: the set of positive roots which are linear combinations of roots in ©.
* Lg: the subgroup of G generated by T together with the subgroups U, = {exptEy |

teClfora e @g U (—@g) where —dF = {—a e ® | € <I>z§}~.
» Ug: the subgroup of U generated by U, for @ € ®* \ CDg.
* P = Pg = Lg x Ug: the parabolic subgroup of G containing B.
* p = pe: the Lie algebra of P.
*  Wag: the subgroup of W generated by s; = sq; for o; € ©.

A subspace H C g is called a p-Hessenberg space (or a partial Hessenberg space) if
H is p-submodule and H contains p. Note that a p-Hessenberg space is a (usual) Hes-
senberg space since p D b. For x € g and a p-Hessenberg space H, we define the partial
Hessenberg variety Hessg(x, H) as the following subvariety of the partial flag variety
G/P:

Hesso(x, H) == {gP € G/P | Ad(g”")(x) € H}.

Note that for x, x’ € g with x’ = Ad(g’)(x) for some g’ € G, we have the isomorphism
Hessg(x, H) = Hessg(x’, H) which sends gP to g’gP. If a subset ® C A is the empty
set, then P = B and we write Hessg(x, H) by Hess(x, H). We say that Hessg (N, H) is
a regular nilpotent partial Hessenberg variety when N is a regular nilpotent element of

g. Recall that we fix a basis E, for each root space g,. Let Ny be the regular nilpotent
element of the form

No=3 E. 2.1

i=1

Since we can write Ny = Ad(go)(/N) for some g¢ € G, we have
Hessg (N, H) = Hessg (N, H) 2.2)

which sends gP to gogP (cf. [20, Lemma 5.1]). In particular, any two regular nilpotent
partial Hessenberg varieties are isomorphic.

Remark 2.1. Let H C g be a p-Hessenberg space. Then the partial Hessenberg variety
Hessg(x, H) is the fiber of G xp H — q; [g, y] = Ad(g)(y) over x € g. Here, G xp H
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denotes the quotient of the direct product G x H by the left P-action givenby p - (g,y) =
(gp~ ', Ad(p)(y)) forg € G,y € H,and p € P.In particular, partial Hessenberg varieties
over elements in the same adjoint orbit are isomorphic.

2.2. O-ideals

A lower ideal I C ®7 is a collection of positive roots such thatif « € I, 8 € &7, and
a— B € &, then o — B € I. The partial order < on @ is defined as follows:

fora,f € ®, 0 < f < B — «is asum of positive roots.
Then, a subset I C @V is a lower ideal if and only if it satisfies the following condition:
ael, yedt y<a = yel. (2.3)
To each lower ideal / we assign a subspace H; C g defined by

H =b &g (2.4)

ael

One can easily see that Hy is a Hessenberg space and there is a one-to-one correspondence
as follows:

1:1
{lower ideals in ®*} — {Hessenberg spaces ing}; [ — Hj.

We now explain a notion of ®-ideals which are in one-to-one correspondence to p-
Hessenberg spaces. For this purpose, we introduce a partial order <g on ® with respect
to ® as follows:

fora,f € @, o g B <= P — « is a sum of positive roots in @g.

We define an upper ideal with respect to © as a collection of positive roots I C ®* such
thatif « € I, B € ®f, and & + B € T, then « + B € I. The following lemma can
be proved by a similar argument of the equivalent condition (2.3) for lower ideals. We
provide a proof for the readers’ convenience.

Lemma 2.2. A subset I C ®F is an upper ideal with respect to ® if and only if it satisfies
the following condition:

ael,yedt a<xgy = yel. (2.5)

Proof. Ttis clear that if I satisfies the condition (2.5), then [ is an upper ideal with respect
to ®. In fact, if« € I, B € ®F, and @ + B € T, then @ <g o + B. By (2.5) we have
a+pBel.

We show the opposite implication. Assume that / is an upper ideal with respect to ©.
We take arbitrary y € ®*. Then for any @ € I with « <g y, we show that y € I by a
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descending induction on ht(c). The base case is o« = y, which is clear. Now assume that
ht(cr) < ht(y) and that the claim holds for any &’ € I with o’ <@ y and ht(«’) = ht(«) + 1.
Noting that @ + (y —a) =y € ®T,ify —a € @g, then we have y € I since I is an
upper ideal with respect to ®. Consider the case when y — o ¢ @g. Since o <@ y, one
can write y —o = ) ;s i@ (¢; > 0) for some M C [n] with {o; | i € M} C ©. Let
(', ) be the W-invariant inner product on the R-span of ® transferred from the Killing
form of g restricted to t. We claim that («, «;) < O for some i € M. In fact, if we suppose
that (o, ;) > 0 for all i € M, then («,y — @) = ZieM ¢i (o, @) > 0 which implies
(a,y) > (a,a) > 0. By [21, Lemma 9.4] we have y —a € ®*. This means that y — « is
a positive root that are linear combinations of roots in ®, namely y —« € CDg. This is a
contradiction. Hence, we have («, «;) < 0 for some i € M. Setting o’ = o + «;, one has
a’ € ®* by [21, Lemma 9.4] again. Since @ € / ando; € © C Cbg, we also have o’ € [
by the assumption that I is an upper ideal with respect to ®. It is clear that o’ <@ y and
ht(e’) = ht(a) + 1. By our descending induction hypothesis on ht(«), we have y € I as
desired. ]

Definition 2.3. We say that I C ®* is a O-ideal if I satisfies the following three condi-
tions:

(1) I is a lower ideal,

(2) 1 is an upper ideal with respect to ®;

31> @g.

Remark 2.4. If ® is the empty set, then the set of ®-ideals coincides with the set of lower
ideals.

Lemma 2.5. Let ® C A and p = pe. Then there is a one-to-one correspondence

{®-ideals in ®*} LN {p-Hessenberg spaces in g} (2.6)

which sends I to Hy defined in (2.4). In other words, we have the following commutative
diagram:

{lower ideals in ®*)} — {Hessenberg spaces in g}

incluxionI Tinclusion

{®-ideals in ®*} — {p-Hessenberg spaces in g}.

Proof. Let I be a ©-ideal. We first show that Hy = b & P, c; g—« is a p-Hessenberg
space. Since p = pe = b @ @ﬁeq% g_gand/ D @g, one has Hy D p. In order to show
that Hy is a p-submodule, it suffices to show that [g_g, H;] C Hy forall 8 CIDg since
we already know that Hy is a b-submodule by the condition that / is a lower ideal. We see
that [g_g, b] = —[b,g_g] C —[b, Hy] C Hy forany 8 € cpg since Hy is a b-submodule,
so we need to check that [g_g,q_o] C Hy foralla € / and B € CDg witha + 8 € ®F.
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By the condition that / is an upper ideal with respect to ®, we have @ + 8 € I, which
implies [g_g, -] = §—(a+p) C H;. Hence, Hj is a p-Hessenberg space.

The map I — Hj is clearly injective, so we prove the surjectivity for the map. Let H
be a p-Hessenberg space. Since H contains p = b & @ﬁeq,g g_p, we can write H = Hj
for some unique lower ideal I D @g. We prove that / is an upper ideal with respect to ©.
Ifo € I and B € @ witha + B € T, then we have

a—(@+p) = [a-p-a-o] C [p, H1] C H;

since H = Hj is a p-submodule. This implies that « + 8 € I, so [ is an upper ideal with
respect to ® and hence [ is a ®-ideal as desired. ]

Fix a regular nilpotent element N € g. By Lemma 2.5, every regular nilpotent partial
Hessenberg variety can be written as Hessg (N, Hy) for some unique ®-ideal /. From
next section we will write Hessg (N, I) := Hessg (N, Hy) for simplicity, i.e.,

Hesso(N, 1) = {gP € G/P | Ad(g”")(N) € H;}. 2.7)

In particular, if © is the empty set, i.e., P = B, then we denote Hessg (N, 1) by Hess(N, 1),
namely
Hess(N,I) = {gP € G/B | Ad(g”")(N) € H;}. (2.8)
We record some properties for regular nilpotent Hessenberg varieties as follows.

