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Box dimension of generalized affine fractal interpolation
functions (II)

Lai Jiang and Huo-Jun Ruan

Abstract. Let f be a generalized affine fractal interpolation function with vertical scaling
functions. In this paper, we estimate dimB �f , the box dimension of the graph of f , under
the assumption that vertical scaling functions are of bounded variation. The main tool we use
is vertical scaling matrices introduced in our previous work from 2023. We conduct a much
deeper analysis of the properties of these matrices compared to our previous work. We prove
the monotonicity of spectral radii of vertical scaling matrices without additional assumptions.
We also obtain the irreducibility of lower vertical scaling matrices under weaker conditions than
that in our previous work.

1. Introduction

Fractal interpolation functions (FIFs) were introduced by Barnsley [4] in 1986. Basic-
ally, a FIF f is a function which interpolates given data and its graph is the invariant
set of an iterated function system (IFS).

The generalized affine FIFs are an important class of FIFs. There are many works
on these FIFs, including theoretical analysis [2,3,5,9,10,25] and applications [20,24].
In particular, there are some works on the box dimension of the graphs of generalized
affine FIFs [6–8, 13, 16, 22]. In [17], the authors introduced vertical scaling matrices.
We also obtained the monotonicity of spectral radii and irreducibility of these matrices
under certain conditions. Then we estimated the box dimension of generalized affine
FIFs by the limits of the spectral radii of these matrices.

In the present paper, we continue the study of vertical scaling matrices and the box
dimension of generalized affine FIFs. Mainly, we prove the monotonicity of spectral
radii of vertical scaling matrices without additional assumptions, and obtain the irre-
ducibility of lower vertical scaling matrices under weaker conditions than that in [17].
By using these results, we estimate the box dimension by the limits of spectral radii of
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vertical scaling matrices under weaker conditions. We also estimate the box dimen-
sion directly by the sum function of vertical scaling functions. We remark that the
class of generalized affine FIFs in the present paper is more general than the setting
in [17], so that our results are applicable to some classical fractal functions, including
the classical Weierstrass functions.

The paper is organized as follows. In Section 2, we recall some basic definitions
and present main results. In Section 3, we study the monotonicity of spectral radii
and irreducibility of vertical scaling matrices. By using these results, in Section 4, we
estimate the box dimension of generalized affine FIFs by the limits of radii of vertical
scaling matrices. In Section 5, we estimate the box dimension of generalized affine
FIFs by the sum function of the vertical scaling functions. In Section 6, we apply our
results to study the box dimension of a generalized Weierstrass-type function, and
make some further remarks.

2. Preliminaries and main results

2.1. The definition of generalized affine FIFs

Let N � 2 be a positive integer. Given a data set ¹.xn; yn/ºNnD0 � R2 with x0 < x1 <
� � �< xN , we define a family of functions ¹WnºNnD1 from Œx0; xN ��R to Œx0; xN ��R

by
Wn.x; y/ D

�
anx C bn; Sn.x/y C qn.x/

�
; 1 � n � N;

such that for each n, an and bn are real numbers, Sn and qn are continuous functions
on Œx0; xN � with jSn.x/j < 1 for all x 2 Œx0; xN � and

Wn.x0; y0/ D .xn�1; yn�1/; Wn.xN ; yN / D .xn; yn/:

According to Barnsley’s classical result [4] , there exists a unique continuous function
f on Œx0; xN � such that its graph �f WD ¹.x; f .x// W x 2 Œx0; xN �º is the invariant
set of the iterated function system (IFS for short) ¹Wn W 1 � n � N º, i.e.,

�f D

N[
nD1

Wn.�f /: (2.1)

Furthermore, the function f always interpolates the data set, i.e., f .xn/ D yn for
all 0 � n � N . The function f is called the generalized affine fractal interpolation
function (generalized affine FIF for short) determined by the IFS ¹WnºNnD1.

In the present paper, we study dimB �f , the box dimension of the graph of f ,
where the following conditions are satisfied for each n:

(A1) xn � xn�1 D .xN � x0/=N ,
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(A2) Sn is of bounded variation on Œx0; xN � and jSn.x/j < 1 for all x 2 Œx0; xN �,

(A3) qn is of bounded variation on Œx0; xN �.

2.2. Main results

In the rest of the paper, we write I D Œx0; xN � for simplicity. We define a function 

on I by


.x/ D

NX
nD1

ˇ̌
Sn.x/

ˇ̌
:

We call 
 the sum function of the family of vertical scaling functions S D ¹SnºNnD1.
Write 
� D maxx2I 
.x/ and 
� D minx2I 
.x/.

Given a closed interval J D Œa; b�, for each k 2 ZC and 1 � j � N k , we write

J kj D
h
aC

j � 1

N k
.b � a/; aC

j

N k
.b � a/

i
: (2.2)

Given k 2 ZC, 1 � n � N and 1 � j � N k , we set

skn;j D max
x2Ik

j

ˇ̌
Sn.x/

ˇ̌
; skn;j D min

x2Ik
j

ˇ̌
Sn.x/

ˇ̌
:

Now, for every k 2 ZC, we define a matrix M k by setting for 1 � n � N , 1 �
` � N k�1 and 1 � j � N k ,

.M k/.n�1/Nk�1C`;j D

´
skn;j ; if .` � 1/N < j � `N;

0; otherwise:

Similarly, we define another N k � N k matrix M k by replacing skn;j with skn;j . We
call M k (resp. M k) the upper (resp. the lower) vertical scaling matrix with level-k.

In this paper, we prove the monotonicity of spectral radii of vertical scaling
matrices without additional assumptions. We also obtain the irreducibility of lower
vertical scaling matrices under a weaker condition than that in [17].

Theorem 2.1. With previous notations, we have

(1) �.M k/, the spectral radius ofM k , is decreasing with respect to k. As a result,
�� D limk!1 �.M k/ exists.

(2) �.M k/ is increasing with respect to k. As a result, �� D limk!1 �.M k/

exists.

(3) If jSnj is positive on I for all 1 � n � N , then �� D ��.

(4) If 
� � 1 and Sn has only finitely many zero points on I for all 1 � n � N ,
then M k is primitive for sufficiently large enough k 2 ZC.
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Let Var.f; I / be the classical total variation of f on I . By using Theorem 2.1 and
the irreducibility of M k , we can obtain the estimate of the box dimension of �f .

Theorem 2.2. Let f be a generalized affine FIF satisfying conditions (A1)–(A3).
Then we have the following results on the box dimension of �f .

(1) dimB�f � max¹1; 1C logN �
�º.

(2) Assume that 
� � 1 and the function Sn has only finitely many zero points on
I for all 1 � n � N . If Var.f; I / D1, then dimB�f � 1C logN ��.

(3) Under the assumption of the previous item and the additional assumption that
�� D �

�, if Var.f; I / D1 and �S > 1, then

dimB �f D 1C logN �S;

otherwise dimB �f D 1. Here, �S is the common value of �� and ��.

We remark that the assumption 
� � 1 in Theorems 2.1 and 2.2 can be replaced
by a weaker assumption ZM.S/ � N � 2. Please see Section 3 for the definition of
ZM.S/.

