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On the cardinality and dimension of the slices of Okamoto’s
functions

Simon Baker and George Bender

Abstract. The graphs of Okamoto’s functions, denoted by Kq , are self-affine fractal curves
contained in Œ0; 1�2, parameterised by q 2 .1; 2/. In this paper we consider the cardinality and
dimension of the intersection of these curves with horizontal lines. Our first theorem proves that
if q is sufficiently close to 2, then Kq admits a horizontal slice with exactly three elements.
Our second theorem proves that if a horizontal slice of Kq contains an uncountable number of
elements then it has positive Hausdorff dimension provided q is in a certain subset of .1; 2/.
Finally, we prove that if q is a k-Bonacci number for some k 2 N�3, then the set of y 2
Œ0; 1� such that the horizontal slice at height y has .2mC 1/ elements has positive Hausdorff
dimension for any m 2 N. We also show that, under the same assumption on q, there is some
horizontal slice whose cardinality is countably infinite.

1. Introduction

John Martstrand’s 1954 paper [22] provided some of the cornerstone results for the
field known as Fractal Geometry [14]. Marstrand’s paper eventually attracted atten-
tion primarily for the projection theorem (Theorem A) and slicing theorem (Theorem
B) therein. The original statement of Marstrand’s projection theorem imposes the
restriction that the planar set E with dimH E D s is an s-set. That is, E is required
to be both measurable and satisfy 0 < H s.E/ <1. Davies [7] proved that analytic
sets E with dimH E D s and satisfying H s.E/ D 1 contain subsets of arbitrarily
large finite H s-measure, in particular they contain s-sets. This leads to the following
version of Marstrand’s theorem.

Theorem A (Marstrand’s projection theorem). Let E � R2 be an analytic set with
dimHE D s.
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(a) If s � 1 then the Hausdorff dimension of almost every orthogonal projection
of E is equal to s.

(b) If s > 1 then almost every orthogonal projection ofE has positive length (and
hence Hausdorff dimension 1).

If E is as above, with s > 1, then Marstrand’s projection theorem indicates that
the projection of E in almost all directions has positive length. However, the Haus-
dorff dimension of the projection to a line cannot exceed 1 so it is natural to seek a
finer description via slices. An interpretation of Theorem B is as a description of how
the “surplus dimension” of E is stored in the fibres of the projection. Formally, The-
orem B provides information on the typical dimension of the intersection of E with
lines in the plane which pass throughE. The original statement of the slicing theorem
in Marstrand [22] imposed conditions on the planar set E being an s-set, as with the
projection theorem above. As mentioned, by Davies’ result on analytic sets [7], we
are able to reformulate Marstrand’s slicing theorem as follows.

Theorem B (Marstrand’s slicing theorem). Let E � R2 be analytic with dimH E D

s > 1. Then almost every line through H s-almost every point of E intersects E in a
set of Hausdorff dimension s � 1 with finite Hausdorff .s � 1/-dimensional measure.

Davies [8] went on to prove that if the planar set E is not assumed to be ana-
lytic, then Theorem A fails completely. Precisely, a planar set E� is found which
projects to a set of Hausdorff dimension zero in all directions and E� is essentially
2-dimensional1. Although the results we present in this paper are not linked directly
to projections, our work is heavily influenced by Marstrand’s closely related slicing
theorem. The improvements that have been found for the projection theorem often
have analogous consequences for the slicing theorem. For example, the extension to
higher dimensions that Mattila [23] found for the projection theorem carries imme-
diately over to the slicing theorem, as does Davies’ result that the set E in question
need only be analytic.

The sets of measure zero where the conclusions of the theorems fail are known
as exceptional sets. Given Theorems A and B, natural questions arise regarding the
exceptional sets, for instance, we can ask what the Hausdorff and packing dimension
of these sets are in general. The research already published on this topic motivates
our own research on the horizontal slices of Okamoto’s functions. In the context of
Marstrand’s projection theorem, Kaufman proved in [19] that the Hausdorff dimen-
sion of the set of exceptional directions of E is no larger than dimHE, and Kaufman

1Davies [8] defines a set to be essentially at least s-dimensional if it cannot be expressed as
the countable union of sets of dimension strictly less than s.
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and Mattila [20] proved that this bound is sharp. Since the set of directions is an inter-
val, this result is only significant when dimHE � 1. However, in the case dimHE > 1,
Falconer [11] proved that the exceptional set, i.e., the set of directions whose projec-
tions give a set of zero Lebesgue measure, has Hausdorff dimension at most 2 � s.
This bound was also proved to be sharp in the same paper. In the context of The-
orem B, let dimH E D s. Let D � S1 be the set of exceptional directions, where
d 2 D if the set of points e 2 E for which the line through e in direction d inter-
sects E in a set of Hausdorff dimension s � 1 has H s-measure zero. Orponen [27]
proved that dimH D � 2 � s. This result is analogous to the results of Kaufman [19]
and Falconer [11] mentioned above.

A conjecture of Furstenburg [16] concerns the Hausdorff dimension of the inter-
section of sets A;B � Œ0; 1� which are invariant under multiplication maps Tp W x 7!
px mod 1 and Tq W x 7! qx mod 1, respectively. The conjecture states that for all
u; v 2 R, if p and q are multiplicatively independent (i.e., logp

logq is irrational) then

dimH
�
.uAC v/ \ B

�
� max¹0; dimHAC dimH B � 1º: (1.1)

We can see for u; v 2 R that .uAC v/ \ B is the intersection of A � B and the line
y D ux C v. This provides a link to our study of slices. More precisely, Fursten-
berg’s conjecture can be viewed as an improvement on the ‘almost all’ condition of
Marstrand’s slicing theorem because it gives a bound for the dimension of all slices
through A � B , under some constraints on A and B . Recently, in 2019, Shmerkin
[30] and Wu [33] independently and by different methods proved a stronger version
of Furstenberg’s conjecture, with upper box dimension replacing Hausdorff dimen-
sion on the left-hand side of (1.1).

In this paper, we study the horizontal intersections of the family of fractal curves
known as Okamoto’s functions [26]. Although some special cases of this family of
curves have been studied before, namely by Bourbaki [5] and Perkins [29], research
on the whole family of functions was first carried out in 2005 by Okamoto [26].

Let q 2 .1;2/ and consider the following iterated function system on Œ0; 1�2, which
we refer to as the Okamoto IFS:

S0.x; y/ D

�
x

3
;
y

q

�
;

S1.x; y/ D

�
x C 1

3
;

�
2

q
� 1

�
.1 � y/C

�
1 �

1

q

��
;

S2.x; y/ D

�
x C 2

3
;
y

q
C

�
1 �

1

q

��
:
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Each Si is a contraction on Œ0; 1�2 so by a theorem of Hutchinson [18], there is a
unique nonempty compact set Kq with the property that

Kq D
[

i2¹0;1;2º

Si .Kq/;

which is the self-affine set of the Okamoto IFS. For i 2 ¹0; 1; 2º, define vi .x/ and
ui .y/ by the equation Si .x; y/D .vi .x/; ui .y//, that is, they are the coordinate func-
tions of the Okamoto IFS. For any y 2 Œ0; 1� we define the horizontal slice at y ofKq
to be the set

slq.y/ D
®
x 2 Œ0; 1� W .x; y/ 2 Kq

¯
:

For any q 2 .1; 2/ the set Kq � Œ0; 1�2 can be realised as the graph of the limit of a
sequence of piecewise linear continuous functions on Œ0; 1� (see Figure 1). The family
of functions Kq for q 2 .1; 2/ (known as Okamoto’s functions) was first studied by
Okamoto [26], where the interest originated in their pathological property of being
continuous and nowhere differentiable. In this paper it is shown that if q 2 .1; 3=2/
then Kq is nowhere differentiable, but if q 2 .3=2; 2/ then Kq is differentiable at
infinitely many points. It is worth emphasising that the family of functions studied by
Okamoto in [26] is actually larger than the set we consider. Essentially, they allow
the parameter q to range over .1;1/, however, the limiting functions that appear for
q 2 Œ2;1/ do not have interesting horizontal intersections, so we ignore them here.

Given the x-components of the Okamoto IFS are of the form xCi
3

for i 2 ¹0; 1; 2º,
one can expect information on the ternary expansion of x to tell us about the local
behaviour of the point .x; y/ 2 Kq . Allaart [1] proved for any q 2 .1; 2/, that the
derivative of Kq at x is infinite if and only if the number of 1s in the ternary expan-
sion of x is finite and some technical limiting condition on q and the ternary expansion
of x holds. Moreover, we have the satisfying polarity property that if the number of
1s in the ternary expansion of x is even then the derivative is C1, while if it is neg-
ative, the derivative is �1. In this paper, Allaart also made use of base q expansion
theory to prove results on the Hausdorff dimension of the set of points x for which
Okamoto’s function has infinite derivative. We remark here that both ternary and base
q expansions also play a key role in our work in this paper on horizontal intersections
of Kq . More recently, building on this work, the derivatives of Okamoto’s functions
with respect to its defining parameter q were studied by Dalaklis et al. [6]. Again, the
ternary expansion of x and in particular the limiting behaviour of the number of 1s in
the ternary expansion of x play a key role in the main theorem of this paper.
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(a) The first two iterations of the IFS construction of
the graph of Okamoto’s function,Kq , where qD 5=3.

(b) The red line y D 3=8 has unique intersection with
Kq , i.e., sl5=3.3=8/ has a unique element.

Figure 1. Constructing Kq for q D 5=3.

We prove in Corollary 2.8 that for all q 2 .1; 2/, almost all y 2 Œ0; 1� are such
that slq.y/ is uncountable. This result motivates our interest in which parameters q 2
.1; 2/ admit values y 2 Œ0; 1� such that slq.y/ is finite or at most countably infinite. In
the context of Theorem B, the set slq.y/ is the intersection of a horizontal line with
the planar set Kq , so for typical y has Hausdorff dimension dimH Kq � 1. Bárány
(private communication) has found the following results which link in with the work
we present in this paper. Let s D 1 C log3.

4
q
� 1/ be the affinity dimension [12]

of the Okamoto IFS, and let dimB and dimA denote the box [13] and Assouad [15]
dimensions, respectively. Then there is a set E with dimH E D 0 such that for all
q 2 .1; 2/ nE, the following are true:

(a) dimHKq D dimBKq D dimAKq D s.

(b) For all y 2 Œ0; 1�, dimH.slq.y// � s � 1.

(c) Lebesgue almost every y 2 Œ0; 1� has dimH.slq.y// D s � 1.

The fact that slq.y/ is typically uncountable tells us that the set of y for which slq.y/
is finite or countable is anomalous. Despite the question of whether Kq is an s-set for
any s being open, it follows easily from the definition ofKq that all projections ofKq
have Hausdorff dimension 1 and indeed are all intervals.

In Subsection 2.2 we prove the existence of a bijection between slq.y/ and the set
of allowable sequences of maps in a well-understood system. An important property
of this bijection is that if .fij /

1
jD1 is one of the aforementioned allowable sequences

of maps, then the sequence .ij /1jD1 is the ternary expansion of some x 2 slq.y/.
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Moreover, this bijection allows us to restate our theorems on slq.y/ in a form that
allows for the introduction of techniques and ideas from base q expansions (also
known as ˇ expansions).

Let k 2 N. A generalisation of the golden ratio, G � 1:618, which satisfies G2 �
G � 1D 0 is the real number qk 2 .1;2/we call the k-Bonacci number which satisfies

qk � qk�1 � � � � � q � 1 D 0: (1.2)

We note that q2 D G is the golden ratio and q1 D 1 is ignored.
Our main results are stated below.

Theorem 1. If q 2 .q9; 2/ D .1:99803:::; 2/ then there is some y 2 Œ0; 1� such that
jslq.y/j D 3.

Theorem 2. Let q 2 .1; 2/ be such that for all y 2 Œ0; 1�, jslq.y/j 2 ¹1; 2@0º. Then if
slq.y/ is uncountable, there exists an s > 0 depending only on q such that

dimH
�
slq.y/

�
� s:

Let T be the set of transcendental numbers and let q@0 � 1:64541 be the root
of x6 D x4 C x3 C 2x2 C x C 1 in .1; 2/. It was shown by the first author in [4]
that q@0 is the smallest q 2 .G; 2/ with the property that there exists x 2 Iq with
countably many base q expansions. Let qKL be the Komornik-Loreti constant [21],
defined to be the smallest base q for which 1 has a unique base q expansion. We prove
that Corollary 2 follows from Theorem 2 in Section 4, before proving an equivalent
version of Theorem 2.

Corollary 2. Let q 2 .1; q@0/ n ¹Gº or q 2 T \ .q@0 ; qKL/. Then if slq.y/ is uncount-
able there is some s > 0 depending only on q such that dimH.slq.y// � s.

In the context of base q expansions, Sidorov [32, Theorem 2.1] proved the fol-
lowing dichotomy. If q 2 T \ .G; qKL/ then any x 2 Œ0; 1

q�1
� has either a unique base

q expansion or uncountably many of them. Corollary 2 strengthens this result in the
sense that if q is restricted to the same set, then we know that for any y 2 Œ0; 1�, slq.y/
has either a unique element or it has positive Hausdorff dimension.

Theorem 3. Let ¹qiº1iD3 be the set of k-Bonacci numbers excluding G. If q D qi for
some i 2 ¹3; 4; : : :º then the following are true.

(1) There exists an � > 0 such that if

Ym D
®
y 2 Œ0; 1� W jslq.y/j D 2mC 1

¯
;

then for all m 2 N, dimH.Ym/ > �.
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(2) There exists y@0 2 Œ0; 1� such that the cardinality of slq.y@0/ is countably
infinite.

In Section 3, we prove Theorem 1. In Section 4, we prove Theorem 2 and its
Corollary 2. In Section 5, we prove Theorem 3 along with the result that there is some
y 2 Œ0; 1� such that slq.y/ has two elements if and only if 1 has a unique base q
expansion (Theorem 5.5).

2. Background and preliminaries

In this section, we present the necessary background theory required for the proofs of
Theorems 1, 2 and 3. In particular, we prove Lemma 2.5 which provides an important
correspondence allowing us to effectively study both the cardinality and dimension of
slq.y/.

2.1. Background theory

Let q 2 .1; 2/ and let Kq be the graph of Okamoto’s function with parameter q as
defined above. Define ¹0; 1; 2º� D [k2N�0¹0; 1; 2º

k and ¹0; 1º� D [k2N�0¹0; 1º
k .

The following proposition is a consequence of [13, Theorem 9.1].

Proposition 2.1. A point .x; y/ 2 Kq if and only if there is a sequence of maps of the
Okamoto IFS .Sij /

1
jD1 2 ¹S0; S1; S2º

N such that for all k 2 N�0;

.x; y/ 2 Si1 ı Si2 ı � � � ı Sik
�
Œ0; 1�2

�
; (2.1)

which is equivalent to both

x 2 vi1 ı vi2 ı � � � ı vik
�
Œ0; 1�

�
; (2.2)

and
y 2 ui1 ı ui2 ı � � � ı uik

�
Œ0; 1�

�
; (2.3)

holding for all k 2 N�0.

Note that for k D 0, the sequence .ij /kjD1 2 ¹0; 1; 2º
� is the empty word and the

corresponding sequence of maps Si1 ı � � � ı Sik is just the identity map. Therefore, in
the case k D 0, the proposition states that .x; y/ 2 Œ0; 1�2.

For each q 2 .1; 2/, let Iq D Œ0; 1
q�1

� and Jq D Œ 1
q
; 1
q.q�1/

�. In the literature on
base q expansions (e.g., [32]) Jq is commonly referred to as the switch region. The
map �3 W ¹0; 1; 2ºN ! Œ0; 1� is defined by

�3
�
.ij /
1
jD1

�
D

1X
jD1

ij 3
�j ;
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and for q 2 .1; 2/, the map �q W ¹0; 1ºN ! Iq is defined by

�q
�
.ij /
1
jD1

�
D

1X
jD1

ij q
�j :

These are the projection maps. The domain of �q can be extended to ¹�1; 0; 1ºN in
the obvious way and in this case the codomain is I �q D Œ� 1

q�1
; 1
q�1

�. We need this
extension of �q in Section 3.

Given a finite sequence .aj /kjD1 2 ¹0; 1º
�, we define the associated cylinder by�

.aj /
k
jD1

�
D
®
.ij /
1
jD1 2 ¹0; 1º

N
W ij D aj for 1 � j � k

¯
:

Similarly, if .aj /kjD1 2 ¹0; 1; 2º
� then the associated cylinder is defined to be�

.aj /
k
jD1

�
D
®
.ij /
1
jD1 2 ¹0; 1; 2º

N
W ij D aj for 1 � j � k

¯
:

If kD 0we define the empty cylinder to be the whole sequence space: Œe�D ¹0;1ºN or
Œe�D ¹0; 1; 2ºN where e represents the empty word. It is clear from context which one
of ¹0; 1ºN or ¹0; 1; 2ºN Œe� represents. The following lemma is a simple consequence
of the definition of the projection map �q and the existence of at least one base q
expansion for any point in Iq , which Parry showed in his seminal paper [28].

Lemma 2.2. If .aj /kjD1 2 ¹0; 1º
� is arbitrary then �qŒ.aj /kjD1� is the interval

�
�q
�
.aj /

k
jD10

1
�
; �q

�
.aj /

k
jD11

1
��
D

� kX
jD1

aj q
�j ;

kX
jD1

aj q
�j
C q�k

�
1

q � 1

��
:

Let .aj /kjD1; .bj /
l
jD1 2 ¹0; 1; 2º

� be two finite ternary sequences. We say that
.aj /

k
jD1 is a prefix of .bj /ljD1 if k � l and aj D bj for all 0 � j � k. The sequence

.aj /
k
jD1 is a strict prefix of .bj /ljD1 if it is a prefix and they are not equal as sequences.