Proposition 2.6 ([1,26,27]). Let N be a regular nilpotent element in g and I a lower
ideal. Then the associated regular nilpotent Hessenberg variety Hess(N, 1) is irreducible
and its complex dimension is given by dimc Hess(N, 1) = |I].

Remark 2.7. The result above for type A was proved by [6, Lemma 7.1] and [30, Theo-
rem 10.2].

We will see a partial Hessenberg analogue of the properties in Section 4.

2.3. Type A description

We here explain partial Hessenberg varieties for type A in terms of partial Hessenberg
functions, which were introduced by Kiem and Lee in [24]. Let KX := {k;,...,ks} be a
subset of [n — 1] with 1 < k; < --- < kg < n — 1. The partial flag variety in type A4,—_; is
defined as

Flx (C")

= {(Vkp)lspss = Vi, C Vi, T+ C Vg, CC") | dim Vi, = kp forall 1 < p < s}.
Let G = SL,(C) and B the set of the upper triangular matrices of G. Set ®+ = {x; — x; |
I<i<j<n}andA={o;=x;—xjy1]ien—1]}.Let® ={o; € Alien—1]\ K}

and P = Pg = {(aij)ije[n) € G |aij =0ifi > kpand j <k, forall1 < p <s}. Asis
well known, the partial flag variety Flx (C") is naturally identified with G/ P.
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A partial Hessenberg function is defined to be a function 2 : X U {n} — K U {n}
such that i(j) > j forall j € K U{n} and h(ky) < h(kz) < --- < h(ks). We frequently
write a partial Hessenberg function by listing its values in sequence, namely

h = (h(ky), h(ka), ... h(ks), h(n) = n).

When K = [n — 1], such a function 4 : [n] — [n] is called a Hessenberg function. Note that
partial Hessenberg functions (resp. partial Hessenberg varieties) are called generalized
Hessenberg functions (resp. generalized Hessenberg varieties) in [24]. We can extend a
partial Hessenberg function 4 : X U {n} — K U {n} to the Hessenberg function h: [n] —
[1] defined by

h(j) = h(ky) ifky,—y < j <k,forsomel <p<s+1 (2.9)

with the convention that kg = 0 and ks;4+; = n. Remark that the extended Hessenberg
functions % are introduced in [24]. Then, one can easily see the following one-to-one
correspondence

{partial Hessenberg functions X U {n} — KX U {n}} i {p-Hessenberg spaces in g},

which sends a partial Hessenberg function z : X U {n} — K U {n} to the p-Hessenberg
space defined by

H(h) := {(aij)i,jem) € | aij = 0if i > h(j) forall j € [n]}.

Let N be a regular nilpotent matrix (i.e., a nilpotent matrix whose Jordan form consists
of exactly one Jordan block) and /& : K U {n} — K U {n} a partial Hessenberg function.
Then under the identification Flx (C"*) = G/ P, the following subvariety

Hessx (N, h) == {(Vkp)lspss € Flg (C") | NVk, C Vi, foralll < p < s} (2.10)

is isomorphic to the regular nilpotent partial Hessenberg variety Hessg (N, H (h)). Itis also
useful to express arbitrary Hessenberg space H pictorially by drawing a configuration
of boxes on a square grid of size n x n whose shaded boxes correspond to the roots in
®* U (—1) appearing in (2.4) together with diagonal parts (see Example 2.8 below).

Example 2.8. Consider type A9 and K = {2,4,5,8}. Note that ® = A \ {2, 04,5, 08}
For example, h = (4, 5,5, 8, 10) is a partial Hessenberg function and the extended Hes-
senberg function is given by h = (4,4,5,5,5,8,8,8, 10, 10). In this case, we have

+ _
@ = {x1 — X2, X3 — X4, X6 — X7, X6 — Xg, X7 — X8, X9 — X10},
_ &
I = &g U{x) —Xx3,X1 — X4, X2 — X3, X2 — X4, X3 — X5, X4 — X5},

where [ is the ®-ideal corresponding to H (h) under (2.6), i.e., H(h) = b ® Pyes G—a-
The pictures for H(h) and pg = b & 69/36@5 g_g are shown in Figure 1.
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H() : e :

Figure 1. The pictures of H (k) and pg for h = (4,5,5,8,10) and ©® = A \ {2, a4, a5, 08}

3. A summation formula for the Poincaré polynomial of Hessg (N, I)

A summation formula for the Poincaré polynomials of regular nilpotent Hessenberg vari-
eties Hess(N, I') is given by [26]. In this section we provide a summation formula for the
Poincaré polynomials of regular nilpotent partial Hessenberg varieties Hessg (N, I).

3.1. Affine paving

We first review the result of an affine paving for the partial flag variety G/ P. We refer the
reader to [8] for the discussion below.

The Bruhat decomposition for G gives the decomposition G = | |,y BwB. This
yields the following decomposition of the flag variety G/ B:

G/B= || BwB/B.
wew
Each B-orbit BwB/B in G/B is called the Schubert cell. We denote by £(w) the length
of w, namely the smallest integer p of simple reflections needed to write w = s;, Si, *** i, -
It is well known that the Schubert cell BwB/ B is isomorphic to an affine space C*®)_In
fact, we write Uy, := U NwU~w ™! where U~ = woUwy ! and wy is the longest element
in the Weyl group W. Then for w € W, there is an isomorphism

U, =~ BwB/B, 3.1)

which sends u to uwB. It is also known that U,, = C*™ forw e W (e.g., [10, Remarks
in Section 14.12]).

In more generality, the discussion above is generalized to the partial flag variety G/ P
as follows. Let W@ be the minimal left coset representatives, i.e., W := {w e W [ £(w) <
£(ws;) for all i with o; € ®}. Then it is known that the partial flag variety G/ P has the
following decomposition:

G/P= || BwpP/P.
weweo

where we have an isomorphism

Uy =~ BwP/P forwe W, (3.2)
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which sends u to uwP. In particular, BwP /P is isomorphic to C*™) for w € W®. The
decomposition above with the following fact gives a formula for the Poincaré polynomial
for G/ P.

Proposition 3.1 ([17, Section B.3], [18, Examples 1.9.1 and 19.1.11]). Ifa complete alge-
braic variety Z has a filtration Z = Z;y, D Zyy—1 D -+- D Zog D Z_1 = @ by closed subsets,
with each Z; \ Z;_1 a disjoint union of U; ; isomorphic to an affine space C"%D) | then
the homology classes [T,] of the closures of U; j forms a basis of the integral homology
of Z. In particular, the integral cohomology of Z is torsion-free and it is concentrated in
even degree.