It is easy to see that

� � �� � �

�
� 
�:

Thus, from Theorem 2.2 (1), dimB�f � max¹1; 1C logN 

�º. In Section 5, we also

estimate the lower box dimension of �f by 
� under a weaker assumption than that
in Theorem 2.2. Akhtar, Prasad and Navascués [1] used

Smax D max
®ˇ̌
Si .x/

ˇ̌
W x 2 Œ0; 1�; 1 � i � N

¯
and

Smin D min
®ˇ̌
Si .x/

ˇ̌
W x 2 Œ0; 1�; 1 � i � N

¯
to estimate the box dimension of ˛-fractal functions, which is a special class of gen-
eralized affine FIFs. Our results provide more efficient bounds than [1].

2.3. Some remarks

In [12], Feng and Simon proved the following deep result: the upper box dimension
of the attractor of any C 1 (hyperbolic) IFS on Rd is bounded above by its singularity
dimension. Let f be a generalized affine FIF satisfying conditions (A1)–(A3). In the
case that both Sn and qn are C 1 Lipschitz functions on I for all n D 1; : : : ; N , by
using similar method in the proof of [6, Theorem 4], we can construct a metric d
on I � R such that Wn, n D 1; : : : ; N are contracting on the complete metric space
.I �R; d /. As a result, �f is the attractor of the C 1 hyperbolic IFS ¹WnºNnD1, so that
its upper box dimension is bounded above by its singularity dimension.
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In our previous work [17], we obtained the monotonicity of spectral radii of
vertical scaling matrices under the additional condition that these matrices are irre-
ducible. We required that Sn is Lipschitz for all n to prove �� D ��. We also required
that Sn is positive on I for all n to prove the primitivity of lower vertical scaling
matrices and the estimate of the lower box dimension of �f . Thus, in the present
paper, we obtain these results under significantly weaker conditions.

We also remark that in [17] and the original version of this paper, we obtained
the estimate of upper box dimension of �f (Theorem 2.2 (1)) under the additional
condition that upper vertical scaling matrices are irreducible. In the present version
of this paper, we are grateful to the referees for providing the proof of this estimate
without the additional condition. See the proof of Theorem 4.6.

3. Analysis on vertical scaling matrices

3.1. Some well-known theorems and definitions

We recall some notations and definitions used in matrix analysis [14]. Given a matrix
A D .aij /n�n, we say A is nonnegative (resp. positive), denoted by A � 0 (resp.
A > 0), if aij � 0 (resp. aij > 0) for all i and j . Let B D .bij /n�n be another matrix.
We write A � B (resp. A > B) if aij � bij (resp. aij > bij ) for all i and j . Similarly,
given uD .u1; : : : ;un/; vD .v1; : : : ; vn/ 2Rn, we write u� v (resp. u> v) if ui � vi
(resp. ui > vi ) for all i .

A nonnegative matrix A D .aij /n�n is called irreducible if for any i; j 2

¹1; : : : ; nº, there exists a finite sequence i0; : : : ; it 2 ¹1; : : : ; nº such that i0 D i; it D j
and ai`�1;i` > 0 for all 1 � ` � t . A is called primitive if there exists k 2 ZC such
that Ak > 0. It is clear that a primitive matrix is irreducible.

Given an n � n matrix A, we define

�.A/ D max
®
j�i j W 1 � i � n

¯
;

where �1; : : : ; �n are eigenvalues of A. We call �.A/ the spectral radius of A.
The following three lemmas are well known. Please see [14, Chapter 8] for details.

Lemma 3.1. Let A and B be two nonnegative matrices. If A� B , then �.A/� �.B/.

Lemma 3.2. Let A be a nonnegative matrix. Then �.A/ is an eigenvalue of A and
there is a nonnegative nonzero vector x such that Ax D �.A/x.

Lemma 3.3 (Perron-Frobenius Theorem). Let A be an irreducible nonnegative mat-
rix. Then

(1) �.A/ is positive,
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(2) �.A/ is an eigenvalue of A and has a positive eigenvector.

3.2. Monotonicity of spectral radii of vertical scaling matrices

Theorem 3.4. For all k 2 ZC,

�.M kC1/ � �.M k/:

As a result, limk!1 �.M k/ exists, denoted by ��.

In [17], we proved this theorem under an additional assumption. Essentially, we
required that M k are irreducible for all k.

Proof. Similarly as in [17], we introduce another N kC1 � N kC1 matrix M
�

k as fol-
lows:

.M
�

k/.n�1/NkC`;j D

´
skn;`; if .` � 1/N < j � `N;

0; otherwise;
(3.1)

for 1 � n � N , 1 � ` � N k and 1 � j � N kC1. It is easy to see from the definition
that skn;` � s

kC1
n;N.`�1/Ci

for every 1 � n � N , 1 � i � N and 1 � ` � N k . Hence,

skn;` � s
kC1
n;j whenever .` � 1/N < j � `N . As a result, M kC1 � M

�

k . Thus, from

Lemma 3.1, �.M kC1/ � �.M
�

k/.
Now we prove that �.M

�

k/ � �.M k/. Write � D �.M
�

k/. From Lemma 3.2, � is
an eigenvalue ofM

�

k and there is a nonnegative nonzero vector uD .u1; : : : ;uNkC1/T

such that M
�

ku D �u. Then for all 1 � n � N and 1 � ` � N k ,

�u.n�1/NkC` D

NkC1X
jD1

.M
�

k/.n�1/NkC`;juj D s
k
n;`

`NX
jD.`�1/NC1

uj : (3.2)

We define a vector u0 D .u01; : : : ; u
0

Nk /
T by

u0j D

jNX
pD.j�1/NC1

up; 1 � j � N k :

It is clear that u0 is also nonnegative and nonzero. Notice that for 1 � n � N and
1 � ` � N k�1,

`NX
jD.`�1/NC1

skn;ju
0
j D

`NX
jD.`�1/NC1

 
skn;j

jNX
pD.j�1/NC1

up

!
D

`NX
jD.`�1/NC1

�u.n�1/NkCj ;
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where the last equality follows from (3.2). Thus

NkX
jD1

.M k/.n�1/Nk�1C`;ju
0
j D

`NX
jD.`�1/NC1

skn;ju
0
j D �u

0

.n�1/Nk�1C`
;

which implies that M ku
0 D �u0 and therefore � is an eigenvalue of M k . Hence,

�.M
�

k/ D � � �.M k/.
From the above arguments, �.M kC1/ � �.M

�

k/ � �.M k/. Since �.M k/ � 0 for
all k, we know that limk!1 �.M k/ exists.

In the proof of the above theorem, we show that �.M
�

k/ � �.M k/. In fact, we can
obtain the following stronger result.

Lemma 3.5. Let k � 1 and M
�

k be defined by (3.1). Then �.M
�

k/ D �.M k/.

