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Non-affine fractal hypersurfaces: construction and dimensions
Alamgir Hossain and Jorge Buescu

Abstract. This article presents the construction of a non-affine hypersurface on an n-simplex in
R”™. Additionally, fractal dimension of the graph of a non-affine multivariate real-valued fractal
function is estimated under certain conditions. Furthermore, the upper bound of the Hausdorff
dimension of the invariant probability measure supported on the graph of such fractal function
is estimated.

1. Introduction

Fractal geometry is the field of study that primarily focuses on understanding and
describing the complex patterns and structures found in natural phenomena and ob-
jects, such as clouds, trees, mountains, coastlines, and even the cells of the human
body [15,22,29]. The world of fractals is home to many iconic and well-known exam-
ples, including the Koch curve, Cantor set, Cantor dust, Sierpinski gasket, and many
more. These fractals have become synonymous with the field of fractal geometry and
continue to inspire research and fascination. One key tool in fractal geometry is the
theory of iterated function systems (IFSs), which offers powerful methods for generat-
ing and modeling fractals, allowing researchers to simulate and analyze these intricate
patterns [3,19,32]. The attractors generated by IFSs are typically fractal sets, charac-
terized by their unique and intricate geometric structures [1, 3, 8, 14, 15]. Building on
this concept, Barnsley [5] introduced in 1986 the idea of fractal interpolation functions
(FIFs), which are specifically generated by IFSs. This innovation enabled the creation
of functions that can accurately model and reproduce the complex patterns found in
fractal geometry [11-13, 18, 24]. Those functions are used to compress images by
exploiting the self-similarity properties of fractals [16], utilized in computer graphics
to generate and simulate natural landscapes, such as mountains, rivers, and clouds,
which have inherent fractal characteristics [3, 6, 33]. Navascués [25] introduced the
concept of non-affine fractal functions, expanding the field of fractal geometry and
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opening up new avenues for research and applications. Non-affine fractal functions
do not exhibit affine self-similarity, meaning their scaling properties are not uniform
in all directions. These functions have been used to model and analyze complex phe-
nomena in various fields, used to approximate trigonometric polynomials, to analyze
and process signals with complex, non-stationary behavior, to generate realistic mod-
els of natural objects and environments [28], or to model the growth and branching
patterns of biological systems, such as blood vessels and trees. Many authors gen-
eralized these concepts by defining various fractal interpolation surfaces (FISs) on
different types of regions, e.g., FISs on rectangular grids [13], FIS on a triangular
region without edge condition [24], recurrent FISs on rectangular grids [21], non-
affine FIS on a rectangle [26], etc. In [23], Massopust pioneered the development
of multivariate, real-valued affine fractal functions defined on a regular n-simplex in
R”, constructing an affine fractal basis for these functions which enables the repre-
sentation of complex fractal structures. The graphical representation of these fractal
functions is termed as affine fractal hypersurfaces.

Motivated by these results, in this article, we introduce a new class of multivariate,
real-valued non-affine fractal functions defined on an n-simplex in R”, and we term
the graph of such a function a non-affine fractal hypersurface. In addition, we have
included a graphical representation of this type of function, providing concrete exam-
ples that facilitate a deeper understanding of their characteristics and functionality
(see Figures 2 and 3).

Fractal dimensions are mathematical concepts used to describe the complexity
and scaling properties of fractals. Many authors have studied the fractal dimension of
graphs of different fractal functions in the literature [2,17,20,27,28,30]. In [9], Buescu
et al. explored systems of non-affine iterative functional equations, deriving bounds
for the Hausdorff dimension of the solution’s graph. Additionally, they elegantly
connected these findings to related concepts in the literature, including Girgensohn
functions, fractal interpolation functions, and Weierstrass functions, revealing a rich
web of relationships between these mathematical objects. Verma at al. [34] con-
structed more general non-affine FIFs on the Sierpinski gasket by taking variable
scaling factors. Liang at al. [21] also provided bounds for box dimensions of the graph
of recurrent FISs for equally-spaced data sets. In this article, in a more general setting,
we estimate the bound of fractal dimension of a non-affine fractal hypersurface on a
regular n-simplex. We also study the Hausdorff dimension of the invariant probability
measure supported on the graph.
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2. Preliminaries

For clarity and ease of understanding, this section covers essential definitions and
notations. Additional information may be found in references [3, 19,23].

