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Projected images of the Sierpinski tetrahedron and other
layered fractal imaginary cubes

Hideki Tsuiki

Abstract. The Sierpinski tetrahedron has a remarkable property: It is projected to squares in
three orthogonal directions, and moreover, to sets with positive Lebesgue measures in numerous
directions. This paper proposes a method for characterizing directions along which the Sierpin-
ski tetrahedron and other similar fractal 3D objects are projected to sets with positive measures.
We apply this methodology to layered fractal imaginary cubes and achieve a comprehensive
characterization for them. Layered fractal imaginary cubes are defined as attractors of iterated
function systems with layered structures, and they are projected to squares in three orthogonal
directions. Within this class, the Sierpinski tetrahedron, T-fractal, and H-fractal stand out as
exemplary cases.

1. Introduction

The Sierpinski tetrahedron (i.e., three-dimensional Sierpinski gasket) is a three-
dimensional fractal object defined as the attractor of the iterated function system
(IFS) ¹fd .x/ D

xCd
2
j d 2 DSº where DS � R3 is the set of four vertices of a

regular tetrahedron. That is, it is the unique non-empty compact set S1 satisfying
S1 D [d2DSfd .S1/ that exists due to the theory of self-similar fractals by Hutchin-
son [7]. See Figure 5(a) for the first levels of its approximations.

The Sierpinski tetrahedron exhibits a remarkable property: when projected along
the three orthogonal directions that connect the midpoints of opposite edges, it forms
squares, as illustrated in Figure 1(a). Moreover, as demonstrated in Figure 1(b), pro-
jections along numerous other directions result in sets with positive Lebesgue mea-
sures that tile the plane. This paper aims to characterize the specific directions along
which the Sierpinski tetrahedron, as well as other similar fractal 3D objects, are pro-
jected to sets with positive measures.

As an initial observation, the IFS defining the Sierpinski tetrahedron does not
incorporate rotational transformations, and as a consequence, its projected images are
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(a) (b)

Figure 1. Projected images of the Sierpinski tetrahedron.

also fractals generated by similar IFSs. More precisely, we denote by F n.k; D/ the
fractal generated by the IFS ¹fd .x/ D

xCd
k
j d 2 Dº for a set of points D � Rn

called the digit set. Then, the Sierpinski tetrahedron is denoted by F 3.2;DS/ and its
image by a projection ' is represented as F 2.2; '.DS//. In general, one can see that
a 3D fractal F 3.k;D/ is projected by ' to a 2D fractal F 2.k; '.D//. Therefore, we
restrict our attention to fractal objects of the form F 3.k;D/ so that we can apply the
theory of fractals on their projected images.

Among such fractals, we focus on cases where the digit set is defined as

Dk;l D
®
.x; y; z/ 2 Z3 j 0 � x; y; z � k � 1; x C y C z � l � 1 mod k

¯
for integers k � 2 and 0 � l < k

2
. We call the induced fractal object F 3.k; Dk;l/ a

layered fractal imaginary cube of degree k. As we are going to see, it is an imaginary
cube [18, 19], that is, it is projected to squares along three orthogonal directions just
as a cube. We call it layered because the digit set is arranged on parallel planes. D2;0
is the set of vertices of a regular tetrahedron. Therefore, we can choose DS D D2;0

and the Sierpinski tetrahedron is the only layered fractal imaginary cube of degree 2.
There are two layered fractal imaginary cubes of degree 3: F 3.3;D3;0/ that we call
the T-fractal, and F 3.3; D3;1/ that we call the H-fractal ([17, 19], see Figure 5(b,
c)). The convex hull of the T-fractal is the octahedron T in Figure 3(b), which is the
convex hull of D3;0

2
. Similarly, the convex hull of the H-fractal is the dodecahedron H

in Figure 3(c), which is the convex hull of D3;1

2
.

The H-fractal is distinguished by its six-fold symmetry, whereas other layered
fractal imaginary cubes exhibit three-fold symmetries. Our main theorem (Theorem 3)
reflects this difference of symmetries: Except for the H-fractal, a layered fractal imag-
inary cube of degree k is projected to a set with positive measure if and only if the
projection is done along .a; b; c/ for coprime integers a; b; c such that a C b C c
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is coprime to k, and the H-fractal has additional directions that correspond to extra
symmetries.

We study measures of projected images through the theory of self-affine tiles.
Positively measured fractals of the form F 2.k; D/ with jDj D k2 are special cases
of self-affine tiles, which have been the subject of extensive study since the 1990s
[1–3, 5, 8, 11, 14, 16, 21, 22]. For recent developments in self-affine tiles, refer to [13].
Kenyon demonstrated in [8] that for a four-point set D D ¹O;P;Q;Rº, the fractal
F 2.2; D/ has positive Lebesgue measure if and only if r EOR D p EOP C q EOQ for
odd integers p; q; r . This result leads to a characterization of positively measured
projections of the Sierpinski tetrahedron, which is consistent with the characteriza-
tion provided by Theorem 3. By extending Kenyon’s proof concepts and utilizing
the notion of projection of differenced radix expansion sets, we present a method for
characterizing directions along which fractal objects are projected to sets with positive
Lebesgue measures. Then, we apply it to layered fractal imaginary cubes.

Kenyon also studied one-dimensional projections of the one-dimensional Sier-
pinski Gasket in [9], characterizing the directions along which it is projected to sets
with positive Lebesgue measures. Our work provides similar characterization for two-
dimensional projections of a series of three-dimensional fractal objects.

In the next section, we introduce the concept of layered fractal imaginary cubes
and explain our results in Section 3. Section 4 provides an overview of the prop-
erties of self-affine tiles relevant to our analysis and propose our method. Using this
methodology, the results in Section 3 are proved in Section 5. In Section 6, we discuss
the case of projections of non-layered imaginary cubes. In Section 6, we also explore
fractal imaginary “squares”, and explain its relation to Kenyon’s work on projections
of the one-dimensional Sierpinski gasket.

2. Layered fractal imaginary cubes

We start by introducing the notion of imaginary cubes, introduced and developed in
[17–19].

Definition 1. An imaginary cube is an object that is projected to squares in three
orthogonal directions, and in each of these projected squares, the four edges are par-
allel to the other two projection directions.

Note that a regular octahedron also has square projections in three orthogonal direc-
tions, but it is not an imaginary cube. An imaginary cube is contained in a cube C
defined by the three square projections. When it is necessary to specify C , we say
that it is an imaginary cube of a cube C .
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(a) Regular tetrahedron (b) T (c) H

Figure 2. Examples of imaginary cubes.

(a) Regular tetrahedron (b) T (c) H

Figure 3. Objects in Figure 2 located in unit cubes.

A regular tetrahedron is an example of an imaginary cube. There are two more
polyhedral imaginary cubes that are relevant to this paper: triangular antiprismoid
imaginary cube (abbreviated as T) and hexagonal bipyramid imaginary cube (abbre-
viated as H). They are defined in Figure 2, and cubes of which they are imaginary
cubes are illustrated in Figure 3. T and H exhibit remarkable properties: H is a double
imaginary cube in that it is an imaginary cube of two different cubes and thus, it has
six square projections. T is notable in that its three diagonals are orthogonal to each
other. Furthermore, T and H together form a three-dimensional tiling of the space as
explained in [18].

These three imaginary cubes – the regular tetrahedron, H and T – share the com-
mon property of being convex hulls of fractal imaginary cubes. According to Hutchin-
son [7], for contractions fi W Rn ! Rn .i D 1; : : : ; m/, an IFS (iterated function
system) I D ¹fi j i D 1; 2; : : : ;mº defines a self-similar fractal object FI as the fixed
point of the following contraction map on the metric space Hn of non-empty compact
subsets of Rn,

F.X/ D

m[
iD1

fi .X/:
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For any A 2 Hn, the sequence .Ai /i�0 where A0 D A and AiC1 D F.Ai / for i � 0
converges to FI and F.FI / D FI .

In this article, we only consider the case when an IFS takes the form°
fd .x/ D

x C d

k
j d 2 D

±
for some integer k � 2 and some set D � Rn called the digit set. That is, the compo-
nents are similarity maps that do not perform rotational transformations. In this case,
the map F can be expressed as

F.X/ D
X CD

k

where C denotes the Minkowski sum X C Y D ¹x C y j x 2 X; y 2 Y º and X
k

denotes ¹x
k
j x 2 Xº. We denote the induced fractal object as F n.k;D/ or F .k;D/

if the dimension is not important.
With this restriction, the image of the fractal F 3.k; D/ by a projection ' is a

two-dimensional fractal F 2.k; '.D//. To ensure that F 2.k; '.D// has a positive
Lebesgue measure, it is necessary that its Hausdorff dimension is equal to 2. On the
other hand, Hausdorff dimension cannot exceed the similarity dimension logkjDj of
the iterated function system. In this paper, we focus on the case where jDj D k2, rep-
resenting fractals with the minimum number of IFS components. We call F 3.k; D/

under the condition jDj D k2 a “homothetic fractal imaginary cube” of degree k, or
simply a “fractal imaginary cubes” of degree k, because all the fractal and imaginary
cube objects discussed in this paper conform to this form.

Lemma 1 ([17]). Let D be a three-dimensional digit set of cardinality k2. F 3.k;D/

is a fractal imaginary cube of degree k if and only if, for some cube C , F.C/ for
F.X/ D XCD

k
is an imaginary cube of C .

Proof. If F 3.k;D/ is an imaginary cube, then there is a cube C of which F 3.k;D/

is an imaginary cube. Since fd .x/ D
xCd
k

fixes d
k�1

, d
k�1

for d 2 D are contained
in F 3.k;D/ � C . Since fd .x/ is on the line segment between x and d

k�1
and C is

convex, F.C/ � C . Since, in addition, X � Y implies F.X/ � F.Y /, the sequence
.Ai /i�0 forA0DC andAiC1DF.Ai / forms a decreasing sequenceC DA0 �A1 �
A2 � � � � whose intersection is F 3.k; D/. Therefore, Ai are all imaginary cubes of
C because C and F 3.k; D/ have the same three square projections. In particular,
A1 D F.C/ is an imaginary cube of C .

