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Critical values for intermediate and box dimensions of
projections and other images of compact sets

Nicolas Angelini and Ursula Maria Molter

Abstract. Given a compact set E � Rd , we investigate for which values of m the equality
dim� PV .E/ D m or dim� PV .E/ D dim� E holds for 
d;m-almost all V 2 G.d; m/. Our
result extends to more general functions, including orthogonal projections and fractional Brow-
nian motion. As a particular case, when � D 1, the results apply to the box dimension.

1. Introduction

The variation of the dimension of a set with respect to its orthogonal projection onto
m-dimensional linear subspaces of Rd is a classical problem in geometric measure
theory, and there is a substantial body of results on this topic. Let G.d;m/ denote the
set of allm-dimensional subspaces of Rd . The question is: How is dimPV .E/ related
to dimE, where E � Rd , V 2 G.d; m/, and PV denotes the orthogonal projection
onto V ?

When dim represents the Hausdorff dimension, the problem has already been stud-
ied, yielding the result that if E � Rd is a Borel set and PV denotes the orthogonal
projection onto an m-dimensional linear subspace V with m � d , then

dimH PVE D min¹dimH E;mº (1.1)

for 
d;m-almost all V 2 G.d;m/. This result was first obtained by Marstrand [16] for
the case d D 2,mD 1 and later extended to Borel setsE �Rd , d � 2 by Mattila [17].

The lower and upper � -intermediate dimensions, dim� and dim� respectively,
form a continuous family of dimensions that interpolate between the Hausdorff and
the box dimensions of bounded sets in Rd . They satisfy, for all � 2 .0; 1�, the inequal-
ities dimH E � dim�E � dim�E � dimBE and dim�E � dimBE, with dim1E D

dimBE. For � D 1, we have dim1E D dimBE. These dimensions are continuous
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functions of � for all � 2 .0; 1�; however, in general, the � -intermediate dimension
does not converge to the Hausdorff dimension as � ! 0.

For box and � -intermediate dimensions, general results such as (1.1) do not hold.
Nevertheless, as shown in [6] for the box dimension and in [4] for � -intermediate
dimensions, for any fixed � 2 .0; 1�, the value of dim� PV .E/ remains invariant for

d;m-almost every V 2 G.d;m/. Recall that dim1 PV .E/ D dimB PV .E/.

These values of the intermediate dimension are referred to by the authors as the
(Upper or Lower) � -intermediate dimension profiles, and are denoted by dim

m

� and
dimm

� , respectively. In general, these profiles are difficult to work with.
When dealing with projections, the superscript m in the dimension profiles typi-

cally denotes an integer. However, in other contexts – as we will see – the superscript
may represent a real number. To distinguish between these cases, from now on we
use t for real numbers and m for integers when referring to dimension profiles.

The precise result obtained in [6] and [4] is:

Theorem 1.1. Let E � Rd be bounded. Then for all V 2 G.d;m/,

dim�PV .E/ � dimm
� E and dim�PV .E/ � dim

m

� E

for all � 2 .0; 1�, and for 
d;m-almost all V 2 G.d;m/,

dim�PV .E/ D dimm
� E and dim�PV .E/ D dim

m

� E.

The reader can also refer to [13] for additional results on � -intermediate dimen-
sions of projections.

In the present paper, we study for which values ofm, or under which conditions on
the set E, results analogous to Marstrand’s theorem can be obtained for intermediate
and box dimensions.

We introduce the notions of the upper and lower quasi-Hausdorff dimensions of a
set E, denoted by dimqHE and dimqHE, respectively, as

dimqHE WD lim
�!0

dim�E and dimqHE WD lim
�!0

dim�E:

This helps us make the statements and proofs of our results clearer and more straight-
forward.

We show that, given a compact set E � Rd and a positive integer m � d , the
almost sure value of the upper and lower intermediate dimensions of the orthogonal
projection onto an m-dimensional subspace satisfies

dimqHPVE D min¹m; dimqHEº for 
d;m-almost every V 2 G.d;m/;

and similarly,

dimqHPVE D min¹m; dimqHEº for 
d;m-almost every V 2 G.d;m/;
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see Theorem 3.1. From this, we deduce:

dimBPV .E/ D m for 
d;m-almost all V 2 G.d;m/ ” m � dimqHE;

and

dimBPV .E/ D m for 
d;m-almost all V 2 G.d;m/ ” m � dimqHE:

A direct consequence of Theorem 3.1 is that ifE satisfies dimBE D dimqHE, then

dimB.PVE/ D min¹m; dimBEº

for almost every V 2 G.d;m/.
Note that in [12, Corollary 1.3] the authors show that if dimBE D dimqAE, then

dimB.PVE/ D min¹dimBE;mº

for almost every V 2 G.d;m/.
Since by Theorem 3.9 we have that, dimBED dimqAE implies dimBED dimqHE;

and the converse is not necessarily true, the result proven in this paper is strictly more
general than the one in [12]. All the above statements remain valid if one replaces
the lower box dimension and the lower quasi-Hausdorff dimension with their upper
counterparts.

We also investigate for which values of m the intermediate dimension and the
intermediate dimension profiles coincide. We obtain a general lower bound for the
profiles in terms of the Assouad and Assouad dimension spectrum dim˛

A:

dim
t

�E � dim�E �max
®
0; dim˛

AE � t; .dimAE � t /.1 � ˛/
¯
;

for all ˛ 2 .0; 1/, which yields that if m � dimqA E, then for all � 2 .0; 1� we have
dim� E D dim� PVE. This result was previously known only in the case of the box
dimension.

Another known bound that we adapt to intermediate dimensions is the inequality:

dim
s

�E �
dim

t

�E

1C
�
1
s
�
1
t

�
dim

t

�E
;

and we demonstrate with a simple example that this inequality is sharp, with equality
holding for certain sets.

Since these profiles are also related to the dimensions of more general families of
functions – such as fractional Brownian motion, as shown in [3] – we can extend all
our results to such functions.

Theorem 3.1 and its corollaries provide genuinely new insights only in cases
where the intermediate dimensions of the set are not continuous at � D 0. To illustrate
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this point, we now present an example of a set for which our projection theorems yield
information that is not captured by existing results.