2.1. Iterated function system
Let (X, |||lx) be a Banach space and d be the metric induced by this norm. Consider
H(X)={K CX: K # @and K is compact}
endowed with the Hausdorff metric H;, defined by
Hy(A, B) = max {d(A, B), d(B, A)}

forall A, B € H(X), where d(A, B) = sup, 4 inf,ep d(x,y). The space (H(X),Hy;)
is complete if (X, d) is complete [3]. Let W, : X — X, forn =1,2,..., N, be
continuous functions; then W = {(X; W,,): n =1,2,..., N} is called an IFS [3,15].
If, foreachn = 1,2,..., N, the W, are contractive maps, that is, if there exist s, €
[0, 1) such that

d(Wn(X), Wn(y)) < snd(x,y)

for all x, y € X, then the corresponding IFSW = {(X; W,): n=1,2,...,N}is
known as a hyperbolic IFS. In these conditions, the set-valued Hutchinson operator
W :H(X) - H(X), given by

N
W(B) = | | Wa(B) forall B € H(X),
n=1
is also a contraction map with contractivity factor s = max{s, : n =1,2,...,N}.

Define W°(B) = B and let W*(B) denote the k-fold composition of W applied to
the set B.

Definition 1 ([4]). A compact subset F' of (X, d) is called an attractor of an IFS
W={X:W,): n=1,2,...,N}if

(1) W(F) = F and

(2) there exists an open subset U of X such that F C U and

lim W¥(B) = F forall B € H(U).

k—o0

where convergence is with respect to the Hausdorff metric H; on H(X).

Note 1. The largest open set U in Definition 1 is known as the basin of attraction for
the attractor F of the IFS ‘W and is denoted by B(F).
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Definition 2 (Hausdorff dimension). Let (X, d) be metric space. Then the Hausdorff
dimension of a set F' C X is given by

dimg F = inf{s > 0: V§ > 0, there is countable cover {U, };en of F

such that Z|Ui|s < 5},
ieN

where |U; | denotes the diameter of Uj;.

Definition 3 (Box-counting dimension). Let (X, d) be a metric space and F be a
compact subset of X. Let N, (F, d) be the minimum number of balls of radius r that
cover F. Then the upper and lower box dimensions of F are defined by

_ log N, (F, d
dGimp (F. d) = limsup 22 - D)
r—0 —logr
log N, (F, d
dim (F, d) = lim inf &V d).
r—0 —logr

If both exist and are equal, the common value is called the box dimension of F' and is
denoted by dimp (F, d) [15].

Definition 4. If y is a Borel probability measure on X, then the Hausdorff dimension
of u is given by

dimg (u) = inf{dimH F : F is a Borel subset such that u(F) > 0}. 2.1

2.2. Fractal surfaces

Let (X, ||-|lx) and (Y, ||-|ly) be two Banach spaces. In this section, a class of special
attractors of IFSs, namely attractors that are the graphs of bounded functions f : A C
X — Y, where A € H(X), is provided (see [23]). Suppose there exists a collection of
injectivemaps {L; : A - A, i =1,2,...,N}suchthat {L;(A): i =1,2,...,N}
is a set-theoretic partition of A, that is

N
A =|JLi(A)and (Li(A))° N (L;(A)° =@, foralli 5 j,

i=1
where (A)° denotes the interior of the set A. Let B(A) ={f :A—Y : f is bounded}
and for all f € B(A), define a norm || f |loo,A := SUp,eall f(X)|ly. It is straight-
forward to show that (B(A), ||f||oo,A) is a Banach space. Fori = 1,2,..., N, let
F; : A xY — Y be amapping which is contractive with respect to the second variable,
i.e., there exists 0 < ¢ < 1 such that