Elements of ¹0; 1; 2ºN can be prefixed by elements of ¹0; 1; 2º� in the expected way
and the definitions hold for elements of ¹0; 1º� too.

The proof of the following lemma is straightforward and omitted.

Lemma 2.3. Let .aj /kjD1; .bj /
l
jD1 2 ¹0; 1º

� with .aj /kjD1 a prefix of .bj /ljD1. Then
�qŒ.bj /

l
jD1� � �qŒ.aj /

k
jD1�. The same conclusion holds for the elements of ¹0; 1; 2º�

and the map �3.
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f0 f1 f2

0 1
q

1
q.q�1/

1
q�1

Figure 2. The set of maps Eq D ¹f0; f1; f2º on Iq .

For q 2 .1;2/, we define the set of mapsEq D ¹f0; f1; f2º (Figure 2) where f0; f1
and f2 are given by

f0 W

�
0;

1

q.q � 1/

�
!

�
0;

1

q � 1

�
I f0.x/ D qx;

f1 W

�
1

q
;

1

q.q � 1/

�
!

�
0;

1

q � 1

�
I f1.x/ D

1

q � 1
�

1

2 � q
.qx � 1/;

f2 W

�
1

q
;

1

q � 1

�
!

�
0;

1

q � 1

�
I f2.x/ D qx � 1:

For any .ij /kjD1 2 ¹0; 1; 2º
� let fik ı � � � ı fi1 D fi1:::ik and write .fij /

1
jD1 for an

arbitrary element of ¹f0; f1; f2ºN . In particular if k D 0 then fi1:::ik is defined to be
the identity map. For any x 2 Iq , we define the orbit space of x in Eq by

�Eq .x/ D
®
.fij /

1
jD1 2 ¹f0; f1; f2º

N
W fi1:::ik .x/ 2 Iq 8k 2 N�0

¯
:

Let us note here that implicit in the definition of the orbit space is the fact that
fi1:::ik .x/ 2 Iq only makes sense when fi1:::il�1.x/ is in the domain of fil for all
1 � l � k. If this property fails for some k 2 N then .fij /

1
jD1 is not an element of

�Eq .x/. The half-open intervals that form the domains of f0 and f1 prevent points
other than 1

q�1
from mapping to 1

q�1
, which restricts the possible sequences of maps

in the orbit space as we see in Subsection 2.2.

Lemma 2.4. Let x 2 Iq , then .fij /
1
jD1 2�Eq .x/ is unique if and only if fi1:::ik .x/ 2

Iq n Jq for all k 2 N�0.
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Proof. Let x 2 Iq . The sequence .fij /
1
jD1 2 �Eq .x/ is unique if and only if the

following condition holds.

For all k 2 N�0, there is a unique choice of ikC1 2 ¹0; 1; 2º such that
fi1:::ik .x/ is in the domain of fikC1 .

(A)

By inspection of the domains of the maps in Eq , condition (A) is equivalent to
fi1:::ik .x/ 2 Iq n Jq for all k 2 N�0 and hence the lemma.

2.2. Bijection lemma

Let x 2 Œ0; 1�. We define the restricted ternary expansion (RTE) of x to be the unique
sequence .ij /1jD1 2 ¹0; 1; 2º

N with �3..ij /1jD1/ D x such that .ij /1jDk ¤ 2
1 for any

k 2 N unless x D 1 in which case .ij /1jD1 D 2
1. By observing that vi .x/ D xCi

3
for

i 2 ¹0; 1; 2º, it is clear that given x 2 Œ0; 1�, .ij /1jD1 2 ¹0; 1; 2º
N satisfies (2.2) for all

k 2 N�0 if and only if x D �3..ij /1jD1/. The following lemma allows us to transpose
questions about slq.y/ into questions about �Eq .

y
q�1

/. In Lemma 2.7, we prove an
inequality between the cardinality of �Eq .x/ and the number of base q expansions
of x for any x 2 Iq . Hence, this transposition to working with �Eq .

y
q�1

/ allows us
to use existing work on base q expansion theory. The details of this are contained in
Subsection 2.4.

Lemma 2.5. Let q 2 .1; 2/ and y 2 Œ0; 1�, then there is a bijection between slq.y/
and �Eq .

y
q�1

/ given by x $ .fij /
1
jD1 where .ij /1jD1 is the RTE of x.

The proof of the lemma concerns the following two closely related sets of maps
on Œ0; 1�. Define Fq D ¹u�10 ; u

�1
1 ; u

�1
2 º by

u�10 W Œ0; 1=q�! Œ0; 1�I u�10 .y/ D qy;

u�11 W Œ1 � 1=q; 1=q�! Œ0; 1�I u�11 .y/ D
1 � qy

2 � q
;

u�12 W Œ1 � 1=q; 1�! Œ0; 1�I u�12 .y/ D qy C .1 � q/:

The corresponding orbit space is

�Fq .y/ D
®
.u�1ij /

1
jD1 2 ¹u

�1
0 ; u

�1
1 ; u

�1
2 º

N
W u�1i1:::ik .y/ 2 Œ0; 1� for all k 2 N�0

¯
;

and has the property that for a given y 2 Œ0; 1�, .ij /1jD1 solves (2.3) for all k 2 N�0 if
and only if .u�1ij /

1
jD1 2 �Fq .y/.

Let QFq D ¹ Qu�10 ; Qu
�1
1 ; Qu

�1
2 º where we make the requirement that the maps Qu�10 and

Qu�11 are defined on half-open intervals but are otherwise identical to the corresponding
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maps in Fq:

Qu�10 W Œ0; 1=q/! Œ0; 1/I Qu�10 .y/ D qy;

Qu�11 W .1 � 1=q; 1=q�! Œ0; 1/I Qu�11 .y/ D
1 � qy

2 � q
;

Qu�12 W Œ1 � 1=q; 1�! Œ0; 1�I Qu�12 .y/ D qy C .1 � q/:

The orbit space of QFq is

� QFq .y/ D
®
. Qu�1ij /

1
jD1 2 ¹ Qu

�1
0 ; Qu

�1
1 ; Qu

�1
2 º

N
W Qu�1i1:::ik .y/ 2 Œ0; 1� for all k 2 N�0

¯
:

The purpose of making the restriction from Fq to QFq is to guarantee that if .ij /1jD1 2
¹0; 1; 2ºN is not an RTE then . Qu�1ij /

1
jD1 is not an element of� QFq .y/ for any y 2 Œ0; 1�.

Proof of Lemma 2.5. We first show there is a bijection slq.y/ $ � QFq .y/ given by
x $ . Qu�1ij /

1
jD1 where .ij /1jD1 is the RTE of x, before proving that . Qu�1ij /

1
jD1 $

.fij /
1
jD1 is a bijection between � QFq .y/ and �Eq .

y
q�1

/ for all y 2 Œ0; 1�.
Let q 2 .1; 2/, let x 2 slq.y/ for some y 2 Œ0; 1� and let .ij /1jD1 be the RTE of x.

By Proposition 2.1, x 2 slq.y/ if and only if u�1i1:::ik .y/ 2 Œ0; 1� for all k 2 N�0, i.e.,
.u�1ij /

1
jD1 2 �Fq .y/.

Suppose yD 1, if .u�1ij /
1
jD1 2�Fq .1/ then .ij /1jD1D 2

1, so . Qu�1ij /
1
jD1 2� QFq .1/.

If y 2 Œ0; 1/ then since .ij /1jD1 is an RTE, it avoids the tail 21. Thus, u�1i1:::ik .y/ ¤ 1
for any k 2 N�0. To see what the consequences of this are, we consider the inverse
images of 1. There are three cases corresponding to the three distinct maps of Fq .

(1) u�10 .1=q/ D 1.

(2) u�11 .1 � 1=q/ D 1.

(3) u�12 .1/ D 1.

We can ignore the final case since we know u�1i1:::ik .y/ ¤ 1 for any k 2 N�0. The
first case means that if u�1i1:::ik .y/ D 1=q for some k 2 N�0 then ikC1 ¤ 0. If this
were the case then .ij /1jD1 would have tail 021, contradicting the fact that it is an
RTE. Similarly, in the second case, if u�1i1:::ik .y/ D 1 � 1=q for some k 2 N�0 then
ikC1 ¤ 1 to avoid .ij /1jD1 having the tail 121. Therefore, this restriction is equivalent
to removing 1=q from the domain of u�10 and removing 1 � 1=q from the domain of
u�11 . One can observe that this is exactly the restriction imposed on Fq to transform
it into QFq . Hence if y 2 Œ0; 1/ then . Qu�1ij /

1
jD1 2 � QFq .y/. We get that . Qu�1ij /

1
jD1 2

� QFq .y/ for all y 2 Œ0; 1� and conclude that we have a map slq.y/! � QFq .y/ given
by x 7! . Qu�1ij /

1
jD1 where .ij /1jD1 is the RTE of x.

Let . Qu�1ij /
1
jD1 2 � QFq .y/ for some point y 2 Œ0; 1�. Because 1 is not in the image

of Qu�10 or Qu�11 , . Qu�1ij /
1
jD1 has the property that Qu�1i1:::ik .y/ ¤ 1 for any k 2 N�0 unless
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y D 1. If y D 1 then .ij /1jD1 D 21 and if y 2 Œ0; 1/, there is no integer k 2 N

such that .ij /1jDk D 21. In either case .ij /1jD1 is an RTE. If . Qu�1ij /
1
jD1 2 � QFq .y/

then .u�1ij /
1
jD1 2 �Fq .y/ since the domain of Qu�1i is contained in the domain of u�1i

for i 2 ¹0; 1; 2º. Then, by Proposition 2.1, .ij /1jD1 is the RTE of some x 2 slq.y/.
This proves that there is a bijection slq.y/$ � QFq .y/ given by x$ . Qu�1ij /

1
jD1 where

.ij /
1
jD1 is the RTE of x.
It remains to show that the map . Qu�1ij /

1
jD1 $ .fij /

1
jD1 is a bijection between

� QFq .y/ and�Eq .
y
q�1

/ for all y 2 Œ0; 1�. For each i 2 ¹0; 1; 2º, and for any y 2 Œ0; 1�,
it can be checked that

1

q � 1
Qu�1i .y/ D fi

�
y

q � 1

�
:

Moreover, for all i 2 ¹0; 1; 2º, if the domain of fi is Di and the domain of Qu�1i is Ci
then Di D 1

q�1
Ci . Hence, for all k 2 N�0 and any y 2 Œ0; 1�,

Qu�1i1:::ik .y/ 2 Œ0; 1� ”
1

q � 1

�
Qu�1i1:::ik .y/

�
2 Iq ” fi1:::ik

�
y

q � 1

�
2 Iq:

So . Qu�1ij /
1
jD1 2 � QFq .y/ ” .fij /

1
jD1 2 �Eq .y/. Therefore, given q 2 .1; 2/ and

any y 2 Œ0; 1�, the map slq.y/$ �Eq .
y
q�1

/ given by x$ .fij /
1
jD1 where .ij /1jD1 is

the RTE of x, is a bijection.

2.3. Base q expansions

In this subsection we introduce base q expansions [28] and state Theorem 2.6 which,
alongside Lemma 2.5, puts slq.y/ in the context of base q expansions.

Let q 2 .1; 2/ and x 2 Iq . Then we have that a base q expansion of x is a sequence
.ij /
1
jD1 2 ¹0; 1º

N such that x D
P1
jD1 ij q

�j , that is, such that x D �q..ij /1jD1/. We

define the base q dynamics (Figure 3) to be the set of maps OEq D ¹ Of0; Of1º where

Of0 W

�
0;

1

q.q � 1/

�
! IqI Of0.x/ D qx;

Of1 W

�
1

q
;

1

q � 1

�
! IqI Of1.x/ D qx � 1:

For any x 2 Iq , the orbit space of x in OEq is given by

� OEq .x/ D
®
. Ofij /

1
jD1 2 ¹

Of0; Of1º
N
W Ofi1:::ik .x/ 2 Iq for all k 2 N�0

¯
:

For any x 2 Iq , it is a simple exercise to show that . Ofij /
1
jD1 2 � OEq .x/ if and only

if �q..ij /1jD1/ D x (c.f. [3]). We say that x 2 Iq has a unique base q expansion if
� OEq .x/ has only one element.
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Of0 Of1

0 1
q

1
q.q�1/

1
q�1

Figure 3. The base q dynamics OEq D ¹ Of0; Of1º on Iq .

Table 1 lists some notation for OEq in line with Sidorov [32] on the left-hand side.
On the right-hand side is the notation for the corresponding sets in Eq , in the context
of the self-affine sets Kq . We emphasise here that the notation V

.k/
q used here is not

in line with [32].

OEq

Bk D ¹q 2 .1; 2/ W 9 x 2 Iq such that j� OEq .x/j D kº
B@0 D ¹q 2 .1; 2/ W 9 x 2 Iq such that j� OEq .x/j D @0º
Uq D ¹x 2 Iq W j� OEq .x/j D 1º

U
.k/
q D ¹x 2 Iq W j� OEq .x/j D kº

U
.@0/
q D ¹x 2 Iq W j� OEq .x/j D @0º

U D ¹q 2 .1; 2/ W j� OEq .1/j D 1º

Eq

Ck D ¹q 2 .1; 2/ W 9 x 2 Iq such that j�Eq .x/j D kº
C@0 D ¹q 2 .1; 2/ W 9 x 2 Iq such that j�Eq .x/j D @0º
Vq D ¹x 2 Iq W j�Eq .x/j D 1º

V
.k/
q D ¹x 2 Iq W j�Eq .x/j D kº

V
.@0/
q D ¹x 2 Iq W j�Eq .x/j D @0º

V D ¹q 2 .1; 2/ W j�Eq .1/j D 1º

Table 1. Notation for OEq and Eq .
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The following result which combines [10, Theorem 3] and [31, Theorem 1] along-
side Lemma 2.5 has immediate implications for the cardinality of slq.y/ as shown in
Subsection 2.4.

Theorem 2.6. (1) If q 2 .1;G/ then� OEq .x/ is uncountably infinite for all x 2 I ıq .

(2) If q D G then there is a countably infinite set of points x 2 I ıq such that
� OEq .x/ is countably infinite and for all other x 2 I ıq ,� OEq .x/ is uncountably
infinite.

(3) If q 2 .G; 2/ then the set of points x 2 I ıq such that� OEq .x/ has a unique ele-
ment is at least countably infinite. The set of points x 2 I ıq such that � OEq .x/
is uncountably infinite has full Lebesgue measure.

2.4. Implications of the bijection lemma

In this subsection we use existing results from the theory of base q expansions to
prove some elementary results on slq.y/.

If . Ofij /
1
jD1 2 � OEq .x/ for some x 2 Iq then define D W ¹0; 1ºN ! ¹0; 1; 2ºN by

D..ij /
1
jD1/ D .2ij /

1
jD1 unless .ij /1jD1 D .011/ in which case D.011/ D .101/.

Then it can be checked that . Ofij /
1
jD1 2 � OEq .x/ implies that .fd.ij //

1
jD1 2 �Eq .x/

where D..ij /1jD1/ D .d.ij //
1
jD1.

Lemma 2.4 and the existence of the map D with the aforementioned property
prove the following lemma.

Lemma 2.7. Let x 2 Iq , then j�Eq .x/j � j� OEq .x/j and j� OEq .x/j D 1 if and only if
j�Eq .x/j D 1.

An immediate consequence of Lemma 2.7 is that UD V . Although the set U has
generated significant interest within base q expansion theory (see, e.g., [10, 21]), we
do not consider it here until the final result of the paper (Theorem 5.5).

In conjunction with Lemmas 2.5 and 2.7, Theorem 2.6 has the following corollary
on slices.

Corollary 2.8. (1) If q 2 .1; G/ then for any y 2 .0; 1/, slq.y/ is uncountably
infinite. In fact, a consequence of [2, Theorem 1.4] is that slq.y/ has positive
Hausdorff dimension under these hypotheses.

(2) If q D G then there is a countably infinite set of points y 2 .0; 1/ such that
slq.y/ is at least countably infinite and for all other y 2 .0; 1/ slq.y/ is
uncountably infinite.

(3) Let q 2 .G; 2/. The set of points y 2 .0; 1/ such that slq.y/ has a unique
element is at least countably infinite. The set of points y 2 .0; 1/ such that
slq.y/ is uncountably infinite has full Lebesgue measure.
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3. Proof of Theorem 1

Using Lemma 2.5, Theorem 1 is equivalent to the claim that if q 2 .q9; 2/ then there
is some x 2 Iq such that j�Eq .x/j D 3. That is, with the above notation, Theorem 1
is equivalent to Theorem 3.1 below.

Theorem 3.1. .q9; 2/ � C3.

We say that a sequence (finite or infinite) .ij /kjD1 2 ¹0; 1º
� avoids .aj /ljD1 2

¹0; 1º� if there does not exist m 2 N such that .ij /mCl�1jDm D .aj /
l
jD1.

Define

�k D
®
.ij /
1
jD1 2 ¹0; 1º

N
W .ij /

1
jD1 avoids .01k/ and .10k/

¯
;

and notice that if a finite sequence is a prefix of an element of �k , then it avoids .01k/
and .10k/. The following lemma is a consequence of [17, Lemma 4].

Lemma 3.2. If q 2 .qk; 2/ then �q.�k/ � Uq .

In particular, we use the fact that if q 2 .q9; 2/ then �q..ij /1jD1/ 2 Uq for any
sequence .ij /1jD1 2 �9. We sketch the proof of Theorem 3.1.