Proof. It suffices to show that �.M k/ � �.M
�

k/. Without loss of generality, we may
assume that � WD �.M k/ > 0. From Lemma 3.2, � is an eigenvalue of M k and there
is a nonnegative nonzero vector v D .v1; : : : ; vNk /T such thatM kv D �v. We define
a vector v0 D .v01; : : : ; v

0

NkC1/
T by

v0
.n�1/NkC`

D skn;`v`; 1 � n � N; 1 � ` � N k :

It is clear that v0 is nonnegative. Furthermore, it follows from M kv D �v that for all
1 � n � N and 1 � j � N k�1,

�v.n�1/Nk�1Cj D

jNX
tD.j�1/NC1

skn;tvt D

jNX
tD.j�1/NC1

v0
.n�1/NkCt

: (3.3)

Thus v0 is a nonzero vector since otherwise, v is a zero vector which is a contradiction.
For any 1 � n � N and 1 � ` � N k , there exist 1 � n0 � N and 1 � j 0 � N k�1 such
that ` D .n0 � 1/N k�1 C j 0. Thus

.M
�

kv
0/.n�1/NkC` D s

k
n;`

`NX
pD.`�1/NC1

v0p D s
k
n;`

j 0NX
tD.j 0�1/NC1

v0
.n0�1/NkCt

D skn;`�v.n0�1/Nk�1Cj 0 .By (3.3)/

D �skn;`v` D �v
0

.n�1/NkC`
;

which implies that M
�

kv
0 D �v0 and therefore � is an eigenvalue of M

�

k . Hence,
�.M k/ D � � �.M

�

k/.
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Using the same method, we can prove that �.M k/ D �.M
�
k/ � �.M kC1/, where

the matrix M �k is defined similarly as in (3.1). Thus, we can obtain the following
result.

Theorem 3.6. For all k 2 ZC,

�.M kC1/ � �.M k/:

As a result, limk!1 �.M k/ exists, denoted by ��.

In the case that �� D ��, we denote the common value by �S. The following result
has been proved in [17, Proposition 3.5] under the assumption that Sn is Lipschitz for
all n. Our present proof only uses the fact that Sn is continuous for all n.

Theorem 3.7. Assume that jSnj is positive on I for all 1 � n � N . Then �� D ��.

Proof. For any 1 � n � N , from the fact that Sn is continuous and nonzero on I , we
have

Sn WD min
®ˇ̌
Sn.x/

ˇ̌
W x 2 I

¯
> 0:

Fix " > 0. Since Sn is uniformly continuous on I for all n, we know that for suffi-
ciently large k,

skn;j � s
k
n;j C "Sn � .1C "/s

k
n;j ; 1 � n � N; 1 � j � N k;

so that M k �M k � .1C "/M k . Thus, from Lemma 3.1,

�.M k/ � �.M k/ � .1C "/�.M k/

for sufficiently large k. By letting k tend to infinity, �� � �� � .1C "/��. From the
arbitrariness of ", we have �� D ��.

3.3. The irreducibility of the lower vertical scaling matrices

Recall that


.x/ D

NX
nD1

ˇ̌
Sn.x/

ˇ̌
; x 2 I;

and 
� D maxx2I 
.x/, 
� D minx2I 
.x/. For any k 2 ZC, we define


k D max
1�j�Nk

NX
nD1

skn;j ; 

k
D min
1�j�Nk

NX
nD1

skn;j :

Lemma 3.8. We have 
� D limk!1 
k and 
� D limk!1 
k
.
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Proof. By definition, it is clear that for all k � 1, we have 
k � 
.x/ for all x 2 I
so that 
k � 


�. On the other hand, notice that Sn is uniformly continuous on I for
all 1 � n � N . Hence for every " > 0, there exists ı > 0 such that for all x0; x00 2 I
with jx0 � x00j < ı, we have jSn.x0/ � Sn.x00/j < "=N . Choose k0 2 ZC such that
jI
k0

1 j< ı, where jI k0

1 j is the length of I k0

1 . For any k � k0, let j 2 ¹1; : : : ;N kº satisfy

k D

PN
nD1 s

k
n;j . It follows from jI kj j D jI

k
1 j � jI

k0

1 j < ı that for all zx 2 I kj ,


.zx/ D

NX
nD1

jSn.zx/j �

NX
nD1

�
max
x2Ik

j

ˇ̌
Sn.x/

ˇ̌
�
"

N

�
D

NX
nD1

skn;j � " D 
k � ":

This implies that 
k � 

� C " for all k > k0. Combining this with 
k � 


� for all k,
we obtain that 
� D limk!1 
k .

Similarly, we have 
� D limk!1 
k
.

For every k 2 ZC, from [14, Theorem 8.1.22], 

k
� �.M k/ � �.M k/ � 
k .

Hence,

� � �� � �

�
� 
�: (3.4)

Thus, if 
 is a constant function on I , then 
.x/ D �S for all x 2 I .
If jSnj is positive for each 1 � n � N , then by using the same arguments in the

proof of [17, Lemma 3.2], we can obtain that .M k/
k > 0 so that M k is primitive.

However, it is much more involved to prove the primitivity of M k under general
setting. In this paper, we show that M k is primitive for sufficiently large k if 
� � 1
and Sn has finitely many zero points for each 1 � n � N .

Define the multiplicity of zero points of S D ¹Sn W 1 � n � N º at x 2 I by

ZM.S; x/ D card
®
n W Sn.x/ D 0; 1 � n � N

¯
;

where card.A/ is the cardinality of a set A. Write ZM.S/ D maxx2I ZM.S; x/. We
have the following simple fact.

Lemma 3.9. If 
� � 1, then ZM.S/ � N � 2.

Proof. We prove this lemma by contradiction. Assume that there exists zx 2 I such
that ZM.S; zx/ � N � 1. Then there exists 1 � n0 � N , such that Sn.zx/ D 0 for all
n ¤ n0. Hence,


� � 
.zx/ D

NX
nD1

ˇ̌
Sn.zx/

ˇ̌
D
ˇ̌
Sn0

.zx/
ˇ̌
< 1;

which contradicts the fact that 
� � 1.
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Lemma 3.10. Assume that ZM.S/ � N � 2 and the function Sn has finitely many
zero points for all 1 � n � N . Then there exists k1 2 ZC such that for all k > k1,
every row of M k has at least N � 1 positive entries, and every column of M k has at
least 2 positive entries.

Proof. LetZn be the set of zero points of Sn for 1� n�N and writeZ D
SN
nD1Zn.

Let E be the set of endpoints of all I kj for 1 � j � N k and k � 1, i.e.,

E D
[
k�1

®
x0 C jN

�k.xN � x0/ W 0 � j � N
k
¯
:

Since Z is a finite set, there exists a positive integer k1 satisfying the following two
conditions:

(1) I k1

j contains at most one element of Z for all 1 � j � N k1 ,

(2) for each x 2 Z \ E, there exists 1 � j � N k1 such that x is the endpoint of
I
k1

j .

Then it is easy to see that for all k > k1, every row of M k has at least N � 1 positive
entries.

Notice that ZM.S; x/ � N � 2 for all x 2 Z. Hence, by definition of k1, for all
k > k1 and 1 � j � N k ,

card
®
n W Sn.x/ ¤ 0 for all x 2 I kj

¯
� 2:

Thus, every column of M k has at least 2 positive entries.

Lemma 3.11. Under the assumptions of Lemma 3.10, for all k > k1, every row of
.M k/

k has at least .N � 1/k positive entries and every column of .M k/
k has at least

2k positive entries. Here, k1 is the constant in Lemma 3.10.