In the setting of Proposition 3.1, we say that Z is paved by affines |_|:":0(|_|j Ui ).
The partial flag variety G/ P is paved by affines | |, cpyre BwP/P. In fact, we set

XJ =BwP/PforweW® and Z;= | X[ for0=<i <£(wo)

weWw®
L(w)=i

where BwP /P denotes the closure of the Schubert cell BwP /P which is called the Schu-
bert variety in G/ P. As is well known, the Schubert variety X £ has the decomposition

xr= || Bvp/P

vew®
v<w

where v < w means the Bruhar order, namely a reduced decomposition for v is a substring
of some reduced decomposition for w. Then we have

Zi\Zi.i= || BwP/P.

wew®
L(w)=i

so G/ P is paved by affines | |, c;ye BwP/P. By Proposition 3.1, the Poincaré polyno-
mial of G/ P is given by

Poin(G/P. \/g) = ) ")
wew®

Tymoczko proved that every Hessenberg variety in Lie type A is paved by affines by
[31], and regular nilpotent Hessenberg varieties are paved by affines for classical Lie types
in [32]. For arbitrary Lie types, this result was proved by Precup in [26]. In order to state
the result for the regular nilpotent case, we set

Nw) = {oeedt |w) ed} (3.3)
for w € W where @~ denotes the set of negative roots.

Theorem 3.2 ([26, Theorem 4.10 and Corollary 4.13]). Let Ny be the regular nilpotent
element defined in (2.1) and I a lower ideal in ®T. Let Hess(Ny, 1) be the associated
regular nilpotent Hessenberg variety in (2.8).



Regular nilpotent partial Hessenberg varieties 15

(1) Forall w € W, the intersection Hess(No, I) N BwB/B is nonempty if and only
ifw i (A) C (=1)U DT,
(2) IfHess(Ngy, I) N BwB/ B is nonempty, then

Hess(No, 1) N BwB/B =~ C!¥nIl,

Hence, the regular nilpotent Hessenberg variety Hess(Ny, I) is paved by affines
wew (Hess(Ny, I) N BwB/B).
wl(A)C(-T)udT
(3) Let N be a regular nilpotent element in g. Then the Poincaré polynomial of
Hess(N, 1) is equal to

Poin (Hess(N, 1), /) = > gV @Il (3.4)

wew
wl(A)C(-Hudt

Remark 3.3. It is written as Hess(Ng, /) N BwB/B =~ CI¥N@™HNw=DI j [26], but we
describe it as Hess(No, 1) N BwB/B =~ C¥ NI 3pove since we have

N ™) NnwE=D|=|Nw)nI|.
The proposition below is immediately follows from Theorem 3.2.

Proposition 3.4. Let Ny be the regular nilpotent element defined in (2.1) and I a ®-
ideal in ®T. Let Hessg (No, I) denote the associated regular nilpotent partial Hessenberg
variety in (2.7). Then the following holds.

(1) Foranyw € W®, Hessg(Ng, I) N\ BwP /P is nonempty if and only if w™'(A) C
(=1)u o+,
(2) IfHessg(No, I) N BwP /P is nonempty, then

Hesse(No, 1) N BwP /P = CN NI,

Hence, the regular nilpotent partial Hessenberg variety Hessg (Ny, I) is paved by
affines |_| weWw® (Hessg(No, I) N BwP/P).
wl(A)C(-THudT
(3) Let N g be a regular nilpotent element. The Poincaré polynomial for Hessg (N, I)
is

Poin (Hessg(N. 1), \/q) = Z gV eIl 3.5)

wew®
wl(A)C(-Iudt

Proof. (1) Forw € W€, we have
Hesse(No, )N BwP /P #0@ <= there exists b € B such that Ad ((bw)_l)(No) € H;

<= Hess(Ny, 1) N BwB/B # 0
< w'(A) C(-1)Ud*t (by Theorem 3.2(1)).
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(2) If Hesse(No, I) N BwP /P is nonempty, then the intersection Hessg(No, /) N
BwP /P is isomorphic to

{u € Uy | Ad ((uw)™")(No) € Hy}

under the identification (3.2). This is also identified with Hess(Ny, /) N BwB/B under
(3.1). Thus, the desired isomorphism Hessg(No, I) N BwP /P 2= C!¥ @N11 fo]lows from
Theorem 3.2 (2). By setting

Zi= |J (X} NHesse(No. 1))

weWw®
L(w)=i

in Proposition 3.1, one can see from (1) above that the regular nilpotent partial Hessenberg
variety Hessg(Ny, /) is paved by affines

|| (BwP/P N Hesse(No, 1))
wew®
w=l(A)C(=T)UD+
(3) Since Hessg (N, 1) = Hessg(Ny, 1) by (2.2), we obtain (3.5) from Proposition 3.1
with (2) above. [

Remark 3.5. Fresse gives a result for an affine paving in more general setting in [16].

Example 3.6. We consider the case of type A,—;. We use the notations explained in
Section 2.3. The Weyl group W is the permutation group &, on [1] and W@ is the set of
permutations w € &, such that w(k,—1 + 1) < w(kp—; +2) <--- < w(kp) forall 1 <
p<s+1.Herewerecallthat ® ={o; € A|i € [n—1]\ K} and KX = {kq,..., ks} with
the convention that kg = 0 and kg1 = n. One can also see that w™!(A) C (=) U @t if
and only if w™(w(j) — 1) < A(j) forall j € [n] where h is defined in (2.9) and we take
the convention that w(0) = 0 (cf. [2, Proposition 2.9] and [20, Proposition 5.2]).

For instance, we take K = {2,4,5,8} intype Ag and h = (4,5, 5,8, 10) given in Exam-
ple 2.8. Note that the extended Hessenberg function is h = (4,4,5,5,5,8,8,8,10, 10).
Then the permutations w € W& such that w™!(A) C (—I) U ®7 consists of the following
18 permutations in one-line notation.

12345678910, 12354678910, 12453678910, 13245678910,
13254678910, 14235678910, 14352678910, 15243678910,
15342678910, 23145678910, 23154678910, 24135678910,
25143678910, 34125678910, 34251678910, 35241678910,
45132678910, 45231678910.

In this case, the formula (3.5) for the Poincaré polynomial gives

Poin (Hessy (N, h). /q) = 1 +2q + 4¢* + 4¢° + 4q* + 2¢° + ¢°. (3.6)
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3.2. Weyl type subset

Let / be a lower ideal in ®T. A subset Y C I is of Weyl typeifa,f € Y anda + B € I,
theno+ B eY,andif y,§ € I \Y andy + 6 € I, then y + 8 € I \ Y. This notion
was introduced by Sommers and Tymoczko [30]. The set of the Weyl type subsets of [ is
denoted by W/,

For all w € W, the set N (w) N I is a Weyl type subset of / where N (w) is defined
in (3.3).

Proposition 3.7 ([30, Proposition 6.3]). Let I be a lower ideal in ®%. There is a bijection
n:{weW|w(A)C(-IHudt} - W
which sends w to N (w) N 1. In particular, one can write (3.4) as
Poin (Hess(N, ), \/q) = Z g7l 3.7
Yew!

We generalize the formula in (3.7) to the formula for regular nilpotent partial Hessen-
berg varieties. For this purpose, we set

WO =y e W | Y nof =0} (3.8)
for a ®-ideal I.

Lemma 3.8 ([30, Lemma 5.1]). Let u,v € W. Then, N(v) C N(uv) if and only if
L(uv) = L(u) + £(v).

Lemma 3.9. Let ® C Aand w € W. Then, w € W® ifand only if N (w) N & = 0.

Proof. Let w € W®. Suppose in order to obtain a contradiction that N (w) N @g # 0.
We take a root « € N (w) N CI%. Since o € @g, we have s, € Wp (e.g., [23, Propo-
sition 1.10(a)]). Hence, we have £(wsy) = €(w) + £(s,) [23, Proposition 1.10 (c)]. It
follows from Lemma 3.8 that N (sg) C N (wSe). This inclusion yields a contradiction. In
fact, it is clear that o« € N (s). On the other hand, wsy (o) = —w(x) is a positive root
since & € N (w). This means that @ ¢ N (ws,), which gives a contradiction. Therefore,
we obtain N (w) N @g = 0.