(1) Suppose that for each q 2 .q9; 2/ there is some set Aq � �9 such that

�q.Aq/; �q.Aq/ � 1 � �q.�
9/

and Aq also satisfies�
.2 � q/�q.�

9/C 1
�
\ �q.Aq/ ¤ ;: (3.1)

Taking qy 2 ..2 � q/�q.�9/C 1/ \ �q.Aq/, we have

f0.y/ D qy 2 �q.Aq/ � �q.�
9/;

f1.y/ D
1

q � 1
�
qy � 1

2 � q
2 �q.�

9/;

f2.y/ D qy � 1 2 �q.Aq/ � 1 � �q.�
9/:

In the second line we used

qy 2 .2 � q/�q.�
9/C 1 ”

qy � 1

2 � q
2 �q.�

9/;

and the fact that x 2 �q.�k/ if and only if 1
q�1
� x 2 �q.�

k/ for all k 2 N.
So under the assumptions on �q.Aq/ we have f0.y/; f1.y/; f2.y/ 2 �q.�9/.
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(2) By Lemma 3.2, q 2 .q9; 2/ implies that �q.�9/ � Uq . Let q 2 .q9; 2/, Item
1 implies that if Aq exists then there exists y 2 V

.3/
q and hence .q9; 2/ � C3.

Therefore to prove the theorem, for each q 2 .q9; 2/ we need to construct Aq
such that �q.Aq/; �q.Aq/ � 1 � �q.�9/ and (3.1) holds.

(3) The claim that each Aq satisfies equation (3.1) is proved using Newhouse’s
theorem [24].

(4) The property that �q.Aq/; �q.Aq/ � 1 � �q.�9/ follows from our construc-
tion of Aq .

The majority of the work is in proving that the structure of �q.Aq/ is amenable to an
application of Newhouse’s theorem. This involves calculating the thickness of �q.Aq/
and showing it is interleaved with .2 � q/�q.�9/C 1.

3.1. Results on projections of sequences

This subsection introduces some useful results on the projections of cylinders and
inequalities involving k-Bonacci numbers.

Lemma 3.3. Let k 2 N�2 then

(1) (a) 0 < .2 � q/ < q�k if q 2 .qk; 2/,

(b) q�k�1 � .2 � q/ < q�k if q 2 .qk; qkC1�.

(2) (a) 0 < qk � qk�1 � � � � � q � 1 < 1 if q 2 .qk; 2/,

(b) 0 < qk � qk�1 � � � � � q � 1 � 1
q

if q 2 .qk; qkC1�.

Proof. It can be checked that qkC1 > k whenever k 2 N�2 and q 2 .G; 2/, and it
follows that 1 > kq�k�1 under the same conditions. Observe thatˇ̌̌̌

d
dq
.2 � q/

ˇ̌̌̌
D j � 1j > j � kq�k�1j D

ˇ̌̌̌
d

dq
.q�k/

ˇ̌̌̌
;

so .2� q/ is monotone decreasing faster than q�k . Therefore, if qD qk solves 2� qD
q�k then both 1(a) and 1(b) would follow. Let q D qk , then q satisfies

qk � qk�1 � � � � � q � 1 D 0;

so

0 D q.qk � qk�1 � � � � � q � 1/

D qkC1 � 2qk C .qk � qk�1 � � � � � q2 � q/

D qkC1 � 2qk C 1 D qk.q � 2/C 1;
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so .2 � qk/ D q�kk .
We prove 2(a) by induction. SinceG2 �G � 1D 0, 22 � 2� 1D 1 and q2 � q � 1

is increasing for q 2 .G; 2/, we know that the claim holds for q 2 .G; 2/. For the
induction, assume that q 2 .qk�1; 2/ implies that 0 < qk�1 � qk�2 � � � � � q � 1 < 1
for some k 2 N�3. Let q 2 .qk; 2/, and set

f .q/ D qk � qk�1 � � � � � q � 1;

then

df
dq
D kqk�1 � .k � 1/qk�2 � � � � � 2q � 1 > k.qk�1 � qk�2 � � � � � q � 1/:

Since qk�1 < qk < 2, we know by assumption that if q 2 .qk; 2/ then

0 < qk�1 � qk�2 � � � � � q � 1 < 1

so df
dq > 0. Hence, f .q/ is increasing with q on the interval .qk; 2/. By observing that

f .qk/ D 0 and f .2/ D 1, we have shown that q 2 .qk; 2/ implies that 0 < f .q/ < 1
and by induction we are done.

For 2(b), the above proof of 2(a) shows that f .q/ is increasing for all q 2 .qk; 2/,
and 1

q
is obviously decreasing with q. It follows easily from the definition that q D

qkC1 solves qk � qk�1 � � � � � q � 1 D 1
q

, which completes the proof.

Lemma 3.4. If q 2 .qk; 2/ for some k 2 N�2 then

(1) �q.01k01/ < �q.101/ < �q.011/ < �q.10k11/,

(2) �q..01k�1/1/ < �q.101/ and symmetrically �q.011/ < �q..10k�1/1/.

Proof. For part (1), if q 2 .qk; 2/ Lemma 3.3 implies that qk � qk�1 � � � � � q � 1> 0,
so

q�2 C q�3 C � � � C q�k�1 < q�1; (3.2)

and hence �q.01k01/ < �q.101/. Since a < b H) 1
q�1
� a > 1

q�1
� b we have

the symmetric result, �q.011/ < �q.10k11/. q 2 .1; 2/ implies that

�q.10
1/ < �q.01

1/

which gives the complete inequality.
For the second part, we observe that a consequence of (3.2) is that for anym 2 N,

q�mk�2 C q�mk�3 C � � � C q�.mC1/k�1 < q�mk�1: (3.3)
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Using (3.2) and (3.3),

�q.10
1/ D q�1 > .q�2 C q�3 C � � � C q�k/C q�k�1

> .q�2 C q�3 C � � � C q�k/C .q�k�2 C q�k�3 C � � � C q�2k/C q�2k�1

:::

>

1X
mD0

.q�mk�2 C q�mk�3 C � � � C q�.mC1/k/

D �q..01
k�1/1/;

where at each step we have replaced the final term q�mk�1 with the finite sum

.q�mk�2 C � � � C q�.mC1/k�1/;

which is smaller by (3.3). By symmetry we also have �q.011/ < �q..10k�1/1/.

Let .ij /kjD1, .i 0j /
k
jD1 2 ¹0; 1º

k be arbitrary distinct finite sequences. We write
.ij /

k
jD1 � .i

0
j /
k
jD1 if ip D 0 and i 0p D 1 where p 2 N is the smallest number with

ip ¤ i
0
p . This is the natural ordering of the sequence space with the obvious extension

to infinite sequences in ¹0; 1ºN . Let k 2N�0 and let .ij /kjD1, .i 0j /
k
jD1 2 ¹0; 1º

k be two
finite binary strings of length k. We say that .ij /kjD1 and .i 0j /

k
jD1 are lexicographically

consecutive if they are consecutive as binary numbers. That is, if

kX
jD1

ij 2
k�j
C 1 D

kX
jD1

i 0j 2
k�j or

kX
jD1

i 0j 2
k�j
C 1 D

kX
jD1

ij 2
k�j :

Lemma 3.5. Let q 2 .qk; 2/ and let .ij /ljD1; .i
0
j /
l
jD1 be prefixes of elements of �k such

that .ij /ljD1 � .i
0
j /
l
jD1. Then �q..ij /ljD10

1/ < �q..i
0
j /
l
jD10

1/ and �q..ij /ljD11
1/ <

�q..i
0
j /
l
jD11

1/.

Proof. Let q 2 .qk; 2/ and let .ij /ljD1 � .i
0
j /
l
jD1 where both sequences are prefixes

of elements of �k . Since both .ij /ljD10
1 and .i 0j /

l
jD10

1 are greedy expansions, as
defined in Section 2 of [9], by [9, Proposition 2.5] we know that

�q
�
.ij /

l
jD10

1
�
< �q

�
.i 0j /

l
jD10

1
�
:

This inequality immediately tells us that �q..ij /ljD11
1/ < �q..i

0
j /
l
jD11

1/.

Recall by Lemma 2.2 that �q..ij /ljD10
1/ and �q..ij /ljD11

1/ are the left and
right endpoints of the interval �qŒ.ij /ljD1�.
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�q..ij /
l
jD10

1/ �q..ij /
l
jD11

1/

�q..i
C

j /
l
jD10

1/ �q..i
C

j /
l
jD11

1/�q..i
�
j /

l
jD10

1/ �q..i
�
j /

l
jD11

1/

Figure 4. In the context of Lemma 3.6, �q Œ.i�j /
l
jD1

� and �q Œ.i
C

j
/l
jD1

� intersect if and only if

.i�
j
/l
jD1

� .iC
j
/l
jD1

are lexicographically consecutive.

Lemma 3.6. Let q 2 .qk; 2/, l 2 N and let .ij /ljD1; .i
0
j /
l
jD1 be prefixes of elements

of �k . Then �qŒ.ij /ljD1� \ �qŒ.i
0
j /
l
jD1� ¤ ; if and only if .ij /ljD1 and .i 0j /

l
jD1 are

lexicographically consecutive.

Proof. Let us first show the reverse direction that lexicographically consecutive se-
quences subject to the hypotheses of the lemma project to intervals which intersect.

Let q 2 .qk; 2/ and let .ij /ljD1, .i 0j /
l
jD1 be prefixes of elements of �k . Suppose

.ij /
l
jD1, .i 0j /

l
jD1 are lexicographically consecutive with .ij /ljD1 � .i

0
j /
l
jD1, then there

is some p 2 N such that .ij /
l�p
jD1 D .i

0
j /
l�p
jD1, il�pC1 D 0; il�pC2 D � � � D il D 1, and

i 0
l�pC1

D 1; i 0
l�pC2

D � � � D i 0
l
D 0. So .ij /ljD1 and .i 0j /

l
jD1 are of the form

.ij /
l
jD1 D .ij /

l�p
jD101

p�1;

and
.i 0j /

l
jD1 D .ij /

l�p
jD110

p�1:

Since .ij /ljD1 and .i 0j /
l
jD1 avoid .01k/ and .10k/, we know that 1 � p � k. To prove

�qŒ.ij /
l
jD1�\ �qŒ.i

0
j /
l
jD1�¤ ; it suffices to show that the left endpoint of �qŒ.ij /ljD1�

is less than the left endpoint of �qŒ.i 0j /
l
jD1�which in turn is less than the right endpoint

of �qŒ.ij /ljD1� (see Figure 4). This is equivalent to the sequence of inequalities

�q
�
.ij /

l
jD10

1
�
< �q

�
.i 0j /

l
jD10

1
�
< �q

�
.ij /

l
jD11

1
�
:

The first inequality is immediate from Lemma 3.5 and the second is equivalent to
�q.10

1/ < �q.01
1/which is true for all q 2 .1; 2/. This proves the reverse direction.

For the forwards direction of the proof, we show that sequences .i�j /
l
jD1�.i

C

j /
l
jD1

prefixing elements of �k which are not lexicographically consecutive project to dis-
joint cylinders. In this case, by Lemma 3.5, the left and right endpoints are well
ordered as follows:

�q
�
.i�j /

l
jD10

1
�
< �q

�
.iCj /

l
jD10

1
�
;

and
�q
�
.i�j /

l
jD11

1
�
< �q

�
.iCj /

l
jD11

1
�
:
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It therefore suffices to show that if .i�j /
l
jD1; .i

C

j /
l
jD1 prefix elements of �k and are

such that .i�j /
l
jD1 � .ij /

l
jD1 are lexicographically consecutive and .ij /ljD1 � .i

C

j /
l
jD1

are lexicographically consecutive for some .ij /ljD1 2 ¹0; 1º
l , then the right endpoint

of .i�j /
l
jD1 is less than the left endpoint of .iCj /

l
jD1 (see Figure 4). That is, we aim to

prove the inequality

�q
�
.i�j /

l
jD11

1
�
< �q

�
.iCj /

l
jD10

1
�
: (3.4)

It can be checked that i�
l
D iC

l
and that .i�j /

l�1
jD1 and .iCj /

l�1
jD1 are lexicographically

consecutive with .i�j /
l�1
jD1 � .i

C

j /
l�1
jD1. Hence .i�j /

l
jD1 and .iCj /

l
jD1 are of the form

.i�j /
l
jD1 D .i

�
j /

l�p�1
jD1 01p�1i�l ;

and
.iCj /

l
jD1 D .i

�
j /

l�p�1
jD1 10p�1i�l :

As in the proof of the reverse direction, we know that p � k � 1 since by assumption
.i�j /

l
jD1 and .iCj /

l
jD1 avoid .01k/ and .10k/. Substituting the above expressions for

.i�j /
l
jD1 and .iCj /

l
jD1 back into (3.4), the inequality we now aim to prove is

�q
�
.i�j /

l�p�1
jD1 01p�1i�l 1

1
�
< �q

�
.i�j /

l�p�1
jD1 10p�1i�l 0

1
�
;

which we simplify by restricting to the tails to give

�q.01
p�1i�l 1

1/ < �q.10
p�1i�l 0

1/: (3.5)

By inspection, the left-hand side of (3.5) is maximal at p D k � 1 and the right-hand
side is minimal at p D k � 1. It therefore suffices to consider only p D k � 1. Setting
i�
l
D 0, (3.5) becomes

�q.01
k�2011/ < �q.10

1/:

We have that

�q.01
k�2011/ < �q

�
01k�2.10k�1/1

�
< �q

�
.01k�1/1

�
< �q.10

1/;

where in the first and third inequalities we have used Lemma 3.4 and in the second
inequality we have used2 �q..0

k�11/1/<�q..01
k�1/1/. Therefore (3.4) holds when

i�
l
D 0 and the case for i�

l
D 1 is similar. This proves the forwards direction and the

lemma holds.

2This inequality follows from the fact that

�q
�
.01k�1/1

�
D �q

�
.0k�11/1

�
C �q

�
.01k�20/1

�
and �q..01k�20/1/ is clearly positive.
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1
q�1

1
q.q�1/

1
q

0�1
q

�1
q.q�1/

�1
q�1

0

1
q�1

f ��1 f �0 f �1

(a) The extension of the base q expansion given by
the maps E�q . One can see the top right quadrant
resembles the standard base q expansion on Iq if f ��1
is ignored.

1
q�1

1
q.q�1/

1
q

0�1
q

�1
q.q�1/

�1
q�1

0

1
q�1

f ��1 f �0 f �1

Hq

S�10S0�1 S00
S01

S10

(b) Interval Hq with overlapping subintervals
Sw.Hq/ for w 2 W2. Note that the interval Hq and
the subintervals are not drawn to scale.

Figure 5. The maps E�q and the interval Hq .

3.2. Extension of the base q expansion

In this subsection, we define a set of mapsE�q D ¹f
�
�1; f

�
0 ; f

�
1 º on I �q D Œ�

1
q�1

; 1
q�1

�

which extends the standard base q expansion on Iq from the alphabet ¹0; 1º to the
alphabet ¹�1; 0; 1º.

Define the set of maps E�q D ¹f
�
�1; f

�
0 ; f

�
1 º on the interval I �q (see Figure 5a) by

f ��1 W

�
�

1

q � 1
;
2 � q

q.q � 1/

�
! I �q I f ��1.x/ D qx C 1;

f �0 W

�
�

1

q.q � 1/
;

1

q.q � 1/

�
! I �q I f �0 .x/ D qx;

f �1 W

�
�.2 � q/

q.q � 1/
;

1

q � 1

�
! I �q I f �1 .x/ D qx � 1:

For any x 2 Iq , the orbit space of x in E�q is given by

�E�q .x/ D
®
.f �ij /

1
jD1 2 ¹f

�
�1; f

�
0 ; f

�
1 º

N
W f �i1:::ik .x/ 2 I

�
q for all k 2 N�0

¯
:

Since ternary expansions do not index the orbit space of this extension of the base
q dynamics, we impose no restrictions on the domains of the maps to be half-open
intervals.

As for the standard base q expansion, it is straightforward to show that .f �ij /
1
jD1 2

�E�q .x/ if and only if �q..ij /1jD1/ D x for any x 2 I �q . We note that in the case of
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the extended base q dynamics E�q the associated sequence space is ¹�1; 0; 1ºN rather
than ¹0; 1ºN .

DefineHq D Œ� q

q2�1
; q

q2�1
�� I �q andW2 D ¹.�10/; .0�1/; .00/; .01/; .10/º. For

x 2 I �q , define Si .x/D f ��1i .x/ for i 2 ¹�1;0; 1º, and forwD i1 : : : in 2 ¹�1;0; 1ºn,
define Sw.x/ D f ��1i1

ı � � � ı f ��1in
.x/.

Lemma 3.7. For any q 2 .1; 2/,

Hq D
[
w2W2

Sw.Hq/:

Proof. The proof is a straightforward calculation and comparison of endpoints of
intervals (see Figure 5b). Notice that

S00.Hq/ D f
��1
0

�
f ��10 .Hq/

�
D

�
�
1

q

�
1

q2 � 1

�
;
1

q

�
1

q2 � 1

��
;

S01.Hq/ D f
��1
0

�
f ��11 .Hq/

�
D

�
1

q2

�
q2 � q � 1

q2 � 1

�
;
1

q2

�
q2 C q � 1

q2 � 1

��
;

S10.Hq/ D f
��1
1

�
f ��10 .Hq/

�
D

�
1

q

�
q2 � 2

q2 � 1

�
;

�
q

q2 � 1

��
;

S0�1.Hq/ D f
��1
0

�
f ��1�1 .Hq/

�
D

�
1

q2

�
�q2 � q C 1

q2 � 1

�
;
1

q2

�
�q2 C q C 1

q2 � 1

��
;

S�10.Hq/ D f
��1
�1

�
f ��10 .Hq/

�
D

��
�

q

q2 � 1

�
;
1

q

�
2 � q2

q2 � 1

��
:

S00.Hq/ \ S01.Hq/ ¤ ; because

1

q

�
1

q2 � 1

�
>
1

q2

�
q2 � q � 1

q2 � 1

�
;

” q2 � 2q � 1 < 0;

which is true for all q 2 .1; 2/, and S01.Hq/ \ S10.Hq/ ¤ ; because

1

q2

�
q2 C q � 1

q2 � 1

�
>
1

q

�
q2 � 2

q2 � 1

�
;

” q3 � q2 � 3q C 1 < 0;

which is also true for all q 2 .1; 2/. By symmetry S00.Hq/ \ S0�1.Hq/ ¤ ; and
S0�1.Hq/ \ S�10.Hq/ ¤ ;. The left and right endpoints of Hq are preserved by the
maps S�10.Hq/ and S10.Hq/ respectively, hence the lemma.