Proof. Fix k > k1. For all m � 1 and 1 � i � N k , we define

rowm.i/ D
®
j W

�
.M k/

m
�
ij
> 0

¯
:

Notice that �
.M k/

mC1
�
ij
D

NkX
tD1

.M k/it
�
.M k/

m
�
tj

for all m � 1 and 1 � i; j � N k . Thus, for all m � 1 and 1 � i � N k ,

rowmC1.i/ D
®
j W there exists t 2 row1.i/ such that j 2 rowm.t/

¯
:

It follows from the definition of M k that for all 1 � i � N , 1 � ` � N k�1,

row1
�
.i � 1/N k�1

C `
�
�
®
.` � 1/N C 1; .` � 1/N C 2; : : : ; `N

¯
: (3.5)
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We claim that for each 1 � m � k � 1,

rowm
�
.i � 1/N k�m

C `
�
�
®
.` � 1/Nm

C 1; .` � 1/Nm
C 2; : : : ; `Nm

¯
for all 1 � i � Nm and 1 � ` � N k�m.

It follows from (3.5) that the claim holds for m D 1. Assume that the claim holds
for some 1�m� k � 2. Now given 1� i �NmC1 and 1� `�N k�.mC1/, we write
i 0 D .i � 1/N k�.mC1/C `. If j 2 rowmC1.i 0/, then there exists t 2 row1.i 0/ such that
j 2 rowm.t/. Notice that there exist unique integer pair .i1; i2/ with 1 � i1 � N and
1 � i2 � N

m such that i D .i1 � 1/Nm C i2. Thus

i 0 D .i1 � 1/N
k�1
C .i2 � 1/N

k�.mC1/
C `:

Hence, from (3.5), .i2 � 1/N k�m C .`� 1/N C 1 � t � .i2 � 1/N
k�m C `N: Com-

bining this with the inductive assumption, we have .`� 1/NmC1 C 1 � j � `NmC1

so that the claim holds for mC 1. This completes the proof of the claim.
It directly follows from the claim that for all 1 � m � k � 1 and 1 � i � N k , if

t1 6D t2 2 row1.i/, then rowm.t1/ \ rowm.t2/ D ;; which implies that

card
�
rowmC1.i/

�
D

X
t2row1.i/

card
�
rowm.t/

�
: (3.6)

From Lemma 3.10, card.row1.i// � N � 1 for all 1 � i � N k . Combining this
with (3.6), we can use inductive arguments to obtain that card.rowm.i// � .N � 1/m

for all 1 � m � k and 1 � i � N k . Thus every row of .M k/
k has at least .N � 1/k

positive entries.
Similarly, for all m � 1 and 1 � j � N k , we define

colm.j / D
®
i W
�
.M k/

m
�
ij
> 0

¯
:

Then for all m � 1 and 1 � j � N k ,

colmC1.j / D
®
i W there exists t 2 col1.j / such that i 2 colm.t/

¯
:

By using similar arguments as above, we can obtain that for each 1 � m � k � 1,

colm
�
.j � 1/Nm

C `
�
�
®
j; j CN k�m; : : : ; j C .Nm

� 1/N k�m
¯

for all 1 � j � N k�m and 1 � ` � Nm. Hence, for all indices 1 � m � k � 1 and
1 � j � N k , if t1 6D t2 2 col1.j /, then colm.t1/\ colm.t2/D ;. As a result, we have
card.colm.j // � 2m for all 1 � m � k and 1 � j � N k , which implies that every
column of .M k/

k has at least 2k positive entries.

The following result is part of the statement in [14, Problem 5, Section 8.5]. We
use it to prove that M k is primitive for sufficiently large k under certain conditions.
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Lemma 3.12 ([14]). Let AD .aij /n�n be an irreducible nonnegative matrix. Assume
that at least one of its main diagonal entry ai i .1 � i � n/ is positive. Then A is
primitive.

Theorem 3.13. Assume that ZM.S/ � N � 2 and the function Sn has finitely many
zero points for each 1 � n � N . Then there exists k0 2 ZC such thatM k is primitive
for all k > k0.

Proof. For every 1 � n �N and 1 � j �N k , we call skn;j a basic entry of the matrix
M k . If all basic entries are positive, then using the same arguments in the proof of
[17, Lemma 3.2], we can obtain that .M k/

k > 0.
In the case that N D 2, we have ZM.S/ D 0 so that ZM.S; x/ D 0 for all x 2 I .

Thus Sn.x/ 6D 0 for nD 1; 2 and all x 2 I . It follows that all basic entries are positive
so that .M k/

k > 0. Hence M k is primitive for all k 2 ZC.
Now, we assume that N � 3. Let mn be the number of zero points of Sn on I .

Write m D
PN
nD1mn. Then for any k � 1, there are at most 2m-many basic entries

equal to zero. Notice that for every k � 1 and 1� i; j �N k , the .i; j / entry of .M k/
k

is �
.M k/

k
�
ij
D

X
1�t2;:::;tk�N k

t1Di;tkC1Dj

kY
`D1

.M k/t`;t`C1
; (3.7)

and both every row and every column of M k have N basic entries. Hence, a zero
basic entry .M k/i;j of M k can make at most

N k�1
� card

®
1 � ` � k W .t`; t`C1/ D .i; j /

¯
D kN k�1

many entries of .M k/
k to be zero. Thus, there are at most 2mkN k�1-many zero

entries in .M k/
k .

Let k1 be the constant in Lemma 3.11 and k0 D max¹4;m; k1º. We claim that the
matrix .M k/

k is irreducible for all k > k0.
We prove the claim by contradiction. Assume that .M k/

k is reducible. Then
there are nonempty and disjoint subsets A; B of ¹1; : : : ; N kº satisfying A [ B D
¹1; : : : ; N kº, and for all i 2 A and j 2 B , the .i; j / entry of .M k/

k is zero. From
Lemma 3.11 and N � 1 � 2, there are at least 2k-many elements in both A and B .
Hence

card.A/ � card.B/ D card.A/ �
�
N k
� card.A/

�
� 2k.N k

� 2k/

so that .M k/
k has at least 2k.N k � 2k/ many zero entries. From N � 3 and k > k0,

we have 2k > k2 > mk and N k � 2k > 2N k�1 so that 2k.N k � 2k/ > 2mkN k�1,
which is a contradiction. This completes the proof of the claim.
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Now, we show that for all k > k0, at least one of the main diagonal entry of .M k/
k

is positive, so that .M k/
k is primitive by Lemma 3.12. As a result, M k is primitive

for all k > k0.
For any j 2 ¹1;2; : : : ;N kº, let ¹jiºkiD1 be the unique finite sequence in ¹1; : : : ;N º

such that

j D .j1 � 1/N
k�1
C .j2 � 1/N

k�2
C � � � C .jk�1 � 1/N C jk :

We define �.j / D .j � .j1 � 1/N
k�1 � 1/N C j1. Then �.j / 2 ¹1; 2; : : : ; N kº.

Thus, we can define �p.j /D �.�p�1.j // for p � 2. It is easy to see that �k.j /D j
and .M k/j;�.j / is a basic entry of M k for all j 2 ¹1; : : : ; N kº.

Write �0.j /D j . From (3.7), ..M k/
k/jj �

Qk
pD1.M k/�p�1.j /;�p.j /. Notice that

.M k/�p�1.j /;�p.j / are basic entries for all 1 � j � N k and 1 � p � k. Thus, a zero
basic entry .M k/i;` of M k can make at most

card
®
1 � j � N k

W 91 � p � k; such that
�
�p�1.j /; �p.j /

�
D .i; `/

¯
� k

many main diagonal entries of .M k/
k to be zero, where we use the fact that � is a

bijection from ¹1; : : : ;N kº to itself. Recall that there are at most 2m-many zero basic
entries. Thus, there are at most 2mk-many zero main diagonal entries in .M k/

k .
Notice that k0 � max¹4;mº and N � 3. Hence, for k > k0, we have N k � 3k >

2k2 > 2mk so that .M k/
k contains at least one positive main diagonal entry.