Example 1.2. Let n � 2. For each 1 � j < n, it is not difficult to construct a set
E � Rn such that

dimHE < j � dimqHE:

Indeed, let F1 � Rj be a set with j � 1 < dimH F1 D dimB F1 � j ; for instance, F1
could be a self-similar set. Define

F2 D
�
¹0º [

° 1

log.n/

±
n2N

�n�j
� Rn�j :

Then F2 is a countable set such that dim�F2 D dim�F2 D n � j for all � 2 .0; 1�.
Now define E D F1 � F2. Then

dimHE D dimH F1 � j < n � j C dimH F1 D dimqHE;

where the last equality follows from the product rule for intermediate dimensions (see
[1, Theorem 5.4]).

Therefore, by Theorem 3.1, we conclude that

dimqHPVE D dimqHPVE D j for 
n;j -almost every V 2 G.n; j /:

In contrast, Marstrand’s projection theorem gives

dimH PVE D dimHE < j for 
n;j -almost every V 2 G.n; j /:

2. Preliminaries

Throughout the whole document B.x; r/, r > 0 denotes the open ball in Rd with
center x and radius r . Given a non-empty set E � Rd , IE .x/ represents the indicator
function of E, i.e., IE .x/ D 1 if x 2 E and IE .x/ D 0 if x 62 E.

We write jEj for the diameter of the set, dimH E always represents the Hausdorff
dimension while dimBE and dimBE represents the upper and lower box dimension
respectively, see [5] for more information on these dimensions. G.d;m/ denotes the
manifold of allm dimensional linear sub-spaces of Rd and 
d;m the Haar measure on
G.d;m/, see Section 3 on [18] for more information. Given a compact set E � Rd

and V 2 G.d;m/, PV .E/ is the orthogonal projection of E onto V .
The � intermediate dimensions were introduced in [11] and are defined as follows.
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Definition 2.1. Let F � Rd be bounded, and let 0 � � � 1. We define the lower
� -intermediate dimension of F by

dim�F D inf
°
s � 0 W 8" > 0; and all ı0 > 0; there 90 < ı � ı0; and

¹Uiºi2I W F � [i2IUi W ı
1=�
� jUi j � ı and

X
i2I

jUi j
s
� "

±
:

Similarly, we define the upper � -intermediate dimension of F by

dim�F D inf
°
s � 0 W 8" > 0; there 9ı0 > 0; W 80 < ı � ı0; there 9

¹Uiºi2I W F � [i2IUi W ı
1=�
� jUi j � ı and

X
i2I

jUi j
s
� "

±
:

For all � 2 .0; 1� and a compact set A� Rd , we have dimH A � dim�A � dimBA

and similarly with the Lower case replacing dimB with dimB. This spectrum of dimen-
sions has the property of being continuous for � 2 .0; 1� with dim1E D dimBE

and dim1E D dimBE, leaving the natural question of the continuity in � D 0, i.e.,
lim�!0 dim�E D dimH E or lim�!0 dim�E D dimH E, as a problem to study. In
general, these equalities are not true. The reader can find more information in [11].

As mentioned in the introduction, we adopt a specific notation for the limiting case
of the intermediate dimension as the parameter � tends to 0. We define the following
quantities, which we refer to as the quasi-Hausdorff dimensions.

Definition 2.2. Let E � Rd be a non-empty bounded set. We define the lower quasi-
Hausdorff dimension and the upper quasi-Hausdorff dimension of E as

dimqHE WD lim
�!0

dim�E and dimqHE WD lim
�!0

dim�E:

If both limits coincide, we say that the quasi-Hausdorff dimension of E exists,
and we denote it by

dimqH E WD dimqHE D dimqHE:

There is also an equivalent definition of intermediate dimension. Working with it
is more beneficial to our objectives. For E � Rd bounded and non-empty, � 2 .0; 1�,
r > 0 and s 2 Œ0; d �, define

S sr;� .E/ D inf
²X

i

jUi j
s
W ¹Uiºi is a cover of E such that r � jUi j � r� for all i

³
:

Then, we have

dim�E D

�
the unique s 2 Œ0; d � such that lim inf

r!0

logS s
r;�
.E/

� log.r/
D 0

�
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and

dim�E D

�
the unique s 2 Œ0; d � such that lim sup

r!0

logS s
r;�
.E/

� log.r/
D 0

�
:

Furthermore, the next result holds.

Lemma 2.3 ([4, Lemma 2.1]). Let � 2 .0; 1� and E � Rd . For each 0 < r < 1,

�.s � t / �
logS s

r;�
.E/

� log.r/
�

logS t
r;�
.E/

� log.r/
� ��.s � t / .0 � t � s � d/:

Remark 2.4. Note that this implies that if lim infr!0
logSs

r;�
.E/

� log.r/ � 0 then s � dim�E,

and analogously, if lim supr!0
logSs

r;�
.E/

� log.r/ � 0 then s � dim�E.

Let E � Rd be a non-empty set and let Nr.E/ be the minimum number of sets
of diameter r that can cover E. The Assouad dimension of E is defined by

dimAE D inf
®
s W 9C > 0 such that 80 < r < R and

x 2 E;Nr
�
B.x;R/ \E

�
� C.R=r/s

¯
and the upper Assouad spectrum of E, for ˛ 2 .0; 1/ is defined by

dim
˛

AE D inf
®
t W 9C > 0 such that 80 < r � R1=˛ < R < 1 and

x 2 E;Nr
�
B.x;R/ \E

�
� C.R=r/t

¯
:

The upper Assouad spectrum is non-decreasing with respect to ˛. Finally, the quasi-
Assouad dimension, introduced in [15], is defined by

dimqAE D lim
˛!1

dim
˛

AE

and we have for ˛ 2 .0; 1/

dimBE � dim
˛

AE � dimqAE � dimAE:

For background on Assouad-type dimensions, the reader can refer to [14].
Given a compact set E � Rd and 1 � m � d , in [4] the lower and upper � - inter-

mediate dimension profile, dimm
� E and dim

m

� E respectively, were introduced in order
to denote the value of the � intermediate dimension (lower or upper, respectively) of
PV .E/, for 
d;m a.e. V 2 G.d;m/.

In fact, the next results holds.