Conversely, for a cube C , suppose that F.C/ is an imaginary cube of C . Let
.Ai /i�0 be the sequence defined as A0 D C and AiC1 D F.Ai / and ' be a projection
to a square S along an edge of C . We show by induction that Ai (i D 0; 1; : : :) are
all projected to S by '. First, we have '.A0/ D S . Suppose that '.Ai / D S . Since
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(1,1,1)

(a) D2;0 (b) D3;0 (c) D3;1

Figure 4. The arrangements of cubes by (a)D2;0, (b)D3;0, and (c)D3;1, which generate S1,
T1, and H1, respectively. Points in Dk;l

k�1
are marked with red circles.

'.Ai /D '.C /, we have '.fd .Ai //D '.fd .C //. Hence, both AiC1 D [d2Dfd .Ai /

and A1 D [d2Dfd .C / are projected by ' to the same set, which is S because A1 is
an imaginary cube of C . Thus, Ai (i D 0; 1; : : :) are all projected by ' to S . Then,
F 3.k;D/ is also projected to S because projection ' is a continuous map from H3

to H2.

If F.C/ is an imaginary cube, then it is a union of k2 cubes selected from the k3

cubes obtained by cutting C into k � k � k small cubes so that they do not overlap
when viewed from the three face-directions of C . Such a selection exists correspond-
ing to a Latin square of size k, which is a k � k matrix of ¹0; 1; 2; : : : ; k � 1º with
each number appearing exactly once in each row and column.

When k D 2, there are two such arrangements of 4 cubes but they are congru-
ent (Figure 4(a)), and therefore, there is only one fractal imaginary cube of degree 2.
When kD 3, there are two arrangements of 9 cubes modulo congruence as depicted in
Figure 4(b) and (c), and therefore there exist two fractal imaginary cubes of degree 3,
which we investigate later. For k� 4, there exist 36 fractal imaginary cubes of degree 4,
and 3482 fractal imaginary cubes of degree 5, modulo congruence [17]. Since the digit
sets of fractal imaginary cubes of degree k correspond to Latin squares of size k and
it is demonstrated in [20] that the number of Latin squares of size k is lower bounded
by .kŠ/2k

kk2 , the number of fractal imaginary cubes increases rapidly with k.
Among them, there is a class of digit sets with a uniform structure. For integers

k � 2 and 0 � l < k
2

, we define the digit set Dk;l as

Dk;l D
®
.x; y; z/ 2 Z3 j 0 � x; y; z � k � 1; x C y C z � l � 1 mod k

¯
:

For the unit cube C , CCDk;l

k
is a union of k2 cubes that form an imaginary cube.

Therefore, by Lemma 1, F .k; Dk;l/ is a fractal imaginary cube, which we call a
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layered fractal imaginary cube. Though Dk;l can be defined for 0 � l < k, Dk;l
and Dk;k�l�1 are congruent and thus, we only consider 0 � l < k

2
. The set Dk;0 is

contained in the union of two planes xC yC zD�1 and xC yC zD k � 1, whereas
Dk;l for 0 < l < k

2
is contained in the union of three planes: x C y C z D l � 1,

x C y C z D k C l � 1 and x C y C z D 2k C l � 1. In this paper, we investigate
the projections of layered fractal imaginary cubes and conclude with a discussion on
projections of fractal imaginary cubes in the final section.

In a fractal imaginary cube F .k;D/, the set of fixed points of components of the
IFS is D

k�1
, which is necessarily contained in F .k;D/. On the other hand, for P the

polyhedron obtained as the convex hull of D
k�1

, P � F .k;D/ because

P � F.P / � F
�
F
�
.P /

��
� � � �

forms a decreasing sequence whose intersection is F .k;D/, as we proved for a cube
C containing F .k;D/ in Lemma 1. Thus, we have the following:

Lemma 2. The convex hull of F .k;D/ is the polyhedron obtained as the convex hull
of D

k�1
.

In Figure 4(a), the points ofD2;0 are marked with red circles, whose convex hull is
a regular tetrahedron. Since it is the convex hull of the fractal F .2;D2;0/, F .2;D2;0/

is the Sierpinski tetrahedron which we denote by S1.
ForD3;0 andD3;1, the sets of the fixed points of the IFS components are D3;0

2
and

D3;1

2
, respectively, as indicated by red circles in Figure 4(b) and (c). The convex hulls

of these sets are imaginary cubes T and H, respectively. Therefore, F .3; D3;0/ and
F .3;D3;1/ are fractal imaginary cubes with their convex hulls being T and H, respec-
tively. These fractals are denoted by T1 and H1, respectively. Figure 5 illustrates the
first two iterations of approximations of S1, T1, H1 starting from their convex hulls.
We define the shapes of T1 and H1 as T-fractal and H-fractal, respectively.

Note that only the H-fractal exhibits six-fold symmetry and is a double imaginary
cube, whereas the other layered fractal imaginary cubes exhibit three-fold symmetry
along the vector (1,1,1). This extra symmetry of the H-fractal leads to different type of
characterization of projections that yields images with positive measure in Theorem 3.

3. Main results

In this section, we state our results about projected images of layered fractal imaginary
cubes. As noted, projected images of layered fractal imaginary cubes also possess
fractal structures. The Appendix contains photographs of 3D printed models of three
representative layered fractal imaginary cubes: Sierpinski tetrahedron, T-fractal, and
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(a)

(b)

(c)

Figure 5. The first two approximations of (a) S1, (b) T1, and (c) H1.

H-fractal, casting shadows under sunlight from typical directions. We have marked
with red frames those photographs that show shadows with positive measures even
when the models were perfect mathematical representations.

Some of the positively measured images of layered fractal imaginary cubes are
depicted in Figure 6. In addition to these images, all layered fractal imaginary cubes
have square projections along the three orthogonal vectors .1; 0; 0/; .0; 1; 0/ and
.0; 0; 1/ as imaginary cubes. Furthermore, H1, being a double imaginary cube, is
projected to squares also along vectors .�1; 2; 2/; .2;�1; 2/, and .2; 2;�1/, obtained
by rotating the above three vectors 180 degrees around the axis .1; 1; 1/.

We now present our main theorem, which characterizes the directions along which
layered fractal imaginary cubes are cast into images with positive Lebesgue measures.
We call a vector .a; b; c/ 2 R3 such that a; b; c are coprime integers a coprime vector.

Theorem 3. Let k � 2 and 0 � l < k
2

. F .k;Dk;l/ is projected to a set with positive
Lebesgue measure if and only if the projection is done along a coprime vector .a;b; c/
such that

(a) aC b C c is coprime to k (when .k; l/ ¤ .3; 1/);

(b) a C b C c is coprime to 3 or a � b � �aCbCc
3
6� 0 .mod 3/ (when .k; l/ D

.3; 1/, i.e., F .k;Dk;l/ D H1).
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(a) S1, .1; 1; 1/ (b) T1, .1; 1;�1/ (c) H1, .1; 1;�1/ and
.1; 1;�5/

(d) S1, .1; 2; 0/ (e) T1, .1; 1; 0/ (f) H1, .1; 1; 0/ and .1; 1; 4/

(g) F.4;D4;0/; .1;1; 1/ (h) F .4;D4;1/, .1; 1; 1/ (i) F .5;D5;2/, .1; 1; 1/

Figure 6. Projected images of layered fractal imaginary cubes.

Note that a � b � �aCbCc
3

.mod 3/ implies a � b � c .mod 3/. Note also that
the “only if” part of this theorem says that if (1) projection is done along a coprime
vector .a; b; c/ that does not meet the conditions (a) and (b) or (2) any pair among
a; b and c forms an irrational ratio, then the projected image is a null set.

According to Theorem 3(a), the fractals S1 and T1 are projected to sets with
positive Lebesgue measures if aC b C c is not a multiple of 2 and 3, respectively. As
a special case of this theorem, we have:

Corollary 4. The projected image of F .k;Dk;l/ along the vector .1; 1; 1/ has a pos-
itive measure if and only if k is not a multiple of 3.
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Note 1: Since all the layered fractal imaginary cubes exhibit three-fold symmetry
around the axis x D y D z, their projected images along (1,1,1) also inherit this three-
fold symmetry as well. Refer to Figure 6(a), (g), (h), and (i), as well as to the pictures
in the Appendix showing shadows cast along (1, 1, 1). Among them, the projected
image of H1, known as the hexaflake fractal, exhibits six-fold symmetry. More gen-
erally, six-fold symmetry appears in images of F .k;Dk;k�1

2
/ for each odd number k.

See Figure 6(i) for an example with k D 5. This fact is implied by the hexagonal
arrangement of the projected image of Dk;l along .1; 1; 1/.

Note 2: Theorem 3 also says that if the projection is parallel to the plane xC yC z D
0, then the image of F .k; Dk;l/ is a null set for every k and l . Refer to the picture
of the projected images of S1, H1, and T1 along .1; 1;�2/ in the Appendix. One
can easily see that if .k; l/ is not .2; 0/ nor .3; 1/, then such a projected image is
contained in a union of parallel lines. In particular, for the case of projection of T1
along .1; 1;�2/, the image is a union of line segments arranged according to the
Cantor set.

As stated in Theorem 3(b), the directions along which H1 is projected to sets with
positive measures are divided into two disjoint sets. The first one is the same as that
of T1 and the second one is obtained by rotating the first one by 180 degrees around
the axis .1; 1; 1/. We first show this fact.

Lemma 5. An integer vector .a; b; c/ such that 3 − a C b C c is rotated by a 180-
degree rotation around the axis .1; 1; 1/ to 1

3
.˛; ˇ; 
/ for integers ˛; ˇ; 
 satisfying

˛ � ˇ � �˛CˇC

3
6� 0 .mod 3/, and vice versa.

Proof. Since the vectors 1
3
.�1; 2; 2/, 1

3
.2;�1; 2/ and 1

3
.2; 2;�1/ are obtained by

rotating the vectors .1; 0; 0/, .0; 1; 0/ and .0; 0; 1/ respectively, we define

.˛; ˇ; 
/ D a.�1; 2; 2/C b.2;�1; 2/C c.2; 2;�1/

for a; b; c 2 R. We aim to show that a; b; c are integers such that 3 − aC b C c if and
only if ˛; ˇ; 
 are integers such that ˛ � ˇ � �˛CˇC


3
6� 0 .mod 3/.