[ Fi(x, y1) = Fi(x, y2)ly <cllyr—yz2lly, Vx€AandVy;,y2 €Y.
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Define a Read-Bajraktarevi¢ (RB)-operator 7 : B(A) — B(A) by

N
T(f) =Y F(L7'(x).foLi'(x) xa, (2.2)

i=1

where y4 denotes the characteristic function of A, which takes the value one on A4 and
zero outside A. Then T is well defined and is also a contraction map on the Banach
space B(A), thus having a unique fixed point f in B(A). This unique fixed point
is called the multivariate fractal function and its graph is a fractal surface on X x Y;
sometimes it is called fractal hypersurface on X x Y. The graph of this function f is
an attractor of the IFS {(A x Y; W;): i = 1,2,..., N}, where the W;’s are given by

Wi(x,y) = (Li(x), Fi(x,)).

For more details, see Massopust [23].

2.3. Affinely generated fractal surfaces in R"*1

In this section, we deal mainly with the connections between IFS and multivariate
real-valued affine FIF.

Definition 5. Let {eg, €1, ..., e,} be a set of affinely independent points in R”. A
regular n-simplex on R” is defined as the point set

n n
A= {xeR" X = Ztkek;()ftkf I;Ztk= 1}.
k=0 k=0

Over the n-simplex A, consider
€(A) ={f : A — R such that f is continuous on A}.

Then the space (€(A), doo,a) forms a complete metric space, where the metric doo A
is induced by the sup norm, defined as || f |lco,a := sup,ealf(x)| for f € €(A).

Now, let {A; :i = 1,2,..., N} be a collection of non-empty compact subsets of
A with the properties:

(Al) A =UN A
(A2) Ajissimilarto A, i =1,2,...,N;
(A3) A;iscongruentto A; with (A;)° N (A;)° =@ foralli,j € {1,2,...,N}.

Then there exist N contractive similarity maps L; : A — A; given by

Ly =¢0; +1, (2.3)
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where ¢; < 1 is the similarity constant or the similarity ratio for A; with respect to A,
O; is an orthogonal transformation on R”, and ¢; is a translation in R”.
Let V be the set of vertices of A and V; be the set of vertices of A;. Let

L Jvi—v
be a labeling map, defined in such a way that the condition
L,'(l (v)) =v

is satisfied for alli = 1,2,..., N and for all v € UV;. Consider the interpolation set

{(v,zv)eAxR:veUVi}.

Fori = 1,2,..., N, define the continuous maps F; : A xR — R
Fi(x,y) = Ai(x) + iy,

where A; : A — R are affine maps and o; € (—1, 1). The affine map A; is uniquely
determined by the interpolation conditions

/\i(l(v)) + QizZiw) = Zp.
Impose the following join-up conditions:
AioLi'(s.t) +aif oL (s.1) =Aj 0 Ly (s.0) + aj f o L7 (s.1)

for all (s,¢) € E;j := A; N Aj, i # j and for all continuous functions f : A - R
(see [7,10,23,31]). The set E;; is called a common edge of A; and A;.

Finally, the IFS is generated by the mappings L; and F;, having an attractor which
is a graph of the continuous map f : A — R. The map f is called a multivariate
real-valued affine fractal function and its graph is known as affinely generated fractal
hypersurface or an affine fractal hypersurface [23].

3. Construction of non-affine fractal hypersurface

In this section, we present the construction of a non-affine multivariate fractal function
on an n-simplex.

Let A be an n-simplex in R” and {A; : i = 1,2,..., N} be the set-theoretic
partition of A satisfying the conditions (A1), (A2) and (A3), and Vj be the vertex set
of A.Leta = (a1,02,...,0N) € RY be a vector such that |a;| < 1, which acts as a
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scaling vector. Let L; : A — A; be the contractive similarity maps given in (2.3). For
ke Nandi= (i1,is,....0x) € {1,2,..., N}, let

Ai = LI(A) = Lil o Li2 O:+-+0 le(A)

and Vj be the corresponding vertex set of A;. Let us define

Zk = U V,

i{1,2,...,N}k
and ZO = V().
For a fixed g € €(A), let g(vk) = zy, forall vy € Zi. Then the space
Co(A) = {f € €(A): f(vk) = g(vk) = Zuy, Uk € Zi}

is a closed subset of (€ (A), ||:|lcc,a), being therefore complete. Consider the interpo-
lation set
Z = {(vk,zvk) e AXR v, € Zk}.

