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A regularity property of fractional Brownian sheets

Philippe Bouafia and Thierry De Pauw

Abstract. A function f defined on Œ0; 1�d is called strongly chargeable if there is a continuous
vector field v such that f .x1; : : : ; xd / equals the flux of v through the rectangle Œ0; x1� � � � � �
Œ0; xd � for all .x1; : : : ; xd / 2 Œ0; 1�d . In other words, f is the primitive of the divergence of
a continuous vector-field. We prove that the sample paths of the Brownian sheet with d � 2
parameters are almost surely not strongly chargeable. On the other hand, those of the frac-
tional Brownian sheet of Hurst parameter .H1; : : : ;Hd / are shown to be almost surely strongly
chargeable whenever H1 C � � � CHd > d � 1.

1. Introduction

In order to motivate our results regarding multidimensional Brownian sheets, we
start with a few remarks about the 1-dimensional Brownian motion. We recall that
a Gaussian space is an infinite dimensional separable Hilbert space E � L2.�;B;P /
containing only centered Gaussian variables where .�;B;P / is a large enough prob-
ability space. There then exists a Gaussian noise, i.e., a Hilbert space isomorphism
GWL2.Œ0; 1�/! E and setting Wt D G.1Œ0;t�/, 0 � t � 1, is a way of defining the
standard Brownian motion .Wt /0�t�1. Here, 1Œ0;t� denotes the indicator function of
the interval Œ0; t �. It is now trivial to check that the covariance E.WsWt / D min.s; t/.
By an application of Kolmogorov’s continuity theorem, one may assume that the func-
tion t 7! Wt .!/ is continuous for all ! 2 �.

We say that K � Œ0; 1� is a figure if K D
Sp
iD1Œsi ; ti � for some finitely many

pairwise nonoverlapping intervals Œs1; t1�; : : : ; Œsp; tp� and we let F.Œ0; 1�/ denote the
set of figures. The increment of the Brownian motion W on K is defined as

�WK D

pX
iD1

.Wti �Wsi / D G.1K/:

Even thoughG.1A/ is defined for every measurable subsetA of Œ0;1�, it is not the case
that, almost surely the increment F.Œ0; 1�/! RWK 7! �WK extends to a (signed)
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Borel measure on Œ0; 1�. Therefore, it makes sense to study the pathwise regularity of
K 7! �WK as a function of figures.

The increment is readily finitely additive, i.e.,

�W .K1 [K2/ D �W .K1/C�W .K2/

wheneverK1 andK2 are nonoverlapping. Furthermore, one easily checks that, owing
to the continuity of t 7!Wt the increment possesses the following continuity property:
If .Fn/n is a sequence of figures whose (Lebesgue) measure tends to zero and whose
number of components is uniformly bounded, then �W .Fn/! 0. A finitely additive
function�WF.Œ0;1�/!R satisfying this continuity property is called a charge and it is
easy to show that the space of chargesCH.Œ0;1�/ is isomorphic toC0.Œ0;1�/, the space
of continuous functions vanishing at 0, by means of associating with f 2 C0.Œ0; 1�/
the charge �f W

Sp
iD1Œsi ; ti � 7!

Pp
iD1.f .ti /� f .si //. Thus, it appears that the domain

of a charge �f 2 CH.Œ0; 1�/ can be extended to include all functions of bounded
variation, referring to the Lebesgue–Stieltjes integral,

�f WBV
�
Œ0; 1�

�
! RWu 7!

Z
fdu:

In this functional analytic context, we think of charges as the members of the dual of
BV.Œ0; 1�/ with respect to some appropriate topology.

Finally, we recall a second point of view on Brownian motion, namely the Lévy–
Ciesielski construction. We denote by hn;k the Haar function supported in the interval
Œk2�n; .k C 1/2�n� so that the sequence .hn;k/n;k is a Hilbertian basis of L2.Œ0; 1�/.
The Faber–Schauder basis .fn;k/n;k of C0.Œ0; 1�/ is then obtained as a sequence
of indefinite integrals of the former, fn;k.t/ D

R t
0
hn;k . It was introduced by Faber

in [10]. Next, one can define the Brownian motion W by its decomposition in the
Faber–Schauder basis with an independent sequence of Gaussian centered coeffi-
cients .An;k/n;k:

Wt D
X
n;k

An;kfn;k.t/:

The advantage of this point of view is that one can study the regularity of a contin-
uous function

P
n;k An;kfn;k according to the asymptotic behavior of its sequence

of coefficients .An;k/n;k , for instance whether it is Hölder continuous [6]. See [7]
for applications to probability. We are now ready to make sense of the corresponding
observations for multidimensional stochastic processes.

Here, d � 2 is an integer. Given H D .H1; : : : ; Hd / 2 .0; 1/
d we say that a

Gaussian centered random process .W H
t1;:::;td

/0�ti�1 is a fractional Brownian sheet of
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Hurst multiparameter H if the covariance

E
�
W H
s1;:::;sd

W H
t1;:::;td

�
D

dY
iD1

s
2Hi
i C t

2Hi
i � jti � si j

2Hi

2
:

WhenH D .1=2; : : : ;1=2/we recover the standard Brownian sheet and we sometimes
simply write .Wt1;:::;td /0�ti�1 with no reference to H . In that case,

E.Ws1;:::;sdWt1;:::;td / D
dY
iD1

min.si ; ti /:

As in case d D 1, .Wt1;:::;td /0�ti�1 can be defined by means of a d -dimensional
Gaussian noise. According to Kolmogorov’s continuity theorem, one may assume
that every sample of the function .t1; : : : ; td / 7! W H

t1;:::;td
is continuous.

We say that K � Œ0; 1�d is a rectangle if K D
Qd
iD1Œsi ; ti � is a Cartesian product

of compact intervals and we define figures to be the unions of finitely many rectangles
(which we can assume, without loss of generality, are pairwise nonoverlapping, i.e.,
the Lebesgue measure of their intersection vanishes). The set of figures is denoted by
F.Œ0; 1�d /. We also let C0.Œ0; 1�d / be the space of continuous functions defined on
Œ0; 1�d that vanish at x D .x1; : : : ; xd / if at least one xi D 0. With f 2 C0.Œ0; 1�d / is
associated its increment �fK on a rectangle K, whose definition we recall now only
when d D 2:

�f
�
Œs1; t1� � Œs2; t2�

�
D f .t1; t2/ � f .s1; t2/ � f .t1; s2/C f .s1; s2/:

Since �f is finitely additive on the set of rectangles, it extends uniquely to a finitely
additive function of figures, still denoted �f . In general, �f does not extend to a
(signed) Borel measure on Œ0; 1�d . An interesting question consists of making sense
of extra regularity properties of �X when Xt1;:::;td is a multidimensional stochastic
process with almost sure continuous realizations. This is what we do in this paper in
case X D W H .

A d -dimensional charge is a finitely additive function �W F.Œ0; 1�d /! R satis-
fying the following continuity property: If .Fn/n is a sequence of figures such that
jFnj ! 0 and supn kFnk ! 0 then �.Fn/ ! 0. Here, jFnj is the Lebesgue mea-
sure of the figure Fn and kFnk D Hd�1.@Fn/ is the .d � 1/-dimensional Hausdorff
measure of its boundary. Note that, when d D 1 the term H0.@F / equals twice the
number of components of the figure F , making clear the analogy with the higher
dimensional case. The space of d -dimensional charges is denoted CH.Œ0; 1�d /. In
fact, � 2 CH.Œ0; 1�d / extends (additively and continuously) to a larger collection of
sets A than figures, called sets of finite perimeter, i.e., whose indicator function is
1A 2 BV.Œ0; 1�

d /. Here, BV.Œ0; 1�d / is the space of functions of bounded variation
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in the sense of De Giorgi, i.e., those functions u 2 L1.Œ0; 1�d / whose distributional
gradient is a vector-valued measure Du of finite variation. See Section 3 for relevant
information about functions of bounded variation and charges.

Recall that d � 2. We prove that:

• The increment�W of the sample paths of the Brownian sheetW are almost surely
not a charge;

• The increment �WH of the sample paths of the fractional Brownian sheet are
almost surely a charge provided H1 C � � � CHd > d � 1.

In fact, we prove more than this. In order to state our results, we need to intro-
duce the notion of a strong charge. We consider the continuous linear embedding
T WLd .Œ0;1�d /!BV.Œ0;1�d /� defined by Tf .u/D

R
f u. We let SCH.Œ0;1�d / be the

closure of the range of T and we call its members the d -dimensional strong charges.
One can show that SCH.Œ0;1�d / is a predual ofBV.Œ0;1�d /, Theorem 4.1. The strong
charges are exactly the linear functionals ˛WBV.Œ0; 1�d /! R associated with a con-
tinuous vector-field vW Œ0; 1�d ! Rd in the following way: ˛.u/ D �

R
hv; Dui for

each u 2 BV.Œ0; 1�d /, Theorem 4.3. With each strong charge ˛, one can associate a
(unique) charge �˛ by means of the formula �˛.A/ D ˛.1A/ but the converse is not
true.

We identify a Schauder basis of SCH.Œ0; 1�d / and we establish useful criteria for
corresponding random series to be strong charges. These apply to the Brownian and
fractional Brownian sheet. We start by describing multidimensional Haar functions
(see Subsection 5.4). These are tensor products of their 1-dimensional analogues.
Specifically, we let

gn;k;r D 2
nd=2

2d�1X
`D0

.Ad /r;`1K
nC1;2dkC`

where the orthogonal 2d -dimensional square matrix Ad is the Kronecker product of�
1 1
1 �1

�
, d times with itself, and the dyadic cubes Kn;j have been numbered in an

appropriate way where n denotes their generation, i.e.,Kn;j has side length 2�n. One
shows that the sequence .gn;k;r/n;k;r is a Hilbertian basis of L2.Œ0; 1�d /. Similarly to
the 1-dimensional case, one then wants to consider “indefinite integrals” of these Haar
functions in some sense, as did Faber. We introduce the strong charges Tgn;k;r (recall
the embedding T from the previous paragraph) as indefinite integrals of the Haar
functions gn;k;r and we prove these constitute a Schauder basis of SCH.Œ0; 1�d /,
Theorem 5.1. In fact, we show that if ˛ 2 SCH.Œ0; 1�d / then

˛ D
X
n;k;r

˛.gn;k;r/Tgn;k;r :
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The strong charges Tgn;k;r behave somewhat like a wavelet basis in the sense that
they have nonoverlapping supports, spt.Tgn;k;r /DKn;k . Taking advantage of this, we
are able to determine whether some series

P
n;k;r an;k;rTgn;k;r converge or not to a

strong charge, according to the asymptotic behavior of their coefficients .an;k;r/n;k;r ,
Corollary 6.3.