From Lemma 3.9 and Theorems 3.4, 3.6, 3.7 and 3.13, we know that Theorem 2.1
holds.

4. Proof of Theorem 2.2

In the rest of the paper, we always assume that f is a generalized affine FIF satisfying
conditions (A1)–(A3).

4.1. Box dimension estimate of the graph of continuous functions

Given a bounded subset E of Rd , we use dimBE and dimBE to denote the upper
box dimension and the lower box dimension of E, respectively. If dimBE D dimBE,
then we use dimB E to denote the common value and call it the box dimension of E.
It is well known that dimBE � 1 when E is the graph of a continuous function on a
closed interval of R. Please see [11] for details.

Let g be a continuous function on J . For any U � J , we use O.g; U / to denote
the oscillation of g on U , that is,

O.g;U / D sup
x0;x002U

ˇ̌
g.x0/ � g.x00/

ˇ̌
:
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Write

Ok.g; J / D

NkX
jD1

O.g; J kj /;

where J kj is defined by (2.2).
The following lemma presents a method to estimate the upper and lower box

dimensions of the graph of a function by its oscillation. Similar results can be found
in [11, 19, 22].

Lemma 4.1 ([17]). Let g be a continuous function on a closed interval J . Then

dimB�g � 1C lim
k!1

log.Ok.g; J /C 1/
k logN

; and

dimB�g � 1C lim
k!1

log.Ok.g; J /C 1/
k logN

:

We remark that J D Œ0; 1� in the original version of the above lemma in [17].
However, it is straightforward to see that the lemma still holds in the present version.

It is now clear that ¹Ok.g; J /º1kD1 is increasing with respect to k. Therefore,
limk!1Ok.g; J / always exists. Write Var.g; J / the classical total variation of g on
J . We have the following simple fact.

Lemma 4.2. Let g be a continuous function on a closed interval J D Œa; b�. Then
limk!1Ok.g; J / D Var.g; J /.

Proof. Clearly, Ok.g; J / � Var.g; J / for all k 2 ZC. Thus limk!1 Ok.g; J / �

Var.g; J /. Now we prove another inequality.
Arbitrarily pick a partition T D ¹a D t0 < t1 < � � � < tn D bº of J . Fix k 2 ZC

large enough such that N�k < min¹ti � ti�1 W 1 � i � nº. For every 0 � i � n,
there exists ˛i 2 ¹1; : : : ; N kº such that ti 2 J k˛i

. Furthermore, it is easy to see that
1 D ˛0 < ˛1 < � � � < ˛n D N

k . Notice that for any 1 � i � n,

ˇ̌
g.ti / � g.ti�1/

ˇ̌
�

˛iX
pD˛i�1

O.g; J kp /:

Thus

nX
iD1

ˇ̌
g.ti / � g.ti�1/

ˇ̌
�

nX
iD1

˛iX
pD˛i�1

O.g; J kp /

D Ok.g; J /C

n�1X
iD1

O.g; J k˛i
/ � lim

k!1
Ok.g; J /C

n�1X
iD1

O.g; J k˛i
/:
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Since g is continuous on I , we can choose k large enough such that
Pn�1
iD1 O.g; J

k
˛i
/

as small as possible. Hence

nX
iD1

ˇ̌
g.ti / � g.ti�1/

ˇ̌
� lim
k!1

Ok.g; J /:

By the arbitrariness of the partition T , Var.g; J / � limk!1Ok.g; J /.

4.2. Estimate of oscillations

By the definition of Wn, it is easy to see that Wn.x; y/ D .Ln.x/; Fn.x; y//, where

Ln.x/ D .x � x0/=N C xn�1; Fn.x; y/ D Sn.x/y C qn.x/:

From (2.1), Wn.x; f .x// D .Ln.x/; f .Ln.x///. Thus, we have the following useful
equality:

f
�
Ln.x/

�
D Sn.x/f .x/C qn.x/; x 2 Œx0; xN �; n D 1; 2; : : : ; N: (4.1)

WriteMf D maxx2I jf .x/j. We can obtain the following lemma by using similar
arguments in the proof of [17, Lemma 4.2].

Lemma 4.3. For any 1 � n � N and D � I ,

O
�
f;Ln.D/

�
� sup
x2D

ˇ̌
Sn.x/

ˇ̌
O.f;D/CMfO.Sn;D/CO.qn;D/; and

O
�
f;Ln.D/

�
� inf
x2D

ˇ̌
Sn.x/

ˇ̌
O.f;D/ �MfO.Sn;D/ �O.qn;D/:

Proof. From (4.1),

O
�
f;Ln.D/

�
D sup
x0;x002D

ˇ̌
Sn.x

0/f .x0/ � Sn.x
00/f .x00/C qn.x

0/ � qn.x
00/
ˇ̌

� sup
x0;x002D

ˇ̌
Sn.x

0/
�
f .x0/ � f .x00/

�ˇ̌
C sup
x0;x002D

ˇ̌
f .x00/

�
Sn.x

0/ � Sn.x
00/
�ˇ̌

C sup
x0;x002D

ˇ̌
qn.x

0/ � qn.x
00/
ˇ̌

� sup
x2D

ˇ̌
Sn.x/

ˇ̌
O.f;D/CMfO.Sn;D/CO.qn;D/:

(4.2)

On the other hand, we choose x0; x00 2 D such that O.f;D/ D jf .x0/ � f .x00/j.
Then

O
�
f;Ln.D/

�
�
ˇ̌
f
�
Ln.x

0/
�
� f

�
Ln.x

00/
�ˇ̌
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�
ˇ̌
Sn.x

0/
�
f .x0/ � f .x00/

�ˇ̌
�
ˇ̌
f .x00/

�
Sn.x

0/ � Sn.x
00/
�ˇ̌

�
ˇ̌
qn.x

0/ � qn.x
00/
ˇ̌

� inf
x2D

ˇ̌
Sn.x/

ˇ̌
O.f;D/ �MfO.Sn;D/ �O.qn;D/:

Thus the lemma holds.

Using the argument similar to the proof of the first part of the above lemma, we
have the following result.

Lemma 4.4. For any 1 � n � N , D � I and t 2 D,ˇ̌
O
�
f;Ln.D/

�
�
ˇ̌
Sn.t/

ˇ̌
O.f;D/

ˇ̌
� 2MfO.Sn;D/CO.qn;D/:

Proof. For any x0; x00 2 D, we haveˇ̌
Sn.x

0/f .x0/ � Sn.x
00/f .x00/ � Sn.t/

�
f .x0/ � f .x00/

�ˇ̌
� 2MfO.Sn;D/:

Thus

sup
x0;x002D

ˇ̌
Sn.x

0/f .x0/ � Sn.x
00/f .x00/

ˇ̌
�
ˇ̌
Sn.t/

ˇ̌
O.f;D/ � 2MfO.Sn;D/

and

sup
x0;x002D

ˇ̌
Sn.x

0/f .x0/ � Sn.x
00/f .x00/

ˇ̌
�
ˇ̌
Sn.t/

ˇ̌
O.f;D/C 2MfO.Sn;D/:

Combining this with (4.2), we know that the lemma holds.