The following lemma follows easily from Lemma 3.7.
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Lemma 3.8. If x 2Hq then there is some .f �ij /
1
jD1 2�E�q .x/ such that .ij /1jD1 2W

N
2

and f �i1:::ik .x/ 2 Hq for all k 2 2N.

Proof. If x 2 Hq then x 2 Sw.Hq/ for some w 2 W2 by Lemma 3.7. Let w1 D i1i2
then f �i2 .f

�
i1
.x// 2 Hq . Repeating the above argument, we generate a sequence of

words .wj /1jD1 D .ij /
1
jD1 where wj 2 W2 for all j 2 N and f �i1:::ik 2 Hq for all

k 2 2N. By construction it follows that .f �ij /
1
jD1 2 �E�q .x/.

The following lemma guarantees the existence of an orbit of 1 whose associated
sequence has a tail in W N

2 . This is important for the definition of the fixed expansion
of 1 in the next subsection to be valid.

Lemma 3.9. If q 2 .1; 2/ then there is some M 2 N�0 depending only on q and
some sequence .wj /1jD1 2 W

N
2 such that .ij /1jD1 D 1

M .wj /
1
jD1 satisfies .f �ij /

1
jD1 2

�E�q .1/. Moreover, if q 2 .1;G� then M D 0 and if q 2 .qk; qkC1� for k 2 N�2 then
M D k.

Proof. Since q1 D 1 and limn!1 qn D 2, we know that q 2 .1; 2/ implies that q 2
.qk; qkC1� for some k 2N. By Lemma 3.8 it suffices to show, for each q 2 .1; 2/, that
there is some M 2 N�0 such that .f �1 /

M .1/ 2 Hq . Recall that q2 D G. If q 2 .1;G�
then 0 < 1 � q

q2�1
so 1 2 Hq and by setting M D 0 we are done. Let q 2 .qk; qkC1�

for some k � 2, and observe .f �1 /
k.1/ D qk � qk�1 � � � � � q � 1. By Lemma 3.3,

we know that if q 2 .qk; qkC1� then 0 < .f �1 /
k.1/ � 1

q
. Finally, 1

q
< q

q2�1
for all

q 2 .G; 2/ so setting M D k, .f �1 /
M .1/ 2 Hq and we are done.

3.3. Construction of Aq

In this subsection, we construct a family of sequences Aq for each q 2 .q9; 2/ with
the property that whenever .aj /1jD1 2 Aq we can guarantee that

�q
�
.aj /

1
jD1

�
; �q

�
.aj /

1
jD1

�
� 1 2 Uq:

This is the content of Proposition 3.10 below.
For each q 2 .q9; 2/, fix

.cj /
1
jD1 D 1

M .cj /
1
jDMC1 2 ¹�1; 0; 1º

N ;

where 1 D �q..cj /
1
jD1/ and .cj /1jDMC1 2 W

N
2 is as described in Lemma 3.9. The

sequence .cj /1jD1 is referred to as the fixed expansion of 1. We emphasise here that
the sequence .cj /1jD1 with these properties is not necessarily unique, but by fixing one
such sequence for each q 2 .q9; 2/, the definition of the fixed expansion of 1 is valid.
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Let J be the set of zeros of the sequence .cj /1jD1:

J D ¹j 2 N W cj D 0º:

We can enumerate J in the obvious way: J D ¹j0; j1; : : :º where j0 < j1 < � � � .
Define

Jfixed;1 D ¹jm 2 J W m D 4k C 1 for some k 2 Nº;

Jfixed;0 D ¹jm 2 J W m D 4k C 3 for some k 2 Nº;

and
Jfree D ¹jm 2 J W m is evenº;

and call an index in Jfree a free zero of .cj /1jD1. If j 2 Jfixed;1 [ Jfixed;0 or if j is such
that cj 2 ¹�1; 1º then j is a fixed index, otherwise j is a free zero.

Given q 2 .q9; 2/ and 1M .cj /1jDMC1 the fixed expansion of 1, the set Aq consists
of the sequences .aj /1jD1 2 ¹0; 1º

N which satisfy the following properties:

(1) aj D 1 if cj D 1,

(2) aj D 0 if cj D �1,

(3) aj D 1 if j 2 Jfixed;1 and

(4) aj D 0 if j 2 Jfixed;0.

Notice that there are no restrictions on the value of aj if j 2 Jfree and later we use
this fact along with the bounded distance between zeros of .cj /1jD1 to show that the
thickness of �q.Aq/ can be bounded below. We can now state the key proposition of
this subsection.

Proposition 3.10. If q 2 .q9; 2/ then �q.Aq/; �q.Aq/ � 1 � Uq .

Proposition 3.10 is a consequence of the following two lemmas.

Lemma 3.11. If q 2 .q9; 2/ then Aq � �9 and �q.Aq/ � Uq .

Proof. We start with the first containment. Let q 2 .q9; 2/ and let 1M .cj /1jDMC1 be
the fixed expansion of 1. Since each w 2 W2 has length two and at least one 0, we
know that for any m 2 N, .2mC 1/ consecutive indices of .cj /1jDMC1 must contain
at least m 0s. In particular, each set of nine consecutive indices must contain at least
four 0s. By inspection of the sets Jfixed;0 and Jfixed;1, we see that in every set of four
consecutive 0s of .cj /1jDMC1, ¹jm; jmC1; jmC2; jmC3º, we have at least one element
of Jfixed;0 and at least one element of Jfixed;1. Hence, for j > M , ¹aj ; : : : ; ajC8º
contains at least one 0 and at least one 1. Since .aj /MjD1 D 1

M and .aj /1jDMC1 avoids
the strings .19/ and .09/, we know that .aj /1jD1 avoids .019/ and .109/, i.e., Aq � �9.

Given q 2 .q9; 2/, Lemma 3.2 then provides the conclusion that �q.Aq/�Uq .
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Lemma 3.12. If q 2 .q9; 2/ then �q.Aq/ � 1 � Uq .

Proof. Let q 2 .q9; 2/ and let 1M .cj /1jDMC1 be the fixed expansion of 1. For each
.aj /

1
jD1 2 Aq define a sequence .bj /1jD1 by declaring that bj D aj � cj for all j 2N.

Therefore .bj /1jD1 satisfies

(1) bj D 0 if cj D 1,

(2) bj D 1 if cj D �1,

(3) bj D aj if cj D 0.

Since .aj /1jD1 2 ¹0; 1º
N , we know that .bj /1jD1 2 ¹0; 1º

N . Moreover, by inspection of
the proof of Lemma 3.11, since bj D aj whenever cj D 0, we know that .bj /1jDMC1
also avoids 09 and 19. Noting that .bj /MjD1 D 0M , we can say that .bj /1jD1 avoids
.019/ and .109/, so .bj /1jD1 2 �9. Since q 2 .q9; 2/, by Lemma 3.2 we know that
�q..bj /

1
jD1/ 2 Uq .

By definition of .bj /1jD1 and by the additive property of �q , we have that .aj /1jD1,
.bj /

1
jD1 and .cj /1jD1 satisfy

1 D �q
�
.cj /

1
jD1

�
D �q

�
.aj /

1
jD1

�
� �q

�
.bj /

1
jD1

�
:

So for each .aj /1jD1 2 Aq there is some uniquely defined .bj /1jD1 such that

�q
�
.bj /

1
jD1

�
D �q

�
.aj /

1
jD1

�
� 1:

Since q 2 .q9; 2/, �q..bj /1jD1/ 2 Uq and hence �q.Aq/ � 1 � Uq .

Lemmas 3.11 and 3.12 together prove Proposition 3.10.

3.4. The structure of �q.Aq/

In this subsection, we prove Proposition 3.13. This thickness estimate forms a key part
of the application of Newhouse’s theorem [24] to prove Theorem 3.1. The following
definition of thickness is due to Newhouse [25]. We note that an interleaving condition
is also required for Newhouse’s theorem and this is addressed in Subsection 3.5.

Let C � R be a compact set such that the complement of C in R is the union of
two disjoint unbounded open intervals with a countable collection of open intervals
we refer to as gaps. Denote this countable collection of gaps by ¹Gn W n 2 Nº and let
jGmj � jGnjwheneverm< n. To each gapGn in the complement of C we associate a
left and right bridge. Given a gapGn the left bridge,Ln, is defined to be the interval to
the left of Gn whose right endpoint is the left endpoint of Gn and whose left endpoint
is the right endpoint of the gap immediately to the left of Gn and at least as big.
The right bridge, Rn, is defined similarly. So for a given gap Gn, we know the gaps
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contained in the bridges Ln and Rn are strictly smaller than Gn. The thickness of the
compact set C is given by

�.C / D inf
²

min
²
jLnj

jGnj
;
jRnj

jGnj

³
W n 2 N

³
:

Note that the unbounded components of the complement of C in R are not considered
when dealing with thickness, so we ignore these in what follows. We are now able to
state the key proposition of this subsection.

Proposition 3.13. If q 2 .q9; 2/ then �.�q.Aq// > q�5.

Let q 2 .q9; 2/ and let 1M .cj /1jDMC1 2 ¹�1; 0; 1º
N be the fixed expansion of 1,

defined in Subsection 3.3. Recall thatM and the expansion 1M .cj /1jDMC1 are defined
such that .cj /1jDMC1 2W

N
2 and �q.1M .cj /1jDMC1/D 1. For every k 2 N we define

the set of length k prefixes of sequences in Aq by Akq , that is

Akq D
®
.aj /

k
jD1 2 ¹0; 1º

k
W 9.a0j /

1
jD1 2 Aq such that a0j D aj 81 � j � k

¯
;

and write
�qŒA

k
q � D

®
�q
�
.aj /

k
jD1

�
W .aj /

k
jD1 2 A

k
q

¯
;

so elements of �qŒAkq � are intervals. By Lemma 3.11, q 2 .q9; 2/ implies thatAq � �9,
so it is immediate that any .aj /kjD1 2 A

k
q avoids .109/ and .019/.

The lemma below is used frequently throughout the proofs of the remaining lem-
mas of this section.

Lemma 3.14. Let q 2 .q9; 2/.

(1) .aj /kjD1 2 A
k
q if and only if �qŒ.aj /kjD1� \ �q.Aq/ ¤ ;.

(2) If .aj /kjD1 … A
k
q is such that there are sequences .a�j /

k
jD1; .a

C

j /
k
jD1 2 A

k
q with

the property that .a�j /
k
jD1 � .aj /

k
jD1 and .aj /kjD1 � .a

C

j /
k
jD1, then

�qŒ.aj /
k
jD1� � conv.�q.Aq// n �q.Aq/:

(3) If .aj /k�2jD10ak; .aj /
k�2
jD11ak 2A

k
q then �qŒ.aj /k�2jD1akak�\�qŒ.aj /

k�2
jD10ak�¤;

and �qŒ.aj /k�2jD1akak� \ �qŒ.aj /
k�2
jD11ak� ¤ ;.

Proof. Let q 2 .q9; 2/.

(1) For the forwards implication, if .aj /kjD1 2 A
k
q then by definition there exists

some .aj /1jD1 2Aq which satisfies �q..aj /1jD1/ 2 �qŒ.aj /
k
jD1�\�q.Aq/. For

the reverse implication, suppose �q..a0j /
1
jD1/ 2 �qŒ.aj /

k
jD1�\ �q.Aq/. Then

.a0j /
1
jD1 2 Aq and by Lemma 3.11, �q.Aq/ �Uq . Hence .a0j /

k
jD1 D .aj /

k
jD1

and so .aj /kjD1 2 A
k
q .
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(2) The first part of the hypotheses guarantees that �qŒ.a�j /
k
jD1� \ �q.Aq/¤;

and �qŒ.aCj /
k
jD1� \ �q.Aq/ ¤ ;. Since .aj /kjD1 … A

k
q , .aj /kjD1 is not a pre-

fix of any element of Aq we know that �qŒ.aj /kjD1� \ �q.Aq/ D ;. There-
fore .a�j /

k
jD1 and .aCj /

k
jD1 are prefixes of sequences .a�j /

1
jD1, .aCj /

1
jD1 2 Aq

which satisfy

�q
�
.a�j /

1
jD1

�
< �q

�
.aj /

k
jD10

1
�
< �q

�
.aj /

k
jD11

1
�
< �q

�
.aCj /

1
jD1

�
:

This inequality proves that the interval �qŒ.aj /kjD1� is bounded on both sides
by elements of �q.Aq/, and hence �qŒ.aj /kjD1� � conv.�q.Aq// n �q.Aq/.

(3) Notice that if ak is 0 or 1, in either case the inequality

�q
�
.aj /

k�2
jD10ak1

1
�
> �q

�
.aj /

k�2
jD1akak0

1
�

reduces to �q.011/ > �q.10
1/, which we know is true for all q 2 .1; 2/.

Therefore �qŒ.aj /k�2jD1akak�\�qŒ.aj /
k�2
jD10ak�¤;. A similar argument shows

that �qŒ.aj /k�2jD1akak� \ �qŒ.aj /
k�2
jD11ak� ¤ ; which completes the proof.

A level k gap is a gap G which contains the interval (which we show to exist)
between �qŒ.aj /k�2jD10ak� and �qŒ.aj /k�2jD11ak� for some .aj /k�2jD10ak; .aj /

k�2
jD11ak 2

Akq . Given a gap G, we denote the left and right bridges of G by LG and RG , respect-
ively.

We prove the following claims which allow us to bound �.�q.Aq// from below.

(1) All gaps of �q.Aq/ are open.

(2) Level k gaps exist if and only if k � 1 is a free zero (which requires k �
M C 1).

(3) A level k gap cannot be a level l gap for any l ¤ k.

(4) All gaps of �q.Aq/ are level k gaps for some k.

(5) If G is a level k gap and H is a level l gap for some l > k then jH j < jGj.
Moreover, q�k < jGj < q�kC1.

(6) If G is a level k gap then jLG j; jRG j > q�k�4.

These steps lead us to conclude that �.�q.Aq// > q�5 (Proposition 3.13). This
bound is then used in an application of Newhouse’s theorem to prove (3.1) from which
Theorem 3.1 follows. The items in the list are proved sequentially in the next six
lemmas.

Lemma 3.15. All gaps of �q.Aq/ are open.
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Proof. Let .ij /1jD1; .i
0
j /
1
jD1 2 ¹0; 1º

N and consider the metric on ¹0; 1ºN given by

d..ij /
1
jD1; .i

0
j /
1
jD1/ D

´
2�n where n D min¹j 2 N W ij ¤ i 0j º;

0 if .ij /1jD1 D .i
0
j /
1
jD1:

Aq is compact with respect to the topology generated by this metric, and �q is con-
tinuous. Therefore �q.Aq/ is compact with respect to the normal topology on R,
generated by the open intervals, and hence its complement is open. The gaps of
�q.Aq/ form a subset of the complement, so all the gaps are necessarily open.

Let x be the reflection of x, i.e., if x D .ij /kjD1 2 ¹0; 1º
� then

x D .ij /
k
jD1 D .1 � ij /

k
jD1:

In particular if x 2 ¹0; 1º then x D 1 � x and the reflection of the empty word is just
itself.

Lemma 3.16. Let q 2 .q9; 2/, then level k gaps exist if and only if k � 1 is a free
zero.

Proof. Observe that the existence of sequences .aj /k�2jD10ak and .aj /k�2jD11ak as ele-
ments of Akq is equivalent to k � 1 being a free zero. Hence it suffices to show
that if .aj /k�2jD10ak and .aj /k�2jD11ak are elements of Akq then �qŒ.aj /k�2jD10ak� and
�qŒ.aj /

k�2
jD11ak� do not intersect and the interval between them is contained in a gap.

Suppose that .aj /k�2jD10ak , .aj /k�2jD11ak 2A
k
q then since .aj /k�2jD10ak � .aj /

k�2
jD11ak

are not lexicographically consecutive, Lemma 3.6 implies that �qŒ.aj /k�2jD10ak� and
�qŒ.aj /

k�2
jD11ak� do not intersect. Recall from Subsection 3.3 that if k � 1 is a free

zero, then k must be a fixed index, so .aj /k�2jD1akak … A
k
q because the kth entry is not

ak . It can be easily checked that .aj /k�2jD10ak � .aj /
k�2
jD1akak are lexicographically

consecutive and that .aj /k�2jD1akak � .aj /
k�2
jD11ak are lexicographically consecutive.

So, by Lemma 3.14, �qŒ.aj /k�2jD1akak� is a gap contained in conv.�q.Aq// n �q.Aq/.
Again by Lemma 3.14, the set �qŒ.aj /k�2jD1akak� intersects both �qŒ.aj /k�2jD10ak�

and �qŒ.aj /k�2jD11ak� and must therefore contain the interval between them, which
completes the proof.

Note that by the definition of the fixed expansion of 1, the first free zero cannot
occur before index M C 1, hence we guarantee there are no level k gaps for k �
M C 1. To prove a level k gap cannot be a level l gap for any l ¤ k, we prove
that the gap which contains the interval between �qŒ.aj /k�2jD10ak� and �qŒ.aj /k�2jD11ak�

is determined uniquely by the sequence .aj /k�2jD1 2 A
k�2
q . This is the content of the

following lemma.