Critical values for intermediate dimensions of projections 375

Theorem 2.5 ([4, Theorem 5.1]). LetE �Rd be bounded. Then, for all V 2G.d;m/

dim�PVE � dimm
� E and dim�PVE � dim

m

� E;

for all � 2 .0; 1�. Moreover, for 
d;m-almost all V 2 G.d;m/,

dim�PVE D dimm
� E and dim�PVE D dim

m

� E;

for all � 2 .0; 1�.

Theorem 2.6 ([3, Theorem 3.9]). Let E � Rd be compact, m 2 ¹1; : : : ; dº and 0 �
� � m, then

dimH
®
V 2 G.d;m/ W dim�PVE < dim

�

�E
¯
� m.d �m/ � .m � �/

and

dimH
®
V 2 G.d;m/ W dim�PVE < dim�

�E
¯
� m.d �m/ � .m � �/:

Results on the exceptional directions for the box dimension of projections of sets
were first obtained in [8]. Later, in [3], the � intermediate profile was generalized from
considering integers m to consider positive real numbers t > 0. These new possible
values turn out to appear for the case of the almost sure � intermediate dimension of
the image of the set E under the fractional Brownian motion.

We recall the definition of index�˛ fractional Brownian motion, which, following
the notation of [3], we denote byB˛ WRd!Rm for d;m2N;B˛D .B˛;1; : : : ;B˛;m/,
where B˛;i W Rd ! R for each i . They satisfy:

• B˛;i .0/ D 0;

• B˛;i is continuous with probability 1;

• the increments B˛;i .x/ � B˛;i .y/ are normally distributed with mean 0 and vari-
ance jx � yj2˛ for all x; y 2 Rd .

Moreover, B˛;i and B˛;j are independent for all i; j 2 ¹1; : : : ; mº.
The next result holds.

Theorem 2.7 ([3, Theorem 3.4]). Let � 2 .0;1�,m;d 2N,B˛ WRd !Rm be index-˛
fractional Brownian motion .0 < ˛ < 1/ andE �Rd be compact. Then almost surely

dim�B˛.E/ D
1

˛
dimm˛

� E and dim�B˛.E/ D
1

˛
dim

m˛

� E:

To define the intermediate dimension profiles, we first need to define the necessary
kernel functions.
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Definition 2.8. Let � 2 .0; 1�; t > 0; 0 � s � t and 0 < r < 1, define �s;t
r;�
.x/ by

�
s;t
r;�
.x/ D

8̂̂<̂
:̂
1 if 0 � jxj < r�
r
jxj

�s if r � jxj � r�

r�.t�s/Cs

jxjt
if r� � jxj

and

C
s;t
r;�
.E/ D

�
inf

�2M.E/

“
�
s;t
r;�
.x � y/d�.x/d�.y/

��1
where M.E/ denotes the set of probability measures supported on E.

The lower and upper � intermediate dimension profiles of a bounded set E � Rd

are defined as follows.

Definition 2.9. Let t > 0 and E � Rd . The lower intermediate dimension profile of
E is defined as

dimt
�E D

�
The unique s 2 Œ0; t � such that lim inf

r!0

logC s;t
r;�
.E/

� log r
D s

�
and the upper intermediate dimension profile of E is

dim
t

�E D

�
The unique s 2 Œ0; t � such that lim sup

r!0

logC s;t
r;�
.E/

� log r
D s

�
:

Remark 2.10. By [4, Lemma 3.2] and [3, Lemma 2.2], we have that

if 0 � lim inf
r!0

logC s;t
r;�
.E/

� log r
� s; then s � dimt

�E;

and

if 0 � lim sup
r!0

logC s;t
r;�
.E/

� log r
� s; then s � dim

t

�E:

Finally, we give a result that we need later.

Corollary 2.11 ([1, Corollary 3.14]). Let E � Rd bounded. Then

dim�E �
�ddimBE

d � .1 � �/dimBE
:

The same holds replacing dim� with dim� and dimB with dimB, respectively.
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Lemma 2.12 ([11, Proposition 2.3], [1, Lemma 5.2]). Let E be a compact subset of
Rd , let 0 < � � 1, and suppose 0 < s < dim�E. There exists a constant c > 0 such
that for all r 2 .0; 1/ we can find a Borel probability measure �r supported onE such
that for all x 2 Rd and r � ı � r� ,

�r
�
B.x; ı/

�
� cıs: (2.1)

Analogously, if 0 < s < dim�E, we have that there exists a constant c > 0 such that
for all r0 > 0 there exists r 2 .0; r0/ and a Borel probability measure �r supported
on E satisfying (2.1) for r � ı � r� and all x 2 Rd .

We finish the preliminaries by recalling another family of kernels Q�s
r;�

on Rd ,
defined for 0 < r < 1, � 2 Œ0; 1� and 0 < s � m in [4] and [10]

Q�sr;� D

8̂̂<̂
:̂
1 if jxj < r�
r
jxj

�s if r � jxj < r�

0 if r� � jxj:

These kernels are very important because they are useful in order to bound the
sums of the diameters of coverings. The next result holds.

Lemma 2.13 ([10, Lemma 2.1]). Let E � Rd be compact, � 2 .0; 1�, 0 < r < 1 and
0 � s � d and let � 2M.E/. Then

S sr;� .E/ � r
s
h“

Q�sr;� .x � y/d�.x/d�.y/
i�1

:

3. Results

Our first result is a version of Marstrand’s theorem for quasi-Hausdorff dimension.
If dim� E is continuous at � D 0, then our result recovers the classical Marstrand–
Mattila theorem. In general, however, we have

dimHE � dimqHE � dimqHE;

and these inequalities can be strict.

Theorem 3.1. Let E � Rd be a compact set and 0 � m � d . Then

min¹m; dimqHEº D dimqHPVE for 
d;m-almost all V 2 G.d;m/;

and

min¹m; dimqHEº D dimqHPVE for 
d;m-almost all V 2 G.d;m/:
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Proof. We prove the case of dim�E; the argument for dim�E is similar. We formulate
the proof in terms of intermediate dimension profiles. That is, we show that

min
®
m; lim

�!0
dim�E

¯
D lim
�!0

dimm
� E:

Recall that the intermediate dimension profile gives the almost sure value of the inter-
mediate dimension of orthogonal projections.