Conversely, we assume that N (w) N @g = @. By [23, Proposition 1.10(c)], there
is a unique ¥ € W and a unique v € Weg such that w = uv. We also have £(w) =
£(u) 4 £(v). Thus, we obtain N (v) C N (w) from Lemma 3.8. This with the assumption
NM(w) N @g = @ yields N (v) N CDg = (. In other words, for any « € CDg, v(x) is a
positive root. This means that v(dDg) = CDg since v € Wg (cf. [23, Proposition 1.10 (a)]).
By [23, Theorem 1.8], v is the identity element of Wg and hence we have w = uv = u €
W as desired. ]

Proposition 3.10. Let ® C A and I a ®-ideal in ®*. Then there is a bijection
ne :{wew®|w(A)c(-IHuot) - we
which sends w to N (w) N I.
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Proof. Consider the bijection 7 in Proposition 3.7. Since I D CI% by a condition of a
®-ideal I, we have

n(w)ﬂ<1>+=N(w)ﬂ]ﬂ<1>+=¢/\/(w)ﬁd>g.

Thus, it follows from Lemma 3.9 that n(w) € W!® if and only if w € W®. Therefore,
the bijection 7 induces the bijection ng. ]

Theorem 3.11. Let N be a regular nilpotent element in g and I a ®-ideal. Let Hessg(N, I)
be the associated regular nilpotent partial Hessenberg variety in (2.7). Then we have

Poin (Hessg(N. 1), \/q) = Z g,
Yewl.®

where W1© is defined in (3.8).

Proof. The result follows from (3.5) and Proposition 3.10. ]

4. A product formula for the Poincaré polynomial of Hessg (N, I)

We see the summation formula in (3.4), while the Poincaré polynomial of a regular nilpo-
tent Hessenberg variety Hess(N, 1) is also described as
1— th(a)+1

Poin (Hess(N, ), \/q) = 1_[

ael

EEVTCR P 4.1
The product formula above was announced by Dale Peterson in [11, Theorem 3] without
proof and it was proved by [5] from the point of view of hyperplane arrangements. In
this section we generalize the formula for Hess(N, I) to the formula of regular nilpotent
partial Hessenberg varieties Hessg (N, I).

4.1. Fiber bundle

We first recall that the natural projection = : G/B — G/ P is a fiber bundle with fiber
P/B. In fact, since the natural map G — G/ P is a principal P-bundle, G xp P/B is a
fiber bundle over G/ P with fiber P/B. Here, G xp P /B is defined by the quotient of the
direct product G x P/B by the left P-action given by p; - (g, p2B) = (gpy!, p1p2B)
forg € G, p»B € P/B, and p; € P. Then we have the identification G/B =~ G xp P/B
which sends gB to [g, e B] where e denotes the identity element of P. Hence, we conclude
that the natural projection 7 : G/B — G/ P is a fiber bundle with fiber P/B.

The following lemma is a key property to study regular nilpotent partial Hessenberg
varieties. We remark that it was discussed in [24, Definition 2.4 and surrounding discus-
sion] for regular semisimple partial Hessenberg varieties in type A.

Lemma 4.1. Let N be a regular nilpotent element of g and I a ®-ideal in ®T. Then, the
natural projection 7ty : Hess(N, 1) — Hessg (N, I) is a fiber bundle with fiber P/B.
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Proof. Consider the following commutative diagram

G/B —" 5 G/P

inclusion] ]inclusion

Hess(N, I) — Hessg (N, I).

It suffices to show that nl_l(gP) is isomorphic to P/B for any gP € Hessg(N, I') since
the local triviality is inherited from that of the fiber bundle = : G/B — G/ P with fiber
P/B. By setting

Gy, ={g€G|Adg™")(N) € Hy}, 4.2)
the regular nilpotent partial Hessenberg variety Hessg (N, I) is identified with the quotient
space Gy, g, /P. Then the fiber of 77 : Gz, /B — Gy, /P at g1 P € Gy H, /P is

n'(81P) = {¢B € Gn.u, /B | g7'g € P} = g1(P/B) = P/B.
This completes the proof. u

Recall that we denote by X f the Schubert variety associated with w € W® in G/ P.
For simplicity, we write X, for the Schubert variety associated with w € W in G/B. The
first equality in the following lemma is a well-known fact.

Lemma 4.2. Let Ny be the regular nilpotent element of g defined in (2.1). Then we have
the following equalities:

P/B = X,0 = Hess(No, @) (= Hess(No.p)).

where X, o is the Schubert variety in G/ B associated with the longest element w0® of We.

Proof. 1t is known that P = Pg = BWgB (e.g., [10, Proposition 14.18] or [22, Sec-
tion 30]), so it holds that

P/B= | | BwB/B=X,e.

weWg

Let G y,,H, be the setin (4.2) for N = Ny. Then we have that
P C GNO,HI “4.3)

for any ©-ideal I C ®*. In fact, if x € H; and g € P, then Ad(g™')(x) € H; since
Hj is a p-submodule. The inclusion (4.3) yields that P/B C Gy, f;/B = Hess(Ny, I)
for arbitrary ®-ideal / C ®™. In particular, P/B C Hess(Nj. Cbg)(: Hess(Ny, p)). By
Proposition 2.6 one has dim¢ P/B = dimc¢ p/b = |CI>J(5| = dimc Hess(No, @g) and
Hess(No, dDg) is irreducible, so we conclude that P/B = Hess(Ny, CIDg) as desired. =

Remark 4.3. 1Itis also well known that P/ B is isomorphic to Lg/Bg where Bg := Lg N
B. In fact, one can easily see that P/ B is the image of the closed embedding Le/Be —
G/ B by a similar argument of Lemma 4.2.
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Proposition 4.4. Let N be a regular nilpotent element in g and I a ®-ideal in ®*. Let
Hesse (N, I) denotes the associated regular nilpotent partial Hessenberg variety in (2.7).
Then the following holds.

(1) Hessg (N, I) is irreducible.
(2) The complex dimension is given by dimc Hessg(N, I) = |I| — |®$ |-
(3) The Poincaré polynomial is described as

ht(a)+1

Poin(Hess®(N,I),ﬁ)= 1_[ 1-4q

1 — ght(@) ~
acl\®Y 1

Proof. (1)Hess(N, I) is irreducible by Proposition 2.6 and 7y : Hess(N, I)—Hessg (N, 1)
is surjective, so Hessg (N, I) is also irreducible.
(2) It follows from Lemma 4.1 that

dimc Hessg (N, 1) = dimc Hess(N, 1) —dim¢ P/B = |I| — |®f|.

Here, we used Proposition 2.6 for the equality dimc Hess(N, 1) = |1].
(3) Consider the following commutative diagram

P/B - G/B il > G/ P

| L P

P/B —L 5 Hess(N,I) —— Hesse(N, 1),

where the horizontal arrows denote the fiber bundles by Lemma 4.1. This induces the
following commutative diagram:

H*(G/P) — ™ s H*(G/B) —Y— H*(P/B)

iie| i H

* *

H*(Hesse(N, 1)) TN H*(Hess(N, I)) AN H*(P/B).