Given k; p 2 ZC and g 2 C.I /, we define

V.g; k; p/ D
�
Op.g; I

k
1 /; Op.g; I

k
2 /; : : : ; Op.g; I

k
Nk /

�T
2 RN

k

;

and call it an oscillation vector of g with respect to .k; p/. It is obvious that

OkCp.g; I / D


V.g; k; p/



1
;

where kvk1 WD
Pd
iD1 jvi j for any v D .v1; : : : ; vd /T 2 Rd .

Define a vector �k 2 RN
k

by

.�k/.n�1/Nk�1C` DMf Var.Sn; I k�1` /C Var.qn; I k�1` /; (4.3)

where 1 � n � N and 1 � ` � N k�1.

Lemma 4.5. For any k 2 ZC and any p 2 ZC,

��k CM kV.f; k; p/ � V.f; k; p C 1/ � �k CM kV.f; k; p/: (4.4)
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Proof. From Lemma 4.3, for any 1 � n � N , k 2 ZC, 1 � j � N k and anyD � I kj ,

O
�
f;Ln.D/

�
� skn;jO.f;D/CO.qn;D/CMfO.Sn;D/:

Notice that .Ln.I kj //
p
m D Ln..I

k
j /
p
m/ for 1 � m � N p . Thus,

Op
�
f;Ln.I

k
j /
�
D

NpX
mD1

O
�
f;
�
Ln.I

k
j /
�p
m

�
�

NpX
mD1

�
skn;jO

�
f; .I kj /

p
m/
�
CO

�
qn; .I

k
j /
p
m

�
CMfO

�
Sn; .I

k
j /
p
m

��
� skn;jOp.f; I

k
j /COp.qn; I

k
j /CMfOp.Sn; I

k
j /:

As a result,

`NX
jD.`�1/NC1

Op
�
f;Ln.I

k
j /
�

�

`NX
jD.`�1/NC1

�
skn;jOp.f; I

k
j /COp.qn; I

k
j /CMfOp.Sn; I

k
j /
�
:

Hence, from I k�1
`
D
S`N
jD.`�1/NC1 I

k
j , we have

OpC1
�
f;Ln.I

k�1
` /

�
D

`NX
jD.`�1/NC1

Op
�
f;Ln.I

k
j /
�

�

`NX
jD.`�1/NC1

skn;jOp.f; I
k
j /COpC1.qn; I

k�1
` /CMfOpC1.Sn; I

k�1
` /:

By the definitions of �k and M k , we can rewrite this inequality as

OpC1.f; I
k
.n�1/Nk�1C`

/ � .�k/.n�1/Nk�1C` C
�
M kV.f; k; p/

�
.n�1/Nk�1C`

so that V.f; k; p C 1/ � �k CM kV.f; k; p/. Similarly, we can prove that another
inequality in (4.4) holds.

4.3. Estimate the box dimension of �f by �� and ��

Theorem 4.6. We have

dimB�f � max¹1; 1C logN �
�
º: (4.5)
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Proof. Notice that for every nonnegative d � d matrixAD .aij / and every nonnegat-
ive vector x D .x1; : : : ; xd /T such that xi D xj for every i; j , we have Ax � kAk1x,
where kAk1 D max1�i�d

Pd
jD1 aij is the maximum row sum matrix norm of A.

Since k � k1 is a matrix norm, we have kAqk1 � .kAk1/q for all q 2 ZC and
limq!1.kA

qk1/
1=q D �.A/: See [14, Example 5.6.5. and Corollary 5.6.14] for

details.
Fix k 2 ZC. Let �k be the vector in RN

k
defined by (4.3). For every p; q 2 ZC,

we have from Lemma 4.5 that

V
�
f; k; .q C 1/p

�
� �k CM kV

�
f; k; .q C 1/p � 1

�
�

p�1X
`D0

.M k/
`�k C .M k/

pV.f; k; qp/:

Now, letwk;p be a vector in RN
k

with .wk;p/i D .wk;p/j for all i; j such thatwk;p �Pp�1

`D0
.M k/

`�k and wk;p � V.f; k; p/. Then

V
�
f; k; .q C 1/p

�
� wk;p C .M k/

pV.f; k; qp/ �

qX
`D0

.M k/
p`wk;p;

so that

V
�
f; k; .q C 1/p

�
�

qX
`D0



.M k/
p`



1
wk;p �

qX
`D0

�

.M k/
p



1

�`
wk;p:

Notice that for all 0 � ` � q,�

.M k/
p



1

�`
� max

®�

.M k/
p



1

�q
; 1
¯
� max

®�

.M k/
p



1

�qC1
; 1
¯
:

Hence

OkCqp.f; I / D


V.f; k; pq/



1
� q

��

.M k/
p



1

�q
C 1

�
kwk;pk1:

Thus, from Lemma 4.1,

dimB�f � 1C lim
q!1

log.OkCqp.f; I /C 1/
.k C qp/ logN

� 1Cmax
²
0;

log k.M k/
pk1

p logN

³
:

Since p can be arbitrarily chosen and .k.M k/
pk1/

1=p ! �.M k/ as p!1, we
get

dimB�f � 1Cmax
²
0;

log �.M k/

logN

³
:

By the arbitrariness of k, we know from Theorem 3.4 that (4.5) holds.



Box dimension of generalized affine fractal interpolation functions (II) 359

Theorem 4.7. Assume that Var.f; I /D1, ZM.S/�N � 2 and the function Sn has
finitely many zero points on I for all 1 � n � N . Then

dimB�f � 1C logN ��: (4.6)

Proof. Notice that dimB�f � 1 always holds. Thus, without loss of the generality, we
may assume that �� > 1. From �� D limk!1 �.M k/, there exists a positive integer
k2, such that �.M k/ > 1 for all k > k2. Let k0 be the constant in Theorem 3.13. From
Theorem 3.13, M k is primitive so that it is irreducible for all k > k0.

Fix k > max¹k0; k2º. Given 1 < � < �.M k/, from Lemma 3.3, we can find a
positive eigenvector wk of M k with eigenvalue �.M k/ such that

wk � �k=.�.M k/ � �/:

Since M k is primitive, there exists `k 2 ZC such that
�
M k

�`k > 0. Let ˛k be the

minimal entry of the matrix
�
M k

�`k . Then ˛k > 0. From Theorem 4.5,

V.f; k; p C 1/ �M kV.f; k; p/ � �k (4.7)

for all p 2 ZC. Repeatedly using this inequality, we can obtain that for all p 2 ZC,

V.f; k; p C `k/ � .M k/
`kV.f; k; p/ �

`k�1X
qD0

.M k/
q�k : (4.8)

Notice that the maximal entry of V.f; k; p/ is at least N�kkV.f; k; p/k1. Thus,

.M k/
`kV.f; k; p/ � .˛0k;p; : : : ; ˛

0
k;p/;

where ˛0
k;p
D ˛kN

�kkV.f; k; p/k1. Notice that

lim
p!1



V.f; k; p/


1
D lim
p!1

OkCp.f; I / D Var.f; I / D1:

Hence, we can choose p� large enough such that

.M k/
`kV.f; k; p�/ � wk C

`k�1X
qD0

.M k/
q�k :

Let pk D p� C `k . Then from (4.8),

V.f; k; pk/ � wk �
1

�.M k/ � �
�k :

From (4.7),

V.f; k; pk C 1/ � �.M k/wk � �k � �.M k/wk �
�
�.M k/ � �

�
wk D �wk :
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Notice that for all q 2 ZC,

�.M k/�
qwk � �k D �.M k/.�

q
� 1/wk C �.M k/wk � �k

� �.�q � 1/wk C �wk D �
qC1wk :

Thus, by induction, V.f; k; pk C q/ � �qwk for all q 2 ZC. Hence

OkCpkCq.f; I / D


V.f; k; pk C q/

1 � �qkwkk1;

which implies that

lim
q!1

log
�
Oq.f; I /C 1

�
q logN

D lim
q!1

log
�
OkCpkCq.f; I /C 1

�
q logN

�
log �
logN

:

It follows from the arbitrariness of � that log �.M k/= logN is less than the left hand
side of this inequality. Combining this with Lemma 4.1, we have

dimB�f � 1C
log �.M k/

logN
:

Since this result holds for all k > max¹k0; k2º, we know from Theorem 3.6 that (4.6)
holds.

Remark 4.8. From the proof of the above theorem, it is clear that under the assump-
tions of the theorem, Var.f; I kj / D1 for any k 2 ZC and 1 � j � N k .

Theorem 4.9. Under the assumption of Theorem 4.7 and the additional assumption
that �� D ��, if Var.f; I / D1 and �S > 1, then

dimB �f D 1C logN �S; (4.9)

otherwise dimB �f D 1.

Proof. In the case that Var.f;I / <1, we know from Lemma 4.1 that dimB�f � 1. In
the case that �S� 1, we know from Theorem 4.6 that dimB�f � 1. Since dimB�f � 1
always holds, dimB �f D 1 if Var.f; I / <1 or �S � 1.

In the case that Var.f; I / D 1 and �S > 1, we know from Theorems 4.6 and 4.7
that (4.9) holds.

From Lemma 3.9 and Theorems 4.6, 4.7 and 4.9, we know that Theorem 2.2 holds.
Furthermore, from Theorems 3.7 and 4.9, we have the following result.

Corollary 4.10. Assume that the function jSnj is positive on I for each 1 � n � N .
Then in the case that Var.f; I /D1 and �S > 1, (4.9) holds, otherwise dimB �f D 1.
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5. Estimate the box dimension of FIFs by 
� and 
�

In this section, we estimate the box dimension of �f by the sum function of vertical
scaling functions. From Theorem 4.6 and (3.4), we have

dimB�f � max¹1; 1C logN 

�
º: (5.1)

By Lemma 4.4, we can obtain the following result.

Lemma 5.1. For all k 2 ZC,

OkC1.f; I / � 
� �Ok.f; I / �

NX
nD1

�
Var.qn; I /C 2Mf Var.Sn; I /

�
:

Proof. Given D � I , we know from Lemma 4.4 that for any t 2 D,

NX
nD1

O
�
f;Ln.D/

�
� 
.t/ �O.f;D/ �

NX
nD1

�
O.qn;D/C 2MfO.Sn;D/

�
� 
� �O.f;D/ �

NX
nD1

�
O.qn;D/C 2MfO.Sn;D/

�
:

For any k 2 ZC and 1 � j � N k , by lettingD D I kj in the above inequality, we have

NX
nD1

O
�
f;Ln.I

k
j /
�
� 
� �O.f; I

k
j / �

NX
nD1

�
O.qn; I

k
j /C 2MfO.Sn; I

k
j /
�
:

Hence

OkC1.f; I / D

NX
nD1

NkX
jD1

O
�
f;Ln.I

k
j /
�

� 
� �Ok.f; I / �

NX
nD1

�
Ok.qn; I /C 2MfOk.Sn; I /

�
� 
� �Ok.f; I / �

NX
nD1

�
Var.qn; I /C 2Mf Var.Sn; I /

�
;

so that the lemma holds.

From this lemma, we can obtain the lower box dimension estimate by 
�.

Theorem 5.2. If 
� > 1 and Var.f; I / D1, then dimB�f � 1C logN 
�.
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Proof. Write � D
PN
nD1.Var.qn; I /C 2Mf Var.Sn; I //. It is clear that � <1 since

Sn and qn are of bounded variation on I for each n. From Lemma 5.1, we have

OkC1.f; I / �
�


� � 1
� 
�

�
Ok.f; I / �

�


� � 1

�
; 8k � 1: (5.2)

Since Var.f; I / D 1, from Lemma 4.2, there exists an integer k0 2 ZC such that
Ok0

.f; I / > �=.
� � 1/. From (5.2),

Ok.f; I / �
�


� � 1
� .
�/

k�k0

�
Ok0

.f; I / �
�


� � 1

�
; 8k � k0:

Thus from Lemma 4.1, dimB�f � 1C logN 
�. Hence, the theorem holds.

We remark that similarly as the proofs of Lemma 5.1 and Theorem 5.2, we can
obtain (5.1) by directly using Lemma 4.4. We leave the details to readers.

Remark 5.3. From the proof of Theorem 5.2, it is easy to see that under the condition

� > 1, the following two properties are equivalent:

(1) Var.f; I / D1,

(2) there exists k0 2 ZC such that

Ok0
.f; I / > .
� � 1/

�1

NX
nD1

�
Var.qn; I /C 2Mf Var.Sn; I /

�
:

Remark 5.4. Under the condition that the function Sn is nonnegative for each n, from
(4.1),

NX
nD1

f
�
Ln.x/

�
D

NX
nD1

�
Sn.x/f .x/C qn.x/

�
D 
.x/f .x/C

NX
nD1

qn.x/:

Thus, by using arguments similar to the proof of [17, Theorem 4.10], we have

OkC1.f; I / � 
�Ok.f; I / �Mf Var.
; I / � Var
� NX
nD1

qn; I

�
:

Hence, if 
� > 1 and the function Sn is nonnegative on I for each 1 � n � N , then
Var.f; I / D1 if and only if there exists k0 2 ZC satisfying

Ok0
.f; I / > .
� � 1/

�1

�
Mf Var.
; I /C Var

� NX
nD1

qn; I

��
:

From (5.1) and Theorem 5.2, we can obtain the following result.
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Theorem 5.5. Assume that 
.x/� 
0 for all x 2 I . Then in the case that 
0 > 1 and
Var.f; I / D1,

dimB �f D 1C logN 
0; (5.3)

otherwise dimB �f D 1.

Proof. Notice that dimB�f � 1 always holds since f is a continuous function on
I . In the case that 
0 � 1, it follows from equation (5.1) that dimB�f � 1. In the
case that Var.f; I / <1, we have limk!1Ok.f; I / <1. Thus, from Lemma 4.1,
dimB�f � 1. Hence if 
0 � 1 or Var.f; I / <1, then dimB �f D 1.

Now we assume that 
0 > 1 and Var.f; I / D1. From (5.1) and Theorem 5.2,

dimB�f � 1C logN 
0 � dimB�f:

so that dimB �f D 1C logN 
0. Thus (5.3) holds.

From Remark 5.4 and Theorem 5.5, we have the following result.