Since for all 0 � m � d , we have dimm
� E � m and dimm

� E � dim�E, it follows
that lim�!0 dimm

� E is always less than or equal to the left-hand side.
We now prove the reverse inequality. Assume, without loss of generality, that

jEj < 1.
Let d.E/ WD lim�!0 dim�E, and choose t < min¹m; d.E/º and " > 0 small

enough so that t C " < min¹m; d.E/º.
Then there exists �0 > 0 such that t C " < dim�E for all � 2 .0; �0/.
Let r > 0, � 2 .0; 1/, and choose �1 2 .0;min¹�; �0º/ such that jEj < r�1 .
Then, by Lemma 2.12, there exists a constant c > 0 and a probability measure �

supported on E such that
�
�
B.x; u/

�
� cutC" (3.1)

for all x 2 Rd and u 2 Œr; r�1 �.
Now, integrating the kernel �t;m

r;�
with respect to �, and using IA for the character-

istic function of the set A, we have�
C
t;m
r;�
.E/

��1
�

“
�
t;m
r;�
.x � y/d�.y/d�.x/

D

Z
�.B.x; r//d�.x/C r t

“
I.B.x;r� /nB.x;r//.y/

jx � yjt
d�.y/d�.x/

C r�.m�t/Ct
“

I.RdnB.x;r� //.y/

jx � yjm
d�.y/d�.x/

D S1 C S2 C S3:

By (3.1), we have S1 � cr tC" < cr t .
For S2, using a change of variables and again (3.1), we obtainZ

I.B.x;r� /nB.x;r//.y/

jx � yjt
d�.y/ D

Z
�

²
y W

I.B.x;r� /nB.x;r//.y/

jx � yjt
� u

³
du

D

Z 1=r�t

0

�
�
B.x; r� / n B.x; r/

�
duC

Z 1=rt

1=r�t
�

²
y W

1

jx � yjt
� u

³
du

� cr�" C t

Z r�

r

s�t�1�
�
B.x; s/

�
ds � cr�" C

ct

"
.r�" � r"/

< c C
ct

"
;
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and hence
S2 <

�
c C

ct

"

�
r t :

For S3, since jEj < r�1 and � is supported on E, we haveZ
I.RdnB.x;r� //.y/

jx � yjm
d�.y/

D

Z 1=r�m

0

�
�
B.x; u�1=m/ n B.x; r� /

�
du

�

Z 1=jE jm

0

1duC

Z 1=r�m

1=jE jm
�
�
B.x; u�1=m/

�
du

D jEj�m Cm

Z jE j
r�

s�m�1�
�
B.x; s/

�
ds

� jEj�m C cm

Z jE j
r�

stC"�m�1ds

D jEj�m C
cm

m � .t C "/
.r�.tC"�m/ � jEj�.tC"�m//

� jEj�m C
cm

m � .t C "/
r�.tC"�m/:

Therefore,

S3 � jEj
�mr�.m�t/Ct C

cm

m � .t C "/
r�"r t

�

�
jEj�m C

cm

m � .t C "/

�
r t :

Letting C D 3max¹c C ct
"
; jEj�m C cm

m�.tC"/
º, we obtain

�
C
t;m
r;�
.E/

��1
� Cr t which implies

logC t;m
r;�
.E/

� log r
� t �

logC
log r

for all r:

Taking the lim inf of both sides yields

t � dimm
� E:

Letting t ! min¹m; d.E/º completes the proof.

Theorem 3.2. Let E � Rd be compact, 0 < t < d , and � 2 .0; 1�. Then:

If dimt
�E D t , then t � dimqHE,

and

If dim
t

�E D t , then t � dimqHE.
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Proof. Let 0 < ˛ < 1 and 0 < m � d such that t D ˛m.
Let B˛ W Rd ! Rm be the index-˛ fractional Brownian motion. Then, using The-

orem 2.7, we have

m D dim�B˛.E/ � dimBB˛.E/ � m;

almost surely, and hence dimBB˛.E/Dm. Now, using Corollary 2.11, we obtain that
dim�B˛.E/ D dimBB˛.E/ D m for all � 2 .0; 1/. Using Theorem 2.7 again and the
fact that dims

�E � dim�E for all 0 � s � d , we have for all � 2 .0; 1/,

m D dim�B˛.E/ �
dim�E

˛
:

Letting � ! 0, we have
t D ˛m � lim

�!0
dim�E;

which completes the proof for dim� . The proof for the dim�E part is analogous.

We have the following corollary.

Corollary 3.3. Let E � Rd be compact, � 2 .0; 1�, and 0 < t < d . Then:

dimt
�E D t ” t � dimqHE

and
dim

t

�E D t ” t � dimqHE:

Proof. This corollary follows directly from the proof of Theorem 3.1, Theorem 3.2,
and the fact that lim�!0 dim

t

�E � dim
t

�E � t for all � , with the same holding when
replacing dim

t

� with dimt
� .

Using Theorem 2.5 and Theorem 2.7, we obtain the following results about orthog-
onal projections and fractional Brownian motion.

The following corollary was already proved in the case of compact sets whose
� -intermediate dimension is continuous at � D 0; see [4, Corollary 6.4]. Our result
improves upon this by extending it to general compact sets.

Corollary 3.4. Let E � Rd be compact and let 0 < m < d . Then:

dimBPV .E/ D m for 
d;m � almost all V 2 G.d;m/ ” m � dimqHE

and

dimBPV .E/ D m for 
d;m � almost all V 2 G.d;m/ ” m � dimqHE:

Proof. Combine Corollary 3.3 with Theorem 2.5.
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Corollary 3.5. Let E � Rd be compact, � 2 .0; 1�, 0 < m � d , and B˛ W Rd ! Rm

be an index-˛ fractional Brownian motion .0 < ˛ < 1/. Then:

dim�B˛.E/ D m almost surely ” ˛m � dimqHE

and
dim�B˛.E/ D m almost surely ” ˛m � dimqHE:

Proof. Combine Corollary 3.3 with Theorem 2.7.

Our next theorem is a lower bound for the � -intermediate dimension profile in
terms of the quasi-Assouad spectrum and the Assouad dimension of the set. This
result generalizes the result obtained in [12] for the upper and lower box dimensions.