Now let f 2 C0.Œ0; 1�d / and�f be its increment. If ˛ D�f were a strong charge
then the coefficients in the above convergent series would be

�f .gn;k;r/ D 2
nd=2

2d�1X
`D0

.Ad /r;`�f
�
1K

nC1;2dkC`

�
:

In case f is W H , the increments �WN .Kn;j / on dyadic cubes Kn;j are random
variables whose asymptotics as .n; j / grows can be controlled. Together with the
quantitative criteria evoked at the end of last paragraph, we are then able to establish
that:

• The increment �WH of the sample paths of the fractional Brownian sheet W H

are almost surely not a charge if NH � d�1
d

, Theorem 10.5;

• The increment �WH of the sample paths of the fractional Brownian sheet W H

are almost surely a strong charge if NH > d�1
d

, Theorem 10.2;

where
NH D

H1 C � � � CHd

d
:

Charges are natural integrators in non-absolute integration theories, see for exam-
ple [16]. We already mentioned that strong charges act on BV functions. Thus, in
case NH > d�1

d
, it makes sense to integrate BV functions with respect to the charge

�WH representing the variations of the fractional Brownian sheet. Such an integral is
understood in a pathwise sense. The possibility to extend this integral to a full-fledged
Young integral, where the integrand is allowed to be a Hölder continuous function, is
investigated in [4].

2. Notations

Throughout this paper, R denotes the set of real numbers. We work in an ambient
space whose dimension is an integer d � 1, typically .0; 1/d , Œ0; 1�d , or Rd . The
Euclidian norm of x 2 Rd is denoted by jxj.

The closure, the interior, and the topological boundary of a set E � Rd are
denoted clE, intE, and @E, respectively. The indicator function of E is 1E . The
symmetric difference of two sets E1; E2 � Rd is written E1 4E2.
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Unless otherwise specified, the expressions “measurable”, “almost all”, as well as
“almost everywhere” tacitly refer to the Lebesgue measure. The Lebesgue (outer)
measure of a set E � Rd is simply written jEj. Two subsets E1; E2 � Rd are
said to be almost disjoint whenever jE1 \ E2j D 0. If U � Rd is a measurable set
and 1 � p � 1, the corresponding Lebesgue spaces are denoted Lp.U /. Here, U
is endowed with its Lebesgue � -algebra and the Lebesgue measure. The Lp norm
is written k � kp . The notation k � k1 might also refer to the supremum norm in
the space of continuous functions. The integral of a function f with respect to the
Lebesgue measure is simply written

R
f , with no mention of the Lebesgue measure.

In case another measure is used, it is clear from the notation. The .d � 1/-dimensional
Hausdorff measure (defined on Borel subsets of Rd ) is denoted Hd�1 and the corre-
sponding Lp spaces are written Lp.U IHd�1/, where U is a Borel subset of Rd .

The topological dual of a Banach space X is X�. Unless otherwise specified, the
operator norm of a continuous linear map T between normed spaces is written kT k.

3. Preliminaries on BV functions, BV sets, and charges

3.1. BV functions

We start by introducing all the necessary definitions and results concerning functions
of bounded variation. For more insight about these, we refer to the book of Evans and
Gariepy [9].

Let U � Rd be an open set. The variation of a Lebesgue integrable function
uWU ! R over an open subset V � U is the quantity

kDuk.V / D sup
²Z

V

u div v W v 2 C 1c .V IR
d / and jv.x/j � 1 for all x 2 V

³
(3.1)

where C 1c .V IR
d / denotes the space of continuously differentiable compactly sup-

ported vector fields on V .
The function u is said to be of bounded variation whenever kDuk.U / <1. In

this case, the vector-valued Riesz representation theorem can be used to prove that
the distributional gradient of u is an Rd -valued Borel measure denoted Du. Its total
variation measure is denoted kDuk; it is a finite Borel measure whose values on open
subsets V of U is given by formula (3.1).

The set of (equivalence classes of) functions of bounded variation on U is denoted
BV.U /. It is a Banach space under the norm kukBV D kuk1 C kDuk.U /. In the
sequel, the following results are used.

Theorem (Compactness theorem, [9, 5.2.3, Theorem 4] and [9, 5.2.1, Theorem 1]).
Let U � Rd be a bounded Lipschitz open set and .un/ be a bounded sequence in
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BV.U /. There is a subsequence .unk / and a function u 2 BV.U / such that unk ! u

in L1.U /. Furthermore, kDuk.U / � lim inf kDunkk.U /.

One of the consequences of the compactness theorem is that the closed unit ball
of BV.U / is compact when given the L1-topology. This is a strong indication that
BV.U / is a dual Banach space. Indeed, this is proven in Theorem 4.1 (for the case
U D .0; 1/d , but the proof applies to any bounded Lipschitz open set as well), see
also [3, Remark 3.12] for another point of view.

Theorem (Sobolev–Poincaré inequality, [19, Theorem 5.11.1]). Let U � Rd be a
connected bounded Lipschitz open set and 
 2 BV.U /� be a continuous linear func-
tional such that 
.1U / D 1. There is a constant C D C.U; 
/ � 0 such that for all
u 2 BV.U /,

ku � 
.u/kd=.d�1/ � CkDuk.U /:

In the above statement as well as in the remaining part of this paper, when d D 1
we agree that d=.d � 1/ D1. We apply the Sobolev–Poincaré inequality to the case
where


.u/ D
1

jU j

Z
U

u for all u 2 BV.U / (3.2)

and more specifically to domains that are d -dimensional open cubes, that is, sets
of the form U D

Qd
iD1.ai ; bi /, where jb1 � a1j D � � � D jbd � ad j > 0. A simple

scaling argument shows that, in case of the averaging functional 
 defined in (3.2),
the Poincaré constant is the same for all d -dimensional open cubes. We denote this
constant by CP .

Theorem (Trace theorem, [9, 5.3, Theorem 1]). If U � Rd is a bounded Lipschitz
open set, there is a continuous linear operator trWBV.U /!L1.@U IHd�1/ such that
for all u 2 BV.U / and v 2 C 1.Rd IRd /,Z

U

u div v D
Z
@U

tr.u/v � nUdHd�1
�

Z
v � dDu

where nU denotes the normal outer unit vector field defined Hd�1-almost everywhere
on @U .

A useful corollary of the trace theorem is the following result.

Theorem (Extension theorem, [9, 5.4, Theorem 1]). If U � Rd is a bounded Lips-
chitz open set and u 2 BV.U /, define the function

EuW x 7!

´
u.x/ if x 2 U

0 if x 62 U:
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Then Eu 2 BV.Rd / and

kD.Eu/k.Rd / D kDuk.U /C

Z
@U

j trujdHd�1:

3.2. BV sets and charges

The perimeter of a measurable subset A of Rd is the extended real number kAk D
kD1Ak.Rd /. Usually, A is said to be a set of finite perimeter (or a Caccioppoli set)
whenever kAk <1. However, in this paper, we rather follow Pfeffer’s terminology
[17]: we say that A is a BV -set whenever A is bounded, measurable and kAk <1.

We let BV.A/ be the set of BV -subsets of A. It is endowed with the following
notion of convergence: a sequence .Bn/ is said to w�-converge to B whenever

sup kBnk <1 and lim jBn 4 Bj D 0:

There exists a topology on BV.A/ that is compatible with this notion of convergent
sequences (see [17, p. 33 and p. 42]), but we do not use it in the present paper.

A charge onA is a function�WBV.A/!R that satisfies the following proporties:

(A) Finite additivity: �.B1 [B2/D�.B1/C�.B2/wheneverB1;B2 2BV.A/

are almost disjoint;

(B) Continuity with respect tow�-convergence: if a sequence .Bn/ w�-converges
to B , then �.Bn/! �.B/.

We observe that a charge necessarily vanishes on negligible sets. This can be seen
as a consequence of either (A) or (B). The linear space of charges on A is denoted
CH.A/. It is worth mentioning that our notation� is not meant to suggest that charges
are measures – indeed, some are not. However, absolutely continuous measures are
charges.

The structure of 1-dimensional BV -sets is strikingly simple and this allows for an
easy description of charges in case AD Œ0; 1�. Indeed, the elements of BV.Œ0; 1�/ are,
up to negligible sets, the disjoint unions of compact intervals. From (B), the function
vW Œ0;1�!R defined by v.x/D�.Œ0;x�/ is continuous and vanishes at 0. Reciprocally,
to any function v belonging to the space C0.Œ0; 1�/ of continuous functions on Œ0; 1�
vanishing at 0, we associate the charge �v that maps any disjoint union of compact
intervals to

�vW

p[
iD1

Œai ; bi � 7!

pX
iD1

v.bi / � v.ai /

and such that �v.B1/ D �v.B2/ whenever B1; B2 2 BV.Œ0; 1�/ are almost disjoint,
i.e., jB1 4 B2j D 0. Thus, v 7! �v is a bijection from C0.Œ0; 1�/ to CH.Œ0; 1�/.
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3.3. The Banach space C0

�
Œ0; 1�d

�
The multidimensional generalization of the space C0.Œ0; 1�/ is the space C0.Œ0; 1�d /
of continuous functions on Œ0; 1�d that vanish on the coordinate hyperfacets

d[
iD1

®
.x1; : : : ; xd / 2 Œ0; 1�

d
W xi D 0

¯
: (3.3)

We equip this space with the maximum norm k � k1.

3.4. Chargeability

Among the subsets of Œ0; 1�d , we consider some that are more regular than BV sets.
We describe these here.

A dyadic cube is a set of the type
Qd
iD1 Œ2

�nki ; 2
�n.ki C 1/�, where n � 0 and

0 � k1; : : : ; kd � 2
n � 1 are integers. Such a dyadic cube has side length 2�n and we

say that it is of generation n. Thus, in our terminology, dyadic cubes are subsets of
Œ0; 1�d .

A rectangle is a set with non-empty interior of the form
Qd
iD1Œai ; bi �. We are also

interested in (rectangular) figures in Œ0; 1�d , i.e., subsets of Œ0; 1�d that can be written
as finite unions of rectangles. The collection of such sets is denoted F.Œ0; 1�d /. Note
that each F 2 F.Œ0; 1�d / is a BV -set and that kF k D Hd�1.@F /.

We can now define the increments of a function f 2 C0.Œ0; 1�d / on a rectangleQd
iD1Œai ; bi � � Œ0; 1�

d by means of the formula

�f

� dY
iD1

Œai ; bi �

�
D

X
.ci /2

Qd
iD1¹ai ;bi º

.�1/ıa1;c1 : : : .�1/ıad ;cd f .c1; : : : ; cd / (3.4)

where for any reals t; t 0, the number ıt;t 0 is 1 or 0 according to whether t D t 0 or
not. In the 2-dimensional case, we recover the well-known rectangular increment
�f .Œa1; b1� � Œa2; b2�/ D f .b1; b2/ � f .a1; b2/ � f .b1; a2/C f .a1; a2/.