On the cardinality and dimension of the slices of Okamoto’s functions 237

Lemma 3.17. Let q 2 .q9; 2/. Let G be the gap which contains the interval between
�qŒ.aj /

k�2
jD10ak� and �qŒ.aj /k�2jD11ak� for some k 2 N and some

.aj /
k�2
jD10ak; .aj /

k�2
jD11ak 2 A

k
q :

Let H be the gap which contains the interval between the points �qŒ.bj /l�2jD10bl � and
�qŒ.bj /

l�2
jD11bl � for some l 2N and .bj /l�2jD10bl , .bj /

l�2
jD11bl 2 A

l
q . Then if .aj /k�2jD1 ¤

.bj /
l�2
jD1 then G \H D ;.

Proof. Assume the hypotheses of the lemma and that k; l 2 N with k � l . Suppose
that .aj /k�2jD1 � .bj /

k�2
jD1. It is clear that G � �qŒ.aj /k�2jD1� and H � �qŒ.bj /l�2jD1� �

�qŒ.bj /
k�2
jD1�. Since k � 1 is a free zero, k � 2 is a fixed index so ak�2 D bk�2 and

therefore .aj /k�2jD1 and .bj /k�2jD1 are not lexicographically consecutive. By Lemma 3.6
we know that �qŒ.aj /k�2jD1� \ �qŒ.bj /

k�2
jD1� D ; so G \H D ;.

Suppose instead that .aj /k�2jD1 D .bj /
k�2
jD1. In order for the premise .aj /k�2jD1 ¤

.bj /
l�2
jD1 to hold, we require that k < l . Notice that since l � 1 is a free zero and

k is a fixed index, we require l � k C 2. Without loss of generality3, let .bj /kjD1 D
.aj /

k�2
jD11ak . Therefore

�q
�
.bj /

l�2
jD10bl

�
� �q

�
.bj /

l�2
jD1

�
� �q

�
.aj /

k�2
jD11ak

�
: (3.6)

By Lemma 3.14, .bj /l�2jD10bl 2A
l
q so there exists some x 2 �qŒ.bj /l�2jD10bl �\�q.Aq/.

Using (3.6), we know that x 2 �qŒ.aj /k�2jD11ak�\ �q.Aq/. Since G contains the inter-
val between �qŒ.aj /k�2jD10ak� and �qŒ.aj /k�2jD11ak� andG is a connected component of
conv.�q.Aq// n �q.Aq/, we know that y < x for all y 2 G.

Similarly, since H contains the interval between the points �qŒ.bj /l�2jD10bl � and
�qŒ.bj /

l�2
jD11bl � we know that x < z for all z 2 H (see Figure 6). Since x 2 �q.Aq/

we conclude that G \H D ;.

Next, we show that every gap is a level k gap for some k 2 N.

Lemma 3.18. Let q 2 .q9; 2/. If G is a gap then G is a level k gap for some k 2 N.

Proof. Let q 2 .q9; 2/ and let 1M .cj /1jDMC1 be the fixed expansion of 1. Let G be a

gap and let kG 2N be the largest number such that there exists an element .aj /
kG�2
jD1 2

A
kG�2
q with the property that G � �qŒ.aj /

kG�2
jD1 �ı. We show that kG exists and claim

that G is a level kG gap.

3If instead we assume that .bj /kjD1 D .aj /
k�2
jD1

0ak then (3.6) becomes �q Œ.bj /l�2jD1
1bl ��

�q Œ.bj /
l�2
jD1

� � �q Œ.aj /
k�2
jD1

0ak � and the rest of the argument is similar with H disjoint and to
the left of G instead of disjoint and to the right of G.
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x

x
G

H

:::

�qŒ.aj /
k�2
jD1�

�qŒ.aj /
k�2
jD10�; �qŒ.aj /

k�2
jD11�

�qŒ.aj /
k�2
jD10ak�; �qŒ.aj /

k�2
jD11ak�

�qŒ.bj /
l�2
jD10�; �qŒ.bj /

l�2
jD11�

�qŒ.bj /
l�2
jD10bl �; �qŒ.bj /

l�2
jD11bl �

Figure 6. The projections of cylinders used to show G \H D ; in the proof of Lemma 3.17.
The sets G and H contain the intervals represented by the dotted lines above them. The point
x 2 �q.Aq/ is an element of neither G nor H but necessarily lies between them.

Recall that j0 is the smallest free zero of 1M .cj /1jDMC1, so let .aj /
j0�1
jD1 be

the unique element of Aj0�1q , then .aj /
j0�1
jD1 is a prefix of every element of Aq . So

�q.Aq/ � �qŒ.aj /
j0�1
jD1 �. The endpoints of �qŒ.aj /

j0�1
jD1 � are not in �q.Aq/ so

conv
�
�q.Aq/

�
� �q

�
.aj /

j0�1
jD1

�ı
:

Hence all gaps are contained in �qŒ.aj /
j0�1
jD1 �

ı and so for any gap G, kG is at least

j0 C 1. A calculation shows that j�qŒ.aj /
kG�2
jD1 �j D q�kGC2. 1

q�1
/ which approaches

0 as kG !1. Since every gap G has positive length, kG is bounded above for every
gap G. This shows that for any gap G, kG exists, is finite and is unique since it is
maximal within a finite set.

Let G be a gap and kG 2 N as above. We show that kG � 1 is a free zero by
contradiction. Suppose kG � 1 is a fixed index and let akG�1 2 ¹0; 1º be such that
.aj /

kG�2
jD1 akG�1 2 A

kG�1
q so .aj /

kG�2
jD1 akG�1 … A

kG�1
q . We know that

G � �q
�
.aj /

kG�2
jD1

�ı
and

�q
�
.aj /

kG�2
jD1

�ı
D �q

�
.aj /

kG�2
jD1 akG�1

�ı
[ �q

�
.aj /

kG�2
jD1 akG�1

�ı
Therefore, since G 6� �qŒ.aj /

kG�2
jD1 akG�1�

ı we know that

G \ �q
�
.aj /

kG�2
jD1 akG�1

�
¤ ;:

Because .aj /
kG�2
jD1 akG�1 … A

kG�1
q , Lemma 3.14 tells us that

�q
�
.aj /

kG�2
jD1 akG�1

�
\ �q.Aq/ D ;
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so we know that �qŒ.aj /
kG�2
jD1 akG�1� � G. Observe that

�q
�
.aj /

kG�2
jD1 .akG�1/

1
�
2 �q

�
.aj /

kG�2
jD1 akG�1

�
is an extremal point of �qŒ.aj /

kG�2
jD1 � so

�q
�
.aj /

kG�2
jD1 .akG�1/

1
�
2 �q

�
.aj /

kG�2
jD1

�
n �q

�
.aj /

kG�2
jD1

�ı
which contradicts G � �qŒ.aj /

kG�2
jD1 �ı. Hence kG � 1 is a free zero.

We next show that �qŒ.aj /
kG�2
jD1 akGakG �\G D ;. We show that this implies that

G contains the interval between �qŒ.aj /
kG�2
jD1 0akG � and �qŒ.aj /

kG�2
jD1 1akG �, proving

G is a level kG gap. Since kG � 1 is a free zero kG � 2 and kG are fixed indices
so let akG 2 ¹0; 1º be such that .aj /

kG�2
jD1 0akG , .aj /

kG�2
jD1 1akG 2 A

kG
q . Notice that by

Lemma 3.14, �qŒ.aj /
kG�2
jD1 akGakG �\ �q.Aq/D ; because .aj /

kG�2
jD1 akGakG …A

kG
q .

Suppose �qŒ.aj /
kG�2
jD1 akGakG � \G ¤ ;, then since G is a gap and

�q
�
.aj /

kG�2
jD1 akGakG

�
\ �q.Aq/ D ;;

this is equivalent to �qŒ.aj /
kG�2
jD1 akGakG � � G. In this case,

�q
�
.aj /

kG�2
jD1 .akG /

1
�
2 G;

but
�q
�
.aj /

kG�2
jD1 .akG /

1
�
2 �q

�
.aj /

kG�2
jD1

�
n �q

�
.aj /

kG�2
jD1

�ı
;

which contradicts G � �qŒ.aj /
kG�2
jD1 �ı. Hence, �qŒ.aj /

kG�2
jD1 akGakG � \G D ;.

Consider the union

�q
�
.aj /

kG�2
jD1

�
D

[
ı2¹akG akG ;akG akG ;akG akG ;akG akG º

�q
�
.aj /

kG�2
jD1 ı

�
:

Since �qŒ.aj /
kG�2
jD1 akGakG � \G D ;, we know that

G �
[

ı2¹akG akG ;akG akG ;akG akG º

�q
�
.aj /

kG�2
jD1 ı

�
:

We know that ¹akGakG ; akGakG º D ¹0akG ; 1akG º and .aj /
kG�2
jD1 akGakG … A

kG
q .

Since G is an interval which is not contained in either

�q
�
.aj /

kG�2
jD1 0akG

�ı or �q
�
.aj /

kG�2
jD1 1akG

�ı
;
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we know �qŒ.aj /
kG�2
jD1 akGakG � \G ¤ ;. Again, by Lemma 3.14 we know that

�q
�
.aj /

kG�2
jD1 akGakG

�
\ �q.Aq/ D ;:

Since G is a gap, the fact that �qŒ.aj /
kG�2
jD1 akGakG � \G ¤ ; tells us that

�q
�
.aj /

kG�2
jD1 akGakG

�
� G:

By inspection, either akGakG � akGakG � akGakG or akGakG � akGakG �
akGakG and in each case both pairs ¹akGakG ; akGakG º and ¹akGakG ; akGakG º are
lexicographically consecutive. Therefore by Lemma 3.14,

�q
�
.aj /

kG�2
jD1 akGakG

�
\ �q

�
.aj /

kG�2
jD1 akGakG

�
¤ ;;

and
�q
�
.aj /

kG�2
jD1 akGakG

�
\ �q

�
.aj /

kG�2
jD1 akGakG

�
¤ ;:

Since �qŒ.aj /
kG�2
jD1 akGakG � � G and G is an interval, we know G contains the inter-

val between �qŒ.aj /
kG�2
jD1 0akG � and �qŒ.aj /

kG�2
jD1 1akG �. Hence G is a level kG gap.

Lemma 3.19. Let q 2 .q9;2/. IfG is a level k gap then q�k < jGj<q�kC1. Moreover,
if H is a level l gap then jGj > jH j whenever k < l .

Proof. Let q 2 .q9; 2/ and let G be a level k gap. Suppose G is the level k gap
which contains the interval between �qŒ.aj /k�2jD10ak� and �qŒ.aj /k�2jD11ak� for some
.aj /

k�2
jD10ak; .aj /

k�2
jD11ak 2 A

k
q . We find lower and upper bounds on jGj by inspecting

further restrictions on the endpoints of G.
Let J1; J2; J3 be successive free zeros such that J1 D k � 1. Let ˛1 and ˛2 be the

binary strings between the pairs of free zeros J1; J2 and J2; J3 respectively. That is
˛1 D .aj /

J2�1
jDJ1C1

and ˛2 D .aj /
J3�1
jDJ2C1

. Since J1; J2; J3 are successive free zeros,
there are no free zeros in the ranges J1 C 1; : : : ; J2 � 1 and J2 C 1; : : : ; J3 � 1, so ˛1
and ˛2 are fixed since they are indexed by fixed indices. There is at least one and at
most four fixed indices between free zeros of any sequence inAq , so 1� j˛1j; j˛2j � 4.
Therefore, for any aJ1 ; aJ2 2 ¹0; 1º we know that

.aj /
k�2
jD1aJ1˛1aJ2˛2 2 A

kCj˛1jCj˛2j
q :

By the above construction, we have the equality:®
.aj /

k�2
jD1aJ1˛1aJ2˛2 2 A

kCj˛1jCj˛2j
q W aJ1 ; aJ2 2 ¹0; 1º

¯
D
®
.a0j /

kCj˛1jCj˛2j
jD1 2 AkCj˛1jCj˛2jq W .a0j /

k�2
jD1 D .aj /

k�2
jD1

¯
: (3.7)
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In words, (3.7) is saying that the expression .aj /k�2jD1aJ1˛1aJ2˛2 describes all

sequences in AkCj˛1jCj˛2jq prefixed by .aj /k�2jD1.
We know G contains the interval between �qŒ.aj /k�2jD10ak� and �qŒ.aj /k�2jD11ak�,

therefore, G contains the interval between the rightmost element of �qŒA
kCj˛1jCj˛2j
q �

contained in �qŒ.aj /k�2jD10ak� and the leftmost element of �qŒA
kCj˛1jCj˛2j
q � contained

in �qŒ.aj /k�2jD11ak�. By Equation (3.7), the rightmost element of �qŒA
kCj˛1jCj˛2j
q � con-

tained in �qŒ.aj /k�2jD10ak� is given by �qŒ.aj /k�2jD10˛11˛2� and the leftmost element

of �qŒA
kCj˛1jCj˛2j
q � contained in �qŒ.aj /k�2jD11ak� is given by �qŒ.aj /k�2jD11˛10˛2�.

Moreover, we know that G is contained in the convex hull of the union of these inter-
vals, that is,

G � conv
�
�q
�
.aj /

k�2
jD10˛11˛2

�
[ �q

�
.aj /

k�2
jD11˛10˛2

��
;

because both �qŒ.aj /k�2jD10˛11˛2� and �qŒ.aj /k�2jD11˛10˛2� are elements of the set

�qŒA
kCj˛1jCj˛2j
q �.

The above argument finds an interval which is contained in G and an interval
which contains G. This provides both upper and lower bounds on jGj (see Figure 7).
The containments described above give the following inequality,

�q
�
.aj /

k�2
jD11˛10˛20

1
�
� �q

�
.aj /

k�2
jD10˛11˛21

1
�
� jGj

� �q
�
.aj /

k�2
jD11˛10˛21

1
�
� �q

�
.aj /

k�2
jD10˛11˛20

1
�
;

which algebraically gives,

q�.k�2/
�
q�1 � q�2�j˛1j � q�2�j˛1j�j˛2j

�
1

q � 1

��
� jGj

� q�.k�2/
�
q�1 � q�2�j˛1j C q�2�j˛1j�j˛2j

�
1

q � 1

��
: (3.8)

For the lower bound, we observe that the left-hand side of (3.8) is smallest when
the negative terms are largest, i.e., when j˛1j D j˛2j D 1. Then

jGj � q�kC2
�
q�1 � q�3 � q�4

�
1

q � 1

��
> q�kC1

�
1 �

25

8
q�3

�
where the last inequality comes from the two implications q < 2 H) q�3 < 2q�4

and q > q9 H) 1
q�1

< 9
8

. Now using q > q9 H) q�3 < 1
7

and q�1 < 31
56

we have

jGj > q�k :
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�qŒ.aj /
k�2
jD1�

�qŒ.aj /
k�2
jD10�; �qŒ.aj /

k�2
jD11�

:::
:::

�qŒ.aj /
k�2
jD10˛1�; �qŒ.aj /

k�2
jD11˛1�

�qŒ.aj /
k�2
jD10˛11�; �qŒ.aj /

k�2
jD11˛10�

:::
:::

G
�qŒ.aj /

k�2
jD10˛11˛2�; �qŒ.aj /

k�2
jD11˛10˛2�

Figure 7. Upper and lower bounds for jGj in the context of Lemma 3.19.

For the upper bound, the right-hand inequality of (3.8) is equivalent to

jGj � q�kC2
�
q�1 C q�2�j˛1j

�
q�j˛2j

q � 1
� 1

��
:

The product q�2�j˛1j.q
�j˛2j

q�1
� 1/ is negative so jGj< q�kC1. Therefore, q�k < jGj<

q�kC1. If H is a level l gap for some l > k then since l � 1 is a free zero, l � k C 2
so jH j < q�lC1 � q�k�1 < q�k < jGj and the lemma is proved.

Lemma 3.19 allows us to estimate the length of the bridge either side of some gap
G. If G is a level k gap of �q.Aq/, we know by Lemma 3.19 that if l > k then all
level l gaps are smaller than G. Let H be the gap at least as large and immediately to
the left ofG. ThenH is a levelm gap for somem � k. Therefore to bound LG below
it suffices to find a lower bound on the distance between G and H .

Lemma 3.20. Let q 2 .q9; 2/. IfG is a level k gap of �q.Aq/ then the bridges associ-
ated withG on the left and the right,LG andRG , have diameter jLG j; jRG j> q�k�4.

Proof. Let k � 1 be a free zero and let .aj /k�2jD10ak; .aj /
k�2
jD11ak 2 A

k
q . We know by

Lemma 3.17, there is a unique level k gap G which contains the interval between
�qŒ.aj /

k�2
jD10ak� and �qŒ.aj /k�2jD11ak�. Given G, it is sufficient to bound the diameter

of the left bridge jLG j from below because the same bound on the diameter of the right
bridge jRG j follows by symmetry. To bound jLG j from below we seek an interval
immediately to the left of G which does not intersect any gap larger than G, whose
length we bound below.