As is well known, the restriction map from the cohomology of G/B to the cohomology
of a Schubert variety is surjective (cf. [8]). This fact with Lemma 4.2 yields that ¢* is
surjective. By the commutative diagram above, (7 is also surjective. Hence, by the Leray—
Hirsch theorem we deduce that

Poin (Hess(N, 1), ﬁ) = Poin(P/B, ,/q) Poin (Hess(a(N, 1), ﬁ)
= Poin (Hess(No. ®§), v/¢) Poin (Hesse (N, 1), /4),

where we used Lemma 4.2 for the last equality above. Therefore, we conclude from (4.1)

that
1— qht(ot)-i-l
Poin (Hess(g(N, 1), ﬁ) = 1_[ _ . ]

1= ht(a)
acl\dF 1
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Remark 4.5. Intype 4,1, set X = {kq,... . ks} withO =ko <ky <kp <--- <k <
kst1 =n.Leth: K U{n} - K U {n} be a partial Hessenberg function. Then, one can
see that Proposition 4.4 (2) for type A,—; is described as

dime Hessyc(N.h) = > (kp — kp—1) (h(kp) — kp).
p=1

Remark that the formula for regular semisimple partial Hessenberg varieties in type A,—1
was given in [24, Theorem 2.3].
4.2. Height distribution

For a subset Y € &1, we define
)LIY = |{ozeY|ht(oz)=i}| forl <i <r,

where r := max{ht(«) | « € Y}. We call a sequence (A}, A%’, ..., AY) the height distri-
bution in Y . We set an integer

mf =2 —Af,, forl<i<r (4.4)

with the convention /\f 41 = 0. It is known that )L{ > )Lé >0 > /\f for arbitrary lower
ideal I C T by [30, Proposition 3.1], which implies that mll >(0foralll <i <r.Then
one can easily see that the formula in (4.1) can be written as follows (cf. [5]):

-
Poin (Hess(N. 1). /g) = [ (1 + ¢ + ¢* + -+ ¢ )™ 4.5)
i=1
Example 4.6. We consider a lower ideal I below in type Ag:

I = {x1 — X2,X1 — X3,X] — X4, X2 — X3, X2 — X4, X3 — X4, X3 — X5, X4 — X5,

X6 — X7,X6 — X8, X7 — X8, X9 — X10}.

The height distribution in [ is ()LI , /\é , )Lg) = (7,4, 1) as shown in Figure 2.

AM=1 X1 — X4
M=4 X1 — X3 | X2 —X4 | X3—X5| X6 — X8
M =7 X1 — X2 | X2 — X3 | X3 —Xgq|Xq— X5 X6—X7|X7—XSIX9—X10‘

Figure 2. The height distribution in /.

Since (m{ , mé mg) = (3,3, 1), the Poincaré polynomial of Hess(N, 1) is

Poin (Hess(N., 1), \/q) = (1 + ¢)’(1 + ¢ + ¢*)’(1 + ¢ + ¢* + ¢°).
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Theorem 4.7. Let N be a regular nilpotent element in g. For a ®-ideal I C ®%, a
sequence (A e AI\CPG o I\ 9) denotes the height distribution in 1 \ ®F where
r = max{ht(e) | € I \ (D+} Let m; e (1 <i <r) be an integer defined in (4.4). Then
the Poincaré polynomial of the regular nilpotent partial Hessenberg variety Hessg (N, I)
is equal to

r AT S
Poin (Hesso(N. 1). /) = [[(1 + g + > + - + )™ ° (4.6)

i=1

Proof. As seen in the proof of Proposition 4.4 (3), we obtain
Poin (Hess(N, ), \/q) = Poin (Hess(No, ®¢)). v/¢) Poin (Hesse (N, 1), \/q).
This with (4.5) yields that

. g4+ g
Poin (Hessg(N. 1), \/q) = [Nie(+q+4q q)q)+, 4.7

[T +g+q>++q)ym”
where 7’ := max{ht() |« € I} and " := max{ht(«) | o € 5 o) Note that r = max{ht(x) |

o €+I \@g} < r’and r” < r’ by the condition I D (I%. We set All\q) = 0fori > r and
A;D@ = 0 fori > r”. Then, by the definition of the height distribution, we have

I\®L o .
Ai\ ®=Ai1—ki® forl <i <r'.

+ +
This implies that ml.1\<I>® =m! - m;p@ for 1 <i < r’. Therefore, the right-hand side of

4.7 is l

/

r . o, ed r ) . neg
[Ja+a+a>++gy ™ =][0+q+q+-+q)" .
i=1 i=1
. nNeg A28 A28 .
where we used the equality m; = A, —A; 117 = 0 wheneveri > r. ]

n
The right-hand side of (4.6) seems to be a rational function since miI\<I>® may be taken

as a negative integer, but it is a polynomial in the variable ¢ because the left-hand side of
(4.6) is a polynomial. In other words, the numerator is divisible by the denominator in the
right-hand side of (4.6). We give an example below. In the next subsection, Section 4.3,
we will explicitly give a polynomial description for (4.6) in type A.

Example 4.8. We consider the Poincaré polynomial of Hessy (N, i) of type Ag for
K ={2,4,5,8} and h = (4,5, 5,8, 10), which was also considered in Example 3.6. The
corresponding ®-ideal I and @g are described as Example 2.8. The height distribution in
I\ d>® is

(Al\q’ Az\qa AI\¢0)=(2,3,1)
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+ + +
and tuple of integers is (m{\% , mi\q)@,mg\q)@) = (—1,2, 1) as shown in Figure 3, so the
Poincaré polynomial of Hessx (N, k) is given by

. 1
Poin (Hessyc(N. 7). /g) = 1 (1 +4q + VU +q+q>+q%)

(I+q+4¢)*1+g°,

which coincides with (3.6).

1\®F

A3\®=1 X1 — X4

I\®S

AN — 3 X1 —X3 | X2 — X4 | X3 — X5
+

A{\q)@:z X2 — X3 | X4 — X5

Figure 3. The height distribution in 7 \ Cbg.

Corollary 4.9. For any ©-ideal I C ®*, we have

+

r . ned
Z g'Y! =H(1+q+q2+-~-+q’)mi . (4.8)
Yewl.©e i=1

+
where W1-® is defined in (3.8) and mil\(b@ is defined in (4.4) for 1 <i <r = max{ht(x) |
ael\dl)

Proof. Combining Theorems 3.11 and 4.7, we obtain the desired equality. ]

Remark 4.10. Originally, the equality in (4.8) for ® = @ was conjectured by Sommers
and Tymoczko in [30] and they proved it for types A, B, C, Fy4, E¢, and G, [30, Theo-
rem 4.1]. Also, Schauenburg confirmed (4.8) in the case of ® = @ for types D5, D¢, D7,
and E7 by direct computation, and Rohrle obtained the result for type D4 and Eg [28,
Theorem 1.28 and surrounding discussion]. For arbitrary Lie types, the equality (4.8) for
® = @ was completely proved in [5, Corollary 1.3] by a classification-free argument.

4.3. Type A formula

Let N be a regular nilpotent matrix and % : [n] — [n] a Hessenberg function explained
in Section 2.3. Then the Poincaré polynomial for regular nilpotent Hessenberg varieties
Hess(N, h) in type A,—1 is described as

Poin (Hess(N.h). /q) = [[(1 + g+ 4> + -+ + 4"V, 4.9)
ji=1

which immediately follows from (4.5). The aim of this section is to generalize (4.9) to the
formula for regular nilpotent partial Hessenberg varieties Hess x (N, h).
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For n > 1, we define

n

Mg =1+q+q¢>+--+¢""" and [n];!:= H[i]q-
i=1

Here, we take the convention [0],!=1. For n >k >0, a g-binomial coefficient is defined as

H Iy
k], Kl — kg

Since g-binomial coefficients satisfy the following recursive formula

nf [(n—1 nk |0 —1
e S il i
q q q
every ¢-binomial coefficient [} ], is a polynomial in the variable ¢ by induction on n.

By using g-binomial coefficients, we can describe the Poincaré polynomial of the regular
nilpotent partial Hessenberg varieties in type A.