One checks that if a rectangle K can be split as the union of two almost disjoint
rectangles K D K1 [K2, then �f .K/ D �f .K1/C�f .K2/. Based on this obser-
vation and the fact that any figure can be written as a finite union of pairwise almost
disjoint rectangles, �f has a unique extension to F.Œ0; 1�d /, that satisfies the finite
additivity property (A) of the Subsection 3.2, restricted to the subcollection F.Œ0; 1�d /

of BV.Œ0; 1�d /. This extension is still denoted �f .
Now, we say that the function f is chargeable whenever �f WF.Œ0; 1�d /! R has

an extension to BV.Œ0; 1�d / that is a charge. We state below an approximation the-
orem of De Giorgi (see [17, Proposition 1.10.3] for a proof), that implies that this
extension is necessarily unique. In intuitive terms, the chargeability of f allows to
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make sense of increments of f over arbitrary BV -sets. The discussion in 3.2 shows
that all continuous functions on Œ0; 1� vanishing at 0 are chargeable. In fact, charge-
ability is a regularity property that differs from continuity only in dimension � 2. We
prove later that the sample paths of the Brownian sheet are almost surely not charge-
able.

Functions that are chargeable can be thought of as being the indefinite integrals of
charges, by integration on rectangles. This statement is made clear by the elementary
Proposition 3.2. The class of BV -subsets of Œ0; 1�d has better properties than that of
rectangular figures. It is invariant under biLipschitz transformations and its definition
does not rely on a specific choice of a basis in Rd . We uphold the thesis that, whenever
a function f is chargeable, the charge �f is a more fundamental object than f itself.

Theorem 3.1 (De Giorgi approximation). There is a constant C � 0, depending only
on d , such that, for anyBV -subsetB � Œ0; 1�d , there exists a sequence .Fn/ of figures
in Œ0; 1�d such that

sup kFnk � CkBk and lim jFn 4 Bj D 0:

In particular, .Fn/ w�-converges to B .

Proposition 3.2. A function f 2 C0.Œ0; 1�d / is chargeable if and only if there exists
a charge � on Œ0; 1�d such that

f .x1; : : : ; xd / D �

� dY
iD1

Œ0; xi �

�
; 0 � x1; : : : ; xd � 1: (3.5)

In this case, one has � D �f .

Proof. If f is chargeable, then �f is a charge and

f .x1; : : : ; xd / D �f
�
Œ0; x1� � � � � � Œ0; xd �

�
;

as f vanishes on (3.3). Conversely, suppose the existence of a charge� such that (3.5)
holds and consider a rectangle K D

Qd
iD1Œai ; bi �. Then, by the finite additivity of �,

one obtains

f .x1; : : : ; xd�1; bd / � f .x1; : : : ; xd�1; ad / D �

�d�1Y
iD1

Œ0; xi � � Œad ; bd �

�
for any 0 � x1; : : : ; xd�1 � 1. Repeating this process one step further, one getsX

cd�1;cd

.�1/ıad�1;cd�1 .�1/ıad ;cd f .x1; : : : ; xd�2; cd�1; cd / D

�

�d�2Y
iD1

Œ0; xi � � Œad�1; bd�1� � Œad ; bd �

�
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where cd�1 ranges over ¹ad�1; bd�1º and cd over ¹ad ; bd º. Continuing further, we
obtain�f .K/D�.K/. By finite additivity of both�f and�, we deduce that�D�f
on F.Œ0; 1�d /, which yields the result.

3.5. The space BV
�
Œ0; 1�d

�
We letBV.Œ0;1�d / be the subspace ofBV.Rd / that consists of those functions u such
that uD 0 almost everywhere on Rd n Œ0; 1�d , equipped with the norm inherited from
BV.Rd /.

In fact, the extension operatorEWBV..0;1/d /!BV.Œ0;1�d / provides an isomor-
phim, whose reciprocal is the restriction operator. A measurable function uWRd ! R

belongs to BV.Œ0; 1�d / if and only if u D 0 almost everywhere outside Œ0; 1�d and
the restriction of u to .0; 1/d belongs to BV..0; 1/d /. This means that the norms
k � kBV.Rd / and

u 7!

Z
.0;1/d

juj C kDuk
�
.0; 1/d

�
are equivalent on BV.Œ0; 1�d /.

We claim that u 7! kDuk.Rd / is yet another norm on BV.Œ0; 1�d / that is equiva-
lent to the two norms above. To prove this claim, let 
 WBV..0; 1/d /! R be the map
defined by


. Qu/ D
1

2d

Z
@.0;1/d

tr QudHd�1; Qu 2 BV
�
.0; 1/d

�
:

It is continuous, by the continuity of tr. By the Sobolev–Poincaré inequality, there is
a constant C such that k Qu� 
. Qu/kd=.d�1/ � CkD Quk..0; 1/d / for all Qu. Furthermore,
one has, by the extension theorem,

kDuk.Rd / D kD Quk
�
.0; 1/d

�
C

Z
@.0;1/d

j tr QujdHd�1 (3.6)

where Qu 2 BV..0; 1/d / denotes here the restriction of u. One notices that

kuk1 D k Quk1 � k Qu � 
. Qu/k1 C
1

2d
k tr Quk1

� k Qu � 
. Qu/kd=.d�1/ C
1

2d
k tr Quk1

� max
�
C;

1

2d

��
kD Quk

�
.0; 1/d

�
C k tr Quk1

�
Thus by (3.6), one obtains kukBV D kuk1 C kDuk.Rd / � C 0kDuk.Rd / for some
constant C 0 > 0. The upper bound kDuk.Rd / � kukBV is trivial.
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For the definition of strong charge functionals in the next section, it is slightly
more convenient to work inBV.Œ0;1�d / rather than the isomorphic spaceBV..0;1/d /.
One could similarly define a Banach space BV.A/, where A is a BV -set, and develop
a theory of strong charge functionals on A.

4. Strong charge functionals and strong charges

4.1. The space of strong charge functionals

To each function f 2 Ld .Œ0; 1�d /, we associate the functional

Tf Wu 7!

Z
Œ0;1�d

f u

defined on BV.Œ0; 1�d /. It is continuous. Indeed, denoting Nu the average value of u on
Œ0; 1�d , we have, by the Hölder and Sobolev–Poincaré inequalities,

jTf .u/j D

ˇ̌̌̌Z
Œ0;1�d

f .u � Nu/C

�Z
Œ0;1�d

f

�
Nu

ˇ̌̌̌
� kf kd

�Z
.0;1/d

ju � Nujd=.d�1/
�.d�1/=d

C kf kdkuk1

� kf kd
�
CP kDuk

�
.0; 1/d

�
C kuk1

�
� max.CP ; 1/kf kdkukBV :

Furthermore, this computation shows that the map T WLd .Œ0; 1�d / ! BV.Œ0; 1�d /�

sending f to Tf is continuous.
We define the Banach space SCH.Œ0; 1�d / as the closure of the range of the oper-

ator T in BV.Œ0; 1�d /�. Elements thereof are called strong charge functionals. The
choice of the terminology and the link with charges defined in the previous section
is explained in Subsection 4.4. With this definition, SCH.Œ0; 1�d / turns out to be a
predual of BV.Œ0; 1�d /, as we prove now.

Theorem 4.1 (Duality theorem). The canonical map

‡ WBV
�
Œ0; 1�d

�
! SCH

�
Œ0; 1�d

��
(that sends u to the functional ˛ 7! ˛.u/) is an isomorphism of Banach spaces.

Proof. The canonical map ‡ can be seen as the composition of the evaluation map
BV.Œ0; 1�d /! BV.Œ0; 1�d /�� with the adjoint of the injection map SCH.Œ0; 1�d /!
BV.Œ0; 1�d /�, and, therefore, is continuous. Next, we prove separately that ‡ is one-
to-one and onto.
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If u belongs to the kernel of ‡ , then

Tf .u/ D

Z
Œ0;1�d

f u D 0

for all f 2 Ld .Œ0; 1�d /. From this it can be deduced that u D 0 a.e. on Œ0; 1�d , hence
u D 0 in BV.Œ0; 1�d /. Therefore, ‡ is an injection.

Now let us take 
 2 SCH.Œ0; 1�d /�. As 
 ı T belongs to the dual of Ld .Œ0; 1�d /,
there is a function u 2 Ld=.d�1/.Œ0; 1�d / such that


.Tf / D

Z
Œ0;1�d

f u

for all f 2 Ld .Œ0; 1�d /. We extend u to Rd by zero, and we wish to prove that u
belongs to BV.Œ0; 1�d /. To this end, we consider a vector field v 2 C 1c .R

d IRd / such
that jvj � 1 on Rd . Call g the restriction of div v to Œ0; 1�d . First, note that

Tg.'/ D

Z
Œ0;1�d

' div v D
Z

Rd
' div v � kD'k.Rd / � k'kBV

for all ' 2 BV.Œ0; 1�d /. This establishes that kTgk � 1. Then, we observe thatZ
Œ0;1�d

u div v D 
.Tg/ � k
k:

As v is arbitrary, this proves that kDuk.Rd / � k
k <1 and so u 2 BV.Œ0; 1�d /.
The continuous maps 
 and ‡.u/ coincide on T .Ld .Œ0; 1�d //, a dense subspace

of SCH.Œ0; 1�d /. On this account, we infer that 
 D ‡.u/. So, ‡ is onto. Finally, we
apply the open mapping theorem to conclude that ‡�1 is continuous as well.

The next proposition characterizes weak* convergence of sequences in the space
BV.Œ0; 1�d / (weak* convergence with respect to the duality between SCH.Œ0; 1�d /
and BV.Œ0; 1�d /). This is the same convergence that appears in the BV compactness
theorem.

Proposition 4.2. A sequence .un/ in BV.Œ0; 1�d / weak* converges to u if and only if
it is bounded and un ! u in L1.

Proof. Of course, a weak* convergent sequence .un/ is bounded by the uniform
boundedness principle. To prove that un ! u in L1.Œ0; 1�d /, it suffices to remark
that any subsequence of .un/ has a subsequence converging to u in L1.Rd /. Indeed,
by the compactness theorem (that we may apply to the functions un restricted to a
bounded Lipschitz open neighborhood of Œ0; 1�d ), it is possible to extract, from any
subsequence .unk / of .un/, a subsequence still denoted .unk / that L1-converges to
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some v 2 BV.Œ0; 1�d /. For any f 2 L1.Œ0; 1�d /, we have Tf .unk /! Tf .v/, whereas
we also have Tf .unk /! Tf .u/ by weak* convergence. Hence Tf .u/ D Tf .v/. As
f 2 L1.Œ0; 1�d / is arbitrary, we deduce that u D v and this finishes the first part of
the proof.