We start by proving that �qŒ.aj /k�2jD10ak� does not contain a level l gap for any
l � k. Let H be a level l gap for some l � k. Then there are elements .bj /l�2jD10bl ,
.bj /

l�2
jD11bl 2 A

l
q such that the gap H contains the interval between �qŒ.bj /l�2jD10bl �
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�qŒ.aj /
k�2
jD10ak� �qŒ.aj /

k�2
jD11ak�

GJ

conv.�qŒ.aj /k�2jD10ak� \ �q.Aq//

Figure 8. Constructing the subset conv.�q Œ.aj /k�2jD1
0ak � \ �q.Aq// � �q Œ.aj /

k�2
jD1

0ak �

which does not intersect any gap with diameter greater than or equal to jGj. J is defined to
be the gap which contains the point �q..aj /k�2jD1

0ak0
1/ which may satisfy jJ j � jGj.

and �qŒ.bj /l�2jD11bl �, and this uniquely determines H . By the proof of Lemma 3.18,
H contains the interval �qŒ.bj /l�2jD1blbl � and since l � k, we have the inequality

jH j �
ˇ̌
�q
�
.bj /

l�2
jD1blbl

�ˇ̌
�
ˇ̌
�q
�
.aj /

k�2
jD10ak

�ˇ̌
:

Hence H cannot be contained in �qŒ.aj /k�2jD10ak�.
By Lemmas 3.18 and 3.19, this implies that any gap contained in �qŒ.aj /k�2jD10ak�

is smaller than G. We emphasise that it is possible for a gap with diameter greater
than or equal to jGj to intersect �qŒ.aj /k�2jD10ak� but no such gap is contained in
�qŒ.aj /

k�2
jD10ak�. Removing the elements of �qŒ.aj /k�2jD10ak� which are not elements

of �q.Aq/ and taking the convex hull removes the possibility of intersecting with a
gap of diameter greater than or equal to jGj (see Figure 8). That is, the set

conv
�
�q
�
.aj /

k�2
jD10ak

�
\ �q.Aq/

�
does not intersect any gap with diameter greater than or equal to jGj. Therefore a
lower bound on j�qŒ.aj /k�2jD10ak�\ �q.Aq/j is a lower bound on jLG j. It now suffices
to show that j�qŒ.aj /k�2jD10ak� \ �q.Aq/j > q

�k�4.
As in the proof of Lemma 3.19, let J1; J2; J3; J4 be successive free zeros such

that J1 D k � 1 and let ˛1; ˛2; ˛3 be the fixed binary strings between the pairs
of free zeros J1; J2 and J2; J3 and J3; J4 respectively. That is ˛1 D .aj /

J2�1
jDJ1C1

,

˛2 D .aj /
J3�1
jDJ2C1

and ˛3 D .aj /
J4�1
jDJ3C1

are fixed because there are no free zeros in
the ranges J1C 1; : : : ; J2 � 1 and J2C 1; : : : ; J3 � 1 and J3C 1; : : : ; J4 � 1. There is
at least one and at most four fixed indices between free zeros of any sequence in Aq ,
so 1 � j˛1j; j˛2j; j˛3j � 4. As before, the implication of this is that ˛1; ˛2; ˛3 are such
that for any aJ1 ; aJ2 ; aJ3 2 ¹0; 1º, .aj /

k�2
jD1aJ1˛1aJ2˛2aJ3˛3 2 A

kC1Cj˛1jCj˛2jCj˛3j
q .

Using this, we know that �qŒ.aj /k�2jD10˛10˛20˛3� and �qŒ.aj /k�2jD10˛11˛21˛3� are
subintervals of �qŒ.aj /k�2jD10ak� and intersect �q.Aq/, so the distance between them
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is a lower bound for jLG j. This distance is given by

jLG j � �q
�
.aj /

k�2
jD10˛11˛21˛30

1
�
� �q

�
.aj /

k�2
jD10˛10˛20˛31

1
�

D q�.k�1Cj˛1j/
�
q�1 C q�2�j˛2j � q�2�j˛2j�j˛3j

�
1

q � 1

��
D q�k�j˛1j

�
1C q�1�j˛2j

�
1 �

q�j˛3j

q � 1

��
:

We aim to minimize this expression under the constraints 1 � j˛1j; j˛2j; j˛3j � 4.
Since j˛3j � 1, the term in round brackets is positive which implies the term in square
brackets is positive. This gives j˛1j D 4 and j˛2j D 4. j˛3j D 1minimizes the term in
round brackets and hence the whole expression. This gives,

jLG j � q
�k�4

�
1C q�5

�
1 �

q�1

q � 1

��
> q�k�4;

which completes the proof.

Recall from Lemma 3.19 that ifG is a level k gap then jGj< q�kC1. We combine
this with Lemma 3.20 to find a lower bound on the thickness of �q.Aq/.

Proof of Proposition 3.13. By Lemma 3.18, we can rewrite the definition of the thick-
ness of �q.Aq/ in terms of level k gaps. That is, we seek a lower bound on

�
�
�q.Aq/

�
D inf

²
min

²
jLG j

jGj
;
jRG j

jGj

³
W k 2 N; G a level k gap

³
:

If G is a level k gap then jLG j; jRG j > q�k�4 by Lemma 3.20 and jGj < q�kC1

by Lemma 3.19. Therefore

min
²
jLG j

jGj
;
jRG j

jGj

³
>
q�k�4

q�kC1
D q�5:

Since this is independent of k 2 N, we conclude that �.�q.Aq// > q�5.

3.5. Interleaving

Let C1 and C2 be two compact subsets of R then C1 and C2 are interleaved if
conv.C1/ 6� R n C2 and conv.C2/ 6� R n C1. This is often written more directly as
neither set is contained in a gap of the other. For C1 and C2 to be interleaved, it is
sufficient to show that C2 � conv.C1/ and jC2j � jGj where G is the largest interval
in conv.C1/ n C1.

In this subsection, we prove the following proposition, which is the consequence
of the two lemmas which follow it.
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conv.�q.Aq//

conv..2 � q/�q.�9/C 1/ nG
1 1

q�1

Figure 9. �q.Aq/ and .2 � q/�q.�9/C 1 are interleaved. Here, G denotes the largest gap of
..2 � q/�q.�

9/C 1/.

Proposition 3.21. The sets .2 � q/�q.�9/C 1 and �q.Aq/ are interleaved.

As shown in [32] and Subsection 3.4 respectively, the sets �q.�k/ and �q.Aq/
are each the complement of an interval with a collection of infinitely many gaps of
decreasing length. We show that conv..2 � q/�q.�9/C 1/ contains �q.Aq/ and that
the largest gap of ..2� q/�q.�9/C 1/ is smaller than j�q.Aq/j, which is sufficient for
the sets to be interleaved. Figure 9 shows conv.�q.Aq// and conv..2� q/�q.�9/C 1/
with the largest gap removed. Notice that �q.�9/ contains 0 and 1

q�1
because 0 D

�q.0
1/ 2 �q.�

9/ and 1
q�1
D �q.1

1/ 2 �q.�
9/. Since 0 and 1

q�1
are extremal points

of �q.�9/, it is easy to check that conv..2 � q/�q.�9/C 1/ D Œ1; 1
q�1

�.

Lemma 3.22. If q 2 .q9; 2/ then �q.Aq/ � Œ1; 1
q�1

�.

Proof. Let q 2 .q9; 2/ and .cj /1jD1 2 ¹�1;0; 1º
N be the fixed expansion of 1 (see Sub-

section 3.3). Let .aj /1jD1 2 Aq and .bj /1jD1 be the sequence with cj D aj � bj for all
j 2N. Using that �q..cj /1jD1/D 1, �q..bj /1jD1/ > 0 and �q..aj /1jD1/, �q..bj /

1
jD1/2

�q.�
9/, we know that �q..aj /1jD1/ > 1. Lexicographically, .aj /1jD1 2 A satisfies

.aj /
1
jD1 � 1

1, which implies �q..aj /1jD1/ <
1
q�1

. Therefore �q.Aq/ � Œ1; 1
q�1

�.

Lemma 3.23. If q 2 .q9; 2/ the diameter of the largest gap of ..2 � q/�q.�9/C 1/
is smaller than j�q.Aq/j.

Proof. The largest gap of ..2 � q/�q.�9/C 1/ has the same diameter as the largest
gap of .2 � q/�q.�9/. We prove the lemma by bounding this gap above and showing
that this upper bound is less than a lower bound for j�q.Aq/j. We start by finding a
lower bound for j�q.Aq/j.

Let q 2 .q9; 2/. Recall from Subsection 3.2 that

Hq D

�
�

q

q2 � 1
;

q

q2 � 1

�
:

If qk < q � qkC1 then by Lemma 3.3,

0 < f k1 .1/ D q
k
� qk�1 � � � � � q � 1 �

1

q
<

q

q2 � 1
;
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so f k1 .1/ 2 Hq . Let s be the smallest index such that f s1 .1/ 2 Hq (so s � k). Let
.cj /

1
jD1 be the fixed expansion of 1. By inspection of the words w 2 W2, if csC1 ¤ 0

then csC2D 0, so if j0 is the first zero (which is a free zero) of .cj /1jD1 then j0� sC 2.
Since s � k, then j0 � k C 2.

Let .j2k/1kD0 D Jfree be the sequence of free zeros of .cj /1jD1 and for l 2 N let

˛l D .aj /
j2l�1
jDj2.l�1/C1

be the values of every sequence in Aq at the fixed indices between j2.l�1/ and j2l .
Since there is at least one free zero in every set of five consecutive indices after j0,
and free zeros never occupy consecutive indices, we know that 1 � j˛l j � 4 for every
l 2 N. By definition,

Aq D
®
.aj /

j0�1
jD1 aj0˛1aj2˛2aj4 : : : W aj2k 2 ¹0; 1º 8k 2 N�0

¯
;

so �q.Aq/ is bounded below and above by

L D �q
�
.aj /

j0�1
jD1 0˛10˛20 : : :

�
and U D �q

�
.aj /

j0�1
jD1 1˛11˛21 : : :

�
respectively, and L;U 2 �q.Aq/. Hence

j�q.Aq/j D U � L D q
�j0C1

�
q�1 C q�2�j˛1j C q�3�j˛1j�j˛2j C � � �

�
� q�k�1

�
q�1 C q�6 C q�11 C � � �

�
D q�k�2

�
q5

q5 � 1

�
> q�k�2:

We compare this lower bound for j�q.Aq/j with an upper bound for the largest gap of
.2� q/�q.�

9/. Let q 2 .q9; 2/ and letG be the largest gap of �q.�9/. A consequence
of the arguments in [32, Proof of Lemma 4.1] is that jGj < q�8. If qk < q � qkC1
then q�k�1 � .2 � q/ < q�k by Lemma 3.3. Therefore, the diameter of the largest
gap of .2 � q/�q.�9/C 1 is bounded above by .2 � q/jGj < q�k�8.

Hence if q 2 .q9; 2/ and q 2 .qk; qkC1� then

j�q.Aq/j > q
�k�2 > q�k�8 > .2 � q/jGj:

We now observe that Proposition 3.21 follows from Lemmas 3.22 and 3.23 com-
bined with the fact that conv.�q.�9// D Œ1; 1

q�1
�.

3.6. Proof of Theorem 3.1

Proof of Theorem 3.1. Let q 2 .q9; 2/. By Newhouse’s theorem ([25, Lemma 4]), in
order for two compact subsets of R to have nonempty intersection, it is sufficient to



On the cardinality and dimension of the slices of Okamoto’s functions 247

show that the product of the thicknesses of the sets is greater than 1 and that the sets are
interleaved, that is, neither set lies entirely within a gap of the other. Proposition 3.21
shows that .2� q/�q.�9/C 1 and �q.Aq/ are interleaved and Proposition 3.13 shows
that �.�q.Aq// > q�5. In [32] it is shown that �.�q.�k// > qk�3 whenever qk <
q < 2 for all k � 3. Hence, for k D 9 we can say that �.�q.�9// > q6 whenever
q 2 .q9; 2/. Because thickness is preserved under affine transformations, we also know
that �..2 � q/�q.�9/C 1/ > q6. Hence, we can conclude that

�
�
.2 � q/�q.�

9/C 1
�
� �

�
�q.Aq/

�
> q6 � q�5 > 1

and by Newhouse’s theorem, ..2 � q/�q.�9/C 1/ \ �q.Aq/ ¤ ;.
By Lemma 3.2, since q 2 .q9; 2/, we know�

.2 � q/�q.�
9/C 1

�
\ �q.Aq/ ¤ ;;

implies that �
.2 � q/Uq C 1

�
\ �q.Aq/ ¤ ;:

Hence it is sufficient to show that ..2� q/Uq C 1/\�q.Aq/¤; implies that q 2 C3.
If ..2 � q/Uq C 1/ \ �q.Aq/ ¤ ; then let qy 2 ..2 � q/Uq C 1/ \ �q.Aq/ for

some y 2 Œ 1
q
; 1
q.q�1/

�. Then4

1

q � 1
�
qy � 1

2 � q
2 Uq; qy 2 �q.Aq/ � Uq and qy � 1 2 �q.Aq/ � 1 � Uq

by construction. Hence f0.y/; f1.y/; f2.y/ 2Uq , so y has three orbits, i.e., y 2 V
.3/
q

and so q 2 C3.

4. Proof of Theorem 2

In this section, we prove Theorem 2 and Corollary 2. We start by proving that The-
orem 2 is equivalent to Theorem 4.1 and that Corollary 2 follows from Theorem 4.1.
We then show that Theorem 4.1 is equivalent to Theorem 4.2 before proving The-
orem 4.2.

Let a D .aj /
k
jD1 2 ¹0; 1; 2º

� be a finite ternary sequence, then .faj /
k
jD1 is the

associated finite sequence of maps. We write fa to denote the finite composition of
maps fa1:::ak . When we do not state it explicitly, jaj denotes the length of the sequence
a, so in this case jaj D k. Given q 2 .1; 2/, x 2 Iq , we define

�kEq .x/ D
®
.fij /

k
jD1 2 ¹f0; f1; f2º

k
W fi1:::il .x/ 2 Iq for all 1 � l � k

¯
;

4Recall that x 2 Uq if and only if 1
q�1
� x 2 Uq and we know that qy�1

2�q
2 Uq .
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��Eq .x/ D
[

k2N�0

�kEq .x/;

and the set
D D

®
q 2 .1; 2/ W j�Eq .x/j 2 ¹1; 2

@0º 8x 2 Iq
¯
:

If q 2 D then by Lemma 2.5, jslq.y/j 2 ¹1; 2@0º for all y 2 Œ0; 1�. Therefore, The-
orem 2 is equivalent to Theorem 4.1.

Theorem 4.1. Let q 2D and let y 2 Œ0; 1�. If slq.y/ is uncountable then there is some
s > 0 depending only on q such that dimH.slq.y// � s.

The implications of Corollary 2.8, [32, Theorem 2.1] and [4, Corollary 1.3] are
that .1; q@0/ n ¹Gº � D and T \ .q@0 ; qKL/ � D . Hence, Corollary 2 follows from
Lemma 2.5 and Theorem 4.1. Some work is required to prove that Theorem 4.1 is
equivalent to Theorem 4.2.

Theorem 4.2. Let q 2 D . If x 2 Jq then there is some s > 0 depending only on q
such that dimH.slq.x.q � 1/// � s.

Proof of Theorem 4.1 ” Theorem 4.2. The forwards implication is more straight-
forward so we prove this first. Observe that x 2 Iq ” x.q � 1/ 2 Œ0; 1�. Let x 2 Jq
and let q 2 D , then we have the following sequence of implications.

x 2 Jq
Lemma 2.4
H) j�Eq .x/j � 2

q2D
H) �Eq .x/ uncountable

Lemma 2.5
” slq.x.q � 1// uncountable: (4.1)

The above chain of implications shows that the hypotheses of Theorem 4.1 hold
if the hypotheses of Theorem 4.2 hold, and since the conclusions of the theorems are
the same, we have proved the forwards implication.

For the reverse implication, let q 2 D and x.q � 1/ 2 Œ0; 1� satisfy slq.x.q �
1// is uncountable. By Lemma 2.5, this is equivalent to �Eq .x/ is uncountable. By
Lemma 2.4, this implies that there is a finite sequence of maps .faj /

k
jD1 2 �

�
Eq
.x/

which satisfies fa1:::ak .x/ 2 Jq . Applying Theorem 4.2, we conclude that there is
some s > 0 depending only on q such that dimH.slq.fa1:::ak .x/.q � 1/// � s. Hence
it suffices to show, for any finite sequence of maps .faj /

k
jD1 2 �

�
Eq
.x/, that

dimH
�
slq.x.q � 1//

�
� dimH

�
slq.fa1:::ak .x/.q � 1//

�
:

Let k 2N�0, x 2 Iq and let .faj /
k
jD1 2�

�
Eq
.x/ be a finite sequence of maps. By

the definition of �Eq .x/,

.faj /
k
jD1.fij /

1
jD1 2 �Eq .x/ ” .fij /

1
jD1 2 �Eq .fa1:::ak .x//:
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Hence, by Lemma 2.5,

�3
�
.ij /
1
jD1

�
2 slq.fa1:::ak .x/.q � 1// ” �3..aj /

k
jD1.ij /

1
jD1/ 2 slq.x.q � 1//:

That is, for some affine map F W Œ0; 1�! Œ0; 1� which maps the point �3..ij /1jD1/ to
�3..aj /

k
jD1.ij /

1
jD1/,

F.slq.fa1:::ak .x/.q � 1/// � slq.x.q � 1//;

so dimH.slq.x.q � 1/// � dimH.slq.fa1:::ak .x/.q � 1///.

We outline the logic of the proof of Theorem 4.2.

(1) Let q 2 D and let x 2 Jq . If there is some set R � ¹0; 1; 2ºN such that
�3.R/ � slq.x.q � 1// then it suffices to prove that dimH.�3.R// � s for
some s > 0. The set R depends on both q and x but s depends only on q.

(2) For all k 2 N�0 we construct the sets Rk � ¹0; 1; 2ºN in terms of a function
A W ¹0; 1º� ! ¹0; 1; 2º� written A.�/ D b� D .b�j /

N�
jD1 which depends on x

and q. Precisely, for all k 2 N�0, Rk is the union of cylinders [�2¹0;1ºk Œb
��.

So elements of Rk are sequences in ¹0; 1; 2ºN which are prefixed by b� for
some � 2 ¹0; 1ºk .

(3) Define R D \k2N�0R
k . Therefore, the set �3.R/ is the countable intersec-

tion over k 2 N�0 of sets �3.Rk/. That is,

�3.R/ D
\

k2N�0

[
�2¹0;1ºk

�3Œb
��:

It follows from the properties of the function A that the Rk sets are nested
and nonempty so the above intersection is nonempty.