Let us define a labeling map Il : Zy — Z;_; for k € N that satisfies the condition
Li(lk(vk)) = vk (3.1

foralli e {1,2,..., N}k, and for all v, € Z;. Fori e {1,2,..., N}k, consider the
contraction homeomorphism L; : A — A; given by

Li(x) = LjyoLj,0---0Lj (x) (3.2)

and the continuous maps F; : A x R — R,

Fi(x,y) = Ai(x) + a5y, (3.3)
where o = o;, iy -y, i €{1,..., N} for j =1,...,k,and A; : A — R are
defined by

Ai(x) = g o Li(x) — ajb(x), (3.4)

where the function b : A — R satisfies the condition b(vg) = g(vg) for all vy € Zy
and b # g. Foralli,je{l,2,.. .,N}k and for all x € Ej; = A; N Aj, we impose the
following join-up condition

a(f —b)o Li'(x) = aj(f —b)o Lj'(x) 3.5)
forall f € €y(A). Since |o;| < 1, foralli € {1,2,..., N}, therefore, |o;| < 1 for all
ie{l,2,...,N }k , hence it follows that the map Fj is contractive with respect to the

second variable and for all v € Zp,

Fi(lk () 2 ) = il (vk)) + atizi (oy)- (3.6)
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Now,
Aille(vr)) = g(Li(lk (vi))) — csb (I (vi))
= g(vk) — g (Ie (vx)) (3.7)
= Zug — UiZli (vg)-
From (3.6) and (3.7), we get

Fi(le i) 21 o)) = Zoge-
Recalling the RB-operator 7 : €9(A) — €y(A) defined in equation (2.2) such that
T(H= DY gaa+ Y. alf=b)oLi" ya. 3.8)
i€{1,2,...,N}¥ i€{1,2,...,N}k
we then obtain the following result.
Theorem 3.1. The operator T is well defined and contractive on €y(A).

Proof. Tt is easy to see that for i € {I,2,..., N}*, on each partition A;, T(f) is
continuous for all f € €y(A). Also for x € Ej; = A;j N A, from (3.5) and (3.8),
T (f) assumes the same values, and is therefore continuous on each Ej;. Let vy € Zy.
Then v € V; C A forsomei € {1,2,..., N}k. Therefore, from (3.1), we get

(T f)wk) = gwi) + ei(f — b)(Li ' (vk))
= g(vi) + o5 (f (lk (k) — b(Ik (k) = Zo.-

This shows that 7 is well defined and (7 f)(vk) = zy, for all vy € Zg. Also,
from equation (3.8), for all f1, f> € €o(A) and all x € A;, we get

1T (f)(x) = T (£)0)] = laal| f1(x) — fo(x)]
<ok |1/ = Flloo.a

where, 000 = maxj<ij<n{|e;|} < 1. The above inequality is true for all x € A =
Uie(1,2,..., N3k Ai, hence taking the supremum over all x € A, we get

17 (1) = T (f)lloa < X111 = fallooa- (3.9)

k < 1,7 is contractive on €y(A). ]

Since o5,

The Banach fixed point theorem thus ensures that 7 has a unique fixed point f*
in €o(A). The function f* is said to be a multivariate real-valued non-affine fractal
function and its graph a non-affine fractal hypersurface. Now, from (3.8), the function
f@ satisfies the functional equation

=T = > goam+ Y. a(f*=b)oLxa. (3.10)

ie{1,2,...,. N} i€{1,2,...,. N}k
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Consider the IFS W = {(A x R; W) : i€ {1,2,..., N}*}, where the maps W :
A xR — Aj x R are given by

VVi(xvy) = (Li(x)’ E(x’y)) (3.11)
It thus follows that this IFS is hyperbolic, hence it has a unique attractor G.