Theorem 3.6. Let � 2 .0;1�, ˛ 2 .0;1/, andE �Rn be bounded. Then, if dimt
�E < t ,

we have

dimt
�E � dim�E �max

®
0; dim˛

AE � t; .dimAE � t /.1 � ˛/
¯
: (3.2)

And if dim
t

�E < t , we have

dim
t

�E � dim�E �max
®
0; dim˛

AE � t; .dimAE � t /.1 � ˛/
¯
:

Proof. If dim�E D 0, there is nothing to prove. If dim�E D dimBE � t for all � ,
then

dimt
�E � lim

�!0
dimt

�E D min
®
t; lim
�!0

dim�E
¯
D dimBE D dim�E;

and the result follows. If dim�E D dimBE > t for all � , then

dimt
�E � lim

�!0
dimt

�E D min
®
t; lim
�!0

dim�E
¯
D t;

which contradicts the hypothesis.
So, suppose that 0 < dim�E < dimBE.
Let A > dimA E and for ˛ 2 .0; 1/, let t ¤ dim˛

A E and let A˛ > dim˛
A E such

that A˛ ¤ t .
By definition, there exists a constant C > 0 such that for all 0 < r < R and x 2E,

Nr
�
B.x;R/ \E

�
� C

�R
r

�A
;

and for all 0 < r � R1=˛ < R and x 2 E,

Nr
�
B.x;R/ \E

�
� C

�R
r

�A˛
:



N. Angelini and U. M. Molter 382

Let � 2 .0; 1/, s < dim�E and s0 < s � max¹0; A˛ � t; .A � t /.1 � ˛/º. Note
that s0 < dim�E. For r 2 .0; 1/, let �sr be the Frostman measure of the set E for s of
Lemma 2.12.

Since �sr are probability measures supported on E, we have�
C
s0;t
r;�
.E/

��1
�

“
�
s0;t
r;�
.x � y/d�sr.y/d�

s
r.x/

D

Z
�sr
�
B.x; r/

�
d�sr.x/C r

s0
“

I.B.x;r� /nB.x;r//.y/

jx � yjs
0 d�sr.y/d�

s
r.x/

C r�.t�s
0/Cs0

“
I.RnnB.x;r� //.y/

jx � yjt
d�sr.y/d�

s
r.x/

D S1 C S2 C S3:

By the Frostman condition of �sr , we have S1 � crs < crs
0

.
For S2, by a change of variable u D t�1=s

0

, we haveZ
I.B.x;r� /nB.x;r//.y/

jx � yjs
0 d�sr.y/

D

Z
�sr

²
y W

I.B.x;r� /nB.x;r//.y/

jx � yjs
0 � t

³
dt

D

Z 1=r�s
0

0

�sr
�
B.x; r� / n B.x; r/

�
dt C

Z 1=rs
0

1=r�s
0
�sr

²
y W

1

jx � yjs
0 � t

³
dt

� cr�.s�s
0/
C

Z 1=rs
0

1=r�s
0
�sr
�
B.x; .1=t/1=s

0

/
�
dt

D cr�.s�s
0/
C s0

Z r�

r

u�s
0�1�sr

�
B.x; u/

�
du

� cr�.s�s
0/
C

cs0

s � s0
.r�.s�s

0/
� rs�s

0

/ < c C
cs0

s � s0
;

and then

S2 <
�
c C

cs0

s � s0

�
rs
0

:

For S3, we haveZ
I.RnnB.x;r� //.y/

jx � yjt
d�sr.y/ D

Z 1
0

�sr

²
y W

I.RnnB.x;r� //.y/

jx � yjt
� w

³
dw

D

Z r��t

0

�sr
�
B.x;w�1=t /

�
dw D t

Z 1
r�

u�t�1�sr
�
B.x; u/

�
du

D t

Z r˛�

r�
u�t�1�sr

�
B.x; u/

�
duC t

Z 1
r˛�

u�t�1�sr
�
B.x; u/

�
du

D S3;1 C S3;2:
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For S3;2, we have

t

Z 1
r˛�

u�t�1�sr
�
B.x; u/

�
du

D t

Z jE j
r˛�

u�t�1�sr
�
B.x; u/

�
duC t

Z 1
jE j

u�t�1�sr
�
B.x; u/

�
du

� t

Z 1
r˛�

u�t�1
� u
r�

�A˛
�sr
�
B.x; r� /

�
duC t

Z 1
jE j

u�t�1du

� t

Z jE j
r˛�

u�t�1
� u
r�

�A˛
�sr
�
B.x; r� /

�
duC jEj�t

� t

Z jE j
r�

u�t�1
� u
r�

�A˛
�sr
�
B.x; r� /

�
duC jEj�t

�
ct

A˛ � t
r�.s�A˛/

�
jEjA˛�t � r�.A˛�t/

�
C jEj�t

D
ct jEjA˛�t

A˛ � t
r�.s�A˛/ �

ct

A˛ � t
r .s�t/ C jEj�t :

For S3;1, first suppose that t ¤ A. Then,

t

Z r˛�

r�
u�t�1�sr

�
B.x; u/

�
du

� t

Z r˛�

r�
u�t�1

� u
r�

�A
�sr
�
B.x; r� /

�
du

�
ct

A � t
r�.s�A/

�
r˛�.A�t/ � r�.A�t/

�
D

ct

A � t
r�.s�A/C˛�.A�t/ �

ct

A � t
r�.s�t/;

and then

S3 � r
�.t�s0/Cs0

�
ct jE jA˛�t

A˛�t
r�.s�A˛/ C ct

A�t
r�.s�A/C˛�.A�t/

�
�
ct
A�t
C

ct
A˛�t

�
r�.s�t/ C jEj�t

�
D
�
ct jE jA˛�t

A˛�t

�
r�.s�.A˛�t/�s

0/rs
0

C
�
ct
A�t

�
r�.s�.1�˛/.A�t/�s

0/rs
0

�
�
ct
A�t
C

ct
A˛�t

�
r�.s�s

0/rs
0

C jEj�tr�.t�s
0/Cs0 :