If aC bC c � 1 .mod 3/, then ˛C ˇC 
 D 3.aC bC c/� 3 .mod 9/ and thus
˛CˇC


3
� 1 .mod 3/. Since ˛ D 2.aC bC c/� 3a, it follows that ˛ � �1 .mod 3/.

Similarly, ˇ also satisfies ˇ � �1 .mod 3/. In the case when aC b C c � �1 .mod
3/, we have ˛ C ˇ C 
 � �3 .mod 9/ and therefore ˛CˇC


3
� �1 .mod 3/ and

˛ � ˇ � 1 .mod 3/.
Conversely, if ˛ � ˇ � �˛CˇC


3
6� 0 .mod 3/, then a C b C c D ˛CˇC


3
6�

0 .mod 3/. The number a D 1
9
.�˛C 2ˇC 2
/ D 1

3
.2˛CˇC


3
� ˛/ is an integer, and

similarly for b and c.
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D02;0:

0 1

0

1

z = 0

0 1

0

1

z = 1

D03;1:

0 1 2

0

1

2

z = −1

0 1 2

0

1

2

z = 0

0 1 2

0

1

2

z = 1

D03;0:

0 1 2

0

1

2

z = 0

0 1 2

0

1

2

z = 1

D04;1:

0 1 2 3

0

1

2

3

z = 1

0 1 2 3

0

1

2

3

z = 0

0 1 2 3

0

1

2

3

z = 1

D05;2:

0 1 2 3 4

0

1

2

3

4

z = −1

0 1 2 3 4

0

1

2

3

4

z = 0

0 1 2 3 4

0

1

2

3

4

z = 1

Figure 7. The digit sets D0
2;0

, D0
3;0

, D0
3;1

, D0
4;1

, and D0
5;2

.

We prove Theorem 3 via affine-transformed images. We consider the affine trans-
formation

 k;l.x; y; z/ D
�
x; y;

x C y C z � l C 1

k
� 1

�
:

It translates the digit set Dk;l to D0
k;l
D  k;l.Dk;l/, which is

D0k;l D
®
.x; y; z/ 2 Z3 j 0 � x; y � k � 1; .z D �1 ^ x C y � l � 1/_

.z D 0 ^ l � x C y � k C l � 1/_

.z D 1 ^ k C l � x C y/
¯
:

Figure 7 depicts digit sets D0
k;l

for some k and l . Note that, D0
k;l

is on the union of
three planes z D �1; z D 0 and z D 1 if l > 0, and on the union of two planes z D 0
and z D 1 if l D 0. We denote by S01, T01, H01 the fractals F .2;D02;0/, F .3;D03;0/,
F .3;D03;1/, respectively.

Instead of Theorem 3, we consider the following theorem, which is proved in
Section 5.

Theorem 6. Let k � 2 and 0 � l < k
2

. F .k;D0
k;l
/ is projected to a set with positive

Lebesgue measure if and only if the projection is done along a coprime vector .a;b; c/
such that

(a) a � b � 0 .mod k/ (when .k; l/ ¤ .3; 1/);



H. Tsuiki 314

(b) a � b � 0 .mod 3/ or a � b � �c .mod 3/ (when .k; l/ D .3; 1/, that is
F .k;D0

k;l
/ D H01).

We show the equivalence of Theorem 6 and Theorem 3.

Proof (Equivalence of Theorem 6 and Theorem 3). Because D0
k;l

is an affine image
ofDk;l by k;l , F .k;Dk;l/ is projected along .a;b;c/ to a set with positive measure if
and only if F .k;D0

k;l
/ is projected along  k;l.a; b; c/� k;l.0; 0; 0/D .a; b; aCbCck

/

to a set with positive measure.

Case (a) .k; l/ ¤ .3; 1/. We show the following two things. (˛): If .a; b; c/ is a
coprime vector such that k and a C b C c are coprime, then for some number j ,
.p; q; r/ D j.a; b; aCbCc

k
/ is a coprime vector such that p � q � 0 .mod k/. (ˇ): If

.p;q; r/ is a coprime vector such that p� q� 0 .mod k/, then for somem, .a;b;c/D
m.p; q; kr � p � q/ is a coprime vector such that k and a C b C c are coprime.
Statement (˛) holds for j D k and (ˇ) holds for m D 1

k
because r 6� 0 .mod k/.

Case (b) .k; l/D .3;1/. In addition to (a), one can easily see that .a;b; c/ is a coprime
vector such that a� b��aCbCc

3
6� 0 .mod 3/ if and only if .p;q; r/D .a;b; aCbCc

3
/

is a coprime vector such that p � q � �r .mod 3/.

Theorem 3 characterized projections by fixing the arrangement of the fractal and
specifying the direction of the projection. One can also express the characterization
as a property of the projected image as follows.

Corollary 7. Let d D 1
k�1

, x D ld , and y D 1 � d . On the projected image X of
F .k;Dk;l/, consider the four points O, P, Q, and R that are the images of .x; y; d/,
.x C d; y; 0/, .x; y C d; 0/, and .x C d; y C d; 1/, which are elements of Dk;l

k�1
and

thus belong to F .k; Dk;l/. The set X has a positive measure if and only if r EOR D
p EOPC q EOQ for coprime integers p; q; r such that

(a) p � q � r 6� 0 .mod k/ (when .k; l/ ¤ .3; 1/),

(b) p � q � r 6� 0 .mod k/ or p � q � �r 6� 0 .mod k/ (when .k; l/ D .3; 1/,
i.e., F .k;Dk;l/ D H1).

Proof. Because affine transformations preserve the property r EORD p EOPC q EOQ, we
show it for X a projected image of F .k;D0

k;l
/ and O, P, Q, R the images of .x; y; 0/,

.x C d; y; 0/, .x; y C d; 0/, .x C d; y C d; 1/. If the projection is parallel to the xy-
plane, thenX is a null set and r EORD p EOPC q EOQ does not hold for r ¤ 0. Therefore,
the statement holds for this case.

If not, we can assume that the projection is along .a; b; c/ for c > 0 to the xy-
plane and r > 0. Then, the points O, P, Q, R are .x; y/, .x C d; y/, .x; y C d/,
.xC d � ad

c
;yC d � bd

c
/, and r EORDp EOPC q EOQ means 1� a

c
D

p
r

and 1� b
c
D

q
r

.
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One can see that when a; b; c and p; q; r are coprime integers, a � b � 0 .mod k/ if
and only if p� q� r 6� 0 .mod k/ because pD c � a, qD c � b, r D c. One can also
see that when kD 3, a� b��c .mod k/ if and only if p� q��r 6� 0 .mod k/.

The following result by Kenyon that appeared as [8, Theorem 14] can be derived
as a corollary since an arbitrary non-colinear four-point set D � R2 can be affinely
transformed to

D0 D
®
.0; 0/; .1; 0/; .0; 1/; .x; y/

¯
(3.1)

for some x; y 2 R, that is a projected image of the digit set D02;0 along the vector
.1 � x; 1 � y; 1/.

Corollary 8. Let D D ¹O; P;Q;Rº � R2 be a non-colinear four-point set. Then
F 2.2; D/ has a positive Lebesgue measure if and only if r EOR D p EOP C q EOQ for
odd integers p; q, and r .

4. Differenced radix expansion sets

As stated in the introduction, fractals of the form F 2.k; D/ with positive Lebesgue
measure are special cases of self-affine tiles. A self-affine tile is defined as a compact
set T in Rn with positive Lebesgue measure, satisfying A.T / D [d2D.T C d/ for
an expansive matrix A and a digit set D � Rn with cardinality jdet.A/j, and such a
tile is usually denoted by T .A;D/. Therefore, F 2.k;D/ for jDj D k2 with positive
measure is T .A;D/ for

A D

 
k 0

0 k

!
:

Characterization of pairs .A; D/ that generate self-affine tiles was studied by
Bandt [1], Kenyon [8], Lagarias and Wang [11], and others. In our study, we use
the following characterization in [11]. Here, we state it only for self-affine tiles that
have the form F n.k;D/.

Theorem 9 ([11, Theorem 1.1]). Let k � 2, D � Rn be a set of cardinality kn and
0 2 D. The following four conditions are equivalent.

(1) F n.k;D/ has positive Lebesgue measure.

(2) F n.k;D/ has non-empty interior.

(3) F n.k;D/ is the closure of its interior, and its boundary has Lebesgue measure
zero.
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(4) For each t � 1, all the .k;D/-expansions of length t designate distinct points in
En.k;D; t/, and En.k;D/ is a uniformly discrete set, i.e., there exists ı > 0 such
that for any distinct elements x;x0 in En.k;D/, jx � x0j > ı.

Here, .k; D/-expansion, En.k; D; t/ � Rn, and En.k; D/ � Rn are defined as
follows. A sequence .di /0�i<t for di 2 D is a .k; D/-expansion of x 2 Rn if x is
expressed as x D

Pt�1
iD0 k

idi . En.k;D; t/ � Rn is the set of points that have .k;D/-
expansions of length t . It is inductively defined as

En.k;D; 1/ D D ;

En.k;D; t/ D kEn.k;D; t � 1/CD .t > 1/;

and we have En.k;D; 1/ � En.k;D; 2/ � � � �. Finally, the expansion set En.k;D/ �

Rn is defined as

En.k;D/ D

1[
tD1

En.k;D; t/ :

In En.k; D/, we omit n if the dimension is not important. Since 0 2 D, E.k; D/

satisfies

E.k;D/ D kE.k;D/CD : (4.1)

A digit set all of whose vectors have integer components is called an integral digit set.

Corollary 10 ([11, Corollary 1.1]). LetD � Zn be an integral digit set of cardinality
kn and 0 2 D. If D forms a complete residue system of Zn=kZn, then F .k;D/ has
a positive Lebesgue measure.