Theorem 4.11. Let X = {kq,... kst withl <k, <--- <ks <n—1. Let N be a reg-
ular nilpotent matrix and h : X U {n} — K U {n} a partial Hessenberg function. Then

the Poincaré polynomial of the associated regular nilpotent partial Hessenberg variety
Hessy (N, h) in (2.10) is described as

s+1
. . h(k;) —kj-1
Poin (Hess (N, h), \/q) = l_[ |: ko ,
j=1 J 7 q
where we take the convention that kg = 0 and kg1 = n.

Proof. Leth : [n] — [n] be the extended Hessenberg function in (2.9) for a partial Hes-
senberg function /2 : K U {n} — K U {n}. We define a partial Hessenberg function /5 :
KU{n} - K U{n}byhx(k;) =k; for1 < j <s+ 1. Then by the discussion in the
proof of Proposition 4.4 (3), we have

Poin (Hess(N, ), v/g) = Poin (Hess(No, hx). V/q) Poin (Hessx (N, h), \/q).
Combining this with the formula in (4.9), we conclude that
Poin (Hess (N, h), \/q)

—ll[ 1+q+q2+...+qﬁ(i)—i
i1 +qg4qg2 44 ghx@-i

s+1 kj

L+q+q>++q"0
-I( T )

imhyrr |0+ G2+ ghac O
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B Sﬁ [h(kj) — kj_l]q[l’l(kj) —kj_1— l]q oo [h(ky) —kj + l]q
i kj —kj—1lq!
_ ﬁ [h(kj) —kj—l]
e ki —kj_1 ‘ ’
as desired. ]

Example 4.12. Consider the case of type Ag and take X ={2,4,5,8} and h=(4,5,5,8,10),
which is discussed in Example 4.8. By Theorem 4.11 we have

et <[ [, [, ], -1 o

_(U4+q+¢+)0+q+4%)
1+g¢
=1 +¢)1+q+q>>

(1+q+4q%

5. Cohomology ring H *(Hessg (N, 1))

It is known that the cohomology ring of G/ P is isomorphic to the invariants in the coho-
mology ring of G/B under the action of Wg by [8]. In this section we generalize this fact
to regular nilpotent partial Hessenberg varieties.

We first explain Borel’s work in [9]. We also refer the reader to [8]. In what follows, we
may identify the character group Hom(7', C*) of T with a lattice t, through differential at
the identity element of 7. We define ta ‘=17 ®z Q and its symmetric algebra is denoted
by

R = Sym tg).

The Weyl group W acts on t(a by the formula

2(a, B)
(8. B)

where (, ) is the W-invariant non-degenerate positive-definite bilinear symmetric form
2(a.B) -

. : ) @.6)
an integer for «, 8 € ®. The W -action on tf& naturally extends a W -action on R. Since

B is a semidirect product T x U, each « € Hom(7, C*) extends to a homomorphism
& : B — C*.1Infact, for any b € B, there are unique t € T and u € U such that b = tu.
Then we define & (b) = a(t). It is easy to check that & is a homomorphism. We denote by

sg@) =a— B fora,p €, (5.1)

on ta transferred from the Killing form of g restricted to t. We also recall that

Cg the one-dimensional B-module via & : B — C*. We define the complex line bundle
Ly := G xg Cg over the flag variety G/ B where G xp Cg is the quotient of the direct
product G x Cg by the left B-action given by b - (g.z) = (gh™',a&(b)z) for b € B and
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(g.2) € G x Cz. To each a € t7, we assign the first Chern class c¢1 (L) of the dual line
bundle L. This yields the following ring homomorphism

¢:R—> H*(G/B); arci(L})) (5.2)

which doubles the grading on [R. Recall that the Weyl group W acts on H*(G/B). In fact,
let K C G be a maximal compact subgroup such that Tx := K N T is a maximal torus in
K. Then the natural mapping K/Tx — G/B gives a homeomorphism. It is also known
that the Weyl group W = Ng(T)/ T is isomorphic to Nx(Tx)/ Tk Since Nx(Tx)/ Tk
actson K/Tx by (gTk) - (zTx) = gzTk for gTx € K/Tg and zTg € Nx(Tkx)/ Tk, we
obtain an W -action on G/ B via the homeomorphism G/B ~ K/ Tk and the isomorphism
W =~ Ng(Tg)/ Tk, which induces the W-action on H*(G/B). As is well known, the map
@ in (5.2) is a surjective W -equivariant map and its kernel is the ideal (ﬂ?_‘f) generated by
the W-invariants in & with zero constant term by Borel’s theorem [9]. In particular, this
induces the following isomorphism of graded QQ-algebras

H*(G/B) = R/(RY).

Remark 5.1. In order to see a W-action on H*(G/B) above, we used an isomorphism
W = Ng(T)/T = Nx(Tk)/ Tk . A correspondence of the isomorphism N (Tx)/ Tk =
Ng(T)/T is given by zTx +> zT. In fact, it is clear that (K /Tx)"® = Nx(Tx)/Tk.On
the other hand, one can see that W = Ng(T)/ T acts freely and transitively on (G/B)T
(e.g., [22, Section 24.1]), so we have the identification (G/B)T =~ Ng(T)/T which
sends zB to zT'. Since the homeomorphism K/Tx ~ G/B is a Tk-equivariant map, this
induces (K / Tx)T¥ = (G/B)Tx . Here, we note that (G/B)"8 =(G/B)T since (G/B)T¢ >
(G/B)T and they have the same cardinality |W|. Hence, we obtain the isomorphism

Nk (Tk)/ Tk = (K/Tg)"™* = (G/B)'® = (G/B)" = Ng(T)/T
which sends zTg to zT.
The following theorem is well known.
Theorem 5.2 ([8, Corollary 5.4 and Theorem 5.5]). The homomorphism
7*: H*(G/P) — H*(G/B)

induced from the natural projection & : G/B — G/ P is injective and its image coin-
cides with H*(G/B)Y®, which is the invariants in H*(G/B) under the action of We. In
particular, t* : H*(G/P) — H*(G/B) induces the isomorphism

H*(G/P) = H*(G/B)"® (5.3)
as graded Q-algebras.
Lemma 5.3. For x € g and a p-Hessenberg space H C g, we set

X(x,H) = {gTx € K/Tx | Ad(g™")(x) € H}.
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Note that Ad means the restriction of the adjoint map Ad : G — Aut(g) to K. Then the
Wea-action on K/ Tk preserves X (x, H). In particular, since the natural mapping

X(x,H) — Hess(x, H)

is a homeomorphism, the Wg-action on G/ B preserves Hess(x, H). In other words, the
inclusion map Hess(x, H) C G/ B is a Wg-equivariant map.

Proof. Let gTx € X(x, H) and w € Wg. Since Wg can be regarded as a subgroup of
Nk (Tk)/ Tk under the isomorphism Nk (Tx)/ Tx = Ng(T)/T = W, we write w = zTg
for some z € Ng(Tk). Then we show that gzTx € X(x, H). In other words, it suffices
to show that Ad((gz)~1)(x) € H. We have Ad((gz)"1)(x) = Ad(z"1)(Ad(g 1) (x)) €
Ad(z7Y)(H) by gTkx € X(x, H), so it is enough to show that z € P. In fact, if z € P,
then we have Ad(z~')(H) C H since H is a p-Hessenberg space. We now prove that
z € P.By Remark 5.1, the isomorphism Nk (Tx)/Tx = Ng(T)/T = W sends zTk to
zT. Thus, one can write w = zT € Wg in W = Ng(T)/T. Since P = BWg B, we have
z € P. Therefore, we conclude that Ad((gz)~1)(x) € H and hence we have (gTx) - w =
gzTx € X(x, H). [ ]

The main theorem is to generalize Theorem 5.2 to regular nilpotent partial Hessenberg
varieties as follows.