Theorem 3.2. The attractor of the above IFS {(A x R; W;) : i€ {1,2,..., N} is
the graph of the fractal function .

Proof. Let G(f*) := {(x, f%(x)) : x € A}. Then

U wmeun= U W s m): xea}

i€{1,2,...,N}k ie{1,2,...,. N}
= U {(Li(x), Fi(x, f%(x))) : x € A}.
i€{1,2,...,N}k

Now, from (3.3), (3.4) and (3.10), we get

Fi(x, f¥(x)) = g(Li(x)) — oib(x) + a; f* (x)
= g(Li(x)) + ai(f* = b)(x) = f*(Li(x)).

Therefore,

U Wi(G(f%) = U {(Li(x), f*(Li(x))) - x € A}

ie{1,2,...,N}k ie{1,2,...,N}k
= U {(x. f¥(x)) : x € A}
i€{1,2,...,N}k

= {(x. /*(x)) : x € A} = G(f*).

This shows that G( f*) is the attractor of the IFS, and hence by uniqueness, G =
G(f%). This completes the proof. ]

The following examples illustrate the construction of non-affine fractal hypersur-
faces for values of k = 1 and 2, respectively.

Example 3.3. For simplicity, we consider a 2-simplex A in R? and the classical func-
tion g : A — R given by (see Figure 1)

g(x,y) =5+ x>+ y? +sin2nxsin2xy.

For k = 1, the vertex set is {(0, 0), (%,0), (1,0), (%, %), (0,1), (0, %)}. We consider
the scale factors a; = oy = g and a3 = oy = % and the base function » : A — R
given by b(x, y) = 5+ x> + y2. Then Figure 2 represents the corresponding non-
affine fractal hypersurface.
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Figure 1. Graphical representation of the classical function g.

Example 3.4. We consider a 2-simplex A in R? and the classical function g and the
base function b given in Example 3.3. For k = 2, the vertex set is {(0, 0), (%, 0), (%, 0),
(3.0), (1,0), (3, )+ (5. 5)- (G D) (0,1),(0, ), (0,5), (0, ), G 1) G- 3)- (5 5)}-
Fori,j € {1,2,3,4}, consider the scale factors o;; = ¢; - ;. Then Figure 3 represents
the corresponding non-affine fractal hypersurface.

The following result can be found in [19].

Proposition 1. Let (py, p2,..., pn) be a given probability vector and {X; W; : i =
1,2,..., N} be a hyperbolic IFS. Then there exists a unique Borel probability measure
W supported on its attractor such that

N
= pipo W "

i=1

Let (p1, p2, ..., pn) be a given probability vector and fori € {1,2,..., N}k, let
Di = Diy " Dir """ Pix»ij €{1,...,N}for j =1,... k. Let u and uq be the invariant
probability measures with probability vector (pi)ieq12,... w4 generated by the IFSs
{(A;L):ie{l,2,.... N and {(A xR; W;) : i€ {1,2,...,N}*} givenin (3.2)
and (3.11), respectively. Then the support of @ is A and the support of g is G(f%),
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Figure 2. Graphical representation of the non-affine fractal hypersurface for k = 1.

respectively. We end this section by providing a relation between y and [y in the
following theorem.

Theorem 3.5. Let S : A — G(f%) be the homeomorphism given by
S(x) = (x, f*(x)).

for x € A. Then
W(E) = j1a(S(E))

for all Borel subsets E of A.

Proof. Let B(G(f%)) and B(A) be the spaces of Borel probability measures sup-
ported on G( %) and A, respectively. Define the operator

@ :B(G(f%) — B(A)

v — Oy

(3.12)

such that ®v(E) = v(S(E)) for all Borel subsets E of A. Now, from Proposition 1,
we get

Moo= Y Pitao W
i€{1,2,...,N}¥
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Figure 3. Graphical representation of the non-affine fractal hypersurface for k = 2.