Conversely, we observe that the space L1.Œ0; 1�d / is dense in Ld .Œ0; 1�d /, and
therefore T .L1.Œ0; 1�d // is dense in SCH.Œ0; 1�d /. Owing to the boundedness of
.un/, it is sufficient to remark that Tf .un/! Tf .u/ for any f 2 L1.Œ0; 1�d /.

4.2. The operator div

To each continuous vector field v 2 C.Œ0; 1�d IRd /, we associate the functional div v W
BV.Œ0; 1�d /! R defined by

.div v/.u/ D �
Z
Œ0;1�d

v � dDu:

We call div v the divergence of v. This terminology is justified by the fact that

8u 2 BV
�
Œ0; 1�d

�
; .div v/.u/ D

Z
Œ0;1�d

u div v (4.1)

whenever v 2 C 1.Œ0; 1�d IRd /. To prove (4.1), one may extend v to a C 1 vector field
on Rd , and then apply the trace theorem for a domain U that is a bounded Lipschitz
open neighborhood of Œ0; 1�d .

Let us check that div v 2 SCH.Œ0; 1�d / whenever v 2 C.Œ0; 1�d IRd /. For " > 0,
choose a smooth vector field wWRd ! Rd such that jv.x/ � w.x/j � " for all x 2
Œ0; 1�d . Then

.div v/.u/ D �
Z
Œ0;1�d

u divw �
Z
Œ0;1�d

.v � w/ � dDu:

Call g the restriction of divw to Œ0; 1�d . The preceding equality implies thatˇ̌
div v.u/ � Tg.u/

ˇ̌
D

ˇ̌̌̌Z
Œ0;1�d

.v � w/ � dDu
ˇ̌̌̌
� "kukBV :

As u is arbitrary, this ensures that div v is a continuous linear functional and that
kdiv v � Tgk � C". This shows that div v belongs to the closure of T .Ld .Œ0; 1�d //,
i.e., it is a strong charge functional.

Thus, we have defined a linear map divWC.Œ0; 1�d IRd /! SCH.Œ0; 1�d /. On top
of that, it is continuous, as can be seen from the inequality

j.div v/.u/j � kvk1kDuk
�
Œ0; 1�d

�
� kvk1kukBV :

In fact, each strong charge is the divergence of a continuous vector field, as we show
now.
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Theorem 4.3 (Representation of strong charge functionals). The operator div is
onto.

Proof. The following proof is based on the results of [8] and [5], adapted to the
present formalism. First, we prove that the range of div is dense in SCH.Œ0; 1�d /.
Let gW Œ0; 1�d ! R be a smooth function. We prove that Tg D div v for some continu-
ous vector field v. As C1.Œ0; 1�d / is dense in Ld .Œ0; 1�d /, this establishes our claim.
Let w be a solution of the Poisson equation �w D g on Œ0; 1�d and set v D rw. As v
is of class C1 on Œ0; 1�d , we have

Tg.u/ D

Z
Œ0;1�d

ug D

Z
Œ0;1�d

u div v D .div v/.u/

for all u 2 BV.Œ0; 1�d /, which shows that Tg D div v.
We conclude the proof by showing that the range of div is closed. By [14, The-

orem 3.1.21], it suffices to show that the range of the adjoint map div� is closed in
SCH.Œ0; 1�d /�.

In the following diagram, we letM.Œ0;1�d IRd / be the Banach space of Rd -valued
Borel measures on Œ0; 1�d normed by total variation. It is isomorphic to the dual of
C.Œ0; 1�d IRd /, by the Riesz representation theorem. The vertical arrows ‡ andˆ are
the obvious isomorphisms and we define U D ˆ�1 ı div� ı‡ , so that the diagram is
commutative.

SCH.Œ0; 1�d /� C.Œ0; 1�d IRd /�

BV.Œ0; 1�d / M.Œ0; 1�d IRd /

div�

‡

U

ˆ

For all u 2 BV.Œ0; 1�d /, we have .div� ı ‡/.u/ D ‡.u/ ı div. Evaluating at the
function v 2 C.Œ0; 1�d IRd / yields

.div� ı‡/.u/.v/ D ‡.u/.div v/ D .div v/.u/ D �
Z
Œ0;1�d

v � dDu:

On the other hand,

.ˆ ı U/.u/.v/ D
Z

v � dU.u/:

Since the preceding equalities hold for every v, we deduce that the measure U.u/ is
the restriction of �Du to Œ0; 1�d . Therefore, its total variation is

kU.u/k D kDuk
�
Œ0; 1�d

�
D kDuk.Rd /:

We recall from Subsection 3.5 that u 7! kDuk.Rd / is a norm on BV.Œ0; 1�d / that is
equivalent to k � kBV . This completes the proof.
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4.3. Remark in dimension 1

In dimension d D 1, the space SCH.Œ0; 1�/ is isometric to C0.Œ0; 1�/. Indeed, we
already know that the continuous map divW C0.Œ0; 1�/ ! SCH.Œ0; 1�/ is onto. We
define the map

…WSCH
�
Œ0; 1�

�
! C0

�
Œ0; 1�

�
that sends ˛ to x 7! ˛.1Œ0;x�/. We claim that … ı div D id and, thus, that div is
an isomorphism whose inverse is …. Indeed, letting v 2 C0.Œ0; 1�/ we have for all
x 2 Œ0; 1�,

….div v/.x/ D .div v/.1Œ0;x�/ D �
Z
Œ0;1�

v dD1Œ0;x� D v.x/ � v.0/ D v.x/:

4.4. Strong charges

To each strong charge functional ˛, we associate the map S.˛/WBV.Œ0; 1�d /! R

S.˛/ W B 7! ˛.1B/:

It is clearly finitely additive, by the linearity of ˛, and continuous with respect to
w�-convergence, by Proposition 4.2. Thus, we have defined a linear map

SWSCH
�
Œ0; 1�d

�
! CH

�
Œ0; 1�d

�
:

Charges that belong to the range of S are called strong, for historical reasons. We
admit for now that S is injective – a fact that is proved momentarily in Corollary 4.5.
As a consequence, strong charge functionals and strong charges are basically the same
objects, under different disguises. However, the formalism of strong charge function-
als makes it readily clear that SCH.Œ0; 1�d / is a Banach space and this allows us to
introduce a functional analytic approach in the next section.

In dimension d D 1, charges on Œ0; 1� are automatically strong. Indeed, let � be
any charge on Œ0; 1� and vWx 7! �.Œ0; x�/ its associated continuous function, then it is
easy to check that � D S.div v/.

The structure of BV -sets in Œ0; 1�d is fully understood. They have a Borel measur-
able reduced boundary @�B , defined in a measure-theoretic way, on which a normal
unit outer vector field nB is defined Hd�1-almost everywhere and they satisfy a gen-
eralized Gauss–Green theorem [9, 5.9, Theorem 1]Z

B

div' D
Z
@�B

' � nB dH
d�1;
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for all ' 2 C 1.Œ0; 1�d IRd /. In particular, if a strong charge functional ˛ is the diver-
gence of v 2 C.Œ0; 1�d IRd /, a density argument shows that

˛.1B/ D

Z
@�B

v � nB dHd�1:

In terms of charges, a charge � is strong if and only if there exists a continuous vector
field v 2 C.Œ0; 1�d IRd / such that

�.B/ D

Z
@�B

v � nB dHd�1; B 2 BV
�
Œ0; 1�d

�
:

A function f 2 C0.Œ0; 1�d / is called strongly chargeable whenever the increment
map �f extends (uniquely) to a strong charge. For example, any continuous function
f 2 C0.Œ0; 1�/ is strongly chargeable. This only happens in dimension d D 1.

We close this section with an approximation lemma whose full strength is proven
useful in Section 5, in the proof of Theorem 5.1. A dyadic partition P of Œ0; 1�d is a
finite set of pairwise almost disjoint dyadic cubes in I D Œ0; 1�d such that[

¹K W K 2 Pº D Œ0; 1�d :

We do not require that the cubes in P are of the same generation.

Lemma 4.4. Let .Pn/ be a sequence of dyadic partitions of Œ0; 1�d whose meshes
tend to 0, i.e.,

lim
n!1

max ¹diamK W K 2 Pnº D 0:

Let u 2 BV.Œ0; 1�d /. For each n, define the function

un D
X
K2Pn

NuK1K ; where NuK D
1

jKj

�Z
K

u

�
:

Then un ! u weakly* in BV.Œ0; 1�d /.

Proof. In regard with Proposition 4.2, we need to prove that un ! u in L1 and that
supn kDunk.R

d / <1. That un ! u in L1 is routinely proven by approximating u
by a continuous function v on Œ0; 1�d and using the uniform continuity of v.

Thus, we concentrate our efforts on the second part. By the continuity of the trace
operator, there is a constant C � 0 such thatZ

@..0;1/d /

j tr'jdHd�1
� C

�Z
.0;1/d

j'j C kD'k
�
.0; 1/d

��
;

for all ' 2 BV..0; 1/d /. Then a scaling argument shows thatZ
@K

j tr'jdHd�1
�

C

diamK

Z
intK
j'j C CkD'k.intK/
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whenever K � Œ0; 1�d is a dyadic cube and ' 2 BV.intK/.
Now, we fix n. For each cube K 2 Pn, we call ujintK 2 BV.intK/ the restriction

of u to intK and vK D .u � NuK/1K 2 BV.Œ0; 1�d /. By the extension theorem,

kDvKk.Rd / D kDuk.intK/C
Z
@K

j tr.ujintK � NuK/j dH
d�1:

Hence, with the help of the preceding inequality and the Hölder inequality, we deduce
that

kDvKk.Rd / � .1C C/kDuk.intK/C
C

diamK

Z
K

ju � NuK j

� .1C C/kDuk.intK/C
C
p
d

�Z
K

ju � NuK j
d=.d�1/

�1�1=d
:

By the Sobolev–Poincaré inequality on a cube, one has�Z
K

ju � NuK j
d=.d�1/

�1�1=d
� CP kDuk.intK/:

where CP is the Poincaré constant, hence,

kDvKk.Rd / � C 0kDuk.intK/ (4.2)

for some constant C 0 (depending solely on d ). Finally, one notices that

kDunk.R
d / �





D X
K2Pn

vK





.Rd /C kDuk.Rd /
�

X
K2Pn

kDvKk.Rd /C kDuk.Rd /

� .1C C 0/kDuk.Rd /

In the last inequality, we used (4.2) and the fact that the interiors of the cubesK 2 Pn
are pairwise disjoint.