So, by our choice of s0, we have

s � .A˛ � t / � s
0
� 0 and s � .1 � ˛/.A � t / � s0 � 0;

and there exists a constant C > 0 such that

S3 � Cr
s0 ;
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and then�
C
s0;t
r;�
.E/

��1
�

“
�
s0;t
r;�
.x � y/d�sr.x/d�

s
r.y/ �

�
1C c C

cs0

s � s0
C C

�
rs
0

:

This implies

lim inf
r!0

logC s
0;t
r;�
.E/

� log r
� s0 � 0;

and finally, using Remark 2.10,

dimt
�E � s

0:

Now, suppose that A D t . Then,

S3;1 D t

Z r˛�

r�
u�t�1�sr

�
B.x; u/

�
du � ct

Z r˛�

r�
u�t�1

� u
r�

�t
r�sdu

< �ct r�.s�t/� log.r/;

and since 1 � � log.r/ and proceeding as before,�
C
s0;t
r;�
.E/

��1
�

“
�
s0;t
r;�
.x � y/d�sr.x/d�

s
r.y/ � �C

0 log.r/rs
0

for some constant C 0 > 0 independent of r , which implies

lim inf
r!0

logC s
0;t
r;�
.E/

� log r
� s0 � lim inf

r!0

log.log.r//
log.r/

D 0:

As before, we conclude that
dimt

�E � s
0:

Finally, letting A˛ ! dim˛
AE, A! dimAE, and s ! dim�E, we obtain

dimt
�E > s0

for all s0 < dim�E �max¹0; dim˛
AE � t; .dimAE � t /.1 � ˛/, which implies that

dimt
�E � dim�E �max

®
0; dim˛

AE � t; .dimAE � t /.1 � ˛/
¯
: (3.3)

The case t D dim˛
AE follows from (3.3) and by the continuity in t of dimt

�E; see [3,
Corollary 3.8]. The second part of the theorem, concerning the upper � -intermediate
dimension, is similar.

The next corollaries are immediate consequences of the above theorem. The case
for � D 1 was already proved in [12, Corollary 1.3].
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Corollary 3.7. LetE�Rd be bounded and suppose that dimqAE �max¹m;dim�Eº.
Then,

dim�PVE D min¹m; dim�Eº;

for all � 2 .0; 1� and 
n;m-almost all V 2 G.n;m/. More generally,

dim�PVE � dim�E �max¹0; dimqAE �mº; (3.4)

for all � 2 .0; 1� and 
n;m-almost all V 2 G.n;m/. The same conclusion holds with
dim� replaced with dim� .

Proof. Let ˛ ! 1 in Theorem 3.6.

From Theorem 3.1, the following corollary is immediate.

Corollary 3.8. Let E � Rn be a bounded set such that dimBE D dimqHE. Then, for

n;m-almost every V 2 G.n;m/, we have

dimB.PVE/ D min¹m; dimBEº;

and similarly,
dimB.PVE/ D min¹m; dimBEº

whenever dimBE D dimqHE.

By [12, Corollary 1.3], we have that if dimBE D dimqA E, then dimBPVE D

min¹dimBE;mº for a.e. V 2G.d;m/, and the same holds for dimB. A natural question
is which hypothesis is more general: dimB E D dimqAE or dimB E D dimqH E.

In the following theorem, we prove that if dimBE D dimqA E, then dim�E D

dimBE, and if dimBE D dimqAE, then dim�E D dimBE for all � 2 .0; 1�. The con-
verse is not generally true; in fact, it is not hard to construct a Cantor set C � R such
that dimH C D dimBC < dimqA C . Therefore, Corollary 3.8 is more general than the
result obtained in [12].

Theorem 3.9. Let E � Rd be bounded. Then, if dimBE D dimqAE, we have

dim�E D dimBE 8� 2 .0; 1�;

and if dimBE D dimqAE, then

dim�E D dimBE 8� 2 .0; 1�:

Proof. We prove the first case. The case of dim� is analogous.
If dim�E D 0 for some � , then using Lemma 2.11, we have that the intermediate

dimension is constantly 0. So suppose that 0 < dim�E. By [2, Corollary 2.8], we have
that if dim�E D dimA E for some � , then the intermediate dimensions are constant
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and equal to the Assouad dimension. So we suppose that dim�E < dimA E for all
� 2 .0; 1�.

The idea of the proof is to integrate appropriate kernels Q�t
r;�

with respect to a
Frostman measure and show that this integral is bounded above.

Let 0 < � < 1 and r 2 .0; 1/. Suppose that dimBE D dimqA E. Then we have
dimBE D dim˛

A E for all ˛ 2 Œ0; 1�. Using the continuity of the intermediate dimen-
sions, choose � and ˛ sufficiently close to 1 such that dim�E � dimA E.1 � ˛/ > 0

and �dim�E � dim˛
AE.� � �/ > 0.

Now let d�; d� ;A˛;A�;A be such that 0 < d� < dim�E < A< dimAE, 0 < d� <
dim�E, 0 < A˛ < dim˛

AE, and 0 < A� < dim�
AE, and satisfies

0 < t WD min
²
d� � A.1 � ˛/

˛
;
�d� � A˛.� � �/

�

³
:

Note that t < d�. By the definition of the Assouad dimension and the Upper Assouad
spectrum, there exists C > 0 such that for all 0 < r < R < 1 and x 2 E,

Nr
�
B.x;R/ \E

�
� C

�R
r

�A
; (3.5)

and for all 0 < r � R1=˛ < R < 1 and x 2 E,

Nr
�
B.x;R/ \E

�
� C

�R
r

�A˛
; (3.6)

and finally, for all 0 < r � r1=� < R < 1 and x 2 E,

Nr
�
B.x;R/ \E

�
� C

�R
r

�A�
: (3.7)

Let �r be a Borel probability measure supported on E that satisfies the condition
that there exists C 0 > 0 such that

�r
�
B.x; ı/

�
� Cıd�

for all ı 2 Œr; r�� and x 2 Rd . We now integrate the kernels e�t
r;�

with respect to �r
and bound this integral essentially by r t�.���/.A��t/.