Therefore, for a Borel subset E of A
CDlLa (E) = Ko (S(E))

= Y pittao WH(S(E)). (3.13)
i€{1,2,...,N}k

Now, for x € E,

WL @), f4(LT (@) = (Ll L7 (). R(LT (). £(LiT (x)). using (3.11)
= (¥, T f%(x))
= (x, f%(x)), using (3.10)
= S(x).
This shows that W ™! (S(x)) = (L' (x), f*(L{ ' (x))) = S(L{'(x)), x € E. There-
fore, W;"1(S(E)) = S(L;'(E)). Hence from (3.13), we get
ua(E)= D pitaoS(L7N(E))
i{1,2,..,N}¥

= Z pi®ug o Ly (E), using (3.12).
i€{1,2,...,N}¥
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But u is the unique probability measure supported on A such that

wE)= > pipoLi'(E).
ie{1,2,...,N}k

Therefore, w(E) = ®uu(E) = ue(S(E)). This completes the proof.

4. Dimension results

407

In this section, we explore the B-oscillation space (see [34]) and derive bounds for

the fractal dimension of the graph of a non-affine multivariate fractal function. Addi-

tionally, we provide an upper bound for the Hausdorff dimension of the invariant

probability measure supported on the graph.

For N > 2andi= (iy,i2,...,ix) € {1,2,..., N}k, recall the definition of the sets
Aj:=Li(A)=L; oL;,0---0L;j (A). The maximal range of a function g : A; — R

over the set A; is defined by

Re[Ail = sup  [g(x1) — g(x2)]

x1,X2€A;
and the total oscillation of order k is defined by
Rk.g)= ) RelAl
i€{1,2,...,N}¥
For 0 < B < 2, define the function space

RP (A) = {g : A — R : giscontinuous and sup

Rk, g) }
keN '

NKk@—B)

RB(A) is called the B-oscillation space. Here, we obtain the following results.

Proposition 2. For all g € RF(A), the following holds:
(1) If0 < B <1, then

2 < dimy G(g) < dimg G(g) <3—B.
() If1 < B <2, then

dimg G(g) = dimp G(g) = 2.

Proof. Let g € RP(A). Then by definition of B-oscillation space, there exists a real

M > 0 such that

Rik.8) _

NEap =M

sup
keN

4.1
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Forafixedk e N,leté = ﬁ Then by the continuity of g, the number of mesh-prism

of side lengths § in the column above the set A; that intersects G(g) is at least w

and at most 2 + @. Summing over all such set A;, we get
NE ST R[A] = Ns(G(g)) <2NF+NF T Re[A]. @42
i€{1,2,...,N}¥ i€{1,2,...,N}k
Now since N > 2, using (4.1) and (4.2), we get
N3(G(g)) < N** + NEMNFC=P)

— Nk(3—f3)(M + Nk(ﬂ—l))'
Therefore,
log N3(G(g)) log(M + N*#~1)

<3- li
log Nk~ P +ki>nolo log N¥

dimp G(g) = kli)rgo

Case 1.If 0 < B < I, then N¥#B—1 — 0, which implies that

log(M + N*(B-D)
m =
k—00 log N*

0.

Also, since dimg A = 2 and G(g) is the graph of the continuous function g : A — R,
it follows that dimg G(g) > 2. Therefore,

2 < dimg G(g) < dimp G(g) <3 —B.

Case2.If 1 < B <2, then m — 0, which implies that

log(M + NkB-D) log Nk(ﬂ_l)(Nk%—n +1)
lim = lim =pf-1
k—o0 log Nk k—o0 log N¥
This shows that
2 <dimg G(g) <dimp G(g) <3—-p+p—-1=2.
Therefore,
dimyg G(g) = dimp G(g) = 2.