Corollary 4.5. The map SWSCH.Œ0; 1�d /! CH.Œ0; 1�d / is injective.

Proof. Let ˛ 2 SCH.Œ0; 1�d / be in the kernel of S and u 2 BV.Œ0; 1�d /. Then, for
every dyadic cubeK, one has ˛.1K/D S.˛/.K/D 0. For any integer n, consider the
collection Pn of all dyadic cubes of generation n and define the sequence of approx-
imating functions un D

P
K2Pn

NuK1K as in the preceding lemma. Then ˛.un/ DP
K2Pn

NuK˛.1K/ D 0, for all n. Moreover, un ! u in the weak* topology. But ˛
belongs to the predual of BV.Œ0; 1�d /, consequently, ˛.u/ D lim ˛.un/ D 0. This is
true for any u, so, we infer that the kernel of S is trivial.
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5. The Faber–Schauder basis in SCH
�
Œ0; 1�d

�
5.1. Schauder basis

We recall that a sequence .en/ with terms in an infinite-dimensional Banach space X
is called a Schauder basis (or simply basis) of X if for each x 2 X , there is a unique
sequence .an/ of scalars such that

x D

1X
nD0

anen (5.1)

strongly in X .
If the convergence in (5.1) is required to be weak instead of strong, then we say

that .en/ is a weak basis. The weak basis theorem (see for instance [15, Theorem 5.3]
for a proof) asserts that a weak basis is in fact a Schauder basis.

5.2. Haar basis

An example of a Schauder basis is provided by the system of Haar functions described
here. It is a basis in every Lp.Œ0; 1�/ space, where 1 � p < 1. Set the functions
h�1 D 1,

h0;0W x 2 Œ0; 1� 7!

´
1 if 0 � x < 1=2

�1 if 1=2 � x � 1

(one may extend h0;0 to R by zero if needed in the subsequent formulae) and then,
for every integer n � 1 and k D 0; : : : ; 2n � 1,

hn;k W x 7! 2n=2h0;0.2
nx � k/ D

8̂̂<̂
:̂
2n=2 if 2�nk � x < 2�nk C 2�n�1

�2n=2 if 2�nk C 2�n�1 � x < 2�n.k C 1/

0 otherwise:

The Haar basis is the sequence h�1; h0;0; h1;0; h1;1; h2;0; h2;1; h2;2; h2;3; : : : (indices
are ordered lexicographically). With our normalization choice this is an orthonormal
basis in L2.Œ0; 1�/.

5.3. One-dimensional Faber–Schauder system

By definition, the Faber–Schauder functions are the indefinite integrals of the Haar
functions, that is,

f�1W x 7!

Z x

0

h�1; fn;k W x 7!

Z x

0

hn;k
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for n � 0 and k D 0; : : : ; 2n � 1. It was first proven in [18] that the f�1, f0;0, f1;0,
f1;1, f2;0; : : : constitutes a Schauder basis of C0.Œ0; 1�/. We recall our claim that
the map… introduced in Subsection 4.3 is an isomorphism between SCH.Œ0; 1�/ and
C0.Œ0; 1�/. As f�1 D….Th�1/ and fn;k D….Thn;k / for all indices n;k, we can assert
that Th�1 , Th0;0 , Th1;0 , Th1;1 , Th2;0 ; : : : is a Schauder basis of SCH.Œ0; 1�/.

5.4. Multidimensional Haar basis

Define the matrix

A D

 
1 1

1 �1

!
and let Ad be the matrix of order 2d that is the Kronecker product of A with itself d
times, i.e., A1 D A and

AdC1 D

 
Ad Ad
Ad �Ad

!
; for d � 1:

By induction, Ad is easily seen to be a symmetric matrix such that .Ad /2 D 2dI2d
(where I2d denotes the identity matrix of order 2d ). In other words, 2�d=2Ad is an
orthogonal matrix. Subsequently, the entries of the matrix Ad are written .Ad /r;`,
where the row and column numbers r and ` range over ¹0; : : : ; 2d � 1º.

For all n � 0, we let Kn;k , k D 0; : : : ; 2nd � 1, be the collection of all dyadic
cubes in Œ0; 1�d of side-length 2�n. We further require that, for all indices n and k,
the cubes KnC1;2dk , KnC1;2dkC1; : : : ; KnC1;2dkC2d�1 are the 2d subcubes of Kn;k
of side 2�.nC1/.

We are now able to build the Haar basis. The first Haar function is the exceptional
one

g�1W .x; y/ 2 Œ0; 1�
d
7! 1:

Then, we define, for all n � 0, k 2 ¹0; : : : ; 2nd � 1º and r 2 ¹1; : : : ; 2d � 1º:

gn;k;r D 2
nd=2

2d�1X
`D0

.Ad /r;`1K
nC1;2dkC`

: (5.2)

We refer to n, k and r as the generation number, the cube number and the type number
of gn;k;r . By construction, gn;k;r D 0 almost everywhere outside the cube Kn;k . In
fact, the support of gn;k;r is Kn;k and the support of g�1 is K0;0. We also note that
the average value of gn;k;r is 0 (this is because the r-th line of Ad is orthogonal to the
zeroth line, which is filled with ones).

The Haar basis is (indices are ordered lexicographically):

g�1; g0;0;1; : : : ; g0;0;2d�1; g1;0;1; : : : ; g1;2d�1;2d�1; g2;0;1; : : :
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Claim. The Haar functions are orthonormal in L2.Œ0; 1�d /.

Those functions are indeed appropriately normalized; and the cases worth considering
in proving that these functions are pairwise orthogonal are:

• The case of two functions gn;k;r and gn0;k0;r 0 with n < n0: if Kn0;k0 � Kn;k , thenZ
gn;k;rgn0;k0;r 0 D ˙2

nd=2

Z
gn0;k0;r 0 D 0:

Otherwise, jKn0;k0 \Kn;kj D 0, thus, gn;k;rgn0;k0;r 0 D 0 a.e., which implies that
gn;k;r and gn0;k0;r 0 are orthogonal.

• The case of two functions gn;k;r and gn;k;r 0 of the same generation and same cube
numbers but different type numbers r ¤ r 0:Z

gn;k;rgn0;k0;r 0 D
1

2d

2d�1X
`D0

.Ad /r;`.Ad /r 0;` D 0:

Here, we use that the matrix 2�d=2Ad is orthogonal.

Claim. The indicator function 1Kn;k is a linear combination of g�1 and the functions
gn0;k0;r corresponding to generation numbers n0 2 ¹0;1; : : : ; n� 1º and cube numbers
k0 D b2�d.n�n

0/kc (this is equivalent to Kn0;k0 � Kn;k), and arbitrary type numbers
r 2 ¹1; : : : ; 2d � 1º.

This claim is proven by induction on n. The base case is straightforward as 1K0;0 D
g�1. Regarding the induction step, we note that0BBB@

2nd=21Kn;k
gn;k;1
:::

gn;k;2d�1

1CCCA D 2nd=2Ad
0BBBB@

1K
nC1;2dk

1K
nC1;2dkC1

:::

1K
nC1;2dkC2d�1

1CCCCA (5.3)

The conclusion follows from the invertibility of Ad .
The main result of this section is that, by antidifferentiating (i.e., by applying T

to) the Haar functions in the space of strong charge functionals, we obtain a Schauder
basis of SCH.Œ0; 1�d /, see Theorem 5.1. In view of Subsection 5.3, this basis is anal-
ogous to the 1-dimensional Faber–Schauder basis. It may be worth noting that, like
bases of wavelets, the Faber–Schauder basis we obtain is “localized” in the sense that
the supports of its members are controlled; in fact, suppTgn;k;r D Kn;k .

We warn the reader that a Schauder basis does not need to be unconditional, that
is, the order of summation matters. In fact, the 1-dimensional Faber–Schauder basis
of C0.Œ0; 1�/ is not unconditional, see [2].
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Theorem 5.1. The sequence Tg�1 ;Tg0;0;1 ;Tg0;0;2 ; : : : is a Schauder basis of the space
SCH.Œ0; 1�d /, with respect to which each strong charge functional ˛ is decomposed
as follows:

˛ D ˛.g�1/Tg�1 C ˛.g0;0;1/Tg0;0;1 C ˛.g0;0;2/Tg0;0;2 C � � � :

(The convergence occurs, of course, in BV.Œ0; 1�d /�.)

Proof. First, we prove the uniqueness part in the definition of a Schauder basis. Sup-
pose a strong charge functional ˛ has a decomposition

˛ D a�1Tg�1 C a0;0;1Tg0;0;1 C a0;0;2Tg0;0;2 C � � � C a0;0;2d�1Tg0;0;2d�1

C a1;0;1Tg1;0;1 C � � � C a1;2d�1;2d�1Tg1;2d�1;2d�1 C � � �
(5.4)

Applying (5.4) at gn;k;r , we get an;k;r D ˛.gn;k;r/ by the orthonormality of the
Haar functions. Likewise, a�1 D ˛.g�1/.

We turn to the existence. We fix a strong charge functional ˛ 2 SCH.Œ0; 1�d /.
Our goal is to prove that (5.4) holds weakly, when the coefficients a�1 and an;k;r are
taken as in the first part of the proof. The weak basis theorem then implies the desired
result. Therefore, we consider a function u 2 BV.Œ0; 1�d / and wish to prove that

˛.u/

Da�1Tg�1.u/C a0;0;1Tg0;0;1.u/C a0;0;2Tg0;0;2.u/C � � � C a0;0;2d�1Tg0;0;2d�1.u/

C a1;0;1Tg1;0;1.u/C � � � C a1;2d�1;2d�1Tg1;2d�1;2d�1.u/C � � � (5.5)

For all n; k, we define the truncated sum

˛n;k D a�1Tg�1 C � � � C an;k;2d�1Tgn;k;2d�1 :

We prove that ˛n;k.u/! ˛.u/ (as usual, we equip the set of legal couples of indices
.n; k/ with the lexicographical order). The sequence .˛n;k.u// is merely a subse-
quence of the sequence of partial sums in (5.5) and we deal with this issue at the end
of this proof. Define

Gn;k D
®
g�1; g0;0;1; : : : ; gn�1;2.n�1/d ;2d�1; gn;0;1; : : : ; gn;k;2d�1

¯
so that

˛n;k D
X

g2Gn;k

˛.g/Tg :

Define also the dyadic partition of Œ0; 1�d

Pn;k D
®
Kn;k0 W k C 1 � k

0
� 2nd � 1

¯
[
®
KnC1;k0 W 0 � k

0
� 2dk C 2d � 1

¯
:



A regularity property of fractional Brownian sheets 287

Reasoning as in the first part of the proof, ˛n;k.g/D ˛.g/ for all g 2 Gn;k . Also, with
the help of the second claim of Subsection 5.4, we have

spanGn;k � span
®
1K W K 2 Pn;k

¯
: (5.6)

The two points above guarantee that ˛.1K/ D ˛n;k.1K/ for all K 2 Pn;k .
Next, we define

un;k D
X

K2Pn;k

1

jKj

�Z
K

u

�
1K :

As each function g 2 Gn;k is constant a.e. on the dyadic cubes in Pn;k , we clearly
have Tg.u/ D Tg.un;k/. Therefore,

˛n;k.u/ D ˛n;k.un;k/

D

X
K2Pn;k

1

jKj

�Z
K

u

�
˛n;k.1K/

D

X
K2Pn;k

1

jKj

�Z
K

u

�
˛.1K/

D ˛.un;k/:

Lemma 4.4 applies, therefore, un;k ! u weakly* by Proposition 4.2, from which we
deduce that ˛.un;k/! ˛.u/.