Then“
Q�tr;� .x � y/d�r.x/d�r.y/

D

“
�r
�
B.x; r/

�
d�r.x/C r

t

“
I.B.x;r� /nB.x;r//
jx � yjt

d�r.x/d�r.y/

D S1 C S2:
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By the Frostman condition of �r and since t < d�, we have

S1 � C
0rd� < C 0r t � C 0r t�.���/.A��t/:

For S2, we use inequality (3.7) and the Frostman condition on �r since t < d�.
We haveZ

I.B.x;r� /nB.x;r//
jx � yjt

d�r.y/

D

Z 1
0

�r

�²
y W

I.B.x;r� /nB.x;r//
jx � yjt

� u

³�
du

D

Z 1=r�t

0

�r
�
B.x; r� / n B.x; r/

�
duC

Z 1=rt

1=r�t
�r
�
B.x; u�1=t /

�
du

�

Z 1=r�t

0

�r
�
B.x; r� /

�
duC t

Z r�

r

u�1�t�r
�
B.x; u/

�
du

� C
�r�
r�

�A� Z 1=r�t

0

�r
�
B.x; r�/

�
duC t

Z r�

r

u�1�t�r
�
B.x; u/

�
du

� C 0C
�r�
r�

�A� Z 1=r�t

0

r�d�duC t

Z r�

r

u�1�t�r
�
B.x; u/

�
du

� C 0Cr .���/.t�A�/ C t

Z r�

r

u�1�t�r
�
B.x; u/

�
du:

To bound the last term of the sum, we partition the interval of integration I D .r; r� /
into three parts. One interval in which we can apply the Frostman condition of �r ,
and for the remaining two intervals, we utilize the properties of the quasi-Assouad
spectrum and Assouad dimension. Namely,

I D .r; r� / D .r; r�/ [ Œr�; r˛�/ [ Œr˛�; r� /:

Hence

t

Z r�

r

u�1�t�r
�
B.x; u/

�
du D S2;1 C S2;2 C S2;3:

Using the Frostman condition, it is immediate that

S2;1 �
t

d� � t
r�.d��t/ �

t

d� � t
:

For S2;2, we use inequality (3.5), the Frostman condition for �r , and the fact that
t �

d��A.1�˛/

˛
. We have

t

Z r˛�

r�
u�1�t�r

�
B.x; u/

�
du � Ct

Z r˛�

r�
u�1�t

� u
r�

�A
�r
�
B.x; r�/

�
du

�
CC 0t

A � t
r��.A�d�/r .˛�/.A�t/ �

CC 0t

A � t
:
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Finally, for S2;3, we need to use inequality (3.6) and the fact that t � �d��A˛.���/

�
to

obtain

t

Z r�

r˛�
u�1�t�r

�
B.x; u/

�
du �

CC 0t

A � t
:

Choosing M D 3max¹CC
0t

A�t
; t
d��t

; CC 0º, we have

S2 � r
tM.r .���/.t�A�/ C 1/ � 2Mr t�.���/.A��t/:

Therefore, “
Q�tr;� .x � y/d�r.x/d�r.y/ � 2Mr t�.���/.A��t/:

By Lemma 2.13, this implies r .���/.A��t/ � S t
r;�
.E/. Taking logarithms and let-

ting r ! 0, we have

.� � �/.t � A�/ � lim inf
r!0

logS t
r;�
.E/

� log r
:

Now, since by [4, Lemma 2.1] the right-hand side of the inequality is continuous in t ,
we can let ˛ ! 1, d� ! dim�E, and A� ! dim�

AE, obtaining

t D dimqAE �
dimqAE � dim�E

�
:

Finally, letting �! 1 and using the assumption that dimBE D dimqAE, we have

0 � lim inf
r!0

logSdimBE

r;�
.E/

� log r
;

which implies dimBE � dim�E, and the result follows.

Our last theorem is another lower bound for intermediate dimension profiles. This
lower bound generalizes the one obtained in [7, Proposition 2.12] for upper and box
dimension profiles, although the result in that reference is stated in a different form.
After rearranging the inequality presented there, one can recover a similar bound to
the one we obtain here for intermediate � -dimensions. The approach to the proof is
also closely related.

Theorem 3.10. Let E � Rd be bounded, � 2 .0; 1/, and t � s. Then,

dimt
�E �

dims
�E

1C
�
1
t
�
1
s

�
dims

�E

and

dim
t

�E �
dim

s

�E

1C
�
1
t
�
1
s

�
dim

s

�E
:



Critical values for intermediate dimensions of projections 389

Proof. This proof is inspired by the argument used in [7, Proposition 2.12], although
the details differ due to the generality of the intermediate dimension setting.

Let dt < dimt
�E. Then, we have

r�dt � C
dt ;t
r;�

(3.8)

for all sufficiently small r .

Let ds D
dt

1C .1
s
�
1
t
/dt

, r > 0, and let R � r be such that Rdt=ds D r , i.e.,

R D r
�sCds.1��/

�sCdt .1��
s
t / :

Let � be a Borel probability measure supported on E such thatZ
�
dt ;t
r;�

.x � y/d�.y/ D
�
C
dt ;t
r;�

.E/
��1 (3.9)

for �-almost all x. Now, by integrating, we get:Z
�
ds ;s
r;�

.x � y/d�.y/ � �
�
B.x;R/

�
C

Z
R�jx�yj�R�

rds

jx � yjds
d�.y/

C

Z
jx�yj>R�

r�.s�ds/Cds

jx � yjs
d�.y/

D S1 C S2 C S3:

For S1, using the definition of R, we obtain

�.B.x;R// � Rdt
�
R�dt

Z
�
dt ;t
R;�

.x � y/d�.y/
�

D rds
�
R�dt

Z
�
dt ;t
R;�

.x � y/d�.y/
�
: (3.10)

For S2, by Hölder’s inequality:Z
R�jx�yj�R�

rds

jx � yjds
d�.y/ � rds

�Z 1

jx � yjdt
d�.y/

�ds=dt
� rds

�
R�dt

Z
�
dt ;t
R;�

.x � y/d�.y/
�ds=dt

: (3.11)

Finally, for S3, again using Hölder:Z
jx�yj>R�

r�.s�ds/Cds

jx � yjs
d�.y/ � r�.s�ds/CdsR��s

�Z R�t

jx � yjt
d�.y/

�s=t
D rds

�
R�dt

Z
�
dt ;t
R;�

.x � y/d�.y/
�s=t

; (3.12)
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by our choice of ds .
Now, using (3.8), (3.9), and combining (3.10), (3.11), and (3.12), we get:�

C
ds ;s
r;�

.E/
��1
�

Z
�
ds ;s
r;�

.x � y/d�.y/ � 3rds

for all sufficiently small r . Hence,

lim inf
r!0

logC ds ;s
r;�

.E/

� log r
� ds � 0;

which implies

dims
�E � ds D

dt

1C
�
1
s
�
1
t

�
dt
:

The result follows by letting dt ! dimt
�E. The case of the upper intermediate

dimension profile is similar.