This completes the proof. ]

In Section 3, we considered the original function g and the base function b in
€o(A). From this point onwards, we consider the original function g and the base
function b in R® (A), and take ¢ to be the corresponding non-affine fractal function.
In the following theorem, we estimate the fractal dimension of G( %) and provide
bounds for the Hausdorff dimension of the measure (i .
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K
Theorem 4.1. Suppose, for a fixed k € N, that max{(x , N,g(?iﬂ)} < 1. Then the
non-affine fractal function f® lies in the B-oscillation space RP (A). Furthermore,
the following holds:

(1) If0< B <1, then
2 <dimyg G(f*) <dimp G(f*) <3— B, and dimyg uq <3 — B.
Q) If 1 < B <2, then
dimg G(f%) = dimp G(f%) =2, and dimg py < 2.

To prove Theorem 4.1, we first establish the following results. For g € R8(A),
define a norm
Rk, g)

It is easily shown that this defines a norm. Indeed,
(1) llgllzscay = 0, if and only if ||g[loc,a = 0, if and only if g = 0.
(2) Now, forc € R and g € RF(A), Reg[Ai]l = |c|Rg[Ai], therefore, R(k,cg) =
lc|R(k, g). Hence [cgllxsay = lclllgllrs(a)-
(3) For f,g € RE(A), RriglAi] < Rr[Ai] + Rg[Ai]. Therefore,

Rk, [+ =Rk, [)+ R(k.g).

Hence from (4.3), we get

Rk, f) R(k. g)
IS+ 8llzsa) = 1S oot + l18lloo.a + suP + sup S
RO = 1 oo oo R Nke=B) T 2R Nke-B)

Therefore, || /' + glizsa) = 1./ lxsa) + I1glzsa)-
Lemma 4.2. The space (RF(A), Il x5 (a)) is @ Banach space.

Proof. Let (fu)nen be a Cauchy sequence in (RP(A), ||l x5 (a))- Then (fn)nen is a
Cauchy sequence in (€(A), ||:|ls0,a), and hence converges to a continuous function f .
Our first claim is R(k, f,) = R(k, f) asn — oo. Since f,, — f uniformly, it follows
that

| fu(x1) = fu(x2)| = | f(x1) = f(x2)| forall xi,xz € Ay, i€ {1,2,..., N},
This shows that

sup | fa(x1) = fu(x2)| = sup | f(x1) = f(x2)].

X1,X2€A; X1,X2€A;
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Therefore, Ry, [Ai] — Ry[Ai]. Hence R(k, fr) — R(k, f). Therefore,

Rk, ) Rk, f)
= + sup ——2 + sup L2 = .
nllaaay = oo, + sup " = 1 lloe.s + 50 Ly = 1 s

This completes the proof. u

Proof of Theorem 4.1. Let
R (D) :={f € RE(A): flz, = %Iz},

where Zi = Uieq1 5, Nk Vi It is easy to show that IRJ’?(X (A) is a closed subset of
RB(A), and so it is complete with respect to the metric induced by the norm ||-|| RB(A)-
Define the RB-operator 7 : ZRﬁa A) — Rﬁa (A), in an analogous way to (3.8), by

T(H= > gaa+ Y, alf—=boLi'ya, (4.4)

i€{1,2,...,N}¥ i€{1,2,...,N}k

where fork € N, A = Ujeqy 5. vk Ai, & = 04y -+, and b € Rfﬂa (A) such that
b # g. Since on each partition A; fori e {1,2,..., N}*, T(f) is continuous for all
J € €(A). Also, for x € Eyj = Aj N A, from (3.5) and (4.4), T(f) assumes the
same values, and is therefore continuous on each Ej;. Let vy € Zg, then vg € A; for
someie{l,2,..., N}k. Using (3.1) in (4.4), we get

T () (k) = gwk) + i (f —b)(Ik(vi))
= Zy, + (21 () — Ziwp) = fE(Vi).
Therefore, T(f)|z, = f%|z;-

This shows that 7 is well defined. To check contractivity of 77, let fi, f» €
R, (A). Then

17 /1 =T f2llrs(a)

_ rv ﬁ(m,Tfl—sz)
=T /1 =7 falloo,a + ”Sllelgl Nm2—B) (4.5)

Yict12...nym RT -7 1144
=)