Theorem 5.4. Let N be a regular nilpotent element in g and 1 a ©-ideal in ®T. Let
Hess(N, 1) C G/B and Hessg (N, I) C G/ P be the associated regular nilpotent Hessen-
berg variety in (2.8) and the associated regular nilpotent partial Hessenberg variety in
(2.7), respectively. Then, the homomorphism ry : H*(Hessg(N, 1)) — H™*(Hess(N, I))
induced from the natural projection wy : Hess(N, I) — Hessg(N, I) is injective and
its image coincides with H*(Hess(N, 1))@, the invariants in H*(Hess(N, 1)) under
the action of We induced from Lemma 5.3. In other words, y : H*(Hessg(N, 1)) —
H*(Hess(N, 1)) yields the isomorphism of graded Q-algebras

H*(Hesse(N, 1)) = H*(Hess(N, 1))W®.

In order to prove Theorem 5.4, we consider the following commutative diagram, which
is discussed in the proof of Proposition 4.4 (3)

H*(G/P) — = H*(G/B) —Y— H*(P/B)

o) 7| H

* *

H*(Hesse(N. 1)) /AN H*(Hess(N. 1)) — s H*(P/B),

where the horizontal arrows are induced from the fiber bundles by Lemma 4.1 and the
vertical arrows are induced from the inclusion maps j; : Hess(N, 1) < G/B and j1¢ :
Hessg (N, 1) — G/ P respectively.

Theorem 5.5 ([5, Theorem 1.1]). Let I C &% be a lower ideal. Then, the restriction map
Jji : H*(G/B) — H™*(Hess(N, I)) is surjective.
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Proposition 5.6. Let I C ® be a O-ideal. Then the following holds.
(1) The restriction map j;' g : H*(G/P) — H*(Hessg(N, 1)) is surjective.
(2) The map wry : H*(Hesse(N, I)) — H*(Hess(N, I)) is injective.

Proof. (1) As discussed in the proof of Proposition 4.4 (3), both
*: H*(G/B) - H*(P/B) and  : H*(Hess(N,I)) — H*(P/B)

are surjective. Let s : H*(P/B) — H*(G/B) be a section of t*, namely t* o s = id. Then
the Leray—Hirsch theorem yields the following isomorphism of Q-vector spaces

p:H*(P/B) ®q H*(G/P) = H*(G/B).

which sends Y o ® § to > s(a) - 7*(B). Define s; : H*(P/B) — H*(Hess(N, I)) by
s7 := j; os. Then one can easily see that s; is a section of (j : H*(Hess(N, 1)) —
H*(P/B). By the Leray—Hirsch isomorphism we have the isomorphism of Q-vector
spaces as follows

pr : H*(P/B) ®q H*(Hesso(N, 1)) = H*(Hess(N, 1)), (5.4)

which sends ) o ® B to ) sy() - 77 (B). Hence, we obtain the following commutative
diagram:

H*(P/B) @ H*(G/P) ——~2— H*(G/B)

id® j;j@l ./,*l

H*(P/B) ®q H*(Hesso(N, 1)) —2— H*(Hess(N, I)).

=~

Since the restriction map j;" : H*(G/B) — H™*(Hess(N, I)) is surjective by Theorem 5.5,
themapid®j; g : H*(P/B) ®@ H*(G/P) — H*(P/B) ®q H™*(Hessg(N, 1)) is also
surjective, which implies the surjectivity of j; g : H*(G/P) — H*(Hessg(N, I)). In
fact, consider the surjective map £ : H*(P/B) ®q H*(G/P) — H*(G/P) defined by
E(Q iy j=k % ® Bj) = o - P in each degree k where we note that &g € H°(P/B)=Q.
By the similar way we define the surjective map

& 1 H*(P/B) ®q H*(Hesse(N. 1)) - H*(Hesse(N, 1))
and they make the following commutative diagram:

H*(P/B) ®¢ H*(G/P) ——— H*(G/P)

id ®j}f@l jf,@l

H*(P/B) ®q H*(Hesse(N, 1)) _E H*(Hesse(N, 1)).

Since both id ® /o and &; are surjective, j" g is also surjective.
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(2) Define the map ¢; : H*(Hesse(N, 1)) - H*(P/B) ®q H*(Hesse(N, 1)) by
{7 (x) = 1 ® x, which is injective since H°(P/B) = Q. This makes the following com-
mutative diagram:

H*(P/B) ®g H*(Hesso(N, 1)) —2— H*(Hess(N,I))

=~

T I

H*(Hesso(N, 1)),

where py is the Leray—Hirsch isomorphism defined in (5.4). Since {7 is injective, 7} is
also injective. ]

Proof of Theorem 5.4. The injectivity of 7r; : H*(Hesse (N, 1)) — H*(Hess(N, 1)) fol-
lows from Proposition 5.6 (2), so we prove that the image of 7} equals H *(Hess(N, 1)) We,
Since the restriction map j; : H*(G/B) — H*(Hess(N, I)) is a Wg-equivariant map by
Lemma 5.3, this induces the map

(" H*(G/B)Ye — H*(Hess(N,[))W®_

One can see that ( jI*)W® is a surjective map since j;° is surjective. In fact, for any
y € H*(Hess(N, I))"e, there exists x € H*(G/B) such that Jjj (x) = y. Putting x’ =
WI@\ Y wewe W x € H*(G/B)", we have

GO ) = jr ) = .
Consider the following commutative:

H*(G/P) —— ™ H*(G/B)

j,*,(.,l j’*l

*

H*(Hesso(N, 1)) —— H*(Hess(N, 1)),

where the surjectivity of j;* and j I*,® follow from Theorem 5.5 and Proposition 5.6 (1).
Since the image of 7* coincides with H*(G/B)"® by Theorem 5.2, the image of 7}
is included in H*(Hess(N, 1))@ by the surjectivity of j I*’@). Hence, the commutative
diagram above yields the following commutative diagram:

H*(G/P) ——=— H*(G/B)"

i) 6o |

H*(Hess(a(N, I)) — H*(Hess(N, I))We.

Since the bottom arrow is surjective, the homomorphism 7} yields the desired isomor-
phism H*(Hessg (N, I)) = H*(Hess(N, I))"e. m
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6. Invariants in logarithmic derivation modules

By the work of [5], we can describe the cohomology rings of regular nilpotent Hessenberg
varieties by the logarithmic derivation modules of ideal arrangements. We generalize this
result to regular nilpotent partial Hessenberg varieties in this section.

6.1. Logarithmic derivation module
A derivation of R = Sym ta over QQ is a Q-linear map ¥ : R — R such that
v(fg) =v(f)g+ fv(g) for f.geR. (6.1)

The derivation module Der R of R is the collection of all derivations of R over Q. For
alower ideal I C ®™, the ideal arrangement Ay is the set of hyperplanes orthogonal to
o € 1. 1ts logarithmic derivation module D(Ar) is defined to be the following R-module:

D(Ar) = {w eDerR | Y(a) € Raforalla € I}.

It follows from [4, Theorem 1.1] that D(sAy) is a free R-module for all lower ideal
I C ®*. We remark that [4] also gives the exponents of #; as the dual partition of the
height distribution in / where the exponents of #4; denotes a sequence of degrees for a
homogeneous basis of D(s;). Let Q € Sym? (r(*Q)W be a W-invariant non-degenerate
quadratic form. For a lower ideal I C @™, we define an ideal a(/) of R by

a(l) = {y(Q) € R | ¥ € D(A1)}. (6.2)

Note that the ideal a(/) is independent of a choice of Q (see [5, Remark 3.6]). For a lower

ideal I C ®T, we denote the composition of ¢ in (5.2) and the restriction map induced
from the inclusion j; : Hess(N, I) < G/B by

o RS H*(G/B) > H*(Hess(N. 1)). 6.3)

Note that both ¢ and j;* are surjective maps by [9] and Theorem 5.5, so the map ¢y is also
surjective.