Proof. We use Theorem 9 (4)! (1). Suppose that D forms a complete residue sys-
tem of Zn=kZn. En.k; D/ is a uniformly discrete set because D is an integral digit
set. If two .k; D/-expansions .di /i<t and .ei /i<t designate the same point, that isPt�1
iD0 k

idi D
Pt�1
iD0 k

iei , then k.
Pt�1
iD1 k

i�1.di � ei //C .d0 � e0/ D 0 and there-
fore, d0 � e0 2 kZn which implies d0 D e0. We can inductively show that di D ei

for 0 � i < t .

An integral digit set satisfying the condition of Corollary 10 is called a standard
digit set [10]. It is known that every standard digit set D gives rise to a set F .k;D/

that tiles Rn with a lattice tiling [12]. With this corollary, one can derive the “if” part
of Theorem 6. That is,

Lemma 11. Let a;b; c be coprime integers. F 3.k;D0
k;l
/ is projected along the vector

.a; b; c/ to a set with positive Lebesgue measure if:

(a) a � b � 0 .mod k/ (when .k; l/ ¤ .3; 1/);
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(b) a � b � 0 .mod 3/ or a � b � �c .mod 3/ (when .k; l/ D .3; 1/).

Proof. We consider the following two-dimensional digit setD0
k;l
a;b;c
�Z2 that is the

projection of cD0
k;l

along .a; b; c/.

D0k;l
a;b;c
D
®
.cx C a; cy C b/ j x; y 2 Z; 0 � x; y � k � 1; x C y � l � 1

¯
[
®
.cx; cy/ j x; y 2 Z; 0 � x; y � k � 1; l � x C y � k C l � 1

¯
[
®
.cx � a; cy � b/ j x; y 2 Z; 0 � x; y � k � 1; k C l � x C y

¯
:

If a � b � 0 .mod k/, then D0
k;l
a;b;c is congruent to

D00 D
®
.cx; cy/ j x; y 2 Z; 0 � x; y � k � 1

¯
modulo kZ2. Because a; b; c are coprime and a � b � 0 .mod k/, c is coprime to k.
Therefore, D00 is a complete residue system of Z2=kZ2.

If .k; l/ D .3; 1/, then

D0k;l
a;b;c
D
®
.a; b/

¯
[
�
¹0; 1; 2º2 n

®
.0; 0/; .2c; 2c/

¯�
[
®
.2c � a; 2c � b/

¯
:

It is congruent to ¹0; 1; 2º2 modulo 3Z2 in both cases a � b � �c � 1 .mod 3/ and
a � b � �c � �1 .mod 3/.

For an integral digit set D � Zn, a differenced digit set �.D/ is the digit set

�.D/ D D C .�D/ D
®
x � y j x;y 2 D

¯
and differenced radix expansion set is the set En.k;�.D//. Note that 0 2 �.D/ even
if 0 62 D. Differenced radix expansion sets are important tools for investigating tiling
properties of self-affine tiles [8, 11].

To establish the “only if” part of Theorem 6, we need to prove the following two
assertions:

1 If coprime vector .a;b;c/ fails to meet the conditions specified in the theorem,
then the projected image of F .k;D0

k;l
/ is a null set.

2 If any pair among a;b and c forms an irrational ratio, then the projected image
of F .k;D0

k;l
/ is a null set.

To achieve them, we use Theorem 9 (1) ! (4), which provides two pathways for
establishing that a fractal is a null set: by identifying distinct .k;D/-expansions for a
single point, used to prove assertion 1; and by showing that E.k;'.D// lacks uniform
discreteness, used to prove assertion 2.
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For assertion 1, the existence of distinct .k;D/-expansions of length t for a single
point means the presence of different sequences .di /0�i<t and .ei /0�i<t from D,
satisfying the equation

t�1X
iD0

kidi D

t�1X
iD0

kiei ;

or equivalently,
t�1X
iD0

ki .di � ei / D 0:

This indicates that 0 has a .k; �.D//-expansion different from the trivial expansion
.0/0�i<t . Therefore, one can infer that F .k;D/ is a null set by analyzing the differ-
enced radix expansions of the zero vector.

Kenyon’s proof of Corollary 8, as presented in [8], employed this framework.
Though it was formulated within the two-dimensional setting, Kenyon’s reasoning can
be interpreted as considering the digit set (3.1) as a projection of a three-dimensional
digit set and deriving properties of two-dimensional differenced radix expansion sets
through the analysis of their three-dimensional counterparts. In the following, we for-
malize this idea as a methodology for analyzing projected images of fractals of the
form F 3.k;D/.

Let 02 and 03 denote the two and three dimensional zero vectors, respectively. For
a three-dimensional digit set D � R3 and a projection ', we have

�
�
'.D/

�
D '

�
�.D/

�
:

In addition,
E2
�
k; '.D/

�
D '

�
E3.k;D/

�
holds. Therefore, we have

E2
�
k;�

�
'.D/

��
D '

�
E3
�
k;�.D/

��
:

Thus, any .k;�.'.D///-expansion of 02 is obtained as a projection of a .k;�.D//-
expansion of an element in '�1.02/. It means that one can show that F 2.k; '.D// is
a null set by showing that '�1.02/\ E3.k;�.D// contains an element other than 03,
or 03 itself has an .k;�.D//-expansion other than the trivial expansion .03/0�i<t . If
' is a projection along .a; b; c/, then '�1.02/ D ¹.ja; jb; jc/ j j 2 Rº. Therefore,
we have the following theorem. Note that E2.k; '.D// is always a uniformly discrete
set for an integral digit set D 2 Z3 and a projection ' along an integral vector.

Theorem 12. LetD �Z3 be an integral digit set of cardinality k2, a;b; c be coprime
integers and ' be a projection along .a; b; c/. F 3.k;D/ is projected to a null set by
' if and only if .ja; jb; jc/ 2 E3.k; �.D// for some j ¤ 0 or 03 has a .k; �.D//-
expansion other than those of the form .03/0�i<t .
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This theorem allows us to study the directions along which F 3.k;D/ is projected
to null sets by analyzing the shape of the three-dimensional differenced radix expan-
sion set E3.k;�.D//. Also for assertion 2, the analysis of E3.k;�.D// proves useful.

Lemma 13. F 3.k; D/ is projected to a null set by a projection ' if, for all ı > 0,
there exists y 2 E3.k;�.D// such that 0 < j'.y/j � ı.

Proof. We show that E2.k;'.D// is not uniformly discrete and apply Theorem 9. For
E2.k; '.D// not to be uniformly discrete means

8ı > 0 9x;x0 2 E2
�
k; '.D/

�
such that jx � x0j � ı ^ x ¤ x0

,8ı > 0 9x 2 E2
�
k;�

�
'.D/

��
such that 0 < jxj � ı

,8ı > 0 9x 2 '
�
E3
�
k;�.D/

��
such that 0 < jxj � ı

,8ı > 0 9y 2 E3
�
k;�.D/

�
such that 0 < j'.y/j � ı

Though Theorem 12 and Lemma 13 are applicable to any integral digit set D, the
structure of E3.k;�.D// appears to be complicated in general, making it challenging
to derive useful results directly from them. This is why we focus our analysis on
layered fractal imaginary cubes F 3.k;Dk;l/ and introduce affine-transformed fractal
objects F 3.k;D0

k;l
/. In the next section, we analyze the structure of E3.k;�.D0

k;l
//

to derive the “only if” parts of Theorem 6.

5. Proofs of the main theorem

We prove the “only if” part of Theorem 6. We first consider the case of S1 D
F .2;D02;0/, for which we have a simplified proof. Subsequently, we present a proof
applicable to F .k;D0

k;l
/ in general.

5.1. Sierpinski tetrahedron case

We analyze the projected images of S01 by examining the structure of E.2;�.D02;0//.
For a subset A � Z3 and an integer z, we use the notation Az to represent the slice
¹.x; y/ j .x; y; z/ 2 Aº. We simplify notation by introducing � as a shorthand for
�.D02;0/ and E as a shorthand for E.2; �.D02;0//. The differenced digit set � is
decomposed into slices as follows:

�1 D
®
.x; y/ j x; y � 1 ^ x C y � 1

¯
;

�0 D
®
.x; y/ j jxj; jyj; jx C yj � 1

¯
;

��1 D
®
.x; y/ j x; y � �1 ^ x C y � �1

¯
:



H. Tsuiki 320

−1 0 1

−1

0

1

z = −1

−1 0 1

−1

0

1

z = 0

−1 0 1

−1

0

1

z = 1

Figure 8. The differenced digit set �.D0
2;0
/.
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Figure 9. Points in E.2;�.D0
2;0
// for �2 � x; y � 9, 0 � z � 4 are represented by blue and

orange filled circles. Among them, points in 2E.2; �.D0
2;0
// have black borders and transla-

tions of �.D0
2;0
/ by .0; 0; 0/, .2; 6; 0/ and .6; 2; 2/ are colored orange.

These sets are depicted in Figure 8. By equation (4.1), the slices of the differenced
radix expansion set E satisfies the followings:

E2n D 2En C�0 ; (5.1)

E2nC1 D 2EnC1 C��1 [ 2En C�1 : (5.2)

Some parts of E are calculated and depicted in Figure 9. Note that it is not an inductive
definition because E0 depends on E0, and E1 depends on E0 and E1. Note also that
equation (5.2) has the form of the union of two sets, which makes the analysis of the
structure of E complicated. Contrary to this, we will see in Lemma 14 below that E

has a rather simple form. To show this, we define the set C � Z3 as follows:

B D 2Z2 ;

C0 D Z2 ;

C2mc D Z2 n 2mB .m � 0; c is odd/:

Lemma 14. E D C .

Proof. E � C is demonstrated by proving that for all t , E.2; �; t/ � C holds by
induction on t , that is straightforward and we omit it. C � E is demonstrated by
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proving
8x 2 Z3;x 2 C ) x 2 E

through well-founded induction on jxj, where j.x; y; z/j D jxj C jyj C jzj. It holds
for the case jxj D 0 because 03 2 C and 03 2 E . For x D .x; y; z/ 2 C satisfying
jxj > 0, we define x0 2 C such that x 2 2x0 C� as follows.

Case z D 0 (Refer to column z D 0 of Figure 9). If .x; y/ 2 �0, we set x0 D 03. If
.x; y/ 62 �0, the family of sets ¹2.x0; y0/C�0 j .x0; y0/ 2 Z2º covers Z2. Therefore,
we can choose x0 D .x0; y0; 0/ 2 Z2 � ¹0º � C such that .x; y/ 2 2.x0; y0/C�0.