Corollary 5.6. Assume that the function Sn is nonnegative for each n, and both 

and

PN
nD1 qn are constant functions on I . Then in the case that 
.0/ > 1 and f is

not a constant function, dimB �f D 1C logN 
.0/, otherwise dimB �f D 1.

6. An example and further remarks

6.1. An example: generalized Weierstrass-type functions

Weierstrass functions are classical fractal functions. There are many works on fractal
dimensions of their graphs, including the box and Hausdorff dimension. Please see
[15, 18, 21] and the references therein. For example, Ren and Shen [21] studied the
following Weierstrass-type functions

g
�

�;N
.x/ D

1X
kD0

�k�.N kx/; x 2 R;

where N � 2 is an integer, 1=N < � < 1 and � W R! R is a Z-periodic real analytic
function. They proved that either such a function is real analytic, or the Hausdorff
dimension of its graph is equal to 2C logN �.

It is well known that f D g�
�;N

ˇ̌
Œ0;1�

is a generalized affine FIF. In fact, for n 2
¹1; 2; : : : ; N º and x 2 Œ0; 1�, we have

f
�x C n � 1

N

�
D �

�x C n � 1
N

�
C �

1X
kD0

�k�.N kx/ D �
�x C n � 1

N

�
C �f .x/:
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Thus, �f D
SN
nD1Wn.�f /, where for n D 1; 2; : : : ; N ,

Wn.x; y/ D
�x C n � 1

N
; �y C �

�x C n � 1
N

��
; .x; y/ 2 Œ0; 1� �R:

Let �.x/ D cos.2�x/. Then g�
�;N

is the classical Weierstrass function. Shen [23]
proved that the Hausdorff dimension of its graph is equal to 2C logN �. Let

qn.x/ D cos
�
2�.x C n � 1/=N

�
; 1 � n � N:

It is easy to check that
PN
nD1 qn.x/ D 0 for all x 2 Œ0; 1�. Thus, from Corollary 5.6,

we obtain the well-known result dimB �f D 2C logN �, where f D g�
�;N

ˇ̌
Œ0;1�

and
�.x/ D cos.2�x/.

By Theorem 2.2, we can study the box dimension of generalized Weierstrass-type
functions by replacing vertical scaling factor � with vertical scaling functions.

Figure 1. The FIF in Example 6.1

Example 6.1. Let I D Œ0; 1�,N D 3, and xn D n=3, nD 0;1; 2; 3. Let vertical scaling
functions Sn, 1 � n � 3 on Œ0; 1� are defined by

S1.x/ D S2.x/ D
1

2
C

sin.2�x/
4

; S3.x/ D
1

2
�

sin.2�x/
4

:

Then each function Sn is positive on I so that �� D ��.
Let �.x/ D cos.2�x/ and define maps Wn, 1 � n � 3 by

Wn.x; y/ D
�x C n � 1

3
; Sn.x/y C �

�x C n � 1
3

��
; .x; y/ 2 Œ0; 1� �R:

Let y0 D y3 D 2 and y1 D y2 D 1=2. Then it is easy to check that

Wn.x0; y0/ D .xn�1; yn�1/; Wn.x3; y3/ D .xn; yn/
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for n D 1; 2; 3. Thus ¹Wnº3nD1 determines a generalized affine FIF f . Please see
Figure 1 for the graph of f .

Notice that 
.x/ D
P3
nD1 jSn.x/j D 3=2 C sin.2�x/=4 for x 2 Œ0; 1�. Hence,


� D 5=4, 
� D 7=4 and �0 D �=2 is a Lipschitz constant of 
.x/.
Let qn.x/D �..x C n� 1/=3/, x 2 Œ0; 1�, nD 1; 2; 3. Then

P3
nD1 qn.x/D 0 for

all x 2 Œ0; 1� so that Var.
P3
nD1 qn; I / D 0.

Now we calculate Mf D max¹jf .x/j W x 2 I º. Notice that for any x 2 I , there
exists n1n2 � � � 2 ¹1; 2; 3º1 such that x 2

T1
kD1Ln1

ıLn2
ı � � � ıLnk

.I /. Thus, from
(4.1), we have

f .x/ D qn1

�
L�1n1

.x/
�
C Sn1

�
L�1n1

.x/
�
f
�
L�1n1

.x/
�

D qn1

�
L�1n1

.x/
�
C

1X
kD2

�k�1Y
tD1

Snt

�
L�1nt
ı � � � ı L�1n1

.x/
��
qnk

�
L�1nk
ı � � � ı L�1n1

.x/
�
:

Hence, from q� WD max¹jqn.x/j W x 2 Œ0; 1�; n D 1; 2; 3º D 1 and

S� WD max
®
Sn.x/ W x 2 Œ0; 1�; n D 1; 2; 3

¯
D
3

4
;

we have Mf � q�
P1
kD0.S

�/k D q�=.1 � S�/ D 4. Thus,

�0Mf jI j C Var
�P3

nD1 qn; I
�


� � 1
�
.�=2/ � 4 � 1C 0

5=4 � 1
D 8�:

By calculation, O6.f; I / > 8� . Thus, from Remark 5.4, Var.f; I / D1.
By definition of vertical scaling matrices, we have

M 1 D

0B@3
4

1
2
C

p
3
8

1
2

3
4

1
2
C

p
3
8

1
2

1
2

1
2
C

p
3
8

3
4

1CA ; M 1 D

0B@1
2

1
2
�

p
3
8

1
4

1
2

1
2
�

p
3
8

1
4

1
4

1
2
�

p
3
8

1
2

1CA :
The matrix M 2 is approximately equal to0BBBBBBBBBBBBBB@

0:5 0:661 0:717 0 0 0 0 0 0

0 0 0 0:586 0:414 0:283 0 0 0

0 0 0 0 0 0 0:25 0:254 0:339

0:5 0:661 0:717 0 0 0 0 0 0

0 0 0 0:586 0:414 0:283 0 0 0

0 0 0 0 0 0 0:25 0:254 0:339

0:339 0:254 0:25 0 0 0 0 0 0

0 0 0 0:283 0:414 0:586 0 0 0

0 0 0 0 0 0 0:717 0:661 0:5

1CCCCCCCCCCCCCCA
:
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In general, by calculation, we can obtain the spectral radii of �.M k/ and �.M k/,
k D 1; 2; 4; 5; 7; 8 as in Tabel 1. Thus, from Theorem 2.2,

dimB �f D 1C logN �S � 1C log 1:516= log 3 � 1:379:

k 1 2 4 5 7 8
�.M k/ 1.95688 1.68984 1.53627 1.52277 1.51675 1.51625
�.M k/ 1.05567 1.33590 1.49577 1.50926 1.51525 1.51575

Table 1. �.Mk/ and �.Mk/ in Example 6.1

6.2. Further remarks

From the proof of Theorem 3.4, we essentially prove that �� D limk!1 �.M k/ exists
without any restrictions on vertical scaling functions. This also holds for the existence
of ��D limk!1 �.M k/. Hence, from Theorem 2.2, we have the following conjecture.

Conjecture 6.1. Let f be a generalized affine FIF satisfying conditions (A1)-(A3).
Then �� D ��. Furthermore, in the case that Var.f; I / D1 and �S > 1, dimB �f D
1C logN �S, otherwise dimB �f D 1.
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