To finish the proof, we ought to show that the sequence of partial sums in the
right-hand side of (5.5) tends to 0. Any partial sum in this sequence differs from some
˛n;k.u/ considered above by at most 2d � 1 terms of the type

an;k;rTgn;k;r .u/ D ˛.gn;k;r/

Z
gn;k;ru D ˛

��Z
gn;k;ru

�
gn;k;r

�
:

In other words, we must show that for all ˛ 2 SCH.Œ0; 1�d / and all u 2 BV.Œ0; 1�d /,
an;k;rTgn;k;r .u/! 0. Fixing u 2 BV.Œ0; 1�d /, this is equivalent to showing that the
sequence ..

R
gn;k;ru/gn;k;r/ weakly* converges to 0 (with respect to the duality set

forth in Theorem 4.1), according to the equation above. By Proposition 4.2, this is in
turn equivalent to showing that



�Z gn;k;ru

�
gn;k;r






1

! 0 (5.7)

and

sup




�Z gn;k;ru

�
gn;k;r






BV

<1: (5.8)
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It is useful to note that, for all d :

kgn;k;rk1 D 2
nd=2
jKn;kj D 2

nd=22�nd D 2�nd=2

and a similar computation yields

kgn;k;rkd D 2
nd=2
jKn;kj

1=d
D 2nd=22�n D 2n.d=2�1/:

Consequently,



�Z gn;k;ru

�
gn;k;r






1

� kukd=.d�1/kgn;k;rkdkgn;k;rk1 D 2
�n
kukd=.d�1/ ! 0:

Accordingly, (5.7) holds for all d . Next, one observes after (5.2) that gn;k;r has
bounded variation and

kDgn;k;rk.R
d / � 2nd=22d2d

�
1

2nC1

�d�1
� C2n.1�d=2/;

from which we infer that



�Z gn;k;ru

�
gn;k;r






BV

� Ckgn;k;rkdkukd=.d�1/kDgn;k;rk.R
d / � Ckukd=.d�1/:

This proves (5.8) and concludes the proof.

5.5. Remark on charge functionals

We briefly outline how it is possible to define a notion of charge functional similar
to that of strong charge functional, thereby endowing CH.A/ with a Banach space
structure. First, define the space BV1.A/ of measurable functions uWRd ! R that
are essentially bounded, that vanish almost everywhere outside of A, and that have
bounded variation. This space is normed by kukBV1 D kuk1 C kDuk.R

d /. We
define the linear map T WL1.A/! BV1.A/

� W f 7! Tf by

Tf .u/ D

Z
A

f u; f 2 L1.A/; u 2 BV1.A/:

The space of charge functionals is the closure of T .L1.A// in BV1.A/�. This space
is a canonical predual of BV1.A/. Charge functionals are in bijection with charges
on A: if ˛ is a charge functional, then B 7! ˛.1B/ is a charge. In case A D Œ0; 1�d ,
the image of the Haar basis of L1.Œ0; 1�d / under T is a Schauder basis of the space of
charge functionals, similar to the Faber–Schauder basis of SCH.Œ0; 1�d /.
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6. Criteria for strong chargeability

Let f 2 C0.Œ0; 1�d /, we define ��1.f /D�f .Œ0; 1�d /D f .1; : : : ; 1/ (the last equality
is a consequence of (3.4)) and, for all relevant indices n; k and r ,

�n;k;r.f / D 2
nd=2

2d�1X
`D0

.Ad /r;`�f .KnC1;2dkC`/: (6.1)

The maps ��1 and �n;k;r so defined are continuous linear functionals on C0.Œ0; 1�d /.
It is clear that if f is strongly chargeable, then�f is by definition a strong charge and
�n;k;r.f / are the coefficients of the strong charge functional S�1.�f / in the Faber–
Schauder basis (see Paragraph 4.4 for the definition of S). From this observation, we
derive Theorem 6.1, that equates strong chargeability with the convergence of a series
in SCH.Œ0; 1�d /.

Theorem 6.1. A function f 2 C0.Œ0; 1�d / is strongly chargeable if and only if the
Faber–Schauder series

��1.f /Tg�1 C �0;0;1.f /Tg0;0;1 C � � � (6.2)

converges in SCH.Œ0; 1�d /.

Proof. The direct implication follows from the arguments above. Conversely, suppose
the series (6.2) is convergent and denote its sum by ˛. Then

˛.g�1/ D ˛.1K0;0/ D ��1.f / D �f .K0;0/ and ˛.gn;k;r/ D �n;k;r.f /

by Theorem 5.1.
We now prove by induction on n that ˛.1Kn;k / D �f .Kn;k/ for all indices k D

0; : : : ; 2nd � 1. The base case n D 0 is already treated. Suppose the result is valid for
a generation number n � 0. Fix a cube number k. By applying ˛ to (5.3), we get0BBB@

2nd=2�f .Kn;k/

�n;k;1.f /
:::

�n;k;2d�1.f /

1CCCA D 2nd=2Ad
0BBBB@

˛.1K
nC1;2dk

/

˛.1K
nC1;2dkC1

/

:::

˛.1K
nC1;2dkC2d�1

/

1CCCCA
On the other hand, from the definition (6.1) of the �n;k;r functionals, we have0BBB@

2nd=2�f .Kn;k/

�n;k;1.f /
:::

�n;k;2d�1.f /

1CCCA D 2nd=2Ad
0BBB@

�f .KnC1;2dk/

�f .KnC1;2dkC1/
:::

�f .KnC1;2dkC2d�1/

1CCCA
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As Ad is invertible, this ends the proof by induction.
Let .x1; : : : ; xd / 2 Œ0; 1�d be a point whose coordinates are dyadic numbers. Then,

we can writeK D
Qd
iD1Œ0; xi � as a finite union of almost disjoint dyadic cubes. Using

the result above and finite additivity, we derive that S�1.˛/.K/ D ˛.1K/ D �f .K/.
Thus, by (3.4), S�1.˛/.K/ D f .x1; : : : ; xd /. When .x1; : : : ; xd / 2 Œ0; 1�d is arbi-
trary, we use a simple density argument (and the continuity of f and ˛) to justify that
S�1.˛/.K/ D f .x1; : : : ; xd / holds as well. Therefore, f is chargeable, by Proposi-
tion 3.2, and �f D S�1.˛/, which ensures that f is strongly chargeable.

The 1-dimensional Faber–Schauder functions fn;k (see Subsection 5.3) have the
pleasant property of having localized supports. This helps estimate the norm of a
linear combination of fn;k functions, for a fixed generation number n� 0. Indeed, we
clearly have 




2

n�1X
kD0

akfn;k







1

D
1

2n=2C1
max

0�k�2n�1
jakj:

The following Proposition 6.2 is a subtler multidimensional analogue. Together with
Theorem 6.1, it allows to state strong chargeability or non-strong chargeability criteria
of practical use in Corollary 6.3.

Proposition 6.2. There is a positive constant C such that for all n � 0 and scalars
.ak;r/, we have

1

2n.d=2C1/C
max

1�r�2d�1

2nd�1X
kD0

jak;r j �






2
nd�1X
kD0

2d�1X
rD1

ak;rTgn;k;r







� C2n.d=2�1/ max

k;r
jak;r j:

Proof. First, we prove the upper bound. Let u 2 BV.Œ0; 1�d /. For any cube number k
and type number r , we have

ak;rTgn;k;r .u/ D ak;r

Z
gn;k;ru D ak;r

Z
gn;k;r.u � NuKn;k /

where NuKn;k is the average value of u on the Kn;k . By the Hölder inequality and the
Poincaré inequality, we obtain that

ˇ̌
ak;rTgn;k;r .u/

ˇ̌
� jak;r jkgn;k;rkd

�Z
Kn;k

ju � NuKn;k j
d=.d�1/

�1�1=d
� CP 2

n.d=2�1/
jak;r j kDuk.intKn;k/



A regularity property of fractional Brownian sheets 291

where CP is the Poincaré constant for d -dimensional cubes. It follows that 
2nd�1X
kD0

2d�1X
rD1

ak;rTgn;k;r

!
.u/

� .2d � 1/2n.d=2�1/CP

�
max
k;r
jak;r j

� 2nd�1X
kD0

kDuk.intKn;k/

� .2d � 1/2n.d=2�1/CP

�
max
k;r
jak;r j

�
kukBV :

Next, we turn to the lower bound. Let r 2 ¹1; : : : ; 2d � 1º. Define

u D

2nd�1X
kD0

"k;rgn;k;r

where "k;r 2 ¹�1;1º are chosen so that "k;rak;r D jak;r j. First, we have kuk1D 2nd=2

and

kDuk.Rd / �
2nd�1X
kD0

kDgn;k;rk.R
d /

� 2nd2nd=2
kDg0;0;rk.Rd /

2n.d�1/

� 2n.d=2C1/ max
�
kDg0;0;1k.R

d /; : : : ; kDg0;0;2d�1k.R
d /
�
:

Hence, kukBV � 2n.d=2C1/C 0, for some constant C 0. As the functions .gn;k;r 0/ are
pairwise orthogonal in L2.Œ0; 1�d /, we have 

2nd�1X
kD0

2d�1X
r 0D1

ak;r 0Tgn;k;r0

!
.u/ D

2nd�1X
kD0

jak;r j:

Hence, we infer

2nd�1X
kD0

jak;r j � 2
n.d=2C1/C 0






2
nd�1X
kD0

2d�1X
r 0D1

ak;r 0Tgn;k;r0






:
Corollary 6.3. Let f 2 C0.Œ0; 1�d /.