Case z D 1 (Refer to column z D 1 of Figure 9). The family ¹2.x0; y0/ C �1 j
.x0; y0/ 2 Z2º covers Z2 n B D C1 without overlaps. Therefore, we set x0 to be the
unique vector .x0; y0; 0/ such that we have .x; y/ 2 2.x0; y0/C�1.

Case z D �1. Similar.

Case z is even and z¤ 0 (Refer to column zD 2 of Figure 9). If y and z are even, then
we set x0 D .x=2; y=2; z=2/ 2 C . Otherwise, the family ¹2.x0; y0/C�0 j .x0; y0/ 2
Z2º double covers Z2 n B . On the other hand, the family ¹2.x0; y0/C�0 j .x0; y0/ 2
Bº is disjoint. Therefore,®

2.x0; y0/C�0 j .x
0; y0/ 2 Z2 n B

¯
covers Z2 n B . Thus, we can choose x0 D .x0; y0; z=2/ 2 C such that

.x; y/ 2 2.x0; y0/C�0:

Case z is odd and jzj ¤ 1 (Refer to column zD 3 of Figure 9). In this case, .x;y/ 62B .
The family®

2.x0; y0/C�1 j .x
0; y0/ 2 Z2

¯
[
®
2.x0; y0/C��1 j .x

0; y0/ 2 Z2
¯

is a double cover for Z2 n B . On the other hand, the family®
2.x0; y0/C�1 j .x

0; y0/ 2 B
¯
[
®
2.x0; y0/C��1 j .x

0; y0/ 2 B
¯

is disjoint. Therefore, the family®
2.x0; y0/C�1 j .x

0; y0/ 2 Z2 n B
¯
[
®
2.x0; y0/C��1 j .x

0; y0/ 2 Z2 n B
¯

covers Z2 n B . Since Cz0 � Z2 n B for z0 D z�1
2

and z0 D zC1
2

, we can choose
x0 D .x0; y0; z�1

2
/ 2 C such that .x; y/ 2 2.x0; y0/C�1 or x0 D .x0; y0; zC1

2
/ 2 C

such that .x; y/ 2 2.x0; y0/C��1.
One can see that in all the cases, jx0j< jxj. Therefore, x0 2E by induction hypoth-

esis. Thus, x 2 2x0 C� � 2E C� D E .
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Note: As this proof illustrates, formulating a .2; �/-expansion for a given vector
.x; y; z/ 2 C would become complex. This complexity necessitates a case analysis
based on congruence modulo 4 for both x and y coordinates when z is odd.

Now, we prove the “only if” part of Theorem 6 for the case k D 2; l D 0.

Lemma 15. If .a; b; c/ is a coprime vector such that either a or b is an odd number,
then S01 is projected along .a; b; c/ to a null set.

Proof. By Lemma 14, we know that .a; b; c/ 2 E . Thus, the statement follows from
Theorem 12 with j D 1.

Lemma 16. If any pair among a; b and c forms an irrational ratio, then S01 is pro-
jected along the vector .a; b; c/ to a null set.

Proof. In the case where c D 0, let ' be the projection along .a; b; c/. Since '
maps the three points .0; 0; 0/, .1; 0; 0/, and .0; 1; 0/ 2 D02;0 onto the same line,
E.2; '.D02;0// is not uniformly discrete. The statement follows from Theorem 9.

Suppose that c ¤ 0. Let u D a
c

and v D b
c

. We consider the projection ' along
.a; b; c/ to the xy-plane, whose image is F .2;D

u;v
S / for

D
u;v
S D

®
.0; 0/; .1; 0/; .0; 1/; .1 � u; 1 � v/

¯
:

Let bxc and ¹xº be the integer and fractional parts of x 2R, respectively. For arbi-
trary j , j'.bjuc;bjvc; j /j D j'.ju� ¹juº; jv � ¹jvº; j /j D j.¹juº; ¹jvº/j because
'.u; v; 1/ D 0. We show the following claim and apply Lemma 13.

Claim. For all ı > 0, there exists j 2 2Z such that�
bjuc; bjvc; j

�
2 E ^ 0 < j

�
¹juº; ¹jvº

�
j < ı:

We first consider the case when u is irrational and v D p
q

is rational. The set
¹¹j 0uº j j 0 2 qZº is a dense subset of Œ0; 1�. Therefore, there exists some j 0 such
that 0 < ¹j 0uº � 1

2
< ı

2
and ¹j 0vº D 0. Since 0 < 2¹j 0uº � 1 < ı, we obtain that

0 < 2.j 0u� bj 0uc/� 1 < ı. Thus, for j D 2j 0, 0 < ju � 2bj 0uc � 1 < ı. It means
that bjuc D 2bj 0uc C 1 and 0 < ¹juº < ı, and therefore .bjuc; bjvc; j / 2 C and
0 < j.¹juº; ¹jvº/j < ı. If u and v are both irrational, we have a similar argument
starting with a dense subset ¹.¹j 0uº; ¹j 0vº/ j j 0 2 Zº of Œ0; 1�2 and choosing j 0 such
that 0 < ¹j 0uº � 1

2
< ı

4
and 0 < ¹j 0vº � 1

2
< ı

4
.

5.2. The general case

We proceed with the proof of the “only if” part of Theorem 6 for all cases 2 � k
and 0 � l < k

2
, including the specific instances of T01 D F .3; D03;0/ and H01 D
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F .3;D03;1/. In this subsection, we fix k and l and denote�.D0
k;l
/ and E.k;�.D0

k;l
//

as � and E , respectively. Note that, though we simplify our notation by omitting
parameters k and l , these sets, along with others introduced subsequently such as B ,
B 0,G.m/,G0.m/ and A.m/, depend on the chosen values of k and l . Slices of� have
the following forms. Here, ��2 and �2 are empty sets when l D 0.

�2 D
®
.x; y/ 2 Z3 j jxj; jyj � k � 1; k C 1 � x C y

¯
.when l > 0/

�1 D
®
.x; y/ 2 Z3 j l � k C 2 � x; y � k � 1; 1 � x C y � 2k � l � 2

¯
�0 D

®
.x; y/ 2 Z3 j jxj; jyj � k � 1; jx C yj � k � 1

¯
��1 D

®
.x; y/ 2 Z3 j 1 � k � x; y � k � l � 2; �2k C l C 2 � x C y � �1

¯
��2 D

®
.x; y/ 2 Z3 j jxj; jyj � k � 1; x C y � �k � 1

¯
.when l > 0/

These sets are depicted in Figure 10 for the cases .k; l/ D .3; 0/, .3; 1/, .4; 1/ and
.5; 2/. In these and subsequent figures, the elementary vectors .1; 0/ and .1

2
;
p
3
2
/

are used to demonstrate their three-fold symmetries after the corresponding linear
transformation. We sometimes use the hexagonal norm on R2 defined as

H.x; y/ D max
�
jxj; jyj; jx C yj

�
: (5.3)

For every k and l , �0 is the set of points in the disk of radius k � 1 with this norm,
that is a regular hexagon with these elementary vectors. Refer to z D 0 column of
Figure 10.

If .k; l/ is not .3; 1/ nor .4; 1/, the following relation holds by equation (4.1).

EknCi D kEn C�i .i D �2;�1; 0; 1; 2/

When .k; l/ D .4; 1/, �2 and ��2 are not empty and knC 2 D k.nC 1/ � 2 holds.
Therefore, in this case,

E4nCi D 4En C�i .i D �1; 0; 1/;

E4nC2 D 4En C�2 [ 4EnC1 C��2 :

Overlaps also occur when .k; l/ D .3; 1/, and we have

E3n�1 D 3En C��1 [ 3En�1 C�2 ; (5.4)

E3n D 3En C�0 ;

E3nC1 D 3En C�1 [ 3EnC1 C��2 :

The structures of E for k > 2 are quite complicated and one could not easily
characterize them as we did for the case .k; l/ D .2; 0/. However, for the following
proof, we only use the slices Ekm.kn�1/ for m; n � 0, that have rather simple and
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Figure 10. The differenced digit sets �.D0
3;0
/, �.D0

3;1
/, �.D0

4;1
/ and �.D0

5;2
/. In this and

the following pictures, the elementary vectors .1; 0/ and .1
2
;
p

3
2
/ are used to demonstrate their

three-fold symmetries.

uniform structure as we see in Lemma 19. Ez for z D 0; 1; k � 1; k; .k � 1/k are
depicted in Figure 11 for the cases .k; l/ is .3; 0/, .3; 1/, and .5; 2/.

In Lemma 19, we express Ekm.kn�1/ using the setsB ,B 0, andA.m/ (mD 0;1; : : :)
defined below. The sets B and B 0 are defined as follows:

B D

²
kZ2

�
.k; l/ ¤ .3; 1/

�
kZ2 [ kZ2 C .1; 1/

�
.k; l/ D .3; 1/

�
B 0 D

²
kZ2

�
.k; l/ ¤ .3; 1/

�
kZ2 [ kZ2 C .�1;�1/

�
.k; l/ D .3; 1/

�
As we are going to see, B is the complement of E1 and B 0 is the complement of E�1.
Thus, for a visual representation of B , refer to the z D 1 column in Figure 11. We
have
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Figure 11. Slices at 0; 1; k � 1; k; k.k � 1/ of E.3; �.D0
3;0
//, E.3; �.D0

3;1
//, and

E.5; �.D0
5;2
//. In the first two lines of figures, points in 3E have black borders and x C �

for some x 2 3E are colored orange.

Lemma 17. (1) kZ2 C�1 D Z2 n B 0.

(2) kZ2 C��1 D Z2 n B .

Proof. (1) When .k; l/¤ .3; 1/, the set�1 is congruent to ¹0;1; : : : ; k � 1º2 n ¹.0; 0/º
modulo kZ2. When .k; l/D .3;1/,�1 is equal to ¹0;1;2º2 n ¹.0;0/; .2;2/º. The proof
of (2) is similar.