Theorem 6.1 ([5, Theorem 1.1]). Let I C ®* be a lower ideal. Then, the kernel of the
surjective map ¢y in (6.3) coincides with a(I) defined in (6.2). In particular, @y yields the
isomorphism of graded Q-algebras

H*(Hess(N, I)) ~ R/a(l).

6.2. Wg-action

The aim of this section is to see that D(-;) admits an Wg-action for arbitrary ®-ideal 7.
The W-action on R = Sym ta induces a W -action on the derivation module Der R. In
fact, for w € W and ¢ € Der R, the derivation w - y is defined by

w-Y)(f) =w(y ' f)) for feR. (6.4)

Then one can easily see that w - i satisfies (6.1), and hence we have w - { € Der R.
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Lemma 6.2. Let I C ® be a O-ideal. Ifa € I and B € © witha # B, then sg() € 1.

Proof. Since sg(®1 \ {B})=>" \ {B} (cf. [23, Proposition 1.4]), we see that sg(«) € DT
By the formula in (5.1) we have sg(a) —a € Zf, so either o <@ sg(x) or sg(ar) <@ o
holds. If @ <@ sg(a), then sg(ar) € I from the condition (2.5). If sg(a) <@ o, then we
have in particular sg () < @, so sg(ar) € I by the condition (2.3). |
Proposition 6.3. Let I C ® be a O-ideal. Then the following holds.
(1) The Wg-action on Der R preserves the logarithmic derivation module D(Ar).
(2) The Wg-action on R induces the Wg-action on the quotient ring R /a(l).

Proof. (1)Letyr € D(sy) and B € ©. Then it suffices to show that sg - v € D(A;) since
We is generated by sg’s for B € ©. Take aroot o € I. If @ # f8, then we have

(sg - ¥)(@) = sp(¥ (55" (@) = 58V (55 ())).

It follows from Lemma 6.2 that sg(a) € I, so one has ¥ (sg()) € R sg(a) since ¥ €
D(Ay). This implies that (sg - ¥) (@) = sg (¥ (sg(x))) € Ra forall o € I witha # B.
If « = B, then

(sp-¥)(B) = s (¥ (s5(B) = —sp(V(B)) € RB

since ¥ € D(+A;) and B € ® C I. Therefore, we conclude that sg - € D(Ay) as desired.
(2) For w € Wg and f € a(l), we show that w(f) € a(/). By the definition of a(/),
we can write f = ¥ (Q) for some ¥ € D(+Ay). Then we have

w(f) =wy(Q) =w(yw Q) =w-¥)(Q).

where the second equality above follows from the definition that Q is W -invariant. We
obtain w - ¥ € D(sAy) from (1), so w(f) = (w - ¥)(Q) € a(l). Hence, the Wg-action
on R induces the Wg-action on the quotient ring R /a(]). |

Remark 6.4. Let N be a regular nilpotent element in g and / a ®-ideal in ®*. The
We-action on G/ B preserves Hess(N, I) from Lemma 5.3. This induces the Wg-action
on H*(Hess(N, I)). On the other hand, the Wg-action on R induces the Wg-action on
the quotient ring R/a(l) by Proposition 6.3 (2). Then it is straightforward to see that
H*(Hess(N, 1)) = R/a(l) in Theorem 6.1 is an isomorphism as Q[Weg]-modules.

6.3. We-invariants

Let I be a ®-ideal in @ and consider the homomorphism

o RS H*(G/B) 2> H*(Hess(N, )

defined in (6.3). Recall that ¢ : R — H*(G/B) is a surjective Wg-equivariant map by
[9]. It also follows from Theorem 5.5 and Lemma 5.3 that the restriction map

ji + H*(G/B) — H*(Hess(N.1)
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is surjective and Wg-equivariant. As discussed in the proof of Theorem 5.4, the maps ¢
and j;* induce the surjective maps

oo i R%e — H*(G/B)"e and (j;)"e : H*(G/B)"e — H*(Hess(N, 1))"®.
Therefore, we conclude from Theorems 5.2 and 5.4 that the composition map

GH"e

We
(p;’V@) - RjWe Y7, H*(G/B)"e i H*(Hess(N,I))W®

yields the following surjective homomorphism
gr0: R" — H*(G/P) — H*(Hesso(N, 1)), (6.5)

where the first map is the composition of the isomorphism (5.3) and ¢""©, and the second
map is the restriction map induced from the inclusion j; @ : Hesse(N, 1) — G/P. Our
goal is to describe the kernel of ¢7 @ in terms of We-invariants in logarithmic derivation
modules.
Recall that the derivation module Der R of R = Sym ta admits the W -action by (6.4).
We set
(Der R)We .= {y eDerR | w-y = ¢ forall w € Weg).

It is clear that (Der R)™® is an R"©-module. It is known that (Der R)"® is a free RWe-
module of rank 7 (cf. [25, Lemma 6.48]). If 7 is a ®-ideal in ® T, then the Wg-action on
Der R preserves the logarithmic derivation module D(+4;) by Proposition 6.3 (1). For a
O-ideal I C ®*, we define an R"e-submodule of (Der R)"e by

D(A7)"® := D(A;) N (Der R)7® = {y € (Der R)"® | Y(a) € Ra foralla € 1}.

Fix a W -invariant non-degenerate quadratic form Q € Sym? (ta)w. Then one can see that
¥ (Q) belongs to R7e for any ¥ € (Der R)"@. In fact, for any w € Weg, we have

w(y(0) =w(Y(w™0)) = w-¥)(Q) = y(Q). (6.6)
For a @-ideal I C ®*, we define an ideal a()g of R"® by
a(Ne = {¥(Q) € R | y € D(A)"?). (6.7)

By a similar argument of [5, Remark 3.6], the ideal a(/)g does not depended on a choice
of Q.

Theorem 6.5. Let I be a O-ideal in ®F. The kernel of the surjective map ¢y @ in (6.5)
coincides with the ideal a(I)g in (6.7). In particular, o1 @ induces the isomorphism

H*(Hesso(N, 1)) = R /a(I)e

as graded Q-algebras.
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Proof. By the definition of ¢; @, we have the following commutative diagram:

or: R —2—y H*(G/B) ——» H*(Hess(N. 1))

. . *
]mclusmn ],r * In 1
- %

¢re: R"® —— H*(G/P) e, H*(Hessg(N. I)).

It follows from Theorem 6.1 that ker p; = a([). Since kergy.@ = kerg; N R =a(1) N
R%e  what we want to show is that a()e = a(I) N RWe.

If f € a(l)e, then we can write f = ¥ (Q) for some ¥ € D(A;)". It is clear that
f =v(Q) € a(l) since D(A7)"® C D(As). We also see that f = ¥ (Q) € R"e by
(6.6) and hence one has a(I)g C a(l) N R%e.

Conversely, if we take f e a(l) N RYe then one can write f = ¥ (Q) for some Y €
D(Ay). By setting ¢© := |W®‘ ZwEWg w - ¥ € (Der R)"e, the derivation ¥® belongs
to D (A7) from Proposition 6.3 (1). Hence, ¥ © € D(A7)"e. We obtain f = ¢©(Q) e
a(/)e by the following computation

e _ _ —1
voQ) = e |w§V( Q) = |w§%w(v/(w 0))
1 1
= %wg%w(w(g)) = %wg%w w;y f=r
Therefore, we conclude that a(1)g = a(I) N R"e = ker ¢; g as desired. |
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