Remark 3.11. The lower bounds in the previous theorem are attained for some sets
E, as shown in the next example.

Let 0 < s � t � 1, Fp D ¹ 1np W n 2 Nº, and � 2 .0; 1/. By Theorem 1.1 in [9] and
Theorem 3.4 in [4], we have dims

�Fp D dim
s

�Fp D
s�
�Csp

for any s 2 .0; 1�. Therefore,
for s � t , we have

dims
�Fp

1C
�
1
t
�
1
s

�
dims

�Fp
D

s�

� C sp

�
1C

�1
t
�
1

s

� s�

� C sp

��1
D

� ts�

� C sp

�� t .� C sp/C s� � t�
� C sp

��1
D

t�

� C tp
D dimt

�FP :

Thus, the lower bound given in Theorem 3.10 is attained for this set.

Moreover, combining Theorem 3.10 and Corollary 3.7, we have for t � dimqAE,

dimt
�E �

dim�E

1C
�
1
t
�

1
dimqAE

�
dim�E

and

dim
t

�E �
dim�E

1C
�
1
t
�

1
dimqAE

�
dim�E

: (3.13)

One may wonder when does inequality (3.13) improve inequality (3.4) for sets E
such that 0 < dim�E < dimqAE and 0 < t < dimqAE, i.e., when is it true that

dim�E � .dimqAE � t / <
dim�E

1C
�
1
t
�

1
dimqAE

�
dim�E

� dim
t

�E ‹ (3.14)
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A direct algebraic manipulation of the last inequality implies that inequality (3.14)
holds if and only if

t2.dimqAE � dim�E/C t
�
2 dimqAEdim�E � .dim�E/

2
� .dimqAE/

2
�

C
�
dimqAE.dim�E/

2
� .dimqAE/

2dim�E
�
< 0:

But this is true if and only if

t2 � t .dimqAE � dim�E/ � dimqAEdim�E < 0:

This is a second-degree polynomial in t with zeros at t D �dim�E and t D dimqAE.
Therefore, for all t 2 .0; dimqA E/, the inequality (3.14) holds for all sets E with
0 < dim�E < dimqAE.

We finish this work with a simple corollary that improves Corollary 3.8 in [3].

Corollary 3.12. LetE �Rd be a bounded set and � 2 .0;1� a constant. The functions
f; g W .0; d/! Œ0; d � defined by

f .t/ D dimt
�E

and
g.t/ D dim

t

�E

are Lipschitz functions.

Proof. For all 0 < t � d , we have

dimt
�E � t: (3.15)

Now, using Theorem 3.10 and (3.15), we have for 0 < s � t ,

dimt
�E � dims

�E �
�dims

�Edimt
�E

st

�
.t � s/ � t � s:

Final remarks and broader applicability

Broader applicability

We chose to present our results for the case of orthogonal projections and fractional
Brownian motion. However, in [3], it is shown that the intermediate dimension profiles
also provide meaningful bounds for intermediate dimensions for a more general set
of functions.
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Definition 3.13. Let .�;F ; P / be a probability space, and let .!; x/ 7! f!.x/ be
a �.F �B/-measurable function, where B denotes the Borel � -algebra on Rd . Let
F1 D ¹f! W E ! Rm; ! 2 �º be a family of continuous functions, measurable with
respect to �.¹F �B W F 2 F ;B 2Bº/, that satisfies one of the following conditions:

(1) There exists a constant c > 0 such that for all x; y 2 E and r > 0,

P
�®
! W jf!.x/ � f!.y/j � r

¯�
� c�

m=
;m=


r
 ;�
.x � y/;

(2) For all ! 2 �, there exists a constant c! > 0 such that for all x; y 2 E,

jf!.x/ � f!.y/j � c! jx � yj
1=
 :

Therefore, all our results that involve intermediate dimension profiles could be
directly applied to this more general setting, since in [3, Theorems 3.1 and 3.3] it
is shown exactly how the intermediate dimension profiles control the dimension of
images under functions in the family F1.

To be more precise: Let E � Rd be compact, � 2 .0; 1�, 
 � 1, andm 2 N. If F1

satisfies condition (1), then for P -almost all ! 2 �, f! 2 F1 we have

dim�f!.E/ � 
dimm=


�
E and dim�f!.E/ � 
dim

m=


� E:

If F1 satisfies condition (2), then for all ! 2 �, f! 2 F1 we have

dim�f!.E/ � 
dimm=


�
E and dim�f!.E/ � 
dim

m=


� E:

Size of exceptional directions

We now include two corollaries that quantify the size of the set of exceptional direc-
tions where the projected dimension drops. These are direct consequences of our main
theorem combined with Theorem 2.6, and although the proofs are straightforward, we
believe they are of independent interest and help to clarify the scope of the results.

Corollary 3.14. Let E � Rd be compact and m � dimqAE. Then,

dimH
®
V 2 G.d;m/ W dim�PVE < dim�E

¯
� m.d �m/ � .m � dimqAE/

and

dimH
®
V 2 G.d;m/ W dim�PVE < dim�E

¯
� m.d �m/ � .m � dimqAE/:

Proof. Apply Corollary 3.7 in Theorem 2.6.
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Corollary 3.15. Let E � Rd be bounded, 1 � m � d , and � 2 .0; dimqHE/. Then,

dimH
®
V 2 G.d;m/ W dim�PVE < �

¯
� m.d �m/ � .m � �/;

and if � 2 .0; dimqHE/, then

dimH
®
V 2 G.d;m/ W dim�PVE < �

¯
� m.d �m/ � .m � �/:

Proof. Apply Corollary 3.3 in Theorem 2.6.
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