The sets A.m/.m D 0; 1; : : :/ are defined as follows:

G.m/ D
®
.x; y/ 2 Z2 j x; y � 0 ^ x C y � �kmC1

¯
G0.m/ D

°
.x; y/ 2 Z2 j x; y � �

.k C 1/km

2
^ x C y � �

.k � 1/km

2

±
A.m/ D

²
G.m/ .except for the followings/
G.m/ [G0.m/ .k is odd and l D k�1

2
/

A.m/ represents the void around the origin in Ekm.kn�1/ for any n> 0. In the third and
fifth columns of Figure 11,A.0/ andA.1/ appear as void spaces around the origin, for
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the cases of .k; l/ being .3; 0/, .3; 1/, and .5; 2/. Please note that the central “island”
within these voids, observable in the case of .k; l/ D .3; 1/, should be disregarded.

Key properties of A.m/ are given in Lemma 18. For that purpose, we introduce
some notations:

V D
®
.0; 0/; .�k; 0/; .0;�k/

¯
E D

®
.�1; 1/; .0; 1/; .1; 0/; .1;�1/; .0;�1/; .�1; 0/

¯
N .X/ D .X CE/ nX

E is on the unit circle with respect to the hexagonal norm (5.3), and N .X/ denotes
the set of points in the outer boundary layer of X , i.e., each located one unit away
from the nearest point in X with respect to the hexagonal norm.

Lemma 18. (1)
®
.0; 0/

¯
D �0 n .kE C�0/.

(2) A.0/ D
�
��1 n .kE C��1/

�
[ V .

(3) A.mC 1/ D
�
kA.m/C�0

�
n
�
kN

�
A.m/

�
C�0

�
.

Proof. (1) Easily checked.
(2) We prove A.0/D.��1 [ V /n.kE C��1/. The six copies, ¹kx C��1 jx 2 Eº,
of ��1 collectively create a void space around .0; 0/. We show that it coincides with
A.0/. Considering that��1 possesses a hexagonal or triangular outline, the void typ-
ically manifests as a “star-like” or a triangular configuration. For l � k

2
� 1, the edges

of k.�1;1/C��1 and k.0;1/C��1 merge, forming a continuous edge. This pattern
of connection repeats symmetrically for the pairs (k.1; 0/C ��1, k.1;�1/C ��1)
and (k.0;�1/ C ��1, k.�1; 0/ C ��1), yielding a triangular void represented by
G.0/. Refer to z D 2 slice of E.3;�.D03;0// in Figure 11 for an example. The other
case l > k

2
� 1 is exactly the case k is odd and l D k�1

2
because k

2
> l . Under these cir-

cumstances, each of the aforementioned edge pairs exhibits a single-point separation,
culminating in a “star-like” formation identified as G.0/ [G0.0/. Refer to z D 2 and
4 slices of E.3;�.D03;1// and E.5;�.D05;2//, respectively, in Figure 11 for examples.

(3) We examine the structure of the void space around .0; 0/ formed by the set
¹kx C�0 j x 2 N .A.m//º, where each copy of �0 is placed k units away from one
another and from the outer edge of the set kA.m/ with respect to the hexagonal norm.
It is important to note that �0 is larger than ��1, resulting in no gaps between edges
of adjacent elements as observed in (2). Consequently, this arrangement preserves the
overall shape of kA.m/, effectively creating what we identify as A.m C 1/. Refer
to the z D 6 slices of E.3; �.D03;0// and E.3; �.D03;1//, and the z D 20 slice of
E.5;�.D05;2// in Figure 11 for examples.

With these preparations, we show the necessary properties of some of the slices
of E .
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Lemma 19. (1) E0 D Z2.

(2) Ekn D Z2 n knB 0 for n � 0.

(3) Ekm.kn�1/ � Z2 n kmB n .kmCnB 0 C A.m// for m � 0, n > 0.

Proof. (1) Adopting the same approach as the proof for the z D 0 case presented in
Lemma 14.
(2) Induction on n.

Case n D 0 (Refer to z D 1 column of Figure 11.) We show that E1 D Z2 n B 0.
When .k; l/ ¤ .3; 1/, E1 D kE0 C �1 D kZ2 C �1, which is equal to Z2 n B 0 by
Lemma 17(1). When .k; l/D .3; 1/, E1 D 3E0C�1 [ 3E1C��2 and 3E1C��2 �
3Z2 C .�2;�2/ � 3Z2 C�1. Therefore, also for this case, E1 is equal to Z2 n B 0.

Case n > 0 (Refer to z D k column of Figure 11.). We assume that Ekn�1 D Z2 n

kn�1B 0 and show that Ekn D Z2 n knB 0. We have

Ekn D kEkn�1 C�0 D k.Z
2
n kn�1B 0/C�0

D .kZ2 n knB 0/C�0 :

Since kZ2C�0DZ2 and no points of kE belong to knB 0, it follows that this is equal
to Z2 n .knB 0 CK/ where K is the subset of �0 that does not intersect with x C�0

for every x 2 kE. That is, K D �0 n .kE C�0/, which is ¹.0; 0/º by Lemma 18(1).
Thus, Ekn D Z2 n knB 0.
(3) Induction on m.

Case m D 0 (Refer to z D k � 1 column of Figure 11.). We prove the inclusion

Ekn�1 � Z2 n B n
�
knB 0 C A.0/

�
for n > 0. In both cases .k; l/ D .3; 1/ and .k; l/ ¤ .3; 1/, we have that Ekn�1 �

kEkn�1 C��1. Therefore,

Ekn�1 � kEkn�1 C��1 D k.Z
2
n kn�1B 0/C��1

D .kZ2 n knB 0/C��1:

We have kZ2C��1 D Z2 nB by Lemma 17(2). In addition, no points of kE belong
to knB 0. Therefore, it is equal to .Z2 nB/ n .knB 0CK/ forK D��1 n .kE C��1/
as in (2). By Lemma 18(2),K becomesA.0/ by adding the three points .0;0/, .�k;0/,
.0;�k/, which are already contained in B . Thus,

Ekn�1 � Z2 n B n
�
knB 0 C A.0/

�
:
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Case m > 0. By induction hypothesis

Ekm.kn�1/ D kEkm�1.kn�1/ C�0

� k
�
Z2 n km�1B n

�
km�1CnB 0 C A.m � 1/

��
C�0

D kZ2 n kmB n
�
kmCnB 0 C kA.m � 1/

�
C�0 :

Since kZ2 C�0 D Z2, it is equal to Z2 n .kmB CK/ n .kmCnB 0 CK 0/ whereK is
¹.0; 0/º as in (2), and K 0 is the subset of kA.m � 1/C�0 that do not intersect with
x C�0 for x 2 kZ2 n kA.m � 1/. Note that kN .A.m � 1// coincides with the set
of points x 2 kZ2 n kA.m � 1/ such that x C�0 intersects with kA.m � 1/C�0,
because �0 is the disk of radius k � 1 with hexagonal norm. Therefore, K 0 is the
subset of kA.m� 1/C�0 that do not intersect with xC�0 for x 2 kN .A.m� 1//,
that is,

K 0 D
�
kA.m � 1/C�0

�
n
�
kN

�
A.m � 1/

�
C�0

�
which is A.m/ by Lemma 18(3). Thus,

Ekm.kn�1/ � Z2 n kmB n .kmCnB 0 C A.m//:

Note: In Lemma 19(3), the specific shape of E3m.3n�1/ was not detailed as it was
not necessary for our discussion. The equality in this lemma holds when .k; l/ ¤
.3; 1/. When .k; l/ D .3; 1/, a precise specification of E3m.3n�1/ can be given: within
E3m.3n�1/, each A.m/-shaped void contains a hexagonal “island”. This island takes
the form of the intersection of G.m/ and G0.m/, which is then reduced by removing
points along its boundary. This fact is proved inductively: First,

E3n�1 D 3E3n�1 C��1 [ 3E3n�1�1 C�2

by (5.4). This formula allows for the inductive specification of E3n�1 based on the
knowledge of E3n�1 . With this as the base case, E3m.3n�1/ is specified by induction
on m according to the formula

E3m.3n�1/ D 3E3m�1.3n�1/ C�0:

Now, we prove the “only if” part of Theorem 6. In the proof of Lemma 15, we
showed that .a; b; c/ 2 E3.2;�.D02;0// and then applied Theorem 12 for j D 1. How-
ever, in the proof of Lemma 20 below, .a; b; c/ 62 E3.k; �.D0

k;l
// in general and

therefore, the same argument does not apply. Instead, we prove that

.ja; jb; jc/ 2 E3
�
k;�.D0k;l/

�
for some j > 0.
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Lemma 20. Let k � 2 and 0 � l < k
2

. Suppose that a; b; c are coprime integers such
that

(a) :
�
a � b � 0 .mod k/

�
(when .k; l/ ¤ .3; 1/);

(b) :
�
a � b � 0 .mod 3/

�
^ :

�
a � b � �c .mod 3/

�
(when .k; l/ D .3; 1/).

Then, F .k;D0
k;l
/ is projected along .a; b; c/ to a null set.

Proof. First, we construct numbers s;m; n and a sequence t0; t1; : : : such that

tpsc D k
m.k2

pn
� 1/

for every p � 0 as follows. Consider an s0 for which s0c has the form kmc0, where c0

is an integer that is coprime to k. We choose the smallest such s0, that is not a multiple
of k nor shares any common factors with c0. By applying Euler’s theorem, k�.c

0/ � 1

.mod c0/ for � the Euler’s totient function. It follows that, for n D �.c0/ and some
s00 > 0, s00c0 D kn � 1. Consequently, for s D s0s00, we have sc D km.kn � 1/. Let
t0 D 1 and tp D .k2

p�1n C 1/ � � � .k2n C 1/.kn C 1/ for p > 0. They satisfy

t1sc D k
m.kn C 1/.kn � 1/ D km.k2n � 1/:

Similarly, we can show by induction that tpsc D km.k2
pn � 1/ for all p � 0.

Next, we show the following claim:

Claim 1. .tpsa; tpsb/ 62 kmB .