(4) It is a consequence of the construction of the sets Rk that for each k 2 N�0,
if Œb�� � Rk then .fb�

j
/
N�
jD1 2 �

�
Eq
.x/. So if .ij /1jD1 2 R, we know that

.fij /
1
jD1 2 �Eq .x/ which provides the property that �3.R/ � slq.x.q � 1//

by Lemma 2.5.

(5) A measure � is defined on �3.R/ by declaring the value of �.�3Œb��/ for all
� 2 ¹0; 1º�. We show that this measure � satisfies the following property:

For every set U � R, �.U / � 4jU js where s D log2
M log3 ; (P)

where M 2 N is a constant depending only on q which arises from the con-
struction of the Rk sets. (We emphasise that the constant M in this section is
different from the M which appears in the definition of the fixed expansion
of 1 in the previous section.) Via the mass distribution principle [13], the exist-
ence of such a measure proves that H s.�3.R// �

1
4

and dimH.�3.R// � s.
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(6) The existence of a measure � with property (P) relies on the fact that for
any l 2 N�0, �3.Rl/ is the union of 2l intervals with disjoint interiors and
of diameter at least 3�lM . Using this fact, it is possible to prove that there
exists a measure � such that whenever lM � k < .l C 1/M and � 2 ¹0; 1ºk ,
�.�3Œb

��/ � 2.2�
k
M /.

(7) The existence of the Rk sets with the required property described in Item 6
makes use of branching tree constructions and the compactness of the inter-
val Jq .

The majority of the work of the proof is in the construction of the Rk sets.

4.1. Branching trees

In this subsection, we prove the following proposition. To do this, we follow [4] by
constructing the branching tree and the infinite branching tree for any x 2 Iq .

Proposition 4.3. Let q 2 D . For every x 2 Jq there are two distinct finite sequences
of maps in ��Eq .x/ which map x into J ıq .

The branching tree constructions below provide a useful visual aid when think-
ing about the orbit spaces �Eq .x/ for x 2 Iq . This is because for any x 2 Iq , the
set of infinite paths in the branching tree of x is in bijection with �Eq .x/. We show
how the structure of the infinite branching tree for x 2 Iq allows us to distinguish
between the cases when �Eq .x/ is at most countably infinite and when it is uncount-
able. Recall from (4.1) that the hypotheses of Theorem 4.2 were shown to imply that
�Eq .x/ is uncountable. We use the uncountability of �Eq .x/ to conclude that the
infinite branching tree of x has a certain structure. This forms the first step towards
constructing the set R � ¹0; 1; 2ºN alluded to in the outline above. Before defining
the branching trees, we need the following definitions.

Let x 2 Iq and let b D .bj /NjD1 2 ¹0; 1; 2º
� be a finite ternary sequence. If b is

such that .fbj /
N
jD1 2�

�
Eq
.x/ and fb.x/ 2 Jq then .fbj /

N
jD1 is a branching sequence

for x, fb.x/ is a branching point of x, and N is the branching length of .fbj /
N
jD1. In

particular, if x 2 Jq then if e 2 ¹0; 1; 2º� is the empty word, fe is the identity map
so fe.x/ D x 2 Jq is a branching point and the empty word is a branching sequence
for x. A minimal branching sequence for x is a branching sequence for x such that
there does not exist a branching sequence for x with smaller branching length. If
j�Eq .x/j > 1 then it is obvious that there is a branching sequence and hence also a
minimal branching sequence for x.

If x 2 Iq and b D .bj /
N
jD1 2 ¹0; 1; 2º

� is such that .fbj /
N
jD1 is a branching

sequence for x such that there are at least two indices i 2 ¹0; 1; 2º for which the
orbit space �Eq .fi .fb.x/// is infinite, then .fbj /

N
jD1 is said to be a doubly infin-
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ite branching sequence for x, fb.x/ is a doubly infinite branching point of x and as
before, N is the branching length of .fbj /

N
jD1. A minimal doubly infinite branching

sequence for x is a doubly infinite branching sequence for x such that there does not
exist a doubly infinite branching sequence for x with smaller branching length.

4.1.1. Branching tree T .x/. We define the branching tree, T .x/, for any x 2 Iq .
Let x 2 Iq . Suppose x satisfies j�Eq .x/j D 1 then the branching tree for x is

defined to be an infinite horizontal line, representing the unique orbit of x in Eq . If
j�Eq .x/j> 1 then there is a minimal branching sequence .fbj /

N
jD1 for x, which gives

the branching point fb.x/. To construct the branching tree T .x/, the transformation
fb is represented by a finite horizontal line which then bifurcates or trifurcates into
two or three branches respectively, as follows. If fb.x/ 2 J ıq then we have a trifurca-
tion and if fb.x/ 2 @Jq then we have a bifurcation. In the first case, the three branches
of the trifurcation correspond to the images ¹f0.fb.x//;f1.fb.x//;f2.fb.x//ºwhich
we define to be the roots of the branches. In the second case, if fb.x/ D 1

q
then the

two branches of the bifurcation correspond to the images ¹f0.fb.x//; f2.fb.x//º and
if fb.x/ D 1

q.q�1/
then they correspond to ¹f1.fb.x//; f2.fb.x//º. This is a formal

way of saying that the branching points have two or three branches which correspond
to those maps in ¹f0; f1; f2º which satisfy the property that fb.x/ is in the domain
of fi , and these points fi .fb.x// are the roots of the branches. Recall that f1 is not
defined at 1

q
and f0 is not defined at 1

q.q�1/
, hence there are only two branches of

T .x/ at these points.
If for some i 2 ¹0;1;2º, fi .fb.x// satisfies j�Eq .fi .fb.x///j D 1 then the branch

with root fi .fb.x// is extended by an infinite horizontal line. If j�Eq .fi .fb.x///j>1
then fi .fb.x// has a unique minimal branching sequence .fcj /

L
jD1 so we extend the

branch with root fi .fb.x// by a finite horizontal line segment which then bifurc-
ates or trifurcates according to the value of fc.fi .fb.x/// as before. These rules are
repeatedly applied to successive branches of the construction which results in a tree
we call the branching tree of x and denote by T .x/. See Figure 10 for a diagram of a
branching tree.

For any branching point fb.x/ of T .x/, the branch with root fi .fb.x// is the
branching tree T .fi .fb.x/// and is a subtree (in the graph theoretical sense) of T .x/.
The branches of T .x/ are in one-to-one correspondence with points of the form
fi .fb.x// where fb.x/ is a branching point of x, i 2 ¹0; 1; 2º and fi .fb.x// 2 Iq .
We remark that, from the definition of the branching tree, there is a bijection between
the space of infinite paths in T .x/ and the orbit space �Eq .x/. We say that a tree or
a branch is finite if it contains finitely many branching points and infinite otherwise.

Observe that j�Eq .f2.
1
q
//j D j�Eq .f1.

1
q.q�1/

//j D 1 and 1
q

, 1
q.q�1/

are not in the
domains of f1 and f0, respectively. This means that if fb.x/ 2 @Jq , there is at most
one index i 2 ¹0; 1; 2º such that �Eq .fi .fb.x/// is infinite. With Lemma 2.4, this
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x f .x/

f0.f .x//

f1.f .x//

f2.f .x//

Figure 10. The start of the branching tree T .x/ of some x 2 Iq .

implies that if .fbj /
N
jD1 is a doubly infinite branching sequence for x then fb.x/2 J ıq .

Heuristically, we are aiming to show that the number of branches grows sufficiently
quickly, so this kind of branching can be ignored. In fact, any finite branches can be
ignored. This motivates the definition of the infinite branching tree below.

4.1.2. Infinite branching tree T1.x/. The infinite branching tree for x 2 Iq ignores
all finite branching behaviour in the sense that only doubly infinite branching points
generate branching points in this tree. We now define the infinite branching tree,
T1.x/, for any x 2 Iq .

Suppose x 2 Iq has the property that either�Eq .x/ is finite or, for each branching
point fb.x/ of x, we have at least two indices i 2 ¹0; 1; 2º such that �Eq .fi .fb.x///
is finite, then the infinite branching tree for x, T1.x/, is defined to be an infinite hori-
zontal line. This is equivalent to x admitting no doubly infinite branching sequence
and so there does not exist a doubly infinite branching point of x.

Suppose this is not the case, then there is a minimal doubly infinite branching
sequence .fbj /

N
jD1 for x and fb.x/ is a doubly infinite branching point. Let .fbj /

N
jD1

be a minimal doubly infinite branching sequence, then the infinite branching tree
for x consists of a finite horizontal line segment corresponding to the transforma-
tion fb which then bifurcates or trifurcates depending on whether there are two or
three indices i 2 ¹0; 1; 2º such that �Eq .fi .fb.x/// is infinite. In each case, the
branches of the bifurcation or trifurcation correspond to the images fi .fb.x// that
satisfy �Eq .fi .fb.x/// is infinite, and as before, the points fi .fb.x// are defined
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to be the roots of the branches. Each branch is then extended by the same rules ad
infinitum.

We have the analogous observation that for any branching point fb.x/ of T1.x/,
the branch with root fi .fb.x// is the infinite branching tree T1.fi .fb.x/// and is a
subtree of T1.x/. Similarly, the branches of T1.x/ are in one-to-one correspondence
with points of the form fi .fb.x// where fb.x/ is a doubly infinite branching point of
x and �Eq .fi .fb.x/// is infinite.

4.1.3. Null infinite points. It is possible that x 2 Iq satisfies �Eq .x/ is infinite but
that for each branching point fb.x/ of x, there is exactly one index i 2 ¹0; 1; 2º such
that �Eq .fi .fb.x/// is infinite. In this case, T .x/ is infinite, T1.x/ is an infinite
horizontal line and x is said to be a null infinite point. If x is a null infinite point then
j�Eq .x/j D @0. See Figure 11 for a depiction of the branching tree of a null infinite
point.

� � �

x

Figure 11. The branching tree T .x/ of a null infinite point x. All branching points generate
exactly one infinite branch.

4.1.4. Proof of Proposition 4.3. For the following proof, we require the above defin-
itions and remarks to deal with the subtle difference between the cases when �Eq .x/
is countably infinite and when it is uncountably infinite. Precisely, we require the con-
clusion that x admits a doubly infinite branching sequence from the hypothesis that
�Eq .x/ is uncountable.

Proof of Proposition 4.3. Let q 2 D and let x 2 Jq , so j�Eq .x/j > 1. Since q 2 D ,
j�Eq .x/j D 2

@0 so x is not a null infinite point. Therefore, x admits a minimal doubly
infinite branching sequence, .fbj /

N
jD1 2 �

�
Eq
.x/ such that fb.x/ 2 J ıq and there are

at least two indices i0; i1 2 ¹0; 1; 2º such that�Eq .fi0.fb.x/// and�Eq .fi1.fb.x///
are infinite. Again using q 2 D , this implies thatˇ̌

�Eq .fi0.fb.x///
ˇ̌
D
ˇ̌
�Eq .fi1.fb.x///

ˇ̌
D 2@0
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so neither fi0.fb.x// nor fi1.fb.x// are null infinite points. Therefore, both points
fi0.fb.x// and fi1.fb.x// admit minimal doubly infinite branching sequences.

Let h0 D .h0j /
K0
jD1 and h1 D .h1j /

K1
jD1 be elements of ¹0; 1; 2º� such that the asso-

ciated finite sequences of maps

.fh0
j
/
K0
jD1 2 �

�
Eq
.fi0.fb.x/// and .fh1

j
/
K1
jD1 2 �

�
Eq
.fi1.fb.x///

are minimal doubly infinite branching sequences for both fi0.fb.x// and fi1.fb.x//.
Therefore fh0 ı fi0 ı fb.x/ 2 J

ı
q and fh1 ı fi1 ı fb.x/ 2 J

ı
q . Let b0 D .b0j /

N0
jD1 and

b1 D .b1j /
N1
jD1 be elements of ¹0; 1; 2º� with

b0 D .bj /
N
jD1i0.h

0
j /
K0
jD1 and b1 D .bj /

N
jD1i1.h

1
j /
K1
jD1:

Therefore fb0 D fh0 ı fi0 ı fb and fb1 D fh1 ı fi1 ı fb . We know that fb0.x/,
fb1.x/ 2 J

ı
q and .fb0

j
/
N0
jD1, .fb1

j
/
N1
jD1 2 �

�
Eq
.x/ by construction and the proposition

holds.

4.2. Positive Hausdorff dimension

In this subsection, we construct R � ¹0; 1; 2ºN and a measure � on �3.R/ which
satisfies the hypotheses of the mass distribution principle and we use this to prove
Theorem 4.2. We emphasise that R depends upon the fixed q 2 D and x 2 Jq which
are chosen arbitrarily. We construct the constant M 2 N and the map A W ¹0; 1º� !
¹0; 1; 2º� before proving their required properties in Proposition 4.4. Recall the defin-
itions of prefix and strict prefix from Subsection 2.1

Let q 2D and let x 2 Jq . By Proposition 4.3, there are two doubly infinite branch-
ing sequences .fb0

j
/
N0
jD1, .fb1

j
/
N1
jD1 2 �

�
Eq
.x/ such that fb0.x/; fb1.x/ 2 J ıq . The

maps f0; f1; f2 are continuous, so any finite composition of these maps is also con-
tinuous. This allows us to fix an open interval Ux containing x such that fb0.Ux/,
fb1.Ux/ � J

ı
q . Since x 2 Jq was arbitrary, this generates an open cover ¹Uxºx2Jq

of Jq . By compactness of the closed interval Jq , this open cover must admit a finite
subcover. That is, there is some finite subset F � Jq such that ¹Ux0ºx02F is a finite
open cover of Jq . For each x0 2 F , we can choose a pair of doubly infinite branch-
ing sequences .fb0

j
/
N0
jD1; .fb1

j
/
N1
jD1 and define Mx0 D max¹N0; N1º. We subsequently

define M D maxx02F ¹Mx0º.
Let x 2 Jq be arbitrary. Then x 2Ux0 for some x0 2F . and there are doubly infinite

branching sequences .fb0
j
/
N0
jD1, .fb1

j
/
N1
jD1 2 �

�
Eq
.x/ for x as to max¹N0; N1º � M .

We call such a pair of sequences of maps the branching pair for x. Although the
branching pair of some x 2 Jq may not be unique, by fixing a branching pair for
each x 2 Jq , the definition is valid. We emphasise that since x 2 Jq was arbitrary,
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M is independent of x and depends only on q. Since fb0.x/; fb1.x/ 2 J ıq , by Pro-
position 4.3 there are branching pairs for fb0.x/ and fb1.x/. That is, there are finite
sequences of maps .fc0

j
/
K0
jD1, .fc1

j
/
K1
jD1 2 �

�
Eq
.fb0.x// and .fd0

j
/
L0
jD1, .fd1

j
/
L1
jD1 2

��Eq .fb1.x// with K0, K1, L0, L1 �M such that fc0 ı fb0.x/, fc1 ı fb0.x/, fd0 ı

fb1.x/, fd1 ı fb1.x/ 2 J ıq . Let .b00j /
N00
jD1; .b

01
j /

N01
jD1; .b

10
j /

N10
jD1; .b

11
j /

N11
jD1 2 ¹0; 1; 2º

�

be the finite sequences such that

fb00 D fc0 ı fb0 ;

fb01 D fc1 ı fb0 ;

fb10 D fd0 ı fb1 ;

fb11 D fd1 ı fb1 :

Then, by construction, .fb00
j
/
N00
jD1; .fb01

j
/
N01
jD1; .fb10

j
/
N10
jD1; .fb11

j
/
N11
jD1 2 �

�
Eq
.x/. Again

using Proposition 4.3, we can argue that since, fb� .x/ 2 J ıq for all � 2 ¹0; 1º2, each
of these points has a branching pair. In general, for � 2 ¹0; 1ºk and B 2 ¹0; 1º we
inductively define .fb�B

j
/
N�B
jD1 2 ¹f0; f1; f2º

� to be a finite sequence of maps which
satisfies fb�B D fgB ı fb� where fg0 ; fg1 2 �

�
Eq
.fb� .x// is the branching pair for

fb� .x/. This defines .fb�
j
/
N�
jD1, and by construction .fb�

j
/
N�
jD1 2 �

�
Eq
.x/ for all � 2

¹0; 1º�.
In summary for every � 2 ¹0; 1º�, we have an associated finite ternary sequence

b� D .b�j /
N�
jD1 2 ¹0; 1; 2º

� with the property that .fb�
j
/
N�
jD1 2 �

�
Eq
.x/. We write this

mapping as A W ¹0; 1º�! ¹0; 1; 2º� where A.�/D b� D .b�j /
N�
jD1. Note that if � is the

empty word then b� is the empty word. Moreover, the map A depends on x 2 Jq and
q 2 D because the branching pairs in the construction of b� depend on x and q.

Proposition 4.4. For any q 2 D , the constant M 2 N and the map A W ¹0; 1º� !
¹0; 1; 2º� satisfy the following properties for any x 2 Jq .

(1) If � 2 ¹0; 1º� then .fb�
j
/
N�
jD1 2 �

�
Eq
.x/.

(2) If �; �0 2 ¹0; 1º�, then b� is a prefix of b�
0

if and only if � is a prefix of �0.

(3) If � and �0 are distinct elements of ¹0; 1ºk for some k 2 N�0 then �3Œb�� and
�3Œb

�0 � intersect in at most one point.

(4) For all k 2 N�0, if � 2 ¹0; 1ºk then N� � kM .

Proof. Let q 2 D , x 2 Jq for every part of this proof.

(1) This follows easily from the construction of .fb�
j
/
N�
jD1 for each � 2 ¹0; 1º�.