(A) The condition

lim sup
n!1

1

2n.d=2C1/
max

1�r�2d�1

2nd�1X
kD0

j�n;k;r.f /j > 0

implies that f is not strongly chargeable.
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(B) The condition
1X
nD0

2n.d=2�1/ max
k;r
j�n;k;r.f /j <1

implies that f is strongly chargeable.

Proof. Condition (A) implies that the sequence of partial sums in (6.2) is not Cauchy.
Condition (B) implies that it is.

7. Sample paths of the Brownian sheet

Let .�;F; P / be a probability space and assume it is sufficiently large for the pro-
cesses below to be defined on it. We recall that the Brownian sheet is a Gaussian
centered random process ¹Wt1;:::;td W .t1; : : : ; td / 2 Œ0; 1�

d º with covariance function

�
�
.t1; : : : ; td /; .t

0
1; : : : ; t

0
d /
�
D

dY
iD1

min.ti ; t 0i /:

Such a process exists and one may construct it the following way: Start from a Gaus-
sian noiseG fromL2.Œ0; 1�d / to a (centered) Gaussian spaceE, i.e., an isometry from
L2.Œ0; 1�d / to a closed linear subspace E � L2.�;F; P / which contains only cen-
tered Gaussian variables. We refer to [13, 1.4] for the existence of Gaussian noises.
One then sets

Wt1;:::;td D G.1Œ0;t1������Œ0;td �/:

This definition leads to the correct covariance function, since

E.Wt1;:::;tdWt 01;:::;t 0d / D

Z
1Œ0;t1������Œ0;td �1Œ0;t

0
1
������Œ0;t 0

d
� D

dY
iD1

min.ti ; t 0i /:

Next, we let the reader prove that �W .K/ D G.1K/ almost surely, for a rectan-
gle K � Œ0; 1�d , where �W .K/ is defined as in (3.4). The Brownian sheet admits
a continuous modification, by a standard application of Kolmogorov’s continuity the-
orem [12, Theorem 3.23], so we may suppose that .t1; : : : ; td / 7! Wt1;:::;td .!/ is an
element of C0.Œ0; 1�d / for all ! 2 �.

As an application of the results from the previous section, we prove the following
theorem. A generalized result is obtained in Section 10 using a more probabilistic
argument.

Theorem 7.1. The sample paths of the Brownian sheet are almost surely not strongly
chargeable (for d � 2).
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Proof. First, we note that ��1.W /DW1;:::;1 DG.1Œ0;1�d /DG.g�1/. By using (6.1),
for n; k we have, almost surely,

�n;k;r.W / D 2
nd=2

2d�1X
`D0

.Ad /r;`�W .KnC1;2dkC`/

D 2nd=2
2d�1X
`D0

.Ad /r;`G.1K
nC1;2dkC`

/

D G.gn;k;r/;

by (5.2). As the sequence of Haar functions g�1; g0;0;1; : : : is orthonormal and G is
an isometry, we deduce that the random variables ��1.W /; �0;0;1.W /; : : : are pair-
wise uncorrelated and follow the standard Gaussian distribution. Since they are jointly
Gaussian, we infer that they are independent. For each integer n � 0, define the ran-
dom variables

Tn D
1

2nd

2nd�1X
kD0

j�n;k;1.W /j and Sn D 2n.d=2�1/Tn D
1

2n.d=2C1/

2nd�1X
kD0

j�n;k;1.W /j:

Each random variable j�n;k;1.W /j follows a half-normal distribution of mean
p
2=�

and variance 1 � 2=� . By independence,



Tn �r 2

�





2
2

D VarTn D
1

2nd

�
1 �

2

�

�
! 0:

We infer the existence of a subsequence .Tnk / that converges almost surely to
p
2=� .

Hence, lim sup Sn D 1 if d � 3 and lim sup Sn �
p
2=� if d D 2. In either case,

one has lim sup Sn > 0 almost surely, and thus, we may conclude with the help of
Corollary 6.3(A).

We could enhance the previous result by demonstrating that the sample paths
of the Brownian sheet are almost surely non-chargeable (though this result is still
less comprehensive than Theorem 10.5). This could be accomplished by utilizing the
Faber–Schauder basis of the space of charge functionals (as seen in Subsection 5.5)
rather than that of SCH.Œ0; 1�d /. The approach mirrors the methods employed to
establish Theorem 7.1.
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8. Hölder strong charges

8.1. Definition

The 1-dimensional Faber–Schauder basis serves as a sort of wavelet basis for the
space C0.Œ0; 1�/. Consequently, it provides a way to assess the regularity of a function
in f 2 C0.Œ0; 1�/ by examining the rate at which the coefficients from the Faber–
Schauder decomposition of f approach 0.

The existence of a Faber–Schauder-type basis in the space SCH.Œ0; 1�d / supports
the idea that some further notions of regularity can be formulated for strong charges.
In this section, we expound upon a theory of Hölder strong charges.

At first, it is worth noting that if � is a strong charge on Œ0; 1�d , and ˛ D S�1.�/

represents its associated strong charge functional (see Paragraph 4.4 for the definition
of S), then the coefficients an;k;r of ˛ in the Faber–Schauder decomposition depend
solely on the values on � over dyadic cubes, since

an;k;r D ˛.gn;k;r/ D 2
nd=2

2d�1X
`D0

.Ad /r;`�.KnC1;2dkC`/:

Taking this into consideration, we introduce the following definition. Let 
 2
�
d�1
d
; 1
�

and � be a strong charge on Œ0; 1�d . We say that � is 
 -Hölder whenever there is a
constant C � 0 such that j�.K/j � C jKj
 for all dyadic cubes K � Œ0; 1�d .

The reader may find it surprising that we have imposed the restriction


 > .d � 1/=d

on the Hölder exponent. The reason is that there seems to be no meaningful theory for
exponents less than or equal to .d � 1/=d . This is foreshadowed in Proposition 8.1
that provides examples of Hölder charges only for exponents greater than .d � 1/=d .

8.2. Hölder strong charges in dimension d D 1

In dimension d D 1, Hölder exponents are allowed to range over 
 2 .0; 1/. We claim
that a charge � is 
 -Hölder if and only if its associated continuous function vW x 7!
�.Œ0; x�/ is 
 -Hölder. This can be proved by elementary methods. In fact, it is well
known that a continuous function vW Œ0; 1�! R is 
 -Hölder continuous if and only if
there is a constant C � 0 such thatˇ̌̌̌

v
�
k C 1

2n

�
� v

�
k

2n

�ˇ̌̌̌
�

C

2n


for all integers n � 0 and 0 � k � 2n � 1, see for example [13, Lemma 2.10].
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In dimension d � 2, there is no corresponding result. The Hölder character of
strong charges is a new regularity notion that has no counterpart for functions. In
fact, it is possible for a 
 -Hölder continuous function in C0.Œ0; 1�d / to be Q
 -Hölder
strongly chargeable, where Q
 > 
 . The sample paths of the fractional Brownian sheet
may exhibit this phenomenon, as discussed in Section 10. For such functions, adopting
the point of view of charges leads to a gain in regularity.

Proposition 8.1. Let f 2 C0.Œ0; 1�d / and d�1
d
< 
 < 1. Suppose that there is a con-

stant C � 0 such that j�f .K/j � C jKj
 for all dyadic cubesK. Then f is 
 -Hölder
strongly chargeable.

Proof. By (6.1), we estimate

j�n;k;r.f /j � C2
nd=22d

�
1

2.nC1/d

�

:

Thus,
1X
nD0

2n.d=2�1/ max
k;r
j�n;k;r.f /j � C2

d.1�
/

1X
nD0

2n.d�1�d
/ <1;

because d � 1� d
 < 0. By Corollary 6.3(B), we conclude that f is strongly charge-
able. It now follows from the hypothesis that the strong charge �f is 
 -Hölder.

9. A Kolmogorov-type chargeability theorem for stochastic processes

Theorem 9.1 (Kolmogorov-type chargeability theorem). Let X be a random process
indexed on Œ0; 1�d with continuous sample paths. Let q > 0; C � 0; ı > 0 such that

d � 1

d
<
ı

q
� 1 (9.1)

and
E
�
j�XKj

q
�
� C jKj1Cı

for all dyadic cubes K, where �XK is the (random) increment of X over K, defined
by (3.4). Then, a.s., X is 
 -Hölder strongly chargeable for any d�1

d
< 
 < ı=q.

Proof. It suffices to fix a Hölder exponent d�1
d

< 
 < ı
q

and prove the apparently
weaker statement that, a.s., X is 
 -Hölder strongly chargeable.

For any integer p � 0, we let Kp be the set of dyadic cubes of generation p. For
such a dyadic cube K, we have

P
�
j�XKj � jKj



�
�

1

jKjq

E
�
j�XKj

q
�
� C

�
1

2pd

�1Cı�q

:
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Hence,

P
�
9K 2 Kp W j�XKj � jKj



�
� C

�
1

2pd

�ı�q

;

as #Kp D 2pd . It follows that

1X
pD0

P
�
9K 2 Kp W j�XKj � jKj



�
<1:

By the Borel–Cantelli lemma, we have, a.s.,

sup
p�0

sup
K2Kp

j�X .K/j

jKj

<1:

We conclude from Proposition 8.1 that the sample paths of X are almost surely 
 -
Hölder chargeable.

10. Sample paths of the fractional Brownian sheet

For any h 2 .0; 1/, t; t 0 � 0, we define

�h.t; t 0/ D
jt j2h C jt 0j2h � jt � t 0j2h

2
:

LetH1; : : : ;Hd 2 .0;1/. The fractional Brownian sheet of Hurst multiparameterH D
.H1; : : : ;Hd / is a Gaussian centered random process ¹W H

t1;:::;td
W .t1; : : : ; td /2 Œ0;1�

d º

of covariance function

�
�
.t1; : : : ; td /; .t

0
1; : : : ; t

0
d /
�
D

dY
iD1

�Hi .ti ; t
0
i /:

WhenH1 D � � � DHd D 1=2, we recover the Brownian sheet from Section 7. Again,
we suppose that the sample paths of the fractional Brownian sheet are continuous.
This is possible because Kolmogorov’s continuity theorem applies to this more gen-
eral case as well. The mean of the Hurst coefficients is written

NH D
H1 C � � � CHd

d
:

This parameter is crucial to determine whether the sample paths of the fractional
Brownian sheet are chargeable or not. Theorems 10.2 and 10.5 describe in detail the
behavior of these sample paths. We need to compute the variance of the increments in
Lemma 10.1. Though this is well known, we include this calculation for the reader’s
convenience.
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Lemma 10.1 (Increments of the fractional Brownian sheet). Let

K D

dY
iD1

Œai ; bi � � Œ0; 1�
d :

Then �WH .K/ is a centered Gaussian random variable of variance

dY
iD1

jbi � ai j
2Hi :

In particular, this variance is jKj2 NH when K is a cube.