Case m > 0. Suppose for contradiction that .tpsa; tpsb/ 2 kmB . Since tp and s00 are
coprime to k, both s0a and s0b are multiples of km. Since s0c is also a multiple of km

and s0 is not a multiple of km, it follows that a; b; c share a common factor, which
contradicts the assumption that a; b; c are coprime.

Case m D 0. In this case, s0 D 1. Therefore, the condition .a; b/ 62 kZ2 implies
.tpsa; tpsb/ 62 kZ2. This proves the case .k; l/ ¤ .3; 1/. When .k; l/ D .3; 1/, we
also need to show .tpsa; tpsb/ 62 3Z2 C .1; 1/. In this case, either a or b is not con-
gruent to �c modulo 3. Therefore, tpsa or tpsb is not congruent to �tpsc modulo 3.
Since tpsc D 3n � 1 � �1 .mod 3/, it follows that tpsa or tpsb is not congruent to 1
modulo 3.

Now, we fix p such that 2pn � mC 1. We show the following claim:

Claim 2. .ja; jb; jc/ 2 E holds for at least one of j D tps or j D tpC1s.

Let h D kmC2
pnC1 and C D .k2

pn C 1/A.m/. For the sake of contradiction, sup-
pose that both .tpsa; tpsb; tpsc/ 62 E and .tpC1sa; tpC1sb; tpC1sc/ 62 E hold. Since
tp0sc D k

m.k2
p0

� 1/, using Lemma 19(3) and Claim 1, we can show that for p0 � 0,
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the condition .tp0sa; tp0sb; tp0sc/ 62 E implies .tp0sa; tp0sb/ 2 kmC2
p0nB 0 C A.m/.

Therefore, we have the following:

.tpsa; tpsb/ 2 k
mC2pnB 0 C A.m/

.tpC1sa; tpC1sb/ 2 k
mC2pC1nB 0 C A.m/

From the first formula, we have

.tpC1sa; tpC1sb/ 2 .k
2pn
C 1/

�
kmC2

pnB 0 C A.m/
�
:

We show that the two sets

.k2
pn
C 1/

�
kmC2

pnB 0 C A.m/
�

and kmC2
pC1nB 0 C A.m/

do not intersect outside of kmB , which is a contradiction since .tpC1sa; tpC1sb/ 62
kmB by Claim 1.

Case (a) .k; l/ ¤ .3; 1/. We have

.k2
pn
C 1/

�
kmC2

pnB 0 C A.m/
�
D.k2

pn
C 1/

�
kmC2

pnC1Z2 C A.m/
�

D.k2
pn
C 1/hZ2 C C (5.5)

and

kmC2
pC1nB 0 C A.m/ D k2

pnhZ2 C A.m/ : (5.6)

Modulo hZ2, the sets (5.5) and (5.6) are congruent to A.m/ and C , respectively.
For qD .k2

pnC 1/km,C is contained in the triangle with vertices at ¹.0;0/; .�kq;0/;
.0;�kq/º when k is even or l ¤ k�1

2
, and C is contained in the union of this triangle

and another one with vertices at°�
�
.k C 1/q

2
; q
�
;
�
q;�

.k C 1/q

2

�
;
�
�
.k C 1/q

2
;�
.k C 1/q

2

�±
when k is odd and l D k�1

2
. Refer to Figure 12(a) which depicts the points in C and

some copies of A.m/ modulo hZ2 for the case .k; l/ D .5; 2/ with the parameters
m D 0; n D 1; p D 0. Clearly, the second triangle does not intersect with copies of
A.m/ modulo hZ2. Since kq D hC kmC1, the first triangle intersects with copies of
A.m/modulo hZ2 at the three vertices. With the hexagonal norm, k2

pnC 1, which is
the distance between any two adjacent points of C , is greater than kmC1, the distance
between pairs of points among the vertices ¹.0; 0/; .0;�kmC1/; .�kmC1; 0/º ofA.m/,
because 2pn � mC 1. Therefore, these three vertices are the only points shared by
C and copies of A.m/ modulo hZ2. However, these three points belong to kmB .
Therefore, the two sets defined in (5.5) and (5.6) do not intersect outside of kmB .
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(-h-km+1,0)

(-h,-h)

(0,0)

(0,-h-km+1)

(a) k D 5, l D 2, m D p D 0, n D 1.
Thus h D 25 and C D 6A.0/ on the slice
tpC1sc D 24.

(-h-2km,-h-2km)

(0,0)
(-h-2km,km)

(km, -h-2km)

(-h,-h)

(b) kD 3, l D 1,mD pD 0, nD 1. So, hD 9
and C D 4A.0/ on the slice tpC1sc D 8.

Figure 12. Configurations of copies of A(m) and C. Points in C are shown as blue points, and
copies of A.0/ modulo hZ are located within dark “starlike” regions. In (b), only the second
copy of C is depicted.

Case (b) .k; l/ D .3; 1/. Instead of (5.5) and (5.6), we have the following:

.k2
pn
C 1/

�
kmC2

pnB 0 C A.m/
�

D .k2
pn
C 1/

��
kmC2

pnC1Z2 C A.m/
�
[
�
kmC2

pn
�
kZ2 C .�1;�1/

�
C A.m/

��
D
�
.k2

pn
C 1/hZ2 C C

�
[
�
.k2

pn
C 1/hZ2 C .k2

pn
C 1/kmC2

pn.�1;�1/C C
�

(5.7)

and

kmC2
pC1nB 0 C A.m/

D
�
k2

pnhZ2 C A.m/
�
[
�
kmC2

pC1n
�
kZ2 C .�1;�1/

�
C A.m/

�
: (5.8)

The set (5.8) is congruent to A.m/ modulo hZ2, and the set (5.7) is congruent to
C [ .�h

3
;�h

3
/C C modulo hZ2, because kmC2

pn D
h
3

for the case k D 3. C does
not intersect with copies of A.m/ modulo hZ2 outside of kmB , as we studied in
(a). .�h

3
;�h

3
/C C consists of two triangles that are translations of those we studied

for the case (a) by .�h
3
;�h

3
/. Refer to Figure 12(b) which depicts .�h

3
;�h

3
/ C C

and some copies of A.m/ modulo hZ2 for the case .k; l/ D .3; 1/ with the parame-
ters m D 0; n D 1; p D 0. Clearly, the first triangle does not intersect with copies
of A.m/. For the second one, the three vertices are translations by .�h

3
; �h

3
/ of

¹.�2q; q/; .q;�2q/; .�2q;�2q/º for q D kmC2
pn C km D h

3
C km, which are®

.�h � 2km; km/; .km;�h � 2km/; .�h � 2km;�h � 2km/
¯
:
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These three points are congruent to .�2km; km/, .km;�2km/ and .�2km;�2km/,
respectively, modulo hZ2, and they also belong to A.m/ modulo hZ2. These three
vertices are the only points shared by .�h

3
;�h

3
/ C C and copies of A.m/ modulo

hZ2 as we studied for the case (a). However, they belong to kmB . Therefore, the two
sets defined in (5.7) and (5.8) do not intersect outside of kmB . This finishes the proof
of Claim 2.

By Claim 2, .ja; jb; jc/ 2 E for some j > 0. Therefore, by Theorem 12, the set
F .k;D0

k;l
/ is projected along .a; b; c/ to a null set.

Finally, we prove the irrational part of Theorem 6.

Lemma 21. If any pair among a; b and c forms an irrational ratio, then F .k;D0
k;l
/

is projected along the vector .a; b; c/ to a null set.

Proof. If c D 0, let ' be the projection along .a; b; c/. Since the digits on the plane
z D 0, whose cardinality is at least k C 1, are mapped by ' onto the same line,
E.k; '.D0

k;l
// is not uniformly discrete. The statement follows from Theorem 9.

If c ¤ 0, let u D a
c

, v D b
c

and u D .u; v/. We consider the projection ' to the
xy-plane and aim to prove

8r > 0 9y 2 E such that 0 < j'.y/j �
1

kr

in order to apply Lemma 13. In Lemma 16, the point y was chosen from even slices
of E.2;�02;0/. On the other hand, we need to choose y from the km.kn � 1/-th slices
of E.k; �0

k;l
/ for m � 0; n > 0 as we understand the structure of E only on these

slices. Moreover, since these slices contain large voids, it is crucial to avoid them
when selecting y . Consequently, our proof methodology here differs from that used
in Lemma 16.

For x D .x; y/ 2 R2, we define bxc as .bxc; byc/ and ¹xº as .¹xº; ¹yº/. For
a given r > 0, we partition the unit square Œ0; 1/2 into k2r disjoint regions and set
f .s; t/ D Œ s

kr ;
sC1
kr / � Œ

t
kr ;

tC1
kr / for 0 � s; t < kr . By the pigeonhole principle, at

least one of these regions, say f .s; t/, contains an infinite number of points from
¹¹kiuº j i � 0º. Let 0 � g0 < g1 < � � � be the enumeration of ¹i j ¹kiuº 2 f .s; t/º.
We then define the numbers h, m, and ni for i D 0; 1; : : : as follows: let h D g0,
m D g1, and ni D giC2 �m.

Let xi D bk
mCni uc � bkmuc, .xi ; yi / D xi , and yi D .xi ; yi ; k

m.kni � 1//. For
each i , yi satisfies j'.yi /j � 1

kr with respect to the maximum norm because

j'.yi /j D j.xi ; yi / � k
m.kni � 1/uj

D jxi � k
mCni uC kmuj

D j�¹kmCni uº C ¹kmuºj <
1

kr
:



Projected images of fractal imaginary cube 333

Therefore, we complete the proof by showing that yi 2 E for some i . By
Lemma 19, it means xi 2 Z2 n kmB n .kmCniB 0 C A.m//. We demonstrate the fol-
lowing claim

Claim. For some i , both xi 62 k
mB and xi 62 k

mCniB 0 C A.m/ hold.

Suppose, for the sake of contradiction, that xi 2 k
mB or xi 2 k

mCniB 0 C A.m/ for
every i . If xi D bk

mCni uc � bkmuc 2 kmCniB 0 C A.m/ then

kmCni u � kmu 2 kmCniB 0 C A.m/C
h
�
1

kr
;
1

kr

i2
:

Therefore,

u 2
kni

kni � 1
B 0 C

1

kni � 1

A.m/C Œ� 1
kr ;

1
kr �

2

km

�
kni

kni � 1
B 0 C

1

kni � 1
Œ�k � 1; 1�2: (5.9)

If this holds for arbitrary large ni , then we have u 2 B 0. However, it contradicts the
fact that at least one component of u is irrational. Therefore, xi 2 k

mCniB 0 C A.m/

only for a finite number of i . Let I be their maximum. Thus, xi 2 k
mB for i > I .