=7 fi— Tf2||oo,A + sup

meN

First, we estimate the quantity

Z R7 f-7 £ [Ail-

i€{1,2,...,N}"
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For any m > k, the wordi € {1,2,..., N} may be expressed as i = (j1, j2), where
j1= G, jose oo ji) €4{1,2, ... N}¥
and
J2 = Gkt itz Jm) €412, NY™7K,

Now, using the expression of i = (jy, j2), we may write

Y etz N Ry sy 5, [A]
= > sup (T A =T L)1) — (T fi—T f£)(x2)|

i€{1,2,..., N}mxl:XZEAi=Li(A)

= > s [(TA-ThH)oLix)— (T fi—T fr)o Li(xa)|

i€{1,2,...,Nym X1:X2€A
= Z Z sup {|(Tfl_7f2)OleoLj2(xl)
j2€{1,2,...,N}m—k j1€{1,2,...,N}k xl,xzeA

— (T fi=T f2) o Lj, o Ly(x2)l}.-

Now, for the partition A = U; 4y 5, nyx Ajy, using (4.4) in the last expression, we
get

D etz Ny R -7 1, [A]
= Z Z o, | sup {|(fi — f2) o Lj," o Lj, o Lj,(x1)

jel{l,2,....Nym—k jie{1,2,.. ., N}k X1:X2€A
—(fi—f2)o Lj' o Lj o Lj,(x2)l}
<o ), Yo s [(fim f) oLyl
(1,2, NY—K jie{1,2,... . N}k ¥1X2EA
— (/1= f2) o Lj,(x2)]
=Nag, ) sup |(fi = f2) 0 Ly (x1) = (i = f2) © Ly, (x2)|

j2€{1,2,.., Nym—k X1:X2€4

= (Naw)* > sup (i = f2)(x1) = (fi = fo)(x2)]

jrel1.2,... Nym—k ¥1:%2€Lip (A)=4j

= (Nao)*R(m —k, fi — f).
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Hence for the partition A=Uj ¢4y 5 . w3k Ajy, using the above expression and (3.9)
in (4.5), we get

|7 f1 =T fallgsa)

= 0%l fi = falloo.s + (Naw)* sup
me
(Notoo)* “w R(m —k, f1 — f2)
NEC=B) DR TN =)
k
o R(m, f1 = f2)
< max{a’go, Wﬁﬁ)}(ﬂfl — falloo,a +  sup W)

meN,m>k

R(m —k, fi — f2)
NP

= X |11 = folloon +

=c /1 = f2llx8(a)

K
where we have that ¢ = max{algo, %} < 1. This shows that 7 is a contraction
map on (:R.?a (A), |l x5 (a))- Hence, by the Banach fixed point theorem, 7~ has a
fixed point f* € fRﬁa (A). Also T(f*)|z, = %z, and it satisfies the functional

equation (3.10). Hence by uniqueness, we conclude that f* = f* € RF(A). Now,
using Proposition 2, we get

2 <dimg G(f*) < dimp G(f*) <3—B.if0<B <1
and
dimg G(f*) =dimg G(f%) =2, ifl < B <2.

Also, since [, is the probability measure with support G( /%) generated by the IFS
{(AXR; W) : ie{l,2,..., N}¥}, it follows that ie (G(f%)) > 0. Hence by (2.1),
we get

dimy pe < dimg G(f%).

Therefore,
(1) if 0 < B < 1, thendimy puy <3 — B, and
2) if 1 < B <2, thendimyg o < 2.

This completes the proof. |

Conclusion

In this article, we presented the construction of a non-affine hypersurface on an n-
simplex in R”. We also estimated the fractal dimension of the graph of this non-affine
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multivariate real-valued fractal function under certain conditions. Moreover, we esti-
mated the upper bound of the Hausdorff dimension of the invariant probability mea-
sure supported on the graph of this fractal function. This investigation was conducted
under the assumption of constant scale factors, within the context of Euclidean space.
Future research directions may include considering variable scale factors and gener-
alizing the results to L? spaces, thereby broadening the scope of applicability.
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