Proof. The random variable �WH .K/ is clearly Gaussian of mean zero, so, we need
only compute its variance. We proceed by induction on d . If d D 1 then, clearly,

E
��
W
H1
t1
�W

H1
t 0
1

�2�
D �H1.t1; t1/ � 2�

H1.t1; t
0
1/C �

H1.t 01; t
0
1/ D jt � t

0
j
2H1 :

Suppose now that d � 2 and that the result holds for d � 1. We define a processeW t1;:::;td�1 D W
H
t1;:::;td�1;bd

�W H
t1;:::;td�1;ad

:

Its covariance function ise��.t1; : : : ; td�1/; .t 01; : : : ; t 0d�1/�
D EW H

t1;:::;td�1;bd
W H
t 0
1
;:::;t 0

d�1
;bd
� EW H

t1;:::;td�1;bd
W H
t 0
1
;:::;t 0

d�1
;ad

� EW H
t1;:::;td�1;ad

W H
t 0
1
;:::;t 0

d�1
;bd
C EW H

t1;:::;td�1;ad
W H
t 0
1
;:::;t 0

d�1
;ad

D

 
d�1Y
iD1

�Hi .ti ; t
0
i /

!�
�Hd .bd ; bd / � 2�

Hd .ad ; bd /C �
Hd .ad ; ad /

�
D

 
d�1Y
iD1

�Hi .ti ; t
0
i /

!
jbd � ad j

2Hd :

Thus, jbd � ad j�Hd eW is a fractional Brownian sheet of parameter .H1; : : : ; Hd�1/.
Observing that �WH .K/ D �eW .Œa1; b1� � � � � � Œad�1; bd�1�/, one can now con-
clude.

Theorem 10.2. If NH > d�1
d

, then, a.s., the sample paths of the fractional Brownian
sheet are 
 -Hölder strongly chargeable for any 0 < 
 < NH .

Proof. LetK � Œ0; 1�d be a dyadic cube. By the Gaussian character of the increments
�WHK, there is, for each q > 0, a constant Cq (not depending on K) such that

E .j�WH .K/jq/ D CqjKj
q NH :
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In particular, under the condition that NH > .d � 1/=d , the Kolmogorov-type charge-
ability theorem can be applied for q that is sufficiently large for

q NH > 1 and NH �
1

q
>
d � 1

d
;

and we conclude from this that the sample paths of W H are almost surely 
 -Hölder
chargeable for any 
 < NH .

Next, we prove that the sample paths of the fractional Brownian sheet are almost
surely not chargeable whenever NH � d�1

d
. This shows that the condition (9.1) in the

chargeability theorem is sharp. The proof is based on ideas in [1, Theorem 1.4.5].
First, we need the following two lemmas.

Lemma 10.3. Let X0; X1; : : : be a sequence of standard normal random variables
such that for each integer n, one has lim Cov.Xn; Xk/ D 0 as k !1. Then

P .Xn � 1 infinitely often/ D 1:

Proof. Let .Y1; Y2/ be a Gaussian random vector where Var Y1 D Var Y2 D 1 and
� D Cov.Y1; Y2/. By the Portmanteau lemma, we have

P .Y1 � 1 and Y2 � 1/ ���!
�!0

P .Y1 � 1/P .Y2 � 1/:

Let " > 0. By the preceding paragraph, it is possible to extract a subsequence
.Xnk / such that

P .Xnk � 1 and Xn` � 1/ � .1C "/P .Xnk � 1/P .Xn` � 1/

for all distinct integers k; `. It follows that

lim sup
n!1

�Pn
kD1 P .Xnk � 1/

�2Pn
kD1

Pn
`D1 P .Xnk � 1 and Xn` � 1/

�
1

1C "
:

From the Kochen–Stone lemma [11, Chapter 6, Lemma 4], we deduce that

P .Xn � 1 i.o./ � P .Xnk � 1 i.o./ �
1

1C "

and we finally conclude from the arbitrariness of ".

Lemma 10.4. LetK D
Qd
iD1Œai ; bi � andK 0 D

Qd
iD1Œa

0
i ; b
0
i � be two rectangles in the

cube Œ0; 1�d . Then

Cov
�
�WHK;�WHK 0

�
D

1

2d

dY
iD1

�
jb0i � ai j

2Hi C jbi � a
0
i j
2Hi � ja0i � ai j

2Hi � jbi � b
0
i j
2Hi

�
:
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If K and K 0 are cubes, then

Cov
�
�WHK

jKj NH
;
�WHK 0

jK 0j NH

�
D

1

2d

dY
iD1

jb0i � ai j
2Hi C jbi � a

0
i j
2Hi � ja0i � ai j

2Hi � jbi � b
0
i j
2Hi

jbi � ai jHi jb
0
i � a

0
i j
Hi

:

Proof. Using the formula for increments, one computes

�WHK�WHK 0

D

X
.ci /2

Qd
iD1¹ai ;bi º

X
.c0
i
/2
Qd
iD1¹a

0
i
;b0
i
º

� dY
iD1

.�1/
ıai ;ciCıa0

i
;c0
i

�
W H
c1;:::;cd

W H
c0
1
;:::;c0

d
:

Taking expectations on both sides, one finds

E.�WHK�WHK 0/

D

X
.ci /2

Qd
iD1¹ai ;bi º

X
.c0
i
/2
Qd
iD1¹a

0
i
;b0
i
º

dY
iD1

.�1/
ıai ;ciCıa0

i
;c0
i �Hi .ci ; c

0
i /

D

dY
iD1

�
�Hi .bi ; b

0
i / � �

Hi .ai ; b
0
i / � �

Hi .a0i ; bi /C �
Hi .ai ; a

0
i /
�

D

dY
iD1

jb0i � ai j
2Hi C jbi � a

0
i j
2Hi � ja0i � ai j

2Hi � jb0i � bi j
2Hi

2
: (10.1)

We recall that the random variables �WHK and �WHK 0 are centered. Finally, we
get the second equality, in case K and K 0 are cubes, by dividing both sides in the
equality (10.1) by

jKj
NH
jK 0j

NH
D

dY
iD1

jbi � ai j
Hi jb0i � a

0
i j
Hi :

Theorem 10.5. If NH � d�1
d

, then the sample paths of the fractional Brownian sheet
are almost surely not chargeable.

Proof. To any point x 2 Œ0; 1/d�1 and p � 0, we associate the dyadic cube K.x; p/
in Œ0; 1�d defined by

K.x; p/ D

dY
iD1

�
ki

2p
;
ki C 1

2p

�
; where ki D b2pxic for 1 � i � d � 1 and kd D 0:
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We note that the sequence of cubes .K.x; p// is decreasing and that .x; 0/2K.x; p/.
We let

A D

²
.x; !/ 2 Œ0; 1/d�1 �� W

�WH .!/K.x; p/

jK.x; p/j NH
� 1 for infinitely many p

³
where � denotes the underlying sample space on which our process is defined. This
set is clearly measurable (with respect to the product � -algebra). For any x 2 Œ0;1/d�1,
we define the event A.x/ D ¹! 2 � W .x; !/ 2 A/º.

Next, we apply Lemma 10.3 to deduce that A.x/ is almost certain. To this end, we
first notice that the random variables �WHK.x; p/=jK.x; p/j

NH are standard normal
variables. It then suffices to establish that, for any integer p,

lim
q!1

Cov
�
�WHK.x; p/

jK.x; p/j NH
;
�WHK.x; q/

jK.x; q/j NH

�
D 0: (10.2)

Suppose q � p and writeK.x;p/D
Qd
iD1Œai ; bi � andK.x; q/D

Qd
iD1Œa

0
i ; b
0
i �. Then

the covariance in (10.2) is given by Lemma 10.4. As K.x; q/ � K.x; p/, we can
decompose

jb0i � ai j D ja
0
i � ai j C jb

0
i � a

0
i j and jbi � a0i j D jbi � b

0
i j C jb

0
i � a

0
i j:

Since the function x 7! x2Hi is min.2Hi ; 1/-Hölder continuous on Œ0; 1�, we infer the
existence of a constant C (depending on d , H1; : : : ;Hd ) such that

Cov
�
�WHK.x; p/

jK.x; p/j NH
;
�WHK.x; q/

jK.x; q/j NH

�
� C

dY
iD1

jb0i � a
0
i j

min.2Hi ;1/

jbi � ai jHi jb
0
i � a

0
i j
Hi

D C

dY
iD1

jb0i � a
0
i j

min.Hi ;1�Hi /

jbi � ai jHi

D
C

jK.x; p/j NH

�
1

2q

�min.H1;1�H1/C���Cmin.Hd ;1�Hd /

:

This completes the proof of (10.2), from which we can assert that P .A.x// D 1.
By the measurability ofA and the Fubini theorem, it follows that almost surely, for

almost all x 2 Œ0; 1/d�1, we have �WHK.x; p/ � jK.x; p/j
NH for infinitely many p.

For any integer n � 0, we are led to consider the (random) collection Cn of dyadic
cubes K of the form K D K.x; p/, where p � n and �WHK � jKj

NH . For each
such cube K, we let QK denote its “bottom face” QK D ¹y 2 Œ0; 1�d�1 W .y; 0/ 2 Kº,
which is itself a dyadic cube of Œ0; 1�d�1. Its volume is related to that of K by j QKj D
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jKj.d�1/=d . By what precedes, the cubes QK, where K ranges over Cn, cover a subset
of Œ0; 1/d�1 of full Lebesgue measure. By considering only maximal cubes within Cn,
we can extract a finite subset Dn � Cn of pairwise disjoint cubes such thatX

K2Dn

j QKj D
X
K2Dn

jKj
d�1
d �

1

2
:

We define Fn to be the dyadic figure Fn D
S
K2Dn

K. Then

�WHFn D
X
K2Dn

�WHK �
X
K2Dn

jKj
NH
�

X
K2Dn

jKj
d�1
d �

1

2
: (10.3)

On top of that, we have Fn � Œ0; 1�d�1 � Œ0; 2�n�, which ensures that jFnj ! 0.
Regarding the perimeters, we can estimate

kFnk �
X
K2Dn

kKk D 2d
X
K2Dn

j QKj � 2d
ˇ̌
Œ0; 1�d�1

ˇ̌
D 2d:

Therefore, we have proved that the sequence .Fn/ w�-converges to ;. The lower
bound (10.3) shows that�WH is not continuous with respect to w�-convergence and,
therefore, cannot be extended to a charge. As this happens almost surely, the proof is
complete.
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