Let .uj /j�0 and .vj /j�0 be the k-ary expansions of the fractional parts of u and v,
respectively, and let �; � 2 ¹0; 1; : : : ; k � 1ºr be the k-ary expressions of s and t ,
respectively. We say that an infinite sequence .uj /j�0 contains a sequence � at posi-
tion n if, for r the length of � , .uj /n�j<nCr is equal to � . According to the definition
of the indices h; m; ni .i D 0; 1; : : :/, .uj /j�0 and .vj /j�0 contain � and � , respec-
tively, at h;m and mC ni (i D 0; 1; : : :).

Since xi D bk
mCni uc � bkmuc 2 kmB � kmZ2 for i > I , the last m digits of

the integral parts of k-ary expansions of kmu and kmCniu coincide for i > I . Let
˛ be this sequence of length m. Then, .uj /j�0 contains ˛ at the indices 0 and ni
.i > I /. Since .uj /j�0 contains � at m and ni C m .i > I/, .uj /j�0 contains the
sequence ˛� at 0 and ni for i > I , On the other hand, the sequence ˛� contains
� twice at indices h and m. Therefore, .uj /j�0 contains � at ni C h and ni C m.
The same is true for .vj /j�0 and � , and .vj /j�0 contains � at ni C h and ni C m.
Since both ni C h and ni�1 C m are the last index before ni C m at which � and
� are contained in .uj /0�j and .vj /0�j simultaneously, ni C h D ni�1 C m holds.
Thus, we have ni � ni�1 D m� h and the subsequence .uj /ni�1�j<ni

is equal to the
sequence ˛0�j<m�h for all i > I . Thus, u is rational, and similarly v is also rational.
This contradicts the fact that u or v is irrational. This completes the proof of the
Claim.
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D D Lat

0BBB@
26664
1 3 0 2

2 0 1 3

3 1 2 0

0 2 3 1

37775
1CCCA

(a) A digit set D expressed
as a Latin square. Here,
Lat.L/ D ¹.x; y; L.x; y// j x; y 2
Z; 0 � x; y � 3º.

(b) The projected image of F .4; D/

along .1; 1; 1/. It is positively mea-
sured by Corollary 10.

Figure 13. A projected image of a non-layered fractal imaginary cube F .4;D/.

6. Concluding remarks

We have characterized the directions along which layered fractal imaginary cubes,
including the Sierpinski tetrahedron, T-fractal, and H-fractal, are projected to sets
with positive measures. As explained in Theorem 3, such directions are uniformly
described, with the exception of the H-fractal case. The H-fractal possesses a unique
property that it exhibits six-fold symmetry, which effectively “doubles” its projected
images with positive measures.

A natural question would be whether our result can be generalized to fractal imag-
inary cubes, that is, imaginary cubes of the form F 3.k;D/ with jDj D k2, in general.
About fractal imaginary cubes, the following proposition holds immediately.

Proposition 22. A fractal imaginary cube of degree k is projected to a set with pos-
itive measure along the vector .ak; bk; 1/ and its permutations for any integers a
and b.

Proof. Since the set ¹.x; y/ j .x; y; z/ 2 Dº forms the grid ¹0; : : : ; k � 1º2 as stated
in Lemma 1, the projected image of D along the vector .ak; bk; 1/ to the xy-plane,
which is ¹.x � akz; y � bkz/ j .x; y; z/ 2 Dº, is a complete residue system of
Z2=kZ2. Therefore, the statement holds by Corollary 10.

Some non-layered fractal imaginary cubes of degree 4 yield projected images with
positive measures along the vector (1,1,1), as illustrated in Figure 13. However, not all
of them exhibit this property, indicating that further research into this area is needed.

Another intriguing question would be about fractal imaginary “squares”. We
define an imaginary square as a two-dimensional object that is projected to line
segments of the same length in orthogonal two directions. A (homothetic) fractal
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(a) The fractal imaginary
square F 2.3;DO/.

(b) The one-dimensional Sier-
pinski gasket F 2.3;D0O/.

−10 0 10 20

−10

0

10

z = 0

−10 0 10 20

−10

0

10

z = 1

(c) The differenced radix
expansion set E2.3;�.D0O//.

Figure 14. The one-dimensional Sierpinski gasket and its associated mathematical structures.

imaginary square of degree k is then defined as an imaginary square that has the
form F 2.k; D/ for D a two-dimensional digit set of cardinality k. A fractal imag-
inary square of degree k exists corresponding to a permutation of ¹0; 1; : : : ; k � 1º
following an argument similar to Lemma 1. A line segment is the only fractal imagi-
nary square of degree 2. Besides the line segment, the unique fractal imaginary square
of degree 3 is F 2.3;DO/ for the following digit set DO (Figure 14(a)).

DO D
®
.0; 0/; .1; 2/; .2; 1/

¯
A layered fractal imaginary square is defined as a fractal imaginary square gener-

ated by the set

D
.2/

k;l
D
®
.x; y/ 2 Z2 j 0 � x; y < k; x C y � l � 1 mod k

¯
for k � 2 and 0 � l < k

2
. Accordingly,D.2/

3;1 DDO, and bothD.2/
2;0 andD.2/

3;0 generate
line segments.

The author suggests that characterizing the directions along which layered fractal
imaginary squares are projected to sets with positive measures may be more challeng-
ing than in the three-dimensional case for the following reasons. Firstly, the result
similar to Theorem 3 does not hold for the two-dimensional case. It is straightfor-
ward to demonstrate that projected images of F 2.k; D

.2/

k;l
/ along .a; b/ for coprime

integers a; b such that a C b is coprime to k have positive measures. This reason-
ing is analogous to that presented in Lemma 11, resulting in fractals generated by
standard digit sets. However, the converse is not true. For instance, consider the two-
dimensional digit setD.2/

4;2D¹.0;1/; .1;0/; .2;3/; .3;2/º. The projection along .3;�5/
onto the x-axis produces the set ¹0:6; 1; 3:8; 4:2º, which becomes ¹0; 1; 8; 9º after an
affine transformation. This set is an example of a product-form digit set, which is
known to generate fractals with positive measures (refer to Example 3.1 of [10]).
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Since 3C .�5/D �2 is a multiple of 2, this example illustrates that direct translation
of Theorem 3 to the two-dimensional case is not feasible.

Secondly, the structure of differenced radix expansion sets for layered fractal
imaginary squares significantly diverges from that observed in the three-dimensional
case, posing challenges to developing a proof akin to Lemma 20. The fractal pro-
duced by DO is an affine image of the one-dimensional Sierpinski gasket ([9]), that is
F 2.3;D0O/ for

D0O D
®
.0; 0/; .1; 0/; .0; 1/

¯
as depicted in Figure 14(b). Kenyon studied the measure-theoretial properties of the
projected images of this fractal and established the following:

Theorem 23 ([9]). F 2.3;D0O/ is projected to a set with positive Lebesgue measure if
and only if the projection is done along a vector .a; b/ for coprime integers a; b such
that a � b is a multiple of 3.

Through an affine transformation, this theorem can be restated for F 2.3;DO/ as
follows.

Corollary 24. F 2.3;DO/ is projected to a set with positive Lebesgue measure if and
only if the projection is done along a vector .a; b/ for coprime integers a; b such that
aC b is not a multiple of 3.

The proof of the equivalence of these two statements is similar to that of the
equivalence of Theorem 3 and Theorem 6. Kenyon proved Theorem 23 measure-
theoretically through the notion of absolutely continuous invariant measures. Let us
try to formulate a proof of Theorem 23 similar to that of Lemma 20. The differenced
digit set of D0O is

�.D0O/ D
®
.�1; 1/; .�1; 0/; .0;�1/; .0; 0/; .0; 1/; .1; 0/; .1;�1/

¯
:

Note that the fractal generated by�.D0O/ is the (affine-transformed) hexaflake fractal,
which appeared also as the projected image of H1 along .1; 1; 1/. The differenced
radix expansion set E2.3; �.D0O// is depicted in Figure 14. For a proof similar to
Lemma 20, we need to show the following:

Claim. For every pair of coprime integers .a; b/ 2 Z2 such that a � b is not
a multiple of 3, there exists j ¤ 0 such that .ja; jb/ 2 E2.3;�.D0O//.

Nevertheless, direct proof of this claim appears to be challenging. Specifically, a strat-
egy analogous to that used in Lemma 20 may not be feasible, because of the numerous
“holes” that are present in E2.3; �.D0O//3m.3n�1/. We would like to list the above
claim as a corollary to Theorem 23, because Theorem 12 can be generalized to pro-
jections of n-dimensional digit sets, and Theorem 12 claims an equivalence.



Projected images of fractal imaginary cube 337

Kenyon also explored measures and Hausdorff dimensions of projections of the
one-dimensional Sierpinski gasket. Moreover, Hochman demonstrated in [6] that the
Hausdorff dimensions of irrational projections of the one-dimensional Sierpinski gas-
ket are zero. As outlined in [4] and [15], the study of Hausdorff dimensions of
projected images of fractals is considered an intriguing area of research. The inves-
tigation of Hausdorff dimensions of the projected images of fractal imaginary cubes
remains an open field of inquiry.

A. Projections of 3D-printed models of fractal imaginary cubes

Sierpinski Tetrahedron

(0,0,1) (1,1,1) (1,1,0) (1,2,0) (1,1,-2)

T-Fractal

(0,0,1) (1,1,1) (1,1,0) (1,1,-1) (1,1,-2)

H-Fractal

(0,0,1) (1,1,1) (1,1,0) (1,1,-1) (1,1,-2)
(2,2,1) (1,1,4) (1,1,-5)
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Captions specify projection directions under the identification of the objects with
S1, T1, and H1. Red frames indicate that the shadows have positive measure even
when the models were perfect mathematical representations.
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