(2) Let �; �0 2 ¹0; 1º�. If � D �0 the result is obvious. Assume that � is a strict
prefix of �0. Suppose that B 2 ¹0; 1º is such that �B is a prefix of �0 and recall
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by the inductive definition of b� that fb�B D fgB ı fb� where fg0 ; fg1 is the
branching pair of fb� .x/. This equation can be rewritten as

fb�B
1
:::b�B

N�B

D fgB ı fb�1 :::b
�
N�
:

Hence .b�Bj /
N�
jD1 D .b

�
j /
N�
jD1 so b� is a prefix of b�B . If �0 D �B then we are

done. If not then �B is a strict prefix of �0 and we repeat the above argument.
Performing this argument finitely many times proves the result in the general
case that � is a strict prefix of �0.
Suppose � is not a prefix of �0 and vice versa, then there is some l 2 N such
that the length l prefixes of � and �0 are distinct but the length l � 1 prefixes
coincide. Without loss of generality, let ı0 and ı1 be the length l prefixes of
� and �0, respectively. Then bı0 and bı1 satisfy fbı0 D fg0 ı fbı and fbı1 D
fg1 ı fbı where fg0 ; fg1 is the branching pair for fbı .x/. Since fg0 ; fg1 is a
branching pair, we know that g0 is not a prefix of g1 and vice versa. Therefore
bı0 is not a prefix of bı1 and vice versa. Since bı0 and bı1 are prefixes of b�

and b�
0

respectively, we can conclude that b� is not a prefix of b�
0

and vice
versa.

(3) It can be easily checked that intervals of the form �3Œb� and �3Œb0� for b; b0 2
¹0; 1; 2º� are either nested or are disjoint apart from possibly at a single point.
They can only be nested if b is a prefix of b0 or vice versa. If �; �0 2 ¹0; 1ºk

are distinct then � is not a prefix of �0 and vice versa so by Item 2, b� is not a
prefix of b�

0

and vice versa. Therefore �3Œb�� and �3Œb�
0

� are not nested and
intersect in at most a single point.

(4) We prove the claim by induction. Let .fb0
j
/
N0
jD1; .fb1

j
/
N1
jD1 2 �

�
Eq
.x/ be the

branching pair for x, soN0;N1 �M . Therefore, the claim holds for � 2 ¹0;1º.
Given � 2 ¹0; 1ºk and b� D .b�j /

N�
jD1, assume thatN� � kM . By definition, for

any B 2 ¹0; 1º, fb�B D fgB ı fb� where fg0 ; fg1 is the branching pair for
fb� .x/. We know jg0j; jg1j �M andN�B D jgB j CN� soN�B � .kC 1/M .
Since every ı 2 ¹0; 1ºkC1 is of the form �B for some � 2 ¹0; 1ºk and some
B 2 ¹0; 1º, the proof is complete.

Fix some q 2 D and x 2 Jq , on which the construction of the set R implicitly
depends due to the dependence of the map A on q and x. For each k 2 N�0, define
the set Rk by

Rk
D

[
�2¹0;1ºk

Œb��:

Note that the sequences b� which define the cylinders of Rk need not have length
k but rather are the images under A of the binary strings of length k. Recall that
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A.�/ D b� D .b�j /
N�
jD1 so the cylinder Œb�� � Rk has length N� . Define also

R D
\

k2N�0

Rk :

That is, R is the set of infinite sequences .ij /1jD1 2 ¹0; 1; 2º
N with the property that

for infinitely many l 2 N, .ij /ljD1 2 Rk for some k 2 N. Equivalently, R is the
set of infinite sequences .ij /1jD1 such that for all k 2 N�0 there is some � 2 ¹0; 1º�

with the property that b� is a prefix of .ij /kjD1 and for some B 2 ¹0; 1º, .ij /kjD1 is
a strict prefix of b�B . We emphasise that R is implicitly dependent upon the fixed
q 2D and x 2 Jq due to the dependence of the map A on these values. By the second
part of Proposition 4.4, the sets Rk are nested, and since Rk is nonempty for all
k 2 N�0, we know that R is nonempty. Using the fact that .fb�

j
/
N�
jD1 2 �

�
Eq
.x/, a

simple consequence of the definition of the orbit space is that if .ij /kjD1 is a prefix of
b� then .fij /

k
jD1 2 �

�
Eq
.x/.

By the above remarks, it follows that .fij /
1
jD1 2 �Eq .x/ for all .ij /1jD1 2 R.

Hence, by Lemma 2.5, �3.R/ � slq.x.q � 1//. Moreover, we know that

�3.R/ D
\

k2N�0

[
�2¹0;1ºk

�3Œb
��;

so we define a measure � on �3.R/ by defining the values of �.�3Œb��/ for all � 2
¹0; 1º�. Given � 2 ¹0; 1ºk , define

�
�
�3Œb

��
�
D 2�k :

By Proposition 4.4, we know that if �; �0 2 ¹0; 1; 2ºk are distinct then �3Œb�� and
�3Œb

�0 � intersect in at most one point, and therefore

�
�
�3Œb

�� [ �3Œb
�0 �
�
D �

�
�3Œb

��
�
C �

�
�3Œb

�0 �
�
:

Then
�
�
�3.R

k/
�
D

X
�2¹0;1ºk

�
�
�3Œb

��
�
D 1;

since j¹0; 1ºkj D 2k . It follows that �.�3.R//D 1. It is a consequence of Lemma 2.3
that if b� is a prefix of .ij /ljD1 2 ¹0; 1; 2º

� then �3Œ.ij /ljD1� � �3Œb
�� so

�
�
�3Œ.ij /

l
jD1�

�
� �

�
�3Œb

��
�
:

Proposition 4.5. The measure � has the property that for all U � R, �.U / � 4jU js

where s D log2
M log3 .
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Proof. We start by bounding the measure of intervals of the form �3Œ.ij /
l
jD1� where

.ij /
l
jD1 2 ¹0; 1; 2º

� before generalising to arbitrary intervals in R.
Let .ij /ljD1 2 ¹0; 1; 2º

� be such that .ij /ljD1 is not a prefix of b� for any � 2
¹0; 1º�. Then .ij /ljD1 is not a prefix of any sequence in R and hence �3Œ.ij /ljD1� \
�3.R/ is either empty or consists of a single point, so �.�3Œ.ij /ljD1�/ D 0. Suppose
instead that there is some k 2N�0, � 2 ¹0; 1ºk and some B 2 ¹0; 1º with the property
that .ij /ljD1 is a strict prefix of b�B . We can choose k to be minimal so that b� is a
prefix of .ij /ljD1. Therefore �.�3Œ.ij /ljD1�/ � �.�3Œb

��/ � 2�k . Since .ij /ljD1 is a
strict prefix of b�B we know, using the third part of Proposition 4.4, that l < N�B �
.k C 1/M , so 2�k D 2.2�k�1/ � 2.2�l=M /. Therefore, for any .ij /ljD1 2 ¹0; 1; 2º

�,
�.�3Œ.ij /

l
jD1�/ � 2.2

�l=M /.
Let U �R satisfy 3�l�1 � jU j< 3�l for some l 2N. Then since j�3Œ.ij /ljD1�j D

3�l for any .ij /ljD1 2 ¹0; 1; 2º
l , the set U intersects at most two intervals of the

form �3Œ.ij /
l
jD1�, so �.U / � 4.2�l=M /. Solving 2�l=M D .3�l�1/sl gives sl D l

lC1
�

log2
M log3 < s D

log2
M log3 . Therefore �.U / � 4.3�l�1/s � 4jU js .

Note that since s is a constant depending only onM , andM is dependent only on
q, we know that s is independent of x 2 Jq and depends only on q 2 D .

Proof of Theorem 4.2. By the mass distribution principle [13], Proposition 4.5, yields
that H s.�3.R// �

�.�3.R//
4

D
1
4

and dimH.�3.R// � s. Given q 2 D and x 2 Jq ,
we know that �3.R/ � slq.x.q � 1// so we conclude that dimH.slq.x.q � 1// � s
which proves Theorem 4.2.

5. The special case of the k-Bonacci numbers

In this section, we prove Theorem 3 as well as an additional result (Theorem 5.5)
in the special case where q is a k-Bonacci number for some k 2 N�3. We recall
the notation from Subsection 2.3. By Lemma 2.5, Theorem 3 is equivalent to the
following theorem.

Theorem 5.1. Let ¹qiº1iD3 be the set of k-Bonacci numbers excluding G.

(1) If q 2 ¹qiº1iD3 then for all m 2 N, dimH.V
.2mC1/
q / > � > 0 where � depends

only on q.

(2) ¹qiº1iD3 � C@0 .

Note that ¹qiº1iD3 �C2mC1 is an immediate implication of part .1/ of the theorem.
In order to prove the theorem, we need the following lemma on the cardinalities of
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orbit spaces. We refer the reader to Figure 12 for an illustration of what happens at
q3.

Lemma 5.2. Let q 2 .G; 2/ and let ˛ 2 ¹0; 1ºN be arbitrary. If xn D �q.1n0˛/ for
some n 2 N then j�Eq .xn/j D j�Eq .xn�1/j D � � � D j�Eq .x1/j.

Proof. Let ˛ 2 ¹0; 1ºN be fixed and xn D �q.1n0˛/ for all n 2 N. It is obvious that
q�1 C q�2 � x2 < x3 < : : : and since q 2 .G; 2/ implies that q�1 C q�2 > 1

q.q�1/
,

we know that

xn 2

�
1

q.q � 1/
;

1

q � 1

�
; (5.1)

for all n� 2. Equation (5.1) implies that f2 is the only map in ¹f0;f1;f2º that satisfies
fi .xn/ 2 Iq . By observing that f2.xn/D xn�1, it is clear that since (5.1) holds for all
n � 2, j�Eq .xn/j D j�Eq .xn�1/j D � � � D j�Eq .x1/j.

Recall the reflection notation x from Subsection 3.4. We observe that since 1
q�1
D

�q.1
1/,

�q.x/ D
1

q � 1
� �q.x/: (5.2)

Lemma 5.3. Let k� 3, qD qk , and xmD�q.1.0k/m˛/wherem2N and ˛ 2 ¹0;1ºN

is arbitrary. Then f1.xm/ D �q..1k/m�1˛/.

Proof. First, observe that for any x in the domain of f1, that f1.x/D 1
q�1
�

1
2�q

f2.x/.
If q D qk for some k � 3 then by the proof of Lemma 3.3, 1

2�q
D qk . From the rela-

tion f2.xm/ D �q..0k/m˛/ we know that 1
2�q

f2.xm/ D �q..0
k/m�1˛/. Using (5.2),

f1.xm/ D
1
q�1
� �q..0

k/m�1˛/ D �q..1
k/m�1˛/.

Before proving Theorem 5.1, we require the following definition and lemma. For
all k 2 N, define

O�k D
®
.ij /
1
jD1 2 ¹0; 1º

N
W .ij /

1
jD1 avoids .01k/ and .10k/ and

does not end with .01k�1/1 or .10k�1/1
¯
;

and

Q�k D
®
.ij /
1
jD1 2 ¹0; 1º

N
W .ij /

1
jD1 avoids .0k/ and .1k/ and

does not end with .01k�1/1 or .10k�1/1
¯
;

and note that Q�k � O�k � �k so �q. Q�k/ � �q. O�k/ � �q.�k/ for each k 2 N. Note
also that ı 2 �k if and only if ı 2 �k and the same holds for O�k and Q�k .

By [17, Lemma 4], if q D qk , then �q. O�k/ D Uq and so if q 2 .qk; 2/ then
�q. O�

k/ � Uq . This follows from the fact that Uq is increasing with q in the sense
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f0 f1 f2

0 1
q

1
q.q�1/

1
q�1

(a) The three orbits of the point x1.

(b) A horizontal slice with three elements.

Figure 12. Eq and the corresponding fractal Kq for q D q3.

that if �q..ij /1jD1/ 2Uq for some q 2 .1;2/ then �q0..ij /1jD1/ 2Uq0 for all q0 2 .q;2/

[17, Lemma 4]. Observe that if ı 2 Q�k then 0nı 2 O�k for all n 2 N. This proves the
following lemma.

Lemma 5.4. Let q 2 .qk; 2/ and ı 2 Q�k . Then j�Eq .�q.0
nı//j D j�Eq .�q.ı//j D 1

for all n 2 N.

Since �q.�k/ n �q. O�k/ and �q. O�k/ n �q. Q�k/ have countably many points, we
know that for any q 2 .1; 2/,

dimH
�
�q.�

k/
�
D dimH

�
�q. O�

k/
�
D dimH

�
�q. Q�

k/
�
:

It was shown in [17, Theorem 2] that dimH.�q.�
k// > 0 for all q 2 .qKL; 2/, k 2 N

and hence dimH.�q. Q�
k// > 0. We note that q3 � 1:83929 > qKL � 1:78723, so the

range in which this result holds contains ¹qiº1iD3.

Proof of Theorem 5.1. Proof of part .1/:
Let k � 3 and let q D qk . Define

Xm D
®
.1.0k/mı/ 2 ¹0; 1ºN W ı 2 Q�k

¯
:

Since an affine image of �q. Q�k/ is contained in �q.Xm/ for any m 2 N, we know
that dimH.�q.Xm// � dimH.�q. Q�

k// > � > 0 for some � which depends only on q.
Hence, it suffices to show that if x 2 �q.Xm/ then j�Eq .x/j D 2mC 1.
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Since q D qk for some k � 3,

qk D qk�1 C � � � C q C 1;

and equivalently
q�1 D q�2 C � � � C q�k�1;

which implies that
�q.10

k˛/ D �q.01
k˛/; (5.3)

where ˛ 2 ¹0; 1ºN is an arbitrary infinite binary sequence. Let ı 2 Q�k , and let xm D
�q.1.0

k/mı/ for all m 2 N. (5.3) implies that �q.1.0k/mı/ D �q.0.1
k/.0k/m�1ı/

and with Lemma 5.3, we evaluate f0.xm/; f1.xm/ and f2.xm/,

f0.xm/ D �q
�
1k.0k/m�1ı

�
;

f1.xm/ D �q
�
.1k/m�1ı

�
;

f2.xm/ D �q
�
.0k/mı

�
;

and proceed by induction. By Lemma 5.4, we can see that

j�Eq .f2.xm//j D j�Eq .f1.xm//j D 1

and by Lemma 5.2, j�Eq .f0.xm//j D j�Eq .�q.1.0
k/m�1ı//j D j�Eq .xm�1/j. Since

j�Eq .xm/j D j�Eq .f0.xm//j C j�Eq .f1.xm//j C j�Eq .f2.xm//j, this means that
j�Eq .xm/j D 2C j�Eq .xm�1/j. For x1, Lemma 5.2 shows thatˇ̌

�Eq .f0.x1//j D j�Eq .f1.x1//j D j�Eq .f2.x1//
ˇ̌
D 1:

Hence, j�Eq .xm/j D 2m C 1 for all m 2 N, or equivalently, �q.Xm/ � V
.2mC1/
q .

Therefore, if q D qk for some k � 3 and m 2 N, since �q.Xm/ � V
.2mC1/
q and

dimH.�q.Xm// > � > 0, we have proved that dimH.V
.2mC1/
q / > � > 0.

Proof of part .2/:
We show that x@0 D �q.10

1/ 2 V
.@0/
q for all q 2 ¹qiº1iD3. Let q D qk for some

k � 3. Using (5.3), we know that

�q.10
1/ D �q.01

k01/: (5.4)

Since x@0 D 1=q, we know that f0.x@0/; f2.x@0/ 2 Iq but f1.x@0/ is not defined.
We count the number of orbits of f0.x@0/ and f2.x@0/. We have that f2.x@0/ D
�q.0

1/ so j�Eq .f2.x@0//j D 1. Equation (5.4) implies that f0.x@0/ D �q.1
k01/.

Hence, by Lemma 5.2, j�Eq .�q.1
k01//j D j�Eq .�q.10

1//j D j�Eq .x@0/j. There-
fore j�Eq .x@0/j D j�Eq .x@0/ [ �Eq .f2.x@0//j so �Eq .x@0/ is infinite. At each
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branching point of x@0 the maps fi 2 ¹f0; f1; f2º which satisfy fi .x@0/ 2 Iq are f0
and f2. These maps have the property that j�Eq .f0.x@0//j is infinite andˇ̌

�Eq .f2.x@0/
ˇ̌
D 1:

Recalling the definition from Subsection 4.1.3, we have that x@0 is a null infinite point
so j�Eq .x@0/j is countably infinite, that is x@0 2 V

.@0/
q .

We note that in general, the sets C2m for m 2 N are harder to understand because
the only points x 2 Iq for which it is possible that j�Eq .x/j D 2 are x 2 ¹ 1

q
; 1
q.q�1/

º.
Recalling that U is the set of q 2 .1; 2/ for which the base q expansion of 1 is unique,
we have the following theorem.

Theorem 5.5. C2 D U.

Proof. Let q 2 U. Then f0. 1q / D 1, f1. 1q / is not defined and f2. 1q / D 0, therefore
j�Eq .

1
q
/j D 2 and q 2 C2.

Let q 2 C2. If x 2 V
.2/
q then by Lemma 2.4 there is some unique finite sequence

.ij /
k
jD1 2 ¹0; 1; 2º

� such that .fij /
k
jD1.x/ 2 Jq . Moreover, we can observe that if

.fij /
k
jD1.x/ 2 J

ı
q then j�Eq .x/j � 3. Hence

.fij /
k
jD1.x/ 2 @Jq D

²
1

q
;

1

q.q � 1/

³
:

Without loss of generality, if we let .fij /
k
jD1.x/ D

1
q

, then Of0. 1q / D f0.
1
q
/ D 1 and

f2.
1
q
/ D 0. Since j�Eq .

1
q
/j D 2, we know that j�Eq .1/j D 1 so j� OEq .1/j D 1 and

q 2 U.
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